WorldWideScience

Sample records for heavy-ion reactions time

  1. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  2. Entrance-channel Mass-asymmetry Dependence of Compound-nucleus Formation Time in Light Heavy-ion Reactions

    CERN Document Server

    Szanto de Toledo, A; Beck, C; Thoennessen, M

    1996-01-01

    The entrance-channel mass-asymmetry dependence of the compound nucleus formation time in light heavy-ion reactions has been investigated within the framework of semiclassical dissipative collision models. the model calculations have been succesfully applied to the formation of the $^{38}$Ar compound nucleus as populated via the $^{9}$Be+$^{29}$Si, $^{11}$B+$^{27}$Al, $^{12}$C+$^{26}$Mg and $^{19}$F+$^{19}$F entrance channels. The shape evolution of several other light composite systems appears to be consistent with the so-called "Fusion Inhibition Factor" which has been experimentally observed. As found previously in more massive systems for the fusion-evaporation process, the entrance-channel mass-asymmetry degree of freedom appears to determine the competition between the different mechanisms as well as the time scales involved.

  3. Time-evolution of dense hadronic matter in high energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Otuka, Naohiko; Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Nara, Yasushi; Maruyama, Tomoyuki; Niita, Koji

    1997-05-01

    Time evolution of hadronic resonance matter in ultrarelativistic nucleus-nucleus collisions are studied in the framework of cascade models. We investigate the role of higher baryonic resonances during the time evolution of hot and dense hadronic matter at AGS energies. Although final hadronic spectrum can reproduced well with and without higher baryonic resonances, the inclusion of higher resonances is shown to prevent the temperature from going beyond 200 MeV. (author)

  4. Prompt processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1987-12-01

    We test a relaxation model based on two body nucleon-nucleon scattering processes to interpret phenomena observed in heavy ion reactions. We use the Boltzmann Master Equation to accomplish this. By assuming that the projectile nucleons partition the total excitation with equal a-priori probability of all configurations, we are able to reproduce several sets of neutron spectra from /sup 20/Ne and /sup 12/C induced reactions on /sup 165/Ho and from reactions of /sup 40/Ar or /sup 40/Ca. We point out ambiguities in deducing angle-integrated energy spectra from double differential spectra. With no additional free parameters, our model successfully reproduces a large body of high energy ..gamma..-ray spectra by assuming an incoherent n-p-bremsstrahlung mechanism. 45 refs., 13 figs.

  5. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  6. Heavy-ion reactions at the GSI Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Metag, V. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Giessen Univ. (Germany). 2. Physikalisches Inst.

    1998-12-01

    In nucleus-nucleus collisions at bombarding energies on the order of 1 AGeV nuclear matter can be compressed to similar densities as encountered in stellar processes, i.e. to 2-3 times normal density. Experimental data providing information on the space-time evolution of these collisions are presented: the properties of hadrons in the hot and compressed nuclear medium in the high-density phase, collective flow phenomena during the expansion phase, and the hadrochemical composition of the collision system in the final stage of the reaction at freeze-out are discussed. Future directions in the heavy-ion reaction program are indicated. (orig.)

  7. Recent studies in heavy ion induced fission reactions

    Science.gov (United States)

    Choudhury, R. K.

    2001-08-01

    rigid rotation of the nascent fragments at scission and (ii) due to statistical excitation of the spin bearing collective modes in the fissioning nucleus. One of the collective modes -- the tilting mode depends on the K quantum number and is responsible for the emission angle dependence of fragment spin. In our studies, we have shown conclusively that the collective statistical spin modes get strongly suppressed for high K values corresponding to large rotational frequencies along the fission axis. These results bring out the importance of the dynamical effects in the heavy ion induced fusion-fission reactions. The present article will review the work carried out on the above aspects in heavy ion fission reactions as well as on the fission time scales, and some of the recent studies on the mass-energy correlations of fission fragments at near-barrier bombarding energies.

  8. Dynamical processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1988-07-25

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy ..gamma..-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/..mu... Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs.

  9. Current experimental situation in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references. (RWR)

  10. Thermodynamical Aspects in Heavy Ion Reactions

    Science.gov (United States)

    Bruno, M.; Cannata, F.; D'Agostino, M.; de Sanctis, J.; Fabbri, S.; Fuschini, E.; Geraci, E.; Guiot, B.; Vannini, G.; Verondini, E.; Gulminelli, F.; Chomaz, Ph.; Casini, G.; Chiari, M.; Nannini, A.; Barlini, S.; Gramegna, F.; Kravchuk, V.; Lanchais, A.; Vannucci, L.; Moroni, A.; Ordine, A.; Abbondanno, U.; Margagliotti, G. V.

    2005-12-01

    The excited nuclear systems formed in heavy ion collisions can be studied from a thermodynamical point of view. Charged finite systems have different behaviors with respect to infinite ones. After experimental selection of such equilibrated systems the extraction of thermodynamic coordinates is performed. Different signals compatible with a liquid-gas phase transition have been obtained. In particular a bimodal distribution of the asymmetry between the first two heaviest fragments is presented. Abnormally large fluctuations, which in thermodynamic equilibrium are associated to a negative branch of the heat capacity give indications of a first order phase transition. Perspectives for new generation experiments are indicated.

  11. Multiplicity and theremalization time in heavy-ions collisions

    Science.gov (United States)

    Aref'eva, Irina

    2016-10-01

    We present a concise review of quark-gluon plasma formation in heavy-ions collisions within the holographic approach. In particular, we discuss how to get the total multiplicity in heavy ions collision to fit the recent experimental data. We also discuss theoretical estimations of time formation of QGP in heavy ions collision and show that different observables can give the different times of QGP formation.

  12. Multiplicity and theremalization time in heavy-ions collisions

    Directory of Open Access Journals (Sweden)

    Aref’eva Irina

    2016-01-01

    Full Text Available We present a concise review of quark-gluon plasma formation in heavy-ions collisions within the holographic approach. In particular, we discuss how to get the total multiplicity in heavy ions collision to fit the recent experimental data. We also discuss theoretical estimations of time formation of QGP in heavy ions collision and show that different observables can give the different times of QGP formation.

  13. Hydrodynamic Approaches in Relativistic Heavy Ion Reactions

    CERN Document Server

    de Souza, Rafael Derradi; Kodama, Takeshi

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation with the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to...

  14. Subthreshold photons in heavy-ion reactions at intermediate energies

    NARCIS (Netherlands)

    Martinez, G

    1998-01-01

    In the present talk, I discuss about the properties of the energetic photons produced in heavy-ion reactions. I show that they are sensitive to the maximum density reached in the first stage of the nuclear reaction. Then, the existence of a thermal contribution to the photon differential cross-secti

  15. Recent studies in heavy ion induced fission reactions

    Indian Academy of Sciences (India)

    R K Choudhury

    2001-08-01

    sources: (i) due to rigid rotation of the nascent fragments at scission and (ii) due to statistical excitation of the spin bearing collective modes in the fissioning nucleus. One of the collective modes – the tilting mode depends on the quantum number and is responsible for the emission angle dependence of fragment spin. In our studies, we have shown conclusively that the collective statistical spin modes get strongly suppressed for high values corresponding to large rotational frequencies along the fission axis. These results bring out the importance of the dynamical effects in the heavy ion induced fusion-fission reactions. The present article will review the work carried out on the above aspects in heavy ion fission reactions as well as on the fission time scales, and some of the recent studies on the mass-energy correlations of fission fragments at near-barrier bombarding energies.

  16. Time-scaled scenario of low-energy heavy-ion collisions

    CERN Document Server

    Iwata, Yoritaka

    2013-01-01

    The underlying scenario of low-energy heavy-ion collisions is presented based on time-dependent density-functional calculations. A classification of several types of reaction dynamics is given with respect to their time-scales.

  17. Catalytic Reactions in Heavy-ion Collisions

    CERN Document Server

    Kolomeitsev, E E

    2011-01-01

    We discuss a new type of reactions of a phi meson production on hyperons, pi Y--> phi Y and anti-kaons bar-K N --> phi Y. These reactions are not suppressed according to Okubo-Zweig-Iizuka rule and can be a new efficient source of phi mesons in a nucleus-nucleus collision. We discuss how these reactions can affect the centrality dependence and the rapidity distributions of the phi yield.

  18. Catalytic reactions in heavy-ion collisions

    Science.gov (United States)

    Kolomeitsev, E. E.; Tomášik, B.

    2012-06-01

    We discuss a new type of reactions of a ϕ-meson production on hyperons, πY → ϕY and antikaons -KN → ϕY. These reactions are not suppressed according to Okubo-Zweig-Iizuka rule and can be a new efficient source of ϕ mesons in a nucleus-nucleus collision. We discuss how these reactions can affect the centrality dependence and the rapidity distributions of the ϕ yield.

  19. Heavy ion transfer reactions: Status and perspectives

    Indian Academy of Sciences (India)

    L Corradi

    2010-07-01

    With the large solid angle magnetic spectrometer (PRISMA) coupled to the -array (CLARA), extensive investigations of nuclear structure and reaction dynamics have been carried out. In the present paper aspects of these studies will be presented, focussing more closely on the reaction mechanism, in particular on the properties of quasielastic and deep inelastic processes and on measurements at energies far below the Coulomb barrier.

  20. Heavy Ion Reactions with Neutron-Rich Beams - Proceedings of the Riken International Workshop

    Science.gov (United States)

    Yamaji, S.; Ishihara, M.; Takigawa, N.

    1993-11-01

    The Table of Contents for the book is as follows: * Preface * Opening Address * Fusion I * Heavy Ion Fusion at Subbarrier Energies: Progress and Questions * Angular Momentum in Heavy Ion Subbarrier Interaction * Fusion II * High Precision Fusion Excitation Function Measurements: What Can We Learn from Them? * Transfer Reactions for 16O + 144,152Sm near the Coulomb Barrier * Fusion III * Recent Theoretical Developments in the Study of Subbarrier Fusion * Direct Reaction Approach to Heavy Ion Scattering and Fusion at Energies near Coulomb Barrier * Fusion IV * Roles of Multi-Step Transfer in Fusion Process Induced by Heavy Ion Reactions * Special Session * RIKEN Accelerator Research Facility (RARF) * Fission I * Bimodal Nature of Nuclear Fission * Systematics of Isotope Production Rates: Mass Excess Dependence of Fission Products * Semiclassical Methods for the Multi-Dimensional Quantum Decay * Dynamics of Di-Nucleus Systems: Molecular Resonances * Fission II * The Competition Between Fusion-Fission and Deeply Inelastic Reactions in the Medium Mass Systems * Unstable Nuclei I * Coulomb Dissociation and Momentum Distributions for 11Li → 9Li+n+n Breakup Reactions * Unstable Nuclei II * Elastic Scattering and Fragmentation of Halo Nuclei * Secondary Reactions of Neutron-Rich Nuclei at Intermediate Energies * Life Time of Soft Dipole Excitation * Unstable Nuclei III * Shell Structure of Exotic Unstable Nuclei * Properties of Unstable Nuclei Within the Relativistic Many-Body Theory * Fusion with Unstable Nuclei * Barrier Distributions for Heavy Ion Fusion * Heavy Ion Reactions with Neutron-Rich Beams * Heavy Ion Fusion with Neutron-Rich Beams * Superheavy Elements * Study of α Decays Following 40Ar Bombardment on 238U * Production of Superheavy Elements via Fusion: What is Limiting Us? * Panel Session * Comments * List of Participants

  1. Fission in intermediate energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S. (Los Alamos National Lab., NM (USA)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L. (Lawrence Livermore National Lab., CA (USA)); Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G. (Lawrence Berkeley Lab., CA (USA)); Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W. (Brookhaven National Lab., Upton, NY (USA)); Dichter, B.; Kaufman, S.; Videbaek, F. (Argonne National Lab. (USA)); Fraenkel, Z.; Mamane, G. (Weizmann Inst. of Science, Rehovoth (Israel)); Cebra, D.; Westfall, G.D. (Michigan State Univ., East Lansing (USA))

    1989-10-09

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.).

  2. Heavy ion reactions around the Coulomb barrier

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The angular distributions of fission fragments for the 32S+184W reaction near Coulomb barrier energies are measured. The ex perimental fission excitation function is obtained. The measured fission cross sections are decomposed into fusion-fission, quasi-fission and fast fission contributions by the dinuclear system (DNS) model. The hindrance to completing fusion both at small and large collision energies is explained. The fusion excitation functions of 32S+90,96Zr in an energy range from above to below the Coulomb barrier are measured and analyzed within a semi-classical model. The obvious effect of positive Q-value multi-neutron transfers on the sub-barrier fusion enhancement is observed in the 32S+96Zr system. In addition, the excitation functions of quasi-elastic scattering at a backward angle have been measured with high precision for the systems of 16O+208Pb, 196Pt, 184W, and 154,152Sm at energies well below the Coulomb barrier. Considering the deformed coupling effects, the extracted diffuseness parameters are close to the values extracted from the systematic analysis of elastic and inelastic scattering data. The elastic scattering angular distribution of 17F+12C at 60 MeV is measured and calculated by using the continuum-discretized coupled-channels (CDCC) approach. It is found that the diffuseness parameter of the real part of core-target potential has to be increased by 20% to reproduce the experimental result, which corresponds to an increment of potential depth at the surface re gion. The breakup cross section and the coupling between breakup and elastic scattering are small.

  3. Dynamical dipole mode in heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Parascandolo, C., E-mail: concetta.parascandolo@na.infn.i [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Pierroutsakou, D. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Martin, B. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Agodi, C.; Alba, R. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Boiano, A. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Coniglione, R. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); De Filippo, E. [INFN - Sezione di Catania, 95123, Catania (Italy); Del Zoppo, A. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Emanuele, U. [INFN, Gruppo Collegato di Messina and Dip. di Fisica, Universita di Messina, Messina (Italy); Farinon, F. [GSI, Planckstrasse 1, D-64291, Darmstadt (Germany); Guglielmetti, A. [Universita degli Studi di Milano and INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Inglima, G.; La Commara, M. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Maiolino, C. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Mazzocchi, C. [Universita degli Studi di Milano and INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Mazzocco, M. [Dip. di Fisica and INFN, Universita di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Romoli, M. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Sandoli, M. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Santonocito, D. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy)

    2010-03-01

    The dynamical dipole mode, excited in charge asymmetric heavy-ion collisions, was investigated in the mass region of the {sup 192}Pb compound nucleus, formed by using the {sup 40,48}Ca + {sup 152,144}Sm reactions at approx11 MeV/nucleon. Preliminary results of this measurement, concerning both fusion-evaporation and fission events are presented. As a fast cooling mechanism on the fusion path, the dynamical dipole mode could be useful for the synthesis of super heavy elements through 'hot' fusion reactions.

  4. Theory of Nucleon Transport in Deep Inelastic Heavy Ion Reactions.

    Science.gov (United States)

    Sherman, Andrew Bruce

    Heavy ion reactions induced by projectiles of A > 80 at bombarding energies of 5-10 MeV/nucleon were studied using classical dynamical models. The damping of the relative motion was accounted for by radial and tangential friction, which dissipated both energy and angular momentum. Deformations were initially simulated by a simple phenomenological prescription for the entrance channel/exit channel asymmetry in the nuclear and centrifugal potentials. Later, a time dependent prolate spheroidal deformation was assumed for the exit channel, and its effect on all forces was explicitly treated. In that treatment the nuclear forces were derived from the proximity potential and the one-body proximity friction. The most important aspect of this work was the treatment of mass and charge transport. Transfer was treated as a random process occurring at finite time intervals along the trajectory. The probability of transfer at a given time was governed by a driving force derived from the liquid-drop binding energy and the nuclear temperature. All forces affecting the collision dynamics as well as the transfer driving forces were adjusted instantaneously to reflect any change in the charge or mass. Because the process was random, the equations of motion were solved by a Monte-Carlo procedure, whereby each impact parameter (or partial wave) was integrated many times, yielding a distribution for the scattering angle, final kinetic energy, final mass and final charge. The model was very successful in fitting the peak of the angular distribution and most of the observed energy loss. The qualitative features of the mass or charge distributions were accounted for by the model, including the increase of the width with increased energy loss. However, the model was not able to account for all of the observed width of either the mass (or charge) distributions or the angular distributions. This was true even if the effects of thermal fluctuations were included. The reasons for these

  5. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  6. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  7. On the slope anomaly in heavy-ion transfer reactions

    CERN Document Server

    Marta, H D; Fernández-Niello, J O; Pacheco, A J

    2002-01-01

    We discuss a semiclassical model of transfer reactions in heavy-ion collisions, in which the nuclei are assumed to move along classical trajectories governed by the Coulomb and the real part of the optical potential. The model, originally proposed for the case of spherical nuclei, is here extended to deformed ones. It takes into account tunneling around the point of closest approach of the collision partners, and the effect of other channels is included as an absorption due to the imaginary part of the optical potential. The interplay between absorption and tunneling effects explains both the observed energy dependence of the transfer probabilities at large distances, and the so-called 'slope anomaly' in neutron transfer reactions.

  8. News on the equation of state from heavy ion reactions

    Science.gov (United States)

    Colonna, M.; Baran, V.; Di Toro, M.

    2014-07-01

    We discuss recent results on heavy ion reactions between charge asymmetric systems, from low up to intermediate energies. The theoretical framework is provided by mean- field based transport approaches. We focus on isospin sensitive observables, aiming at extracting information on the density dependence of the isovector part of the nuclear effective interaction and of the nuclear symmetry energy. For reactions close to the Coulomb barrier, we explore the structure of collective dipole oscillations, rather sensitive to the low-density behavior of the symmetry energy. At intermediate energies, where regions with higher density and momentum are reached, we discuss collective flows and their sensitivity to the momentum dependence of the isovector interaction channel, which determines the splitting of neutron and proton effective masses.

  9. Deduction of compound nucleus formation probability from the fragment angular distributions in heavy-ion reactions

    Science.gov (United States)

    Yadav, C.; Thomas, R. G.; Mohanty, A. K.; Kapoor, S. S.

    2015-07-01

    The presence of various fissionlike reactions in heavy-ion induced reactions is a major hurdle in the path to laboratory synthesis of heavy and super-heavy nuclei. It is known that the cross section of forming a heavy evaporation residue in fusion reactions depends on the three factors—the capture cross section, probability of compound nucleus formation PCN, and the survival probability of the compound nucleus against fission. As the probability of compound nucleus formation, PCN is difficult to theoretically estimate because of its complex dependence on several parameters; attempts have been made in the past to deduce it from the fission fragment anisotropy data. In the present work, the fragment anisotropy data for a number of heavy-ion reactions are analyzed and it is found that deduction of PCN from the anisotropy data also requires the knowledge of the ratio of relaxation time of the K degree of freedom to pre-equilibrium fission time.

  10. Peculiarities of quasifission reactions in heavy ion collisions

    CERN Document Server

    Nasirov, Avazbek; Oh, Yongseok

    2015-01-01

    The probability of the formation and decay of a dinuclear system is investigated for a wide range of relative angular momentum values. The mass and angular distributions of the quasifission fragments are studied for understanding the reaction mechanisms of the heavy ion collision of $^{78}$Kr(10 $A$ MeV) + $^{40}$Ca within dinuclear system model. The quasifission products contribute to the mass-symmetric region of the mass distribution in collisions with the large orbital angular momentum. The analysis of the mass and angular distributions of the quasifission fragments shows the possibility of the $180^{\\circ}$ rotation of the system so that projectile-like products can be observed in the forward hemisphere with large cross sections, which can explain the phenomenon observed recently in the ISODEC experiment.

  11. Charge density asymmetry of heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, N.D.; Ivascu, M.; Mazilu, D.; Sandulescu, A. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))

    1980-01-01

    The generalized liquid-drop model replacing surface energy by double folded Yukawa-plus-exponential function is extended for fusion of heavy ions with different charge densities. Calculated interaction barriers for some 58 pairs of nuclei are in good agreement with experimental ones, within -10% and +7%. For even-even beta-stable nuclei with Z =4-104 the general trend of variation of interaction barriers and fusion Q-values show the regions where the charge density asymmetry cannot be neglected. PES for the entrance channel of the reactions /sup 109/Ag + /sup 40/Ar, /sup 138/Ce + /sup 57/Fe, /sup 144/Nd + /sup 84/Kr and the corresponding charge-equilibrated system have been computed.

  12. TNSA Heavy Ion Measurements using the Time-Resolved Tandem Faraday Cup

    Science.gov (United States)

    Ginnane, M. K.; Kousar, B.; Slish, J.; Palmisano, K.; Mandanas, S.; Padalino, S. J.; Sangster, T. C.; Regan, S.; Mileham, C.; Stoeckl, C.

    2016-10-01

    The MTW Laser at LLE utilizes an ultra-intense laser to produce high-energy heavy ion pulses through Target Normal Sheath Acceleration (TNSA). Using the Time-Resolved Tandem Faraday Cup (TRTF) the total number of heavy ions produced by TNSA can be determined, which is needed for stellar nuclear reaction cross section measurements. TNSA heavy ions stop within the thin walled front cup, while light ions pass through it and deposit their remaining charge in the back cup. A two channel storage scope measures voltages produced by the beam currents collected in the cups, respectively. The charge state fraction of plasma ions is modified by passing the heavy ions through a charge-exchange foil at the TRTF entrance. While passing through the foil, ions equilibrate to known charge states based on their velocities. Using time of flight, the total heavy ion current can be normalized to the correct charge state fraction. A pair of dipole magnets deflect relativistic TNSA electrons from the cup's entrance. They also prevent secondary electrons from escaping the front and back cups. Funded in part by a LLE contract through the DOE.

  13. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    T Peitzmann

    2003-04-01

    A review on experimental results for direct photon production in heavy ion reactions is given. A brief survey of early direct photon limits from SPS experiments is presented. The first measurement of direct photons in heavy ion reactions from the WA98 collaboration is discussed and compared to theoretical calculations. An outlook on the perspective of photon measurements at RHIC is given.

  14. On the Space-Time Difference of Proton and Composite Particle Emission in Central Heavy-Ion Reactions at 400 A.MeV

    CERN Document Server

    Kotte, R; Plettner, C; Neubert, W; Wohlfarth, D

    1999-01-01

    Small-angle correlations of pairs of nonidentical light charged particles produced in central collisions of heavy ions in the A=100 mass region at a beam energy of 400 AMeV are investigated with the FOPI detector system at GSI Darmstadt. The difference of longitudinal correlation functions with the relative velocity parallel and anti-parallel to the center-of-mass velocity of the pair in the central source frame is studied. This method allows extracting the apparent space-time differences of the emission of the charged particles. Comparing the correlations with results of a final-state interaction model delivers quantitative estimates of these asymmetries. Time delays as short as 1 fm/c or - alternatively - source radius differences of a few tenth fm are resolved. The strong collective expansion of the participant zone introduces not only an apparent reduction of the source radius but also a modification of the emission times. After correcting for both effects a complete sequence of space-time emission points...

  15. Measurement of Total Reaction Cross-sections with Heavy Ions at the SC

    CERN Multimedia

    2002-01-01

    The aim of this experiment is the measurement of heavy ion total reaction cross-sections in the energy range 40-86 MeV/A with the anti-coincidence beam attenuation technique. A system of 19 @DE scintillation detectors together with a time-of-flight measurement is used for detection of the residual beam. The results will complete measurements at the Grenoble cyclotron and post accelerator over the energy range 10-40 MeV/A.

  16. Real causes of apparent abnormal results in heavy ion reactions

    Directory of Open Access Journals (Sweden)

    Mandaglio G.

    2015-01-01

    Full Text Available We study the effect of the static characteristics of nuclei and dynamics of the nucleus-nucleus interaction in the capture stage of reaction, in the competition between quasifission and complete fusion processes, as well as the angular momentum dependence of the competition between fission and evaporation processes along the de-excitation cascade of the compound nucleus. The results calculated for the mass-asymmetric and less mass-asymmetric reactions in the entrance channel are analyzed in order to investigate the role of the dynamical effects on the yields of the evaporation residue nuclei. We also discuss about uncertainties at the extraction of such relevant physical quantities as Γn/Γtot ratio or also excitation functions from the experimental results due to the not always realistic assumptions in the treatment and analysis of the detected events. This procedure can lead to large ambiguity when the complete fusion process is strongly hindered or when the fast fission contribution is large. We emphasize that a refined multiparameter model of the reaction dynamics as well as a more detailed and checked data analysis are strongly needed in heavy-ion collisions.

  17. Recent results on heavy-ion reactions in the SIS-energy regime

    Energy Technology Data Exchange (ETDEWEB)

    Metag, V. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Giessen Univ. (Germany). 2. Physikalisches Inst.

    1998-02-01

    Future heavy-ion reaction studies at RHIC and LHC aim at exploring the partonic degrees of freedom of hadronic matter at temperatures of several 100 MeV and almost vanishing net baryon densities. In contrast, experiments at SIS, i.e. in the 1 AGeV energy regime, focus on hadronic matter at temperatures below 100 MeV and baryon densities of 2-3 times normal nuclear matter density. Both experimental approaches are complementary as they allow rather different regimes in the phase diagram of hadronic matter to be studied. There are, nevertheless, several aspects of common interest, among them, e.g. the partial restoration of chiral symmetry. In general, investigations at low incident energies are required for a full, quantitative description of ultrarelativistic heavy-ion reactions as any initially formed quark-gluon plasma will go through a temperature and density range during the hadronization phase that can be directly studied at lower collision energies. This overview over heavy-ion reactions in the SIS-energy range focuses on two aspects: (i) the global features of compressed hadronic matter generated in such collisions, and (ii) evidence for medium modifications of hadrons in this hot and dense nuclear medium. (orig.) 49 refs.

  18. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Pant, L.M. E-mail: lalit.pant@exp2.physik.uni-giessen.de; Biswas, D.C.; Dinesh, B.V.; Thomas, R.G.; Saxena, A.; Sawant, Y.S.; Choudhury, R.K

    2002-12-11

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with {alpha} particles from {sup 241}Am-{sup 239}Pu source, fission fragments from {sup 252}Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  19. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  20. Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions

    Indian Academy of Sciences (India)

    S S Godre

    2014-05-01

    Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.

  1. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  2. Shape analysis applied in heavy ion reactions near Fermi energy

    Science.gov (United States)

    Zhang, S.; Huang, M.; Wada, R.; Liu, X.; Lin, W.; Wang, J.

    2017-03-01

    A new method is proposed to perform shape analyses and to evaluate their validity in heavy ion collisions near the Fermi energy. In order to avoid erroneous values of shape parameters in the calculation, a test particle method is utilized in which each nucleon is represented by n test particles, similar to that used in the Boltzmann–Uehling–Uhlenbeck (BUU) calculations. The method is applied to the events simulated by an antisymmetrized molecular dynamics model. The geometrical shape of fragments is reasonably extracted when n = 100 is used. A significant deformation is observed for all fragments created in the multifragmentation process. The method is also applied to the shape of the momentum distribution for event classification. In the momentum case, the errors in the eigenvalue calculation become much smaller than those of the geometrical shape analysis and the results become similar between those with and without the test particle method, indicating that in intermediate heavy ion collisions the shape analysis of momentum distribution can be used for the event classification without the test particle method.

  3. Improved ion guide for heavy-ion fusion-evaporation reactions

    NARCIS (Netherlands)

    Dendooven, P; Beraud, R; Chabanat, E; Emsallem, A; Honkanen, A; Huhta, M; Jokinen, A; Lhersonneau, G; Oinonen, M; Penttila, H; Perajarvi, K; Wang, JC; Aysto, J

    1998-01-01

    The ion guide for heavy-ion-induced reactions developed originally for the SARA facility in Grenoble has been implemented at the Jyvaskyla IGISOL facility. For the Cd-116(Ar-40, 6n)Dy-150 reaction an efficiency of 0.5% relative to the number of reaction products entering the stopping chamber was obt

  4. Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions

    CERN Document Server

    Takigawa, N; Kuyucak, S

    1997-01-01

    Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O and ^{144}Sm by the $sd-$ and $sdf-$ interacting boson model, we show that heavy-ion fusion reactions are strongly affected by anharmonic properties of nuclear surface vibrations and nuclear shape, and thus provide a powerful method to study details of nuclear structure and dynamics.

  5. Detector system for the study of low energy heavy ion reactions using kinematic coincidence technique

    Energy Technology Data Exchange (ETDEWEB)

    Jhingan, Akhil, E-mail: akhil@iuac.res.in [Inter University Accelerator Centre, P. O. Box 10502, New Delhi 110067 (India); Kalkal, S. [Deptartment of Physics and Astrophysics, Delhi University, Delhi 110007 (India); Sugathan, P.; Golda, K.S.; Ahuja, R.; Gehlot, J.; Madhavan, N. [Inter University Accelerator Centre, P. O. Box 10502, New Delhi 110067 (India); Behera, B.R. [Deptartment of Physics, Panjab University, Chandigarh 160014 (India); Mandal, S.K. [Deptartment of Physics and Astrophysics, Delhi University, Delhi 110007 (India)

    2014-05-01

    The characteristics and performance of a new detector system developed for the study of low energy heavy ion binary reactions using the kinematic coincidence technique are presented. The detector system has been developed to carry out experiments such as multi-nucleon transfer reactions using the General Purpose Scattering Chamber (GPSC) facility at IUAC [1,2]. The detector system consists of a pair of two-dimensional position sensitive multi wire proportional counter (MWPC) and a ΔE−E gas ionization chamber. Both MWPC have an active area of 5×5 cm{sup 2}, and provide position signals in horizontal (X) and vertical (Y) plane, and timing signal for time of flight measurements. The main design feature of MWPC is the reduced wire pitch of 0.025 in. (0.635 mm) in all electrodes, giving uniform field and faster charge collection, and usage of 10μm diameter in anode frame which gives higher gains. The position resolution of the detectors was determined to be 0.45 mm FWHM and time resolution was estimated to be 400 ps FWHM. The detector could handle heavy ion count rates exceeding 100 kHz without any break down. The timing and position signals of the detectors are used for kinematic coincidence measurements and subsequent extraction of their mass and angular distributions. The ionization chamber has a conventional transverse field geometry with segmented anode providing multiple ΔE signals for nuclear charge (Z) identification. This article describes systematic study of these detectors in terms of efficiency, count rate handling capability, time, position and energy resolution.

  6. Accelerating Solutions of Perfect Fluid Hydrodynamics for Initial Energy Density and Life-Time Measurements in Heavy Ion Collisions

    CERN Document Server

    Csörgö, T; Csanad, M

    2007-01-01

    A new class of accelerating, exact, explicit and simple solutions of relativistic hydrodynamics is presented. Since these new solutions yield a finite rapidity distribution, they lead to an advanced estimate of the initial energy density and life-time of high energy heavy ion reactions. Accelerating solutions are also given for spherical expansions in arbitrary number of spatial dimensions.

  7. Non-equilibrium statistical mechanical approach for describing heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sventek, J.S.

    1978-11-01

    With the availability of heavy-ion projectiles (A > 4) at low to intermediate energies (4 < E/A < 10), products showing various stages of relaxation for certain macroscopic variables (center-of-mass energy, orbital angular momentum, etc.) were produced in various reactions. The distributions for these macroscopic variables showed a correlation between the stage of relaxation reached and the net amount of mass transfer which had occurred in the reaction. There was also evidence that there was an asymmetry in the number of net transfers necessary for complete relaxation between stripping and pickup reactions. A model for describing the time-evolution of these reactions was formulated, the keystone of which is a master-equation approach for describing the time-dependence of the mass-asymmetry. This, coupled with deterministic equations of motion for the other macroscopic coordinates in the reaction lead to calculated distributions which provide an excellent qualitative description of these reactions, and, in some cases, quantitatively reproduce the experimental data quite well. 61 figures, 2 tables.

  8. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  9. Light charged particle emission in heavy-ion reactions – What have we learnt?

    Indian Academy of Sciences (India)

    S Kailas

    2001-07-01

    Light charged particles emitted in heavy-ion induced reactions, their spectra and angular distributions measured over a range of energies, carry the signature of the underlying reaction mechanisms. Analysis of data of light charged particles, both inclusive and exclusive measured in coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles.

  10. Open problems in formation and decay of composite systems in heavy ion reactions

    Indian Academy of Sciences (India)

    G Viesti; V Rizzi; M Barbui; D Fabris; M Lunardon; G Nebbia; S Moretto; S Pesente; M Cinausero; E Fioretto; G Prete; D Shetty

    2001-08-01

    New highly exclusive experiments in the field of formation and decay of composite systems in heavy ion reactions are presented. Dynamical effects are reviewed in the light of recent works on the role of the / asymmetry between projectile and target. The possibility of extracting directly from the experimental data the emission barrier of alpha particles emitted from highly excited nuclei is discussed. Finally, the first experimental evidence of double giant resonance excitation in fusion-evaporation reaction is presented.

  11. Reaction dynamics and nuclear structure of moderately neutron-rich Ne isotopes by heavy ion reactions

    Directory of Open Access Journals (Sweden)

    Bottoni S.

    2014-03-01

    Full Text Available The heavy ion reaction 22Ne+208Pb at 128 MeV of bombarding energy has been studied using the PRISMA-CLARA experimental setup at Legnaro National Laboratories. Elastic, inelastic and one nucleon transfer cross sections have been measured. The experimental results are presented in parallel with the analysis on existing data for the unstable 24Ne nucleus, from the reaction 24Ne+208Pb at 182 MeV (measured at SPIRAL with the VAMOS-EXOGAM setup. The β2C charge deformation parameter for both 22Ne and 24Ne has been determined by a DWBA analysis of the experimental angular dis- tributions, showing a strong reduction for 24Ne.

  12. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-wen; KO Che-Ming; LI Bao-an; YONG Gao-chan

    2007-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy.In particular,recent analyses of the isospin diffusion data in heavyion reactions have already put a stringent constraint on thenuclear symmetry energy around the nuclear matter saturation density.We review this exciting result and discuss its implications on nuclear effective interactions and the neutron skin thickness of heavy nuclei.In addition,we also review the theoretical progress on probing the high density behaviors of the nuclear symmetry energy in heavy-ion reactions induced by high energy radioactive beams.

  13. Evidence for pair correlation effects in heavy ion reactions

    CERN Document Server

    Auditore, L; D'Amico, V; De Pasquale, D; Trifiró, A; Trimarchi, M; Italiano, A

    2003-01-01

    The study of the sup 1 sup 2 C( sup 1 sup 4 N, sup 1 sup 4 N) sup 1 sup 2 C reaction was performed at 28 and 35 MeV beam energies. The results were analyzed in the frame of the EFRDWBA (Exact-Finite-Range Distorted Wave Born Approximation) assuming the simultaneous and sequential transfer of a np pair. The angular distributions, fairly reproduced in the first case, confirm the validity of the generalized BCS (Bardeen-Cooper-Schrieffer) theory to explain this behaviour. Moreover, this process could be regarded as a possible Nuclear Josephson Effect. (author)

  14. Statistics at work in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.

    1982-07-01

    In the first part special aspects of the compound nucleus decay are considered. The evaporation of particles intermediate between nucleons and fission fragments is explored both theoretically and experimentally. The limitations of the fission decay width expression obtained with the transition state method are discussed, and a more general approach is proposed. In the second part the process of angular momentum transfer in deep inelastic reactions is considered. The limit of statistical equilibrium is studied and specifically applied to the estimation of the degree of alignment of the fragment spins. The magnitude and alignment of the transferred angular momentum is experimentally determined from sequentially emitted alpha, gamma, and fission fragments.

  15. Reaction-diffusion equation for quark-hadron transition in heavy-ion collisions

    CERN Document Server

    Bagchi, Partha; Sengupta, Srikumar; Srivastava, Ajit M

    2015-01-01

    Reaction-diffusion equations with suitable boundary conditions have special propagating solutions which very closely resemble the moving interfaces in a first order transition. We show that the dynamics of chiral order parameter for chiral symmetry breaking transition in heavy-ion collisions, with dissipative dynamics, is governed by one such equation, specifically, the Newell-Whitehead equation. Further, required boundary conditions are automatically satisfied due to the geometry of the collision. The chiral transition is, therefore, completed by a propagating interface, exactly as for a first order transition, even though the transition actually is a crossover for relativistic heavy-ion collisions. Same thing also happens when we consider the initial confinement-deconfinement transition with Polyakov loop order parameter. The resulting equation, again with dissipative dynamics, can then be identified with the reaction-diffusion equation known as the Fitzhugh-Nagumo equation which is used in population genet...

  16. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F.A.

    1993-07-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.).

  17. Isospin effects in heavy-ion reactions: Results from transport theories

    Directory of Open Access Journals (Sweden)

    Colonna M.

    2015-01-01

    Full Text Available We discuss recent studies, within the framework of transport theories, on heavy ion reactions between charge asymmetric systems, from low up to Fermi energies. We focus on isospin sensitive observables, aiming at extracting information on the density dependence of the isovector part of the nuclear effective interaction and of the nuclear symmetry energy. Results are critically reviewed, also trying to establish a link, when possible, between the outcome of different transport models.

  18. Actinide Production in the Reaction of Heavy Ions withCurium-248

    Energy Technology Data Exchange (ETDEWEB)

    Moody, K.J.

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z = 91) to mendelevium (Z = 101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of {sup 248}Cm with {sup 18}O, {sup 86}Kr and {sup 136}Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from {sup 48}Ca and {sup 238}U bombardments of {sup 248}Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like {sup 136}Xe and {sup 238}U the new species {sup 248}Am, {sup 249}Am and {sup 247}Pu should be produced with large cross sections from a {sup 248}Cm target. A preliminary, unsuccessful attempt to isolate {sup 247}Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from {sup 251}Bk decay, necessary for calculating the {sup 251}Bk cross section, are also determined.

  19. On the common solution within a framework of single matrix algorithm for radical suppression of background products in heavy-ion induced reaction

    CERN Document Server

    Tsyganov, Y S

    2015-01-01

    Application of real-time matrix algorithm in heavy ion induced complete fusion nuclear reactions of superheavy elements synthesis is reviewed in brief. An extended algorithm, for the case of the recoil detection efficiency is not close to 100% has been proposed.

  20. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei

    CERN Document Server

    Wang, Ning; Zhang, Yingxun; Li, Zhuxia

    2014-01-01

    The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L \\approx 78$ MeV and the surface energy coefficient is $g_{\\rm sur}=18\\pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at ...

  1. Large acceptance spectrometers for. pi. /sup 0/ mesons. [Produced in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.; Plasil, F.; Young, G.R.; Braun-Munzinger, P.; Freifelder, R.; Paul, P.; Ricken, L.; Stachel, J.

    1984-01-01

    A spectrometer composed of lead-oxide loaded glass blocks has been constructed for detection of neutral pi mesons emitted in low energy heavy ion reactions. The spectrometer detects the Cerenkov radiation emitted when the high energy photons (E..gamma.. approx. 70 MeV) resulting from ..pi../sup 0/ decay create electron-position pairs in the glass, initiating electromagnetic showers. A geometric acceptance of better than 5% of 4..pi.. is possible; the ..pi../sup 0/ detection efficiency varies between this value at T/sub ..pi../ = 0 MeV and 1% for T/sub ..pi../ approx. 100 MeV.

  2. Simple estimates of excitation energy sharing between heavy and light fragments in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dasso, C.H.; Lozano, M.; Pollarolo, G.

    1985-12-01

    Qualitative arguments are used to estiamte the ratio of excitation energies between heavy and light fragments for asymmetric heavy-ion collisions. The value of this quantity is linked to the relative role played by inelastic and transfer degrees of freedom and thereby to an approximate function of the total kinetic energy loss. A numerical analysis that confirms the trends anticipated by the simple arguments is performed for the reactions /sup 56/Fe+ /sup 238/U and /sup 86/Kr+ /sup 208/Pb at bombarding energies in the laboratory of 476 and 1565 MeV, respectively.

  3. Medium modifications of vector mesons in elementary reactions and heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Metag, V [II. Physikalisches Insitut, Universitaet Giessen, D-35392 Giessen (Germany)

    2007-08-15

    The current status of experimental searches for modifications of vector mesons in the nuclear medium is reviewed. Results on {rho}, {omega} and {phi} mesons are presented, obtained in elementary reactions with proton and photon beams as well as in heavy-ion collisions. At normal nuclear matter density, {omega} and {phi} mesons are found to be lowered in mass by 9-14% and 3.5% and broadened by about factors 10 and 3.6, respectively, compared to the free particle properties. For the {rho} meson, conflicting results on in-medium mass shifts and broadening have been reported by different experiments.

  4. Calculation for fission decay from heavy ion reactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)); Fraenkel, Z. (Weizmann Institute of Science, 76100 Rehovot (Israel))

    1992-02-01

    A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms.

  5. Present status of coupled-channels calculations for heavy-ion subbarrier fusion reactions

    CERN Document Server

    Hagino, K

    2015-01-01

    The coupled-channels method has been a standard tool in analyzing heavy-ion fusion reactions at energies around the Coulomb barrier. We investigate three simplifications usually adopted in the coupled-channels calculations. These are i) the exclusion of non-collective excitations, ii) the assumption of coordinate independent coupling strengths, and iii) the harmonic oscillator approximation for multi-phonon excitations. In connection to the last point, we propose a novel microscopic method based on the beyond-mean-field approach in order to take into account the anharmonic effects of collective vibrations.

  6. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  7. Excitation energy sharing in binary peripheral heavy ion reactions at Fermi energies

    Science.gov (United States)

    Piantelli, S.; Mangiarotti, A.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Stefanini, A. A.

    2008-12-01

    Evidence for the dependence of excitation energy sharing between two heavy remnants on the difference in the lost mass in two-body peripheral heavy ion reactions at Fermi energy is presented, based on experimental results for the reactions Nb93+Sn116, Sn116+Nb93, and Nb93+Nb93 at 38A MeV. An observable based on the experimental velocities of the heavy residues is used to select reactions with equal preevaporative masses of projectile-like fragments and target-like fragments. The excitation energy, evaluated by means of a complete average calorimetry, is found to be larger for the nucleus that finally retains a larger part of the hot interaction region.

  8. Electron capture rates in stars studied with heavy ion charge exchange reactions

    CERN Document Server

    Bertulani, C A

    2015-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean $\\sim$ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  9. A spectrometer for study of high mass objects created in relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.A.; Barish, K.N.; Batsouli, S.; Bennett, M.J.; Bennett, S.J.; Chikanian, A.; Coe, S.D.; Cormier, T.M.; Davies, R.R.; De Cataldo, G.; Dee, P.; Diebold, G.E.; Dover, C.B.; Ewell, L.A.; Emmet, W.; Fachini, P.; Fadem, B.; Finch, L.E.; George, N.K.; Giglietto, N.; Greene, S.V.; Haridas, P.; Hill, J.C. E-mail: jhill@iastate.edu; Hirsch, A.S.; Hoversten, R.A.; Huang, H.Z.; Jaradat, H.; Kim, B.; Kumar, B.S.; Lajoie, J.G.; Lainis, T.; Lewis, R.A.; Li, Q.; Li, Y.; Libby, B.; Majka, R.D.; Miller, T.E.; Munhoz, M.G.; Nagle, J.L.; Petridis, A.; Pless, I.A.; Pope, J.K.; Porile, N.T.; Pruneau, C.; Rabin, M.S.Z.; Reid, J.D.; Rimai, A.; Riso, J.; Rose, A.; Rotondo, F.S.; Sandweiss, J.; Scharenberg, R.P.; Skank, H.; Slaughter, A.J.; Sleage, G.; Smith, G.A.; Spinelli, P.; Srivastava, B.K.; Tincknell, M.L.; Toothacker, W.S.; Van Buren, G.; Wilson, W.K.; Wohn, F.K.; Wolin, E.J.; Xu, Z.; Zhao, K

    1999-11-21

    Experiment E864 at the Brookhaven AGS accelerator uses a high sensitivity, large acceptance spectrometer, designed to search for strangelets and other novel forms of matter produced in high-energy heavy ion collisions. The spectrometer has excellent acceptance and rate capabilities for measuring the production properties of known particles and nuclei such as p-bar, d-bar and {sup 6}He. The experiment uses a magnetic spectrometer and employs redundant time of flight and position detectors and a hadronic calorimeter. In this paper we describe the design and performance of the spectrometer.

  10. New approach to the kinematic coincidence method in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Maurenzig, P.R.; Olmi, A.; Stefanini, A.A.

    1989-05-01

    A new approach to the kinematic coincidence method (KCM) is proposed, which makes use of the whole kinematic information of heavy ion experiments in a self-consistent way. It takes advantage of the overdetermination of the measurement yielding not only solutions for the primary masses of the fragments, but also 'improved values' for their velocity vectors. A statistical variable, ..delta../sub v/, indicates to what extent the secondary quantities violate the kinematics of the reaction. The ability of the present approach to reproduce the primary quantities of a binary or ternary reaction is compared with that of older approaches on the basis of realistic Monte Carlo simulations. The background of incompletely detected events of higher multiplicity can be effectively subtracted using the results of the present analysis.

  11. A new approach to the kinematic coincidence method in heavy ion reactions

    Science.gov (United States)

    Casini, G.; Maurenzig, P. R.; Olmi, A.; Stefanini, A. A.

    1989-05-01

    A new approach to the kinematic coincidence method (KCM) is proposed, which makes use of the whole kinematic information of heavy ion experiments in a self-consistent way. It takes advantage of the overdetermination of the measurement yielding not only solutions for the primary masses of the fragments, but also "improved values" for their velocity vectors. A statistical variable, Δν, indicates to what extent the secondary quantities violate the kinematics of the reaction. The ability of the present approach to reproduce the primary quantities of a binary or ternary reaction is compared with that of older approaches on the basis of realistic Monte Carlo simulations. The background of incompletely detected events of higher multiplicity can be effectively subtracted using the results of the present analysis.

  12. Transfer products from the reactions of heavy ions with heavy nuclei. [394 to 1156 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.E. III

    1979-11-01

    Production of nuclides heavier than the target from /sup 86/Kr- and /sup 136/Xe-induced reactions with /sup 181/Ta and /sup 238/U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for /sup 242/Np or /sup 247/Pu. Estimates were made for the production of /sup 242/Np, /sup 247/Pu, and /sup 248/Am from heavy-ion reactions with uranium targets. Comparisons of reactions of /sup 86/Kr and /sup 136/Xe ions with thick /sup 181/Ta targets and /sup 86/Kr, /sup 136/Xe and /sup 238/U ions with thick /sup 238/U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with /sup 248/Cm and /sup 254/Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from /sup 86/Kr- and /sup 136/Xe-induced reactions with thin /sup 181/Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables.

  13. Yield of OH radicals in water under heavy ion irradiation. Dependence on mass, specific energy, and elapsed time

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Dependence of yields of OH (hydroxyl) radicals on the mass and specific energy of heavy ions and elapsed time after irradiation was investigated, to understand chemical reactions of aqueous solutions. The yields of irradiation products of phenol, super-linearly increased with the incident energy of He, C, and Ne ions ranging from 2 to 18 MeV/u. The yields of the OH radicals were estimated by analyzing the yields of the irradiation products of phenol.The yields of the OH radicals increased with the specific energy for each ion, but decreased both with the mass of each ion at the same specific energy and elapsed time after irradiation.

  14. Fragment Produced by Nuclear Reaction of Heavy Ions Interacted with Tissue-equivalent Biological Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In heavy ion therapy and radiation biological effects the nuclear fragments from the heavy ion collisions may cause a significant alteration of the radiation field. Nuclear collision between beam particles and tissue nuclei along the penetration path of high-energy ions in tissue or biological-equivalent material causes a loss

  15. Study on target spallation reaction cross sections induced by high energy neutrons and heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center

    1996-03-01

    The target spallation reaction cross sections of neutrons and heavy ions which have not been observed are determined in this paper. The object of this work is to make clear the differences between the spallation reaction cross section of neutron and that of proton by comparing the obtained value of neutron with the known value of proton. To this end, the quasi monochromatic neutron field of 20{approx}50 MeV was developed in 4 cyclotrons, INS, CYRIC, TIARA and RIKEN. The nuclear spallation reaction cross sections of C, Al and Bi were measured in the above field and the distribution of nuclear spallation reaction products in Cu determined by C ion beam of HIMAC. {sup 12}C(n,2n){sup 11}C reaction cross section shows the maximum value of about 20 mb at near 40{approx}50 MeV and then the value gradually decreased to 10 mb. The cross sections of {sup 209}Bi(n,Xn) are shown. The distribution of {sup 61}Cu is lower at the entrance and higher in the depth. (S.Y.)

  16. Pre-Equilibrium Effects in the Secondary Particle Spectra in the Reactions with Heavy Ions

    Science.gov (United States)

    Fotina, O. V.; Eremenko, D. O.; Parfenova, Yu. L.; Platonov, S. Yu.; Yuminov, O. A.; Kravchuk, V. L.; Gramegna, F.; Barlini, S.; Casini, G.; Bruno, M.; D'Agostino, M.; Wieland, O.; Bracco, A.; Camera, F.

    Theoretical description of the experimentally obtained spectra for protons and α-particles and model calculations for the neutron spectra in the reactions with heavy ions has been presented. The hybrid model of non-equilibrium processes was used. Equilibrium evaporation process was analyzed in the framework of the statistical theory of nuclear reactions with Monte-Carlo simulation including certain dynamical and kinematical characteristics. This approach was included in PACE code, which permits to simulate Monte-Carlo de-excitation nuclear process. The Fermi-gas model and level-density phenomenological model for the variation of the nuclear level density parameters was used. In this approach data on 16O+116Sn reaction with Ebeam = 130, 250 MeV were analyzed. Double-differential light charged particle spectra for this reaction were measured using the GARFIELD apparatus in coincidence with evaporation residues. The experimental data were collected in four angular ranges from 29 to 41, 41 to 53, 53 to 67 and 67 to 82 degrees in the laboratory system. The results of the calculations are shown and discussed for these four angular ranges. The contributions from the evaporative and pre-equilibrium processes were analyzed in connection with different nucleus equilibration mechanisms.

  17. Time evolution of pion emission in heavy ion collisions at SIS energies

    CERN Document Server

    Oeschler, H

    1999-01-01

    Using a magnetic spectrometer pions, kaons and protons were detected in mass-symmetric heavy ion reactions from C+C to Au+Au and at incident energies between 0.6 and 2.0 A centre dot GeV. The center-of-mass pion spectra deviate from a Boltzmann distribution for all collision systems. Results are presented indicating that high-energy pions are emitted at an early stage of the collision. This is based on (i) a comparison of pi sup + and pi sup - spectra and (ii) the shielding of pions by spectator matter in peripheral collisions.

  18. Fast timing with plastic scintillators for in-beam heavy-ion spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hoischen, R., E-mail: robert.hoischen@nuclear.lu.se [Department of Physics, Lund University, SE-22100 Lund (Sweden); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Pietri, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Rudolph, D. [Department of Physics, Lund University, SE-22100 Lund (Sweden); Prokopowicz, W.; Schaffner, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Emde, S. [Lehrstuhl fuer Operations Management, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Golubev, P. [Department of Physics, Lund University, SE-22100 Lund (Sweden); Wendt, A. [Institut fuer Kernphysik, Universitaet zu Koeln, D-50937 Koeln (Germany); Kurz, N.; Wollersheim, H.J.; Gerl, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany)

    2011-10-21

    The design, R and D, and testing of a new plastic-scintillator detector for Time-of-Flight measurements with relativistic heavy-ion beams are presented. A design approach using 32 independent precise timing measurements of the same physical event is followed. This is different from the conventional scheme, which aims at two or four high-precision measurements. A circular, 27 cm in diameter, BC-420 plastic-scintillator sheet is read-out by 32 photomultiplier tubes in order to achieve an intrinsic detector resolution on the order of 10 ps root mean square.

  19. Particle emission in the light heavy-ion fusion reactions: 14N, 16,18O+ 12C

    Science.gov (United States)

    Carlin Filho, N.; Coimbra, M. M.; Acquadro, J. C.; Liguori Neto, R.; Szanto, E. M.; Farrelly-Pessoa, E.; Szanto de Toledo, A.

    1985-01-01

    From the energy spectra of light particles produced in light-heavy-ion-induced reactions, level densities of the final nuclei as well as the critical angular momenta for fusion may be obtained. The 14N, 16,18O+ 12C reactions were investigated in the energy range 30 MeVJcr), offering an alternative method for the total fusion cross-section determination.

  20. High time resolution measurements of solar wind heavy ions with SOHO/CELIAS/CTOF

    Energy Technology Data Exchange (ETDEWEB)

    Janitzek, Nils; Taut, Andreas; Berger, Lars; Drews, Christian; Wimmer-Schweingruber, Robert F. [Christian-Albrechts-Universitaet Kiel (Germany); Bochsler, Peter [Universitaet Bern (Germany); Klecker, Berndt [MPE Garching (Germany)

    2013-07-01

    The Charge Time-Of-Flight (CTOF) mass spectrometer as one of the three main sensors of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is designed to measure the kinetic properties and elemental/ionic composition of solar wind ions heavier than H{sup +}, which we refer to as heavy ions. This is achieved by measuring the E/q-ratio, the time-of-flight and the energy deposit of incident ions. While CTOF was able to measure data only for a short time period from DOY 80 1996 until DOY 230 1996 due to an instrument failure, the measured data shows a remarkable time-of-flight resolution compared to similar instruments such as SWICS on ACE. In addition the CTOF measurement cycle of about 5 minutes allows the investigation of short-time variations of the solar wind composition. We performed an in-flight calibration of the CTOF sensor which includes the determination of both time-of-flight range and energy deposit range of the measured ion species at fixed E/q-ratios. The results of our calibration will allow us to infer the composition and spectra of solar wind heavy ions with high time resolution.

  1. Thoughts on measuring particle's circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    CERN Document Server

    Tang, A H

    2016-01-01

    The EM field pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system, and causes photons emitted in upper- and lower-hemispheres to have different preferences in the circular polarization. In this paper, we lay down a procedure to measure the variation of the circular polarization w.r.t the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper- and lower-hemispheres in order to identify and quantify such effects.

  2. Heavy ion reaction measurements with the EOS TPC (looking for central collisions with missing energy)

    Energy Technology Data Exchange (ETDEWEB)

    Wieman, H.H.; EOS Collaboration

    1994-05-01

    The EOS TPC was constructed for complete event measurement of heavy ion collisions at the Bevalac. We report here on the TPC design and some preliminary measurements of conserved event quantities such as total invariant mass, total momentum, total A and Z.

  3. Signature of smooth transition from diabatic to adiabatic states in heavy-ion fusion reactions at deep subbarrier energies

    CERN Document Server

    Ichikawa, Takatoshi; Iwamoto, Akira

    2009-01-01

    We propose a novel extension of the standard coupled-channels framework for heavy-ion reactions in order to analyze fusion reactions at deep subbarrier incident energies. This extension simulates a smooth transition between the diabatic two-body and the adiabatic one-body states. To this end, we damp gradually the off-diagonal part of the coupling potential, for which the position of the onset of the damping varies for each eigen channel. We show that this model accounts well for the steep falloff of the fusion cross sections for the $^{16}$O+$^{208}$Pb, $^{64}$Ni+$^{64}$Ni, and $^{58}$Ni+$^{58}$Ni reactions.

  4. High-time resolution measurements of solar wind heavy ions with SOHO/CELIAS/CTOF

    Energy Technology Data Exchange (ETDEWEB)

    Janitzek, N. P., E-mail: janitzek@physik.uni-kiel.de; Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F. [Institute of Experimental and Applied Physics, University of Kiel (Germany); Bochsler, P. [University of Bern, Bern (Switzerland); Klecker, B. [Max Planck Institute for Extraterrestrial Physics, Garching (Germany)

    2016-03-25

    The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is designed to measure the kinetic properties and elemental/ionic composition of solar wind ions heavier than protons, which we refer to as heavy ions. This is achieved by the combined measurements of the energy-per-charge, the time-of-flight and the energy of incident ions. The CTOF instrument combines a remarkable time-of-flight resolution with a large effective area and a high measurement cadence. This allows to determine the Velocity Distribution Functions (VDFs) of a wide range of heavy ions with 5-minute time resolution which ensures that the complete VDF is measured under nearly identical solar wind and magnetic field conditions. For the measurement period between Day Of Year (DOY) 150 and 220 in 1996, which covers a large part of the instrument’s short life time, we analyzed VDFs of solar wind iron Fe{sup 8+}, Fe{sup 9+} and Fe{sup 10+} for differential streaming relative to the solar wind proton speed measured simultaneously with the CELIAS Proton Monitor (PM). We find an increasing differential streaming with increasing solar wind proton speed for all investigated ions up to ion-proton velocity differences of 30 - 50 km s{sup −1} at proton velocities of 500 km s{sup −1}, which is contradictory to an earlier CTOF study by [7]. We believe this difference is because in this study we used raw Pulse Height Analysis (PHA) data with a significantly increased mass and mass-per-charge resolution compared to the earlier used onboard preprocessed data.

  5. The effect of nuclear structure in the emission of reaction products in heavy-ion reactions

    Indian Academy of Sciences (India)

    Samir Kundu

    2014-04-01

    Study of intermediate mass fragments (IMFs) and light charged particles (LCPs) emission has been carried out for a few reactions involving -cluster and non--cluster systems to see how the emission processes are affected by nuclear clustering. Li, Be, B and -particles have been studied from α-clustered system 16O + 12C for 117, 125, 145 and 160 MeV bombarding energies respectively. The enhanced yields of near-entrance channel fragment B and large quadrupole deformation of the produced composite 28Si* extracted from LCP spectra indicate the survival of orbiting-like process in 16O + 12C system at these energies. The same IMFs emitted from the -cluster system 12C (77 MeV) + 28Si and nearby non- cluster 11B (64 MeV) + 28Si and 12C (73 MeV) + 27Al (all having the same excitation energy of ∼67 MeV) have also been studied. The fully energy damped (fusion–fission) and the partially energy damped (deep inelastic) components of the fragment energy spectra have been extracted. It has been found that the yields of the fully energy damped fragments for all the above reactions are in conformity with the respective statistical model predictions. The time-scales of various deep inelastic fragment emissions have been extracted from the angular distribution data. The angular momentum dissipation in deep inelastic collisions has been estimated from the data and it has been found to be close to the corresponding sticking limit value.

  6. Dilepton production and reaction dynamics in heavy-ion collisions at SIS energies from coarse-grained transport simulations

    CERN Document Server

    Endres, Stephan; Weil, Janus; Bleicher, Marcus

    2015-01-01

    Dilepton invariant-mass spectra for heavy-ion collisions at SIS 18 and BEVALAC energies are calculated using a coarse-grained time evolution from the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model. The coarse-graining of the microscopic simulations enables to calculate thermal dilepton emission rates by application of in-medium spectral functions from equilibrium quantum-field theoretical calculations. The results show that extremely high baryon chemical potentials dominate the evolution of the created hot and dense fireball. Consequently, a significant modification of the $\\rho$ spectral shape becomes visible in the dilepton invariant-mass spectrum, resulting in an enhancement in the low-mass region $M_{ee} = 200$ to 600 MeV/$c^{2}$. This enhancement, mainly caused by baryonic effects on the $\\rho$ spectral shape, can fully describe the experimentally observed excess above the hadronic cocktail contributions in Ar+KCl ($E_{\\mathrm{lab}}=1.76$ $A$GeV) reactions as measured by the HADES collaborat...

  7. Study of angular momentum variation due to entrance channel effect in heavy ion fusion reactions

    Science.gov (United States)

    Kumar, Ajay

    2014-05-01

    A systematic investigation of the properties of hot nuclei may be studied by detecting the evaporated particles. These emissions reflect the behavior of the nucleus at various stages of the deexcitation cascade. When the nucleus is formed by the collision of a heavy nucleus with a light particle, the statistical model has done a good job of predicting the distribution of evaporated particles when reasonable choices were made for the level densities and yrast lines. Comparison to more specific measurements could, of course, provide a more severe test of the model and enable one to identify the deviations from the statistical model as the signature of other effects not included in the model. Some papers have claimed that experimental evaporation spectra from heavy-ion fusion reactions at higher excitation energies and angular momenta are no longer consistent with the predictions of the standard statistical model. In order to confirm this prediction we have employed two systems, a mass-symmetric (31P+45Sc) and a mass-asymmetric channel (12C+64Zn), leading to the same compound nucleus 76Kr* at the excitation energy of 75 MeV. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evaporated after neutron emission when the system is sufficiently cooled down and the higher g-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged

  8. Studies of heavy-ion reactions and transuranic nuclei. Progress report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.

  9. Low-energy heavy-ion reactions: a link between nuclear structure and reaction dynamics

    CERN Document Server

    Corradi, L; Beghini, S; Lin, C J; Montagnoli, G; Pollarolo, G; Scarlassara, F; Segato, G F; Stefanini, A M; Zheng, L F

    1999-01-01

    High precision data recently obtained in the study of multinucleon transfer and sub-barrier fusion reactions at LNL are presented. The studies of transfer channels in the systems sup 4 sup 0 sup , sup 4 sup 8 Ca+ sup 1 sup 2 sup 4 Sn and sup 6 sup 4 Ni+ sup 2 sup 3 sup 8 U revealed important effects not identified in the past, and demonstrated the possibility of a quantitative understanding of the role played by the various degrees of freedom in the reaction mechanism. Evidence of their influence on the fusion enhancements seem to show-up in the systems sup 4 sup 0 Ca+ sup 1 sup 2 sup 4 sup , sup 1 sup 1 sup 6 Sn and sup 4 sup 0 Ca+ sup 9 sup 0 sup , sup 9 sup 6 Zr, but, in general, the data still escape a consistent treatment.

  10. Time-Dependence Of The Survival Probality Of Charmonia In Heavy ION Collisions

    Science.gov (United States)

    Petridis, Athanasios; Mah Hussin, Noor Sabrina; Shalaby, Asmaa

    2016-09-01

    The time-dependent Schrödinger equation is used to study the formation of charmonium in heavy ion collisions and its propagation in Quark-Gluon Plasma (QGP) and free space. The initial bound (ground) state is computed using imaginary-time propagation in a confining potential. The QGP is simulated with a confining potential of an extended asymptotic-freedom region. The initial state propagates in real time but the charmonium bound state may become fully developed before or after the QGP formation. To this end the formation-time scales determine the kind of potential in which the quark-antiquark pair propagates and may necessitate the introduction of dissociating potentials. The survival probability is calculated versus time for various potential parameters and relative momenta of the charmonium by projecting the interacting wavefunction onto its freely-propagating counterpart. In these calculations the staggered-leap frog method is used with special attention paid to the issue of stability. It is found that charmonium decay is typically non-exponential. Fast moving states Connection with experimental results is done by means of cross-section ratios. It is shown that suppression and enhancement are both possible depending on the time-scales.

  11. IVO, a device for In situ Volatilization and On-line detection of products from heavy ion reactions

    CERN Document Server

    Duellmann, C E; Eichler, R; Gäggeler, H W; Jost, D T; Piguet, D; Türler, A

    2002-01-01

    A new gaschromatographic separation system to rapidly isolate heavy ion reaction products in the form of highly volatile species is described. Reaction products recoiling from the target are stopped in a gas volume and converted in situ to volatile species, which are swept by the carrier gas to a chromatography column. Species that are volatile under the given conditions pass through the column. In a cluster chamber, which is directly attached to the exit of the column, the isolated volatile species are chemically adsorbed to the surface of aerosol particles and transported to an on-line detection system. The whole set-up was tested using short-lived osmium (Os) and mercury (Hg) nuclides produced in heavy ion reactions to model future chemical studies with hassium (Hs, Z=108) and element 112. By varying the temperature of the isothermal section of the chromatography column between room temperature and -80 deg. C, yield measurements of given species can be conducted, yielding information about the volatility o...

  12. SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time

    CERN Document Server

    Goddard, Brennan; Ducimetière, Laurent; Kotzian, Gerd; Uythoven, Jan; Velotti, Francesco

    2016-01-01

    As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisatio...

  13. The Lund–York–Cologne Calorimeter (LYCCA): Concept, design and prototype developments for a FAIR-NUSTAR detector system to discriminate relativistic heavy-ion reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, P., E-mail: Pavel.Golubev@nuclear.lu.se [Department of Physics, Lund University, SE-22100 Lund (Sweden); Wendt, A. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Scruton, L. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Taprogge, J. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Rudolph, D. [Department of Physics, Lund University, SE-22100 Lund (Sweden); Reiter, P. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Bentley, M.A. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Avdeichikov, V. [Department of Physics, Lund University, SE-22100 Lund (Sweden); Boutachkov, P. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Fox, S.P. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Gerl, J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Görgen, Ch. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); and others

    2013-09-21

    The concept, design and prototype developments for the Lund–York–Cologne CAlorimeter (LYCCA) is presented. LYCCA is a modular device for the NUclear STructure, Astrophysics and Reactions (NUSTAR) science pillar of the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, Germany. LYCCA is designed to discriminate heavy ions produced in nuclear reactions induced by relativistic radioactive ion beams. Measurements of energy loss, total energy, and time-of-flight allow the derivation of proton number, Z, and mass number, A, of the reaction products. LYCCA-inherent tracking of the flight paths of the reaction products enables coincident HIgh-resolution in-beam γ-ray SPECtroscopy (HISPEC) of atomic nuclei far from the line of β-stability.

  14. Dynamical Dipole mode in heavy-ion fusion reactions in the 192Pb mass region

    Science.gov (United States)

    Parascandolo, C.; Pierroutsakou, D.; Alba, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Agodi, C.; Baran, V.; Boiano, A.; Colonna, M.; Coniglione, R.; De Filippo, E.; Di Toro, M.; Emanuele, U.; Farinon, F.; Guglielmetti, A.; La Commara, M.; Martin, B.; Mazzocchi, C.; Mazzocco, M.; Rizzo, C.; Romoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Torresi, D.; Trifiró, A.; Trimarchi, M.

    2015-04-01

    The dynamical dipole mode was investigated in the mass region of the 192Pb compound nucleus, by using the 40Ca + 152Sm and 48Ca + 144Sm reactions at Elab=11 and 10.1 MeV/nucleon, respectively. Both fusion-evaporation and fission events were studied simultaneously for the first time. Our results for evaporation and fission events (preliminary) show that the dynamical dipole mode survives in reactions involving heavier nuclei than those studied previously.

  15. Time-of-flight secondary neutral & ion mass spectrometry using swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, L.; Meinerzhagen, F. [Universität Duisburg-Essen, Fakultät für Physik, D-47048 Duisburg (Germany); Bender, M.; Severin, D. [Gesellschaft für Schwerionenforschung GSI, D-64291 Darmstadt (Germany); Wucher, A., E-mail: andreas.wucher@uni-due.de [Universität Duisburg-Essen, Fakultät für Physik, D-47048 Duisburg (Germany)

    2015-12-15

    We report on a new time-of-flight (TOF) spectrometer designed to investigate sputtering phenomena induced by swift heavy ions in the electronic stopping regime. In this experiment, particular emphasis is put on the detection of secondary ions along with their emitted neutral counterparts in order to examine the ionization efficiency of the sputtered material. For the detection of neutral species, the system is equipped with a pulsed VUV laser for post-ionization of sputtered neutral atoms and molecules via single photon ionization at a wavelength of 157 nm (corresponding to 7.9 eV photon energy). For alignment purposes and in order to facilitate comparison to nuclear sputtering conditions, the system also includes a 5 keV Ar{sup +} ion beam directed to the same sample area. The instrument has been added to the M1-branch beam line at the German accelerator facility in Darmstadt (GSI) and was tested with 4.8 MeV/u Au{sup 26+} ions impinging onto various samples including metals, salts and organic films. It is found that secondary ion and neutral spectra obtained under both bombardment conditions can be acquired in an interleaved manner throughout a single accelerator pulse cycle, thus making efficient use of valuable beam time. In addition, the keV ion beam can be intermittently switched to dc mode between subsequent data acquisition windows and accelerator pulses in order to ensure reproducible surface conditions. For the case of a dynamically sputter cleaned metal surface, comparison of secondary ion and neutral signals obtained under otherwise identical instrumental conditions reveals a nearly identical ionization probability of atoms emitted under electronic and nuclear sputtering conditions.

  16. Cluster emission in superdeformed Sr isotopes in the ground state and formed in heavy-ion reaction

    Indian Academy of Sciences (India)

    K P Santhosh; Antony Joseph

    2005-01-01

    Cluster decay of superdeformed 76,78,80Sr isotopes in their ground state are studied taking the Coulomb and proximity potential as the interacting barrier for the post-scission region. The predicted 1/2 values are found to be in close agreement with those values reported by the preformed cluster model (PCM). Our calculation shows that these nuclei are stable against both light and heavy cluster emissions. We studied the decay of these nuclei produced as an excited compound system in heavy-ion reaction. It is found that inclusion of excitation energy increases the decay rate (decreases 1/2 value) considerably and these nuclei become unstable against decay. These findings support earlier observation of Gupta et al based on PCM.

  17. Removing flow backgrounds from the charge-separation observable perpendicular to the reaction plane in heavy-ion collisions

    CERN Document Server

    Wen, Fufang; Wang, Gang

    2016-01-01

    Recent charge-dependent azimuthal correlation measurements in high-energy heavy-ion collisions have observed charge-separation signals perpendicular to the reaction plane, and the observations have been related to the chiral magnetic effect (CME). However, the correlation signal is contaminated with the background contributions due to the collective motion (flow) of the collision system, and it remains elusive to effectively remove the background from the correlation. We present a method study with Monte Carlo simulations and a multi-phase transport model, and develop a scheme to reveal the true CME signal via the event-shape engineering with the flow vector, $\\overrightarrow{q}$. An alternative approach using the ensemble averages of observables is also discussed.

  18. Fission and quasifission of composite systems with Z =108 -120 : Transition from heavy-ion reactions involving S and Ca to Ti and Ni ions

    Science.gov (United States)

    Kozulin, E. M.; Knyazheva, G. N.; Novikov, K. V.; Itkis, I. M.; Itkis, M. G.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Bogachev, A. A.; Kozulina, N. I.; Harca, I.; Trzaska, W. H.; Ghosh, T. K.

    2016-11-01

    Background: Suppression of compound nucleus formation in the reactions with heavy ions by a quasifission process in dependence on the reaction entrance channel. Purpose: Investigation of fission and quasifission processes in the reactions 36S,48Ca,48Ti , and 64Ni+238U at energies around the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reaction 48Ti+238U at energies of 247, 258, and 271 MeV have been measured using the double-arm time-of-flight spectrometer CORSET at the U400 cyclotron of the Flerov Laboratory of Nuclear Reactions and compared with mass-energy distributions for the reactions 36S,48Ca,64Ni+238U . Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies have been investigated for asymmetric and symmetric fragments for the studied reactions. The fusion probabilities have been deduced from the analysis of mass-energy distributions. Conclusion: The estimated fusion probability for the reactions S, Ca, Ti, and Ni ions with actinide nuclei shows that it depends exponentially on the mean fissility parameter of the system. For the reactions with actinide nuclei leading to the formation of superheavy elements the fusion probabilities are of several orders of magnitude higher than in the case of cold fusion reactions.

  19. Probing the early-time dynamics of relativistic heavy-ion collisions with electromagnetic radiation

    CERN Document Server

    Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2014-01-01

    Using 3+1D viscous relativistic fluid dynamics, we show that electromagnetic probes are sensitive to the initial conditions and to the out-of-equilibrium features of relativistic heavy-ion collisions. Within the same approach, we find that hadronic observables show a much lesser sensitivity to these aspects. We conclude that electromagnetic observables allow access to dynamical regions that are beyond the reach of soft hadronic probes.

  20. Universal trend for heavy-ion total reaction cross-sections at energies above the Coulomb barrier

    Science.gov (United States)

    Tavares, O. A. P.; Medeiros, E. L.; Morcelle, V.

    2010-08-01

    Heavy-ion total reaction cross-section measurements for more than 1100 reaction cases covering 61 target nuclei in the range 6Li-238U and 158 projectile nuclei from 2H to 84Kr (mostly exotic ones) have been analyzed in a systematic way by using an empirical, three-parameter formula that is applicable to the cases of projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities that describe the cross-section patterns. A great amount of cross-section data (87%) has been quite satisfactorily reproduced by the proposed formula; therefore, the total reaction cross-section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25% (or much less) uncertainty. Dedicated to CBPF—Centro Brasileiro de Pesquisas Físicas in its celebration of the 60th anniversary of its foundation.

  1. Nuclear structure effects on heavy-ion reactions with microscopic theory

    Directory of Open Access Journals (Sweden)

    Vo-Phuoc K.

    2016-01-01

    Full Text Available The self-consistent mean-field Hartree–Fock (HF theory, both static and time-dependent (TDHF versions, is used to study static and dynamic properties of fusion reactions between even 40–54Ca isotopes and 116Sn. The bare nucleus-nucleus potential, calculated with the frozen HF approach, is affected by the groundstate density of the nuclei. However, once dynamical effects are included, as in TDHF, the static effects on the barrier are essentially washed out. Dynamic properties of the nuclei, including low-lying vibrational modes, are calculated with TDHF and selectively used in coupled-channels calculations to identify which modes have the most effect on the TDHF fusion threshold. Vibrations cannot fully explain the difference between the static HF and TDHF fusion barriers trend so other dynamical effects such as transfer are considered.

  2. Electromagnetic effects on meson production: a new tool for studying the space-time evolution of heavy ion collisions

    CERN Document Server

    Rybicki, Andrzej; Klusek-Gawenda, Mariola; Davis, Nikolaos; Ozvenchuk, Vitalii; Kielbowicz, Miroslaw

    2016-01-01

    We review our studies of spectator-induced electromagnetic (EM) effects on the emission of charged mesons in the final state of ultrarelativistic heavy ion collisions. We argue that these effects offer sensitivity to the distance $d_E$ between the charged meson formation zone at freeze-out and the spectator system. As such, the can serve as an independent, new tool to probe the space time evolution and longitudinal of the system created in the collision. As a phenomenological application for this tool in the context of resonance production and decay, we obtain a first estimate of the pion decoupling time from EM effects.

  3. Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    CERN Document Server

    Wells, J C; Eichler, J

    1999-01-01

    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.

  4. Studies of complex fragment emission in heavy ion reactions. Progress report, January 1, 1990--August 5, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Charity, R.J.; Sobotka, L.G.

    1992-09-01

    Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production.

  5. Mass dependence of critical parameter and multiplicity of intermediatemass fragments in heavy ion reaction

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The mass dependence of critical parameters for the liquid-gas phase transition andmultiplicity of intermediate mass fragment in the heavyion reaction is qualitatively explored under the frameworkof lattice gas model. Some results are compared with experimental data.

  6. Dynamical Dipole mode in heavy-ion fusion reactions by using stable and radioactive beams

    Directory of Open Access Journals (Sweden)

    Molini P.

    2011-10-01

    Full Text Available The existence of the dynamical dipole mode in the 192Pb composite system was investigated through the study of its prompt γ decay employing the 40Ca + 152Sm and 48Ca + 144Sm reactions at Elab =11 and 10.1 MeV/u, respectively. The γ-rays and light charged particles were detected in coincidence with evaporation residues and fission fragments. First results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole γ radiation could be of interest for the synthesis of super-heavy elements through ”hot” fusion reactions. Furthermore, by using radioactive beams and the prompt γ radiation as a probe we could get information on the symmetry energy at sub-saturation densities.

  7. Role of the Coulomb interaction in the flow and the azimuthal distribution of kaons from heavy ion reactions

    CERN Document Server

    Wang, Z S; Fuchs, C; Maheswari, V S U; Kosov, D S; Faessler, Amand

    1998-01-01

    Coulomb final-state interaction of positive charged kaons in heavy ion reactions and its impact on the kaon transverse flow and the kaon azimuthal distribution are investigated within the framework of QMD (Quantum Molecular Dynamics) model. The Coulomb interaction is found to tend to draw the flow of kaons away from that of nucleons and lead to a more isotropic azimuthal distribution of kaons in the target rapidity region. The recent FOPI data have been analyzed by taking into accout both the Coulomb interaction and a kaon in-medium potential of the strong interaction. It is found that both the calculated kaon flows with only the Coulomb interaction and with both the Coulomb interaction and the strong potential agree within the error bars with the data. The kaon azimuthal distribution exhibits asymmetries of similar magnitude in both theoretical approaches. This means, the inclusion of the Coulomb potential makes it more difficult to extract information of the kaon mean field potential in nuclear matter from ...

  8. Analysis of heavy-ion fusion reactions at extreme sub-barrier energies using the proximity formalism

    Science.gov (United States)

    Ghodsi, O. N.; Gharaei, R.

    2013-11-01

    The recent measured values of the fusion excitation functions of the heavy-ion colliding systems 28Si+100Mo, 58Ni+54Fe, and 64Ni+64Ni are investigated using the original version of the proximity formalism. The fusion cross sections are calculated based on the coupled-channels approach, including couplings to the low-lying 2+ and 3- states in both target and projectile nuclei. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the potential Prox.77 needs to be modified considerably at sub-barrier energies. In the present study, the role of the surface energy coefficient γ and also the temperature T of the compound nucleus in nuclear potential and fusion cross section has been explored for our colliding systems. Moreover, the mutual and the multiphonon excitations of the lowest 2+ and 3- states are considered in the coupled-channels calculations. It is demonstrated that the potential Prox.77 with these corrective effects can reproduce the experimental data of the fusion cross section, the S factor and the logarithmic derivative for fusion reactions 28Si+100Mo, 58Ni+54Fe, and 64Ni+64Ni with good accuracy especially at below-barrier energies.

  9. Analysis of dynamical process with mass distribution of fission fragmentin heavy ion reactions

    Directory of Open Access Journals (Sweden)

    Aritomo Y.

    2010-03-01

    Full Text Available We analyzed experimental data obtained for the mass distribution of fission fragments in the reactions 36S+238U and 30Si+238U at several incident energies, which were performed by the JAEA group. Using the dynamical model with the Langevin equation, we precisely investigate the incident energy dependence of the mass distribution of fission fragments. We also consider the fine structures in the mass distribution of fission fragments caused by the nuclear structure at a low incident energy. It is explained why the mass distribution of fission fragments has different features in the two reactions. The fusion cross sections are also estimated.

  10. Prompt dipole gamma-ray emission in fusionlike heavy-ion reactions

    CERN Document Server

    Pierroutsakou, D; Di Pietro, M; Mordente, R; Ordine, A; Romoli, M; De Rosa, A; Inglima, G; La Commara, M; Martin, B; Roca, V; Sandoli, M; Trotta, M; Vardaci, E; Ming, R; Rizzo, F; Soramel, F; Stroe, L

    2003-01-01

    The sup 3 sup 2 S+ sup 1 sup 0 sup 0 Mo and sup 3 sup 6 S+ sup 9 sup 6 Mo fusionlike reactions were studied at incident energy of E sub l sub a sub b =298 MeV and 320 MeV, respectively, with the aim of probing the influence of the entrance channel charge asymmetry on the dipole gamma-ray emission. The excitation energy and spin distribution of the compound nucleus created in these reactions were identical, the only difference being associated with the unequal charge asymmetry of the two entrance channels. High-energy gamma-rays were detected in an array of 9 seven-pack BaF sub 2 clusters. Coincidence with fusionlike residues detected in four PPAC ensured the selection of central reaction events. By studying the differential gamma-ray multiplicity associated with the two reactions it was shown that the dipole strength excited in the compound nucleus increases with the entrance channel charge asymmetry. From the linearized spectra, the increase of the GDR gamma-ray intensity was found to be propor to 25% for th...

  11. Multinucleon transfer reactions studied with the heavy-ion magnetic spectrometer PRISMA

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, L.; Stefanini, A.M.; Behera, B.R.; Gadea, A.; Fioretto, E.; Latina, A.; Marginean, N. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Szilner, S. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Boskovic Institute, Zagreb (Croatia); Beghini, S.; Farnea, E.; Montagnoli, G.; Scarlassara, F.; Ur, C. [Universita di Padova and INFN, Sezione di Padova, Dipartimento di Fisica, Padova (Italy); Haas, F. [IN2P3-CNRS-Universite Louis Pasteur, Institut de Recherches Subatomiques, Strasbourg (France); Pollarolo, G. [Universita di Torino and INFN, Sezione di Torino, Dipartimento di Fisica Teorica, Torino (Italy); Trotta, M. [INFN - Sezione di Napoli and Dipartimento di Fisica, Universita di Napoli, Napoli (Italy)

    2005-09-01

    Recent inclusive measurements on multinucleon transfer reactions reveal important information on the interplay between single-particle and nucleon pair degrees of freedom. More detailed studies are being performed with the new magnetic spectrometer PRISMA, coupled to the CLARA {gamma}-array. (orig.)

  12. The quadruple deformation effects of 9Be in heavy-ion reactions

    Science.gov (United States)

    Seyyedi, S. A.

    2016-11-01

    The effects of the projectile deformation and orientation on the total potential characteristic have been studied for the reactions between weakly bound nucleus, 9Be, as the projectile and different targets. In this paper, the double-folding model is used to calculate the nuclear potentials and deformation of projectile included. It is shown that applying the deformation effects can modify the potential barrier height and depth in the interior regions of the potential. It is also shown that the gradient variation of the potential barrier height is linearly increased when the angle between the projectile and the target nuclei increases. The rate of the variation is constant in different reactions with 9Be. In order to study the possible effect of these deformation dependent potentials, application is made in the calculation of cross-sections of the different reactions. It is observed that the deformation and orientation are of important role in the dynamics of such reactions and improve the agreement with the experimental results.

  13. Role of transfer reactions in heavy-ion collisions at the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Pollarolo Giovanni

    2011-10-01

    Full Text Available One and two neutron transfer reactions are discussed in the semiclassical formalism. The twoneutrons transfer cross sections are calculated in the successive approximation. Comparisons with new experimental data below the Coulomb barrier are discussed in term of transfer probabilities as a function of the distance of closest approach for Coulomb scattering.

  14. Heavy ion collision dynamics of 10,11B+10,11B reactions

    Directory of Open Access Journals (Sweden)

    Singh BirBikram

    2015-01-01

    Full Text Available The dynamical cluster-decay model (DCM of Gupta and collaborators has been applied successfully to the decay of very-light (A ∼ 30, light (A ∼ 40−80, medium, heavy and super-heavy mass compound nuclei for their decay to light particles (evaporation residues, ER, fusion-fission (ff, and quasi-fission (qf depending on the reaction conditions. We intend to extend here the application of DCM to study the extreme case of decay of very-light nuclear systems 20,21,22Ne∗ formed in 10,11B+10,11B reactions, for which experimental data is available for their binary symmetric decay (BSD cross sections, i.e., σBSD. For the systems under study, the calculations are presented for the σBSD in terms of their preformation and barrier penetration probabilities P0 and P. Interesting results are that in the decay of such lighter systems there is a competing reaction mechanism (specifically, the deep inelastic orbiting of non-compound nucleus (nCN origin together with ff. We have emipirically estimated the contribution of σnCN. Moreover, the important role of nuclear structure characteristics via P0 as well as angular momentum ℓ in the reaction dynamics are explored in the study.

  15. Unusual features of proton and -spectra from low-energy heavy-ion reactions

    Indian Academy of Sciences (India)

    D R Chakrabarty

    2010-07-01

    Proton and -particle spectra have been measured in low-energy 12C and 16O-induced reactions on Nb and Y targets with the primary aim of measuring the excitation energy and angular momentum dependence of nuclear level density. In the -multiplicity gated spectra, an unusual feature of a broad structure at high particle energies is observed in all the cases. In the case of proton spectra, the structures have compound nuclear origin and point towards an excitation energy and angular momentum-dependent enhancement which is beyond the conventional level density prescription. The broad structures in the -spectra cannot be fully explained within the statistical model even with the enhanced level density. In this case, other reaction mechanisms like the transfer of or 8Be to the target could also be important.

  16. Density effect of the neutron halo nucleus induced reactions in intermediate energy heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    CAO Xi-Guang; CHEN Jin-Gen; MA Yu-Gang; FANG De-Qing; TIAN Wen-Dong; YAN Ting-Zhi; CAI Xiang-Zhou

    2009-01-01

    Using an isospin-dependent quantum molecular dynamics (IQMD) model, we study the 15C induced reactions from 30-120 MeV/nucleon systematically. Here the valence neutron of 15C is assigned at both 1d5/2 and 2s1/2 states respectively in order to study the density effect of reaction mechanism. It is. believed that the existent neutron halo structure at the 2s1/2 state of 15C will affect the light particle emission evidently.In our calculation, the different density distributions of 15C at two states are calculated by relativistic mean field (RMF) model and introduced in the initiation of IQMD model, respectively. It is found that some observables such as emission fragmentation multiplicity, emission neutron/proton ratio and emission neutrons'kinetic energy spectrum are sensitive to the initial density distribution.

  17. New recoil transfer chamber for thermalization of heavy ions produced in fusion–evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, M.C. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Department of Chemistry, Texas A& M University, College Station, TX 77842 (United States); Tereshatov, E.E. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); DeVanzo, M.J. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States); Sefcik, J.A. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Department of Physics and Geosciences, Angelo State University, San Angelo, TX 76909 (United States); Bennett, M.E. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Mayorov, D.A.; Werke, T.A. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Department of Chemistry, Texas A& M University, College Station, TX 77842 (United States); Folden, C.M., E-mail: Folden@comp.tamu.edu [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States)

    2015-10-21

    A new Recoil Transfer Chamber (RTC) has been designed, fabricated, and characterized at the Cyclotron Institute at Texas A&M University. The design is based on a gas stopper that was previously in routine use at the National Superconducting Cyclotron Laboratory. This new RTC uses He gas to stop ions, and a combination of a static electric field and gas flow to maximize the extraction efficiency. In offline experiments, a {sup 228}Th source was used to produce {sup 216}Po which was successfully extracted even though it has a short half-life. In online experiments using the products of the {sup 118}Sn({sup 40}Ar, 6n){sup 152}Er reaction, an efficiency of several tens of percent was measured.

  18. Fission characteristics of 216Ra formed in heavy-ion induced reactions

    Indian Academy of Sciences (India)

    Hadi Eslamizadeh

    2013-11-01

    A Kramers-modified statistical model is used to calculate the cross-section of the evaporation residue, fission cross-section, average pre-fission multiplicities of protons and -particles for 216Ra formed in 19F + 197Au reactions and results are compared with the experimental data. To calculate these quantities, the effects of temperature and spin K about the symmetry axis have been considered in the calculations of the potential energy surfaces and the fission widths. It is shown that the results of the calculations using values of the temperature coefficient of the effective potential = 0.008 ± 0.003 MeV−2 and scaling factor of the fission-barrier height $r_{s} = 1.004 ± 0.002$ are in good agreement with the experimental data.

  19. Investigating multi-channel quantum tunneling in heavy-ion fusion reactions with Bayesian spectral decomposition

    CERN Document Server

    Hagino, K

    2016-01-01

    Excitations of colliding nuclei during a nuclear reaction considerably affect fusion cross sections at energies around the Coulomb barrier. It has been demonstrated that such channel coupling effects can be represented in terms of a distribution of multiple fusion barriers. We here apply a Bayesian approach to analyze the so called fusion barrier distributions. This method determines simultaneously the barrier parameters and the number of barriers. We particularly investigate the $^{16}$O+$^{144}$Sm and $^{16}$O+$^{154}$Sm systems in order to demonstrate the effectiveness of the method. The present analysis indicates that the fusion barrier distribution for the former system is most consistent with three fusion barriers, even though the experimental data show only two distinct peaks.

  20. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    Science.gov (United States)

    Tang, A. H.; Wang, G.

    2016-08-01

    The electromagnetic (EM) field pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system and causes photons emitted in upper and lower hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, owing to the global vorticity, is also possible. In this paper, we lay out a procedure to measure the variation of the circular polarization with respect to the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper and lower hemispheres to identify and quantify such effects.

  1. Thermal and transport properties in central heavy-ion reactions around a few hundred MeV/nucleon

    CERN Document Server

    Deng, X G; Veselsky, M

    2016-01-01

    Thermalization process of nuclear matter in central fireball region of heavy-ion collisions is investigated by employing an extension model of Boltzmann-Uehling-Uhlenbeck, namely the Van der Waals Boltzmann-Uehling-Uhlenbeck (VdWBUU) model. Temperature ($T$) is extracted by the quantum Fermion fluctuation approach and other thermodynamic quantities, such as density ($\\rho$), entropy density ($s$), shear viscosity ($\\eta$), isospin diffusivity ($D_{I}$) and heat conductivity ($\\kappa$), are also deduced. The liquid-like and gas-like phase signs are discussed through the behavior of shear viscosity during heavy-ion collisions process with the VdWBUU model.

  2. Electromagnetic effects on meson production: a new tool for studying the space-time evolution of heavy ion collisions

    Science.gov (United States)

    Rybicki, Andrzej; Szczurek, Antoni; Kłusek-Gawenda, Mariola; Davis, Nikolaos; Ozvenchuk, Vitalii; Kiełbowicz, Mirosław

    2016-11-01

    We review our studies of spectator-induced electromagnetic (EM) effects on the emission of charged mesons in the final state of ultrarelativistic heavy ion collisions. We argue that these effects offer sensitivity to the distance dE between the charged meson formation zone at freeze-out and the spectator system. As such, they can serve as an independent, new tool to probe the space-time and longitudinal evolution of the system created in the collision. As a phenomenological application for this tool in the context of resonance production and decay, we obtain a first estimate of the time of pion emission from EM effects. This we compare to existing HBT data.

  3. Plastic scintillation detectors for precision time-of-flight measurements of relativistic heavy ions

    CERN Document Server

    Lin, Wen-Jian; Sun, Bao-Hua; He, Liu-Chun; Lin, Wei-Ping; Liu, Chuan-Ye; Tanihata, Isao; Terashima, Satoru; Tian, Yi; Wang, Feng; Wang, Meng; Zhang, Guang-Xin; Zhang, Xue-Heng; Zhu, Li-Hua; Duan, Li-Min; Hu, Rong-Jiang; Liu, Zhong; Lu, Chen-Gui; Ren, Pei-Pei; Sheng, Li-Na; Sun, Zhi-Yu; Wang, Shi-Tao; Wang, Tao-Feng; Xu, Zhi-Guo; Yan, Duo; Yue, Ke; Zheng, Yong

    2016-01-01

    Plastic scintillation detectors for Time-of-Flight (TOF) measurements are almost essential for event-by-event identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of 50 $\\times$ 50 $\\times$ 3$^{t}$ mm$^3$ and 80 $\\times$ 100 $\\times$ 3$^{t}$ mm$^3$ have been set up at the external target facility (ETF), Institute of Modern Physics. Their time, energy and position responses are measured with $^{18}$O primary beam at 400 MeV/nucleon. After the off-line walk-effect and position corrections, the time resolution of the two detectors are determined to be 27 ps ($\\sigma$) and 36 ps ($\\sigma$), respectively. Both detectors have nearly the same energy resolution of 3$\\%$ ($\\sigma$) and position resolution of 2 mm ($\\sigma$). The detectors have been used successfully in nuclear reaction cross section measurements, and will be be employed for upgrading RIBLL2 beam line at IMP as well as for the high energy branch at HIAF.

  4. O (αs3) analysis of inclusive jet and di-jet production in heavy ion reactions at the Large Hadron Collider

    Science.gov (United States)

    He, Yuncun; Vitev, Ivan; Zhang, Ben-Wei

    2012-07-01

    Jets physics in heavy ion reactions is an important new area of active research at the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron Collider (LHC) that paves the way for novel tests of QCD multi-parton dynamics in dense nuclear matter. At present, perturbative QCD calculations of hard probes in elementary nucleon-nucleon reactions can be consistently combined with the effects of the nuclear medium up to O (αs3). While such accuracy is desirable but not necessary for leading particle tomography, it is absolutely essential for the new jet observables. With this motivation, we present first results and predictions to O (αs3) for the recent LHC lead-lead (Pb + Pb) run at a center-of-mass energy of 2.76 TeV per nucleon-nucleon pair. Specifically, we focus on the suppression of the single and double inclusive jet cross sections. Our analysis includes not only final-state inelastic parton interactions in the QGP, but also initial-state cold nuclear matter effects and an estimate of the non-perturbative hadronization corrections. We demonstrate how an enhanced di-jet asymmetry in central Pb + Pb reactions at the LHC, recently measured by the ATLAS and CMS experiments, can be derived from these results. We show quantitatively that a fraction of this enhancement may be related to the ambiguity in the separation between the jet and the soft background medium and/or the diffusion of the parton shower energy away from the jet axis through collisional processes. We point to a suite of measurements that can help build a consistent picture of parton shower modification in heavy ion collisions at the LHC.

  5. The Ring Counter (RCo): A high resolution IC-Si-CsI(Tl) device for heavy ion reaction studies at 10-30 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Moroni, A.; Brambilla, S.; Giussani, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano and Dipartimento di Fisica dell' Universita, Milan (Italy); Bruno, M. [Istituto Nazionale di Fisica Nucleare, Sezionedi Bologna and Dipartimento di Fisica dell' Universita, Bologna (Italy); Bardelli, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze and Dipartimento di Fisica dell' Universita, Florence (Italy); Barlini, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (Italy); Casini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze and Dipartimento di Fisica dell' Universita, Florence (Italy); Cavaletti, R. [Istituto Nazionale di Fisica Nucleare, Sezionedi Bologna and Dipartimento di Fisica dell' Universita, Bologna (Italy); Chiari, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze and Dipartimento di Fisica dell' Universita, Florence (Italy); Cortesi, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano and Dipartimento di Fisica dell' Universita, Milan (Italy); D' Agostino, M. [Istituto Nazionale di Fisica Nucleare, Sezionedi Bologna and Dipartimento di Fisica dell' Universita, Bologna (Italy)]. E-mail: dagostino@bo.infn.it; De Sanctis, J. [Istituto Nazionale di Fisica Nucleare, Sezionedi Bologna and Dipartimento di Fisica dell' Universita, Bologna (Italy); Geraci, E. [Istituto Nazionale di Fisica Nucleare, Sezionedi Bologna and Dipartimento di Fisica dell' Universita, Bologna (Italy); Giordano, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli and Dipartimento di Fisica dell' Universita, Napoli (Italy); Gramegna, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (Italy); Guiot, B. [Istituto Nazionale di Fisica Nucleare, Sezionedi Bologna and Dipartimento di Fisica dell' Universita, Bologna (Italy); Kravchuk, V.; Lanchais, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (Italy)] [and others

    2006-01-15

    An annular detector (Ring Counter, RCo) is presented, which has been designed and built to detect and identify in mass and charge light charged particles and fragments with very low energy thresholds and high energy resolution. It complements the GARFIELD apparatus, operating at INFN Laboratori Nazionali di Legnaro, to detect the forward emitted products of nuclear heavy ion reactions. It consists of eight sectors of a three-stage telescope, each one formed by an ionization chamber followed by eight strips of a silicon detector and by two CsI(Tl) scintillators. Construction features and performances are described and discussed in details.

  6. The Ring Counter (RCo): A high resolution IC Si CsI(Tl) device for heavy ion reaction studies at 10 30 MeV/A

    Science.gov (United States)

    Moroni, A.; Bruno, M.; Bardelli, L.; Barlini, S.; Brambilla, S.; Casini, G.; Cavaletti, R.; Chiari, M.; Cortesi, A.; D'Agostino, M.; De Sanctis, J.; Geraci, E.; Giordano, G.; Giussani, A.; Gramegna, F.; Guiot, B.; Kravchuk, V.; Lanchais, A.; Margagliotti, G. V.; Nannini, A.; Ordine, A.; Piantelli, S.; Vannini, G.; Vannucci, L.

    2006-01-01

    An annular detector (Ring Counter, RCo) is presented, which has been designed and built to detect and identify in mass and charge light charged particles and fragments with very low energy thresholds and high energy resolution. It complements the GARFIELD apparatus, operating at INFN Laboratori Nazionali di Legnaro, to detect the forward emitted products of nuclear heavy ion reactions. It consists of eight sectors of a three-stage telescope, each one formed by an ionization chamber followed by eight strips of a silicon detector and by two CsI(Tl) scintillators. Construction features and performances are described and discussed in details.

  7. A telescope with microstrip gas chambers for the detection of charged products in heavy-ion reactions

    Science.gov (United States)

    Gramegna, F.; Abbondanno, U.; Andreano, A.; Bassini, R.; Bonutti, F.; Bruno, M.; Casini, G.; D'Agostino, M.; Manzin, G.; Margagliotti, G. V.; Mastinu, P. F.; Milazzo, P. M.; Moroni, A.; Squarcini, M.; Tonetto, F.; Vannini, G.; Vannucci, L.

    1997-02-01

    Prototypes of a ΔE-E telescope, designed to detect and identify with low-energy threshold both light charged particles and heavy fragments, are described. They are based on a gas drift chamber which conveys primary ionization electrons on gas microstrip devices where multiplication occurs and the energy loss signals are generated. Silicon detectors or CsI(T1) crystals operate as residual energy detectors. The prototypes were tested both with a source and heavy ion beams. Performances, mainly related to energy resolution, charge identification and angle resolution, are reported.

  8. A telescope with microstrip gas chambers for the detection of charged products in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gramegna, F. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Abbondanno, U. [Ist. Nazionale di Fisica Nucleare, Sezione di Trieste and Dipt. di Fisica dell`Univ. (Italy); Andreano, A. [Ist. Nazionale di Fisica Nucleare, Sezione di Milano (Italy); Bassini, R. [Ist. Nazionale di Fisica Nucleare, Sezione di Milano (Italy); Bonutti, F. [Ist. Nazionale di Fisica Nucleare, Sezione di Trieste and Dipt. di Fisica dell`Univ. (Italy); Bruno, M. [Ist. Nazionale di Fisica Nucleare, Sezione di Bologna and Dipt. di Fisica dell`Univ. (Italy); Casini, G. [Ist. Nazionale di Fisica Nucleare, Firenze (Italy); D`Agostino, M. [Ist. Nazionale di Fisica Nucleare, Sezione di Bologna and Dipt. di Fisica dell`Univ. (Italy); Manzin, G. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Margagliotti, G.V. [Ist. Nazionale di Fisica Nucleare, Sezione di Trieste and Dipt. di Fisica dell`Univ. (Italy); Mastinu, P.F. [Ist. Nazionale di Fisica Nucleare, Sezione di Bologna (Italy)]|[Dipt. di Fisica dell`Univ., Padova (Italy); Milazzo, P.M. [Ist. Nazionale di Fisica Nucleare, Sezione di Trieste and Dipt. di Fisica dell`Univ. (Italy); Moroni, A. [Ist. Nazionale di Fisica Nucleare, Sezione di Milano (Italy); Squarcini, M. [Ist. Nazionale di Fisica Nucleare, Firenze (Italy); Tonetto, F. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Vannini, G. [Ist. Nazionale di Fisica Nucleare, Sezione di Trieste and Dipt. di Fisica dell`Univ. (Italy); Vannucci, L. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro

    1997-04-21

    Prototypes of a {Delta}E-E telescope, designed to detect and identify with low-energy threshold both light charged particles and heavy fragments, are described. They are based on a gas drift chamber which conveys primary ionization electrons on gas microstrip devices where multiplication occurs and the energy loss signals are generated. Silicon detectors or Csl(Tl) crystals operate as residual energy detectors. The prototypes were tested both with a source and heavy ion beams. Performances, mainly related to energy resolution, charge identification and angle resolution, are reported. (orig.).

  9. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  10. Monte-Carlo Simulation of Heavy Ion Track Structure Calculation of Local Dose and 3D Time Evolution of Radiolytic Species

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    Heavy ions have gained considerable importance in radiotherapy due to their advantageous dose distribution profile and high Relative Biological Effectiveness (RBE). Heavy ions are difficult to produce on Earth, but they are present in space and it is impossible at this moment to completely shield astronauts from them. The risk of these radiations is poorly understood, which is a concern for a 3-years Mars mission. The effects of radiation are mainly due to DNA damage such as DNA double-strand breaks (DSBs), although non-targeted effects are also very important. DNA can be damaged by the direct interaction of radiation and by reactions with chemical species produced by the radiolysis of water. The energy deposition is of crucial importance to understand biological effects of radiation. Therefore, much effort has been done recently to improve models of radiation tracks.

  11. On-line Mass Spectrometric Study of Heavy-Ion Induced Reactions at Energies up to 86 MeV/amu

    CERN Multimedia

    2002-01-01

    The aim of the experiment was to measure isotopic distributions of Li, Na, K, Rb, Cs and Fr as reaction fragments in heavy ion collisions. In order to get an overall view of the new energy range for heavy ions available from the SC, different energies and projectile-target combinations had to be studied. The data taking status is now finished. |1|2C and |1|8O beams were used in bombarding |1|2C, |9|3Nb, |1|8|1Ta and |2|3|8U in order to look at target fragmentation, projectile fragmentation and evaporative residues of spallation processes. The experimental apparatus is composed of three parts: \\item a)~A target-oven-ionizer assembly where selective thermal diffusion and selective surface ionization takes place in order to obtain a chemical separation of the reaction products. \\item b)~The mass spectrometer where the different-mass fragments are selected. \\item c)~An electrostatic ion beam line through which the fragments are transported to a low-background area where the detector (an electron multiplier) is lo...

  12. Time of flight measurement in heavy-ion collisions with the HADES RPC TOF wall

    Science.gov (United States)

    Kornakov, G.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Belyaev, A.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Deveaux, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Kardan, K.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kotte, R.; Krása, A.; Krebs, E.; Krizek, F.; Kuc, H.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Pechenov, V.; Pechenova, O.; Petousis, V.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rost, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmidt-Sommerfeld, K.; Schuldes, H.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wirth, J.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2014-11-01

    This work presents the analysis of the performance of the RPC ToF wall of the HADES, located at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The behavior of the detector is studied in Au+Au collisions at 1.23 AGeV. A main characteristic of the detector is that all the active areas were designed to be electrically shielded in order to operate in high occupancies of the chambers. Here we show the achieved performance regarding efficiency and timing capabilities at different occupancies of this special design after the applied offline corrections to the data. Also the stability of the intrinsic time resolution over time of data taking is presented.

  13. Large scale collective modeling the final 'freeze out' stages of energetic heavy ion reactions and calculation of single particle measurables from these models

    Energy Technology Data Exchange (ETDEWEB)

    Nyiri, Agnes

    2005-07-01

    -relativistic heavy ion reactions is an important hadronic observable sensitive to the early stages of system evolution. The flow analysis involves the particles, which have already been frozen out. Therefore, to perform realistic flow computations from the Multi Module Model we need a complete freeze out description and a well identified freeze out surface. However, the freeze out module is still not ready. Although we have not yet been able to evaluate collective flow using the Multi Module Model, the method and code for the calculation of flow components has been worked out in an independent module. This module is completed and can be coupled to the previous modules when those are ready for use. In order to test the code, we have calculated directed and elliptic flow from a tilted, ellipsoidally expanding source using a simple, blast wave type of model. This model was developed directly for this aim based on Buda-Lund hydro models. Although, this oversimplified blast wave model is not suitable to reproduce the experimental data--which will be an important task in the future to check our Multi Module Model--it has provided us with important information. We have found that the directed flow, is very sensitive to the correct identification of the reaction plane included the determination of the impact parameter vector, and can be misinterpreted by some experimental methods. We have shown that misidentification of the reaction plane may even set the directed flow to zero by construction. We have presented results of the rapidity dependence of the directed flow, v1, and elliptic flow, v2, furthermore, the transverse momentum dependence of v2. We have also investigated the dependence of the flow pattern on the initial geometry of the fireball by calculating flow components from two ellipsoidal sources with the same thermodynamical properties but different shape. The code determining the freeze out hypersurface should still be improved in order to avoid inaccuracies in the further

  14. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  15. Large scale collective modeling the final 'freeze out' stages of energetic heavy ion reactions and calculation of single particle measurables from these models

    Energy Technology Data Exchange (ETDEWEB)

    Nyiri, Agnes

    2005-07-01

    -relativistic heavy ion reactions is an important hadronic observable sensitive to the early stages of system evolution. The flow analysis involves the particles, which have already been frozen out. Therefore, to perform realistic flow computations from the Multi Module Model we need a complete freeze out description and a well identified freeze out surface. However, the freeze out module is still not ready. Although we have not yet been able to evaluate collective flow using the Multi Module Model, the method and code for the calculation of flow components has been worked out in an independent module. This module is completed and can be coupled to the previous modules when those are ready for use. In order to test the code, we have calculated directed and elliptic flow from a tilted, ellipsoidally expanding source using a simple, blast wave type of model. This model was developed directly for this aim based on Buda-Lund hydro models. Although, this oversimplified blast wave model is not suitable to reproduce the experimental data--which will be an important task in the future to check our Multi Module Model--it has provided us with important information. We have found that the directed flow, is very sensitive to the correct identification of the reaction plane included the determination of the impact parameter vector, and can be misinterpreted by some experimental methods. We have shown that misidentification of the reaction plane may even set the directed flow to zero by construction. We have presented results of the rapidity dependence of the directed flow, v1, and elliptic flow, v2, furthermore, the transverse momentum dependence of v2. We have also investigated the dependence of the flow pattern on the initial geometry of the fireball by calculating flow components from two ellipsoidal sources with the same thermodynamical properties but different shape. The code determining the freeze out hypersurface should still be improved in order to avoid inaccuracies in the further

  16. Timescales in heavy ion collisions

    CERN Document Server

    Lisa, Mike

    2016-01-01

    The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructure. I focus on the issue of timescales in heavy ion collisions, starting with proof from low-energy collisions that femtoscopy can, indeed, measure very long timescales. I then discuss the relativistic case, where detailed measurements over three orders of magnitude in energy reveal a timescale increase that might be due to a first-order phase transition. I discuss also consistency in evolution timescales as determined from traditional longitudinal sizes and a novel analysis using shape information.

  17. Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. R.; Nahar, L.; Mamun, A. A. [Jahangirnagar University,Savar, Dhaka (Bangladesh)

    2014-12-15

    The properties of time-dependent cylindrical and spherical, modified ion-acoustic (mIA) solitary structures in relativistic degenerate multi-ion plasmas (containing degenerate electron fluids, inertial positively-, as well as negatively-, charged light ions, and positively-charged static heavy ions) have been investigated theoretically. This investigation is valid for both non-relativistic and ultrarelativistic limits. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and the mK-dV equations for studying the basic features of solitary waves. The fundamental characteristics of mIA solitary waves are found to be significantly modified by the effects of the degenerate pressures of the electron and the ion fluids, their number densities, and the various charge states of heavy ions. The relevance of our results in astrophysical compact objects like white dwarfs and neutron stars, which are of scientific interest, is briefly discussed.

  18. Measurements of activation reaction rates in transverse shielding concrete exposed to the secondary particle field produced by intermediate energy heavy ions on an iron target

    Science.gov (United States)

    Ogawa, T.; Morev, M. N.; Iimoto, T.; Kosako, T.

    2012-01-01

    Reaction rate distributions were measured inside a 60-cm thick concrete pile placed at the lateral position of a thick (stopping length) iron target that was bombarded with heavy ions, 400 MeV/u C and 800 MeV/u Si. Foils of aluminum and gold, as well as gold, tungsten and manganese covered with cadmium were inserted at various locations in the concrete pile to serve as activation detectors. Features of reaction rate distribution, such as the shape of the reaction rate profile, contribution of the neutrons from intra-nuclear cascade and that from evaporation to the activation reactions are determined by the analysis of measured reaction rates. The measured reaction rates were compared with those calculated with radiation transport simulation codes, FLUKA and PHITS, to verify their capability to predict induced activity. The simulated reaction rates agree with the experimental results within a factor of three in general. However, systematic discrepancies between simulated reaction rates and measured reaction rates attributed to the neutron source terms are observed.

  19. Origin and Properties of Quiet-time 0.11-1.28 MeV Nucleon-1 Heavy-ion Population near 1 au

    Science.gov (United States)

    Dayeh, M. A.; Desai, M. I.; Mason, G. M.; Ebert, R. W.; Farahat, A.

    2017-02-01

    Using measurements from the Advanced Composition Explorer/Ultra-Low Energy Isotope Spectrometer near 1 au, we surveyed the composition and spectra of heavy ions (He-through-Fe) during quiet times from 1998 January 1 to 2015 December 31 at suprathermal energies between ∼0.11 and ∼1.28 MeV nucleon‑1. The selected time period covers the maxima of solar cycles 23 and 24 and the extended solar minimum in between. We find the following. (1) The number of quiet hours in each year correlates well with the sunspot number, year 2009 was the quietest for about 82% of the time. (2) The composition of the quiet-time suprathermal heavy-ion population (3He, C-through-Fe) correlates well with the level of solar activity, exhibiting SEP-like composition signatures during solar maximum, and CIR- or solar wind-like composition during solar minimum. (3) The heavy-ion (C–Fe) spectra exhibit suprathermal tails at energies of 0.11–0.32 MeV nucleon‑1 with power-law spectral indices ranging from 1.40 to 2.97. Fe spectra soften (steepen, i.e., spectral index increases) smoothly with increasing energies compared with Fe, indicating a rollover behavior of Fe at higher energies (0.45–1.28 MeV nucleon‑1). (4) Spectral indices of Fe and O do not appear to exhibit clear solar cycle dependence. (2) and (3) imply that during IP quiet times and at energies above ∼0.1 MeV nucleon‑1, the IP medium is dominated by material from prior solar and interplanetary events. We discuss the implications of these extended observations in the context of the current understanding of the suprathermal ion population near 1 au.

  20. Implement of Synchronous Timing Trigger System in Heavy Ion Accelerator%重离子加速器同步定时触发系统的实现

    Institute of Scientific and Technical Information of China (English)

    赵江; 陈又新; 黄玉珍; 张华剑; 吴凤军; 闫怀海; 周忠祖; 高大庆

    2014-01-01

    同步定时触发系统是重离子同步加速器的控制核心,控制磁场电源对带电离子束进行同步加速,其对可靠性和定时精度要求高。在重离子治癌、材料辐照等领域的发展中,为了满足这些领域对重离子同步加速器小型化的需求,本文以NIOSII为核心处理器,结合FPGA上的可编程片上系统(SOPC),实现了一种基于可编程硬件的同步定时触发系统。该系统可控制延时精度,且使用灵活、可靠,易升级,向小型化的同步加速器及重离子治癌等应用工程提供了切实可行的方案。%The synchronous timing trigger system is the control core of a heavy ion syn-chrotron and controls magnetic field power supply to accelerate charged ion beam .The high reliability and high timing precision are required for the system .With the develop-ment of some domains ,such as the heavy-ion cancer therapy and the material irradia-tion ,a synchronous timing trigger system in synchrotron was presented in order to meet the requirement of miniaturizing accelerator .This system was implemented based on the processor NIOSII and combined with the SOPC on FPGA .It is flexible ,reliable ,easy to upgrade ,and has controllable delay precision .The system ,as a feasible scheme ,can be suitable for the miniaturized accelerator and any application engineering like heavy-ion cancer therapy .

  1. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  2. Energy of vanishing flow in heavy-ion collisions: Role of mass asymmetry of a reaction

    Indian Academy of Sciences (India)

    Varinderjit Kaur; Suneel Kumar

    2012-02-01

    We aim to understand the role of Coulomb interactions as well as different equations of state on the disappearance of transverse flow for various asymmetric reactions leading to the same total mass. For the present study, the total mass of the system is kept constant (A_{\\text{TOT}} = 152) and mass asymmetry of the reaction is varied between 0.2 and 0.7. The Coulomb interactions as well as different equations of state are found to affect the balance energy significantly for larger asymmetric reactions.

  3. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  4. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  5. Light Particle Emission Mechanisms in Heavy-Ion Reactions at 5-20 MeV/u

    Directory of Open Access Journals (Sweden)

    Fotina O.V.

    2010-03-01

    Full Text Available Light Charged Particle emission mechanisms were studied for different mass entrance channel nuclear reactions. The 300, 400, 500 MeV 64Ni + 68Zn and 130, 250 MeV 16O + 116Sn reactions were measured at the Legnaro National Laboratory using the beams from the TANDEM-ALPI acceleration system. Light Charged Particles were measured in coincidence with Evaporation Residues and their spectra were analyzed using the global moving source fit technique. The characterization of different emission sources (evaporative, pre-equilibrium, break-up is discussed. The behavior of pre-equilibrium emission as a function of projectile energy, excitation energy and mass-asymmetry in the entrance channel was studied, evaluating the energy, mass and charge lost by the composite systems and using Griffin exciton model for the pre-equilibrium neutron emission. The present results are compared with the systematics of the asymmetric mass entrance channel reactions. The present work shows that also at the onset the pre-equilibrium emission depends not only on the projectile velocity but also on the reaction entrance channel mass-asymmetry. The first attempt of the particle spectra analysis using the Griffin exciton model is demonstrated for the case of proton emission in the 130 MeV 16O + 116Sn reaction.

  6. Heavy-ion double charge exchange reactions: A tool toward 0 νββ nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Cappuzzello, F.; Bondi, M. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Laboratori Nazionali del Sud, Catania (Italy); Cavallaro, M.; Agodi, C.; Carbone, D.; Cunsolo, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Foti, A. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Sezione di Catania, Catania (Italy)

    2015-11-15

    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the {sup 40}Ca({sup 18}O,{sup 18}Ne){sup 40}Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0{sup +} → 0{sup +} transition to {sup 40}Ar{sub gs}, at least at very forward angles. (orig.)

  7. Stopping power measurements of heavy ions (3 {<=} Z{sub 1} {<=} 14) in Mylar foil by time-of-flight spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ammi, H., E-mail: hakim_ammi@yahoo.f [Centre de Recherche Nucleaire d' Alger, 2, Bd. Frantz Fanon, B.P. 399, Alger-Gare (Algeria); Pineda-Vargas, C.A. [iThemba Labs, P.O. Box 722, Somerset West 7129, Cape Town (South Africa); Faculty of Health and Wellness Sciences, CPUT, P.O. Box 1906, Bellville 7535 (South Africa); Mammeri, S. [Centre de Recherche Nucleaire d' Alger, 2, Bd. Frantz Fanon, B.P. 399, Alger-Gare (Algeria); Msimanga, M. [iThemba Labs, P.O. Box 722, Somerset West 7129, Cape Town (South Africa); Ourabah, S.; Dib, A. [Centre de Recherche Nucleaire d' Alger, 2, Bd. Frantz Fanon, B.P. 399, Alger-Gare (Algeria)

    2011-02-01

    Heavy ions elastic recoil detection analysis coupled with time of flight spectrometer (HIERDA{sub T}oF-E) have been used to measure energy loss of charged particles in thin absorber. The stopping power of heavy ions has been determined in Mylar for {sup 28}Si, {sup 27}Al, {sup 24}Mg, {sup 19}F, {sup 16}O, {sup 12}C and {sup 7}Li ions over a continuous range of energies 0.14-0.80 MeV/nucleon. The ions were recoils from the bombardment of different samples (Si, MgO, Al{sub 2}O{sub 3}, LiF and C) with a 27.5 MeV Kr{sup +} beam. The energy loss of the recoil atoms is measured with and without additional foils placed in front of a Surface Barrier Detector (SBD). The energy of individual ions is determined from its ToF data; the exit energy after the stopping foil is measured using the SBD detector. We have compared our stopping values to those predicted by SRIM-2008 computer code, ICRU-73 stopping data tables, MSTAR calculations and to the published data from literature. The results show good agreement with limited existing data but indicate a large deviation among the predicted theoretical values at the low energy side of the stopping maximum peak.

  8. Heavy ions at the Future Circular Collider

    CERN Document Server

    Dainese, A; Armesto, N; d'Enterria, D; Jowett, J M; Lansberg, J -P; Milhano, J G; Salgado, C A; Schaumann, M; van Leeuwen, M; Albacete, J L; Andronic, A; Antonioli, P; Apolinario, L; Bass, S; Beraudo, A; Bilandzic, A; Borsanyi, S; Braun-Munzinger, P; Chen, Z; Mendez, L Cunqueiro; Denicol, G S; Eskola, K J; Floerchinger, S; Fujii, H; Giubellino, P; Greiner, C; Grosse-Oetringhaus, J F; Ko, C -M; Kotko, P; Krajczar, K; Kutak, K; Laine, M; Liu, Y; Lombardo, M P; Luzum, M; Marquet, C; Masciocchi, S; Okorokov, V; Paquet, J -F; Paukkunen, H; Petreska, E; Pierog, T; Ploskon, M; Ratti, C; Rezaeian, A H; Riegler, W; Rojo, J; Roland, C; Rossi, A; Salam, G P; Sapeta, S; Schicker, R; Schmidt, C; Stachel, J; Uphoff, J; van Hameren, A; Watanabe, K; Xiao, B -W; Yuan, F; Zaslavsky, D; Zhou, K; Zhuang, P

    2016-01-01

    The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode, seven times larger than the nominal LHC energies. Operating such machine with heavy ions is an option that is being considered in the accelerator design studies. It would provide, for example, Pb-Pb and p-Pb collisions at sqrt{s_NN} = 39 and 63 TeV, respectively, per nucleon-nucleon collision, with integrated luminosities above 30 nb^-1 per month for Pb-Pb. This is a report by the working group on heavy-ion physics of the FCC Study. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of the Quark-Gluon Plasma, of gluon saturation, of photon-induced collisions, as well as connections with other fields of high-energy physics.

  9. The role of various parameters used in proximity potential in heavy-ion fusion reactions: New extension

    Indian Academy of Sciences (India)

    Ishwar Dutt

    2011-06-01

    An attempt has been made to modify the original proximity potential using up-to-date knowledge of the universal function and surface energy coefficient available in the literature. A new radius formula has also been obtained using the recent data on charge distribution. The detailed investigation of over 395 reactions reveal that the new proximity potential reproduces the experimental data better than earlier versions.

  10. Experimental Verification of Heavy Ion Simulation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    1 IntroductionThe investigation of radiation damage induced by high dose neutrons and/or protons is a currently interesting topic in nuclear power, ADS etc., The lack of high dose neutron and proton sources hampers this investigation. The advent of heavy ion accelerators opens up a way to study radiation damage caused by high dose neutron and/or proton irradiation[1]. The displacement rate of heavy ions is much higher than that of neutrons and protons. Higher displacement rate leads to short irradiation time. An irradiation dose of -20 dpa takes about a year in a reactor, while only a few minutes or hours by

  11. Holographic heavy ion collisions with baryon charge

    CERN Document Server

    Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel

    2016-01-01

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  12. Study of the Particle Production in $^{12}$C Induced Heavy Ion Reactions at 86 MeV/N

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to study various characteristics of light and heavy particle production in |1|2C induced reactions if possible over the whole unexplored energy region 50-86~MeV/N. In particular we want to investigate how the correlations in the multiparticle events can help us to distinguish bet existing models. \\\\ \\\\ Two-proton large-angle correlations and correlations between two heavier (Z~=~1 or 2) particles are studied with scintillator +~NaI and range telescopes, complemented with a 24 telescope scintillator wall for projectile fragments. Thereby we receive information about the reaction plane and the impact parameter in coincidence with the two-particle correlation spectra. Small @Dp correlations can also be studied. The inclusive @p|+ and @p|- production has been followed far below the nucleon-nucleon threshold. Pions are thereby identified from @DE-E correlations and the @p|+ decay in plastic range telescopes. These results are now followed up by @p-projectile fragment and @p-p correlat...

  13. Nuclear clusters as a probe for expansion flow in heavy ion reactions at 10-15A GeV

    CERN Document Server

    Mattiello, R; Stöcker, H; Greiner, W

    1996-01-01

    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low p_t at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.

  14. Microscopic Calculation of Pre-Compound Excitation Energies for Heavy-Ion Collisions

    OpenAIRE

    2009-01-01

    We introduce a microscopic approach for calculating the excitation energies of systems formed during heavy-ion collisions. The method is based on time-dependent Hartree-Fock (TDHF) theory and allows the study of the excitation energy as a function of time or ion-ion separation distance. We discuss how this excitation energy is related to the estimate of the excitation energy using the reaction $Q$-value, as well as its implications for dinuclear pre-compound systems formed during heavy-ion co...

  15. GARFIELD + RCo Digital Upgrade: a Modern Set-up for Mass and Charge Identification of Heavy Ion Reaction Products

    CERN Document Server

    Bruno, M; Marchi, T; Morelli, L; Pasquali, G; Casini, G; Abbondanno, U; Baiocco, G; Bardelli, L; Barlini, S; Bini, M; Carboni, S; Cinausero, M; Agostino, M D; Degerlier, M; Kravchuk, V L; Geraci, E; Mastinu, P F; Ordine, A; Piantelli, S; Poggi, G; Moroni, A

    2013-01-01

    An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On one side fast sampling digital read out has been extended to all detectors, allowing for an important simplification of the signal processing chain together with an enriched extracted information. On the other side a relevant improvement has been made in the forward part of the setup (RCo): an increased granularity of the CsI(Tl) crystals and a higher homogeneity in the silicon detector resistivity. The renewed performances of the GARFIELD + RCo array make it suitable for nuclear reaction measurements both with stable and with Radioactive Ion Beams (RIB), like the ones foreseen for the SPES facility, where the Physics of Isospin can be studied.

  16. GARFIELD + RCo digital upgrade: A modern set-up for mass and charge identification of heavy-ion reaction products

    Science.gov (United States)

    Bruno, M.; Gramegna, F.; Marchi, T.; Morelli, L.; Pasquali, G.; Casini, G.; Abbondanno, U.; Baiocco, G.; Bardelli, L.; Barlini, S.; Bini, M.; Carboni, S.; Cinausero, M.; D'Agostino, M.; Degerlier, M.; Kravchuk, V. L.; Geraci, E.; Mastinu, P. F.; Ordine, A.; Piantelli, S.; Poggi, G.; Moroni, A.

    2013-10-01

    An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On the one hand fast sampling digital read out has been extended to all detectors, allowing for an important simplification of the signal processing chain together with an enriched extracted information. On the other hand a relevant improvement has been made in the forward part of the set-up (RCo): an increased granularity of the CsI(Tl) crystals and a higher homogeneity in the silicon detector resistivity. The renewed performances of the GARFIELD + RCo array make it suitable for nuclear reaction measurements both with stable and with Radioactive Ion Beams (RIB), like the ones planned for the SPES facility, where the physics of isospin can be studied.

  17. GARFIELD + RCo digital upgrade: A modern set-up for mass and charge identification of heavy-ion reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, M.; Morelli, L.; Baiocco, G.; D' Agostino, M.; Geraci, E. [INFN, Sezione di Bologna (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Bologna (Italy); Gramegna, F.; Cinausero, M.; Degerlier, M.; Kravchuk, V.L.; Mastinu, P.F. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Marchi, T. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Padova (Italy); Pasquali, G.; Bardelli, L.; Barlini, S.; Bini, M.; Carboni, S.; Poggi, G. [INFN, Sezione di Firenze, Firenze (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Firenze (Italy); Casini, G.; Piantelli, S. [INFN, Sezione di Firenze, Firenze (Italy); Abbondanno, U. [INFN, Sezione di Trieste, Trieste (Italy); Ordine, A. [INFN, Sezione di Napoli, Napoli (Italy); Moroni, A. [INFN, Sezione di Milano, Milano (Italy)

    2013-10-15

    An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On the one hand fast sampling digital read out has been extended to all detectors, allowing for an important simplification of the signal processing chain together with an enriched extracted information. On the other hand a relevant improvement has been made in the forward part of the set-up (RCo): an increased granularity of the CsI(Tl) crystals and a higher homogeneity in the silicon detector resistivity. The renewed performances of the GARFIELD + RCo array make it suitable for nuclear reaction measurements both with stable and with Radioactive Ion Beams (RIB), like the ones planned for the SPES facility, where the physics of isospin can be studied. (orig.)

  18. ANOMALOUS REACTION MEAN FREE PATHS OF NUCLEAR PROJECTILE FRAGMENTS FROM HEAVY ION COLLISIONS AT 2 AGeV

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, E.M.; Gimpel, R.W.; Heckman, H.H.; Karant, Y.J.; Judek, B.; Ganssauge, E.

    1982-08-01

    We present in detail the description and the analysis of two independent experiments using Bevalac beams of {sup 16}O and {sup 56}Fe. From their results it is concluded that the reaction mean free paths of relativistic projectile fragments, 3 {<=} Z {<=} 26, are shorter for a few centimeters after emission than at large distances where they are compatible with values predicted from experiments on beam nuclei. The probability that this effect is due to a statistical fluctuation is <10{sup -3}. The effect is enhanced in later generations of fragments, the correlation between successive generations suggesting a kind of "memory" for the anomaly. Various systematic and spurious effects as well as conventional explanations are discussed mainly on the basis of direct experimental observations internal to our data, and found not to explain our results. The data can be interpreted by the relatively rare occurrence of anomalous fragments that interact with an unexpectedly large cross section. The statistical methods used in the analysis of the observations are fully described.

  19. Hadron Production in Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Hans Georg; Xu, Nu

    2009-05-19

    Heavy ion collisions are an ideal tool to explore the QCD phase diagram. The goal is to study the equation of state (EOS) and to search for possible in-medium modifications of hadrons. By varying the collision energy a variety of regimes with their specific physics interest can be studied. At energies of a few GeV per nucleon, the regime where experiments were performed first at the Berkeley Bevalac and later at the Schwer-Ionen-Synchrotron (SIS) at GSI in Darmstadt, we study the equation of state of dense nuclear matter and try to identify in-medium modifications of hadrons. Towards higher energies, the regime of the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL), the Super-Proton Synchrotron (SPS) at CERN, and the Relativistic Heavy Ion Collider (RHIC) at BNL, we expect to produce a new state of matter, the Quark-Gluon Plasma (QGP). The physics goal is to identify the QGP and to study its properties. By varying the energy, different forms of matter are produced. At low energies we study dense nuclear matter, similar to the type of matter neutron stars are made of. As the energy is increased the main constituents of the matter will change. Baryon excitations will become more prevalent (resonance matter). Eventually we produce deconfined partonic matter that is thought to be in the core of neutron stars and that existed in the early universe. At low energies a great variety of collective effects is observed and a rather good understanding of the particle production has been achieved, especially that of the most abundantly produced pions and kaons. Many observations can be interpreted as time-ordered emission of various particle species. It is possible to determine, albeit model dependent, the equation of state of nuclear matter. We also have seen indications, that the kaon mass, especially the mass of the K{sup +}, might be modified by the medium created in heavy ion collisions. At AGS energies and above, emphasis shifts towards

  20. Short-time change of heavy-ion microbeams with different mass to charge ratios by scaling method for the JAEA AVF cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Okumura, Susumu; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Satoh, Takahiro; Kamiya, Tomihiro [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fukuda, Mitsuhiro [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yokota, Watalu [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2013-07-01

    The JAEA AVF cyclotron provides heavy-ion beams covering a wide range of linear-energy-transfers for microbeam formation. Two types of microbeam formation systems, one using a micro-aperture and the other focusing lenses, are installed on two vertical beam lines of the cyclotron. The average beam time for an experiment using the former system is usually less than 3 h, that is comparable to the time for cyclotron tuning. The time ratio between experiment and tuning determines the usage efficiency of the facility. In order to reduce the tuning time, a scaling method has been introduced to change the ion species with various mass to charge ratios (M/Q) in a shorter total time. The principle of the scaling method is to keep the magnetic rigidity of ion beams constant. This requirement is easily achieved by adjusting the extraction voltage of an ion source proportionally to the M/Q in the beam injection line. Although some cyclotron adjustments, other than the magnetic field strength at the extraction radius, are required, the tuning can be completed within 20 min, and no change is basically required in the beam transport line downstream of the cyclotron. Using the scaling method, 255 MeV {sup 20}Ne{sup 7+}, 335 MeV {sup 20}Ne{sup 8+}, and 440 MeV {sup 40}Ar{sup 13+} beams were extracted from the cyclotron in sequence after the usual tuning of a 220 MeV {sup 12}C{sup 5+}. As a result, we have succeeded in changing the ion species of the heavy-ion microbeam within a total of 30 min.

  1. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    CERN Document Server

    Gardés, E; Ban-d'Etat, B; Cassimi, A; Durantel, F; Grygiel, C; Madi, T; Monnet, I; Ramillon, J -M; Ropars, F; Lebius, H

    2013-01-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/\\mu m. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteri...

  2. Time of flight assisted ΔE - E method for enhanced isotope separation capabilities in heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Eschbaumer, S.; Bergmaier, A.; Seiler, D.; Dollinger, G.

    2017-09-01

    The time of flight energy (TOF-E) setup installed at the scattering chamber of the Q3D magnetic spectrograph to perform heavy ion elastic recoil detection (ERD) analysis at the 14 MV Munich Tandem Accelerator has recently been upgraded. Now, the energy detector of the TOF-E setup is additionally capable of performing ΔE - E measurements for high energy recoil ions obtained from e.g. a 170 MeV 127 I projectile beam. Time of flight information is simultaneously acquired with the ΔE - E data for each detected ion. The combination of the TOF-E and the ΔE - E data gives the opportunity to set effective filter conditions to select for both, the elemental and the mass of the detected ion. As an example a boron doped carbon layer is analyzed and 10B and 11B is separated with the help of the combination of both methods.

  3. New semi-automatic method for reaction product charge and mass identification in heavy-ion collisions at Fermi energies

    Science.gov (United States)

    Gruyer, D.; Bonnet, E.; Chbihi, A.; Frankland, J. D.; Barlini, S.; Borderie, B.; Bougault, R.; Dueñas, J. A.; Galichet, E.; Kordyasz, A.; Kozik, T.; Le Neindre, N.; Lopez, O.; Pârlog, M.; Pastore, G.; Piantelli, S.; Valdré, S.; Verde, G.; Vient, E.

    2017-03-01

    This article presents a new semi-automatic method for charge and mass identification of charged nuclear fragments using either ΔE - E correlations between measured energy losses in two successive detectors or correlations between charge signal amplitude and rise time in a single silicon detector, derived from digital pulse shape analysis techniques. In both cases different nuclear species (defined by their atomic number Z and mass number A) can be visually identified from such correlations if they are presented as a two-dimensional histogram ('identification matrix'), in which case correlations for different species populate different ridge lines ('identification lines') in the matrix. The proposed algorithm is based on the identification matrix's properties and uses as little information as possible on the global form of the identification lines, making it applicable to a large variety of matrices. Particular attention has been paid to the implementation in a suitable graphical environment, so that only two mouse-clicks are required from the user to calculate all initialization parameters. Example applications to recent data from both INDRA and FAZIA telescopes are presented.

  4. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Directory of Open Access Journals (Sweden)

    T. Dickel

    2015-05-01

    Full Text Available 211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC. They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS. The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  5. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Dickel, T. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Plaß, W.R., E-mail: Wolfgang.R.Plass@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Ayet San Andres, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Ebert, J. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Geissel, H.; Haettner, E. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Hornung, C. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Miskun, I. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Pietri, S.; Purushothaman, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); and others

    2015-05-11

    {sup 211}Po ions in the ground and isomeric states were produced via {sup 238}U projectile fragmentation at 1000 MeV/u. The {sup 211}Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  6. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  7. Multifragmentation and dynamics in heavy ion collisions

    Indian Academy of Sciences (India)

    R Roy

    2001-07-01

    A midrapidity zone formed in heavy-ion collisions has been investigated through special selections of light particles and intermediate mass fragments detected in the reaction 35Cl on 12C at 43 MeV/nucleon and the reactions 58Ni on 12C, 24Mg, and 197Au at 34.5 MeV/nucleon, and of neutron energy spectra measured in the reaction 35Cl on natTa. Properties of the observables have been examined to characterize the neck-like structure formed between the two reaction partners.

  8. High density QCD and entropy production at heavy ion colliders

    CERN Document Server

    Kinder-Geiger, Klaus

    1994-01-01

    The role of entropy production in the context of probing QCD properties at high densities and finite temperatures in ultra-relativistic collisions of heavy nuclei is inspected. It is argued that the entropy generated in these reactions provides a powerful tool to investigate the space-time evolution and the question whether and how a deconfined plasma of quarks and gluons is formed. I will address the questions how entropy is produced, and how it is measurable. The uncertainties in predicting the different contributions to the total entropy and particle multiplicities during the course of heavy ion collisions are also discussed.

  9. CHICO, a heavy ion detector for Gammasphere

    CERN Document Server

    Simon, M W; Wu, C Y; Gray, R W; Teng, R; Long, C

    2000-01-01

    A 4 pi position-sensitive heavy-ion detector system, CHICO, has been developed primarily for use in conjunction with the 4 pi gamma-ray facility, Gammasphere. The CHICO detector comprises an array of 20 Parallel Plate Avalanche Counters (PPACs) covering 12 deg. time-of-flight difference with 500 ps resolution. For binary reactions the kinematics can be reconstructed from the measured information, allowing identification of the target- and projectile-like nuclei with a mass resolution of DELTA m/m approx 5%. The measured masses, recoil velocities, and recoil angles allow correction for Doppler shift and assignment of individual gamma-rays to decay of the correct reaction product. This paper describes the design, operation and perform...

  10. Space and Time pattern of mid-velocity IMF emission in peripheral heavy-ion collisions at Fermi energies

    CERN Document Server

    Piantelli, S; Poggi, G; Bini, M; Casini, G; Maurenzig, P R; Olmi, A; Pasquali, G; Stefanini, A A; Taccetti, N

    2001-01-01

    The emission pattern in the V_perp - V_par plane of Intermediate Mass Fragments with Z=3-7 (IMF) has been studied in the collision 116Sn + 93Nb at 29.5 AMeV as a function of the Total Kinetic Energy Loss of the reaction. This pattern shows that for peripheral reactions most of IMF's are emitted at mid-velocity. Coulomb trajectory calculations demonstrate that these IMF's are produced in the early stages of the reaction and shed light on geometrical details of these emissions, suggesting that the IMF's originate both from the neck and the surface of the interacting nuclei.

  11. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ({sup 4}He.. {sup 238}U). Excellent results with respect to energy resolution, {delta}E/E ranging from 1 to 5 x 10{sup -3} even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of {sup 236}U by one order of magnitude and to determine the up to date smallest isotope ratio of {sup 236}U/{sup 238}U = 6.1 x 10{sup -12} in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also

  12. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  13. Thermal, chemical and spectral equilibration in heavy-ion collisions

    CERN Document Server

    Almási, Gábor András

    2014-01-01

    We have considered the equilibration in a relativistic heavy ion collision using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20-40 fm/c which time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have also shown that the mass spectra of broad resonances immediately follows their in-medium spectral functions.

  14. Results of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  15. Surface spectroscopy using high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, B.L.; Cocke, C.L.; Gray, T.J.; Justiniano, E.; Peercy, P.S.

    1983-04-01

    Surface atoms ionized by high energy heavy ions have been detected by time-of-flight and quadrupole mass spectroscopic techniques. The experimental arrangements are described and potential applications are suggested. Both techniques are demonstrated to produce significant improvements in the detection of atomic hydrogen, with the TOF method producing a nine order of magnitude increase in the sensitivity of atomic hydrogen compared to standard nuclear analysis methods.

  16. Medium energy heavy ion operations at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D' Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  17. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact...... ("ultraperipheral collisions"). Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near 2γ times the position of the giant dipole resonance, that is, near 25γ....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  18. Optical Faraday Cup for Heavy Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2007-06-25

    We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

  19. Heavy ion facilities and heavy ion research at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-10-01

    Lawrence Berkeley Laboratory has been heavily involved since 1956 in the construction and adaptation of particle accelerators for the acceleration of heavy ions. At the present time it has the most extensive group of accelerators with heavy-ion capability in the United States: The SuperHILAC, the 88-Inch Cyclotron, and the Bevatron/Bevalac. An extensive heavy-ion program in nuclear and particle physics, in nuclear chemistry, and in the study of biological effects of heavy-ion irradiations has been supported in the past; and the Laboratory has a strong interest in expanding both its capabilities for heavy-ion acceleration and its participation in heavy-ion science. The first heavy-ion accelerator at LBL was the HILAC, which began operation in 1957. A vigorous program of research with ion beams of masses 4 through 40 began at that time and continued until the machine was shut down for modifications in February 1971. At that time, a grant of $3 M had been received from the AEC for a total reconstruction of the HILAC, to turn it into an upgraded accelerator, the SuperHILAC. This new machine is designed for the acceleration of all ions through uranium to an energy of 8.5 MeV/u. The SuperHILAC is equipped with two injectors. The lower energy injector, a 750-kV Cockcroft-Walton machine, was put into service in late 1972 for acceleration of ions up through {sup 40}Ar. By spring of 1973, operation of the SuperHILAC with this injector exceeded the performance of the original HILAC. The second injector, a 2.5-MV Dynamitron, was originally designed for the Omnitron project and built with $1 M of Omnitron R and D funds. Commissioning of this injector began in 1973 and proceeded to the point where nanoampere beams of krypton were available for a series of research studies in May and June. The first publishable new results with beams heavier than {sup 40}Ar were obtained at that time. Debugging and injector improvement projects will continue in FY 74.

  20. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    OpenAIRE

    Kurosaki, T; Kawata, S.; Noguchi, K.; Koseki, S; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.; Barnard, J. J.; Logan, B. G.

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and s...

  1. Helicity separation in Heavy-Ion Collisions

    CERN Document Server

    Baznat, Mircea; Sorin, Alexander; Teryaev, Oleg

    2013-01-01

    We study the P-odd effects related to the vorticity of the medium formed in noncentral heavy ion collisions. Using the kinetic Quark-Gluon Strings Model we perform the numerical simulations of the vorticity and hydrodynamical helicity for the various atomic numbers, energies and centralities. We observed the vortical structures typically occupying the relatively small fraction of the fireball volume. In the course of numerical simulations the noticeable hydrodanamical helicity was observed manifesting the specific mirror behaviour with respect to the reaction plane. The effect is maximal at the NICA and FAIR energy range.

  2. Effect of entrance channel parameters on the fusion of two heavy ions: Excitation functions of reaction products in 16O+66Zn and 37Cl + 45Sc reactions

    Indian Academy of Sciences (India)

    Suparne Sodaye; B S Tomar; A Goswami

    2006-06-01

    Excitation functions of reaction products formed in 16O+66Zn and 37Cl + 45Sc systems, leading to the same compound nucleus, 82Sr, were measured using recoilcatcher technique and off-line -ray spectrometry. The contribution of non-compound processes like transfer and incomplete fusion (ICF) reactions to the cross-sections of different evaporation residues were delineated by comparing the experimental data with the predictions of Monte Carlo simulation code PACE2. The results show that non-compound processes become a significant fraction of the total reaction cross-section in 16O+66Zn systems in the beam energy range studied, while 37Cl + 45Sc gives mainly compound nucleus products. The mass asymmetry dependence of the fusion and non-compound cross-sections have been analysed in terms of the static fusion model and sum rule model.

  3. Real-time pattern recognition for the electron detection with a RICH detector in relativistic heavy ion collisions

    CERN Document Server

    Lehnert, J

    2001-01-01

    detector simulations as well as from test experiments of the real detector and thereby from the simulated data a ring-recognition efficiency above 90% at less than 0. 5 misidentified electrons/event for an optimized detector determined. In the present thesis a fast real-time trigger system for the identification of dileptons in a given invariant-mass interval is described as well as especially the trigger component for the recognition of electron and positron signatures on the segmented detector area of a ring-imaging Cherenkov detector presented. This comprehends the complete development of the hardware as well a fitted algorithm for the ring recognition. A component of this system are the trigger electronics for the processing of data of a hadron-blind ring- imaging Cherenkov detector. The electronics consist of two VME plug-in cards per detector segment, which reconstruct from the coordinate informations of the detector read-out within in the meam 40 mu s the complete hit pattern, perform on the base of th...

  4. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    Sonia Kabana

    2012-10-01

    We review selected highlights from the experiments at the Relativistic Heavy Ion Collider (RHIC) exploring the QCD phase diagram. A wealth of new results appeared recently from RHIC due to major recent upgrades, like for example the $\\Upsilon$ suppression in central nucleus-nucleus collisions which has been discovered recently in both RHIC and LHC. Furthermore, we discuss RHIC results from the beam energy scan (BES) program aiming to search for a possible critical point and to map out the QCD phase diagram.

  5. Recent progress in heavy ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1977-03-01

    A summary is given of the progress during the last several years in the technology of sources of high charge state positive heavy ions and negative heavy ions. Subjects covered include recent results in ECR and EBIS source development and comparison of various source types for high charge state heavy ions.

  6. Semiholography for heavy ion collisions

    Science.gov (United States)

    Mukhopadhyay, Ayan; Preis, Florian

    2017-03-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  7. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2016-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  8. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S

    2014-01-01

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  9. Heavy Ion Physics in CMS

    CERN Document Server

    Baur, G; Chatrchyan, Serguei; Contardo, Didier; Damgov, Jordan; De Min, Alberto; Denegri, Daniel; Drapier, Olivier; Geist, Walter; Genchev, Vladimir; Haroutunian, Roger; Hayrapetyan, M G; Hencken, K; Jenkovszky, L L; Kartvelishvili, Vakhtang; Kharlov, Yuri; Kodolova, Olga; Kotlinski, Danek; Kruglov, Nikolai A; Kva, R

    2000-01-01

    This note summarizes the CMS potential for Heavy Ions Collisions studies. The main physics topic is the study of Y to muon pair decays in view of Y family supression studies, with a detailed discussion of muon reconstruction efficiencies and purities in conditions of central Pb-Pb collisions. We also discuss energy flow and impact parameter measurements, the observability of continuum muon pairs and of Z to mu + mu decays, and of jets and hard direct photons as a means to study jet quenching. We also discuss pA interactions as well as gamma-gamma physics. The instrumental specificities of CMS for heavy ion running are discussed, including trigger and data acquisition aspects.

  10. Glenn T. Seaborg and heavy ion nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W. (Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry Lawrence Berkeley Lab., CA (United States))

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  11. Glenn T. Seaborg and heavy ion nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  12. Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou

    Science.gov (United States)

    Zhang, Hong

    With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL) within four beam time blocks of 6-11 days, collaborating with the General Hospital of Lanzhou Command and the Tumor Hospital of Gansu Province. Patients and Methods: There were 51 patients (31 males and 20 females) with superficially-placed tumors (squamous cell carcinoma of the skin, basal cell carcinoma of the skin, malignant skin melanoma, sarcoma, lymphoma, breast cancer, metastatic lymph nodes of carcinomas and other skin lesions). The tumors were less than 2.1 cm deep to the skin surface. All patients had histological confirmation of their tumors. Karnofsky Performance Scale (KPS) of all patients was more than 70. The majority of patients were with failures or recurrences of conventional therapies. Median age at the time of radiotherapy (RT) was 55.5 years (range 5-85 years). Patients were immobilized with a vacuum cushion or a head mask and irradiated by carbon ion beams with energy 80-100 MeV/u at spread-out Bragg peak field generated from HIRFL, with two and three-dimensional conformal irradiation methods. Target volume was defined by physical palpation [ultrasonography and Computerized tomography (CT), for some cases]. The clinical target volume (CTV) was defined as the gross total volume GTV with a 0.5-1.0cm margin axially. Field placement for radiation treatment planning was done based on the surface markings. RBE of 2.5-3 within the target volume, and 40-75 GyE with a weekly fractionation of 7 × 3-15 GyE/fraction were used in the trial. Patients had follow-up examinations performed 1 month after treatment, in 1 or 2 months for the first 6 months, and 3

  13. Central collisions of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  14. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  15. Progress Toward Heavy Ion IFE

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R; Logan, B G; Waldron, W L; Sabbi, G L; Callahan-Miller, D A; Peterson, P F; Goodin, D T

    2002-01-17

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed.

  16. Non abelian hydrodynamics and heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Calzetta, E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  17. Charmonium physics with heavy ions: experimental results

    CERN Document Server

    Scomparin, E

    2016-01-01

    Thirty years ago, the suppression of charmonium production in heavy-ion collisions was first proposed as an unambiguous signature for the formation of a Quark-Gluon Plasma. Since then, experiments at fixed-target accelerators (SPS) and hadronic colliders (RHIC, LHC) have investigated this observable and discovered a wide range of effects, that have been related to the original proposal but at the same time have also prompted a strong development in the underlying theory concepts. In this contribution, I will review the main achievements of this field, with emphasis on recent results obtained by LHC experiments.

  18. Non abelian hydrodynamics and heavy ion collisions

    CERN Document Server

    Calzetta, Esteban

    2013-01-01

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  19. Vorticity in heavy-ion collisions

    Science.gov (United States)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  20. A Set of Ionization Chamber Telescope Used in Dissipative Heavy Ion Reaction Measurement%一套用于重离子耗散反应测量的电离室望远镜

    Institute of Scientific and Technical Information of China (English)

    李松林; 王琦; 董玉川; 徐华根; 陈若富; 段利敏; 吴和宇; 徐瑚珊; 马越; 韩建龙

    2004-01-01

    重离子耗散反应需要鉴别产物的电荷数Z,为此,研制了一套ΔE-E望远镜.ΔE由两个串接在一起的气体电离室ΔE1和ΔE2组成,位置灵敏硅半导体测量粒子的剩余能量E.被探测粒子的轨迹与电离室的电场方向平行.该望远镜具有很低的能量探测阈,较小的外尺寸和强的抗电磁干扰能力.重离子耗散反应19F+27Al产物的激发函数实验测量表明,该望远镜的电荷分辨Z/ΔZ约为30.%In order to identify the charge number Z of the projectile-like fragments emitted from the dissipative heavy ion reactions,a set of ΔE-E telescope has been constructed,which consists of two ionization chambers for ΔE1 and ΔE2 in series followed by a position sensitive semiconductor silicon detector to deposit residual energy E. The trajectory of the incident particles is parallel to the direction of the electric field in the ionization chamber. The detector system has a lower energy detection threshold,compact configuration and capability against the disturbance from the electromagnetic wave. The charge resolution of Z/ΔZ≈30 of the telescope has been achieved in an experimental measurement of excitation functions of dissipative heavy ion reaction.

  1. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  2. A simple method for energy calibration of heavy-ion beams

    NARCIS (Netherlands)

    Evers, E.J.; Vries, J.W.; Engelbertink, G.A.P.; Leun, C. van der

    1987-01-01

    A method is described for the calibration of analyzing-magnet systems of heavy-ion accelerators. It makes use of resonances in inverse (p, αγ) reactions, i.e. with heavy-ion beams on hydrogen targets. Instead of a gas target we use the very thin hydrogen-containing surface layer on a gold foil, whic

  3. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  4. The ANSTO high energy heavy ion microprobe

    Science.gov (United States)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  5. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  6. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  7. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  8. Heavy ion physics at the LHC

    CERN Document Server

    Schükraft, Jürgen

    2002-01-01

    The field of ultra-relativistic heavy ion physics, which started some 15 years ago at the Brookhaven AGS and the CERN SPS with fixed target experiments, is entering today a new era with the recent start-up of the Relativistic Heavy Ion Collider RHIC and preparations well under way for a new large heavy ion experiment at the Large Hadron Collider (LHC). At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  9. Local brain heavy ion irradiation induced Immunosuppression

    Science.gov (United States)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  10. Probing the nature of particle-core couplings in {sup 49}Ca with {gamma} spectroscopy and heavy-ion transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, D. [Dipartimento di Fisica, University of Milano, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Leoni, S., E-mail: silvia.leoni@mi.infn.i [Dipartimento di Fisica, University of Milano, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Mengoni, D. [Dipartimento di Fisica, University of Padova, Padova (Italy); University of the West of Scotland, Paisley (United Kingdom); Benzoni, G.; Blasi, N. [INFN, Sezione di Milano, Milano (Italy); Bocchi, G. [Dipartimento di Fisica, University of Milano, Milano (Italy); Bortignon, P.F.; Bracco, A.; Camera, F.; Colo, G.; Corsi, A.; Crespi, F.C.L. [Dipartimento di Fisica, University of Milano, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Million, B. [INFN, Sezione di Milano, Milano (Italy); Nicolini, R. [Dipartimento di Fisica, University of Milano, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Wieland, O. [INFN, Sezione di Milano, Milano (Italy); Valiente-Dobon, J.J.; Corradi, L.; Angelis, G. de; Della Vedova, F.; Fioretto, E. [INFN, Laboratori Nazionali di Legnaro, Padova (Italy)

    2011-03-14

    Neutron rich nuclei around {sup 48}Ca have been measured with the CLARA-PRISMA setup, making use of {sup 48}Ca on {sup 64}Ni binary reactions, at 5.9 MeV/A. Angular distributions of {gamma} rays give evidence, in several transfer channels, for a large spin alignment ({approx}70%) perpendicular to the reaction plane, making it possible to firmly establish spin and parities of the excited states. In the case of {sup 49}Ca, states arising from different types of particle-core couplings are, for the first time, unambiguously identified on basis of angular distribution, polarization and lifetime measurements. Shell model and particle-vibration coupling calculations are used to pin down the nature of the states. Evidence is found for the presence, in the same excitation energy region, of two types of coupled states, i.e. single particle coupled to either {sup 48}Ca or {sup 50}Ca simple configurations, and particle-vibration coupled states based on the 3{sup -} phonon of {sup 48}Ca.

  11. Complexified boost invariance and holographic heavy ion collisions

    CERN Document Server

    Gubser, Steven S

    2015-01-01

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.

  12. Quark vs Gluon jets in Heavy Ion Collisions

    CERN Document Server

    Drauksas, Simonas

    2017-01-01

    The project concerned quark and gluon jets which are often used as probes of Quantum Chromodynamics(QCD) matter created in nuclear collisions at collider energies. The goal is to look for differences between quark and gluon jets, study their substructure, look for distinguishing features in unquenched (pp collisions) and quenched (heavy ion collisions) jets by using multi-variate analysis which was carried out with the help of ROOT's \\href{https://root.cern.ch/tmva}{TMVA} tool. Mapping out the modification of jets due to medium interactions could give valuable input to constraining the time evolution of the Quark Gluon Plasma created in heavy ion collisions.

  13. QCD in heavy ion collisions

    CERN Document Server

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  14. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  15. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Itzhak Tserruya

    2003-04-01

    The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  16. Probing QED Vacuum with Heavy Ions

    CERN Document Server

    Rafelski, Johann; Müller, Berndt; Reinhardt, Joachim; Greiner, Walter

    2016-01-01

    We recall how nearly half a century ago the proposal was made to explore the structure of the quantum vacuum using slow heavy-ion collisions. Pursuing this topic we review the foundational concept of spontaneous vacuum decay accompanied by observable positron emission in heavy-ion collisions and describe the related theoretical developments in strong fields QED.

  17. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  18. Azimuthal Correlation of Collective Motion in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    HUO Lei; ZHANG Wei-Ning; CHEN Xiang-Jun; TANG Gui-Xin; ZHANG Jing-Bo

    2001-01-01

    The out-of-plane squeeze-out effect in relativistic heavy ion collisions is used to estimate the reaction plane by performing a modified transverse momentum analysis. A technique for investigating the azimuthal correlation between the out-of-plane squeeze-out and directed in-plane flow is described. A clear signature of the azimuthal correlation is evidenced in the 600 A MeV Au + Au reaction from the quantum molecular dynamic model calculations.

  19. Dilepton Production in Heavy-Ion Collisions

    CERN Document Server

    Rapp, R

    2013-01-01

    The properties of electromagnetic radiation from hot fireballs as created in ultra-relativistic heavy-ion collisions are reviewed. We first outline how the medium effects in the electromagnetic spectral function, which governs thermal production rates, relate to the (partial) restoration of chiral symmetry. In particular, we show how chiral and QCD sum rules, together with constraints from lattice QCD, can render these relations quantitative. Turning to dilepton data, we elaborate on updates in the space-time evolution and quark-gluon plasma emission rates from lattice-QCD calculations. With a now available excitation function in dilepton spectra from the RHIC beam-energy scan connecting down to SPS energies, we argue that a consistent interpretation of dilepton data emerges. Combining well-constrained space-time evolutions with state-of-the-art emission rates identifies most of the radiation to emanate from around the pseudo-critical temperature, and thus confirms resonance melting as the prevalent mechanism...

  20. Holography, Hydrodynamization and Heavy-Ion Collisions

    CERN Document Server

    Heller, Michal P

    2016-01-01

    In the course of the past several years holography has emerged as an ab initio tool in exploring strongly-time-dependent phenomena in gauge theories. These lecture notes overview recent developments in this area driven by phenomenological questions concerning applicability of hydrodynamics under extreme conditions occurring in ultrarelativistic heavy-ion collisions at RHIC and LHC. The topics include equilibration time scales, holographic collisions and hydrodynamization from the point of view of the asymptotic character of the hydrodynamic gradient expansion. The emphasis is put on concepts rather than calculational techniques and particular attention is devoted to present these developments in the context of the most recent advances and some of the open problems.

  1. Preliminary study for the detection of neutrons in heavy-ion collisions with charged particle detectors

    Directory of Open Access Journals (Sweden)

    Auditore L.

    2015-01-01

    Full Text Available At Laboratori Nazionali del Sud (LNS the CHIMERA 4π multidetector has been designed and setup to detect charged particles emitted in heavy ion collisions at intermediate energies. Properties and performances of CHIMERA have been widely demonstrated by published results obtained in the performed experiments. Moreover, in recent years, a new charged particle detector (ChPD for correlation studies (FARCOS has been designed, and recently a first prototype has been coupled to CHIMERA, in order to test performances in view of correlation measurements in coincidence with 4π detectors. Simultaneous neutrons and charged particles detection in heavy ion collisions represents an important experimental progress for future experiments to be performed with both stable and exotic nuclei. In order to investigate about this possibility, simple Monte Carlo simulations have been performed. Preliminary simulations have been carried out by means of MCNPX transport code to evaluate the perturbation effects, including cross-talk and time response, induced in CHIMERA and/or FARCOS Si-CsI(Tl telescopes on (typical 20MeV neutron signals coming froma typical reaction in heavy ion collisions at the Fermi energy. Moreover, first data analysis results of the INKIISSY experiment indicates sizable probability to detect neutrons by properly shadowing CHIMERA Si-CsI(Tl telescopes. Analysis is still in progress.

  2. Continuous thermochromatographic separation of carrier-free radioisotopes of platinum elements in air flow from products of nuclear reactions in beam of heavy-ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Domanov, V.P.; Zvara, I.

    1984-01-01

    The thermochromatographic behaviour of volatile oxygen-containing compounds of platinum group metals in on-line regime in an accelerator beam has been studied to evaluate possibilities of chemical separation of the Z=108-110 elements. Volatile compounds of radioplatinoids were prepared while decelerating the recoil atoms - nuclear reaction products - in a flow of dry (partial water vapour pressure below 10/sup -4/ Pa) or humid air (saturated with H/sub 2/O vapours at 0 deg C) and they were extracted on the walls of a quartz thermochromatographic column. Under certain experimental conditions the maximum of /sup 173/OsO/sub 4/ precipitation zone is located at -88 +- 10 deg C, and that for sup(183, 184)IrO/sub 3/ - at 80 +- 10 deg C. It is shown that the fast response of the method for Os is not worse than 1 s. A high volatility of sup(99, 100)Rh has been observed for the first time, being evidently related to the RhO/sub 3/ formation. Ir and /sup 187/Pt in the humid air flow were precipitated at 20-10 deg C. Possible composition of compounds formed is being discussed. Possibility of using, in principle, oxygen-containing compounds for chemical identification of Z=108-110 elements is pointed out.

  3. A detection system for energetic light heavy ions

    NARCIS (Netherlands)

    Engelen, C.P.M. van; Jelmersma, R.; Brink, A. van den; Kamermans, R.

    1984-01-01

    A light heavy ion detection system which consists of a gas-filled ionization chamber (IC) connected to a scattering chamber via a time-of-flight (TOF) system has been constructed. The entrance window of the IC has an area of 14 × 40 cm2, the active depth is 115 cm. Filled with CF4 at a pressure of 3

  4. Slowing down of 2-11 MeV 12C, 16O, 28Si and 63Cu heavy ions through Si3N4 thin foil by using Time-of-Flight spectrometry

    Science.gov (United States)

    Guesmia, A.; Msimanga, M.; Pineda-Vargas, C. A.; Ammi, H.; Dib, A.; Ster, M.

    2016-03-01

    The stopping force and the energy-loss straggling of 63Cu, 28Si, 16O and 12C partially stripped heavy ions crossing silicon nitride foil has been determined over a continuous range of energies 2-11 MeV, by using a method based on the Heavy Ion-Elastic Recoil Detection Analysis (HI-ERDA) technique using a Time of Flight (ToF) spectrometer. The obtained energy loss straggling values corrected for non-statistical straggling and the thickness variation using the Besenbacher's method have been analyzed and compared with the corresponding computed values. For computed electronic straggling we have used alternatively the widely used formulations such as, the universal Bohr straggling deduced from the Bohr stopping model, and the Lindhard-Scharff formula including the Bunching effect given by Hvelplund-Firsov formula according to the Besenbacher approach. The aim of such comparison is to check the reliability and accuracy of the existing energy loss straggling formulations, in the light of the present experimental results. The experimental results of energy loss straggling of all ions are found to be greater than those predicted by the Bohr stopping model or Lindhard-Scharff prediction model. The introduction of the bunching effect improves the comparison and gives an estimation of other effects such as charge exchange.

  5. Experimental research of heavy ion and proton induced single event effects for a Bi-CMOS technology DC/DC converter

    Science.gov (United States)

    Anlin, He; Gang, Guo; Shuting, Shi; Dongjun, Shen; Jiancheng, Liu; Li, Cai; Hui, Fan

    2015-11-01

    This paper tested and analyzed heavy ion and proton induced single event effects (SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients (SET) testing has been carried out by using the Beijing HI-13 tandem accelerator at China Institute of Atomic Energy. Proton test has been carried out by using the Canadian TRIUMF proton accelerator. Both SET cross section versus linear energy transfer (LET) and proton energy has been measured. The main study conclusions are: (1) the DC/DC is both sensitive to heavy ion and proton radiations although at a pretty large feature size (600 nm), and threshold LET is about 0.06 MeV·mg/cm2 (2) heavy ion SET saturation cross section is about 5 magnitudes order larger than proton SET saturation cross section, which is consistent with the theory calculation result deduced by the RPP model and the proton nuclear reaction model; (3) on-orbit soft error rate (SER) prediction showed, on GEO orbit, proton induced SERs calculated by the heavy ion derived model are 4-5 times larger than those calculated by proton test data.

  6. Benchmarking of Heavy Ion Transport Codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [ORNL; Ronningen, Reginald M. [Michigan State University, East Lansing; Heilbronn, Lawrence [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  7. Time scale in quasifission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Paul, P.; Nestler, J. [and others

    1995-08-01

    The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.

  8. A lower cost development path for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, W.J. [Lawrence Livermore National Lab., CA (United States); Meier, W.R. [Shafer (W.J.) Associates, Inc., Wakefield, MA (United States)

    1993-05-19

    If two features of the inertial fusion process are exploited successfully, they can lead to significantly lower costs for demonstrating the feasibility of commercial electric power production from this source of energy. First, fusion capsule ignition and burn physics is independent of reaction chamber size and hydrodynamically-equivalent capsules can be designed to perform at small yield, exactly as they do at large yield. This means that an integrated test of all power plant components and feasibility tests of various reaction chamber concepts can be done at much smaller sizes (about 1--2 m first wall radius) and much lower powers (tens of MWs) than magnetic fusion development facilities such as ITER. Second, the driver, which is the most expensive component of currently conceived IFE development facilities, can be used to support more than one experiment target chamber/reactor (simultaneously and/or sequentially). These two factors lead to lower development facility costs, modular facilities, and the planning flexibility to spread costs over time or do several things in parallel and thus shorten the total time needed for development of Inertial Fusion Energy (IFE). In this paper the authors describe the general feature of a heavy ion fusion development plan that takes advantage of upgradable accelerators and the ability to test chambers and reactor systems at small scale in order to reduce development time and costs.

  9. Chimera microscopic approach to heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lukasik, J.; Majka, Z. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    1993-12-01

    A microscopic model based on a molecular dynamics concept is presented. The model simulates some quantum effects and thus enables studies of large fermionic systems. It was devised to investigate the dynamics of heavy ion collision at intermediate energies. The model was applied to study an early phase of the {sup 84}Kr+{sup 159}Tb reaction at 45 MeV/nucleon. (author). 30 refs, 9 figs.

  10. Proceedings of the heavy ion fusion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R C [ed.

    1978-01-01

    These proceedings contain reviews of current laboratory programs dealing with inertial fusion driven by beams of heavy ions, as well as several individually abstracted invited talks, workshop reports and contributed papers.

  11. Historical aspects of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1995-03-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections.

  12. Validation of Heavy Ion Transport Capabilities in PHITS

    Science.gov (United States)

    Ronningen, Reginald M.

    2007-03-01

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  13. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  14. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  15. Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

    Energy Technology Data Exchange (ETDEWEB)

    Patin, Joshua Barnes [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The study of the reactions between heavy ions and 208Pb, 209Bi, 238U, and 248Cm Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the 238U(18O,xn)256-xFm, 238U(22Ne,xn)260-xNo, and 248Cm(15N,xn)263-xLr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The 48Pb(238Ca,xn)256-xNo, 208Pb(50Ti,xn)258-xRf, 208Pb(51V,xn)259-xDb, 50Bi(238Ti,xn)259-xDb, and 209Bi(51V,xn)260-xSg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics.

  16. On the Origin of the Elliptic Flow and its Dependence on the Equation of State in Heavy Ion Reactions at Intermediate Energies

    CERN Document Server

    Fevre, A Le; Hartnack, C; Aichelin, J

    2016-01-01

    Recently it has been discovered that the rapidity dependence of the elliptic flow, $v_2$, of charged particles shows the strongest sensitivity to the Nuclear Equation of State (EoS) which has been observed within a microscopic model. This dependence on the nuclear EoS is predicted by Quantum Molecular Dynamics (QMD) calculations \\cite{Fevre:2015fza} which show as well that the absorption or rescattering of in-plane emitted particles by the spectator matter is not the main reason for the EoS dependence of the elliptic flow at mid-rapidity.The reason are different density gradients (and therefore different forces) in the direction of the impact parameter (x-direction) as compared to the direction perpendicular to the reaction plan (y-direction), due to the presence of the spectator matter. The stronger density gradient in y-direction accelerates the particles more and creates therefore a negative $v_2$.

  17. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  18. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  19. Density and expansion effects on pion spectra in relativistic heavy-ion collisions

    CERN Document Server

    Ayala, A P; Montaño-Zetina, L M; Ayala, Alejandro; Barreiro, Julio; Montano, Luis M.

    1999-01-01

    We compute the pion inclusive momentum distribution in heavy-ion collisions at AGS energies, assuming thermal equilibrium and accounting for density and expansion effects at the time of decoupling. We compare to data on mid rapidity charged pions produced in central Au + Au collisions and find a very good agreement. The shape of the distribution at low m_t-m is explained in part as an effect arising from the high mean pion density achieved in these reactions. The difference between the positive and negative pion distributions in the same region is attributed in part to the different average yields of each kind of charged pions.

  20. Parity-odd effects in heavy-ion collisions in the HSD model

    CERN Document Server

    Teryaev, O

    2014-01-01

    Helicity separation effect in non-central heavy ion collisions is investigated using the Hadron-String Dynamics (HSD) model. Computer simulations are done to calculate velocity and hydrodynamic helicity on a mesh in a small volume around the center of the reaction. The time dependence of hydrodynamic helicity is observed for various impact parameters and different calculation methods. Comparison with a similar earlier work is carried out. A new quantity is used to ananlyze particles in the final state. It is used to probe for p-odd effects in the final state.

  1. Statistical model calculations of pre-scission neutron multiplicity for the heavy ion induced fusion-fission reactions with actinide target 232Th

    Directory of Open Access Journals (Sweden)

    Thakur Meenu

    2015-01-01

    Full Text Available The reaction mechanism of 19F + 232Th and 28Si + 232Th systems populating the near-super-heavy compound nuclei 251Es and 260Rf respectively are investigated using neutron multiplicity as a probe. The prescission neutron multiplicities of these compound nuclei are calculated at different excitation energies using a statistical model code. These calculations are performed using the Bohr-Wheeler transition state fission width as well as the dissipative dynamical fission width based on the Kramers’ prescription. For 19F + 232Th system, the measured yield of pre-scission is compared with the statistical model calculations for the decay of a compound nucleus in the excitation energy range of 54-90 MeV. The comparison between the measured and the calculated values indicates that the Bohr-Wheeler fission width underestimates the pre-scission neutron yield and a large amount of dissipation strength is required to reproduce the experimental pre-scission neutron multiplicities. The excitation energy dependence of the fitted values of the dissipation coefficient is also discussed. In addition, exploratory statistical model calculations of pre-scission neutron multiplicity for the 28Si + 232Th system are presented in the above range of excitation energy.

  2. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  3. The identification of rare charged kaons in heavy-ion collisions at relativistic energies by time-of-flight with the HADES spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, 3004-516 Coimbra (Portugal)], E-mail: alessio@lipc.fis.uc.pt; Blanco, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, 3004-516 Coimbra (Portugal); Fonte, P. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, 3004-516 Coimbra (Portugal); Instituto Superior de Engenharia de Coimbra, Rua Pedro Nunes, 3030-199 Coimbra (Portugal)

    2009-05-01

    Detailed performance simulations of the HADES RPC time-of-flight wall have been undertaken. The most delicate situation is the identification of K{sup -} mesons close to the mid-rapidity region. While momentum resolution does not appear to be an issue, the small non-Gaussian tails in the time response are a clear problem. It will be argued that the use of redundant information supplied by time coincidence between the two layers (possible in the HADES design) can drastically improve the situation. The uniformity of acceptance for the two layer coincidence will be discussed. A possible distortion to the reconstructed kaon flow due to the wall occupancy, which is not isotropic with respect to the reaction plane because of the flow pattern of the much more abundant protons, pions and deuterons, has also been studied.

  4. Continuous-flow thermochromatographic separation of unsupported radioisotopes of platinum elements in a stream of air from nuclear reaction products in an accelerator heavy-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Domanov, V.P.; Zvara, I.

    1985-07-01

    Upon deceleration of recoil atoms in a stream of dry air (partial pressure of H/sub 2/O vapors below 10 Pa) and moist air (saturated H/sub 2/O vapors at 0 degrees C), the authors obtain volatile compounds of radioplatinides and isolate them on the walls of a quartz thermochromatographic column. They show that the speed of response for the technique for Os is not worse than 1 sec. They observe for the first time high volatility of Rh, apparently connected with formation of RhO. They note the possibility of using oxygen-containing compounds for chemical identification of elements with Z = 108-110.

  5. Model of wet chemical etching of swift heavy ions tracks

    Science.gov (United States)

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h‑1) is in reasonable agreement with that detected in the experiments (24 µm · h‑1).

  6. The FIDIAS project: Development of a Micromegas TPC for the detection of low-energy heavy ions

    Science.gov (United States)

    Iguaz, Francisco José; Panebianco, Stefano; Axiotis, Michael; Druillole, Frédéric; Fanourakis, George; Geralis, Theodoros; Giomataris, Ioannis; Harissopulos, Sotirios; Lagoyannis, Anastasios; Papaevangelou, Thomas

    2014-01-01

    Time Projection Chambers are widely used since many years for tracking and identification of charged particles in high energy physics. We present here a new R&D project, called FIDIAS, meant to investigate the feasibility of a Micromegas TPC for low energy heavy ions detection. In this framework, a TPC prototype based on Micromegas bulk technique has been extensively tested with spontaneous fission source. A deep analysis of the experimental results has been realized leading to a full characterization of the prototype in terms of gain, energy resolution and track reconstruction as a function of three working gas: helium, neon and argon. The encouraging results have also been compared to simulations, showing the Micromegas TPC is a very well suited detector for the detection of heavy ions in nuclear reactions at low energy.

  7. The FIDIAS project: Development of a Micromegas TPC for the detection of low-energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Iguaz, Francisco José [CEA, Centre de Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, 91191 Gif-sur-Yvette (France); Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, 50009 Zaragoza (Spain); Panebianco, Stefano, E-mail: stefano.panebianco@cea.fr [CEA, Centre de Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, 91191 Gif-sur-Yvette (France); Axiotis, Michael [Institute of Nuclear Physics, NCRS Demokritos, 15310 Aghia Paraskevi, Athens (Greece); Druillole, Frédéric [CEA, Centre de Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, 91191 Gif-sur-Yvette (France); Fanourakis, George; Geralis, Theodoros [Institute of Nuclear Physics, NCRS Demokritos, 15310 Aghia Paraskevi, Athens (Greece); Giomataris, Ioannis [CEA, Centre de Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, 91191 Gif-sur-Yvette (France); Harissopulos, Sotirios; Lagoyannis, Anastasios [Institute of Nuclear Physics, NCRS Demokritos, 15310 Aghia Paraskevi, Athens (Greece); Papaevangelou, Thomas [CEA, Centre de Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, 91191 Gif-sur-Yvette (France)

    2014-01-21

    Time Projection Chambers are widely used since many years for tracking and identification of charged particles in high energy physics. We present here a new R and D project, called FIDIAS, meant to investigate the feasibility of a Micromegas TPC for low energy heavy ions detection. In this framework, a TPC prototype based on Micromegas bulk technique has been extensively tested with spontaneous fission source. A deep analysis of the experimental results has been realized leading to a full characterization of the prototype in terms of gain, energy resolution and track reconstruction as a function of three working gas: helium, neon and argon. The encouraging results have also been compared to simulations, showing the Micromegas TPC is a very well suited detector for the detection of heavy ions in nuclear reactions at low energy.

  8. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  9. Inertially confined fusion using heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Bangerter, R.O. (Lawrence Berkeley Lab., CA (United States)); Bock, R. (Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)); Hogan, W.J.; Lindl, J.D. (Lawrence Livermore National Lab., CA (United States))

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  10. Inertially confined fusion using heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States); Bock, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hogan, W.J.; Lindl, J.D. [Lawrence Livermore National Lab., CA (United States)

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  11. Recent enhancements in MCNPX: Heavy-ion transport and the LAQGSM physics model

    Energy Technology Data Exchange (ETDEWEB)

    James, Michael R. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States)]. E-mail: mrjames@lanl.gov; McKinney, G.W. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States); Hendricks, John S. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States); Moyers, Michael [Loma Linda University Medical Center, 11234 Anderson St., PO Box 2000, Loma Linda, CA 92354 (United States)

    2006-06-23

    Calculations involving the transport of energetic heavy ions have recently received more attention from projects such as the Rare Isotope Accelerator (RIA) and from areas such as space radiation shielding. In these areas, the transport and reactions must be calculated for heavy ions such as {sup 56}Fe or {sup 238}U traveling at energies of {>=}1 GeV/nucleon. To serve these needs, recent upgrades to the particle transport code MCNPX have expanded the previously useful ion transport capability from a small suite of light ions (deuterons, tritons, {sup 3}He, and alpha particles) to a nearly complete list of those heavy and light ions that span the Table of Isotopes. To enable nuclear spallation from energetic collisions of these ions and targets, the LAQGSM physics model has been integrated into the MCNPX code. This physics model supplements the existing physics models already contained in the code, only one of which, ISABEL, could handle heavy-ion collisions (and then only over a limited range of masses and energies). The implementation of these new features now greatly expands the usefulness of MCNPX in energetic ion transport. The heavy-ion transport feature also allows the transport of residuals from all nuclear reactions that occur in the physics model regime, even when initiated by non-heavy ions. The implementation and use of heavy ions in MCNPX is explained. Also, computations with MCNPX are compared with benchmark experiments to show agreement with results.

  12. Heavy Ion Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2002-01-01

    The abundance enhancements of heavy ions Ne, Mg, Si and Fe in impulsive solar energetic particle (SEP) eventsare explained by a plasma acceleration mechanism. In consideration of the fact that the coronal plasma is mainlycomposed of hydrogen and helium ions, we think that theion-ion hybrid wave and quasi-perpendicular wave can.be excited by the energetic electron beam in impulsive solar flares. These waves may resonantly be absorbed byheavy ions when the frequencies of these waves are close to the second-harmonic gyrofrequencies of these heavyions. This requires the coronal plasma temperature to be located in the range ofT ~ (5 - 9) × 106 K in impulsivesolar flares and makes the average ionic charge state of these heavy ions in impulsive SEP events higher than theaverage ionic charge state of these heavy ions in gradual SEP events. These pre-heated and enhanced heavy ionsin impulsive SEP events.

  13. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  14. Heavy ion acceleration using femtosecond laser pulses

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  15. A new prompt heavy-ion-induced fission mode

    Indian Academy of Sciences (India)

    W Udo Schröder

    2015-08-01

    Fission instabilities induced by mechanical and thermal stresses on intermediate nuclear systems in heavy-ion reactions are poorly understood but should reveal independent evidence for the nuclear equation of state (EoS), notably the tensile strength of finite nuclei. Experimental evidence is presented in support of a new mode of prompt fission of the composite nucleus formed in central 78Kr+40Ca collisions at only a few MeV per nucleon above the interaction barrier. The new process recalls the ‘L-window for fusion’ phenomenon, which was predicted by the early reaction theory and reappears in modern DFT model calculations.

  16. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    CERN Document Server

    Kurosaki, T; Noguchi, K; Koseki, S; Barada, D; Ma, Y Y; Ogoyski, A I; Barnard, J J; Logan, B G

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs illumination nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100MHz-1GHz. Three-dimensional HIBs illumination computations presented here show that the few percent wobbling HIBs illumination nonuniformity oscillates successfully with the same wobbling HIBs frequency.

  17. Selected Experimental Results from Heavy-Ion Collisions at LHC

    Directory of Open Access Journals (Sweden)

    Ranbir Singh

    2013-01-01

    Full Text Available We review a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energy sNN=2.76 TeV for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC at lower energy (sNN=200 GeV suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.

  18. Jets in Heavy Ion Collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  19. European heavy ion ICF driver development

    CERN Document Server

    Plass, Günther

    1996-01-01

    Approaches in Europe to heavy ion induced Inertial Confinement Fusion are oriented toward the linac-plus- storage ring technique. Despite the very limited support of this work, technical pro gress was achieved in some important areas. For the immediate future, a substantial intensity upgrade of the GSI accelerator facilities at Darmstadt is being implemented, leading to specific energy depositions of the order of 100 kJ/g and plasma temperatures of 10 to 20 eV. For the longer term, a conceptual design study of a heavy ion based Ignition Facility is being initiated.

  20. Heavy ion induced mutation in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  1. CERN achievements in relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Bruno Giuseppe Eugenio

    2015-01-01

    Full Text Available Twenty years after a Letter of Intent by the GSI and LBL groups for the “Study of particle production and target fragmentation in central 20Ne on Pb reactions, at 12 GeV per nucleon energy of the CERN PS external beam" [1], based on the results found by the NA45/CERES, NA49, NA50, and WA97/NA57 experiments at the SPS, CERN announced compelling evidence for the formation of a new state of matter in heavyion collisions at CERN-SPS energies [2]. Some of the experiments were indeed the 2nd or 3rd generation successors of the apparatuses originally proposed by the GSI-LBL collaboration. Actually, the CERN ion program initiated at the SPS with the acceleration of oxygen ions at 60 and 200 GeV/nucleon only in 1986, and continued with sulphur ions at 200 GeV/nucleon up to 1993. The rest is history: lead-ion beams at 160 GeV/nucleon became available at the SPS in 1994; the LHC accelerated and collided lead beams at a center of mass energy per nucleon pair √sNN = 2.76 TeV in 2010. Heavy ion physics is definitely in the future program of CERN: ALICE will operate a major upgrade of its detectors during the second long shutdown of the LHC, in 2018-2019, and the associated physics program will span the third and fourth LHC runs, till late 2020s.

  2. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  3. Heavy ions: Results from the Large Hadron Collider

    Indian Academy of Sciences (India)

    Tapan K Nayak

    2012-10-01

    On November 8, 2010 the Large Hadron Collider (LHC) at CERN collided the first stable beams of heavy ions (Pb on Pb) at the centre-of-mass energy of 2.76 TeV/nucleon. The LHC worked exceedingly well during its one month of operation with heavy ions, delivering about 10 −1 of data, with peak luminosity reaching to $L_{O} = 2 × 10^{25}$ cm-2 s-1 towards the end of the run. Three experiments, ALICE, ATLAS and CMS, recorded their first heavy-ion data, which were analysed in a record time. The results of the multiplicity, flow, fluctuations and Bose–Einstein correlations indicate that the fireball formed in nuclear collisions at the LHC is hotter, lives longer, and expands to a larger size at freeze-out as compared to lower energies. We give an overview of these as well as new results on quarkonia and heavy flavour suppression, and jet energy loss.

  4. Results from the first heavy ion run at the LHC

    CERN Document Server

    Schukraft, J

    2012-01-01

    Early November 2010, the LHC collided for the first time heavy ions, Pb on Pb, at a centre-of-mass energy of 2.76 TeV/nucleon. This date marked both the end of almost 20 years of preparing for nuclear collisions at the LHC, as well as the start of a new era in ultra-relativistic heavy ion physics at energies exceeding previous machines by more than an order of magnitude. This contribution summarizes some of the early results from all three experiments participating in the LHC heavy ion program (ALICE, ATLAS, and CMS), which show that the high density matter created at the LHC, while much hotter and larger, still behaves like the very strongly interacting, almost perfect liquid discovered at RHIC. Some surprising and even puzzling results are seen in particle ratios, jet-quenching, and Quarkonia suppression observables. The overall experimental conditions at the LHC, together with its set of powerful and state-of-the-art detectors, should allow for precision measurements of quark-gluon-plasma parameters like v...

  5. Mutagenic effects of heavy ion radiation in plants

    Science.gov (United States)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  6. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  7. Heavy ion isotope resolution with polymer detectors

    OpenAIRE

    Vidal-Quadras Roca, Alejo; Ortega Girón, Manuel; Fernández Moreno, Francisco; Font Garcia, Josep Lluís; Casas Ametller, Montserrat; Baixeras Divar, Carmen; Gonzalo Cestero, Miguel

    1984-01-01

    The heavy ion mass resolution power of polymer detectors Lexan and cellulose nitrate is systematically studied both for accelerator and for cosmic ions. It is concluded that a satisfactory isotopic discrimination, better than 1 u, is hardly attainable with these detectors. Peer Reviewed

  8. The quarkonium saga in heavy ion collisions

    CERN Document Server

    Tserruya, Itzhak

    2013-01-01

    J/psi suppression was proposed more than 25 years ago as an unambiguous signature for the formation of the Quark Gluon Plasma in relativistic heavy ion collisions. After intensive efforts, both experimental and theoretical, the quarkonium saga remains exciting, producing surprising results and not fully understood. This talk focuses on recent results on quarkonium production at RHIC and the LHC.

  9. "Super" Cocktails for Heavy Ion Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael B; Johnson, Michael B.; McMahan, Margaret A.; Galloway, Michelle; Leitner, Daniela; Morel, James R.; Gimpel, ThomasL.; Ninemire, Brien F.; Siero, Reba; Thatcher, Raymond K.

    2007-07-21

    The 4.5 MeV/nucleon heavy ion cocktail at the 88-Inch Cyclotron has been expanded by incorporating beams from solid material to fill in the linear energy transfer curve. This supercocktail is available by special request and is useful when only normal incidence between the beam and the device under test is possible or desirable.

  10. Relativistic Hydrodynamics for Heavy-Ion Collisions

    Science.gov (United States)

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  11. Heavy-Ion Physics in a Nutshell

    Directory of Open Access Journals (Sweden)

    Hirano Tetsufumi

    2013-05-01

    Full Text Available The physics of quark gluon plasma (QGP and heavy ion collisions at the collider energies is briefly reviewed. We first discuss about the discovery of a nearly perfect fluidity of the QGP. We also highlights recent topics on responses of the QGP to initial deformation and propagation of a jet.

  12. Quarkonium production in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Arnaldi Roberta

    2014-03-01

    Full Text Available The production of quarkonium states plays a crucial role among the probes to investigate the formation of the plasma of quarks and gluons (QGP in heavy-ion collisions. A review of the charmonium and bottomonium production, mainly focussing on the latest results from the LHC experiments, is presented.

  13. RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    2004-03-28

    This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.

  14. A Search for Quarks Produced in Heavy-Ion Interactions

    CERN Multimedia

    2002-01-01

    We propose to search for free fractional charges produced in 225~GeV/A heavy-ion collisions at the SPS. A tank of mercury placed in the NA38 beam stop will serve both as a production target and as an absorber to stop reaction products. Mercury from the tank will subsequently be distilled.\\\\ \\\\ This process will decrease the amount of mercury that has to be processed by a factor of about 10|5. The concentrate will be searched for quarks using the proven SFSU automated Millikan apparatus.\\\\ \\\\ This experiment will be sensitive to about one quark produced per 2x10|8 beam particles.

  15. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  16. Some properties of the central heavy ion collisions

    CERN Document Server

    Wazir, Z; Khan, E U; Haseeb, Mahnaz Q; Ajaz, M; Khan, K H

    2009-01-01

    Some experimental results are discussed in connection with the properties of the central heavy ion collisions. These experiments indicate the regime changes and saturation at some values of the centrality. This phenomenon is considered to be a signal of the percolation cluster formation in heavy ion collisions at high energies. Keywords: heavy ion collisions, theoretical models, centrality, phase transition.

  17. Exotic hadrons from heavy ion collisions

    Science.gov (United States)

    Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi

    2017-07-01

    High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally

  18. Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1989-12-01

    The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with {pi}{sup 0} {yields} {gamma} {gamma} as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The Cronin Effect'' and the Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs.

  19. Working group report: Heavy ion physics

    Indian Academy of Sciences (India)

    Jan-E Alam; K Assamagan; S Chattopadhyay; R Gavai; Sourendu Gupta; B Layek; S Mukherjee; R Ray; Pradip K Roy; A Srivastava

    2004-12-01

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was held at the Indian Institute of Technology, Mumbai, India during January 5–16, 2004. One of the four working groups, group III was dedicated to QCD and heavy ion physics (HIC). The present manuscript gives a summary of the activities of group III during the workshop (see also [1] for completeness). The activities of group III were focused to understand the collective behaviours of the system formed after the collisions of two nuclei at ultra-relativistic energies from the interactions of the elementary degrees of freedom, i.e. quarks and gluons, governed by non-abelian gauge theory, i.e. QCD. This was initiated by two plenary talks on experimental overview of heavy ion collisions and lattice QCD and several working group talks and discussions.

  20. Recent results on relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Inst. de Fisica

    2013-07-01

    Full text: The study of relativistic heavy ion collisions is a very important tool in order to understand the strong interaction described by QCD. The formation of the Quark-Gluon Plasma and the study of its properties is a very challenging quest. The Large Hadron Collider (LHC) from CERN (European Organization for Nuclear Research) generates ultra-relativistic Pb + Pb collisions at the TeV scale inaugurating a new era for such studies. Three experiments, ATLAS, CMS and ALICE are able to measure the products of such collisions. In special, the ALICE experiment was designed specifically for the study of heavy ion collisions. In this presentation, I'll discuss the latest results that shed light in the QGP understanding. (author)

  1. Diffraction radiation from relativistic heavy ions

    Science.gov (United States)

    Potylitsyna, N. A.

    2001-01-01

    In recent years, the relativistic heavy ion beams at new accelerator facilities are allowed to obtain some new interesting results (see, for instance, Datz et al., Phys. Rev. Lett. 79 (18) (1997) 3355; Ladyrin et al., Nucl. Instr. and Meth. A 404 (1998) 129). The problem of non-destructive heavy ion beam diagnostics at these accelerators is highly pressing. The authors of the papers (Rule et al., Proceedings of the Seventh Beam Instrumentation Workshop, Argonne IL, AIP Conference Proceedings, Vol. 390, NY, 1997; Castellano, Nucl. Instr. and Meth. A 394 (1997) 275) suggested to use diffraction radiation (DR) appearing when a charge moves close to a conducting surface (Bolotovskii and Voskresenskii, Sov. Phys. Usp. 9 (1966) 73) for non-destructive electron beam diagnostics. The DR characteristics are defined by both Lorentz-factor and the particle charge, and do not depend on its mass. The estimation of feasibility of using DR for relativistic ion beam diagnostics is undoubtedly interesting.

  2. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  3. Studying the interplay of strong and electromagnetic forces in heavy-ion collisions with NICA

    Science.gov (United States)

    Rybicki, A.; Szczurek, A.; Kłusek-Gawenda, M.; Sputowska, I.

    2016-08-01

    In the following we stress the advantages of the NICA research programme in the context of studying the spectator-induced electromagnetic phenomena present in heavy-ion collisions. We point at the specific interest of using these phenomena as a new, independent source of information on the space-time evolution of the reaction and of the non-perturbative process of particle production. We propose an extended series of measurements of well-defined observables to be performed in different types of nuclear reactions and in the whole range of collision energies available to NICA. We expect these measurements to bring very valuable new insight into the mechanism of non-perturbative strong interactions, complementary to the studies made at the SPS at CERN, RHIC at BNL, and the LHC.

  4. Studying the interplay of strong and electromagnetic forces in heavy-ion collisions with NICA

    Energy Technology Data Exchange (ETDEWEB)

    Rybicki, A.; Klusek-Gawenda, M.; Sputowska, I. [Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Szczurek, A. [Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); University of Rzeszow, Rzeszow (Poland)

    2016-08-15

    In the following we stress the advantages of the NICA research programme in the context of studying the spectator-induced electromagnetic phenomena present in heavy-ion collisions. We point at the specific interest of using these phenomena as a new, independent source of information on the space-time evolution of the reaction and of the non-perturbative process of particle production. We propose an extended series of measurements of well-defined observables to be performed in different types of nuclear reactions and in the whole range of collision energies available to NICA. We expect these measurements to bring very valuable new insight into the mechanism of non-perturbative strong interactions, complementary to the studies made at the SPS at CERN, RHIC at BNL, and the LHC. (orig.)

  5. Femtoscopy in Relativistic Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  6. Size Effects in Heavy Ions Fragmentation

    CERN Document Server

    Barrañon, A; Dorso, C O

    2003-01-01

    Rise-Plateau Caloric curves for different Heavy Ion collisions have been obtained, in the range of experimental observations. Limit temperature decreases when the residual size is increased, in agreement with recent theoretical analysis of experimental results reported by other Collaborations. Besides, promptly emitted particles influence on temperature plateau is shown. LATINO binary interaction semiclassical model is used to reproduce the inter-nucleonic forces via Pandharipande Potential and fragments are detected with an Early Cluster Recognition Algorithm.

  7. Design status of heavy ion injector program

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, E.O.; Meyer, E.A.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.; Riepe, K.B.

    1985-01-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10/sup -7/ torr) high voltage (HV) accelerating column.

  8. Heavy ion fusion 2 MV injector

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Eylon, S.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.] [and others

    1995-04-01

    A heavy-ion-fusion driver-scale injector has been constructed and operated at Lawrence Berkeley Laboratory. The injector has produced 2.3 MV and 950 mA of K{sup +}, 15% above original design goals in energy and current. Normalized edge emittance of less than 1 {pi} mm-mr was measured over a broad range of parameters. The head-to-tail energy flatness is less than {+-} 0.2% over the 1 {micro}s pulse.

  9. Heavy Ion Physics with the ATLAS Detector

    CERN Multimedia

    Takai, H

    2003-01-01

    I guess the first thing that comes to people's mind is why is an experiment such as ATLAS interested in heavy ion physics. What is heavy ion physics anyway? The term heavy ion physics refers to the study of collisions between large nuclei such as lead, atomic number 208. But why would someone collide something as large and extensive as lead nuclei? When two nuclei collide there is a unique opportunity to study QCD at extreme energy densities. This said why do we think ATLAS is a good detector to study this particular physics? Among many of the simultaneous collisions that takes place when two nuclei encouter, hard scattering takes place. The unique situation now is that before hadronization partons from hard scattering may feel the surrounding media serving as an ideal probe for the matter formed in these collisions. As a consequence of this, jets may be quenched and their properties, e.g. fragmentation function or cone radius, modified when compared to proton-proton collisions. This is precisely where ATL...

  10. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Science.gov (United States)

    Jiménez, R.; Sánchez-Raya, M.; Gómez-Galán, J. A.; Flores, J. L.; Dueñas, J. A.; Martel, I.

    2012-05-01

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using 12,13C ions produced in heavy ion reactions. The actual latency of the system is about 20 μs when using a clock frequency of 50 MHz.

  11. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, R., E-mail: naharro@uhu.es [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Sanchez-Raya, M.; Gomez-Galan, J.A. [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Flores, J.L. [Departamento Ingenieria Electrica y Termica, Universidad de Huelva, 21071 Huelva (Spain); Duenas, J.A.; Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain)

    2012-05-11

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using {sup 12,13}C ions produced in heavy ion reactions. The actual latency of the system is about 20 {mu}s when using a clock frequency of 50 MHz.

  12. Coupling constant corrections in holographic heavy ion collisions

    CERN Document Server

    Grozdanov, Sašo

    2016-01-01

    We initiate a holographic study of coupling-dependent heavy ion collisions by analysing for the first time the effects of leading-order, inverse coupling constant corrections. In the dual description, this amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We find that at intermediate coupling, nuclei experience less stopping and have more energy deposited near the lightcone. When the decreased coupling results in an 80% larger shear viscosity, the time at which hydrodynamics becomes a good description of the plasma created from high energy collisions increases by 25%. The hydrodynamic phase of the evolution starts with a wider rapidity profile and smaller entropy.

  13. Apoptosis and injuries of heavy ion beam and x-ray radiation on malignant melanoma cell.

    Science.gov (United States)

    Qin, Jin; Li, Sha; Zhang, Chao; Gao, Dong-Wei; Li, Qiang; Zhang, Hong; Jin, Xiao-Dong; Liu, Yang

    2017-05-01

    This study aims to investigate the influence of high linear energy transfer (LET) heavy ion ((12)C(6+)) and low LET X-ray radiation on apoptosis and related proteins of malignant melanoma on tumor-bearing mice under the same physical dosage. C57BL/6 J mice were burdened by tumors and randomized into three groups. These mice received heavy ion ((12)C(6+)) and X-ray radiation under the same physical dosage, respectively; their weight and tumor volumes were measured every three days post-radiation. After 30 days, these mice were sacrificed. Then, median survival time was calculated and tumors on mice were proliferated. In addition, immunohistochemistry was carried out for apoptosis-related proteins to reflect the expression level. After tumor-bearing mice were radiated to heavy ion, median survival time improved and tumor volume significantly decreased in conjunction with the upregulated expression of pro-apoptosis factors, Bax and cytochrome C, and the downregulated expression of apoptosis-profilin (Bcl-2, Survivin) and proliferation-related proteins (proliferating cell nuclear antigen). The results indicated that radiation can promote the apoptosis of malignant melanoma cells and inhibit their proliferation. This case was more suitable for heavy ion ((12)C(6+)). High LET heavy ion ((12)C(6+)) radiation could significantly improve the killing ability for malignant melanoma cells by inducing apoptosis in tumor cells and inhibiting their proliferation. These results demonstrated that heavy ion ((12)C(6+)) presented special advantages in terms of treating malignant melanoma. Impact statement Malignant melanoma is a malignant skin tumor derived from melanin cells, which has a high malignant degree and high fatality rate. In this study, proliferating cell nuclear antigen (PCNA) can induce the apoptosis of malignant melanoma cells and inhibit its proliferation, and its induction effect on apoptosis is significantly higher than low LET X-ray; hence, it is expected to

  14. Beam-energy and system-size dependence of the space-time extent of the pion emission source produced in heavy ion collisions

    CERN Document Server

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Alfred, M; Angerami, A; Aoki, K; Apadula, N; Aphecetche, L; Aramaki, Y; Armendariz, R; Aronson, S H; Asai, J; Asano, H; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Bandara, N S; Bannier, B; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Baumgart, S; Bazilevsky, A; Beaumier, M; Beckman, S; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bing, X; Black, D; Blau, D S; Boissevain, J G; Bok, J S; Borel, H; Boyle, K; Brooks, M L; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Castera, P; Chang, B S; Charvet, J -L; Chen, C -H; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J B; Choi, S; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Churyn, A; Chvala, O; Cianciolo, V; Citron, Z; Cleven, C R; Cole, B A; Comets, M P; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; Daugherity, M S; David, G; Deaton, M B; DeBlasio, K; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Ding, L; Dion, A; Do, J H; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durham, J M; Durum, A; Dutta, D; Dzhordzhadze, V; D'Orazio, L; Edwards, S; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gadrat, S; Gainey, K; Gal, C; Gallus, P; Garg, P; Garishvili, A; Garishvili, I; Ge, H; Giordano, F; Glenn, A; Gong, H; Gong, X; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guo, L; Guragain, H; Gustafsson, H -Å; Hachiya, T; Henni, A Hadj; Haegemann, C; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Han, S Y; Hanks, J; Harada, H; Hartouni, E P; Haruna, K; Hasegawa, S; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Hoshino, T; Huang, J; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Inoue, Y; Iordanova, A; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Ivanishchev, D; Jacak, B V; Javani, M; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Jin, J; Jinnouchi, O; Johnson, B M; Joo, E; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kanou, H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Key, J A; Khachatryan, V; Khanzadeev, A; Kihara, K; Kijima, K M; Kikuchi, J; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E; Kim, E -J; Kim, H -J; Kim, H J; Kim, K -B; Kim, M; Kim, S H; Kim, Y -J; Kim, Y K; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Kiyomichi, A; Klatsky, J; Klay, J; Klein-Boesing, C; Kleinjan, D; Kline, P; Koblesky, T; Kochenda, L; Kochetkov, V; Kofarago, M; Komatsu, Y; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kotov, D; Kozlov, A; Král, A; Kravitz, A; Krizek, F; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, B; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Lee, M K; Lee, S H; Lee, S R; Lee, T; Leitch, M J; Leite, M A L; Leitgab, M; Leitner, E; Lenzi, B; Lewis, B; Li, X; Liebing, P; Lim, S H; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Mašek, L; Masui, H; Masumoto, S; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Mikeš, P; Miki, K; Miller, A J; Miller, T E; Milov, A; Mioduszewski, S; Mishra, D K; Mishra, M; Mitchell, J T; Mitrovski, M; Miyachi, Y; Miyasaka, S; Mizuno, S; Mohanty, A K; Montuenga, P; Moon, H J; Moon, T; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Mukhopadhyay, D; Murakami, T; Murata, J; Mwai, A; Nagae, T; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Nederlof, A; Netrakanti, P K; Newby, J; Nguyen, M; Nihashi, M; Niida, T; Norman, B E; Nouicer, R; Novitzky, N; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Oka, M; Okada, K

    2014-01-01

    Two-pion interferometry measurements are used to extract the Gaussian radii $R_{{\\rm out}}$, $R_{{\\rm side}}$, and $R_{{\\rm long}}$, of the pion emission sources produced in Cu$+$Cu and Au$+$Au collisions at several beam collision energies $\\sqrt{s_{_{NN}}}$ at PHENIX. The extracted radii, which are compared to recent STAR and ALICE data, show characteristic scaling patterns as a function of the initial transverse size $\\bar{R}$ of the collision systems and the transverse mass $m_T$ of the emitted pion pairs, consistent with hydrodynamiclike expansion. Specific combinations of the three-dimensional radii that are sensitive to the medium expansion velocity and lifetime, and the pion emission time duration show nonmonotonic $\\sqrt{s_{_{NN}}}$ dependencies. The nonmonotonic behaviors exhibited by these quantities point to a softening of the equation of state that may coincide with the critical end point in the phase diagram for nuclear matter.

  15. Heavy ion results from CMS

    CERN Document Server

    Milosevic, Jovan

    2016-01-01

    Two- and multi-particle angular correlations in pp, pPb and PbPb collisions at the LHC energies are presented as a function of centrality, charged-particle multiplicity and transverse momentum ($p_{T}$). The data were collected using the CMS detector. The Fourier coefficents in PbPb collisions are measured over an extended $p_{T}$ range up to 100 GeV/c. These $v_{n}$ measurements at high-$p_{T}$ are complementary to the $R_{AA}$ measurements. The elliptic flow of charged and strange particles and the triangular flow of charged particles in pp collisions is measured using the two-particle correlations. A clear mass ordering effect is observed for low-$p_{T}$ $v_{2}$ values. For the first time, in 13 TeV pp collisions, the $v_{2}$ is extracted from four- and six-particle correlations, and is comparable to the $v_{2}$ from two-particle correlations. This supports the collective nature of the long-range correlations in high-multiplicity pp collisions. A Principle Component Analysis (PCA) of two-particle correlati...

  16. Thermalization and isotropization in heavy-ion collisions

    Indian Academy of Sciences (India)

    Michael Strickland

    2015-05-01

    Our current understanding of the processes driving the thermalization and isotropization of the quark gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions (URHICs) is reviewed. Initially, the phenomenological evidence in favour of the creation of a thermal but momentum–space anisotropic QGP in URHICs is discussed. Further, the degree of isotropization using viscous (dissipative) hydrodynamics, weak-coupling approaches to QGP dynamics, and strong-coupling approaches to QGP dynamics are discussed. Finally, recent progress in the area of real-time non-Abelian gauge field simulations and non-Abelian Boltzmann–Vlasov-based hard-loop simulations are reported.

  17. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  18. 2-MV electrostatic quadrupole injector for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Prost, L.; Seidl, P.A.

    2004-11-10

    High current and low emittance are principal requirements for heavy-ion injection into a linac driver for inertial fusion energy. An electrostatic quadrupole (ESQ) injector is capable of providing these high charge density and low emittance beams. We have modified the existing 2-MV Injector to reduce beam emittance and to double the pulse length. We characterize the beam delivered by the modified injector to the High Current Transport Experiment (HCX) and the effects of finite rise time of the extraction voltage pulse in the diode on the beam head. We demonstrate techniques for mitigating aberrations and reducing beam emittance growth in the injector.

  19. Beyond the thermal model in relativistic heavy-ion collisions

    CERN Document Server

    Wolschin, Georg

    2016-01-01

    Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality which are used to infer the fraction of produced particles from a central fireball as compared to the one from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t -> infinity.

  20. Simulation of induced radioactivity for Heavy Ion Medical Machine

    CERN Document Server

    Jun-Kui, Xu; Wu-Yuan, Li; Wang, Mao; Jia-Wen, Xia; Xi-Meng, Chen; Wei-Wei, Yan; Chong, Xu

    2013-01-01

    For radiation protection and environmental impact assessment purpose, the radioactivity induced by carbon ion of Heavy Ion Medical Machine (HIMM) was studied. Radionuclides in accelerator component, cooling water and air at target area which are induced from primary beam and secondary particles are simulated by FLUKA Monte Carlo code. It is found that radioactivity in cooling water and air is not very important at the required beam intensity and energy which is needed for treatment, radionuclides in accelerator component may cause some problem for maintenance work, suitable cooling time is needed after the machine are shut down.

  1. Overview of Particle and Heavy Ion Transport Code System PHITS

    Science.gov (United States)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  2. Search for Nuclei in Heavy Ion Collisions at Ultrarelativistic Energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle ($>$10-15|0) they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm|2 Au target bombarded by an |1|6O or |3|2S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from |1|6O incident on Au have been taken last year. The experiment is presently taking data with |3|2S ions.

  3. Evaluation of excitation energy and spin from light charged particles multiplicities in heavy-ion collisions

    CERN Document Server

    Steckmeyer, J C; Grotowski, K; Pawowski, P; Aiello, S; Anzalone, A; Bini, M; Borderie, B; Bougault, R; Cardella, G; Casini, G; Cavallaro, S; Charvet, J L; Dayras, R; De Filippo, E; Durand, D; Femin, S; Frankland, J D; Galíchet, E; Geraci, M; Giustolisi, F; Guazzoni, P; Iacono-Manno, M; Lanzalone, G; Lanzan, G; Le Neindre, N; Lo Nigro, S; Lo Piano, F; Olmi, A; Pagano, A; Papa, M; Pârlog, M; Pasquali, G; Piantelli, S; Pirrone, S; Politi, G; Porto, F; Rivet, M F; Rizzo, F; Rosato, E; Roy, R; Sambataro, S; Sperduto, M L; Stefanini, A A; Sutera, C; Tamain, B; Vient, E; Volant, C; Wieleczko, J P; Zetta, L

    2005-01-01

    A simple procedure for evaluating the excitation energy and the spin transfer in heavy-ion dissipative collisions is proposed. It is based on a prediction of the GEMINI evaporation code : for a nucleus with a given excitation energy, the average number of emitted protons decreases with increasing spin, whereas the average number of alpha particles increases. Using that procedure for the reaction 107Ag+58Ni at 52 MeV/nucleon, the excitation energy and spin of quasi-projectiles have been evaluated. The results obtained in this way have been compared with the predictions of a model describing the primary dynamic stage of heavy-ion collisions.

  4. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  5. The Mesozoic Era of relativistic heavy ion physics and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.

  6. Charge Transfer and Ionization by Intermediate-Energy Heavy Ions

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L. H. [East Carolina University; McLawhorn, S. L. [East Carolina University; McLawhorn, R. A. [East Carolina University; Evans, N. L. [East Carolina University; Justiniano, E. L. B. [East Carolina University; Shinpaugh, J. L. [East Carolina University; Schultz, David Robert [ORNL; Reinhold, Carlos O [ORNL

    2006-11-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u-1 or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7+, 32 MeV sulphur ions have an equilibrium charge of approx. 11+, and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C+ ions with energies of 100 and 200 keV u-1 are described.

  7. Charge transfer and ionisation by intermediate-energy heavy ions.

    Science.gov (United States)

    Toburen, L H; McLawhorn, S L; McLawhorn, R A; Evans, N L; Justiniano, E L B; Shinpaugh, J L; Schultz, D R; Reinhold, C O

    2006-01-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u(-1) or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7(+), 32 MeV sulphur ions have an equilibrium charge of approximately 11(+), and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C(+) ions with energies of 100 and 200 keV u(-1) are described.

  8. State density formalism of the Iwamoto-Harada model: A suitable tool to treat cluster emission from heavy-ion collisions with account for spin variables

    Directory of Open Access Journals (Sweden)

    Běták Emil

    2017-01-01

    Full Text Available We study the possibility to include the cluster emission into the statistical pre-equilibrium (exciton model suitable also for heavy ion collisions. The direct motivation of this paper is a possibility of producing superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, α-particles.

  9. EXERCISE AND REACTION TIMES

    Directory of Open Access Journals (Sweden)

    Varun

    2015-03-01

    Full Text Available OBJECTIVES: Physical exercise provides multiple benefits to an individual. It is known that exercising regularly can prevent coronary heart disease, hypertension and obesity and improve flexibility. The effect of exercise on visual reaction time needs to be studied, a s the existing data on the benefit of aerobic exercise on psychomotor functions is insufficient. MATERIALS AND METHODS: Online Visual reaction time is measured before and after exercise. Subjects were instructed to run on the spot with a springy step in ex aggerated motion for 50 to 60 counts at 2 counts per second, maintaining a constant rhythm. RESULTS: We observed that reaction time was significantly lower after performance of exercise. Individuals reported improved mental alertness, feel good factor, bet ter mood and increase circulation. CONCLUSION: Improving reaction times in sports can help the athlete to optimize his performance in making decisions and increasing attention span for example getting off the starting blocks sooner or successfully making c ontact with the ball. In addition this study shows that use of physical exercise helps improve cognitive function. Exercise proves to be a cheap non pharmacological alternative to improve cognitive performance.

  10. PREFACE: Heavy-Ion Spectroscopy and QED Effects in Atomic Systems

    Science.gov (United States)

    Lindgren, Ingvar; Martinson, Indrek; Schuch, Reinhold

    1993-01-01

    Experimental studies of heavy and highly charged ions have made remarkable progress in recent years. Today it is possible to produce virtually any ion up to hydrogen-like uranium; to study collisions of those ions with atoms, electrons, and solid surfaces; to excite such an ion and accurately measure the radiation emitted. This progress is largely due to the development of new experimental methods, for instance, the high-energy ion accelerators, laser-produced plasmas, advanced ion sources and ion traps (such as EBIS, EBIT, ECR, etc.), high temperature magnetically confined plasmas and heavy-ion storage rings. The motivations for studies of collisions with highly charged ions and for the understanding of the structure of heavy atomic systems are multi-faceted. Besides of the basic scientific aspects which are mainly the subject of this symposium, much incentive is experienced by applications, e.g., the interpretation of spectra from space (solar corona, solar flares and hot stars), the modelling of stellar atmospheres, the diagnostics of fusion plasma impurities, and the development of X-ray lasers. Since quite some time highly charged ions play a key role for high-precision metrology of atomic structure. These studies have been benchmarks for tests of advanced theories, including many-body theories of interelectronic correlations, relativistic and quantum-electrodynamic (QED) effects, effects due to the finite size of the nucleus and to parity non-conservation (PNC). The interest in QED effects in heavy ions has increased drastically in the last few years. The remarkable experiment on Li-like uranium, recently reported from Berkeley, has stimulated several groups to perform very accurate Lamb-shift calculations on such systems, and reports from three groups were given about such work. The agreement between the calculations as well as with experiment was generally very good, which implies that the problem of evaluating the first-order Lamb shift for any element is

  11. (Anti-)strangeness production in heavy-ion collisions

    CERN Document Server

    Moreau, Pierre; Ko, Che-Ming; Cassing, Wolfgang; Bratkovskaya, Elena

    2015-01-01

    The production and dynamics of strange and antistrange hadrons in heavy-ion reactions from $\\sqrt{s_{NN}} \\approx$ 3 GeV to 200 GeV is analyzed within the Parton-Hadron-String-Dynamics (PHSD) transport model. The PHSD results for strange baryon and antibaryon production are roughly consistent with the experimental data starting from upper SPS energies. Nevertheless, hadronic final state flavor-exchange reactions are important for the actual abundances, in particular at large rapidities where hadronic dynamics, parton fragmentation and string decay dominate. A striking disagreement between the PHSD results and the available data persists, however, for bombarding energies below $\\sqrt{s_{NN}} \\approx$ 8 GeV where the strangeness production is significantly underestimated as in earlier HSD studies. This finding implies that the strangeness enhancement seen experimentally at FAIR/NICA energies cannot be attributed to a deconfinement phase transition or crossover but probably involves the approximate restoration o...

  12. Collective phenomena in relativistic heavy-ion collisions

    Science.gov (United States)

    Wang, Shan

    1998-12-01

    Collective motion in the final state of relativistic nucleus-nucleus collisions, produced by the release of compressional energy built-up during the stage of maximum density, is widely accepted as a good observable to test models and a useful tool to probe the nuclear equation of state. This dissertation presents an experimental study of nuclear collisions at the Bevalac accelerator at Lawrence Berkeley National Laboratory, with special emphasis on collective phenomena. The main detector used is a time projection chamber with more than two million pixels. Using high statistics measurements of all charged final- state fragments in Au + Au reactions at 0.25, 0.4, 0.6, 0.8, 1.0, and 1.15A GeV, we present a new method to unify the description of light fragment spectra and the three main categories of collective motion: sideward flow, squeeze-out, and transverse expansion. In this alternative representation, the speed of collective expansion is shown to be slowest in the plane of the reaction, and is modulated sinusoidally according to fragment azimuth relative to this plane. This simple yet complete characterization of squeeze-out leads to its interpretation as an in-plane retardation of collective expansion. We test momentum space power law behavior by studying the momentum-space densities of fragments up to 4He. We conclude that the simple momentum-space power law consistently describes light participant fragment production at p⊥/A/ge0.2 GeV/c over a remarkably wide range of transverse momentum, azimuth relative to the reaction plane, rapidity, multiplicity and beam energy in intermediate-energy heavy-ion collisions and in particular, the increase in sideward flow with fragment mass is well described by a momentum- space power law under these conditions. This behavior is consistent with composite fragment formation through a statistical coalescence mechanism in momentum space. Our conclusion supports the use of models without composite formation to interpret flow

  13. HYPERNUCLEAR SPECTROSCOPY WITH HEAVY ION BEAMS : THE HypHI PROJECT AT GSI AND FAIR

    NARCIS (Netherlands)

    Saito, T. R.; Bianchin, S.; Borodina, O.; Hoffmann, J.; Koch, K.; Kurz, N.; Maas, F.; Minami, S.; Nakajima, D.; Ott, W.; Oezel, B.; Rappold, C.; Schmidt, C.; Trautmann, W.; Traeger, M.; Voltz, S.; Achenbach, P.; Pochodzalla, J.; Sekimoto, M.; Takahashi, T.; Kavatsyuk, M.; Hayashi, Y.; Hiraiwa, T.; Moritsu, M.; Nagae, T.; Okamura, A.; Sako, M.; Sugimura, H.; Tanida, K.; Fukuda, T.; Mizoi, Y.; Ajimura, S.; Mochizuki, T.; Sakaguchi, A.; Koike, T.; Tamura, H.

    2010-01-01

    The HypHI experiment for precise hypernuclear spectroscopy with induced reactions of stable heavy ion beams and rare isotope beams is currently under preparation at GSI. The main goal of the HypHI project is to study neutron and proton rich hypernuclei and to measure directly hypernuclear magnetic m

  14. Fission fragment angular distribution in heavy-ion-induced fission with anomalous behavior

    Science.gov (United States)

    Soheyli, S.; Feizi, B.

    2014-08-01

    Fission fragment angular distribution in heavy-ion-induced fission reactions is of particular importance. Transition state theory is provided to determine the angular distribution of fission fragments which includes standard saddle-point statistical and standard scission-point statistical models. The standard saddle-point statistical model was not able to reproduce the experimental fission fragment angular anisotropies for several heavy-ion-induced fission systems. In contrast to the standard saddle-point model, the standard scission-point statistical model was fairly successful in the prediction of angular anisotropy in heavy-ion-induced fission reaction systems with an anomalous behavior in angular anisotropy of fission fragments, but this model is not widely used as the standard saddle-point statistical model. In this research, a generalized model is introduced for the prediction of fission fragments angular anisotropy in the heavy-ion-induced fission reaction systems having an anomalous behavior. For this purpose, we study the N14,O16,F19+Th232;O16,F19+U238;Mg24,Si28,S32+Pb208;S32+Au197; and O16+Cm248 reaction systems. Finally, it is shown that the presented model is much more successful than previous models.

  15. Progress in understanding heavy-ion stopping

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul's data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  16. Pair creation in heavy ion channeling

    Directory of Open Access Journals (Sweden)

    N.A. Belov

    2016-04-01

    Full Text Available Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron–positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  17. Spectator induced electromagnetic effect on directed flow in heavy ion collisions

    CERN Document Server

    Rybicki, Andrzej

    2013-01-01

    We estimate the electromagnetic effect of the spectator charge on azimuthal anisotropies observed in heavy ion collisions. For peripheral Pb+Pb reactions at the top energy of the CERN Super Proton Synchrotron, $\\sqrt{s_{NN}}=17.3$ GeV, we predict this effect to bring very large distortions to the observed directed flow, $v_1$, of positive and negative pions emitted close to beam rapidity. The overall magnitude of this effect is comparable to values of $v_1$ reported by the WA98 experiment. We argue that also at lower rapidities, the spectator induced electromagnetic effect may result in the splitting of values of $v_1$ observed for positive and negative pions. Such a splitting is visible in the data reported by the STAR Collaboration from the RHIC Beam Energy Scan. Both effects are sensitive to the space-time scenario assumed for pion emission. Therefore, they bring new information on the collision dynamics.

  18. Towards the heavy-ion program at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Sako, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Chujo, T. [University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Gunji, T. [Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198 (Japan); Harada, H. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kaneta, M. [Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kinsho, M. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Liu, Y. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nagamiya, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nishio, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Ozawa, K. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Saha, P.K. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Sakaguchi, T. [Broohaven National Laboratory, Upton, NY 11973-5000 (United States); Sato, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Tamura, J. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan)

    2014-11-15

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10{sup 10}–10{sup 11} Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  19. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C. [and others

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed.

  20. RELATIVISTIC HEAVY ION PHYSICS : RESULTS FROM AGS TO RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    STEINBERG,P.

    2002-06-20

    High-energy collisions of heavy ions provide a means to study QCD in a regime of high parton density, and may provide insight into its phme structure. Results from the four experiments at RHIC (BRAHMS, PHENIX, PHOBOS and STAR) are presented, and placed in context with the lower energy data from the AGS and SPS accelerators. The focus is on the insights these measurements provide into the time history of the collision process. Taken together, the data point to the creation of a deconfined state of matter that forms quickly, expands rapidly and freezes out suddenly. With the new RHIC data, systematic data now exists for heavy ion collisions as a function of {radical}s over several orders of magnitude and as a function of impact parameter. These data test the interplay between hard and soft processes in a large-volume system where nucleons are struck multiple times. The data is consistent with creating a deconfined state (jet quenching) that forms quickly (saturation models), expands rapidly (radial and elliptic flow) and freezes out suddenly (single freezeout and blast wave fits). There are also intriguing connections with particle production in elementary systems, which point to the role of the energy available for particle production on the features of the final state. Many in this field are optimistic that the careful understanding of this experimental data may lead t o the theoretical breakthroughs that will connect these complex systems to the fundamental lattice predict ions.

  1. Antiradiation Vaccine: Technology Development- Radiation Tolerance,Prophylaxis, Prevention And Treatment Of Clinical Presentation After Heavy Ion Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Research in the field of biological effects of heavy charged particles is necessary for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions.[Durante M. 2004] In future crew of long-term manned missions could operate in exremely high hadronic radiation areas of space and will not survive without effective radiation protection. An Antiradiation Vaccine (AV) must be an important part of a countermeasures regimen for efficient radiation protection purposes of austronauts-cosmonauts-taukonauts: immune-prophylaxis and immune-therapy of acute radiation toxic syndromes developed after heavy ion irradiation. New technology developed (AV) for the purposes of radiological protection and improvement of radiation tolerance and it is quite important to create protective immune active status which prevent toxic reactions inside a human body irradiated by high energy hadrons.[Maliev V. et al. 2006, Popov D. et al.2008]. High energy hadrons produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities [Sato T. et al. 2003] Antiradiation Vaccine with specific immune-prophylaxis by an anti-radiation vaccine should be an important part of medical management for long term space missions. Methods and experiments: 1. Antiradiation vaccine preparation standard, mixture of toxoid form of Radiation Toxins [SRD-group] which include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins of Radiation Determinant Group isolated from the central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastro-intestinal, Hematopoietic forms of ARS. Devices for radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions

  2. Observation of DNA damage of human hepatoma cells irradiated by heavy ions using comet assay

    Institute of Scientific and Technical Information of China (English)

    Li-Mei Qiu; Wen-Jian Li; Xin-Yue Pang; Qing-Xiang Gao; Yan Feng; Li-Bin Zhou; Gao-Hua Zhang

    2003-01-01

    AIM: Now many countries have developed cancer therapy with heavy ions, especially in GSI (Gesellschaft fur Schwerionenforschung mbH, Darmstadt, Germany),remarkable results have obtained, but due to the complexity of particle track structure, the basic theory still needs further researching. In this paper, the genotoxic effects of heavy ions irradiation on SMMC-7721 cells were measured using the single cell gel electrophoresis (comet assay). The information about the DNA damage made by other radiations such as X-ray, γ-ray, UV and fast neutron irradiation is very plentiful, while little work have been done on the heavy ions so far. Hereby we tried to detect the reaction of liver cancer cells to heavy ion using comet assay, meanwhile to establish a database for clinic therapy of cancer with the heavy ions.METHODS: The human hepatoma cells were chosen as the test cell line irradiated by 80Mev/u 20Ne10+ on HIRFL (China), the radiation-doses were 0, 0.5, 1, 2, 4 and 8 Gy,and then comet assay was used immediately to detect the DNA damages, 100-150 cells per dose-sample (30-50 cells were randomly observed at constant depth of the gel). The tail length and the quantity of the cells with the tail were put down. EXCEL was used for statistical analysis.RESULTS: We obtained clear images by comet assay and found that SMMC-7721 cells were all damaged apparently from the dose 0.5Gy to 8Gy (t-test: P<0.001, vs control).The tail length and tail moment increased as the doses increased, and the number of cells with tails increased with increasing doses. When doses were higher than 2Gy, nearly 100 % cells were damaged. Furthermore, both tail length and tail moment, showed linear equation.CONCLUSION: From the clear comet assay images, our experiment proves comet assay can be used to measure DNA damages by heavy ions. Meanwhile DNA damages have a positive correlation with the dose changes of heavy ions and SMMC-7721 cells have a great radiosensitivity to 20Ne10+.Different reactions

  3. Resonance propagation in heavy-ion scattering

    Indian Academy of Sciences (India)

    Bijoy Kundu; B K Jain

    2001-06-01

    The formalism developed earlier by us for the propagation of a resonance in the nuclear medium in proton–nucleus collisions has been modified to the case of vector boson production in heavy-ion collisions. The formalism includes coherently the contribution to the observed di-lepton production from the decay of a vector boson inside as well as outside the nuclear medium. The medium modification of the boson is incorporated through an energy dependent optical potential. The calculated invariant mass distributions are presented for the -meson production using optical potentials estimated within the VDM and the resonance model. The shift in the invariant mass distribution is found to be small. To achieve the mass shift (of about 200 MeV towards lower mass) as indicated in the high energy heavy-ion collision experiments, an unusually strong optical potential of about -120 MeV is required. We also observe that, for not so heavy nuclear systems and/or for fast moving resonances, the shape, magnitude and peak position of the invariant mass distribution is substantially different if the contributions from the resonance decay inside and outside are summedup at the amplitude level (coherently) or at the cross section level (incoherently).

  4. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  5. Chamber transport for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Craig L., E-mail: clolson66@msn.com

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  6. Overview of the Heavy Ion Fusion Program

    CERN Document Server

    Celata, C M

    2000-01-01

    The world Heavy Ion Fusion (HIF) Program for inertial fusion energy is looking toward the development and commissioning of several new experiments. Recent and planned upgrades of the facilities at GSI, in Russia, and in Japan greatly enhance the ability to study energy deposition in hot dense matter. Worldwide target design developments have focused on non-ignition targets for nearterm experiments and designs which, while lowering the energy required for ignition, tighten accelerator requirements. The U.S program is transitioning between scaled beam dynamics experiments and high current experiments with power-plant-driver-scale beams. Current effort is aimed at preparation for the next-step large facility, the Integrated Research Experiment (IRE)-- an induction linac accelerating multiple beams to a few hundred MeV, then focusing to deliver tens of kilojoules to a target. The goal is to study heavy ion energy deposition, and to test all of the components and physics needed for an engineering test of a power p...

  7. Future of the ATLAS heavy ion program

    CERN Document Server

    ATLAS-Collaboration, The; The ATLAS collaboration

    2012-01-01

    The primary goal of the heavy ion program at the LHC is to study the properties of deconfined strongly interacting matter, often referred to as ``quark-gluon plasma'' (QGP), created in ultra-relativistic nuclear collisions. That matter is found to be strongly coupled with a viscosity to entropy ratio near a conjectured quantum lower bound. ATLAS foresees a rich program of studies using jets, Upsilons, measurements of global event properties and measurements in proton-nucleus collisions that will measure fundamental transport properties of the QGP, probe the nature of the interactions between constituents of the QGP, elucidate the origin of the strong coupling, and provide insight on the initial state of nuclear collisions. The heavy ion program through the third long shutdown should provide one inverse nb of 5.5~TeV Pb+Pb data. That data will provide more than an order of magnitude increase in statistics over currently available data for high-pT observables such as gamma-jet and Z-jet pairs. However, potentia...

  8. Induction accelerator development for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  9. Induction accelerator development for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  10. Recent progress in molecule modification with heavy ion beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research into heavy ion beam biology started in the 1960s, and so far it has become an important interdisciplinary study. Heavy ion beam is more suitable for molecule modification than other sorts of radiation, for it has many superiorities such as the energy transfer effect and the mass deposition effect. Molecule modification with heavy ion beam irradiation can be applied to developing new medicines and their precursors, genetic engineering, protein engi neering, outer space radiobiology, etc. Retrospect and prospect of the research and development of molecule modifica tion with heavy ion beam irradiation are given.

  11. Conceptual design of heavy ion beam compression using a wedge

    Directory of Open Access Journals (Sweden)

    Jonathan C. Wong

    2015-10-01

    Full Text Available Heavy ion beams are a useful tool for conducting high energy density physics (HEDP experiments. Target heating can be enhanced by beam compression, because a shorter pulse diminishes hydrodynamic expansion during irradiation. A conceptual design is introduced to compress ∼100  MeV/u to ∼GeV/u heavy ion beams using a wedge. By deflecting the beam with a time-varying field and placing a tailor-made wedge amid its path downstream, each transverse slice passes through matter of different thickness. The resulting energy loss creates a head-to-tail velocity gradient, and the wedge shape can be designed by using stopping power models to give maximum compression at the target. The compression ratio at the target was found to vary linearly with (head-to-tail centroid offset/spot radius at the wedge. The latter should be approximately 10 to attain tenfold compression. The decline in beam quality due to projectile ionization, energy straggling, fragmentation, and scattering is shown to be acceptable for well-chosen wedge materials. A test experiment is proposed to verify the compression scheme and to study the beam-wedge interaction and its associated beam dynamics, which will facilitate further efforts towards a HEDP facility.

  12. Statistical hadronization of charm in heavy ion collisions

    CERN Document Server

    Kostyuk, A P

    2003-01-01

    Production of open and hidden charm hadrons in heavy ion collisions is considered within the statistical coalescence model (SCM). Charmed quark-antiquark pairs are assumed to be created at the initial stage of the reaction in hard parton collisions. The number of these pairs is conserved during the evolution of the system. At hadronization, the charmed (anti)quarks are distributed among open and hidden charm hadrons in accordance with laws of statistical mechanics. Important special cases: a system with a small number of charmed quark-antiquark pairs and charm hadronization in a subsystem of the whole system are considered. The model calculations are compared with the preliminary PHENIX data for J/psi production at RHIC. Possible influence of the in-nuclear modification of the parton distribution functions (shadowing) on the SCM results is studied.

  13. Modeling near-barrier collisions of heavy ions based on a Langevin-type approach

    Science.gov (United States)

    Karpov, A. V.; Saiko, V. V.

    2017-08-01

    Background: Multinucleon transfer in low-energy nucleus-nucleus collisions is proposed as a method of production of yet-unknown neutron-rich nuclei hardly reachable by other methods. Purpose: Modeling of dynamics of nuclear reactions induced by heavy ions in their full complexity of competing reaction channels remains to be a challenging task. The work is aimed at development of such a model and its application to the analysis of multinucleon transfer in deep inelastic collisions of heavy ions leading, in particular, to formation of neutron-rich isotopes in the vicinity of the N =126 shell closure. Method: Multidimensional dynamical model of nucleus-nucleus collisions based on the Langevin equations has been proposed. It is combined with a statistical model for simulation of de-excitation of primary reaction fragments. The model provides a continuous description of the system evolution starting from the well-separated target and projectile in the entrance channel of the reaction up to the formation of final reaction products. Results: A rather complete set of experimental data available for reactions 136Xe+198Pt,208Pb,209Bi was analyzed within the developed model. The model parameters have been determined. The calculated energy, mass, charge, and angular distributions of reaction products, their various correlations as well as cross sections for production of specific isotopes agree well with the data. On this basis, optimal experimental conditions for synthesizing the neutron-rich nuclei in the vicinity of the N =126 shell were formulated and the corresponding cross sections were predicted. Conclusions: The production yields of neutron-rich nuclei with N =126 weakly depend on the incident energy. At the same time, the corresponding angular distributions are strongly energy dependent. They are peaked at grazing angles for larger energies and extend up to the forward angles at low near-barrier collision energies. The corresponding cross sections exceed 100 nb for

  14. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  15. Jet Structure in Heavy Ion Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2015-01-01

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter $\\hat q $. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  16. Electromagnetic probes in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    van Hees H.

    2015-01-01

    Full Text Available Due to their penetrating nature, electromagnetic probes, i.e., lepton-antilepton pairs (dileptons and photons are unique tools to gain insight into the nature of the hot and dense medium of strongly-interacting particles created in relativistic heavy-ion collisions, including hints to the nature of the restoration of chiral symmetry of QCD. Of particular interest are the spectral properties of the electromagnetic current-correlation function of these particles within the dense and/or hot medium. The related theoretical investigations of the in-medium properties of the involved particles in both the partonic and hadronic part of the QCD phase diagram underline the importance of a proper understanding of the properties of various hadron resonances in the medium.

  17. Mutagenic effects of heavy ions in bacteria

    Science.gov (United States)

    Horneck, G.; Krasavin, E. A.; Kozubek, S.

    1994-10-01

    Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and λ-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z = 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a ``mutagenic belt'' inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.

  18. System size in relativistic heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    WANG Yang-Yang; ZHAO Lin-Jie; YUAN Zhong-Sheng; ZHANG Dan-Dan; FANG Wei; XU Ming-Mei

    2011-01-01

    System size is more than a geometrical quantity in relativistic heavy ion collisions; it is closely related to evolution process,i.e.a different system size corresponds to a different evolution process,and whether QGP is produced depends on the system size.We propose that the system size should be under the same level when comparing the measurements from different colliding nuclei.The equivalence of the peripheral collisions of Au-Au and the central collisions of smaller nuclei is studied using the Monte Carlo method.Comparing the transverse overlapping area of the colliding nuclei,the number of participant nucleons and the number of nucleon-nucleon binary collisions in various colliding nuclei,we give an estimate of the correspondence in system size.This is helpful in the experimental comparison of the measurements from different colliding nuclei.

  19. Theory overview of Heavy Ion collisions

    CERN Document Server

    Lappi, T

    2016-01-01

    This presentation discusses some recently active topics in the theoretical interpretation of high energy heavy ion collisions at the LHC and at RHIC. We argue that the standard paradigm for understanding the spacetime evolution of the bulk of the matter produced in the collision is provided by viscous relativistic hydrodynamics, which can be used to systematically extract properties of the QCD medium from experimental results. The initial conditions of this hydrodynamical evolution are increasingly well understood in terms of gluon saturation, and can be quantified using Classical Yang-Mills fields and QCD effective kinetic theory. Hard and electromagnetic probes of the plasma provide additional constraints. A particularly fascinating subject are high multiplicity proton-proton and proton-nucleus collisions, where some of the characteristics previously attributed to only nucleus-nucleus collisions have been observed.

  20. Heavy Ion results from RHIC-BNL

    Directory of Open Access Journals (Sweden)

    Esumi Shinlchi

    2013-05-01

    Full Text Available Recent results from heavy ion collision experiments from RHIC at BNL are presented and discussed in terms of Quark Gluon Plasm properties, such as partonic collectivity and partonic energy loss. The experimental results with direct photons and heavy quarks have given important additional insights of the plasma on top of what has been known with light hadrons. Higher order event anisotropies and the related results have provided the geometrical, temporal and dynamical information of the plasma. The beam energy dependence of the various measurements could reveal the structure of QCD phase diagram and possibly the critical point in the diagram, where the properties of phase transition are expected to change drastically.

  1. Identifying multiquark hadrons from heavy ion collisions.

    Science.gov (United States)

    Cho, Sungtae; Furumoto, Takenori; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Yasui, Shigehiro; Yazaki, Koichi

    2011-05-27

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  2. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  3. Ion sources for heavy ion fusion (invited)

    Science.gov (United States)

    Yu, Simon S.; Eylon, S.; Chupp, W.; Henestroza, E.; Lidia, S.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-03-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K+ ions of 950 mA peak from a 6.7 in. curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 μs. The measured normalized edge emittance of less than 1 π mm mrad is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  4. Production of Charge in Heavy Ion Collisions

    CERN Document Server

    Pratt, Scott; Ratti, Claudia

    2015-01-01

    By analyzing preliminary experimental measurements of charge-balance functions from the STAR Collaboration at the Relativistic-Heavy-Ion Collider (RHIC), it is found that pictures where balancing charges are produced in a single surge, and therefore separated by a single length scale, are inconsistent with data. In contrast, a model that assumes two surges, one associated with the formation of a thermalized quark-gluon plasma and a second associated with hadronization, provides a far superior reproduction of the data. A statistical analysis of the model comparison finds that the two-surge model best reproduces the data if the charge production from the first surge is similar to expectations for equilibrated matter taken from lattice gauge theory. The charges created in the first surge appear to separate by approximately one unit of spatial rapidity before emission, while charges from the second wave appear to have separated by approximately a half unit or less.

  5. Particle Interferometry in Heavy-Ion Collisions

    CERN Document Server

    Heinz, Ulrich W

    1997-01-01

    By measuring hadronic single-particle spectra and two-particle correlations in heavy-ion collisions, the size and dynamical state of the collision fireball at freeze-out can be reconstructed. I discuss the relevant theoretical methods and their limitations. By applying the formalism to recent pion correlation data from Pb+Pb collisions at CERN we demonstrate that the collision zone has undergone strong transverse growth before freeze-out (by a factor 2-3 in each direction), and that it expands both longitudinally and transversally. From the thermal and flow energy density at freeze-out the energy density at the onset of transverse expansion can be estimated from conservation laws. It comfortably exceeds the critical value for the transition to color deconfined matter.

  6. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  7. Cold fission as heavy ion emission

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Maruhn, J.A.; Greiner, W.; Ivascu, M.; Mazilu, D.; Gherghescu, R.

    1987-11-01

    The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from /sup 234/U, /sup 236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104/Mo, /sup 106/Mo and /sup 106/Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for /sup 234/U - the first nucleus in which all three groups have been already observed.

  8. High energy heavy ion tracks in bubble detectors

    CERN Document Server

    Guo, S L; Guo, H Y; Tu, C Q; Wang, Y L; Doke, T; Kato, T; Ozaki, K; Kyan, A; Piao, Y; Murakami, T

    1999-01-01

    Bubble detectors which are commonly used as neutron detectors have been demonstrated through this study to be good detectors for registration of high energy heavy ion tracks. Large size bubble detectors made in China Institute of Atomic Energy were irradiated to heavy ions Ar and C up to 650 MeV/u and 400 MeV/u, respectively. Very clear features of stringy tracks of high energy heavy ions and their fragmentations are manifested and distinguishable. A single track created by a specific high energy heavy ion is composed of a line of bubbles, which is visible by naked eyes and retained for months without reduction in size. The creation of heavy ion tracks in bubble detectors is governed by a threshold whose essence is approximately a critical value of energy loss rate (dE/dX) sub c similar to that of etch track detectors. Ranges of heavy ions in bubble detectors are apparent and predictable by existing formulas. Identification of high energy heavy ions and the applications to heavy ion physics, cosmic rays, exot...

  9. PRISMA - a magnetic spectrometer for heavy ions at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Latina, A.; Stefanini, A.M.; Beghini, S.; Behera, B.R.; Corradi, L.; De Angelis, G.; De Rosa, A.; Fioretto, E.; Gadea, A.; Gulmini, M.; Inglima, G.; La Commara, M.; Maron, G.; Menegazzo, R.; Marginean, N.; Montagnoli, G.; Napoli, D.R.; Pierroutsakou, D.; Pollarolo, G.; Romoli, M.; Sandoli, M.; Scarlassara, F.; Szilner, S.; Toniolo, N.; Trotta, M.; Wu, Y.W

    2004-04-05

    The heavy-ion magnetic spectrometer PRISMA was recently installed at Laboratori Naz. di Legnaro, in order to exploit the heavy-ion beams of the XTU Tandem-ALPI-PIAVE accelerator complex, with masses up to A{approx_equal}200 at energies {approx_equal}5-10 MeV MeV A.

  10. Heavy ion recoil spectrometry of barium strontium titanate films

    Science.gov (United States)

    Stannard, W. B.; Johnston, P. N.; Walker, S. R.; Bubb, I. F.; Scott, J. F.; Cohen, D. D.; Dytlewski, N.; Martin, J. W.

    1995-05-01

    Thin films of barium strontium titanate have been analysed using heavy ion recoil spectrometry with 77 and 98 MeV 127I ions at the new heavy ion recoil facility at ANSTO, Lucas Heights. New calibration procedures have been developed for quantitative analysis. Energy spectra for each of the elements present reveal interdiffusion that was not previously known.

  11. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    McLerran, Larry

    2009-01-01

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark Gluon Plasma, the Color Glass Condensate, the Glasma and Quarkyonic Matter. A novel effect that may be associated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts and explain how they may be seen in ultra-relativistic heavy ion collisions.

  12. Quarkonia at finite temperature in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    Saumen Datta

    2015-05-01

    The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook.

  13. Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions

    Directory of Open Access Journals (Sweden)

    P. Mehnati

    2007-06-01

    Full Text Available Introduction: Heavy ions are nucleus of elements of iron, argon, carbon and neon that all carry positive electrical charges. For these particles to be useful in radiotherapy they need to accelerated to high energy by more than thousand mega volts. Also the cosmic environment is considered to be a complicated mixture of highly energetic photons and heavy ions such as iron. Therefore, the health risks to astronauts during long mission should be considered.  Materials and Methods: The induction of interphase death was tested on Chinese hamster ovary cells by exposing them to accelerated heavy ions (carbon, neon, argon and iron of 10-2000 linear energy transfers (LETs. The fraction of cells that underwent interphase death was determined by observing individual cells with time-lapse photography (direct method as well as by the indirect method of counting cells undergoing interphase death made visible by the addition of caffeine (indirect method. Results: The interphase death due to the exposure to X- rays is increased linearly as the dose exceeds the threshold dose of 10 Gy. Whereas the interphase death increases at a higher rate due to the exposure to high LET heavy ions and no threshold dose was observed. The range of LET values corresponding to the maximum RBE for the interphase death is 120-230 keV/µm. The probability of inducing the interphase death by a single heavy ion traversing through the nucleus is about 0.04-0.08. Discussion and Conclusion: The relative biological effectiveness (RBE of heavy ions as compared to X- rays as determined at the 50% level of induction is increased with LET. It reached a maximum value at a LET of approximately 230 keV/µm and then decreased with further increase in LET. The range of LET values corresponding to the maximum RBE appears to be narrower for interphase death than for reproductive death.

  14. Heavy ion radiobiology for hadrontherapy and space radiation protection.

    Science.gov (United States)

    Durante, Marco

    2004-12-01

    Research in the field of biological effects of heavy charged particles is needed for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions. Although the exposure conditions (e.g. high- vs. low-dose rate) and relevant endpoints (e.g. cell killing vs. neoplastic transformation) are different in the two fields, it is clear that a substantial overlap exists in several research topics. Three such topics are discussed in this short review: individual radiosensitivity, mixed radiation fields, and late stochastic effects of heavy ions. In addition, researchers involved either in experimental studies on space radiation protection or heavy-ion therapy will basically use the same accelerator facilities. It seems to be important that novel accelerator facilities planned (or under construction) for heavy-ion therapy reserve a substantial amount of beamtime to basic studies of heavy-ion radiobiology and its applications in space radiation research.

  15. Light and heavy ion beam analysis of thin biological sections

    Science.gov (United States)

    Lee, Joonsup; Siegele, Rainer; Pastuovic, Zeljko; Hackett, Mark J.; Hunt, Nicholas H.; Grau, Georges E.; Cohen, David D.; Lay, Peter A.

    2013-07-01

    The application of ion beam analysis (IBA) techniques to thin biological sections (ThBS) presents unique challenges in sample preparation, data acquisition and analysis. These samples are often the end product of expensive, time-consuming experiments, which involve many steps that require careful attention. Analysis via several techniques can maximise the information that is collected from these samples. Particle-induced X-ray emission (PIXE) and Rutherford backscattering (RBS) spectroscopy are two generally non-destructive IBA techniques that use the same MeV ions and can be performed simultaneously. The use of heavy ion PIXE applied to thick samples has, in the past, resulted in X-ray spectra of a poorer quality when compared to those obtained with proton beams. One of the reasons for this is the shorter probing depth of the heavy ions, which does not affect thin sample analysis. Therefore, we have investigated and compared 3-MeV proton and 36-MeV carbon ion beams on 7-μm thick mouse brain sections at the ANSTO Heavy ion microprobe (HIMP). The application of a 36-MeV C4+ ion beam for PIXE mapping of ThBS on thin Si3N4 substrate windows produced spectra of high quality that displayed close to a nine-times gain in signal yield (Z2/q) when compared to those obtained for 3-MeV protons for P, S, Cl and K but not for Fe, Cu and Zn. Image quality was overall similar; however, some elements showed better contrast and features with protons whilst others showed improved contrast with a carbon ion beam. RBS spectra with high enough counting statistics were easily obtained with 3-MeV proton beams resulting in high resolution carbon maps, however, the count rate for nitrogen and oxygen was too low. The results demonstrate that on thin samples, 36-MeV C4+ will produce good quality PIXE spectra in less time; therefore, carbon ions may be advantageous depending on which element is being studied. However, these advantages may be outweighed by the inherent disadvantages including

  16. Light and heavy ion beam analysis of thin biological sections

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joonsup, E-mail: joonsup.lee@sydney.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Siegele, Rainer, E-mail: rainer.siegele@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Pastuovic, Zeljko, E-mail: zeljko.pastuovic@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Hackett, Mark J., E-mail: mark.hackett@usask.ca [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Hunt, Nicholas H., E-mail: nhunt@med.usyd.edu.au [Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, NSW 2006 (Australia); Grau, Georges E., E-mail: georges.grau@sydney.edu.au [Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, NSW 2006 (Australia); Cohen, David D., E-mail: david.cohen@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Lay, Peter A., E-mail: peter.lay@sydney.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia)

    2013-07-01

    The application of ion beam analysis (IBA) techniques to thin biological sections (ThBS) presents unique challenges in sample preparation, data acquisition and analysis. These samples are often the end product of expensive, time-consuming experiments, which involve many steps that require careful attention. Analysis via several techniques can maximise the information that is collected from these samples. Particle-induced X-ray emission (PIXE) and Rutherford backscattering (RBS) spectroscopy are two generally non-destructive IBA techniques that use the same MeV ions and can be performed simultaneously. The use of heavy ion PIXE applied to thick samples has, in the past, resulted in X-ray spectra of a poorer quality when compared to those obtained with proton beams. One of the reasons for this is the shorter probing depth of the heavy ions, which does not affect thin sample analysis. Therefore, we have investigated and compared 3-MeV proton and 36-MeV carbon ion beams on 7-μm thick mouse brain sections at the ANSTO Heavy ion microprobe (HIMP). The application of a 36-MeV C{sup 4+} ion beam for PIXE mapping of ThBS on thin Si{sub 3}N{sub 4} substrate windows produced spectra of high quality that displayed close to a nine-times gain in signal yield (Z{sup 2}/q) when compared to those obtained for 3-MeV protons for P, S, Cl and K but not for Fe, Cu and Zn. Image quality was overall similar; however, some elements showed better contrast and features with protons whilst others showed improved contrast with a carbon ion beam. RBS spectra with high enough counting statistics were easily obtained with 3-MeV proton beams resulting in high resolution carbon maps, however, the count rate for nitrogen and oxygen was too low. The results demonstrate that on thin samples, 36-MeV C{sup 4+} will produce good quality PIXE spectra in less time; therefore, carbon ions may be advantageous depending on which element is being studied. However, these advantages may be outweighed by the

  17. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    Science.gov (United States)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  18. Equilibration within a semiclassical off-shell transport approach 24.10.Cn; 24.10.-i; 25.70.-z; Many-body theory; Nuclear-reaction models and methods; Low and intermediate energy heavy-ion reactions

    CERN Document Server

    Cassing, W

    2000-01-01

    Equilibration times for nuclear matter configurations -- modelling intermediate and high energy nucleus-nucleus collisions -- are evaluated within the semiclassical off-shell transport approach developed recently. The transport equations are solved for a finite box in coordinate space employing periodic boundary conditions. The off-shell transport model is shown to give proper off-shell equilibrium distributions in the limit t-> infinity for the nucleon and DELTA-resonance spectral functions. We find that equilibration times within the off-shell approach are only slightly enhanced as compared to the on-shell limit for the momentum configurations considered.

  19. Azimuthal Distributions in Intermediate Energy Heavy-Ion Collisions

    Science.gov (United States)

    Wilson, William Kenneth

    The azimuthal distributions of light particles (Z = 1,2) with respect to the entrance channel reaction plane are investigated with a view towards characterizing the modes of collective motion in intermediate energy heavy -ion collisions. A new technique for reaction plane determination from the distribution of light particles produced in a collision is developed and applied to Ar+V data. The data were acquired using the MSU 4pi Array, a new 215 element large solid angle detector system. At a beam energy of 35 MeV/nucleon, light charged particles are found to exhibit an enhanced emission in the reaction plane which increases with the mass of the detected particle. As the beam energy is increased to 100 MeV/nucleon, the anisotropy nearly vanishes, providing clues to the dynamics of these reactions in a transitional energy regime. The observed anisotropy contains signatures of two distinct modes of collective motion: attractive mean field deflection, and rotation of the fused system. A microscopic calculation based on mean-field mediated interactions plus nucleon-nucleon collisions reproduces both forms of collective motion and their associated azimuthal distributions. The calculation also suggests that the anisotropy due to mean -field deflection is established during the initial stages of the collision. The nature of the nuclear mean-field is further explored using data taken by the 4pi Array for peripheral 50 MeV/nucleon C induced reactions on C and Au targets. Although projectile fragments in grazing collisions are positively deflected by the coulomb force, a specific set of protons are found to be simultaneously attractively deflected by the mean-field towards the opposite side of the reaction plane. This direct observation of attractive mean field deflection supports aspects of the interpretation of the Ar+V data. Lastly, the experimental results are summarized and the potential for extracting more information about the dynamics of heavy-ion collisions using

  20. Monte-Carlo Simulations of Heavy Ions Track Structures and Applications

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francia A.

    2013-01-01

    In space, astronauts are exposed to protons, high ]energy heavy (HZE) ions that have a high charge (Z) and energy (E), and secondary radiation, including neutrons and recoil nuclei produced by nuclear reactions in spacecraft walls or in tissue. The astronauts can only be partly shielded from these particles. Therefore, on travelling to Mars, it is estimated that every cell nucleus in an astronaut fs body would be hit by a proton or secondary electron (e.g., electrons of the target atoms ionized by the HZE ion) every few days and by an HZE ion about once a month. The risks related to these heavy ions are not well known and of concern for long duration space exploration missions. Medical ion therapy is another situation where human beings can be irradiated by heavy ions, usually to treat cancer. Heavy ions have a peculiar track structure characterized by high levels of energy ]deposition clustering, especially in near the track ends in the so ]called eBragg peak f region. In radiotherapy, these features of heavy ions can provide an improved dose conformation with respect to photons, also considering that the relative biological effectiveness (RBE) of therapeutic ions in the plateau region before the peak is sufficiently low. Therefore, several proton and carbon ion therapy facilities are under construction at this moment

  1. New method to detect rotation in high-energy heavy-ion collisions

    OpenAIRE

    Csernai, Laszlo; Svelle, Sindre; Wang, Du-Juan

    2014-01-01

    With increasing beam energies the angular momentum of the fireball in peripheral heavy-ion collisions increases, and the proposed differential Hanbury Brown and Twiss analysis is able to estimate this angular momentum quantitatively. The method detects specific space-time correlation patterns, which are connected to rotation.

  2. Is there a role for fixed target heavy ion physics beyond RHIC startup?

    Energy Technology Data Exchange (ETDEWEB)

    Sandweiss, J. [Yale Univ., New Haven, CT (United States)

    1995-07-15

    The interesting and important physics opportunities provided by AGS and CERN fixed target facilities will be far from exhausted by the time of RHIC turn on. Given the need for the AGS to provide heavy ion beams for injection into RHIC, the cost effectiveness of fixed target experimentation with AGS beams will be high. Examples of the physics are given.

  3. Heavy-ion physics studies for the Future Circular Collider

    Science.gov (United States)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C. A.; van Leeuwen, M.; Wiedemann, U. A.

    2014-11-01

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which in the long term would allow for electron-hadron collisions. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of quark-gluon plasma, gluon saturation, photon-induced collisions, as well as connections with the physics of ultra-high-energy cosmic rays.

  4. Heavy-ion physics studies for the Future Circular Collider

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Dainese, A., E-mail: andrea.dainese@pd.infn.it [INFN — Sezione di Padova, 35131 Padova (Italy); D' Enterria, D. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland); Masciocchi, S. [EMMI and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Roland, C. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Salgado, C.A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Leeuwen, M. van [Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht (Netherlands); Wiedemann, U.A. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland)

    2014-11-15

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron–hadron collision mode including proton and nucleus beams, more than seven times larger than the nominal LHC energies. An electron–positron collider in the same tunnel is also considered as an intermediate step, which in the long term would allow for electron–hadron collisions. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of quark–gluon plasma, gluon saturation, photon-induced collisions, as well as connections with the physics of ultra-high-energy cosmic rays.

  5. Heavy-ion physics studies for the Future Circular Collider

    CERN Document Server

    Armesto, Nestor; d'Enterria, David; Masciocchi, Silvia; Roland, Christof; Salgado, Carlos; van Leeuwen, Marco; Wiedemann, Urs

    2014-01-01

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven-times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which would provide the electron-hadron option in the long term. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of Quark-Gluon Plasma, gluon saturation, photon-induced collisions, as well as connections with ultra-high-energy cosmic rays.

  6. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  7. Observation of snake resonances at Relativistic Heavy Ion Collider

    Science.gov (United States)

    Bai, M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Courant, E.; Drees, A.; Fischer, W.; Gardner, C.; Gill, R.; Glenn, J.; Huang, H.; Litvinenko, V.; Luccio, A.; Luo, Y.; Pilat, F.; MacKay, W. W.; Makdisi, Y.; Marusic, A.; Minty, M.; Montag, C.; Ptitsyn, V.; Roser, T.; Svirida, D.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2011-05-01

    The Siberian snakes are powerful tools in preserving polarization in high energy accelerators has been demonstrated at the Brookhaven Relativistic Heavy Ion Collider (RHIC). Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the Siberian snakes also introduce a new set of depolarization resonances, i.e. snake resonances as first discoverd by Lee and Tepikian [1]. The intrinsic spin resonances above 100 GeV are about a factor of two stronger than those below 100 GeV which raises the challenge to preserve the polarization up to 250 GeV. In 2009, polarized protons collided for the first time at the RHIC design store energy of 250 GeV. This paper presents the experimental measurements of snake resonances at RHIC. The plan for avoiding these resonanances is also presented.

  8. The production of photons in relativistic heavy-ion collisions

    CERN Document Server

    Paquet, Jean-François; Denicol, Gabriel S; Luzum, Matthew; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2015-01-01

    In this work it is shown that the use of a hydrodynamical model of heavy ion collisions which incorporates recent developments, together with updated photon emission rates greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses IP-Glasma initial states and includes, for the first time, both shear and bulk viscosities, along with second order couplings between the two viscosities. The effect of both shear and bulk viscosities on the photon rates is studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.

  9. Heavy Ions Collision evolution modeling with ECHO-QGP

    CERN Document Server

    Rolando, Valentina; Beraudo, Andrea; Del Zanna, Luca; Becattini, Francesco; Chandra, Vinod; De Pace, Arturo; Nardi, Marzia

    2014-01-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in $(3+1)-$D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  10. The 2015 Heavy-Ion Run of the LHC

    CERN Document Server

    Jowett, John; Bruce, Roderik; Giovannozzi, Massimo; Hermes, Pascal; Höfle, Wolfgang; Lamont, Mike; Mertens, Tom; Redaelli, Stefano; Schaumann, Michaela; Uythoven, Jan; Wenninger, Jorg

    2016-01-01

    In late 2015 the LHC collided lead nuclei at a beam energy of 6.37 Z TeV, chosen to match the 5.02 TeV per colliding nucleon pair of the p-Pb collision run in 2013. In so doing, it surpassed its design luminosity by a factor of 2. Besides the higher energy, the operational configuration had a number of new features with respect to the previous Pb-Pb run at 3.5 Z TeV in 2011; unusual bunch patterns providing collisions in the LHCb experiment for the first time, luminosity levelling and sharing requirements, a vertical displacement of the interaction point in the ALICE experiment, and operation closer to magnet quench limits with mitigation measures. We present a summary of the commissioning and operation and what has been learned in view of future heavy-ion operation at higher luminosity.

  11. Heavy-ion acceleration with a superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a /sup 19/F beam from the tandem, and by September 1978 a 5-resonator linac provided an /sup 16/O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs.

  12. Stopping of relativistic heavy ions in various media

    Science.gov (United States)

    Waddington, C. J.; Fixsen, D. J.; Crawford, H. J.; Lindstrom, P. J.; Heckman, H. H.

    1986-01-01

    The residual ranges of (900 + or - 3)-MeV/amu gold nuclei accelerated at the Lawrence Berkeley Laboratory Bevalac have been measured in several different media. The energy of the beam of nuclei was measured directly using a new time-of-flight system. The ranges were measured by absorption in linear wedges of polyethylene, carbon, aluminum, copper, tin, and lead and in circular wedges of polystyrene, aluminum, and gold, and by total absorption in nuclear emulsion. The measured ranges were significantly different from those calculated from the best available theoretical estimates of the energy loss of highly charged nuclei. It is concluded that at present energy losses and residual ranges of relativistic heavy ions in an arbitrary medium cannot be predicted with better than an approximately 2 percent accuracy.

  13. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    R V Gavai

    2000-07-01

    Lattice quantum chromodynamics (QCD), defined on a discrete space–time lattice, leads to a spectacular non-perturbative prediction of a new state of matter, called quark-gluon plasma (QGP), at sufficiently high temperatures or equivalently large energy densities. The experimental programs of CERN, Geneva and BNL, New York of relativistic heavy ion collisions are expected to produce such energy densities, thereby providing us a chance to test the above prediction. After a brief introduction of the necessary theoretical concepts, I will present a critical review of the experimental results already obtained by the various experiments in order to examine whether QGP has already been observed by them.

  14. Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    Science.gov (United States)

    Huovinen, Pasi; Molnar, Denes

    2009-01-01

    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2→2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio η/s≈const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path τ0/λtr,0≳2. The same accuracy with NS requires three times larger τ0/λtr,0≳6. For dynamics driven by a constant cross section, on the other hand, about 50% larger τ0/λtr,0≳3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., sNN~100-200 GeV, these limits imply that even the IS approach becomes marginal when η/s≳0.15. In addition, we find that the “naive” approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws.

  15. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  16. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  17. Heavy Ion Physics at the LHC

    CERN Document Server

    Morsch, Andreas

    2000-01-01

    Proposal of abstract for HEP99, Tampere, Finland, 15-21 July 1999The Large Hadron Collider (LHC) under construction at CERN is also planned as a heavy ion collider with lead ions colliding at an energy of 5.5 TeV. This corresponds to collisions of matter with cosmic rays of the highest energies observed so far promising the study of new and exciting aspects of physics. In addition to the heaviest system (Pb--Pb), collisions of lower mass ions are foreseen as a means to study collisions at different energy density and proton-nucleus (p--A) collisions provide indispensable reference data for the A--A collisions.ALICE (A Large Ion Collider Experiment) is the only detector fully dedicated to the physics of nuclear collisions. It is designed to cover the full richness of hadronic and leptonic signals expected at the LHC allowing to establish and to study the phase transition from hadronic matter to deconfined partonic matter, the quark gluon plasma (QGP). The CMS experiment is optimised for the study of hard proce...

  18. Heavy ion acceleration at parallel shocks

    Directory of Open Access Journals (Sweden)

    V. L. Galinsky

    2010-11-01

    Full Text Available A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007. The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail, so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter Pα=nαmα/npmp (mp, np and mα, nα are proton and alpha particle mass and density that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.

  19. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  20. Electromagnetic Radiations from Heavy Ion Collision

    Directory of Open Access Journals (Sweden)

    Payal Mohanty

    2013-01-01

    Full Text Available In this review, we have discussed the different sources of photons and dileptons produced in heavy ion collision (HIC. The transverse momentum (pT spectra of photons for different collision energies are analyzed with a view of extracting the thermal properties of the system formed in HIC. We showed the effect of viscosity on pT spectra of produced thermal photons. The dilepton productions from hot hadrons are considered including the spectral change of light vector mesons in the thermal bath. We have analyzed the pT and invariant mass (M spectra of dileptons for different collision energies too. As the individual spectra are constrained by certain unambiguous hydrodynamical inputs, so we evaluated the ratio of photon to dilepton spectra, Rem, to overcome those quantities. We argue that the variation of the radial velocity extracted from Rem with M is indicative of a phase transition from the initially produced partons to hadrons. In the calculations of interferometry involving dilepton pairs, it is argued that the nonmonotonic variation of HBT radii with invariant mass of the lepton pairs signals the formation of quark gluon plasma in HIC. Elliptic flow (v2 of dilepton is also studied at sNN=2.76 TeV for 30–40% centrality using the (2+1d hydrodynamical model.

  1. High Gluon Densities in Heavy Ions Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2016-01-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...

  2. Design status of heavy ion injector program

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, E.O.; Meyer, E.A.; Riepe, K.B.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.

    1985-10-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Berkeley Laboratory. The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10 X torr) high voltage (HV) accelerating column. The column consists of two 28-inch diameter insulator modules made of 85 percent Al2O3 ceramic rings brazed to niobium feedthrough rings to which the electrodes are mechanically attached. Field shaping is used to minimize electron avalanche induced flashover along the inside surface of the ceramic rings. The column is self-supporting and is cantilevered from one end of the containment vessel. A brazed assembly was chosen to provide the required bond strength and high vacuum capability. The HV pulsed power supply is a 2MV Marx generator cantilevered from the opposite end of the containment vessel. The stainless steel pressure vessel (PV) contains a 65 psig mixture of SF6(30%) and nitrogen (70%) to provide the electrical insulation.

  3. A radial TPC for heavy ions

    CERN Document Server

    Garabatos, C

    2000-01-01

    The CERES experiment at the CERN SPS has been recently upgraded with a TPC with radial drift field, the first one of its sort. Constructed during 1998, it has been successfully operated in commissioning and physics runs, with muon, proton, and heavy-ion beams. A high voltage electrode of about 0.5 m radius is surrounded by sixteen 2 m long readout chambers, placed at a radius of 1.3 m, with chevron-shaped readout pads. The field cage is enclosed by two low-mass voltage degraders at each end of the cylindrical structure. A Ne-CO/sub 2/ [80-20] gas mixture allows for a safe operation and good transport properties under drift fields ranging from 200 to 600 V/cm. A spatial resolution better than 700 microns and 350 microns in r and rdelta (phi), respectively, has been achieved in a highly inhomogeneous magnetic field. Details of its construction as well as results of the operation and performance in a high multiplicity environment are presented. (0 refs).

  4. Heavy ion fusion experiments at LBNL and LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahle, L

    1998-08-19

    The long-range goal of the US Heavy Ion Fusion (HIF) program is to develop heavy ion accelerators capable of igniting inertial fusion targets to generate fusion energy for electrical power production. Accelerators for heavy ion fusion consist of several subsystems: ion sources, injectors, matching sections, combiners, induction acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a final-focus system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss some of these experiments.

  5. A short introduction to heavy-ion physics

    CERN Document Server

    Gupta, Sourendu

    2015-01-01

    Heavy-ion collisions provide the only laboratory tests of relativistic quantum field theory at finite temperature. Understanding these is a necessary step in understanding the origins of our universe. These lectures introduce the subject to experimental particle physicists, in the hope that they will be useful to others as well. The phase diagram of QCD is briefly touched upon. Kinematic variables which arise in the collisions of heavy-ions beyond those in the collisions of protons or electrons are introduced. Finally, a few of the signals studied in heavy-ion collisions, and the kind of physics questions which they open up are discussed.

  6. An EBIS-based heavy ion injector for the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Kponou, A.; Alessi, J.; Beebe, E.; Brennan, J.M.; Hershcovitch, A.; Prelec, K.; Raparia, D.

    1994-09-01

    An electron beam ion source (EBIS), followed by a heavy ion RFQ and superconducting linac, can be considered as a heavy ion injector for high energy accelerators, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. A test EBIS, on long term loan from Sandia National Laboratory, is presently being commissioned at BNL. Experiments on this source will be used in evaluating the parameters for an EBIS-based RHIC injector. Some results of this commissioning, as well as the conceptual designs of the RFQ and linac, are presented.

  7. Relativistic heavy ion collisions with realistic non-equilibrium mean fields

    CERN Document Server

    Fuchs, C; Wolter, H H

    1996-01-01

    We study the influence of non-equilibrium phase space effects on the dynamics of heavy ion reactions within the relativistic BUU approach. We use realistic Dirac-Brueckner-Hartree-Fock (DBHF) mean fields determined for two-Fermi-ellipsoid configurations, i.e. for colliding nuclear matter, in a local phase space configuration approximation (LCA). We compare to DBHF mean fields in the local density approximation (LDA) and to the non-linear Walecka model. The results are further compared to flow data of the reaction Au on Au at 400 MeV per nucleon measured by the FOPI collaboration. We find that the DBHF fields reproduce the experiment if the configuration dependence is taken into account. This has also implications on the determination of the equation of state from heavy ion collisions.

  8. Dynamics of light, intermediate, heavy and superheavy nuclear systems formed in heavy-ion collisions

    Indian Academy of Sciences (India)

    Manoj K Sharma; Gurvinder Kaur

    2014-05-01

    The dynamical description of light, intermediate, heavy and superheavy nuclei formed in heavy-ion collisions is worked out using the dynamical cluster decay model (DCM), with reference to various effects such as deformation and orientation, temperature, angular momentum etc. Based on the quantum mechanical fragmentation theory (QMFT), DCM has been applied to understand the decay mechanism of a large number of nuclei formed in low-energy heavy-ion reactions. Various features related to the dynamics of competing decay modes of nuclear systems are explored by addressing the experimental data of a number of reactions in light, intermediate, heavy and superheavy mass regions. The DCM, being a non-statistical description for the decay of a compound nucleus, treats light particles (LPs) or equivalently evaporation residues (ERs), intermediate mass fragments (IMFs) and fission fragments on equal footing and hence, provides an alternative to the available statistical model approaches to address fusion–fission and related phenomena.

  9. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    Science.gov (United States)

    Sun, Yifeng; Ko, Che Ming; Li, Feng

    2016-10-01

    Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.

  10. The integrated beam experiment - A next step experiment for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Celata, C.M.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, D.P. Grote; Molvik, A.W.; Sharp, W.M.; Rose, D.V.; Welch, D.R.; Davidson, R.C.; Kaganovich, Igor D.; Qin, H.; Startsev, Edward A.

    2003-09-01

    The U.S. Heavy Ion Fusion Virtual National Laboratory is proposing as its next experiment the Integrated Beam Experiment (IBX). All experiments in the U.S. Heavy Ion Fusion (HIF) program up to this time have been of modest scale and have studied the physics of selected parts of a heavy ion driver. The mission of the IBX, a proof-of-principle experiment, is to demonstrate in one integrated experiment the transport from source to focus of a single heavy ion beam with driver-relevant parameters--i.e., the production, acceleration, compression, neutralization, and final focus of such a beam. Present preconceptual designs for the IBX envision a 5-10 MeV induction linac accelerating one K{sup +} beam. At injection (1.7 MeV) the beam current is approximately 500 mA, with pulse length of 300 ns. Design flexibility allows for several different acceleration and compression schedules, including the possibility of longitudinal (unneutralized) drift compression by a factor of up to ten in pulse length after acceleration, and neutralized drift compression. Physics requirements for the IBX, and preliminary physics and engineering design work are discussed in this paper.

  11. The QCD Phase Diagram, Equation of State, and Heavy Ion Collisions

    OpenAIRE

    2001-01-01

    After some historic remarks and a brief summary of recent theoretical news about the QCD phases, we turn to the issue of $freeze-out$ in heavy ion collisions. We argue that the chemical freeze-out line should actually consists of two crossing lines of different nature. We also consider some inelatic reactions which occure $after$ chemical freeze-out, emphasizing the role of overpopulation of pions. The $hydrodynamics$ (with or without hadronic afterburner) explaines SPS/RHIC data on radial an...

  12. Charge state studies of low energy heavy ions passing through hydrogen and helium gas

    CERN Document Server

    Liu, W; Buchmann, L; Chen, A A; D'Auria, J M; D'Onofrio, A; Engel, S; Gialanella, L; Greife, U; Hunter, D; Hussein, A; Hutcheon, D A; Olin, A; Ottewell, D; Rogalla, D; Rogers, J; Romano, M; Roy, G; Terrasi, F

    2003-01-01

    Studies of the charge state distribution of low energy (<1.5 MeV/u), low Z (<13) heavy ions passing through hydrogen and helium gas of varying target pressure have been performed using separate windowless gas target systems at TRIUMF and the University of Naples. Semi-empirical relationships have been deduced to estimate the equilibrium charge state distributions as a function of beam energy. From these distributions, cross-sections for the relevant charge changing reactions have been deduced.

  13. Event-by-event generation of vorticity in heavy-ion collisions

    CERN Document Server

    Deng, Wei-Tian

    2016-01-01

    In a noncentral heavy-ion collision, the two colliding nuclei have finite angular momentum in the direction perpendicular to the reaction plane. After the collision, a fraction of the total angular momentum is retained in the produced hot quark-gluon matter and is manifested in the form of fluid shear. Such fluid shear creates finite flow vorticity. We study some features of such generated vorticity, including its strength, beam energy dependence, centrality dependence, and spatial distribution.

  14. Neutron dose equivalent rate in intermediate energy heavy ion target area

    CERN Document Server

    Li Gui Sheng; Li Zong Wei; Su You Wu; Zhang Shu Mi

    2000-01-01

    The fluence rate distributions of neutrons emitted in the reactions of 50 MeV/u sup 1 sup 8 O-ion on thick Be, Cu, Au targets were measured with an activation method of threshold detectors and the neutron dose equivalent rate distributions at 1 m from the targets in intermediate energy heavy ion target area were obtained using the conversion coefficients for neutron fluence rate to ambient dose equivalent rate.

  15. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Samit Mandal; J Gerl; H Geissel; K Hauschild; M Hellström; Z Janas; I Kojouharov; Y Kopatch; R C Lemmon; P Mayet; Z Podolyak; P H Regan; H Schaffner; C Schlegel; J Simpson; H J Wollersheim

    2001-07-01

    Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  16. Heavy ion physics with the ALICE experiment at LHC

    CERN Document Server

    Zampolli, Chiara

    2007-01-01

    ALICE is the experiment at the LHC collider at CERN dedicated to heavy ion physics. In this report, the ALICE detector will be presented, together with its expected performance as far as some selected physics topics are concerned.

  17. Report of the heavy-ion fusion task group

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, G.A.; Booth, L.A.; Henderson, D.B.; Jameson, R.A.; Kindel, J.M.; Knapp, E.A.; Pollock, R.; Talbert, W.L.; Thode, L.E.; Williams, J.M.

    1980-02-01

    An assessment of heavy-ion fusion has been completed. Energetic heavy ions, for example 10-GeV uranium, provided by an rf linac or an induction linac, are used as alternatives to laser light to drive inertial confinement fusion pellets. The assessment has covered accelerator technology, transport of heavy-ion beams, target interaction physics, civilian power issues, and military applications. It is concluded that particle accelerators promise to be efficient pellet drivers, but that there are formidable technical problems to be solved. It is recommended that a moderate level research program on heavy-ion fusion be pursued and that LASL should continue to work on critical issues in accelerator development, beam transport, reactor systems studies, and target physics over the next few years.

  18. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  19. Sample Management System for Heavy Ion Irradiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  20. Elastic recoil detection analysis on the ANSTO heavy ion microprobe

    Science.gov (United States)

    Siegele, R.; Orlic, I.; Cohen, David D.

    2002-05-01

    The heavy ion microprobe at the Australian Nuclear Science and Technology Organisation is capable of focussing heavy ions with an ME/ q2 of up to 100 amu MeV. This makes the microprobe ideally suited for heavy ion elastic recoil detection analysis (ERDA). However, beam currents on a microprobe are usually very small, which requires a detection system with a large solid angle. We apply microbeam heavy ion ERDA using a large solid angle ΔE- E telescope with a gas ΔE detector to layered structures. We demonstrate the capability to measure oxygen and carbon with a lateral resolution of 20 μm, together with determination of the depth of the contamination in thin deposited layers.

  1. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  2. Status of Chemical Equilibrium in Relativistic Heavy Ion Collisions

    CERN Document Server

    Cleymans, Jean

    2009-01-01

    Recent work on chemical equilibrium in heavy ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.

  3. Two alpha, three alpha and multiple heavy-ion radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M. (Institute for Physics and Nuclear Engineering, Bucharest (Romania))

    1985-07-01

    New decay modes by spontaneous emission of two and three ..cap alpha.. particles and two identical or different heavy ions, are predicted. The analytical variant of the superasymmetric fission model is used to estimate the half lives.

  4. Two alpha, three alpha and multiple heavy-ion radioactivities

    OpenAIRE

    Poenaru, D.N.; Ivascu, M.

    1985-01-01

    New decay modes by spontaneous emission of two and three α particles and two identical or different heavy ions, are predicted. The analytical variant of the superasymmetric fission model is used to estimate the half lives.

  5. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  6. Status of chemical equilibrium in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    J Cleymans

    2003-04-01

    Recent work on chemical equilibrium in heavy-ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.

  7. Sample Management System for Heavy Ion Irradiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  8. Intense Pulsed Heavy Ion Beam Technology

    Science.gov (United States)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  9. The Relativistic Heavy Ion Collider control system

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-12-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning.

  10. String theory and relativistic heavy ion collisions

    Science.gov (United States)

    Friess, Joshua J.

    It has long been known that string theory describes not only quantum gravity, but also gauge theories with a high degree of supersymmetry. Said gauge theories also have a large number of colors in a regime with a large effective coupling constant that does not depend on energy scale. Supersymmetry is broken in nature, if it is present at all, however the gauge theory described by string theory shares many common features with QCD at temperatures above the quark deconfinement transition. It is generally though not entirely accepted that collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) produce a thermalized Quark-Gluon Plasma (QGP) at temperatures distinctly above the transition temperature as determined from lattice simulations. Hence, we might hope that a string theoretic description of gauge dynamics can elucidate some otherwise intractable physics of the strongly coupled plasma. Here we use string theory to calculate the outgoing energy flux from a RHIC process called "jet quenching", in which a high-momentum quark or gluon traverses a large distance in the QGP. Our setup is in the context of the highly supersymmetric string dual gauge theory, but we nevertheless find that the gross features of the resulting stress-energy tensor match reasonably well with experimental data. We will furthermore discuss the technology behind computations of the leading-order corrections to gauge theory observables that are uniquely string-induced, and we will describe a potential solution to string theory that could resolve a number of discrepancies between the traditional highly supersymmetric setup and QCD---in particular, a significant reduction in the amount of supersymmetry, and a finite effective coupling that is still greater than unity but does depend on energy scale.

  11. Phenomenology of Heavy Flavors in Ultrarelativistic Heavy-Ion Collisions

    CERN Document Server

    Isayev, A A

    2010-01-01

    Some recent experimental results obtained in collisions of heavy nuclei ($\\sqrt{s}=200$ GeV) at BNL Relativistic Heavy-Ion Collider (RHIC) are discussed. The probes of dense matter created in heavy-ion collision by quarkonia, $D$ and $B$ mesons containing heavy charm and beauty quarks are considered. The centrality, rapidity and transverse momentum dependences of the nuclear modification factor and elliptic flow coefficient are presented and their possible theoretical interpretation is provided.

  12. Experimental results on charge fluctuations in heavy-ion collisions

    CERN Document Server

    Mishra, D K; Netrakanti, P K; Pant, L M; Mohanty, A K

    2016-01-01

    We present a subset of experimental results on charge fluctuation from the heavy-ion collisions to search for phase transition and location of critical point in the QCD phase diagram. Measurements from the heavy-ion experiments at the SPS and RHIC energies observe that total charge fluctuations increase from central to peripheral collisions. The net-charge fluctuations in terms of dynamical fluctuation measure $\

  13. Classical gluon production amplitude in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Chirilli Giovanni Antonio

    2016-01-01

    Full Text Available The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  14. FAIR—Status and relevance for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Spiller, P., E-mail: P.Spiller@gsi.de; Barth, W.

    2014-01-01

    The chosen design concepts and technical approaches as described in the Heavy Ion Driver Ignition Facility (HIDIF) study are compared with the present status of accelerator technologies and the experiences gained in the operation of the heavy ion accelerator facilities at GSI. Novel advanced technologies, as developed e.g. for the FAIR Project, may be used for a more compact and realistic driver layout. Major differences between a single shot and a high repetition rate facility will be discussed.

  15. Heavy ions at the LHC: Physics perspectives and experimental program

    Indian Academy of Sciences (India)

    J Schukraft

    2001-08-01

    Ultrarelativistic heavy ion physics is entering the new era of collider experiments with the start-up of RHIC at BNL and construction for detectors at LHC well under way. At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  16. F IASCO: a multidetector optimized for semiperipheral heavy ion collisions at Fermi energies

    Science.gov (United States)

    Bini, M.; Casini, G.; Olmi, A.; Poggi, G.; Stefanini, A. A.; Bardelli, L.; Bartoli, A.; Bidini, L.; Coppi, C.; Del Carmine, P.; Mangiarotti, A.; Maurenzig, P. R.; Pasquali, G.; Piantelli, S.; Poggi, S.; Taccetti, N.; Vanzi, E.

    2003-12-01

    The F IASCO multidetector is a low-threshold apparatus, optimized for the investigation of peripheral to semi-central collisions in heavy ion reactions at Fermi energies. It consists of three types of detectors. The first detector layer is a shell of 24 position-sensitive Parallel Plate Avalanche Detectors (PPADs), covering about 70% of the forward hemisphere, which measure the velocity vectors of the heavy ( Z≳10) reaction products. Below and around the grazing angle, behind the most forward PPADs, there are 96 Δ E-E silicon telescopes (with thickness of 200 and 500 μm, respectively); they are mainly used to measure the energy of the projectile-like fragment and to identify its charge and, via the time-of-flight of the PPADs, also its mass. Finally, behind most of the PPADs there are 158 (or 182, depending on the configuration) scintillation detectors, mostly of the phoswich type, which cover 25-30% of the forward hemisphere; they identify both light charged particles ( Z=1,2) and intermediate mass fragments (3⩽ Z≲20), measuring also their time-of-flight.

  17. FIASCO: a multidetector optimized for semiperipheral heavy ion collisions at Fermi energies

    Energy Technology Data Exchange (ETDEWEB)

    Bini, M.; Casini, G.; Olmi, A. E-mail: olmi@fi.infn.it; Poggi, G. E-mail: poggi@fi.infn.it; Stefanini, A.A.; Bardelli, L.; Bartoli, A.; Bidini, L.; Coppi, C.; Del Carmine, P.; Mangiarotti, A.; Maurenzig, P.R.; Pasquali, G.; Piantelli, S.; Poggi, S.; Taccetti, N.; Vanzi, E

    2003-12-11

    The FIASCO multidetector is a low-threshold apparatus, optimized for the investigation of peripheral to semi-central collisions in heavy ion reactions at Fermi energies. It consists of three types of detectors. The first detector layer is a shell of 24 position-sensitive Parallel Plate Avalanche Detectors (PPADs), covering about 70% of the forward hemisphere, which measure the velocity vectors of the heavy (Z > or approx. 10) reaction products. Below and around the grazing angle, behind the most forward PPADs, there are 96 {delta}E-E silicon telescopes (with thickness of 200 and 500 {mu}m, respectively); they are mainly used to measure the energy of the projectile-like fragment and to identify its charge and, via the time-of-flight of the PPADs, also its mass. Finally, behind most of the PPADs there are 158 (or 182, depending on the configuration) scintillation detectors, mostly of the phoswich type, which cover 25-30% of the forward hemisphere; they identify both light charged particles (Z=1,2) and intermediate mass fragments (3{<=}Z < or approx. 20), measuring also their time-of-flight.

  18. Energy loss straggling data of 28Si, 27Al, 24Mg, 19F, 16O, and 12C heavy ions in thin polymeric Formvar foil over a range of energies 0.1-0.6 MeV/u by time-of-flight spectrometry

    Science.gov (United States)

    Guesmia, A.; Ammi, H.; Msimanga, M.; Dib, A.; Mammeri, S.; Pineda-Vargas, C. A.; Hedibel, M.

    2015-02-01

    The energy-loss straggling of 28Si, 27Al, 24Mg, 19F, 16O and 12C partially stripped heavy ions has been determined in Formvar polymeric thin foil over a continuous range of energies 0.1-0.6 MeV/u, by using a powerful method based on the combination of Heavy Ion-Elastic Recoil Detection Analysis (HI-ERDA) technique and Time of Flight (ToF) spectrometer. The obtained energy loss straggling values have been analyzed and compared with the corresponding computed values adopting some widely used energy loss straggling formulations such as, Bohr, Bethe-Livingston and Yang formulas. The aim of such a comparison is to check the reliability and accuracy of the existing energy loss straggling formulations. The experimental results of energy loss straggling of all ions are found to be significantly greater than those predicted by the theories. These differences can be attributed to the charge exchange straggling. This effect has to be taken into account in order to explain the obtained results.

  19. Slowing down of 2–11 MeV {sup 12}C, {sup 16}O, {sup 28}Si and {sup 63}Cu heavy ions through Si{sub 3}N{sub 4} thin foil by using Time-of-Flight spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Guesmia, A., E-mail: guesmia@tlabs.ac.za [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Departement de physique, Faculté des Sciences Université Saad Dahleb, B. P. 270, Route de Soumaa, Blida (Algeria); Departement de physique, Faculté des Sciences Université M’hamedBougara, Boumerdes (Algeria); Msimanga, M. [Physics Department, Tshwane University of Technology, P Bag X 680, Pretoria 0001 (South Africa); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, P.O. Box 1906, Bellville 7535 (South Africa); Ammi, H.; Dib, A.; Ster, M. [Centre de Recherche Nucleaire d’Alger, 2 Bd. Frantz Fanon, B. P. 399, Alger-Gare, Algiers (Algeria)

    2016-03-15

    The stopping force and the energy-loss straggling of {sup 63}Cu, {sup 28}Si, {sup 16}O and {sup 12}C partially stripped heavy ions crossing silicon nitride foil has been determined over a continuous range of energies 2–11 MeV, by using a method based on the Heavy Ion-Elastic Recoil Detection Analysis (HI-ERDA) technique using a Time of Flight (ToF) spectrometer. The obtained energy loss straggling values corrected for non-statistical straggling and the thickness variation using the Besenbacher’s method have been analyzed and compared with the corresponding computed values. For computed electronic straggling we have used alternatively the widely used formulations such as, the universal Bohr straggling deduced from the Bohr stopping model, and the Lindhard–Scharff formula including the Bunching effect given by Hvelplund–Firsov formula according to the Besenbacher approach. The aim of such comparison is to check the reliability and accuracy of the existing energy loss straggling formulations, in the light of the present experimental results. The experimental results of energy loss straggling of all ions are found to be greater than those predicted by the Bohr stopping model or Lindhard–Scharff prediction model. The introduction of the bunching effect improves the comparison and gives an estimation of other effects such as charge exchange.

  20. Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    Science.gov (United States)

    Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.

    2009-05-01

    nucleon pair at other heavy ion experimental facilities. As one moves from very high to moderately high energies, the contribution of the hard part of the event becomes smaller, while the soft part turns into just a multi-parameter fit to the data. Restrictions: HYDJET++ is only applicable for symmetric AA collisions of heavy ( A≳40) ions at high energies (c.m.s. energy √{s}≳10 GeV per nucleon pair). The results obtained for very peripheral collisions (with the impact parameter of the order of two nucleus radii, b˜2R) and very forward rapidities may be not adequate. Additional comments: Accessibility http://cern.ch/lokhtin/hydjet++ Running time: The generation of 100 central (0-5%) Au+Au events at √{s}=200A GeV (Pb+Pb events at √{s}=5500A GeV) with default input parameters takes about 7 (85) minutes on a PC 64 bit Intel Core Duo CPU @ 3 GHz with 8 GB of RAM memory under Red Hat Enterprise. References: [1] I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 46 (2006) 211. [2] N.S. Amelin, R. Lednicky, T.A. Pocheptsov, I.P. Lokhtin, L.V. Malinina, A.M. Snigirev, Iu.A. Karpenko, Yu.M. Sinyukov, Phys. Rev. C 74 (2006) 064901. [3] N.S. Amelin, I. Arsene, L. Bravina, Iu.A. Karpenko, R. Lednicky, I.P. Lokhtin, L.V. Malinina, A.M. Snigirev, Yu.M. Sinyukov, Phys. Rev. C 77 (2008) 014903.

  1. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data

    Science.gov (United States)

    Gao, Y.-Q.; Liu, F.-H.

    2016-03-01

    The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.

  2. Energy Spectra of Light Charged Particles and Evaporation Residues in Heavy Ion Induced Reactions at Low Energy%低能重离子诱导反应中轻带电粒子和蒸发剩余物的能谱

    Institute of Scientific and Technical Information of China (English)

    吕绮雯; 卫华荣; Rahim Magda A; Fakhraddin S; 刘福虎

    2012-01-01

    Using a unified description on multiplicity distributions of final-state particles,the energy spectra of light charged particles and evaporation residues in heavy ion induced reactions at low energy are studied in the framework of a multisource ideal gas model.Each source in an excited composite contributes energy spectra of light charged particles and evaporation residues to be an exponential law.The calculated results are compared and found to be in agreement with the expe-rimental data of inclusive and exclusive energy distributions for light charged particles and evaporation residues measured in the 20Ne(158,170,180,and 200 MeV) + 12C reactions.%在多源理想气体模型的框架内,用一个关于末态粒子多重数分布的统一描述,研究了低能重离子诱导反应中轻带电粒子和蒸发剩余物的能谱。在同一个激发的复合核中,每个源对带电粒子和蒸发剩余物均贡献一个指数分布的能谱。计算结果与158,170,180和200MeV20Ne+12C反应中,轻带电粒子和蒸发剩余物能谱的实验结果符合。

  3. A particle-hole calculation for pion production in relativistic heavy-ion collisions

    Science.gov (United States)

    Norbury, J. W.; Deutchman, P. A.; Townsend, L. W.

    1985-01-01

    A differential cross section for pi-meson production in peripheral heavy-ion collisions is formulated within the context of a particle-hole model in the Tamm-Dancoff approximation. This is the first attempt at a fully quantum-mechanical particle-hole calculation for pion production in relativistic heavy-ion collisions. The particular reaction studied is an O-16 projectile colliding with a C-12 target at rest. In the projectile a linear combination of isobar-hole states is formed, with the possibility of a coherent isobar giant resonance. The target can be excited to its giant M1 resonance (J-pi = 1(+), T = 1) at 15.11 MeV, or to its isobar analog neighbors, B-12 at 13.4 MeV and N-12 at 17.5 MeV. The theory is compared to recent experimental results.

  4. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    Science.gov (United States)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  5. Thermal photon production from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions

    CERN Document Server

    Ayala, Alejandro; Dominguez, C A; Hernandez, L A

    2016-01-01

    We compute the production of thermal photons in relativistic heavy-ion collisions by gluon fusion in the presence of an intense magnetic field, and during the early stages of the reaction. This photon yield is an excess over calculations that do not consider magnetic field effects. We add this excess to recent hydrodynamic calculations that are close to describing the experimental transverse momentum distribution in RHIC and LHC. We then show that with reasonable values for the temperature, magnetic field strength, and strong coupling constant, our results provide a very good description of such excess. These results support the idea that the origin of at least some of the photon excess observed in heavy-ion experiments may arise from magnetic field induced processes.

  6. State density formalism of the Iwamoto-Harada model: A suitable tool to treat cluster emission from heavy-ion collisions with account for spin variables

    Science.gov (United States)

    Běták, Emil; Cseh, József

    2017-09-01

    We study the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model suitable also for heavy ion collisions. The direct motivation of this paper is a possibility of producing superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, α-particles). Note to the reader: the pdf file has been changed on September 22, 2017.

  7. Thermal electromagnetic radiation in heavy-ion collisions

    Science.gov (United States)

    Rapp, R.; van Hees, H.

    2016-08-01

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator ( ρ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV ≤ M ≤ 0.7 GeV, and b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV < M < 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes.

  8. Thermal electromagnetic radiation in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R. [Texas A and M University, Cyclotron Institute and Department of Physics and Astronomy, College Station, TX (United States); Hees, H. van [Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute of Advanced Studies (FIAS), Frankfurt (Germany)

    2016-08-15

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator (ρ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to (a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV ≤ M ≤ 0.7 GeV, and (b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV < M < 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes. (orig.)

  9. Review of Recent Results in Heavy Ion Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Csernai Laszlo P.

    2014-03-01

    Full Text Available Fluid dynamical phenomena in high energy heavy ion reactions were predicted in the 1970s and still today these are the most dominant and basic observables. With increasing energy and the reach of QGP the low viscosity of the plasma became apparent and this brought a new revolution in the fluid dynamical studies. The high energy and low viscosity made it possible to observe fluctuations up to high multipolarity flow harmonics. This is an obvious, direct proof of the low viscosity of QGP. Many aspects of these fluctuations are under intensive study today. The low viscosity opened ways to observe special fluid dynamical turbulent phenomena. These may arise from random fluctuations, as well as from the global symmetries of peripheral collisions. At LHC energies the angular momentum of the participant matter can reach 106ħ, which leads to rotation and turbulent instabilities, like the Kelvin-Helmholtz instability. Low viscosity ensures that these remain observable at the final freeze-out stages of the collision. Thus new investigations in addition to the standard flow analysis methods became possible. Femtoscopy may also detect rotation and turbulence. Due to the high local thermal vorticity, particle polarization and orbital rotation may reach thermal and mechanical equilibrium. This leads to baryon polarization which, in given directions may be detectable.

  10. Two-pion correlations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zajc, W.A.

    1982-08-01

    An application of intensity interferometry to relativistic heavy ion collisions is reported. Specifically, the correlation between two like-charged pions is used to study the reactions Ar+KCl..-->..2..pi../sup +-/+X and Ne+NaF..-->..2..pi../sup -/+X. Source sizes are obtained that are consistent with a simple geometric interpretation. Lifetimes are less well determined but are indicative of a faster pion production process than predicted by Monte Carlo cascade calculations. There appears to be a substantial coherent component of the pion source, although measurement is complicated by the presence of final state interactions. Additionally, the generation of spectra of uncorrelated events is discussed. In particular, the influence of the correlation function on the background spectrum is analyzed, and a prescription for removal of this influence is given. A formulation to describe the statistical errors in the background is also presented. Finally, drawing from the available literature, a self-contained introduction to Bose-Einstein correlations and the Hanbury-Brown - Twiss effect is provided, with an emphasis on points of contact between classical and quantum mechanical descriptions.

  11. Thermal Electromagnetic Radiation in Heavy-Ion Collisions

    CERN Document Server

    Rapp, R

    2016-01-01

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator ($\\rho$ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to (a) the fireball lifetime through the dilepton yield in the low invariant-mass window $0.3 \\; \\mathrm{GeV} \\leq M \\leq 0.7 \\; \\mathrm{GeV}$, and (b) the early temperatures of the fireball through th...

  12. Photoproduction in Ultra-Peripheral Heavy Ion Collisions at STAR

    CERN Document Server

    Grube, Boris

    2008-01-01

    We present recent STAR results on photoproduction in ultra-peripheral relativistic heavy ion collisions. In these collisions the impact parameter of the beam particles is larger than the sum of their nuclear radii, so that they interact via their long-range Coulomb fields. STAR has measured the production of $\\rho^0(770)$ mesons in exclusive reactions as well as in processes with mutual nuclear excitation of the beam particles. We present results for the $\\rho^0$ production cross section in Au-Au collisions at $\\sqrt{s_{NN}}=200$ GeV for coherent as well as incoherent coupling. The dependence of the cross section on the $\\rho^0$ rapidity is compared to theoretical models. We also studied the ratio of coherent $\\rho^0$ to direct $\\pi^+\\pi^-$ production as well as the $\\rho^0$ helicity matrix elements and we observe interference effects in the $\\rho^0$ production. In addition STAR has measured the production of $\\rho^0$ mesons in d-Au collisions at $\\sqrt{s_{NN}}=200$ GeV and that of $e^+e^-$-pairs in Au-Au at ...

  13. Respiratory gated irradiation system for heavy-ion radiotherapy.

    Science.gov (United States)

    Minohara, S; Kanai, T; Endo, M; Noda, K; Kanazawa, M

    2000-07-01

    In order to reduce the treatment margin of the moving target due to breathing, we developed a gated irradiation system for heavy-ion radiotherapy. The motion of a patient due to respiration is detected by the motion of the body surface around the chest wall. A respiratory sensor was developed using an infrared light spot and a position-sensitive detector. A timing signal to request a beam is generated in response to the respiration waveform, and a carbon beam is extracted from the synchrotron using a RF-knockout method. CT images for treatment planning are taken in synchronization with the respiratory motion. For patient positioning, digitized fluoroscopic images superimposed with the respiration waveform were used. The relation between the respiratory sensor signal and the organ motion was examined using digitized video images from fluoroscopy. The performance of our gated system was demonstrated by using the moving phantom, and dose profiles were measured in the direction of phantom motion. The timing of gate-on is set at the end of the expiratory phase, because the motion of the diaphragm is slower and more reproducible than during the inspiratory phase. The signal of the respiratory sensor shows a phase difference of 120 milliseconds between lower and upper locations on the chest wall. The motion of diaphragm is delayed by 200 milliseconds from the respiration waveform at the lower location. The beam extraction system worked according to the beam on/off logic for gating, and the gated CT scanner performed well. The lateral penumbra size of the dose profile along the moving axis was distinguishably decreased by the gated irradiation. The ratio of the nongated to gated lateral fall-off was 4.3, 3.5, and 2. 0 under the stroke of 40.0, 29.0, and 13.0 mm respectively. We developed a total treatment system of gated irradiation for heavy-ion radiotherapy. We found that with this system the target margin along the body axis could be decreased to 5-10 mm although the

  14. Two-Pion Interferometry for the Granular Source in Heavy Ion Collisions at LHC Energies

    Institute of Scientific and Technical Information of China (English)

    尹洪杰; 安飞; 张卫宁

    2012-01-01

    The space-time characters of the pion-emitting sources produced in the heavy ion collisions at the Large Hadron Collider (LHC) energies are investigated in a granular source model of quark-gluon plasma droplets. The results of two-pion interferometry indicate that the longi- tudinal interferometry radius is sensitive to the initial breakup time of the system. For a larger breakup time the values of the longitudinal interferometry radius for the LHC source are larger than that of the source produced in the collisions at the Relativistic Heavy Ion Collider's (RHIC) top energy. However, the values of the longitudinal radius are smaller if the source fragments at a smaller breakup time with a higher initial temperature of the droplets. The values of the transverse interferometry radius in the "side" direction for the LHC sources are larger than those for the RHIC source. The imaging analyses for the characteristic quantities of the granular sources are consistent with the interferometry radii.

  15. Double-scattering mechanism of production of two $\\rho^0$ mesons in ultraperipheral, ultrarelativistic heavy ion collisions

    CERN Document Server

    Szczurek, Antoni

    2015-01-01

    We study, for the first time, differential distributions for two $\\rho^0$ meson production in exclusive ultraperipheral, ultrarelativistic heavy ion collisions via a double-scattering mechanism. The calculations are done in the impact parameter space. The cross section for $\\gamma A \\to \\rho^0 A$ is parametrized based on an existing model. Smearing of $\\rho^0$ masses is taken into account. The results of calculations for single and double-$\\rho^0$ production are compared to experimental data at the RHIC and LHC energies. The mechanism considered gives a significant contribution to the $AA \\to AA \\pi^+\\pi^-\\pi^+\\pi^-$ reaction. Some observables related to charged pions are presented too. We compare results of our calculations with the STAR collaboration results for four charged pion production.

  16. Can dissipation prevent explosive decomposition in high-energy heavy ion collisions?

    CERN Document Server

    Fraga, E S; Fraga, Eduardo S.

    2005-01-01

    We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented.

  17. Physics of Heavy Ions Collisions The Summary of Moriond-97

    CERN Document Server

    Shuryak, E V

    1997-01-01

    CERN dilepton experiments have provided the most exciting data. Strong enhancement at low masses observed by CERES and HELIOS3 indicate strong modification in the vector channel in matter compared to vacuum properties. NA50 data on $J/\\psi$ suppression in PbPb collisions show surprising deviation from the previous trend. The question is whether it is the expected early-time signal of QGP, or due to late-time hadronic interactions. Theoretical and experimental suggestions have been made to resolve this issue. BNL and SPS experiments have also provided rather complete data with heavy beams (Au and Pb, respectively). Very strong collective flow effects have been observed at both energies, which allow for the first time to restrict the EOS of the hadronic matter. Several observables (flow, Coulomb effects and HBT) suggest rather long evolution of systems created in heavy ion collisions and very low freeze-out densities relative to previous studies. Theory of jet stopping in QGP is becoming quantitative.

  18. Elastic wave from fast heavy ion irradiation on solids

    CERN Document Server

    Kambara, T; Kanai, Y; Kojima, T M; Nanai, Y; Yoneda, A; Yamazaki, Y

    2002-01-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al sub 2 O sub 3), fused silica (SiO sub 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the...

  19. Elastic wave from fast heavy ion irradiation on solids

    Science.gov (United States)

    Kambara, T.; Kageyama, K.; Kanai, Y.; Kojima, T. M.; Nanai, Y.; Yoneda, A.; Yamazaki, Y.

    2002-06-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al 2O 3), fused silica (SiO 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the wave source was estimated. The result was compared with ion ranges calculated for these materials by TRIM code.

  20. Manifestation of transient effects in fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    We examine the manifestation of transient effects in fission by analysing experimental data where fission is induced by peripheral heavy-ion collisions at relativistic energies. Available total nuclear fission cross sections of {sup 238}U at1.A GeV on gold and uranium targets are compared with a nuclear-reaction code, where transient effects in fission are modelled using different approximations to the numerical time-dependent fission-decay width: a new analytical description based on the solution of the Fokker-Planck equation and two widely used but less realistic descriptions, a step function and an exponential-like function. The experimental data are only reproduced when transient effects are considered. The deduced value of the dissipation strength {beta} depends strongly on the approximation applied for the time-dependent fission-decay width and is estimated to be of the order of 2 x 10{sup 21} s{sup -1}. A careful analysis sheds severe doubts on the use of the exponential-like in-growth function largely used in the past. Finally, we discuss which should be the characteristics of experimental observables to be most sensitive to transient effects in fission. (orig.)

  1. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  2. Physical Modelling of Proton and Heavy Ion Radiation using Geant4

    Directory of Open Access Journals (Sweden)

    Douglass M.

    2012-10-01

    Full Text Available Protons and heavy ion particles are considered to be ideal particles for use in external beam radiotherapy due to superior properties of the dose distribution that results when these particles are incident externally and due to their relative biological effectiveness. While significant research has been performed into the properties and physical dose characteristics of heavy ions, the nuclear reactions (direct and fragmentation undergone by He4, C12 and Ne20 nuclei used in radiotherapy in materials other than water is still largely unexplored. In the current project, input code was developed for the Monte Carlo toolkit Geant 4 version 9.3 to simulate the transport of several mono-energetic heavy ions through water. The relative dose contributions from secondary particles and nuclear fragments originating from the primary particles were investigated for each ion in both water and dense bone (ICRU media. The results indicated that the relative contribution to the total physical dose from nuclear fragments increased with both increasing particle mass and with increasing medium density. In the case of 150 MeV protons, secondary particles were shown to contribute less than 0.5% of the peak dose and as high as 25% when using 10570 MeV neon ions in bone. When water was substituted for a bone medium, the contributions from fragments increased by more than 6% for C12 and Ne20.

  3. rho^0 Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR

    CERN Document Server

    Abelev, B I

    2007-01-01

    Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of rho^0 and direct pi^+pi^- photoproduction in ultra-peripheral relativistic heavy ion collisions at sqrt(s_{NN})=200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of sigma(AuAu) -> Au^*Au^*rho^0 = 530 pm 19 (stat.) pm 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho^0 transverse momentum spectrum (p_{T}^2 ) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find sigma_{inc}/sigma_{coh} = 0.29 pm 0.03 (stat.) pm 0.08 (syst.). The ratio of direct pi^+pi^- to rho^0 production is comparable to that observed in gamma p collisions at HERA, and appears to be independent of photon energy. ...

  4. Pre-equilibrium dynamics and heavy-ion observables

    CERN Document Server

    Heinz, Ulrich W

    2015-01-01

    To bracket the importance of the pre-equilibrium stage on relativistic heavy-ion collision observables, we compare simulations where it is modeled by either free-streaming partons or fluid dynamics. These cases implement the assumptions of extremely weak vs. extremely strong coupling in the initial collision stage. Accounting for flow generated in the pre-equilibrium stage, we study the sensitivity of radial, elliptic and triangular flow on the switching time when the hydrodynamic description becomes valid. Using the hybrid code iEBE-VISHNU we perform a multi-parameter search, constrained by particle ratios, integrated elliptic and triangular charged hadron flow, the mean transverse momenta of pions, kaons and protons, and the second moment $\\langle p_T^2\\rangle$ of the proton transverse momentum spectrum, to identify optimized values for the switching time $\\tau_s$ from pre-equilibrium to hydrodynamics, the specific shear viscosity $\\eta/s$, the normalization factor of the temperature-dependent specific bulk...

  5. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  6. Jet Energy Scale and its Uncertainties using the Heavy Ion Jet Reconstruction Algorithm in pp Collisions

    CERN Document Server

    Puri, Akshat; The ATLAS collaboration

    2017-01-01

    ATLAS uses a jet reconstruction algorithm in heavy ion collisions that takes as input calorimeter towers of size $0.1 \\times \\pi/32$ in $\\Delta\\eta \\times \\Delta\\phi$ and iteratively determines the underlying event background. This algorithm, which is different from the standard jet reconstruction used in ATLAS, is also used in the proton-proton collisions used as reference data for the Pb+Pb and p+Pb. This poster provides details of the heavy ion jet reconstruction algorithm and its performance in pp collisions. The calibration procedure is described in detail and cross checks using photon- jet balance are shown. The uncertainties on the jet energy scale and the jet energy resolution are described.

  7. NF-kB activation and its downstream target genes expression after heavy ions exposure

    Science.gov (United States)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a

  8. Morphology of High-Multiplicity Events in Heavy Ion Collisions

    CERN Document Server

    Naselsky, P; Christensen, P R; Damgaard, P H; Frejsel, A; Gaardhøje, J J; Hansen, A; Hansen, M; Kim, J; Verkhodanov, O; Wiedemann, U A

    2012-01-01

    We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the Cosmic Microwave Background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations t...

  9. Ultrarelativistic heavy ion collisions: the first billion seconds

    Science.gov (United States)

    Baym, Gordon

    2016-12-01

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter - the quark-gluon plasma primarily - and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  10. Study of the heavy ion bunch compression in CSRm

    Institute of Scientific and Technical Information of China (English)

    YIN Da-Yu; LIU Yong; YUAN You-Jing; YANG Jian-Cheng; LI Peng; LI Jie; CHAI Wei-Ping

    2013-01-01

    The feasibility of attaining nanosecond pulse length heavy ion beam is studied in the main ring (CSRm)of the Heavy Ion Research Facility in Lanzhou.Such heavy ion beam can be produced by non-adiabatic compression,and it is implemented by a fast rotation in the longitudinal phase space.In this paper,the possible beam parameters during longitudinal bunch compression are studied with the envelope model and Particle in Cell simulation,and the results are compared.The result shows that the short bunch 238U28+ with the pulse duration of about 50 ns at the energy of 200 MeV/u can be obtained which can satisfy the research of high density plasma physics experiment.

  11. Benchmarking of neutron production of heavy-ion transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6172 (United States); Ronningen, R. M. [Michigan State Univ., National Superconductiong Cyclotron Laboratory, East Lansing, MI 48824-1321 (United States); Heilbronn, L. [Univ. of Tennessee, 1004 Estabrook Rd., Knoxville, TN 37996-2300 (United States)

    2011-07-01

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)

  12. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  13. Ion source development for the Los Alamos heavy ion fusion injector

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, H.L.; Engelhardt, L.S.; Humphries, S.; Meyer, E.A.; Oona, H.; Shurter, R.P.

    1985-10-01

    A multi-beam injector is being designed and built at Los Alamos for the U.S. Heavy Ion Fusion Program. As part of this program, development of an aluminum-spark, pulsed plasma source is being carried out. Faraday cup diagnostics are used to study current emission and to map the current profile. An aluminum oxide scintillator with photographic film is used in conjunction with a pepper-pot to obtain time integrated emittance values.

  14. Ion source development for the Los Alamos heavy ion fusion injector

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, H.L.; Oona, H.; Meyer, E.A.; Shurter, R.P.; Engelhardt, L.S.; Humphries, S. Jr.

    1985-01-01

    A multi-beam injector is being designed and built at Los Alamos for the US Heavy Ion Fusion Program. As part of this program, development of an aluminum-spark, pulsed plasma source is being carried out. Faraday cup diagnostics are used to study current emission and to map the current profile. An aluminum oxide scintillator with photographic film is used in conjunction with a pepper-pot to obtain time integrated emittance values.

  15. Light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J.C. [Oak Ridge National Lab., TN (United States). Center for Computational Sciences; Segev, B. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States). Inst. for Theoretical Atomic and Molecular Physics

    1998-03-01

    The authors solve, in an ultrarelativistic limit, the time-dependent Dirac equation describing electron-positron pair production in peripheral relativistic heavy ion collisions using light front variables and a light-fronts representation, obtaining nonperturbative results for the free pair-creation amplitudes in the collider frame. Their result reproduces the result of second-order perturbation theory in the small charge limit while nonperturbative effects arise for realistic charges of the ions.

  16. Effects of an induced electric field on \\pi^{-}/\\pi^{+} ratio in heavy-ion collisions

    CERN Document Server

    Wei, Gao-Feng; Cao, Xin-Wei; Zhang, Yun-Liang

    2016-01-01

    Using an isospin- and momentum-dependent transport model, we examine the effects of an electric field induced by a variable magnetic field on the \\pi^{-}/\\pi^{+} ratio in central to peripheral heavy-ion collisions at beam energies of 400 and 1500MeV/nucleon. It is shown that while the induced electric field does not affect the total multiplicities of both $\\pi^{-}$ and $\\pi^{+}$ mesons at both the lower beam energy of 400MeV/nucleon and the higher beam energy of 1500MeV/nucleon, it reduces (enhances) the emission of $\\pi^{-}$ ($\\pi^{+}$) mesons in midrapidity, but enhances (reduces) the emission of $\\pi^{-}$ ($\\pi^{+}$) mesons in forward and backward rapidities especially for the more peripheral collisions at the lower beam energy because of the rapidly transient variable magnetic field at more peripheral collisions and longer reaction duration time at the lower beam energy. These findings indicate that the total \\pi^{-}/\\pi^{+} ratio is still a precisely reliable probe of symmetry energy at both the lower an...

  17. Pseudo-critical enhancement of thermal photons in relativistic heavy-ion collisions?

    Energy Technology Data Exchange (ETDEWEB)

    Hees, Hendrik van, E-mail: hees@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt (Germany); Institute for Theoretical Physics, Max-von-Laue-Straße 1, D-60438 Frankfurt (Germany); He, Min [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Rapp, Ralf [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-3366 (United States)

    2015-01-15

    We compute the spectra and elliptic flow of thermal photons emitted in ultrarelativistic heavy-ion collisions (URHICs) at RHIC and LHC. The thermal emission rates are taken from complete leading-order rates for the QGP and hadronic many-body calculations including baryons and antibaryons, as well as meson-exchange reactions (including Bremsstrahlung). We first update previous thermal fireball calculations by implementing a lattice-QCD based equation of state and extend them to compare to recent LHC data. We then scrutinize the space–time evolution of Au–Au collisions at RHIC by employing an ideal hydrodynamic model constrained by bulk- and multistrange-hadron spectra and elliptic flow, including a non-vanishing initial flow. We systematically compare the evolutions of temperature, radial flow, azimuthal anisotropy and four-volume, and exhibit the temperature profile of thermal photon radiation. Based on these insights, we put forward a scenario with a “pseudo-critical enhancement” of thermal emission rates, and investigate its impact on RHIC and LHC direct photon data.

  18. Pseudo-Critical Enhancement of Thermal Photons in Relativistic Heavy-Ion Collisions

    CERN Document Server

    van Hees, Hendrik; Rapp, Ralf

    2014-01-01

    We compute the spectra and elliptic flow of thermal photons emitted in ultrarelativistic heavy-ion collisions (URHICs) at RHIC and LHC. The thermal emission rates are taken from complete leading-order rates for the QGP and hadronic many-body calculations including baryons and antibaryons, as well as meson-exchange reactions (including Bremsstrahlung). We first update previous thermal fireball calculations by implementing a lattice-QCD based equation of state and extend them to compare to recent LHC data. We then scrutinize the space-time evolution of Au-Au collisions at RHIC by employing an ideal hydrodynamic model constrained by bulk- and multistrange-hadron spectra and elliptic flow, including a non-vanishing initial flow. We systematically compare the evolutions of temperature, radial flow, azimuthal anisotropy and four-volume, and exhibit the temperature profile of thermal photon radiation. Based on these insights, we put forward a scenario with a "pseudo-critical enhancement" of thermal emission rates, a...

  19. Two-Photon Interactions with Nuclear Breakup in Relativistic Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Anthony J.; Gorbunov, Yuri; R Klein, Spencer; Nystrand, Joakim

    2010-07-07

    Highly charged relativistic heavy ions have high cross-sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, since the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs, and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross-sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross-sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.

  20. Lanthanides in Nuclear Medicine. The Production of Terbium-149 by Heavy Ion Beams

    CERN Document Server

    Dmitriev, S N; Zaitseva, N G; Maslov, O D; Molokanova, L G; Starodub, G Ya; Shishkin, S V; Shishkina, T V

    2001-01-01

    Among radioactive isotopes of lanthanide series elements, finding the increasing using in nuclear medicine, alpha-emitter {149}Tb (T_{1/2} = 4.118 h; EC 76.2 %; beta^+ 7.1 %; alpha 16.7 %) is considered as a perspective radionuclide for radioimmunotherapy. The aim of the present work is to study experimental conditions of the {149}Tb production in reactions Nd({12}C, xn){149}Dy (4.23 min; beta^+, EC)\\to {149}Tb when the Nd targets have been irradiated by heavy ions of carbon. On the basis of results of formation and decay of {149}Dy\\to{149}Tb evaluation of the {149}Tb activity, is made which can be received under optimum conditions (enriched {142}Nd target, {12}C ions with the energy 120 MeV and up to current 100 mu A, time of irradiating 8-10 hours). Under these conditions {149}Tb can be obtained up to 30 GBq (up to 0.8 Ci).

  1. Simulating Electron Clouds in Heavy-Ion Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik,A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J-L.; Stoltz, P.; Veitzer, S.

    2005-04-07

    Contaminating clouds of electrons are a concern for most accelerators of positive-charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly-, weakly-, and un-magnetized. They describe their approach to such self-consistency, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyro period in the magnets. They present tests and applications: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the High-Current Experiment (HCX) at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam and an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-timestep mover to accurately calculate the instability.

  2. Propagation of heavy baryons in heavy-ion collisions

    Science.gov (United States)

    Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2016-12-01

    The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.

  3. Fifth high-energy heavy-ion study

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base. (GHT)

  4. Potential of stochastic cooling of heavy ions in the LHC

    CERN Document Server

    Schaumann, M; Blaskiewicz, M

    2013-01-01

    The dynamics of the high intensity lead beams in the LHC are strongly influenced by intra-beam scattering (IBS), leading to significant emittance growth and particle losses at all energies. Particle losses during collisions are dominated by nuclear electromagnetic processes and the debunching effect arising from the influence of IBS, resulting in a non-exponential intensity decay during the fill and short luminosity lifetimes. In the LHC heavy ion runs, 3 experiments will be taking data and the average fill duration will be rather short as a consequence of the high burn-off rate. The achievements with stochastic cooling at RHIC suggest that such a system at LHC could substantially reduce the emittance growth and the debunching component during injection and collisions. The luminosity lifetime and fill length could be improved to optimize the use of the limited run time of 4 weeks per year. This paper discusses the first results of a feasibility study to use stochastic cooling on the lead ion beams in the LHC....

  5. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  6. Effects of heavy-ion irradiation on FeSe

    Science.gov (United States)

    Sun, Yue; Park, Akiyoshi; Pyon, Sunseng; Tamegai, Tsuyoshi; Kambara, Tadashi; Ichinose, Ataru

    2017-03-01

    We report the effects of heavy-ion irradiation on FeSe single crystals by irradiating uranium up to a dose-equivalent matching field of Bϕ=16 T. Almost continuous columnar defects along the c axis with a diameter of ˜10 nm are confirmed by high-resolution transmission electron microscopy. Tc is found to be suppressed by introducing columnar defects at a rate of d Tc/d Bϕ˜-0.29 K/T, which is much larger than those observed in iron pnictides. This unexpected large suppression of Tc in FeSe is discussed in relation to the large diameter of the columnar defects as well as its unique band structure with a remarkably small Fermi energy. The critical current density is first dramatically enhanced with irradiation reaching a value over ˜2 ×105A /cm2 (˜5 times larger than that of the pristine sample) at 2 K (self-field) with Bϕ=2 T, then gradually suppressed with increasing Bϕ. The δ l pinning associated with charge-carrier mean-free-path fluctuations and the δ Tc pinning associated with spatial fluctuations of the transition temperature are found to coexist in the pristine FeSe, while the irradiation increases the contribution from δ l pinning and makes it dominant over Bϕ=4 T.

  7. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  8. Coulomb driven energy boost of heavy ions for laser plasma acceleration

    CERN Document Server

    Braenzel, J; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2014-01-01

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultra thin gold foils have been irradiated by an ultra short laser pulse at an intensity of $6\\times 10^{19}$ W/cm$^{2}$. Highly charged gold ions with kinetic energies up to $> 200$ MeV and a bandwidth limited energy distribution have been reached by using $1.3$ Joule laser energy on target. $1$D and $2$D Particle in Cell simulations show how a spatial dependence on the ions ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a varying charge density along the target normal and is capable of explaining the energy boost of highly charged ions, leading to a higher efficiency in laser acceleration of heavy ions.

  9. Conference on the Intersections of Particle and Nuclear Physics 2003 Relativistic Heavy Ion Parallel Session Summary

    CERN Document Server

    Nagle, J L

    2003-01-01

    The Relativistic Heavy Ion Collider (RHIC) came online in 2000, and the last three years have provided a wealth of new experimental data and theoretical work in this new energy frontier for nuclear physics. The transition from quarks and gluons bound into hadrons to a deconfined quark-gluon plasma is expected to occur at these energies, and the effort to understand the time evolution of these complex systems has been significantly advanced. The heavy ion parallel session talks from the Conference on the Intersections of Particle and Nuclear Physics (CIPANP) 2003 are posted at: http://www.phenix.bnl.gov/WWW/publish/nagle/CIPANP/. We provide a brief summary of these sessions here.

  10. Probing the nuclear equation-of-state and the symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Verde Giuseppe

    2014-03-01

    Full Text Available The present status of studies aimed at constraining the nuclear equation of state with heavy-ion collision dynamics is presented. Multifragmentation phenomena, including their isotopic distributions, charge correlations and emission time-scales, may revel the existence of liquid-gas transitions in the phase diagram. Exploring the isotopic degree of freedom in nuclear dynamics is then required in order to constrain the equation of state of asymmetric nuclear matter which presently represents a major priority due to its relevance to both nuclear physics and astrophysics. Some observables that have successfully constrained the density dependence of the symmetry energy are presented, such as neutron-proton yield ratios and isospin diffusion and drift phenomena. The reported results and status of the art is discussed by also considering some of the present problems and some future perspectives for the heavy-ion collision community.

  11. More than mass proportional heating of heavy ions by supercritical collisionless shocks in the solar corona

    CERN Document Server

    Zimbardo, Gaetano

    2009-01-01

    We propose a new model for explaining the observations of more than mass proportional heating of heavy ions in the polar solar corona. We point out that a large number of small scale intermittent shock waves can be present in the solar corona. The energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field ${\\bf E} = - (1/c) {\\bf V} \\times {\\bf B}$. The acceleration due to ${\\bf E}$ is perpendicular to the magnetic field, in agreement with observations, and is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O$^{5+}$ ions and protons in the polar corona, and between $\\alpha$ particles and protons in the solar wind are easily recovered.

  12. Laser ion source for isobaric heavy ion collider experiment.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  13. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  14. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  15. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  16. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  17. Hydrodynamics in heavy-ion collisions: recent developments

    CERN Document Server

    Jaiswal, Amaresh

    2016-01-01

    Relativistic hydrodynamics has been quite successful in explaining the collective behaviour of the QCD matter produced in high energy heavy-ion collisions at RHIC and LHC. We briefly review the latest developments in the hydrodynamical modeling of relativistic heavy-ion collisions. Essential ingredients of the model such as the hydrodynamic evolution equations, dissipation, initial conditions, equation of state, and freeze-out process are reviewed. We discuss observable quantities such as particle spectra and anisotropic flow as well as the event-by-event fluctuations of these quantities. We also discuss the extraction of transport coefficients of the hot and dense QCD matter from the experimental data of collective flow.

  18. Swift heavy ions for materials engineering and nanostructuring

    CERN Document Server

    Avasthi, Devesh Kumar

    2011-01-01

    Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.

  19. Heavy-ion induced electronic desorption of gas from metals

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Kramer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2006-12-19

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  20. Laser-driven multicharged heavy ion beam acceleration

    Science.gov (United States)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  1. High-Intensity, High Charge-State Heavy Ion Sources

    CERN Document Server

    Alessi, J

    2004-01-01

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions will be reviewed. These sources include ECR, EBIS, and Laser ion sources. The benefits and limitations for these type sources will be described, for both dc and pulsed applications. Possible future improvements in these type sources will also be discussed.

  2. Antiradiation vaccine: Technology and development of prophylaxis, prevention and treatment of biological consequences from Heavy Ion irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    . Results: Group A -100% mortality within two hours after heavy ion irradiation with clinical symptoms of the acute cerebrovascular and cardiovascular syndromes. Group B -100% mortal-ity within 15 hours following irradiation. Group C -100% mortality within 14-15 hours after irradiation. Group D -100% mortality within 15-16 hours after irradiation. In groups A-D, development of the acute radiation cerebrovascular and cardiovascular syndromes as well as ex-tensive burns of skin caused rapid death. Group E -100% mortality in 280-290 hours (12 days) following heavy ion irradiation while animals were exhibiting a combination or individual forms of the acute cerebrovascular, cardiovascular, and gastrointestinal forms and focal skin burns. Discussion: The Antiradiation Vaccine (ARV) and specific immune-prophylaxis are an effective method of neutralization of Radiation Toxins. Vaccination with the ARV significantly extended the survival time after irradiation with heavy ions from two hours up to 300 hours. Clinical signs, clinical features, symptoms were somewhat attenuated. Degree of clinical forms of the Acute Radiation Syndromes were diminished in their severity. Groups A-D demonstrated an extremely severe degree (Degree 4) of Cerebrovascular and Cardiovascular forms of the Acute Radiation Syndromes and lethality 100% was registered in a short time after irradiation. Radi-ation induced burns in this groups (with Cutaneous sub-syndrome of ARS -Degree 4) that were deep with extensive and total dysfunction and possible muscle involvement developed. Animals from group E -Radioprotectant -anti-radiation vaccine had demonstrated later development of the severe Degree 3 or even Degree 2-3 forms of Cerebrovascular and Cardiovascular forms of the ARS and a survival time of irradiated animals was significantly prolonged. Cutaneous sub-syndrome developed in Degree 3 or Degree 2-3. Our results have demonstrated the potential radioprotection efficacy of specific immune-prophylaxis with the

  3. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure.

    Directory of Open Access Journals (Sweden)

    Amrita K Cheema

    Full Text Available Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS two months after 2 Gy γ radiation and results were compared to an equitoxic ⁵⁶Fe (1.6 Gy radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the ⁵⁶Fe radiation preferentially altered dipeptide metabolism. Furthermore, ⁵⁶Fe radiation caused upregulation of 'prostanoid biosynthesis' and 'eicosanoid signaling', which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but

  4. Neutron time-of-flight spectrometer based on HIRFL for studies of spallation reactions related to ADS project

    Institute of Scientific and Technical Information of China (English)

    张苏雅拉吐; 罗飞; 陈志强; 韩瑞; 刘星泉; 林炜平; 刘建立; 石福栋; 任培培; 田国玉

    2015-01-01

    A Neutron Time-of-Flight (NTOF) spectrometer, based at the Heavy Ion Research Facility in Lanzhou (HIRFL) was developed for studies of neutron production of proton induced spallation reactions related to the ADS project. After the presentation of comparisons between calculated spallation neutron production double-differential cross sections and the available experimental data, a detailed description of the NTOF spectrometer is given. Test beam results show that the spectrometer works well and data analysis procedures are established. The comparisons of the test beam neutron spectra with those of GEANT4 simulations are presented.

  5. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV {sup 36}Ar + {sup 27}Al, {sup 112}Sn, {sup 124}Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the {sup 36}Ar + {sup 27}Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution.

  6. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV {sup 36}Ar + {sup 27}Al, {sup 112}Sn, {sup 124}Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the {sup 36}Ar + {sup 27}Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution.

  7. Heavy ion beams from an Alphatross source for use in calibration and testing of diagnostics

    Science.gov (United States)

    Ward, R. J.; Brown, G. M.; Ho, D.; Stockler, B. F. O. F.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.

    2016-10-01

    Ion beams from the 1.7 MV Pelletron Accelerator at SUNY Geneseo have been used to test and calibrate many inertial confinement fusion (ICF) diagnostics and high energy density physics (HEDP) diagnostics used at the Laboratory for Laser Energetics (LLE). The ion source on this accelerator, a radio-frequency (RF) alkali-metal charge exchange source called an Alphatross, is designed to produce beams of hydrogen and helium isotopes. There is interest in accelerating beams of carbon, oxygen, argon, and other heavy ions for use in testing several diagnostics, including the Time Resolved Tandem Faraday Cup (TRTF). The feasibility of generating these heavy ion beams using the Alphatross source will be reported. Small amounts of various gases are mixed into the helium plasma in the ion source bottle. A velocity selector is used to allow the desired ions to pass into the accelerator. As the heavy ions pass through the stripper canal of the accelerator, they emerge in a variety of charge states. The energy of the ion beam at the high-energy end of the accelerator will vary as a function of the charge state, however the maximum energy deliverable to target is limited by the maximum achievable magnetic field produced by the accelerator's steering magnet. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  9. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Bjoern [BNL Physics Department

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  10. Conceptional Design of Heavy Ion Linac Injector for HIRFL-CSRm

    CERN Document Server

    Zhang, Xiaohu; Xia, Jiawen; Yin, Xuejun; Yin, Dayu; Li, Xiaoni; Xie, Xiucui; Du, Heng; Li, zhongshan

    2013-01-01

    A room temperature heavy ion linac has been proposed as a new injector of CSRm (the main Cooler Storage Ring) at HIRFL (Heavy Ion Research Facility in Lanzhou), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ion with maximum mass to charge ratio of 7 and injection kinetic energy of 7.272MeV/u for CSRm, and the pulsed beam intensity is 3emA with the duty factor of 3%. Compared with the present cyclotron injector SFC (Sector Focusing Cyclotron), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48MHz 4-rod RFQ accelerates ion beam from 4keV/u to 300keV/u, which achieves the transmission efficiency of 95.3% with 3.07m long vanes. The phase advance has been taken into account to analysis the error tolerance, and parametric resonance have been carefully avoided by adjusting the structure parameters. KONUS IH-DTLs, which follow the RFQ, accelerate the ions up to the energy of 7.272MeV/u and inject into HIRFL-CSRm. Th...

  11. Modification of semiconductor or metal nanoparticle lattices in amorphous alumina by MeV heavy ions

    Science.gov (United States)

    Bogdanović Radović, I.; Buljan, M.; Karlušić, M.; Jerčinović, M.; Dražič, G.; Bernstorff, S.; Boettger, R.

    2016-09-01

    In the present work we investigate effects of MeV heavy ions (from 0.4 MeV Xe to 15 MeV Si) on regularly ordered nanoparticle (NP) lattices embedded in amorphous alumina matrix. These nanostructures were produced by self-assembling growth using magnetron-sputtering deposition. From grazing incidence small-angle x-ray scattering measurements we have found that the used MeV heavy ions do not change the NP sizes, shapes or distances among them. However, ions cause a tilt of the entire NP lattice in the direction parallel to the surface. The tilt angle depends on the incident ion energy, type and the applied fluence and a nearly linear increase of the tilt angle with the ion fluence and irradiation angle was found. This way, MeV heavy ion irradiation can be used to design custom-made NP lattices. In addition, grazing incidence small-angle x-ray scattering can be effectively used as a method for the determination of material redistribution/shift caused by the ion hammering effect. For the first time, the deformation yield in amorphous alumina was determined for irradiation performed at the room temperature.

  12. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Liu, Hong; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2014-06-01

    1. Opening remarks; 2. A heavy ion phenomenology primer; 3. Results from lattice QCD at nonzero temperature; 4. Introducing the gauge/string duality; 5. A duality toolbox; 6. Bulk properties of strongly coupled plasma; 7. From hydrodynamics for far-from-equilibrium dynamics; 8. Probing strongly coupled plasma; 9. Quarkonium mesons in strongly coupled plasma; 10. Concluding remarks and outlook; Appendixes; References; Index.

  13. Electron cloud studies for heavy-ion and proton machines

    CERN Document Server

    Petrov, F; Weiland, Th

    2013-01-01

    Electron cloud effects are a known problem in various accelerator facilities around the world. Electron clouds cause instabilities and emittance growth in positron and proton beams as well as in heavy ion beams. Most of the hadron machines experience the build-up of EC due to the multipacting. In LHC and in positron machines production of electrons due to the synchrotron radiation becomes as important as the build-up due to the secondary emission. The main source of seed electrons in heavy ion machines is the residual gas ionization. FAIR facility in Darmstadt will operate with heavy-ion and proton beams. However, the beam parameters are such that the multipacting will start to play a role only for the unconditioned wall with the secondary emission yieldmore than 1.8. In this paperwe study the electron cloud build-up and its effect on the beam stability for FAIR heavy-ion coasting beams. These beams will be used during slow extraction. Electron scattering on the beam ions and its effect on the final neutraliz...

  14. Evolution of clusters in energetic heavy ion bombarded amorphous graphite

    CERN Document Server

    Akhtar, M N; Ahmad, Shoaib

    2016-01-01

    Carbon clusters have been generated by a novel technique of energetic heavy ion bombardment of amorphous graphite. The evolution of clusters and their subsequent fragmentation under continuing ion bombardment is revealed by detecting various clusters in the energy spectra of the direct recoils emitted as a result of collision between ions and the surface constituents.

  15. Ionization of Sodium Cluster by Heavy Ion Impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Energetic ions have recently been used as an efficient means to produce highly charged cold clusters~[1]. There are two ways to obtain highly-charged clusters: low-fluence nano-second lasers irradiation and energetic highly charged ions impact. Compared to the low-density laser, heavy ions, e.g. delivered by ECR sources, have the

  16. Charm resonance production in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Arnaldi Roberta

    2015-01-01

    Full Text Available The production of charmonium states plays an important role among the probes to investigate the formation of a plasma of quarks and gluons (QGP in heavy-ion collisions. A review of the main J/ψ and ψ(2S results is presented, focussing on the most recent achievements from the LHC experiments.

  17. Connecting QGP-Heavy Ion Physics to the Early Universe

    CERN Document Server

    Rafelski, Johann

    2013-01-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  18. Connecting QGP-Heavy Ion Physics to the Early Universe

    Science.gov (United States)

    Rafelski, Johann

    2013-10-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  19. Connecting QGP-Heavy Ion Physics to the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann

    2013-10-15

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  20. A short course on relativistic heavy ion collisions

    CERN Document Server

    Chaudhuri, A K

    2012-01-01

    Some ideas/concepts in relativistic heavy ion collisions are discussed. To a large extent, the discussions are non-comprehensive and non-rigorous. It is intended for fresh graduate students of Homi Bhabha National Institute, Kolkata Centre, who are intending to pursue career in theoretical /experimental high energy nuclear physics. Comments and criticisms will be appreciated.