WorldWideScience

Sample records for heavy-ion nuclear reaction

  1. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  2. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  3. Theory of nuclear reactions, with applications to heavy ion scattering reactions

    International Nuclear Information System (INIS)

    Youssef, M.S.A.

    1981-01-01

    Nuclear science to day, has gained its stature through the pioneer work of both theorists and experimentalists within its two main divisions, Nuclear Reaction and Nuclear Structure theories. Our main interest in this theoretical work in nuclear reaction theory is focused on three topics, come under the headings of three parts which are the constituents of the present paper. Part 1 is concerned with ''Contributions to the theory of Threshold phenomena in nuclear reactions; cluster threshold states in heavy ion reactions''. Part II is devoted to ''Hermiticity of the Laplacian operator, R-matrix theories and direct interaction theory'', while part xII is ascribed to ''Heavy ion transfer reactions and scattering''. The aforementioned selected topics are the backbones of this thesis, which starts with general introduction giving a brief account about the material included in. In each part, investiqations are given in an extended manner through several chapters. Finally, the thesis is ended eith the chapter on ''General Discussions and Conclusions''. Appendices, references, and figure captions are found at the end of each part, the matter which we believe to facilitate much the reading through of the thesis. The first two parts are based (to some extent) on the same formal background (R-matrix, Kapur-Peierls-theories) and they converge to solve some physical problems originating from flux conservation laws in nuclear reactions, while the third part is indirect related to the first two; in principle it joins the other two parts under computational aspects. All of them after all, form the solidarity of the material included in the thesis. (author)

  4. The heavy-ion total reaction cross-section and nuclear transparancy

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-10-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparancy is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determing σ sub(R) at lower energies. (Author) [pt

  5. The heavy-ion total reaction cross-section and nuclear transparency

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-01-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparency is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determining σ(sub R) at lower energies. (Author) [pt

  6. Mechanism of nuclear dissipation in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1986-01-01

    Recent advances in the theoretical understanding of nuclear dissipation at intermediate excitation energies are reviewed, with particular emphasis on a new surface-plus-window mechanism that involves interactions of either one or two nucleons with the moving nuclear surface and also, for dumbbell-like shapes encountered in fission and heavy-ion reactions, the transfer of nucleons through the window separating the two portions of the system. This novel dissipation mechanism provides a unified macroscopic description of such diverse phenomena as widths of isoscalar giant quadrupole and giant octupole resonances, mean fission-fragment kinetic energies and excitation energies, dynamical thresholds for compound-nucleus formation, enhancement in neutron emission prior to fission, and widths of mass and charge distributions in deep-inelastic heavy-ion reactions. 41 refs., 8 figs

  7. Dynamical calculations of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1984-01-01

    With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references

  8. Nuclear physics with heavy ions. 1

    International Nuclear Information System (INIS)

    Reif, R.; Schmidt, R.

    1981-01-01

    Some results obtained in nuclear physics with heavy ions in the energy range up to 10 MeV/nucleon are summarized. A short review of the tendencies in the development of heavy ion accelerators is followed by a classification of the mechanisms observed in heavy ion interactions. The characteristics of the various types of reactions are presented. Applications of heavy ion beams in other branches of sciences are discussed. (author)

  9. Theory of nuclear heavy-ion direct transfer reactions

    International Nuclear Information System (INIS)

    Crowley, B.J.B.

    1979-01-01

    We review the distorted-wave approach to direct transfer reactions and draw attention to some of the shortcomings of current theories. We show that a reformulated form of the distorted-wave Born approximation (DWBA) for transfer can lead to important simplifications of the theory, which are valid for nuclear heavy-ion induced reactions at energies > or approx. =MeV/nucleon. In particular, in the semiclassical limit, it leads to a new and simple formula for the transfer t-matrix which includes all the essential physics while offering several important advantages over standard ''full-recoil finite-range'' DWBA. One such advantage is that the new formula is more transparent in that it is amendable to interpretation and analytical manipulation. At high-energy it is shown to reduce to one earlier deduced using eikonal-DWBA. The conditions for the validity of the new theory are discussed in detail. They are shown to be generally well satisfied for small-mass transfer between heavy-ions at energies at or above those particularly favour transfer (> or approx. =10 MeV/nucleon for transfer of valence nucleons). The restriction to small mass is not due to any recoil approximation; in fact, it is only a necessary restriction at certain energies. The theory treats recoil exactly. Consideration of the optimum dynamical conditions for transfer leads to a set of matching conditions. The presence of hitherto neglected absorption, arising from dynamical effects of poor matching, it suggested and qualitatively discussed. Condition under which such absorption may be neglected are derived. Results of numerical calculations are presented showing that the theory is capable of good agreement with standard full-recoil finite-range DWBA, and that it is capable of giving at least as good an account of experimental data for nucleon-transfer between heavy-ions at energies approx.10 MeV/nucleon

  10. Research in heavy-ion nuclear physics

    International Nuclear Information System (INIS)

    Sanders, S.J.; Prosser, F.W.

    1992-01-01

    This report discusses the following topics: Fusion-fission in light nuclear systems; High-resolution Q-value measurement for the 24 Mg+ 24 Mg reaction; Heavy-ion reactions and limits to fusion; and Hybrid MWPC-Bragg curve detector development

  11. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  12. Nuclear rotational population patterns in heavy-ion scattering and transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J O; Stoyer, M A [Lawrence Berkeley Lab., CA (USA); Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil); Ring, P [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1991-05-01

    A model of {sup 239}Pu with decoupled neutron is used for theoretical calculations of rotational population patterns in heavy ion inelastic scattering and one-neutron transfer reactions. The system treated in {sup 90}Zr on {sup 239}Pu at the near-barrier energy of 500 MeV and backscattering angles of 180deg and 140deg. The influence of the complex nuclear optical potential is seen to be very strong, and the Nilsson wave function of the odd neutron produces a distinctive pattern in the transfer reaction. (orig.).

  13. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  14. Heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1977-06-01

    To complement discussions on the role of γ rays in heavy ion induced reactions, the author discusses the role played by particle detection. Transfer reactions are part of this subject and are among those in which one infers the properties of the residual nucleus in a reaction by observing the emerging light nucleus. Inelastic scattering ought not be excluded from this subject, although no particles are transferred, because of the role it plays in multistep reactions and in fixing O.M. parameters describing the entrance channel of the reaction. Heavy ion transfer reaction studies have been under study for some years and yet this research is still in its infancy. The experimental techniques are difficult and the demands on theory rigorous. One of the main products of heavy ion research has been the thrust to re-examine the assumptions of reaction theory and now include many effects neglected for light ion analysis. This research has spurred the addition of multistep processes to simple direct processes and coupled channel calculations. (J.R.)

  15. Nuclear physics with polarized heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Grawert, G.; Turkiewicz, I.M.

    1992-01-01

    Polarized heavy ion beams ( 6 Li, 7 Li, 23 Na) have been in use as tools for the investigation of nuclear scattering and nuclear reactions for almost two decades. This review attempts to survey the research activities in this field with reference to nuclear structure, nuclear dynamics and reaction mechanisms. Besides reviewing the results from full quantum mechanical coupled channels analyses of data, special attention is paid to handwaving arguments and semiclassical pictures as a complementary way of obtaining a better understanding of the relevant physics. (orig.)

  16. New aspects of high energy heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1975-03-01

    New aspects of heavy ion reactions at incident energies in the region of 10 MeV/nucleon are discussed with an emphasis on the peripheral nature of the collisions, which leads to simplicities in the differential cross sections. The distortion of the peripheral distribution through the interference of direct and multistep processes is used to illustrate aspects of high energy reactions unique to heavy ions. The simplicities of the distributions for reactions on lighter nuclei are exploited to give new information about nuclear structure from direct and compound reactions at high energy. (16 figures, 32 references) (U.S.)

  17. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Newton, J.O.

    1988-09-01

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  18. Resonances and fusion in heavy ion reactions: new models and developments

    International Nuclear Information System (INIS)

    Cindro, N.

    1982-01-01

    Several aspects of the problem of the resonant behaviour of heavy-ion induced reactions are discussed. First, the problem is set in its relation to fundamental nuclear physics and our understanding of nuclear structure. It is suggested that, if the resonant behaviour of heavy-ion reactions is indeed due to the presence of particular configurations in the composite systems, these configurations must have a very specific nature which prevents their mixing with the adjacent states or else other conditons (e.g. low level density) should be met. Further on, the problem of resonant behaviour observed in back-angle elastic scattering and in forward-angle reaction data is discussed. Collisions between heavy ions leading to the composite systems 36 Ar and 40 Ca are used to discuss the apparent lack of correlation between these two sets of data. A way to understand it, based on the fragmentation of broad resonances, is suggested. In the third part the relation between structure in the fusion cross section excitation functions and that in reaction channel cross sections is discussed. Finally, in the fourth part, the orbiting-cluster model of heavy-ion resonances is briefly described and its predictions discussed. Based on this model a list is given of colliding heavy-ion systems where resonances are expected. (author)

  19. Dynamics of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1979-01-01

    Large-amplitude collective motion in fission and heavy-ion reactions is studied by solving classical equations of motion for the time evolution of the nuclear shape. In the nuclear potential energy of deformation, the generalized surface energy was calculated by means of a double volume integral of a Yukawa-plus-exponential function, which was obtained by requiring that two semi-infinite slabs of constant-density nuclear matter have minimum energy at zero separation. The collective kinetic energy is calculated for nuclear flow that is a superposition of incompressible, nearly irrotational collective-shape motion and rigid-body rotation. Nuclear dissipation is included by means of the Rayleigh dissipation function, which depends upon the physical mechanism that converts collective energy into internal energy. For both ordinary two-body viscosity and a combined wall and window one-body dissipation, fission-fragment kinetic energies are calculated for the fission of nuclei throughout the periodic table and compare with experimental results. Finally, the one-body dynamics of nucleons inside a cylinder colliding with a moving piston is explicitly studied by solving exactly the collisionless Boltzmann equation for the distribution function. By examining the relative phases of the pressure at the piston and the piston's velocity, a dissipative force and an elastic restoring force can be separately identified. 9 references

  20. [Reaction mechanism studies of heavy ion induced nuclear reactions]: Annual progress report, October 1987

    International Nuclear Information System (INIS)

    Mignerey, A.C.

    1987-10-01

    The experiments which this group has been working on seek to define the reaction mechanisms responsible for complex fragment emission in heavy ion reactions. The reactions studied are La + La, La + Al, and La + Cu at 46.8 MeV/u; and Ne + Ag and Ne + Au reactions at 250 MeV/u. Another experimental program at the Oak Ridge Hollifield Heavy Ion Research Facility (HHIRF) is designed to measure the excitation energy division between reaction products in asymmetric deep inelastic reactions. A brief description is given of progress to date, the scientific goals of this experiment and the plastic phoswich detectors developed for this experiment

  1. Determination of cross sections of nuclear reactions to use Al as monitoring foil in heavy ion irradiation with 20Ne projectile

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Datta, J.; Guin, R.; Verma, R.

    2009-01-01

    The beam current is generally accurately measured using monitoring foils during the irradiation of thick samples by high energy ion beams. The cross sections of many nuclear reactions induced by light particles are available in literature for use as monitoring foil. However, such cross sections of heavy ion induced reactions are not reported much for their use in applied works. We have determined cross sections of two nuclear reactions, 27 Al ( 20 Ne,2p2n) 43 Sc and 27 Al ( 20 Ne, 2pn) 44m Sc, to use Al as monitoring foil for the irradiation with 20 Ne heavy ion beam. (author)

  2. Application of radioanalytical techniques in the study of the products of heavy-ion reactions

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1989-01-01

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since then it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The large variety of possible reactions gives rise to a multitude of products, which have been studied by many chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low-yield species from the plethora of other nuclides present. Heavy-ion reactions have been essential for the production of the transmendelevium elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions and deeply inelastic reactions have been elucidated using chemical techniques. The variety of chemical procedures and techniques which have been developed for the study of heavy-ion reactions and their products has been examined. The determination of the chemical properties of the transmendelevium elements, which are very short-lived and can only be produced an ''atom at a time'' via heavy-ion reactions, is discussed. (author)

  3. Direct processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Zagrebaev, V.I.

    1983-01-01

    Direct processes in heavy ion reactions are investigated. Relative theoretical contributions in the inclusive spectrum of α particles on processes of stripping breakup and inelastic breakup are estimated using the 22 Ne+ 181 Ta reaction as an example. The consideration is performed taking into account Coulomb and nuclear distortions in the inlet and outlet ion channels. It is shown that the hard edge of α spectrum and its maximum are well described by peripheral direct processes. The hard spectrum edge is conditioned by the pure process of ''incomplete fussion'' bringing about the production af a compound nucleus. The main part of inclusive spectrum is conditioned by reactions of inelastic and elastic breakup not connected with the production of a compound nucleus

  4. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1991-08-01

    This report discusses the following topics: Asymmetric fission of 149 Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; charged-particle evaporation from hot composite nuclei: evidence over a broad Z range for distortions from cold nuclear profiles; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; production of intermediate-mass-fragments in the reaction 98 Mo + 51 V at an excitation energy E* = 224-MeV; emission of light charged particles in the reaction 344-MeV 28 Si + 121 Sb; continued developments of the statistical evaporation code LILITA N90; and planning for heavy-ion-collision studies at very high energies: the STAR collaboration at RHIC

  5. Probing the nuclear structure with heavy-ion reactions

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions

  6. Applications of heavy-ion reactions on hydrogen isotopes

    International Nuclear Information System (INIS)

    Evers, E.J.

    1987-01-01

    This thesis describes various aspects of 'inverse' reactions between the lightest nuclides, hydrogen and deuterium, and heavy ions in the range from carbon to phosphorus. The reactions studied in this thesis always result in one light ejectile and one excited heavy nucleus. Coincidence experiments have been performed in which both the emitted light particle and the gamma radiation emitted by the excited heavy nucleus produced, are detected. Ch. 1 describes the system built for the acquisition of data obtained in such coincidence experiments. Ch. 2 describes precision measurements of nuclear lifetimes and stopping powers. Coincident Doppler shift attenuation (DSA) experiments were performed with the reaction 2 H( 31 P,pγ) 32 P at E( 31 P 7+ )=50 MeV and thin Ti 2 H targets on Au, Ag and Cu backings. Mean lifetimes of the E x =513, 1150, 1323 and 1755 levels were determined with experimental stopping powers of Forster et al. These lifetimes were used as input in further analysis of the experimental data and of an additional experiment with a target on Mg backing to determine a consistent set of stopping power data for P ions with a velocity in the range 0-8(c/137) in the four materials mentioned. Ch.'s 3 and 4 deal with narrow resonances in reactions of nitrogen and fluorine beams with hydrogen targets. In Ch. 3 a method is described for the calibration of analyzing-magnet systems of heavy-ions accelerators. Ch. 4 describes an experiment to investigate the hydrogen concentration in silicon nitride films using a resonant inverse nuclear reaction. This method turns out to be a very suitable one for determining hydrogen concentration profiles with a good depth resolution over a large depth. 69 refs.; 23 figs.; 7 tabs

  7. Influence of the nuclear autocorrelation function on the positron production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tomoda, T.; Weidenmueller, H.A.

    1983-01-01

    The influence of a nuclear reaction on atomic positron production in heavy-ion collisions is investigated. Using statistical concepts, we describe the nuclear S matrix for a heavy-ion induced reaction as a statistically fluctuating function of energy. The positron production rate is then dependent on the autocorrelation function of this S matrix, and on the ratio of the ''direct'' versus the ''fluctuating'' part of the nuclear cross section. Numerical calculations show that in this way, current experimental results on positron production in heavy-ion collisions can be reproduced in a semiquantitative fashion

  8. Squids, supercurrents, and slope anomalies: Nuclear structure from heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1989-01-01

    Within the past five years we have developed experimental techniques to study heavy-ion transfer reactions to high spin states in deformed nuclei. These methods have been turned into a quantitative tool to assess the influence of collective excitation on single-particle and pairing structure. I discuss some of the nuclear structure questions which are being answered in these experiments: How strong is ground state pairing? How does pairing change with angular momentum? Why is two-neutron transfer much stronger than expected at large radial separation? What is the evidence for a nuclear Josephson Effect? What is the evidence for a nuclear Berry phase effect (nuclear SQUID)? Why does one-neutron transfer populate much higher spins than would be naively expected? Conversely, why does two-neutron transfer populate much lower spins than anyone expected? The answer to each of these questions involves the influence of detailed nuclear structure on transfer reactions, and represents quantitative new information about the effect of angular momentum and excitation energy on many-body systems with a finite number of particles. 8 refs., 6 figs

  9. Constraining the EOS of Neutron-Rich Nuclear Matter and Properties of Neutron Stars with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Worley, Aaron; Chen, L.-W.; Ko, Che Ming; Krastev, Plamen G.; Wen Dehua; Xiao Zhigang; Zhang Ming; Xu Jun; Yong Gaochan

    2009-01-01

    Heavy-ion reactions especially those induced by radioactive beams provide useful information about the density dependence of the nuclear symmetry energy, thus the Equation of State of neutron-rich nuclear matter, relevant for many astrophysical studies. The latest developments in constraining the symmetry energy at both sub- and supra-saturation densities from analyses of the isopsin diffusion and the π - /π + ratio in heavy-ion collisions using the IBUU04 transport model are discussed. Astrophysical ramifications of the partially constrained symmetry energy on properties of neutron star crusts, gravitational waves emitted by deformed pulsars and the w-mode oscillations of neutron stars are presented briefly.

  10. Heavy-Ion Reactions: a current awareness bulletin

    International Nuclear Information System (INIS)

    Kinser, W.H.

    1985-01-01

    This current awareness bulletin announces on a semimonthly basis the current worldwide information entered into the Energy Data Base on theoretical and experimental studies (including instrumentation) of heavy-ion (A > 4) nuclear reactions for nuclear structure studies; for producing new isotopes and superheavy elements for nuclear, atomic, and chemical properties studies; for understanding quantum chromodynamics as an exact theory of the strong nuclear force; and for studying the equations of state and phases of nuclear matter (pion condensate and quark matter) of special interest in astrophysics, and cosmology. An abstract is included with each citation. Regular publication began in January 1985

  11. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  12. Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1976-01-01

    Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)

  13. Heavy ion reactions at high energies

    International Nuclear Information System (INIS)

    Jakobsson, Bo.

    1977-01-01

    A review on heavy ion experiments at energies >0.1GeV/nucleon is presented. Reaction cross-sections, isotope production cross-sections and pion production in nucleus-nucleus collisions are discussed. Some recent models for heavy ion reactions like the abrasion-ablation model, the fireball model and the different shock-wave models are also presented

  14. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles. Keywords. Light charged particles; heavy-ion induced reactions; particle spectra and angular distri-.

  15. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Hagino K.

    2016-01-01

    Full Text Available The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.

  16. Glenn T. Seaborg and heavy ion nuclear science

    International Nuclear Information System (INIS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed

  17. The use of statistical models in heavy-ion reactions studies

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1984-01-01

    This chapter reviews the use of statistical models to describe nuclear level densities and the decay of equilibrated nuclei. The statistical models of nuclear structure and nuclear reactions presented here have wide application in the analysis of heavy-ion reaction data. Applications are illustrated with examples of gamma-ray decay, the emission of light particles and heavier clusters of nucleons, and fission. In addition to the compound nucleus, the treatment of equilibrated fragments formed in binary reactions is discussed. The statistical model is shown to be an important tool for the identification of products from nonequilibrium decay

  18. Radiochemical study of the reactions of heavy ions with gold

    International Nuclear Information System (INIS)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions

  19. Radiochemical study of the reactions of heavy ions with gold

    Energy Technology Data Exchange (ETDEWEB)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions.

  20. Heavy ion and hadron reactions in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.

    1979-04-01

    Recent results from heavy ion and hadron reactions in emulsion are reviewed. General properties of hadron-reaction multiplicities and their correlation to the production of recoiling protons are given. Properties of pseudo-rapidity distributions of shower-particles especially the particle production in the central region of pseudo-rapidity will be discussed. Non-peripheral heavy ion reactions are compared to recent participant-spectator model calculations. Very energetic cosmic ray events will be examined in the light of recent results from hadron-nucleus reactions. (author)

  1. FOBOS - a 4π-fragment spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Ortlepp, H.G.; Schilling, K.D.

    1992-06-01

    The FOBOS detector presently under construction at Dubna is intended for heavy ion reaction studies in the bombarding energy range of 10...100 AMeV. It will consist of a 'gas-ball' of 30 position-sensitive avalanche counters and 30 axial ionization chambers behind them, a shell of 190 scintillation counters surrounding the gas ball and a forward phoswich array. All charged reaction products may be measured in a wide dynamic range and in a geometry covering a substantial part of 4π. Special developments were necessary concerning the mechanical construction, the detector design, the evacuation and gas supply and the electronics. Presently individual detector modules are being tested at the beam of the U-400 heavy ion cyclotron of the Laboratory of nuclear reactions. (orig.)

  2. Multiparticle production in heavy-ion reactions

    International Nuclear Information System (INIS)

    Pelte, D.

    1980-01-01

    This lecture is concerned with the question how many particles and what kind of them are produced in heavy-ion collisions at energies about 10 MeV/n. We tend to assume that heavy-ion reactions at this energy are binary reactions. The experimental set consisting of two large ionization chambers serving to detection, in coincidence, the reaction fragments is described. With this set-up a number of reactions induced on 27 Al, 28 Si and 40 Ca by the 32 S beam of 135 and 190 MeV energy has been studied. Two-fragments inclusive and exclusive reactions were investigated. The assumption of a sequential statistical decay gives the best agreement with the data for all analyzed cases. (H.M.)

  3. On-line mass spectometry of nuclear reactions induced by heavy ions

    International Nuclear Information System (INIS)

    Saint Simon, M. de.

    1977-01-01

    The adaptation of the on-line mass-spectrometric technique to the special conditions of heavy ion induced reactions is described. The method is very selective about A and Z, even for the very heavy reaction products in counterpart of the limitation of its applications to the alkaline elements only. This method is used in order to study the effects of angular momentum brought by the projectile in the complete fusion process and in the following neutron evaporation. The analysis of excitation functions shows that the increase in mass of the projectile has not always the effect of increasing the rotation energy of the compound nucleus. The on-line mass spectrometry has allowed to study heavy ion induced fission. Measurements of complementary isotopic distributions of fission products make it possible to explain that the total number of neutrons emitted per fission can be always deduced from the fragment excitation energy. The study of the isotope distribution variance shows that the statistical model for fission is in good agreement with experimental results after taking into account the non-fusion processes [fr

  4. Nuclear transfer in peripheral heavy ion reactions

    International Nuclear Information System (INIS)

    Werner, K.

    1984-01-01

    The aim of the whole thesis is to understand the experimental results of N. Frascaria et al. (1980), namely structures in the cross section as function of the excitation energy for the reaction 40 Ca + 40 Ca at 400 MeV incident energy. We present therefore in chapter 1 a simple model of two identical potentials with only two energy levels. On the base of statistically independent T-L excitations and by fitting a two parameters to the experiments it succeeds to reproduce sufficiently the experimental results. The next step is a microscopical treatment of these parameters for the understanding and the foundation of the fitted values. For this we develop in chapter 2 a theory of collective variables in the framework of TDHF which allows to perform in chapter 3 in a very transparent way microscopical calculations and especially to understand the transfer behaviour in peripheral heavy ion reactions. This transfer behaviour will also be the key for the understanding of the experimental structures. (orig.) [de

  5. Application of laplace transform method in heavy ion reaction research

    International Nuclear Information System (INIS)

    Wang Jinchuan; Xi Hongfei; Guo Zhongyan; Zhan Wenlong; Zhu Yongtai; Zhou Jianqun; Liu Guanhua

    1993-01-01

    Laplace transform method (LTM) is applied to investigate the effects of different spectroscopy amplifiers parameters on identification of the light charged particles (LCP) emitted from 12 C(46,7 MeV/u) + 58 Ni reaction. The significance of application of LTM in heavy ion experimental nuclear physics is also discussed

  6. Reaction mechanisms for the synthesis of the heaviest elements from heavy ion reactions

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.

    1988-10-01

    This review paper concerns fusion reactions with light heavy-ions, cold fusion, transfer reactions using light heavy-ions or heavy ions. In two appendices, methods for the separation and detection of nuclides in the domain of heaviest elements are described and a comment on the discovery of the element 104 is given. 51 figs., 10 tabs., 335 refs

  7. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Huizenga, J.R.

    1991-08-01

    The development of the ''cold-fusion'' episode is reviewed. Ongoing studies of compound-nucleus formation and decay via the neutron multiplicity distribution confirm the validity of conventional statistical theory. The excitation energy partition in near-barrier damped 58 Ni + 208 Pb collisions is found to be largely independent of the direction of net mass transfer, supporting a diffusion-like nucleon-exchange mechanism. Exclusive experiments on the heavy reaction systems 197 Au + 208 Pb and 209 Bi + 136 Xe in the Fermi-energy domain have revealed important new insights into the reaction mechanism, which is found to be dominated by damped, binary processes. The effectiveness of the neutron multiplicity as an impact-parameter filter is demonstrated. It is shown that very-heavy-ion reactions lead to transient nuclear systems with temperatures in excess of τ = 6 MeV and transfer of large, aligned spins to reaction fragments. The first measurements of neutrons in coincidence with kinematically identified reaction fragments provide evidence for the binary, sequential character of dissipative collisions in the Fermi-energy domain. Also for the first time, a full event characterization was achieved for nuclear reactions in terms of neutrons and charged particles. Technical information on this experiment is provided. First results yield strong evidence for dominantly binary primary reaction dynamics of even highly dissipative 209 Bi + (28MeV/u) 136 Xe collisions, associated with several intermediate-mass fragments

  8. Proceedings of the 12. International Symposium on Nuclear Physics - Heavy-Ion Collisions and Nuclear Fission - organized by the Technical University of Dresden, November 22-26, 1982 in Gaussig (GDR)

    International Nuclear Information System (INIS)

    Reif, R.; Teichert, J.

    1982-12-01

    The following problems in experimental and theoretical investigations of heavy-ion reactions and the dynamics of nuclear fission processes are discussed: (1) emission of fast light particles in heavy-ion collisions, preequilibrium effects; (2) dynamics of deep inelastic heavy-ion reactions; (3) selected topics in quasi-elastic heavy-ion collisions; and (4) collective transport theory for fission, cross sections and neutron spectra of fission. Problems of neutron induced reactions and nuclear data evaluation are also covered. (author)

  9. Inelastic collisions of heavy ions and their reaction mechanisms; Collisions inelastiques d'ions lourds et mecanismes de reaction

    Energy Technology Data Exchange (ETDEWEB)

    Scarpaci, J.A

    2004-06-01

    This work is dedicated to the study of inelastic collisions of heavy ions. Most experiments took place in Ganil facility. The 2 first chapters introduce the notion of inelastic scattering of heavy ions. The third chapter deals with target excitation, giant monopolar or dipolar or quadrupolar resonances ant the multi-phonon concept and presents relevant experimental results from the Ca{sup 40} + Ca{sup 40} nuclear reaction at 50 MeV/A. The fourth chapter is dedicated to nuclear processes involved in inelastic collisions: pick-up break-up mechanisms, the angular distribution of emitted protons and the towing mode. These notions are applied to the reaction Zr{sup 90}(Ar{sup 40}, Ar{sup 40}'). The fifth chapter presents the solving of the time dependent Schroedinger equation (TDSE) applied to the wave function of a particle plunged in a variable potential. TDSE solving is applied to the break-up of Be{sup 11}. These calculations have been validated by comparing them with experimental results from the nuclear reaction Ti{sup 48}(Be{sup 11}, Be{sup 10} + n + {gamma}) that is described in the chapter 6. The last chapter presents the advantages of inelastic scattering considered as a tool to study exotic nuclei.

  10. Recent progress and new challenges in isospin physics with heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Li Baoan [Department of Physics, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States)], E-mail: Bao-An_Li@Tamu-Commerce.edu; Chen Liewen [Institute of Theoretical Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: Lwchen@Sjtu.edu.cn; Ko, Che Ming [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843-3366 (United States)], E-mail: Ko@Comp.tamu.edu

    2008-08-15

    The ultimate goal of studying isospin physics via heavy-ion reactions with neutron-rich, stable and/or radioactive nuclei is to explore the isospin dependence of in-medium nuclear effective interactions and the equation of state of neutron-rich nuclear matter, particularly the isospin-dependent term in the equation of state, i.e., the density dependence of the symmetry energy. Because of its great importance for understanding many phenomena in both nuclear physics and astrophysics, the study of the density dependence of the nuclear symmetry energy has been the main focus of the intermediate-energy heavy-ion physics community during the last decade, and significant progress has been achieved both experimentally and theoretically. In particular, a number of phenomena or observables have been identified as sensitive probes to the density dependence of nuclear symmetry energy. Experimental studies have confirmed some of these interesting isospin-dependent effects and allowed us to constrain relatively stringently the symmetry energy at sub-saturation densities. The impact of this constrained density dependence of the symmetry energy on the properties of neutron stars have also been studied, and they were found to be very useful for the astrophysical community. With new opportunities provided by the various radioactive beam facilities being constructed around the world, the study of isospin physics is expected to remain one of the forefront research areas in nuclear physics. In this report, we review the major progress achieved during the last decade in isospin physics with heavy ion reactions and discuss future challenges to the most important issues in this field.

  11. Application of Wigner-transformations in heavy ion reactions

    International Nuclear Information System (INIS)

    Esbensen, H.

    1981-01-01

    One of the main features of inelastic heavy ion reactions is the excitation of collective surface vibrations. It is discussed a model, based on Wigner transformations and classical dynamics, that gives a semiclassical description of the excitation of surface vibrations due to the Coulomb and nuclear interaction in heavy ion collisions. The treatment consists of three stages, viz. the preparation of classical initial conditions compatible with the quantal ground state of surface vibrations, the dynamical evolution of the system governed by Liouville's equation (i.e. classical mechanics) and finally the interpretation of final results after the interaction in terms of excitation probabilities, elastic and inelastic cross sections etc. The first and the last stage are exact and based on the Wigner transformations while the time evolution described by classical mechanics is an approximation. Application examples are given. (author)

  12. Pre-equilibrium decay processes in energetic heavy ion reactions

    International Nuclear Information System (INIS)

    Blann, M.

    1986-01-01

    The Boltzmann master equation (BME) is defined for application to precompound decay in heavy ion reactions in the 10 100 MeV/nucleon regime. Predicted neutron spectra are compared with measured results for central collisions of 20 Ne and 12 C with 165 Ho target nuclei. Comparisons are made with subthreshold π 0 yields in heavy ion reactions between 35 and 84 MeV/nucleon, and with the π 0 spectra. The BME is found to be an excellent tool for investigating these experimentally observed aspects of non-equilibrium heavy ion reactions. 18 refs., 8 figs

  13. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  14. PTOLEMY, a program for heavy-ion direction-reaction calculations

    International Nuclear Information System (INIS)

    Gloeckner, D.H.; Macfarlane, M.H.; Pieper, S.C.

    1976-03-01

    Ptolemy is an IBM/360 program for the computation of nuclear elastic and direct-reaction cross sections. It carries out both optical-model fits to elastic-scattering data at one or more energies, and DWBA calculations for nucleon-transfer reactions. Ptolemy has been specifically designed for heavy-ion calculations. It is fast and does not require large amounts of core. The input is exceptionally flexible and easy to use. This report outlines the types of calculation that Ptolemy can carry out, summarizes the formulas used, and gives a detailed description of its input

  15. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Thomas, K.E. III.

    1979-11-01

    Production of nuclides heavier than the target from 86 Kr- and 136 Xe-induced reactions with 181 Ta and 238 U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242 Np or 247 Pu. Estimates were made for the production of 242 Np, 247 Pu, and 248 Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86 Kr and 136 Xe ions with thick 181 Ta targets and 86 Kr, 136 Xe and 238 U ions with thick 238 U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248 Cm and 254 Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86 Kr- and 136 Xe-induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  16. Heavy ion reactions at low energies

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    Some general features of the heavy ion reactions at low energies are presented. Some kinds of processes are studied, such as: elastic scattering, peripherical reactions, deep inelastic collisions and fusion. Both, theoretical and experimental perspectives on this field are discussed. (L.C.) [pt

  17. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Legrain, R.

    1984-08-01

    Projectile and nuclear fragmentation are defined and processes referred to are recalled. The two different aspects of fragmentation are considered but the emphasis is also put on heavy ion induced reactions. The preliminary results of an experiment performed at GANIL to study peripheral heavy ions induced reactions at intermediate energy are presented. The results of this experiment will illustrate the characteristics of projectile fragmentation and this will also give the opportunity to study projectile fragmentation in the transition region. Then nuclear fragmentation is considered which is associated with more central collisions in the case of heavy ion induced reactions. This aspect of fragmentation is also ilustrated with two heavy ion experiments in which fragments emitted at large angle have been observed

  18. 7th high energy heavy ion study

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Stock, R.

    1985-03-01

    These proceedings contain the articles presented at the named conference. They deal with relativistic heavy ion reactions, the expansion and freeze-out of nuclear matter, anomalon experiments, and multifragmentation and particle correlations in heavy ion reactions. See hints under the relevant topics. (HSI)

  19. Quantum mechanical theory of positron production in heavy ion collisions with nuclear contact

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    The interplay between atomic and nuclear interactions in heavy ion collisions with nuclear contact is studied. The general theoretical description is outlined and analyzed in a number of different limits (semiclassical approximation, DWBA, fully quantal description). The two most important physical mechanisms for generating atomic-nuclear interference, i.e., energy conservation and the introduction of additional phase shifts by nuclear reactions, are extracted. The resulting typical coupling matrix elements are analyzed for their relative importance in atomic and nuclear excitations. The description of nuclear influence on atomic excitations in terms of a classical time delay caused by nuclear reactions is reviewed, and its relationship to the underlying quantal character of the nuclear reaction is discussed. The theory is applied to spontaneous positron emission in supercritical heavy-ion collisions (Z/sub tot/ ≥ 173). It is shown that nuclear contact can lead to line structures in the positron energy spectra if the probability distribution for nuclear delay times caused by the contact has contributions for T ≥ 10 -19 sec. We explicitly evaluate a model where a pocket in the internuclear potential near the touching configuration leads to formation of nuclear molecules, and predict a resonance-like excitation function for the positron peak. 25 refs., 7 figs

  20. Collective flow as a probe of heavy-ion reaction dynamics

    International Nuclear Information System (INIS)

    Awes, T.C.

    1997-01-01

    Collective flow of nuclear matter probes the dynamics of heavy-ion reactions and can provide information about the nuclear-matter equation of state. In particular, the incident energy dependences of collective flow may be a sensitive means to deduce the existence of a Quark Gluon Plasma phase in the equation of state. Collective flow measurements from 30 A MeV to 200 A GeV incident energies are briefly reviewed. Preliminary results on collective flow from the WA98 experiment at the CERN SPS are presented

  1. The Glauber model and heavy ion reaction and elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)

    2017-05-15

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  2. Review of heavy ion reaction mechanisms

    International Nuclear Information System (INIS)

    Ngo, C.

    1986-04-01

    We review some of the many aspects of heavy-ion reaction mechanisms observed at bombarding energies smaller than approximately 50 MeV/u that is to say in what is called the low bombarding energy domain and the intermediate bombarding energy domain. We emphasize the results concerning the use of very heavy projectiles which has led to the observation of new mechanisms

  3. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1993-01-01

    The study of intermediate-energy heavy-ion nuclear reactions is reported. This work has two foci: the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities and the study of the relevant reaction mechanisms. Nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has the following objectives: to study energy, mass, and angular momentum deposition by studying incomplete fusion reactions; to gain confidence in the understanding of how highly excited systems decompose by studying all emissions from the highly excited systems; to push these kinds of studies into the intermediate energy domain (where intermediate mass fragment emission is not improbable) with excitation function studies; and to learn about the dynamics of the decays using particle-particle correlations. The last effort focuses on simple systems, where definitive statements are possible. These avenues of research share a common theme, large complex fragment production. It is this feature, more than any other, which distinguishes the intermediate energy domain

  4. Scattering and transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    From the elastic scattering analysis the input parameters are found for the inelastic scattering analysis and the transfer reactions of the heavy ion reactions. The main theme reported is the likeness and conection among these processes. (L.C.) [pt

  5. Current experimental situation in heavy-ion reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references

  6. Validating PHITS for heavy ion fragmentation reactions

    International Nuclear Information System (INIS)

    Ronningen, Reginald M.

    2015-01-01

    The performance of the Monte Carlo code system PHITS is validated for heavy-ion transport capabilities by performing simulations and comparing results against experimental data from heavy-ion reactions of benchmark quality. These data are from measurements of isotope yields produced in the fragmentation of a 140 MeV/u "4"8Ca beam on a beryllium target and on a tantalum target. The results of this study show that PHITS performs reliably. (authors)

  7. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  8. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  9. Spin transfer in reactions between heavy ions

    International Nuclear Information System (INIS)

    Dong Pil Min.

    1980-06-01

    The model presented affords a better understanding of the manner in which the orbital angular moment can be converted into an intrinsic spin in the collision between two heavy ions. After referring to the vector fields and the collective energy of a spheroidal nucleus, the calculation of the exchange of nucleons is described and the dissipation function is constructed. The spin transfer and the reorientation of the spin during the reaction are then examined (effect of friction and vibration). The estimated calculations are compared with the results of the 63 Cu+ 197 Au and 86 Kr+ 209 Bi experiments. The sensitivity of the calculation to the parameters of the model is discussed (nuclear potential, vibrational inertial parameter) [fr

  10. Electron capture rates in stars studied with heavy ion charge exchange reactions

    Science.gov (United States)

    Bertulani, C. A.

    2018-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  11. A few aspects of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Guet, C.

    1982-10-01

    Some aspects of reactions induced by intermediate energy heavy ions, with a special emphasis of 85 MeV/nucleon 12 C data, are discussed and compared to low energy and relativistic energy features. Transition from mean field to independant nucleon picture is advocated by an increase of nuclear transparency illuminated by reaction cross section estimations. Projectile-like fragment distributions, while demonstrating a typical high energy fragmentation behaviour, exhibit low energy regime distortions. Light fragments, associated to large parallel momentum transfer may result from total explosion. Proton emission is investigated and discussed in terms of opposite models such as thermal equilibrium and nucleon-nucleon scattering. First pion production data are well explained by single nucleon-nucleon inelastic scattering

  12. Hadron chemistry in heavy ion collisions

    International Nuclear Information System (INIS)

    Montvay, I.; Zimanyi, J.

    1978-06-01

    In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)

  13. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  14. Summary of the heavy ion physics sessions at Lake Louise

    International Nuclear Information System (INIS)

    Harris, J.W.

    1986-01-01

    This talk is a summary of the reports on heavy ion reactions which were given in this conference, Intersections Between Particle and Nuclear Physics . In particular, quark degrees of freedom in nuclear matter are a focus in these discussions of heavy ion physics

  15. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  16. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  17. Heavy lon Reactions The Elementary Processes, Parts I and II

    CERN Document Server

    Broglia, Ricardo A

    2004-01-01

    Combining elastic and inelastic processes with transfer reactions, this two-part volume explores how these events affect heavy ion collisions. Special attention is given to processes involving the transfer of two nucleons, which are specific for probing pairing correlations in nuclei. This novel treatment provides, together with the description of surface vibration and rotations, a unified picture of heavy ion reactions in terms of the elementary modes of nuclear excitation. Heavy Ion Reactions is essential reading for beginning graduate students as well as experienced researchers.

  18. Nuclear interactions in high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1993-01-01

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. 4 He, 16 O, 20 Ne, 28 Si, 56 Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy 16 O, 28 Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs

  19. Localization effects in heavy ion collisions

    International Nuclear Information System (INIS)

    Donangelo, R.J.

    1984-01-01

    Radial and angular localization in heavy ion reactions on deformed nuclei is discussed. A theoretical method appropriate to study these localization effects is briefly described and then applied to the determination of deformed heavy ion potentials from inclastic scattering data. It is argued that one-and two-nucleon transfer reactions on deformed nuclei can provide a probe of nuclear structure in high angular momentum states and be at least qualitatively analyzed in the light of these localization concepts. (Author) [pt

  20. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  1. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1992-01-01

    Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production

  2. Studies of the nuclear inertia in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1978-01-01

    On the basis of the non-self-consistent cranking model the authors study some aspects of the nuclear inertia of interest in fission and heavy-ion reactions. First, the authors consider in the adiabatic limit the inertia for a doubly closed-shell nucleus in a deformed spheroidal harmonic-oscillator single-particle potential plus a small perturbation. When expressed in terms of a coordinate that describes the deformation of the nuclear matter distribution, the inertia for small oscillations about a spherical shape is exactly equal to the incompressible, irrotational value. For large distortions it deviates from the incompressible, irrotational value by up to about +-1% away from level crossings. Second, in order to study the dependence of the inertia upon a level crossing, two levels of the above system are considered. This is done both in the adiabatic limit and for large collective velocities. At level crossings the adiabatic inertia relative to the deformation of the matter distribution diverges as 1/modΔV, where modΔV is the magnitude of the perturbation. However, for large collective velocities the contribution to the inertia from a level crossing is less than 4modΔV(d(rsub(m))/dt) 2 where d(rsub(m))/dt is the collective velocity of the matter distribution. Although the effect of large velocities on the remaining levels of the many-body system or the effect of a statistical ensemble of states has not been considered, some of the results suggest that for high excitation energies and moderately large collective velocities the nuclear inertia approaches approximately the irrotational value. (Auth.)

  3. Reaction mechanism and spectroscopy of transfer reactions induced by heavy ions

    International Nuclear Information System (INIS)

    Lemaire, M.-C.

    1977-01-01

    The specific features displayed by data on heavy ion elastic and inelastic angular distributions are discussed, and their physical origin is pointed out from semi-classical calculations in counterpart ambiguities in the phenomenological description of the optical potential appear. Two nucleon transfer reactions induced by heavy ions successfully point out important contributions of a two-step process where the transfer is proceeding via target and residual nucleus inelastic excitation. At incident energies not too high above the Coulomb barrier, such process produces clear shape changes between different final state angular distributions. At higher incident energy, the angular distributions are forward peaked and display oscillations for both mechanisms. As for four-nucleon transfer reactions, the existing data suggest that the nucleons are well transferred into a Os relative

  4. The origin of nuclear spin and its effect durning intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao; Ma Yugang; Cai Xiangzhou; Wang Hongwei; Fang Deqing; Tian Wendong; Chen Jingen; Guo Wei; Liu Guihua

    2010-01-01

    We use the heavy-ion phase-space exploration (HIPSE) model to discuss the origin of the nuclear spin and its effect in Intermediate energy nuclear reaction. It is found that the spin of projectile depends on the impact parameter of the reaction system heavily, while on the violence lightly by contrast. Some interesting multifragmentation phenomena related to the spin are shown, especially those of phase transition. At the same time, the role of excited energy for multifragmentation is also invested. We find the later plays a more robust role durning the nuclear disintegration. (authors)

  5. Nuclear structure and heavy-ion fusion

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1980-10-01

    A series of lectures is presented on experimental studies of heavy-ion fusion reactions with emphasis on the role of nuclear structure in the fusion mechanism. The experiments considered are of three types: the fusion of lighter heavy ions at subcoulomb energies is studied with in-beam γ-ray techniques; the subbarrier fusion of 16 O and 40 Ar with the isotopes of samarium is detected out of beam by x-radiation from delayed activity; and measurements at very high energies, again for the lighter ions, employ direct particle identification of evaporation residues. The experimental data are compared with predictions based on the fusion of two spheres with the only degree of freedom being the separation of the centers, and which interact via potentials that vary smoothly with changes in the mass and charge of the projectile and target. The data exhibit with the isotopes of samarium, a portion of these deviations can be understood in terms of the changing deformation of the target nucleus, but an additional degree of freedom such as neck formation appears necessary. The results on 10 B + 16 O and 12 C + 14 N → 26 Al at high bombarding energies indicate a maximum limiting angular momentum characteristic of the compound nucleus. At lower energies the nuclear structure of the colliding ion seems to affect strongly the cross section for fusion. Measurements made at subbarrier energies for a variety of projectile-target combinations in the 1p and 2s - 1d shell also indicate that the valence nucleons can affect the energy dependence for fusion. About half the systems studied so far have structureless excitation functions which follow a standard prediction. The other half exhibit large variations from this prediction. The possible importance of neutron transfer is discussed. The two-center shell model appears as a promising approach for gaining a qualitative understanding of these phenomena. 95 references, 52 figures, 1 table

  6. Targets for high-resolution studies with heavy-ion reactions

    International Nuclear Information System (INIS)

    Erskine, J.R.

    1975-01-01

    Target problems in heavy ion reaction studies are discussed, including non-uniformity in thickness effects and the inability to fully compensate for reaction-site effects, both problems becoming more serious the heavier the ion. For the non-uniformity effects, the flatness of the target is very critical. Other problems not yet solved are beam-spot heating and the buildup of carbon

  7. Pre-equilibrium (exciton) model and the heavy-ion reactions with cluster emission

    CERN Document Server

    Betak, E

    2015-01-01

    We bring the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model enlarged for considering also the heavy ion collisions. At this moment, the calculations have been done without treatment of angular momentum variables, but all the approach can be straightforwardly applied to heavy-ion reactions with cluster emission including the angular momentum variables. The direct motivation of this paper is a possibility of producing the superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, $\\alpha$-particles).

  8. Relativistic hydrodynamics, heavy ion reactions and antiproton annihilation

    International Nuclear Information System (INIS)

    Strottman, D.

    1985-01-01

    The application of relativistic hydrodynamics to relativistic heavy ions and antiproton annihilation is summarized. Conditions for validity of hydrodynamics are presented. Theoretical results for inclusive particle spectra, pion production and flow analysis are given for medium energy heavy ions. The two-fluid model is introduced and results presented for reactions from 800 MeV per nucleon to 15 GeV on 15 GeV per nucleon. Temperatures and densities attained in antiproton annihilation are given. Finally, signals which might indicate the presence of a quark-gluon plasma are briefly surveyed

  9. Proceedings of the 2nd joint seminar on atomic collisions and heavy ion induced nuclear reactions

    International Nuclear Information System (INIS)

    Harada, Kichinosuke; Ozawa, Kunio; Kamitsubo, H.; Nomura, T.; Awaya, Y.; Watanabe, T.

    1982-11-01

    The meeting of the 2nd joint seminar on atomic collisions and heavy ion induced nuclear reactions was held at the University of Tokyo, May 13 and 14, 1982. The aim of this seminar has been not only to recognize the common problems lying between above two research fields, but also to obtain an overview of the theoretical and experimental approaches to clear the current problems. In the seminar, more than 50 participants gathered and presented 16 papers. These are two general reviews and fourteen comprehensive surveys on topical subjects which have been developed very intensively in recent years. The editors would like to thank all participants for their assistance and cooperation in making possible a publication of these proceedings. (author)

  10. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2000-01-01

    Full text: During last year the physicists of the Department of Nuclear Reactions were involved in many experiments and projects: -Low energy nuclear reactions: For the first time a heavy ion beam from the Warsaw Cyclotron C-200 was used to investigate elastic and inelastic scattering of 12 C ions from 12 C target. The experiment is a part of a long range programme devoted to study the energy dependence of the nucleus-nucleus interactions. -Multifragmentation of relativistic heavy ions: Multifragmentation reactions induced by 12 C on different heavy targets and at different energies were studied in experiments performed at Gesellschaft fuer Schwerionenforschung by the ALADIN Collaboration. These asymmetric systems were investigated in order to study the interplay between preequilibrium and equilibrium phenomena in the nuclear liquid - gas phase transition. -The structure of nucleons: A novel, two-structure description of the Roper resonance was proposed on the basis of the α-p scattering data reanalysed by means of a T-matrix formalism. -Atomic physics: Emission of the X-rays by fast heavy ions (S, Ti, Fe) as they traverse the matter (thin carbon or other light element foil) was investigated in a series of experiments performed at University of Erlangen. It was demonstrated, that the characteristic K α X-rays emitted by a heavy ion can serve as a tool for Z-value control of the ion. -Material research: Semiconductor heterostructures were investigated by means of Rutherford Back Scattering and Channeling methods using the 2 MeV α particles from the Van de Graaff accelerator ''Lech'' at the Department. The following reports present the results and major successes which were achieved in 1999. (author)

  11. Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao

    2012-01-01

    The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)

  12. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  13. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  14. Neutron-proton bremsstrahlung from intermediate energy heavy-ion reactions as a probe of the nuclear symmetry energy?

    International Nuclear Information System (INIS)

    Yong, G.-C.; Li Baoan; Chen Liewen

    2008-01-01

    Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn→pnγ. Very interestingly, nevertheless, the ratio of hard photon spectra R 1/2 (γ) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of 132 Sn + 124 Sn and 112 Sn + 112 Sn at E beam /A=50 MeV, for example, the R 1/2 (γ) displays a rise up to 15% when the symmetry energy is reduced by about 20% at ρ=1.3ρ 0 which is the maximum density reached in these reactions

  15. Heavy-ion research at the tandem and superconducting linac accelerators

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The heavy-ion research program at the Argonne Physics Division is principally aimed at the study of nuclear structure and its manifestation in heavy-ion induced nuclear reactions. In order to extract information on nuclear structure, measurements with high precision often need to be performed. Such measurements are now carried out at the tandem-linac accelerator over a wide energy range. The investigation of high-spin states near the yrast line has provided much new information on the behavior of nuclei at high angular momentum. Argonne work has concentrated on nuclei where high-spin isomers, the so-called yrast traps, are prevalent. The resonance effects observed previously in the 24 Mg( 16 O, 12 C) 28 Si reactions have been further explored through both additional measurements and a new quantitative method of analysis. The measurements were extended in energy and angular range and to various exit channels as well as similar systems. Several measurements were performed to investigate the reaction mechanisms in heavy-ion induced reactions and to map out the distribution of reaction strength as a function of energy and target-projectile masses energy regions previously not accessible. The behavior of the quasi- and deep-inelastic reaction cross sections was studied as a function of energy for medium-heavy systems, the production of inclusive alpha-particle yields for 16 O beams at energies E/A greater than or equal to 5 MeV/nucleon, and excitation functions, mass and kinetic energy distributions for heavy-ion induced fusion-fission reactions

  16. Nuclear research with heavy ions. Annual progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Kaplan, M.

    1981-11-01

    The experimental research program is primarily concerned with the nuclear reactions induced by collisions between heavy-ion projectiles and complex target nuclei, the dynamics and thermodynamics associated with such collisions, and the relationships of the observables to the equilibrium and non-equilibrium properties of nuclear matter. As a sensitive probe of the nuclear interactions, detailed measurements of light-charged-particle emission were performed using counter telescopes for atomic number and mass number identification. Preliminary results from a new experiment on direct and evaporation-like emission of 4 He from reactions of 340-MeV 40 Ar with 238 U are reported. Using a large two-dimensional position-sensitive avalanche detector, and measuring three-fold coincidence events between two fission fragments and an emitted 4 He particle, we were able to distinguish emission processes in fusion-like fission from those associated with inelastic reactions. Analysis of the data shows isotropic and strongly forward-peaked 4 He components for both fusion and sequential fission, and kinematic evidence indicates substantial evaporation-like emission from the composite system rather than from fission fragments. The effects of light element impurities on charged particle spectra from heavy ion collisions are discussed, and a technique for directly evaluating the impurity contribution is briefly described

  17. Nuclear quantum many-body dynamics: from collective vibrations to heavy-ion collisions

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2012-01-01

    This report gives a summary of my research on nuclear dynamics during the past ten years. The choice of this field has been motivated by the desire to understand the physics of complex systems obeying quantum mechanics. In particular, the interplay between collective motion and single-particle degrees of freedom is a source of complex and fascinating behaviours. For instance, giant resonances are characterised by a collective vibration of many nucleons, but their decay may occur by the emission of a single nucleon. Another example could be taken from the collision of nuclei where the transfer of few nucleons may have a strong impact on the formation of a compound system is non trivial. To describe these complex systems, one needs to solve the quantum many-body problem. The description of the dynamics of composite systems can be very challenging, especially when two such systems interact. An important goal of nuclear physics is to find a unified way to describe the dynamics of nuclear systems. Ultimately, the same theoretical model should be able to describe vibrations, rotations, fission, all the possible outcomes of heavy-ion collisions (elastic and inelastic scattering, particle transfer, fusion, and multifragmentation), and even the dynamics of neutron star crust. This desire for a global approach to nuclear dynamics has strongly influenced my research activities. In particular, all the numerical applications presented in this report have been obtained from few numerical codes solving equations derived from the same variational principle. Beside the quest for a unified model of nuclear dynamics, possible applications of heavy-ion collisions such as the formation of new nuclei is also a strong motivation for the experimental and theoretical studies of reaction mechanisms. This report is not a review article, but should be considered as a reading guide of the main papers my collaborators and myself have published. It also gives the opportunity to detail some

  18. Nuclear research with heavy ions. Annual progress report. January 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, M.

    1980-10-01

    The program of research is oriented towards experimental studies of the interactions between heavy ions and complex nuclei. These interactions are probed by detailed measurements of light-charged-particle emission using counter telescopes for atomic number and mass number identification. Singles measurements of the charged-particle energy spectra and angular distributions, together with coincidence correlations with heavy nuclear-reaction fragments, provide insight into the contributing reaction mechanisms. The application of the statistical model to the appropriate experimental data allows the determination of parameters necessary to calibrate the theory, and gives indications of dynamical control vs. equilibrium in the several degrees of freedom associated with the nuclear collisions. A large body of data are presented and discussed for /sup 40/Ar reactions with /sup 116/Sn, /sup 154/Sm, /sup 164/Dy, and /sup 197/Au targets. Complete results are also given for twelve reactions which produce /sup 194/Hg compound nuclei at several excitation energies.

  19. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in 32 S + 118,124 Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction 197 Au+ 208 Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction 209 Bi+ 136 Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral 209 Bi+ 136 Xe Collisions at E lab /A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray μ - with a Muon Telescope

  20. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  1. The separation of heavy ion tracks in nuclear emulsions by means of the pulsed electric field

    International Nuclear Information System (INIS)

    Akopova, A.B.; Magradze, N.V.; Melkumyan, L.V.; Prokhorenko, Y.P.

    1976-01-01

    The pulsed electric field (PEF) technique is developed for the separation of heavy ion tracks from the intense background caused by high energy electrons, protons and γ-radiation. The tracks of Ne, Cr, Ar-ions accelerated at the Dubna Nuclear Reactions Laboratory have been separated from the background, the voltage of the applied PEF being 10 5 V/cm. (orig.) [de

  2. Studying heavy-ion collisions with FAUST-QTS

    Directory of Open Access Journals (Sweden)

    Cammarata P.

    2015-01-01

    Full Text Available Heavy-ion collisions at lower energies provide a rich environment for investigating reaction dynamics. Recent theory has suggested a sensitivity to the symmetry energy and the equation of state via deformations of the reaction system and ternary breaking of the deformed reaction partners into three heavy fragments. A new detection system has been commissioned at Texas A&M University in an attempt to investigate some of the observables sensitive to the nuclear equation of state.

  3. Classical simulations of heavy-ion fusion reactions and weakly ...

    Indian Academy of Sciences (India)

    82, No. 5. — journal of. May 2014 physics pp. 879–891. Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions ... on the collision energy and the moment of inertia of the deformed nucleus. ... where each individual nucleus consists of a number of protons and neutrons, in some.

  4. Heavy ion physics

    International Nuclear Information System (INIS)

    Kalpakchieva, R.; Cherepanov, E.A.

    1993-01-01

    The international school-seminar on heavy ion physics had been organized in Dubna in may of 1993. The scientific program of reports covers the following main topics: synthesis and properties of heavy nuclei; synthesis and investigation of properties of exotic nuclei; experiments with radioactive nuclear beams; interaction between complex nuclei at low and intermediate energies. It also includes reports on laser spectroscopy and exotic nuclear beams, on some application of heavy ion beams for the problems of solid state physics, on construction of multidetector facilities and on developing of heavy ion accelerator complexes. Short communication

  5. [Studies of heavy-ion induced reactions]: Annual progress report

    International Nuclear Information System (INIS)

    Mignerey, A.C.

    1986-10-01

    An experiment was performed at the Lawrence Berkeley Laboratory Bevalac, extending previous studies using inverse reactions to 50 MeV/u 139 La incident on targets of C and Al. Studies of excitation energy division in lower energy division in lower energy heavy-ion reactions were furthered using kinematic coincidences to measure the excitation energies of primary products in the Fe + Ho reaction at 12 MeV/u. These results will provide important systematics for comparisons with previous measurements at 9 MeV/u on the same system and at 15 MeV/u on the Fe + Fe and Fe + U systems. Also studied were different aspects of 15 MeV/u Fe-induced reactions, with experiments performed at the Oak Ridge HHIRF. The first three contributions of this report constitute a major portion of the results from this research. Finally, at the Lawrence Berkeley Laboratory Bevalac a large detector array for coincident detection of fragmentation products in heavy-ion collisions below 100 MeV/u is being built. A list of publications, personnel, and activities is provided

  6. Now day methods for heavy ion monitoring

    International Nuclear Information System (INIS)

    Luk'yanov, S.M.; Penionzhkevich, Yu.Eh.; Chubaryan, G.G.

    1984-01-01

    Up-to-date methods for identification of products yield as a result of heavy ion interaction with nuclei are described. Monitoring of total ionization has been realized by gas-filled ionization chambers semiconductor detectors, scintillators. A method for specific ionization loss monitoring and time-of-flight technique for heavy-ion mass identification are considered. Advantages of the method for identification of nuclear reaction prodUcts by means of a magnetic analyzer are displayed

  7. Selective population of high-j states via heavy-ion-induced transfer reactions

    International Nuclear Information System (INIS)

    Bond, P.D.

    1982-01-01

    One of the early hopes of heavy-ion-induced transfer reactions was to populate states not seen easily or at all by other means. To date, however, I believe it is fair to say that spectroscopic studies of previously unknown states have had, at best, limited success. Despite the early demonstration of selectivity with cluster transfer to high-lying states in light nuclei, the study of heavy-ion-induced transfer reactions has emphasized the reaction mechanism. The value of using two of these reactions for spectroscopy of high spin states is demonstrated: 143 Nd( 16 O, 15 O) 144 Nd and 170 Er( 16 O, 15 Oγ) 171 Er

  8. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    International Nuclear Information System (INIS)

    Tso, Kin.

    1996-05-01

    The 129 Xe-induced reactions on nat Cu, 89 Y, 165 Ho, and 197 Au at bombarding energies of E/A = 40 ampersand 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129 Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied

  9. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    They are considerably below the heavy-ion results which indicates that a simple scaling of prompt photons as observed in pp is not sufficient to explain the direct photons in central. Pb+Pb reactions. It is also instructive to compare the γ/π0 ratio extracted from heavy-ion data to those from pp and pC in figure 3. The value in ...

  10. Research highlights from the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Plasil, F.

    1982-01-01

    The purpose of this paper is to present the scope of research carried out at the new Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge. This will be accomplished with reference to several research projects currently underway. The areas of research represented are microscopic and macroscopic aspects of nuclear reactions and nuclear structure. In view of the scope of this conference, emphasis will be placed on nuclear reactions. A brief description of HHIRF is given, together with its current status. Microscopic aspects of reactions between nuclei are discussed with reference to the prospects for the study of giant resonances by means of heavy ions, and to studies of elastic and inelastic scattering of 60 Ni nuclei. Macroscopic aspects of nuclear reactions are illustrated by means of the study of collisions between 58 Ni nuclei at 15.1 MeV/u and by means of Spin Spectrometer (crystal ball) studies of the 19 F + 159 Tb reaction. Results are presented for lifetime measurements of high-spin states in ytterbium nuclei

  11. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  12. Pre-equilibrium emission of nucleons from reactions induced by medium-energy heavy ions

    International Nuclear Information System (INIS)

    Korolija, M.; Holuh, E.; Cindro, N.; Hilscher, D.

    1984-01-01

    Recent data on fast-nucleon emission in heavy-ion-induced reactions are analysed successfully in terms of pre-equilibrium models; it is shown that the relevant parameters of those models preserve the physical meaning they have in light-ion-induced reactions. The initial exciton number obtained from a Griffin-plot analysis and the initial number of degrees of freedom, which is the relevant parameter of the modified HMB model, appear to be approximately equal for a given reaction at a given energy. It is inferred that, for heavy-ion reactions, the determination of such a parameter is substantially dominated by the centre-of-mass energy per nucleon above the Coulomb barrier, in contrast with the results of nucleon-induced reactions

  13. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  14. Double-differential heavy-ion production cross sections

    International Nuclear Information System (INIS)

    Miller, T. M.; Townsend, L. W.

    2004-01-01

    Current computational tools used for space or accelerator shielding studies transport energetic heavy ions either using a one-dimensional straight-ahead approximation or by dissociating the nuclei into protons and neutrons and then performing neutron and proton transport using Monte Carlo techniques. Although the heavy secondary particles generally travel close to the beam direction, a proper treatment of the light ions produced in these reactions requires that double-differential cross sections should be utilised. Unfortunately, no fundamental nuclear model capable of serving as an event generator to provide these cross sections for all ions and energies of interest exists currently. Herein, we present a model for producing double-differential heavy-ion production cross sections that uses heavy-ion fragmentation yields produced by the NUCFRG2 fragmentation code coupled with a model of energy degradation in nucleus-nucleus collisions and systematics of momentum distributions to provide energy and angular dependences of the heavy-ion production. (authors)

  15. Nuclear Fragmentation in Clinical Heavy Ion Beams, Should We Worry?

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Toftegaard, Jakob

    2012-01-01

    Particle therapy with fast ions is increasingly applied as a treatment option for localized inoperable tumour sites. One of the reasons for the increased complications of understanding heavy ion dosimetry and radiobiology stems from the mixed particle spectrum which occurs due to nuclear fragment......Particle therapy with fast ions is increasingly applied as a treatment option for localized inoperable tumour sites. One of the reasons for the increased complications of understanding heavy ion dosimetry and radiobiology stems from the mixed particle spectrum which occurs due to nuclear....... The concept of relative biological effectiveness (RBE) translates the physical dose to a biological effective dose which is iso-effective to photon radiation. Radiobiological models based on amorphous track structure such as the Local Effect Model, but also microdosimetry based models both rely on a full...... the sensitivity on the three fields mentioned above, including: turning off nuclear fragmentation entirely, changing all ineleastic cross sections +/- 20%, changing key parameters in the Fermi-Breakup (FB) model. Results show nuclear effects have their largest impact on the dose distribution. Stopping power...

  16. On the use of thin ion implanted Si detectors in heavy ion experiments

    International Nuclear Information System (INIS)

    Lavergne-Gosselin, L.; Stab, L.; Lampert, M.O.

    1988-10-01

    We present test results on the use of thin ion implanted epitaxial Si detectors for registration of low- and medium energy heavy fragments in nuclear reactions. A linear energy response for very low energy nuclei has been observed. A test of 10 μm + 300 μm telescopes under realistic experimental conditions for heavy ion experiments exhibits the possibilities to use these detectors for the measurements of multifragmentation products. (authors)

  17. Study of elastic scattering between heavy ions. Reaction channel influence

    International Nuclear Information System (INIS)

    Doubre, Hubert.

    1978-01-01

    The role of absorption on the behavior of heavy ion angular distributions and excitaton functions has been investigated on light and medium mass systems. Comparison between 20 Ne+ 12 C and 16 O+ 16 O systems which lead to the same compound nucleus, shows that it originates from the direct channels strongly coupled to the entrance channel. Structures in the excitation functions occur for almost all the light systems and it is shown that the damping observed for heavier systems such as 40 Ca+ 40 Ca, essentially results on the predominance of Coulomb effects which hide the nuclear structure effects. Thus no valuable information on the details of S-matrix can be extracted for such an heavy system. A coherent description of the elastic scattering, based on a splitting of the scattering amplitude into two components, the modulus of each component varying smoothly as a function of energy and angle. The interference between these sub-amplitudes give rise to interference effects in angular distributions and excitation functions. The study of the main reaction channels of the 40 Ca+ 40 Ca system - i.e. deep inelastic reactions and fusion - also shows that the closed-shell nature of the interacting nuclei does not play any role in these processes due to the excitation processes in the first stage of the reactions which destroy the specific structure of the nuclei [fr

  18. Competition between fusion and quasi-fission in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab

  19. On experimental and theoretical studies of dynamics and particle production in p-nucleus and heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A.B

    1998-11-01

    Several experiments and theoretical models of intermediate energy heavy ion collision physics are presented in this thesis. Statistical and dynamical aspects of nuclear collisions are widely discussed these days, particularly in connection with the multifragmentation phenomenon and the possible link to a liquid-gas phase transition in the spinodal region of nuclear matter phase diagram. Experimental techniques which allow us to measure various parameters of hot and dense (equilibrated) regions (emission sources) formed in a heavy ion collision are well established nowadays. In recent CHIC (Celsius Heavy Ion Collaboration) experiments the properties of such sources were measured using slowly ramping mode of the CELSIUS storage ring. In this thesis the entropy and chaos production in nuclear collisions is discussed in connection with the t/d/p ratios. Subthreshold pion production explores collective effects in heavy ion collisions and brings additional information about the equation of state of nuclear matter. Continuous pion production excitation functions were measured in the beam energy region from far below the nucleon-nucleon threshold up to the delta dominant region. Mass and angular dependencies of pion production are discussed. A version of the molecular dynamics model which includes pion production in direct nucleon-nucleon collisions was developed and experimental data were analysed in the scope of this model. Properties of the emission sources formed in heavy ion collisions at energies below 50A MeV were studied in the experiments of fragmentation type performed by CHIC. Temperatures of these sources were extracted from fragment energy spectra and from `isotopic effect`. A version of the quantum molecular dynamics model, where the Pauli potential is introduced into the Hamiltonian, was combined with the statistical multifragmentation model and used to explore dynamical and statistical properties of the reaction development. The artificial neural networks

  20. On experimental and theoretical studies of dynamics and particle production in p-nucleus and heavy ion reactions

    International Nuclear Information System (INIS)

    Fokin, A.B.

    1998-11-01

    Several experiments and theoretical models of intermediate energy heavy ion collision physics are presented in this thesis. Statistical and dynamical aspects of nuclear collisions are widely discussed these days, particularly in connection with the multifragmentation phenomenon and the possible link to a liquid-gas phase transition in the spinodal region of nuclear matter phase diagram. Experimental techniques which allow us to measure various parameters of hot and dense (equilibrated) regions (emission sources) formed in a heavy ion collision are well established nowadays. In recent CHIC (Celsius Heavy Ion Collaboration) experiments the properties of such sources were measured using slowly ramping mode of the CELSIUS storage ring. In this thesis the entropy and chaos production in nuclear collisions is discussed in connection with the t/d/p ratios. Subthreshold pion production explores collective effects in heavy ion collisions and brings additional information about the equation of state of nuclear matter. Continuous pion production excitation functions were measured in the beam energy region from far below the nucleon-nucleon threshold up to the delta dominant region. Mass and angular dependencies of pion production are discussed. A version of the molecular dynamics model which includes pion production in direct nucleon-nucleon collisions was developed and experimental data were analysed in the scope of this model. Properties of the emission sources formed in heavy ion collisions at energies below 50A MeV were studied in the experiments of fragmentation type performed by CHIC. Temperatures of these sources were extracted from fragment energy spectra and from 'isotopic effect'. A version of the quantum molecular dynamics model, where the Pauli potential is introduced into the Hamiltonian, was combined with the statistical multifragmentation model and used to explore dynamical and statistical properties of the reaction development. The artificial neural networks

  1. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  2. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  3. Application of path integral method to heavy ion reactions, 1. General formalism

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, J; Negishi, T [Tokyo Univ. of Education (Japan). Dept. of Physics

    1976-03-01

    The semiclassical approach for heavy ion reactions has become more and more important in analyzing rapidly accumulating data. The purpose of this paper is to lay a quantum-mechanical foundation of the conventional semiclassical treatments in heavy ion physics by using Feynman's path integral method on the basis of the second paper of Pechukas, and discuss simple consequences of the formalism.

  4. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  5. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  6. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    International Nuclear Information System (INIS)

    Schroeder, W. Udo

    2016-01-01

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the ''boiling'' and ''vaporization'' of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, ''head-on'' collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (''neck'') between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  7. Probing properties of neutron stars with terrestrial nuclear reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Ko, C.M.; Steiner, Andrew W.; Yong Gaochan

    2006-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide the unique opportunity in terrestrial laboratories to constrain the nuclear symmetry energy Esym in a broad density range. A conservative constraint, 32(ρ/ρ0)0.7 < Esym(ρ) < 32(ρ/ρ0)1.1, around the nuclear matter saturation density ρ0 has recently been obtained from analyzing the isospin diffusion data within a transport model for intermediate energy heavy-ion reactions. This subsequently puts a stringent constraint on properties of neutron stars, especially their radii and cooling mechanisms

  8. Two-body molecular model for resonances in heavy ion reactions

    International Nuclear Information System (INIS)

    Abe, Y.

    1978-01-01

    It is necessary to develop qualitative arguments on resonance mechanisms, which will give an overview on occurrences of resonances in heavy ion reactions, and further to identify typical examples of nuclear molecules among existing experimental data. In section 2, qualitative arguments on resonance mechanisms are given by exemplifying the 12 C + 16 O system with the 3 - excitation of the 16 O nucleus. In section 3 a simple formulation in the coupled channel framework is given. Resonances in the 12 C - 16 O system, which has been observed well above the Coulomb barrier, are investigated in section 4. In section 5 an old, but not yet solved problem on resonances in the 12 C + 12 C system which have been observed at sub-Coulomb energies, is taken up along the nuclear molecular picture. Further discussions are given on a role of the 20 Ne-α channel along the present simple qualitative picture given in section 2, which can be extended to rearrangement channels. (Auth.)

  9. Multifragmentation in relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Trautmann, W.

    1996-11-01

    Multifragmentation is the dominant decay mode of heavy nuclear systems with excitation energies in the vicinity of their binding energies. It explores the partition space associated with the number of nucleonic constituents and it is characterized by a multiple production of nuclear fragments with intermediate mass. Reactions at relativistic bombarding energies, exceeding several hundreds of MeV per nucleon, have been found very efficient in creating such highly excited systems. Peripheral collisions of heavy symmetric systems or more central collisions of mass asymmetric systems produce spectator nuclei with properties indicating a high degree of equilibration. The observed decay patterns are well described by statistical multifragmentation models. The present experimental and theoretical studies are particularly motivated by the fact that multifragmentation is being considered a possible manifestation of the liquid-gas phase transition in finite nuclear systems. From the simultaneous measurement of the temperature and of the energy content of excited spectator systems a caloric curve of nuclei has been obtained. The characteristic S-shaped behavior resembles that of ordinary liquids. Signatures of critical phenomena in finite nuclear systems are searched for in multifragmentation data. These studies, supported by the success of percolation in reproducing the experimental mass or charge correlations, concentrate on the fluctuations observed in these observables. Attempts have been made to deduce critical-point exponents associated with multifragmentation. (orig.)

  10. Studies of complex fragment emission in heavy ion reactions. Progress report, January 1, 1993 - September 1, 1995

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1995-01-01

    This work involves the study of low and intermediate energy heavy-ion nuclear reactions. This work has two foci. First, the authors desired to learn about the properties of both nuclei and nuclear matter under abnormal conditions. Their efforts towards this end run abreast of those for their second focus which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because their experimental laboratory for studying nuclear properties is a dynamic one. Their task is to answer the questions of how nuclear and nuclear matter properties are reflected in the dynamics of the reactions. The second objective also has great intrinsic value in that they can anticipate improving upon their understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has been: to study the dynamics of fusion reactions, specifically the dynamics of energy, mass, and angular momentum deposition. This work includes reactions near the Coulomb barrier, where fusion dominates the reaction cross section as well as higher energies where incomplete fusion reactions are the primary reactions. This includes the dynamics of fission, still the premier example of collective nuclear motion, as a function of excitation, spin, mass, and mass asymmetry. The authors push these kinds of studies into the intermediate energy domain, and where novel reaction scenarios are predicted. They have studied very central and peripheral collisions between very massive nuclei, and simplified projectile fragmentation reactions utilizing medium to light mass projectiles. The study of central collisions has shown us the importance of collective expansion. The study of peripheral collisions between very heavy nuclei has demonstrated the importance of dynamical production of fragments from the neck region

  11. Study of heavy ion fusion reaction of 58Ni + 24Mg at 11 MeV/nucleon

    International Nuclear Information System (INIS)

    Shea, J.Y.

    1991-01-01

    This thesis presents a study of the heavy ion fusion reaction in which a 58 Ni projectile bombards a 24 Mg target at 11 MeV/nucleon. The incident projectile energy was purposefully chosen so as the system studied to be at the onset of the more complex and interesting phenomenon of incomplete fusion. The physics motivation is to probe the central collision of a heavy, energetic, and asymmetric system by means of both inclusive and exclusive experimental measurements. The experiment was performed at HHIRF (Holifield Heavy Ion Research Facility) by using the coupled accelerators at Oak Ridge National Laboratory. The reaction products were measured by the new open-quotes HILI-Ringclose quotes large solid angle detector system at Oak Ridge National Laboratory. The thesis discusses the physics motivation and the systematics of heavy ion fusion reactions. Details of the design and construction of a new CsI(T1) Ring detector is given. Since this is the first such study performed on the Heavy Ion Light Ion (HILI) detector, an extensive discussion of the calibration procedures and the data reduction methods are given. The fusion reaction data were analyzed in both inclusive and exclusive modes with the result that a valuable new perspective on the deconvolution of the reaction mechanism has been achieved

  12. Nuclear research with heavy ions. Annual progress report, January 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Kaplan, M.

    1977-10-01

    The experimental research program consists of several interrelated parts: (1) Reactions of Very Heavy Ions with Complex Nuclei; (2) Studies of Compound Nucleus Reactions Induced by Heavy Ions; and (3) Recoil Studies of Heavy Ion Reactions. Using solid-state detector telescopes and gas-ionization detector telescopes we have studied the emission of 1 H, 2 H, 3 H, 4 He and heavy fragments from the reactions of 720 MeV 86 Kr with 197 Au. Coincidence measurements between light charged particles and a heavy fragment indicate that most of the observed 4 He particles are evaporated by equilibrated Kr*-like and Au*-like excited products from deep inelastic reactions, but a significant number of preequilibrium 4 He particles seem to be emitted in directions normal to the separating fragments. Studies of angular correlations between two heavy fragments provide strong evidence for sequential fission of the Au*-like reaction fragments, and the probability of this process has been estimated as a function of Q, the energy damping in the primary collision. Parallel studies of charged particle emission, fission, and evaporation residues in compound nucleus reactions map out the de-excitation characteristics of highly excited heavy nuclei as functions of E* and J. Results are presented for the compound nucleus 194 Hg formed at matched excitation energies via different entrance channels

  13. Fourier analysis of nonself-averaging quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions: quantum chaos in dissipative heavy-ion collisions?

    International Nuclear Information System (INIS)

    Kun, S.Yu.; Australian Nat. Univ., Canberra; Australian National Univ., Canberra, ACT

    1997-01-01

    We employ stochastic modelling of statistical reactions with memory to study quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. The Fourier analysis of excitation function oscillations is presented. It suggests that S-matrix spin and parity decoherence, damping of the coherent nuclear rotation and quantum chaos are sufficient conditions to explain the nonself-averaging of quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. (orig.)

  14. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2004-01-01

    Full text: In spite of reduced personnel the number of papers published and in press exceeded fifty, almost ten more than a year ago. Another good sign is the growing number of PhD students. The following short reports cover the three major domains of our scientific activities: nuclear, material and atomic physics. Nuclear physics: The structure of light nuclei was investigated, and studies of nuclear reactions induced by heavy ions were performed including experiments at the Heavy Ion Laboratory of Warsaw University. The experiments were carried out in collaboration with scientists from the Institute of Nuclear Research from Kiev, Ukraine. Proton induced reactions on zirconium were investigated theoretically by means of a multistep-direct model extended for the unbound particle - hole states. Good agreement with the experimental data was achieved. Isospin effects in multifragmentation of relativistic heavy ions were studied by the ALADIN Collaboration. Elements of a new generation detector PANDA were tested experimentally using a proton beam provided by the C-30 compact cyclotron at Swierk. Evidence of a narrow baryon state was found in a quasi - real photoproduction on the deuterium target by the HERMES Collaboration. Atomic physics: Ionisation of selected heavy elements by sulphur ions was investigated in collaboration with the Swietokrzyska Academy, Kielce. Materials research: Hydrogen release from ultrahigh molecular weight polythene was investigated by means of an α - particle beam from the Van de Graaff accelerator of our Department. Last but not least, many of our colleagues have been involved in education. Lectures on nuclear physics, accelerators, detectors used in nuclear research as well as nuclear methods applied in solid state studies for students from many high schools of Warsaw and for students of Warsaw University were given by Dr. Andrzej Korman and Dr. Lech Nowicki. Also, our Department made a significant contribution to the 7 th Science

  15. Exotic phenomena in collisions of very heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Mueller, U.; Schramm, S.; de Reus, T.; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.

    1987-01-01

    Over the last decade their knowledge on atomic structure of superheavy quasimolecules in the range 110 ≤ Z/sub tot/ ≤ 188 has increased considerably. Heavy ion collisions, in which superheavy quasimolecules are formed for a short period of time, offer them a unique tool to investigate the electronic structure of ultra-high Z-systems, which are not otherwise accessible to experiment. Comparison of K-vacancy formation, δ-electron and positron emission with available experimental data suggests the validity of the quasimolecular picture, which will be taken as the theoretical framework of these calculations. To exemplify current theoretical investigations three different topics will be discussed. After a presentation of the underlying theoretical framework for ionization processes the possibility to employ δ-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions will be sketched. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 - 10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework is investigated. Finally phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms is briefly considered. 42 references, 5 figures

  16. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  17. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  18. Study of peripheral heavy ion reactions at 84 MeV/nucleon

    International Nuclear Information System (INIS)

    Rabe, H.J.

    1986-01-01

    In peripheral heavy ion reactions between 18 O and 58,64 Ni, 18 O and u97 Au, as well as between 12 C and 197 Au at an incident energy of 84 MeV/nucleon azimutal angular correlations between projectile fragments and light particles (p,d,t,α) were studied. By the selection of heavy projectile fragments Z p ≥6 and small multiplicity of the light particles from the target or from the reaction zone peripheral reactions between the heavy ions were selected. The data analysis showed that the emission of light particles under ΔΦ=180 0 , i.e. on the side lying relative to the beam axis opposite to the projectile fragment, is distinctly increased. The counting-rate ratio N(ΔΦ=180 0 )/N(ΔΦ=0 0 ) can amount up to 3.5:1. A detailed analysis yields the result that the anisotropy is closely correlated to the transverse momentum p t of the projectile fragments, whereby the connection for p t 600 MeV/c is nearly linear. The absolute cross section for these processes with small multiplicity of the light particles in coincidence with heavy projectile fragments (Z p ≥6) lies in the order of magnitude of 200 mb. (orig./HSI) [de

  19. Recent Progress in Constraining the Equation of State of Dense Neutron-Rich Nuclear Matter with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Wen Dehua; Xiao Zhigang; Xu Chang; Yong Gaochan; Zhang Ming

    2010-01-01

    The nuclear symmetry energy E sym (ρ) is the most uncertain part of the Equation of State (EOS) of dense neutron-rich nuclear matter. In this talk, we discuss the underlying physics responsible for the uncertain E sym (ρ) especially at supra-saturation densities, the circumstantial evidence for a super-soft E sym (ρ) from analyzing π - /π + ratio in relativistic heavy-ion collisions and its impacts on astrophysics and cosmology.

  20. Development of a nuclear data base for relativistic ion beams

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wong, M.; Schimmerling, W.; Wilson, J.W.

    1987-01-01

    The primary limitation on the development of heavy ion beam transport methods is the lack of an accurate nuclear data base. Because of the large number of ion/target combinations, the complexity of the reaction products, and the broad range of energies required, it is unlikely that the data base will ever be compiled from experiments alone. For the last 15 years, relativistic heavy-ion accelerators have been available, but the experimental data base remains inadequate. However, theoretical models of heavy-ion reactions are being derived to provide cross section data for beam transport problems. A concurrent experimental program to provide sufficient experimental data to validate the model is also in progress. Model development and experimental results for model validation are discussed. The need for additional nuclear fragmentation data is identified

  1. Exclusion of nuclear forces in heavy-ion Coulomb excitation and Coulomb fission experiments

    International Nuclear Information System (INIS)

    Neese, R.E.; Guidry, M.W.

    1982-01-01

    A simple prescription for estimating the energy at which nuclear forces begin to play a role in heavy-ion Coulomb excitation and Coulomb fission experiments is presented. The method differs from most commonly used recipes in accounting for projectile and target nucleus deformation effects. Using a single adjustable parameter the formula reproduces the energy for the onset of Coulomb-nuclear interference effects for a broad range of heavy-ion systems. It is suggested that most Coulomb fission experiments which have been done involve both Coulomb and nuclear excitation processes and should more properly be termed Coulomb-nuclear fission experiments

  2. Theory of nuclear excitation by electron capture for heavy ions

    International Nuclear Information System (INIS)

    Palffy, Adriana; Scheid, Werner; Harman, Zoltan

    2006-01-01

    We investigate the resonant process of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy-ion collision systems

  3. Third international workshop on compound nuclear reactions and related topics. Book of abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The conference was divided into the following sections: Fission; Surrogate reactions; Heavy ion reactions; Neutron-induced reactions; Gamma-ray strength functions; Nuclear astrophysics; Superheavy nuclei; Nuclear level density; Various nuclear reactions; Optical model simulations; and Pre-equilibrium. The publication contains 82 abstracts. (P.A.)

  4. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  5. Nuclear momentum distribution and relativistic heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    In terms of a direct fragmentation process and a hard-scattering process, the proton-inclusive data for the reaction α + 12 C → p + X have been successfully analyzed. The extracted semiempirical momentum distribution indicates possible evidence of nuclear correlations and final-state interactions. 4 figures

  6. Evaluation of electon and nuclear bremsstrahlung in heavy ion collisions

    International Nuclear Information System (INIS)

    Gippner, P.

    1975-01-01

    The detection of quasimolecular X-ray continua provides the possibility of investigating the electron shells of quasimolecules transiently formed during adiabatic heavy ion-atomic collision. The contribution of the electron and nuclear bremsstrahlung to quasimolecular X-ray continua observed in bombarding various targets with 65 and 96 MeV Nb ions were estimated

  7. Recent developments in heavy-ion physics

    International Nuclear Information System (INIS)

    Bonche, Paul; Schaeffer, Richard; Grammaticos, Basile; Vichniac, Gerard; Orland, Henri.

    1978-01-01

    In this course the main experimental results on heavy ion reactions are reviewed and the various theoretical methods used in their description are presented. The first chapter attempts a classification of heavy ion reactions, assuming that the various processes depend significantly on the energy available for the reaction and on the relative angular momentum of the collision. The second chapter presents a semi-classical method which makes use of the concept of complex trajectories. Various phenomena such as the absorption along the classical trajectory or the penetration in the classicaly forbidden region can be described in this way. The third chapter deals with the time dependent phenomena in the context of the TDHF theory. The complete formalism is presented, together with a review of the most important theoretical results. In the fourth chapter the nuclear well collision model is presented. This model makes possible the calculation of the elastic, inelastic or transfer reaction probabilities in a microscopic way with no adjustable parameters. Finally in a fifth chapter, various statistical models are developped for the study of deep inelastic collisions [fr

  8. Study of a new mechanism of reaction between heavy ions: the quasi-fission

    International Nuclear Information System (INIS)

    Ngo, Christian.

    1975-01-01

    A new type of deep inelastic reaction between two heavy ions (quasi-fission) has been discovered and studied when the product Z 1 Z 2 between the two ion atomic numbers is greater than or approximately equal to 1500. This mechanism is mainly binary, the total kinetic energy of the products is the one expected for a binary fission giving the same products, most of the products have masses very close to the initial masses, the angular distribution of the light products is peaked slightly forwards the projectile grazing angle (when the bombarding energy is not too much above the interaction barrier), at last, the total cross section for this process is a large part of the total reaction cross section. These results have been interpreted on the one hand using a static model and on the other hand using a dynamic model. An interaction potential between the two heavy ions has been derived using the energy density formalism within the framework of the sudden approximation. It has been shown that the nuclear part satisfies a scaling law which allows to factorize it in one term which depends on the two ion masses and another term which is independent of the system (universal function). Using the critical distance notion, the static calculations reproduce the quasi-fission cross sections. With regards to the dynamical calculations, the previously described potential has been introduced within the framework of Deubler and Dietrich's model. It is a classical dynamical calculation including dissipative terms. The vibration degrees of freedom of each ion have been explicitely taken into account. This calculation nicely reproduces both the energy loss in the relative motion, the focusing effect of the angular distribution, and the quasi-fission cross sections [fr

  9. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2001-01-01

    Full text: The last year of the twentieth-century was productive for our Department. Although the name of the Department suggests that we are all involved in investigations of nuclear reactions, in fact our activities are spread over three major domains: nuclear, atomic and material physics. Some of the projects we were involved in the last year have been realized using national facilities and accelerators, like the Van de Graaff accelerator of our Department at 69 Hoza Street, Warsaw Cyclotron U-200P of Warsaw University, and compact C30 cyclotron of our Institute at Swierk. Other projects were done abroad, using facilities of the Gesellschaft fuer Schwerionenforschung in Darmstadt, Institute de Physique Nucleaire at Orsay, and Universitaet Erlangen-Nuernberg in Erlangen. We carried out our work in close collaborations with physicists from many laboratories, Polish and foreign. - Low energy nuclear reactions. In collaboration with scientists from Ukraine experiments, using heavy ion beam provided by the Warsaw Cyclotron, were started. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interaction. Efforts were made to develop a multistep direct model of nuclear reactions. In the model contributions due to the low energy collective excitations were taken into account. Good agreement with the experimental data was achieved. - Multifragmentation of relativistic heavy ions. ALADIN Collaboration studied multifragmentation reactions induced by relativistic heavy ions. The main activities of our scientists concentrated on an upgrade of the detecting system in order to replace photo multipliers with large area avalanche photodiodes in the central section of the TOF-wall. Some tests of the photodiodes manufactured by Advanced Photonix Inc. were performed using standard β - and γ-sources. - Structure of a nucleon. Decay properties of the Roper resonance were studied. A

  10. Mass and angular distributions of the reaction products in heavy ion collisions

    Science.gov (United States)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  11. Interactions of relativistic heavy ions in thick heavy element targets and some unresolved problems

    International Nuclear Information System (INIS)

    Brandt, R.; Ditlov, V.A.; Pozharova, E.A.; Smirnitskij, V.A.

    2005-01-01

    Interactions of relativistic heavy ions with total energies above 30 GeV in thick Cu and Pb targets (≥2 cm) have been studied with various techniques. Radiochemical irradiation experiments using thick Cu targets, both in a compact form or as diluted '2π-Cu targets' have been carried out with several relativistic heavy ions, such as 44 GeV 12 C (JINR, Dubna) and 72 GeV 40 Ar (LBL, Berkeley, USA). Neutron measuring experiments using thick targets irradiated with various relativistic heavy ions up to 44 GeV 12 C have been performed at JINR. In addition, the number of 'black prongs' in nuclear interactions (due to protons with energies less than 30 MeV and emitted from the target-like interaction partner at rest) produced with 72 GeV 22 Ne ions in nuclear emulsion plates has been measured in the first nuclear interaction of the primary 22 Ne ion and in the following second nuclear interaction of the secondary heavy (Z>1) ion. Some essential results have been obtained. 1) Spallation products produced by relativistic secondary fragments in interactions ([44 GeV 12 C or 72 GeV 40 Ar]+Cu) within thick copper yield less products close to the target and much more products far away from the target as compared to primary beam interactions. This applies also to secondary particles emitted into large angles (Θ>10deg). 2) The neutron production of 44 GeV 12 C within thick Cu and Pb targets is beyond the estimated yield as based on experiments with 12 GeV 12 C. These rather independent experimental results cannot be understood with well-accepted nuclear reaction models. They appear to present unresolved problems

  12. Storage ion trap of an 'In-Flight Capture' type for precise mass measurement of radioactive nuclear reaction products and fission fragments

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    2001-01-01

    Data on nuclear masses provide a basis for creating and testing various nuclear models. A tandem system of FLNR comprised of the U-400M cyclotron, the COMBAS magnetic separator and the mass-spectrometric ion trap of an 'in-flight capture' type is considered as a possible complex for producing of the short-lived nuclei in fragmentation reactions by heavy ions and for precise mass measurement of these nuclei. The plan of scientific and technical FLNR research includes a project DRIBs for producing beams of accelerated radioactive nuclear reaction products and photofission fragments. This project proposes also precise mass measurements of the fission fragment with the help of the ion trap. The in-flight entrance of the ions and their capture in the mass-spectrometric ion trap using the monochromatizing degrader, the static electric and magnetic fields and a new invention, a magnetic unidirectional transporting ventil, is considered

  13. Implementation of TTIK method and time of flight for resonance reaction studies at heavy ion accelerator DC-60

    Energy Technology Data Exchange (ETDEWEB)

    Nurmukhanbetova, A.K. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Goldberg, V.Z. [Cyclotron Institute, Texas A& M University, College Station, TX (United States); Nauruzbayev, D.K. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Saint Petersburg State University, Saint Petersburg (Russian Federation); Rogachev, G.V. [Cyclotron Institute, Texas A& M University, College Station, TX (United States); Golovkov, M.S. [Joint Institute of Nuclear Research, Dubna (Russian Federation); Dubna State University, Dubna (Russian Federation); Mynbayev, N.A. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Artemov, S.; Karakhodjaev, A. [Institute of Nuclear Physics, Tashkent (Uzbekistan); Kuterbekov, K. [L.N. Gumilov Eurasian National University, Astana (Kazakhstan); Rakhymzhanov, A. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Berdibek, Zh. [School of Science and Technology, Nazarbayev University, Astana (Kazakhstan); Ivanov, I. [Institute of Nuclear Physics, Astana (Kazakhstan); Tikhonov, A. [School of Science and Technology, Nazarbayev University, Astana (Kazakhstan); Zherebchevsky, V.I.; Torilov, S. Yu. [Saint Petersburg State University, Saint Petersburg (Russian Federation); Tribble, R.E. [Cyclotron Institute, Texas A& M University, College Station, TX (United States)

    2017-03-01

    To study resonance reactions of heavy ions at low energy we have combined the Thick Target Inverse Kinematics Method (TTIK) with Time of Flight method (TF). We used extended target and TF to resolve the identification problems of various possible nuclear processes inherent to the simplest popular version of TTIK. Investigations of the {sup 15}N interaction with hydrogen and helium gas targets by using this new approach are presented.

  14. Effect of γ-ray emission on transuranium element production cross sections in heavy ion reactions

    International Nuclear Information System (INIS)

    Il'inov, A.S.; Oganesyan, Yu.Ts.; Cherepanov, E.A.

    1980-01-01

    The effect of competition of the γ ray emission with neutron evaporation and of compound nuclei fission induced by heavy ion reactions on the production cross sections for transuranium elements is considered. It is shown that taking account of γ ray emission leads to the broadening of the excitation functions of the (HI, xny) reactions such as 18 O+ 238 U, 40 Ar+ 206 Pb, 40 Ar+ 207 Pb and 40 Ar+ 208 Pb reactions and to the displacement of their maximum toward the higher energies as well as to an increase of the absolute cross sections which is especially strong close to the fusion barrier. Cross sections for the radiative capture of heavy ions by a heavy target nucleus in 40 Ar+ 206 Pb, 40 Ar+ 208 Pb, 48 Ca+ 204 Pb and 48 Ca+ 208 Pb reactions are estimated

  15. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.

    2010-06-01

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  16. Chaotic scattering in heavy-ion reactions with mass transfer

    International Nuclear Information System (INIS)

    Rodriguez Padron, Emilio; Guzman Martinez, Fernando

    1998-01-01

    The role of the mass transfer in heavy ion collisions is analyzed in the framework of a simple semi phenomenological model searching for chaotic scattering effects. The model couples the relative motion of the ions to a collective degree of freedom. The collective degree of freedom is identified by the mass asymmetry of the system. A Saxon-Woods potential is used for nucleus-nucleus interaction whiles a harmonic potential rules the temporal behaviour of the collective degree of freedom. This model shows chaotic scattering which could be an explanation for certain types of cross-section fluctuations observed in this kind of reactions

  17. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  18. Intermediate energy heavy ion reactions. A program for CELSIUS

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1986-02-01

    The accelerator system under construction in Uppsala with the ECR-source + the K equals 200 synchrocyclotron + the CELSIUS synchrotron ring for storage, cooling and acceleration opens up possibilities for a very fruitful heavy ion physics program. Some recently obtained results and some recent ideas on intermediate energy reactions are discussed and speculations are made about some experiments where the unconventional qualities of CELSIUS beams could be utilized. (author)

  19. TDHF calculations for heavy-ion collisions

    International Nuclear Information System (INIS)

    Dhar, A.K.

    1981-01-01

    In considering the TDHF theory for heavy-ion reaction calculations it is shown that this parameter-free approach spans a wide range of nuclear phenomena ranging from elastic scattering to fusion, including dissipative and collective processes, in a unified manner. The subject is considered under the headings: (1) TDHF equations, conservation laws, effective hamiltonian and initial conditions. (2) Symmetries and filling approximation. (3) Qualitative features of TDHF dynamics. (4) Comparison with experiment (fusion results, deep-inelastic reaction studies, particle emission from TDHF calculations). (U.K.)

  20. Nuclear research with heavy ions. Annual progress report, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Kaplan, M.

    1979-10-01

    The experimental research emphasizes the detection and measurement of light charged particles emitted in reactions between heavy ions and complex nuclei. The program involves a collaboration between Carnegie-Mellon University and SUNY at Stony Brook, and utilizes the SuperHILAC and 88'' cyclotron accelerator facilities of the Lawrence Berkeley Laboratory. Correlations between light charged particles and heavy fragments provide detailed insights into the dynamics of the reaction mechanism. The light charged particles evaporated from fully accelerated fragments yield information on the excitation energies and spins of the equilibrated reaction products, whereas those particles that are emitted prior to thermal equilibration give a view of the early stages of the reaction. Experimental results of fusion and charged particle emission cross sections are discussed for a variety of heavy ion reactions, particularly those induced by 40 Ar ions. The theoretical development of the statistical model as applied to particle evaporation is reviewed, and semiempirical methods for facilitating comparisons with experimental data are presented. Current results from singles and coincidence experiments are given in detail for reactions of 340-MeV 40 Ar with Au, and analyses of average spins and energy sharing among particles are discussed

  1. Nuclear reaction analysis (NRA) for trace element detection

    Energy Technology Data Exchange (ETDEWEB)

    Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Noll, K. [Bern Univ. (Switzerland)

    1997-09-01

    Ion beam induced nuclear reactions can be used to analyse trace element concentrations in materials. The method is especially suited for the detection of light contaminants in heavy matrices. (author) 3 figs., 2 refs.

  2. Actinide production in the reaction of heavy ions with curium-248

    International Nuclear Information System (INIS)

    Moody, K.J.

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z=91) to mendelevium (Z=101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of 248 Cm with 18 O, 86 Kr and 136 Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from 48 Ca and 238 U bombardments of 248 Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like 136 Xe and 238 U the new species 248 Am, 249 Am and 247 Pu should be produced with large cross sections from a 248 Cm target. A preliminary, unsuccessful attempt to isolate 247 Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from 251 Bk decay, necessary for calculating the 251 Bk cross section, are also determined

  3. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Technical progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1979-01-01

    Experimental research on nuclear structure and reactions both published and in progress is summarized. Included are fusion reactions, strongly damped heavy ion collisions, and nuclear structure at high angular momentum. A list of publications is included

  4. Light particle and gamma ray emission measurements in heavy-ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1982-01-01

    The development of a position-sensitive neutron detector and a data acquisition system at HHIRF for studying light particle emission in heavy ion reactions is described. Results are presented and discussed for the reactions 12 C + 158 Gd, 13 C + 157 Gd, and 20 Ne + 150 Nd

  5. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    Science.gov (United States)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  6. Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion

    International Nuclear Information System (INIS)

    Shen Caiwan; Li Qingfeng; Boilley, David; Shen Junjie; Abe, Yasuhisa

    2011-01-01

    The fusion hindrance in heavy-ion collisions is studied in the framework of the two-center liquid drop model. It appears that the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus. Heavy-ion reactions with and without the two kinds of fusion hindrance are classified through systematic calculations. It is found that the number of reactions without radial fusion hindrance is much smaller than that without neck fusion hindrance, and for both kinds of fusion hindrance the number of reactions without fusion hindrance at small mass-asymmetry parameter α is smaller than that at large α. In the formation of a given compound nucleus, if a reaction with α c is not hindered, then other reactions with α>α c are also not hindered, as is well known experimentally.

  7. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  8. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  9. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  10. Proceedings of the RCNP cascade project workshop 'heavy ion secondary beam course'

    International Nuclear Information System (INIS)

    1991-10-01

    In the Research Center for Nuclear Physics (RCNP), Osaka University, as one of the experimental facilities utilizing the heavy ion beam from the ring cyclotron, the construction of the heavy ion secondary beam course has been in progress. This course can supply the unstable nuclei produced by a heavy ion reaction as a secondary beam, and is expected to become the powerful experimental facility for elucidating the condition of atomic nuclei in the extreme condition and their reaction mode. At present, the arrangement is advanced aiming at the utilization from the end of fiscal year 1991. Toward the start of joint utilization experiment, in order to examine the expected physics, concrete experimental plan and the preparation plan accompanying them, the workshop including the introduction of the course was held. On December 15, 1990, the workshop with the theme on the nuclear reaction by unstable nucleus beam was held, and on January 26, 1991, that with the theme on the spectroscopy of unstable nuclei was held. In each meeting, there were more than 20 participants. In this report, the gists of 18 papers are collected. (K.I.)

  11. Non local separable interactions in the description of some nuclear properties. Recoil and finite range effects in the CRC formalism for the study of heavy ion transfers

    International Nuclear Information System (INIS)

    Meyer, J.

    1976-01-01

    Some simplifications given by the nonlocal separable interactions (NLSI) allowed an exhaustive study of the three body problem to be performed. This work is intended to show that NLSI are also useful in studying the properties of nuclei. Some satisfactory results obtained in the infinite nuclear matter and also in the Hartree-Fock study of some 3s-1d nuclei are then given. A coupled reaction formalism has been developed for the analysis of heavy ion induced reactions. The recoil and finite range effects, which are necessary tools in heavy-ion induced reactions, have been introduced from the work of Coker et al. for the ( 3 He,t) reaction [fr

  12. Implantation of 111In in NTDSi by heavy ion recoil technique

    International Nuclear Information System (INIS)

    Thakare, S.V.; Tomar, B.S.

    1998-01-01

    Heavy ion recoil implantation technique has been used to implant 111 In in n-type silicon using medium energy heavy ion accelerator Pelletron, at TIFR, Colaba, Mumbai. The nuclear reaction used for this purpose was 109 Ag( 7 Li,p4n) 111 In. The beam energy was optimised to be 50 MeV for maximum concentration of the implanted probe atoms. The gamma-ray spectrum of the implanted sample after 24 hours was found to contain only 171 and 245 keV gamma rays of 111 In. The penetration depth of ion is increased to 1.6 μm by heavy ion recoil implantation technique as compared to 0.16 μm with the conventional ion implantation technique. (author)

  13. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  14. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    CERN Document Server

    Oganessian, Yu T; Dmitriev, S N; Itkis, M G; Gulbekyan, G G; Khabarov, M V; Bekhterev, V V; Bogomolov, S L; Efremov, A A; Pashenko, S V; Stepantsov, S V; Yeremin, A V; Yavor, M I; Kalimov, A G

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 sup - sup 3. The set up can work in the wide mass range from A approx 20 to A approx 500, its mass acceptance is as large as +-2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considere...

  15. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  16. Pion production in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Wolf, K.L.; Bock, R.; Brockmann, R.

    1984-01-01

    Experimental data for heavy ion pion production reactions are compared with the predictions of a number of versions of cascade models. Pion suppression effects observed in the experimental data are fit by introducing refinements into cascade theory. Impact parameter adjustment, off-shell effects on the potential and perturbations due to nuclear matter are considered

  17. Proceedings of the international conference on dynamical properties of heavy-ion reactions held at the University of the Witwatersrand, Johannesburg, South Africa, August 1-3, 1978. v. 4

    International Nuclear Information System (INIS)

    Sellschop, J.P.F.; Toepffer, C.; Lemmer, R.H.; Engelbrecht, C.A.

    1978-01-01

    At this post-conference school invited lectures on 'Topical themes in heavy-ion scattering' were delivered. The following topics were discussed; 1) the measurement of magnetic moments of nuclear states of high angular momentum; 2) nuclei at very high angular momentum; 3) multi-step direct reaction analysis of deep inelastic spectra in nuclear reactions: 4) experiments relating to quantum electrodynamics of strong field and 5) the role of deep inelastic processes in nuclear physics

  18. EMPIRE-II statistical model code for nuclear reaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M [International Atomic Energy Agency, Vienna (Austria)

    2001-12-15

    EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)

  19. Fundamentals and applications of heavy ion collisions below 10 MeV/ nucleon energies

    CERN Document Server

    Prasad, R

    2018-01-01

    An up-to-date text, covering the concept of incomplete fusion (ICF) in heavy ion (HI) interactions at energies below 10 MeV/nucleon. Important concepts including the exciton model, the Harp Miller and Berne model, Hybrid model, Sum rule model, Hot spot model and promptly emitted particles model are covered in depth. It studies the ICF and PE-emission in heavy ion reactions at low energies using off-beam and in-beam experimental techniques. Theories of complete fusion (CF) of heavy ions based on Compound Nucleus (CN) mechanism of statistical nuclear reactions, details of the Computer code PACE4 based on CN mechanism, pre-equilibrium (PE) emission, modeling of (ICF) and their limits of application are discussed in detail.

  20. Momentum transfer in relativistic heavy ion charge-exchange reactions

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  1. Nuclear reactions and synthesis of new transuranium species

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1983-01-01

    In this short review, I shall describe the special aspects of heavy ion nuclear reaction mechanisms operative in the transuranium region, the role of new techniques, possible nuclear reactions for the production of additional transuranium elements and nuclear species and the importance of work in this region for the development of nuclear models and theoretical concepts. This discussion should make it clear that a continuing supply of leements and isotopes, some fo them relatively short-lived, produced by the HFIR-TRU facilities, will be a requirement for future synthesis of new elements and isotopes

  2. Quasi-elastic scattering an alternative tool for mapping the fusion barriers for heavy-ion induced fusion reaction

    International Nuclear Information System (INIS)

    Behera, B.R.

    2016-01-01

    Heavy element synthesis through heavy-ion induced fusion reaction is an active field in contemporary nuclear physics. Exact knowledge of fusion barrier is one of the essential parameters for planning any experiments for heavy element production. Theoretically there are many models available to predict the exact barrier. Though these models are successful for predicting the fusion of medium mass nuclei, it somehow fails for predicting the exact location of barrier for fusion of heavy nuclei. Experimental determination of barrier for such reactions is required for future experiments for the synthesis of heavy elements. Traditionally fusion barrier is determined taking a double derivative of fusion excitation function. However, such method is difficult in case of fusion of heavy nuclei due to its very low fusion/capture cross section and its experimental complications. Alternatively fusion barrier can be determined by measuring the quasi-elastic cross section at backward angles. This method can be applied for determining the fusion barrier for the fusion of heavy nuclei. Experimental determination of fusion barrier by different methods and comparison of the fusion excitation function and quasi-elastic scattering methods for the determination of fusion barrier are reviewed. At IUAC, New Delhi recently a program has been started for the measurement of fusion barrier through quasi-elastic scattering methods. The experimental facility and the first results of the experiments carried out with this facility are presented. (author)

  3. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ({sup 4}He.. {sup 238}U). Excellent results with respect to energy resolution, {delta}E/E ranging from 1 to 5 x 10{sup -3} even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of {sup 236}U by one order of magnitude and to determine the up to date smallest isotope ratio of {sup 236}U/{sup 238}U = 6.1 x 10{sup -12} in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also

  4. Calorimetric low temperature detectors for heavy ion physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.; Mainz Univ.

    2005-07-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ( 4 He.. 238 U). Excellent results with respect to energy resolution, ΔE/E ranging from 1 to 5 x 10 -3 even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of 236 U by one order of magnitude and to determine the up to date smallest isotope ratio of 236 U/ 238 U = 6.1 x 10 -12 in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also provides considerable advantage for X

  5. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  6. Hyperfine interaction studies with pulsed heavy-ion beams

    International Nuclear Information System (INIS)

    Raghavan, P.

    1985-01-01

    Heavy-ion reactions using pulsed beams have had a strong impact on the study of hyperfine interactions. Unique advantages offered by this technique have considerably extended the scope, detail and systematic range of its applications beyond that possible with radioactivity or light-ion reaction. This survey will cover a brief description of the methodological aspects of the field and recent applications to selected problems in nuclear and solid state physiscs illustrating its role. These include measurements of nuclear magnetic and electric quadrupole moments of high spin isomers, measurements of hyperfine magnetic fields at impurities in 3d and rare-earths ferromagnetic hosts, studies of paramagnetic systems, especially those exhibiting valence instabilities, and investigations of electric field gradients of impurities in noncubic metals. Future prospects of this technique will be briefly assessed. (orig.)

  7. Dynamical limitations to heavy-ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    In spite of the many attempts to synthesize superheavy elements in recent years, these efforts have not yet been successful. Recent improved theoretical models of heavy-ion fusion reactions suggest that the formation of super-heavy elements is hindered by the dynamics of the process. Several recent experiments lend support to these theories. The necessity of an excess radial velocity (extra push) over the Coulomb barrier in order to induce fusion is observed experimentally as predicted by the theory. So is a new reaction mechanism, called quasi-fission which tend to exhaust the part of the reaction cross section, which would otherwise lead to fusion. The present study shows that the angular distribution of fragments from quasi-fission processes are very sensitive to the occurrence of this reaction mechanism. A slight modification of one parameter in the theory demanded by the observation of quasi-fission for lighter projectiles via the angular distributions, has the consequence of posing even more-stringent limitations on heavy-ion-fusion reactions. This reduces even further the possibility for synthesizing and identifying superheavy elements in heavy-ion-fusion reactions

  8. Heavy ion transfer reactions

    Indian Academy of Sciences (India)

    array (CLARA), extensive investigations of nuclear structure and reaction dynamics have been carried out. In the present paper aspects of these studies will be presented, focussing more closely on the reaction mechanism, in particular on the ...

  9. Heavy-ion induced multinucleon transfer reactions in the 2s--1d shell

    International Nuclear Information System (INIS)

    Olmer, C.

    1975-01-01

    In order to investigate whether new nuclear structure information can be obtained from studying the direct transfer of more than two nucleons using heavy-ion projectiles, we have investigated the 28 Si( 16 O, 12 C) 32 S and 12 C( 14 N,d) 24 Mg reactions as candidates for the direct transfer of four- and twelve-nucleons, respectively. The counter telescope-position sensitive detector kinematic coincidence method--both angular distributions (22 0 less than theta/sub L/ less than 95 0 , E/sub L/ = 55.54 MeV) and excitation functions (theta/sub L/ = 26 0 , 50 less than E/sub L/ less than 63 MeV) were obtained for strongly excited states below 10 MeV in excitation in the first reaction. For the 12 C + 14 N interaction, a measurement of the angular distributions (25 0 less than theta/sub L/ less than 140 0 , E/sub L/ = 20,25 MeV) for proton, deuteron and alpha-particle emission to many low-lying states sufficed for the present purposes. Comparison of Hauser-Feshbach statistical model calculations with these data indicated that the light-particle production from the 12 C + 14 N interaction as investigated here is predominantly compound nuclear in nature. The selectively strong population of a few states in 32 S by the 28 Si-( 16 O, 12 C) 32 S reaction is primarily direct. The structure of these states was deduced from available light-ion-induced transfer reaction studies and shell model calculations; the importance of shell model configurations is indicated, and an alpha-particle transfer model can not account for the observed selectivity. Calculations of the 28 Si( 16 O, 12 C) 32 S reaction with a microscopic multinucleon transfer code indicate selectivities consistent with the present results. Moreover, the calculations suggest the presence of other, unexpected selectivities, all of which may be understood on a physical basis, and some of which appear as an extension of a similar effect seen in two-nucleon transfer reactions

  10. A quantal toy model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Cassing, W.

    1987-01-01

    A one-dimensional toy model of moving finite boxes is analysed with respect to quantal phenomena associated with heavy-ion dynamics at low and intermediate energies. Special attention is payed to the relation between energy and momentum of the nucleons inside and outside the time-dependent mean field. A Wigner transformation of the one-body density matrix in space and time allows for a unique comparison with classical phase-space dynamics. It is found that high momentum components of the nuclear groundstate wave function approximately become on-shell during the heavy-ion reaction. This leads to the emission of energetic nucleons which do not appear classically. It is furthermore shown, that the low lying eigenstates of the dinuclear system for fixed time are only partly occupied throughout the reaction at intermediate energies. This opens up final phase space for nucleons after producing e.g. a pion or energetic photon. Through the present model does not allow for a reliable calculation of double differential nucleon spectra, pion or photon cross sections, it transparently shows the peculiar features of quantum dynamics in heavy-ion collisions. (orig.)

  11. G.N. Florov Laboratory of Nuclear Reactions, history and the present day

    International Nuclear Information System (INIS)

    Szmider, J.

    1996-01-01

    The scientific activity and review of results attained at Florov Nuclear Reactions Laboratory of the Joined Institute of Nuclear Research, Dubna, have been presented in historical order. Especially the heavy ion cyclotron use for synthesis of new super-heavy elements as well as investigations of their physical and chemical properties have been shown. 1 fig

  12. Response of the GLAST LAT calorimeter to relativistic heavy ions

    International Nuclear Information System (INIS)

    Lott, B.; Piron, F.; Blank, B.; Bogaert, G.; Bregeon, J.; Canchel, G.; Chekhtman, A.; D'Avezac, P.; Dumora, D.; Giovinazzo, J.; Grove, J.E.; Hellstroem, M.; Jacholkowska, A.; Johnson, W.N.; Nuss, E.; Reposeur, Th.; Smith, D.A.; Suemmerer, K.

    2006-01-01

    The CsI calorimeter of the Gamma-Ray Large-Area Space Telescope (GLAST) will be calibrated in flight with cosmic-ray heavy ions. In order to determine the response of the calorimeter to relativistic heavy ions lighter than Fe, an experiment was carried out at the GSI heavy ion facility using the Fragment Separator (FRS). The measured response exhibits an unexpected feature for light ions, opposite to that observed at low incident energy: for a given deposited energy, the observed signal is greater for these ions than for protons (or more generally Z=1 minimum ionizing particles). Pulse shapes are found to be almost identical for carbon ions and Z=1 particles, with a significant slow scintillation component, which constitutes another departure from the low-energy behavior. Data on the energy resolution for the individual CsI crystals and on the loss of ions due to nuclear reactions in the calorimeter are also presented

  13. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  14. Nuclear research with heavy ions: Annual progress report for the period January 1, 1987-December 31, 1987

    International Nuclear Information System (INIS)

    Kaplan, M.

    1987-09-01

    The experimental research program is directed towards gaining an understanding of the behavior of very hot nuclear matter and the transformations which result in relaxation of various nuclear degrees of freedom or the formation of new nuclear states. We study the nuclear reactions between energetic heavy-ion projectiles and complex nuclei and explore the evolution of reaction mechanisms and decay properties with increasing excitation energy and angular momentum. Our recent work emphasizes the exploitation of light-charged-particle emission as a sensitive probe and indicator of the degree of thermal equilibrium and collective shape changes achieved at various stages of reaction. By using various detection systems to observe and identify the reaction products, we are tracking the dynamic progression of the reacting complex from the very early stages of the collision through the relatively longer time frames of equilibrium evaporation from separated and fully accelerated reaction fragments. An important objective of our experiments is to distinguish and identify the sources of charged particle emission in representative reactions, and to characterize the de-excitation properties of the emitters, particularly with regard to energy sharing and angular momentum transfer. Related compound-nuclear-reaction processes are being studied to create models of decay patterns and to provide experimental data for calibrating the parameters of statistical model theoretical calculations. 23 refs., 9 figs., 3 tabs

  15. Catapult mechanism for fast particle emission in fission and heavy ion reactions

    International Nuclear Information System (INIS)

    Maedler, P.

    1984-01-01

    The fission processes of slabs of nuclear matter is modelled in the Hartree-Fock time dependence approximation by adding an initial collective velocity field to the static self-consistent solution. In dependence on its amplitude either large amplitude density oscillations are excited or fission occurs. The final disintegration of the slab proceeds on a time scale 10 -22 s and is characterized by a sharp peak in the actual velocity field in the region of the ''snatching'' inner low density tails. A characteristic time later a low density lump correlated with a peak in the velocity field energies in front of the fragments. These particles are called ''catapult particles''. Recent experimental results possibly provide evidence for catapult neutrons in low-energy fission. The significance of the catapult mechanism for fast particle emission in the exit channel of heavy ion reactions is discussed

  16. US nuclear reaction data program in support of basic research

    International Nuclear Information System (INIS)

    Bhat, M.R.; Chadwick, M.B.; Smith, M.S.

    1997-01-01

    Information about the US Nuclear Reaction Data Network (USNRDN) such as its members, work in progress, summaries of meetings, and organizational details may be found in its WWW Homepage. This paper is an overview of the data support provided by the network for basic research in nuclear astrophysics, radioactive ion beams, high energy heavy-ion and electron interactions and related activities involving all aspects of data stewardship

  17. Stopping power for heavy ions in gases: a comparative study

    International Nuclear Information System (INIS)

    Diwan, P.K.; Singh, Lakhwant; Singh, Gurinder; Shyam Kumar

    1999-01-01

    The accurate knowledge of stopping power for heavy ions in gases is of paramount importance in nuclear reaction studies for the identification of reaction products involving ΔE-E telescope detectors. In the present work, it has been calculated the stopping power values for different heavy ions, such as Ne, Ar, Cu, Kr and Ag in various gas absorbers like H 2 , He, N 2 , Ne, Ar, Kr and Xe in the energy domain ∼ 2.5-6 MeV/n using the SRIM-98 code recently developed by Ziegler and the formulations of Benton and Henke, Hubert et al, Mukherjee and Nayak and Northcliffe and Schilling. This study has been undertaken in order to establish the validity of various semiempirical formulations for gas targets

  18. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  19. Giant dipole modes in heavy-ion reactions

    International Nuclear Information System (INIS)

    Suraud, E.; Schuck, P.

    1988-07-01

    A detailed study of the excitation of giant dipole modes (GDR) in intermediate energy heavy-ion collisions is presented in the framework of a full (non linearized) Landau-Vlasov equation. After having recalled the basic inputs of this dynamical formalism, within insisting upon the limitations of the Uehling-Uhlenbeck collision integral and upon the introduction of a realistic (isospin dependant) effective interaction, we present our tools for analysing the GDR in the simple case of isolated nuclei. We then pass on to simulations of collisions and discuss in some detail isospin modes in the model 12 Be + 12 C reaction. Results obtained for the energy of the excited dipole mode are in agreement with what is expected for excited, rotating, giant dipole oscillations in deformed nuclei

  20. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  1. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  2. Effects of rotation on the stability of nuclei under fission and the possibility of fusion in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Kumar, K.

    1975-06-01

    The two-center shell model for fission is extended to include the effects of nuclear rotation or angular momentum J. The principle of minimization of total nuclear energy with respect to a constraint on J leads to an effective potential energy which depends on J as well as moment of inertia. This effective potential energy is minimized with respect to nuclear shape variables, neutron pairing energy gap, and proton pairing energy gap for each J value. The resulting potential minima, fission barriers, and moments of inertia are quite sensitive to J. Results are given for 208 82 Pb, 240 94 Pu, and for a super-heavy nucleus, 298 114 X. Microscopic calculations of the critical angular momentum (at which the fission barrier vanishes) are compared with the rotating liquid drop calculations of Cohen, Plasil, and Swiatecki. The influence of these results on the possibility of fusion in heavy-ion reactions is discussed. (5 figures, 6 tables) (U.S.)

  3. Considerations concerning the physics of nuclear matter under extreme conditions and an accelerator for relativistic heavy ions

    International Nuclear Information System (INIS)

    Blasche, K.; Bock, R.; Franzke, B.; Greiner, W.; Gutbrod, H.H.; Povh, B.; Schmelzer, C.; Stock, R.

    1977-01-01

    The future problems of heavy-ion physics in the 10 GeV/U range are dealt with: the dynamics of relativistic nuclear collisions, phase transitions, nuclear matter, quantum electrodynamics of extremely strong fields, and astrophysical aspects. In the second part, the project of a heavy-ion accelerator in the 10 GeV/U range to be coupled to the present GSI UNILAC accelerator is discussed. (WL) [de

  4. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Science.gov (United States)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  5. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Oganessian, Yu.Ts.; Shchepunov, V.A.; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G.

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . The set up can work in the wide mass range from A∼20 to A∼500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given

  6. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Shchepunov, V.A. E-mail: shchepun@sunhe.jinr.rushchepun@cv.jinr.ru; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10{sup -3}. The set up can work in the wide mass range from A{approx}20 to A{approx}500, its mass acceptance is as large as {+-}2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  7. Complementarity between neutron capture and heavy-ion reactions in nuclear structure studies

    International Nuclear Information System (INIS)

    Schult, O.W.B.

    1978-01-01

    The study of the complementarity of certain nuclear reactions in nuclear structure studies includes spectroscopic methods, nuclear rotation and coupling of nucleons to the core, and the de-excitation and structure of high lying states. 23 references

  8. Dynamical processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Blann, M.; Remington, B.A.

    1988-01-01

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy γ-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/μ. Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs

  9. Splendor and misery of the distorted wave method applied to heavy ions transfer reactions

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1979-01-01

    The success and failure of the Distorted Wave Method (DWM) applied to heavy ion transfer reactions are illustrated by few examples: one and multi-nucleon transfer reactions induced by 15 N and 18 O on 28 Si target nucleus performed on the vicinity of Coulomb barrier respectively at 44 and 56 MeV incident energy

  10. Proceedings of study meeting on microscopic and phenomenological research of interaction for light heavy-ion systems

    International Nuclear Information System (INIS)

    1991-06-01

    The Research Center for Nuclear Physics study meeting 'Microscopic and phenomenological research of interaction for light heavy-ion systems was held on March 7-9, 1990 as the study meeting in the second half of 1990, and 25 researchers took part in it. As the background of holding this study meeting, the fact that recently the rainbow scattering due to nuclear force was discovered experimentally in 16 O- 16 O system, and phenomenologically it was explained only by deep inter-nucleus potential. This should be evaluated as an important foothold for the research on the interaction for light heavy-ion systems and nuclear reaction mechanism. Accordingly, most of the papers presented this time were those related to the inter-nucleus potential and nuclear reaction mechanism. Also the development of theoretical analysis method was carried out and reported. Further, recently the experimental study on the structure and reaction of the neutron rich nucleus has advanced, and the theoretical research related to this topic was reported. (K.I.)

  11. U.S. nuclear reaction data program in support of basic research

    International Nuclear Information System (INIS)

    Bhat, M.R.; Chadwick, M.B.; Smith, M.S.

    1998-03-01

    Information about the US Nuclear Reaction Data Network (USNRDN) such as its members, work in progress, summaries of meetings, and organizational details may be found in its WWW Homepage. This paper is an overview of the data support provided by the network for basic research in nuclear astrophysics, radioactive ion beams, high energy heavy ion and electron interactions and related activities involving all aspects of data stewardship

  12. Non-equilibrium statistical mechanical approach for describing heavy ion reactions

    International Nuclear Information System (INIS)

    Sventek, J.S.

    1979-01-01

    With the availability of heavy-ion projectiles (A > 4) at low to intermediate energies (4 < E/A < 10), products showing various stages of relaxation for certain macroscopic variables (center-of-mass energy, orbital angular momentum, etc.) were produced in various reactions. The distributions for these macroscopic variables showed a correlation between the stage of relaxation reached and the net amount of mass transfer which had occurred in the reaction. There was also evidence that there was an asymmetry in the number of net transfers necessary for complete relaxation between stripping ad pickup reactions. A model for describing the time-evolution of these reactions has been formulated, the keystone of which is a master-equation approach for describing the time-dependence of the mass-asymmetry. This, coupled with deterministic equations of motion for the other macroscopic coordinates in the reaction lead to calculated distributions which provide an excellent qualitative description of these reactions, and, in some cases, quantitatively reproduce the experimental data quite well

  13. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    The utilization of heavy ion reactions in atomic physics is surveyed. The basic collision mechanisms and their consequences in atomic physics are summarized. The atomic and electronic processes during and after heavy ion collisions are reviewed as functions of the projectile energy. The main detection and measuring methods are described. Reviews of new information about the structure of electronic cloud and about fundamental processes based on the analysis of heavy ion reaction data are given. (D.Gy.)

  14. Study of pheripheral heavy ion reactions at 84 MeV/nucleon

    International Nuclear Information System (INIS)

    Rabe, H.J.

    1986-04-01

    In peripheral heavy ion collisions between 18 O and sup(58,64)Ni, 18 O and 197 Au, as well as between 12 C and 197 Au at an incident energy of 84 MeV/nucleon azimutal angular correlations between projectile fragments and light particles (p,d,t,α) were studied. For the detection of the projectile fragments a 54-fold segmented in theta and phi space-resolving and Z-insensitive scintillator hodoscope was developed and constructed. The particle identification is aimed in the angular range 2 0 0 only by a ΔE measurement because the fragments exhibit a narrow velocity distribution around the beam velocity. The theta and phi resolution is 1.5 0 and 60 0 . In the external angular range 6.5 0 0 the particle identification is performed by simultaneous measurement of ΔE abd Esub(rest) in phoswich detectors with a theta and phi resolution of 4.5 0 respectively 30 0 . The light particles were detected in a large-area space-resolving scintillator hodoscope. Because this hodoscope possesses no particle identification and thus does not allow energy measurement, the coincidence measurement was supplemented by the detection of the light particles in semiconductor telescopes with good energy and particle resolution. By the selection of heavy projectile fragments Zsub(p)>=6 and low multiplicity of the light particle from the target or from the reaction zone peripheral reactions between the heavy ions were selected. (orig./HSI) [de

  15. Heavy ion collision dynamics of 10,11B+10,11B reactions

    Directory of Open Access Journals (Sweden)

    Singh BirBikram

    2015-01-01

    Full Text Available The dynamical cluster-decay model (DCM of Gupta and collaborators has been applied successfully to the decay of very-light (A ∼ 30, light (A ∼ 40−80, medium, heavy and super-heavy mass compound nuclei for their decay to light particles (evaporation residues, ER, fusion-fission (ff, and quasi-fission (qf depending on the reaction conditions. We intend to extend here the application of DCM to study the extreme case of decay of very-light nuclear systems 20,21,22Ne∗ formed in 10,11B+10,11B reactions, for which experimental data is available for their binary symmetric decay (BSD cross sections, i.e., σBSD. For the systems under study, the calculations are presented for the σBSD in terms of their preformation and barrier penetration probabilities P0 and P. Interesting results are that in the decay of such lighter systems there is a competing reaction mechanism (specifically, the deep inelastic orbiting of non-compound nucleus (nCN origin together with ff. We have emipirically estimated the contribution of σnCN. Moreover, the important role of nuclear structure characteristics via P0 as well as angular momentum ℓ in the reaction dynamics are explored in the study.

  16. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  17. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  18. The case for exotic beams at the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1991-01-01

    The case is presented for modifying the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory to provide beams of proton-rich exotic isotopes, that do not occur terrestrially. A program of nuclear structure studies for light- and medium-mass, nearly self-conjugate nuclei and for heavy, proton-rich, quasibound nuclei is outlined, as are studies of hydrogen-burning reactions that occur in nucleosynthetic processes. Such a scientific program will provide a unique future for nuclear physics research at ORNL consistent with the long standing tradition of this laboratory

  19. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2002-01-01

    Full text: Department of Nuclear Reactions has had a very productive year. We have carried out our work in close collaborations with physicists from many laboratories, home and foreign. The following reports cover three major domains of our activities: nuclear, material and atomic physics. * Nuclear physics: In collaboration with scientists from Ukraine experimental studies of nuclear reaction induced by heavy ions from the Warsaw Cyclotron have been performed. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interactions. Proton induced charge-exchange reactions were investigated theoretically by means of multistep-direct model. Good agreement with the experimental data was achieved. A novel approach to the problem of the nuclear liquid → gas phase transition was proposed, based on synergetics - a domain of science dealing with self-organization in macroscopic systems. Decay properties of the Roper resonance were studied. Final analysis of the analysing powers for the polarized deuterons scattered on protons was accomplished. Experimental programme of the near-threshold meson production in proton - proton scattering has been started in collaboration with Forschungszentrum. Juelich. * Atomic physics: Spectra of the X-rays emitted by energetic sulphur ions scattered off carbon atoms were analysed in order to study the role of the multiple charge states of the inner shells in the dynamics of the collision process. Ionization probabilities in collision of oxygen ions with gold atoms were measured. The observed disagreement of the experimental data with the theoretical predictions suggest a strong effect generated by the sub-shell couplings. * Materials research: Ion channelling method was applied to investigate transformation of the defects in Al x Ga 1-x As crystalline layers. Activities of our colleagues in didactics have grown considerably. Lectures

  20. International Conference on Extreme States in Nuclear Systems

    International Nuclear Information System (INIS)

    Arlt, R.; Kuehn, B.

    1979-12-01

    The abstracts of contributed papers are arranged under the following headings: (1) nuclear matter, incl. elementary interactions, phase transitions, compression of nuclear matter; (2) heavy ion reactions, incl. nucleus-nucleus potential, mechanism of heavy ion reactions, role of non-equilibrium processes, nuclear quasimolecules, superheavy nuclei; (3) high spin states and nuclear structure; and (4) relativistic nuclear physics, incl. heavy ion reactions, particle production, role of nucleon associations. (author)

  1. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2000-01-01

    Full text: This year 1999 can be considered as very successful. Not only that we have published 33 papers in journals listed by the Philadelphia Institute of Science but because our hard work allowed us to obtain new and exciting results. A group of theoretical papers concerned with application of correlation among random matrices elements developed for statistical aspects of nuclear coupling into continuum to study of the collective effects in brain activity and stock market dynamics. These papers arose quite an interest and got several citations. Studies of the nonpartonic components in the nucleon structure function led to better understanding of the higher-twist effects. It was shown that inclusion of the terms of the order of 1/Q 4 improves fits to the experimental data. A review paper summarizing results on the role of the leading baryon in high energy reactions appeared in Progress on Nuclear and Particle Physics. Studies on multistep transfer reactions of light heavy ions in collaboration with the Institute of Nuclear Physics of the Ukrainian Academy of Sciences in Kiev have explained angular distributions of many reactions using the coupled channel theory. We have shown that it is possible to determine energy dependence of the optical model potential for such unstable nuclei like 8 Be. Further studies of mechanism of near threshold light meson production in collaboration with Juelich and Jagiellonian University were performed. Within COSY 10 and COSY 11 collaborations new data on the isospin symmetry breaking in pionic reactions and strange meson accompanied by hyperons emission were obtained. Together with colleagues from the Flerov Nuclear Reaction Laboratory we have started experiments with radioactive beams. Using magnetic separator COMBAS velocity distributions of isotopes with 2 ≤Z≤11 in reactions induced by 16 O on 9 Be were obtained. At the high resolution radioactive beam channel ACCULINA reactions induced by 6 He and 8 He nuclei were studied

  2. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  3. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    2012-10-12

    Oct 12, 2012 ... Experiments using ultrarelativistic heavy-ion collisions study nuclear matter under ... sN N = 10 GeV for Pb+Pb collisions, corresponding to an initial .... quenching through systematic comparisons of data to models, and .... the RdAu and RCP = (0−20%)/(60−80%) factors for the J/ψ production in d+Au col-.

  4. X-ray spectroscopy of highly ionized heavy ions as an advanced research for controlled nuclear fusion power

    International Nuclear Information System (INIS)

    Zschornack, G.; Musiol, G.

    1988-01-01

    Diagnostics and modelling of nuclear fusion plasmas require a detailed knowledge of atomic and molecular data for highly ionized heavy ions. Experimental verification of atomic data is made on the basis of IAEA recommendations using the method of high-resolution wavelength-dispersive X-ray spectroscopy in order to obtain contributions extensioning the available atomic data lists. Basic facilities for producing highly charged heavy ions are the electron-ion rings of the heavy ion collective accelerator and the electron beam ion source KRYON-2 at the Joint Institute for Nuclear Research at Dubna. For high-resolution X-ray spectroscopy with these sources a computer-aided crystal diffraction spectrometer has been developed the precision of which is achieved by using advanced principles of measurement and control. Relativistic atomic structure calculations have been carried out for a great number of elements and configurations to obtain data in ionization regions heavily accessible to the experiment. (author)

  5. High energy heavy ions: techniques and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 μsec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab

  6. Hard photon interferometry in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schutz, Y.

    1993-01-01

    It is shown how first- and second-order interference effects can be used to measure the extent of chaotic light sources such as stars viewed from a great distance. The same technique can be applied in nuclear physics where the interference effect arises from the quantum statistics of identical particles. The results from an experiment attempting to measure the size of the participant zone in a heavy-ion reaction using bremsstrahlung photons as a probe are presented. (author) 16 refs., 7 figs

  7. The effect of correlations on the entropy and hadrochemical composition in heavy ion reactions

    International Nuclear Information System (INIS)

    Barz, H.-W.; Biro, T.S.; Lukacs, B.; Zimanyi, J.

    1987-01-01

    It is shown that spatial correlations between the constituent particles of a gas lead to roughly excluded volume type corrections in the equation of state. These corrections will appreciably change the hadrochemical composition of fireballs formed in heavy ion reactions. (author) 29 refs.; 3 figs

  8. An overview of relativistic hydrodynamics as applied to heavy ion reactions

    International Nuclear Information System (INIS)

    Strottman, D.D.

    1989-01-01

    The application of relativistic hydrodynamics as applied to heavy ions is reviewed. Constraints on the nuclear equation of state, as well as the form of the hydrodynamic equations imposed by causality are discussed. Successes (flow, side-splash, scaling) and shortcomings of one-fluid hydrodynamics are reviewed. Models for pion production within hydrodynamics and reasons for disagreement with experiment are assessed. Finally, the motivations for and the implementations of multi-fluid models are presented. 74 refs., 11 figs

  9. Nonelastic nuclear reactions induced by light ions with the BRIEFF code

    CERN Document Server

    Duarte, H

    2010-01-01

    The intranuclear cascade (INC) code BRIC has been extended to compute nonelastic reactions induced by light ions on target nuclei. In our approach the nucleons of the incident light ion move freely inside the mean potential of the ion in its center-of-mass frame while the center-of-mass of the ion obeys to equations of motion dependant on the mean nuclear+Coulomb potential of the target nucleus. After transformation of the positions and momenta of the nucleons of the ion into the target nucleus frame, the collision term between the nucleons of the target and of the ion is computed taking into account the partial or total breakup of the ion. For reactions induced by low binding energy systems like deuteron, the Coulomb breakup of the ion at the surface of the target nucleus is an important feature. Preliminary results of nucleon production in light ion induced reactions are presented and discussed.

  10. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  11. Spectroscopic studies with the use of deep-inelastic heavy-ion reactions

    International Nuclear Information System (INIS)

    Broda, R

    2006-01-01

    Gamma spectroscopic studies exploiting deep-inelastic heavy-ion reactions in thick target experiments are reviewed. The description of physical motivation, history of early experiments, analysis of the N/Z equilibration process as well as the outline of the experimental method and data analysis are followed by the presentation of main results obtained in various regions of the nuclide chart. Brief comments on thin target spectroscopy experiments involving fragment detection and future outlook are summarized. (topical review)

  12. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    International Nuclear Information System (INIS)

    Beck, F.A.

    1993-01-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.)

  13. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F. A.

    1993-07-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.).

  14. On the resonant coherent excitation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Pivovarov, Y.L.; Geissel, H.; Filimonov, Yu.M.; Krivosheev, O.E.; Scheidenberger, C.

    1995-07-01

    New accelerator facilities open up an interesting new field of experiments on basic channeling as well as on atomic and nuclear resonant coherent exitation (RCE) of heavy ions penetrating through aligned crystals at relativistic energies. Results of computer simulations are presented to characterize the resonant coherent excitation of atomic levels of relativistic hydrogen-like heavy ions. Nuclear resonant coherent excitation reveals interesting different characteristics compared to the corresponding atomic excitation inside crystals. An important result of our model calculations is that poorly-channeled ions have a higher nuclear excitation probability than well-channeled ions. (orig.)

  15. Concluding remarks presented at the Symposium on heavy ion reaction dynamics on the tandem energy region

    International Nuclear Information System (INIS)

    Betts, R.R.

    1988-01-01

    This paper discusses the divisions between different heavy ion reaction processes. Fusion, deep inelastic, quasi-elastic and elastic interactions are discussed in terms of coupled channel calculations. 20 refs., 8 figs

  16. Unusual features of proton and α-spectra from low-energy heavy-ion ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 75; Issue 1. Unusual features ... Keywords. Proton and α-spectra; heavy-ion reaction; broad structures; nuclear level density. ... The broad structures in the -spectra cannot be fully explained within the statistical model even with the enhanced level density. In this case ...

  17. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  18. Light ion reaction mechanisms and nuclear structure

    International Nuclear Information System (INIS)

    Robson, B.A.

    1986-01-01

    Of the many contributions to the subject 'Light ion reaction mechanism and nuclear structure', a few are selected and reviewed which highlight the present state of the field. Some contributions to the conference dealing with nuclear interactions are briefly outlined in the second section following an introductory section. Lane model calculations are compared with data for 9 Be and results are given showing angular distributions of the cross sections, the analyzing powers and the spin-rotation parameters for p - 40 Ca. Real central potential for d + 32 s resulting from the FB-analysis are compared with frozen density folding and delta-function folding. The third section deals with reaction mechanism. Data are cited which show near-side and far-side contributions to the calculated analyzing powers in the 116 Sn(d,p) 117 Sn (11.2 - ) transition. Calculations are compared with experimental A y and -(A yy + 2)/3. Also given are measurements of the cross sections and analyzing powers of the continuum energy spectra for the 58 Ni(p,p'x), along with relations between the analyzing powers and momentum transfer. The fourth section addresses nuclear structure. Cross sections and analyzing powers measured at 22 MeV for the reaction 208 Pb(p,t) 206 Pb(3 2 + ) are cited and considered. (Nogami, K.)

  19. Prospective utilization of accelerated heavy ions in basic and applied research

    International Nuclear Information System (INIS)

    Flerov, G.; Oganesyan, Yu.

    1982-01-01

    Some important and interesting trends of heavy ion physics are briefly presented, such as giant processes which are characterized by fundamental restructuring of nuclear systems containing hundreds of nucleons, the mechanism of heavy nuclei interaction, the study of nuclear matter compression, the study of the specificity of heating and thermal conductivity of nuclear matter, the study of heavy ion/nucleus interactions at energies of 200 to 300 MeV/nucleon when the meson degree of freedom becomes manifest, the possibility of the production of ions with a large excess or deficiency of neutrons, new possibilities for determining the fission barrier, the critical verification of fundamental physical concepts of quantum electrodynamics and other possibilities of using accelerated heavy ions. The significance of heavy ion physics for the development of acceleration technologies is also described. (B.S.)

  20. Nuclear structure effects in multi-nucleon transfer and sequential fission reactions

    International Nuclear Information System (INIS)

    Biswas, D.C.

    2001-01-01

    The role of the nuclear structure in multi-nucleon transfer and sequential fission reactions has been discussed. The recent results on multi-nucleon transfer and transfer induced fission reaction, have brought out many interesting features in understanding the reaction mechanism and collective dynamics of heavy ion reactions. The structure of the projectile nucleus has strong influence on the transfer of multi-nucleons and/or clusters from the projectile to the target. The mechanism of multi-nucleon transfer between two heavy nuclei is a complex process which has a strong dependence on the ground state Q-value of the reaction as well as on the number of transferred nucleons

  1. Heavy ion elastic and quasi-elastic scattering above E/A = 30 MeV

    International Nuclear Information System (INIS)

    Barrette, J.

    1986-05-01

    At high energy, heavy-ion elastic scattering probes the ion-ion potential in a large domain much inside the strong absorption radius. This results in a more precise determination of the real part of the nuclear potential and a consistent picture of its evolution with energy begins to emerge. It is relatively similar to that observed in light ion scattering. Even if the inelastic angular distributions seem to contain less refractive or interior contribution, coupled channel effects from these states are still important at least up to 20 MeV/n. Heavy-ion induced transfer reactions to discrete states have small cross sections but present a very strong selectivity for states with the highest available spin and could thus provide new and interesting spectroscopic information

  2. Theory of nuclear excitation by electron capture for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gagyi-Palffy, A.

    2006-07-01

    The resonant process of nuclear excitation by electron capture (NEEC) in collisions involving highly-charged ions has been investigated theoretically. NEEC is a rare recombination process in which a free electron is captured into a bound shell of an ion with the simultaneous excitation of the nucleus. Total cross sections for NEEC followed by the radiative decay of the excited nucleus are presented for various collision systems. The possibility to observe the NEEC in scattering experiments with trapped or stored ions was discussed focusing on the cases with the largest calculated resonance strength. As the photons emitted in different channels of the electron recombination process are indistinguishable in the total cross section, the interference between NEEC followed by the radiative decay of the nucleus and radiative recombination was investigated. The angular distribution of the emitted photons in the recombination process provides means to discern the two processes. Angular differential cross sections for the emitted photons in the case of E2 nuclear transitions were presented for several heavy elements. (orig.)

  3. Heavy ion scattering: High energy limits of RBS and ERD

    International Nuclear Information System (INIS)

    Rauhala, E.

    1994-01-01

    Elastic scattering of 7 Li ions by oxygen and 12 C, 14 N and 16 O ions by aluminum, silicon, titanium and sulfur have been studied below the Coulomb barrier energies 3-30 MeV in the angular range of 78 degrees - 170 degrees. By kinematically reversing the reactions, the recoiling of carbon, nitrogen and oxygen by 40-100 MeV 27 Al, 28 Si, 32S and 48 Ti ions into recoil angles of 20 degrees, 25 degrees, 30 degrees and 40 degrees has also been investigated. Excitation functions and angular distributions are presented. Contrary to the case of light H and He ions, the heavy ion scattering cross sections fall off rapidly above the non-Rutherford threshold energy, rendering heavy ion RBS and ERD spectrometry worthless. Both classical and wave mechanical calculations have been attempted for predicting the RBS threshold energies. Simple calculations give moderate accuracy, while the more extensive nuclear potential perturbation approach relies on parameters fitted for the particular experiment. The authors present a general classical semi-empirical model for both direct scattering (RBS) and the kinematically reversed reactions (ERD), accurately reproducing the experimental data. The model is based on parameters fitted from the present scattering experiments and from an extensive literature survey

  4. Thin film analysis by instrumental heavy ion activation analysis using distributed recoil ranges of isotopic products

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Guin, R.; Saha, S.K.; Sudersanan, M.

    2006-01-01

    Thin foils (0.1 to 10 μm), metallic or polymeric, are frequently used in nuclear physics and chemistry experiments using ion beams from an accelerator. Very often it is important to know the major, minor and trace element composition of the foil. Several nuclear analytical techniques, namely RBS, ERDA, etc. are available for the near surface analysis. We have applied heavy ion activation analysis (HIAA) to explore the bulk composition of thin films. One of the difficulties in this method of thin film analysis is that the product nuclides from nuclear reaction come out of the sample surface due to high recoil energy. In thick sample, the recoiled nuclides are absorbed in the sample itself. This effect has been used to employ heavy ion activation for the analysis of thin films

  5. δ-electron spectroscopy and the atomic clock effect in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mueller-Nehler, U.

    1993-11-01

    The properties of strongly bound electrons in superheavy quasimolecular systems with combined nuclear charge numbers Z = Z P + Z T ≥ 110 are investigated. The emission of δ-electrons may serve as an atomic clock for nuclear reactions which is associated with the large overlap of the electron probability density with the nuclear interior. Excitation and emission rates of inner-shell electrons in collisions of very heavy ions with beam energies at or above the nuclear Coulomb barrier depend explicitly on details of the nuclear dynamics. Theoretical and experimental results are reviewed. (orig.)

  6. A triple telescope for the simultaneous identification of light and heavy reaction products

    CERN Document Server

    Moura, M M D; Alonso, E E; Souza, F A; Fujii, R J; Morais, O B D; Szanto, E M; Szanto de Toledo, A; Carlin, N

    2001-01-01

    Sixteen triple telescopes were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory, with the purpose of providing simultaneous identification of light and heavy reaction products. Each telescope consists of one ionization chamber, one Si detector and one CsI detector with photodiode readout. The telescopes are encapsulated in such a way that they can be utilized in different setup geometries depending on the kind of experiment being performed. Results for the ionization chambers energy loss resolution, Si and CsI detectors energy resolution and general performance are presented.

  7. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1999-01-01

    Full text: The Department of Nuclear Reactions had a very productive year. The following reports cover three major domains of our activities: nuclear, material and atomic physics. One of the current questions in modern nuclear physics is question of the phase transitions in nuclear matter. Our physicists, the members of the ALADIN Collaboration at Gesellschaft fuer Schwerionenforschung, participated in new experiments exploring properties of highly excited nuclear matter and the phenomenon of the liquid - gas phase transition. The experiments yielded a number of important results. Details can be found in the three short reports presented in this volume. Structure of a nucleon is another important subject of nuclear science research. In the last year energy region of Δ resonance has been investigated by means of charge exchange reaction. The experiment was performed at Laboratory National Saturne in Saclay by SPESIV-π collaboration consisting of physicist from Institute of Nuclear Physics Orsay, Niels Bohr Institute Copenhagen and from our Department. The main achievement of the experiment was evidence for a Δ - hole attraction in the spin longitudinal channel. Reactions induced by radioactive ion beams such as 6 He recently attract a lot of interest. There exist some evidences that the 6 He nucleus has a two-neutron halo structure similar to that well established for 11 Li. An analysis of 6 He + 4 He scattering data reported in this volume revealed some similarities between the loosely bound 6 Li nucleus and the neutron rich 6 He. Research in material physics has focused on two basic topics: a crystallographic model of uranium dioxide, a material currently used as a nuclear fuel and transformations of defects in GaAs crystals at low temperature. The investigations have been carried out in a wide collaboration with scientists from the University of Jena, Research Center Karlsruhe and Centre de Spectrometrie Nucleaire Orsay. Some experiments have been performed at

  8. Monte-Carlo simulations on the antineutrino detection in heavy ion collisions

    International Nuclear Information System (INIS)

    Zude, E.

    1991-09-01

    Aim of the present thesis was to study, how far a large-area neutron detector with high efficiency operated at the Corporation for Heavy Ion Research in Darmstadt can also by applied for experiments on the sub-threshold antineutron production in heavy ion reactions for the study of the equation of state of highly excited nuclear matter. The experimental part consisted in the partition at the construction, the taking into operation, and the calibration measurements of the target-detector system, as well at the experiments with the LAND detector for the study of the Coulomb excitation of 136 Xe projectiles in the reaction 136 Xe+ 208 Pb at 700 respectively 800 MeV/u. Studies on the suppression of neutron events against antineutron events in the data acquisition in a typical SIS/LAND experiment on the antineutron production in heavy ion collisions were performed. The possibilities available on the level of the hardware trigger for the suppression of (multiple) neutron events were studied. Thereby resulted a reachable suppression factor of ≅ 10 -3 . Studies on the off-line analysis of antineutron events exhibited problems, which base on the high matter density in the detector. (orig./HSI) [de

  9. Pauli-blocking effect in two-body collisions dominates the in-medium effects in heavy-ion reactions near Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yong-Zhong, E-mail: yzxing@tsnu.edu.cn [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zhang, H.F. [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Liu, Xiao-Bin [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zheng, Yu-Ming [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); China Institute of Atomic Energy, P.O. Box 275(18), Beijing 102413 (China)

    2017-01-15

    The dissipation phenomenon in the heavy-ion reaction at incident energy near Fermi energy is studied by simulating the reactions {sup 129}Xe + {sup 129}Sn and {sup 58}Ni + {sup 58}Ni with isospin-dependent quantum molecular dynamics model (IQMD). The isotropy ratio in terms of transverse and longitudinal energies of the free protons emitted in the final states of these reactions is quantitatively analyzed to explore the in-medium correlation of the binary collisions. Comparison of the calculations with the experimental data recently released by INDRA collaboration exhibits that the ratio is very sensitive to the Pauli blocking effect in two-body collisions and Pauli exclusion principle is indispensable in the theoretical simulations for the heavy-ion reactions near the Fermi energy.

  10. Applications of a superconducting solenoidal separator in the experimental investigation of nuclear reactions

    International Nuclear Information System (INIS)

    Hinde, D J; Carter, I P; Dasgupta, M; Simpson, E C; Cook, K J; Kalkal, Sunil; Luong, D H; Williams, E

    2017-01-01

    This paper describes applications of a novel superconducting solenoidal separator, with magnetic fields up to 8 Tesla, for studies of nuclear reactions using the Heavy Ion Accelerator Facility at the Australian National University. (paper)

  11. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1987-May 31, 1988

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1988-01-01

    This paper discusses work on heavy ion reactions done at Georgia State University. Topics and experiments discussed are: energy division in damped reactions between 58 Ni projectiles and 165 Ho and 58 Ni targets using time-of-flight methods; particle-particle correlations; and development works on the Hili detector system. 10 refs., 9 figs

  12. Heavy-ion interactions of deformed nuclei. Progress report and final report, January 1, 1985-December 31, 1985

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1985-09-01

    This Progress Report describes the main topics that were investigated during the reporting period: (1) a new microscopic approach (many-body theory with two-center shell model basis) to the calculation of heavy-ion interaction potentials, primarily for heavy systems; (2) dynamic alignment of deformed nuclei during heavy-ion collisions; (3) the role of shell effects, static deformation and dynamic alignment in heavy-ion fusion reactions; (4) giant nuclear quasimolecules and the positron problem. The proposed research has direct relevance to experimental programs supported by DOE, e.g. the Holifield Heavy-Ion Research Facility (HHIRF) at Oak Ridge, the ATLAS accelerator at Argonne National Laboratory, the Double MP Tandem at Brookhaven and some of the smaller University-based accelerators. A discussion of a review article on Coulomb fission is presented. 36 refs., 7 figs

  13. Interactions of heavy ions with biomolecules: a dynamical microscopic approach

    International Nuclear Information System (INIS)

    Zhang Fengshou; Beijing Radiation Center, Beijing; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou

    2006-01-01

    The status of studying biology system therapy with X-rays, γ-rays, neutron, proton, and heavy ions is reviewed. The depth dose profile, called Bragg profile, makes heavy ion an ideal tool for radiotherapy. The physical process of therapy with heavy ions is analyzed and a 3-step interaction processes of heavy ions with biomolecules is proposed, that is, nuclear fragmentation in nuclear interaction, electron excitation in Coulomb interaction, and the biomolecules relaxation in surroundings, finally leads to a new structure of biomolecule. Since this physical process is the base of the following chemical process and biological process, a dynamical microscopic approach is strongly demanded to be built. (authors)

  14. Gross properties of nuclei and nuclear excitations

    International Nuclear Information System (INIS)

    Feldmeier, H.

    1991-01-01

    These proceedings contain the articles presented at the named workshop. They deal with nuclear multifragmentation, heavy ion reaction kinetics, breakup and transfer processes in heavy ion reactions, the production of hypernuclei, nuclear structure in the framework of the quark model and QCD, and particle production in nuclear reactions. (HSI)

  15. Medium dependence of vector meson properties in heavy ion collisions

    International Nuclear Information System (INIS)

    Faessler, Amand; Fuchs, Christian

    2007-01-01

    Heavy ion collisions produce dense and hot nuclear matter. Dileptons give information about this hot and dense phase. The dileptons are produced by vector mesons. Theoretical calculation of dilepton production in the DLS (Berkeley), the HADES (GSI) experiments and the CERES, HELIOS and NA60 data from CERN give information about possible modifications of the vector meson properties in hot and dense nuclear matter. Here the description in relativistic quantum molecular dynamics of heavy ion collisions and dilepton production are presented and compared with data. (authors) Key words: heavy ion collisions; dense and hot nuclear matter; dileptons; medium dependence

  16. Calculation for fission decay from heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C.; Fraenkel, Z.

    1992-01-01

    A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms

  17. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  18. Inclusive b-jet production in heavy ion collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinrui, E-mail: jinruih@lanl.gov; Kang, Zhong-Bo, E-mail: zkang@lanl.gov; Vitev, Ivan, E-mail: ivitev@lanl.gov

    2013-10-07

    Theoretical and experimental advances in understanding light jet production and modification in Pb + Pb reactions at √(s{sub NN})=2.76 TeV have been a highlight of the LHC heavy ion program. At the same time, the detailed mechanisms of heavy quark propagation and energy loss in dense QCD matter are not yet fully understood. With this motivation, we present theoretical predictions for the nuclear-induced attenuation of the differential cross section for inclusive b-jet production in heavy ion collisions at the LHC for comparison to upcoming data. We find that for transverse momenta p{sub T}≳75 GeV both hadronization and mass effects are negligible and this attenuation is comparable to the one observed for light jets. We discuss how the detailed b-jet quenching patterns can be used to gain new insight into the in-medium heavy flavor dynamics.

  19. Applications of Wigner transformations in heavy-ion reactions

    International Nuclear Information System (INIS)

    Esbensen, H.

    1981-01-01

    We discuss a model, based on Wigner transformations and classical dynamics, that gives a semiclassical description of the excitation of surface vibrations due to the Coulomb and nuclear interaction in heavy-ion collisions. The treatment will consist of three stages, viz. the preparation of classical initial conditions compatible with the quantal ground state of surface vibrations, the dynamical evolution of the system governed by Liouville's equation (i.e. classical mechanics) and finally the interpretation, of final results after the interaction in terms of excitation probabilities, elastic and inelastic cross-sections, etc. The first and the last stage are exact and based on the Wigher transformations, while the time evolution described by classical mechanics is an approximation. We shall later return to the question of the applicability of this approximation and give some illustrative examples. (orig./HSI)

  20. b-jet tagged nuclear modification factors in heavy ion collisions with CMS

    CERN Document Server

    Jung, Kurt

    2014-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the b-jet spectra and the first measurement of the nuclear modification factors as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013.

  1. Nuclear reactions and the synthesis of new species

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Targets of relatively short-lived, neutron-rich transplutonium isotopes, such as 254 Es, which are produced by the HFIR/TRU, when combined with the capabilities of modern heavy-ion accelerators, offer a unique possibility to expand our knowledge of chemical elements and atomic nuclei toward the limits of nuclear stability. This knowledge should enable us to delineate the forces that eventually terminate the periodic table at its upper end. Specifically, the panel concludes that significant research opportunities exist in several areas, which are highlighted below: Nucleon-transfer reactions between light heavy-ion projectiles (such as 18 O, 22 Ne, or 48 Ca) and 254 Es targets will give access to a completely uncharted region of neutron-rich isotopes. Cold-fusion reactions of 48 Ca projectiles with /sup 254,255/Es targets should yield superheavy nuclei with neutron numbers very close to the predicted closed neutron shell at N = 184

  2. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  3. Heavy ions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  4. Excitation functions for quasi-elastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; Reilhac, L. de; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1977-01-01

    The excitation functions for the production of 210 Bi, 210 Po, sup(207-211)At and 211 Rn through quasi-elastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ca, 56 Fe and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measurements of incident energies and cross sections were performed close to the reaction thresholds

  5. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, T., E-mail: ogawa.tatsuhiko@jaea.go.jp [Research Group for Radiation Protection, Division of Environment and Radiation Sciences, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Sato, T.; Hashimoto, S. [Research Group for Radiation Protection, Division of Environment and Radiation Sciences, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Niita, K. [Research Organization for Information Science and Technology, Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan)

    2013-09-21

    The fragmentation cross-sections of relativistic energy nucleus–nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus–nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections.

  6. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    International Nuclear Information System (INIS)

    Ogawa, T.; Sato, T.; Hashimoto, S.; Niita, K.

    2013-01-01

    The fragmentation cross-sections of relativistic energy nucleus–nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus–nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections

  7. Heavy ion fusion reactions: comparison among different models

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Carlson, B V; Hussein, M S

    1988-03-01

    A comparison among different ion fusion models is presented. In particular, the multistep aspects of the recently proposed Dinucleus Doorway Model are made explicit and the model is confronted with other compound nucleus limitation models. It is suggested that the latter models provide effective one-step descriptions of heavy ion fusion.

  8. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2003-01-01

    Full text: In 2002, the Department has been involved in two new experimental programmes. Our colleagues led by Prof. Pawel Zupranski joined a large international collaboration HERMES and took part in experiments at DESY devoted to the study of the spin structure of the nucleon. Another group directed by Associate Prof. Bogdan Zwieglinski has worked on a conceptual design of a new generation detector PANDA (Proton-Antiproton Detection) which will be used in future experiments at GSI. Moreover, the experimental programmes covering three major domains of our scientific activities: nuclear physics, materials research and atomic physics were continued. - Nuclear physics: Experimental studies of nuclear reactions induced by heavy ions provided by the Warsaw U-200P Cyclotron were performed in collaboration with scientists from the Institute for Nuclear Studies in Kiev, Ukraine. The aim of the experiments was to investigate isotopic effects in the scattering of 11 B from carbon nuclides. Also, excited states of 6 Li predicted theoretically but never seen in experiments were investigated by means of one-neutron transfer reactions. Proton induced reactions were investigated theoretically by means of the multistep-direct model. Good agreement with the experimental data was achieved. The mechanism of fragments production in collisions of 197 Au with a gold target in the wide range of energies was studied by ALADIN and INDRA Collaborations. The production of η mesons from proton - proton collisions was investigated experimentally at the Juelich Cooler Synchrotron COSY. - Atomic physics: The ionisation of Au, Bi, Th and U atoms by Si ions was investigated in collaboration with the Swietokrzyska Academy, Kielce, and the University of Erlangen-Nuernberg. - Materials research: The sensitivity of the Solid State Nuclear Track PM-355 detectors was tested against intensive gamma and electron radiation. Moreover, using a monoenergetic sulphur ion beam from the Warsaw Cyclotron, the

  9. Identification of mechanisms in heavy ion reactions by measurement of angular correlations

    International Nuclear Information System (INIS)

    Carlin Filho, N.

    1987-01-01

    The identification of reaction mechanisms in light heavy-ion collisions has been performed within the framework of the three body kinematics, by means of angular correlation measurements. The 16 O+ 27 Al, 16 +O+ 28 Si and 10 B+ 27 Al reactions were investigated at Laboratory bombarding energies of 64 MeV, 64 and 48 MeV, respectively. Contributions of transfer-reemission and projectile sequential decay mechanisms were identified by the analysis of the relative kinetic energy of the final state components, excitation energies of the system at the intermediate stages, and also by means of fits to theoretical predictions for the angular correlations. (author) [pt

  10. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  11. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A ≅ 182 region, structure of 182 Hg and 182 Au at high spin, a highly deformed band in 136 Pm and the anomalous h 11/2 proton crossing in the A∼135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier α particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative 209 Bi + 136 Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4π channel selection device, a novel x-ray detector, and a simple channel-selecting detector)

  12. Proceedings of the international conference on dynamical properties of heavy-ion reactions held at the University of the Witwatersrand, Johannesburg, South Africa, 1-3 August 1978. v. 3

    International Nuclear Information System (INIS)

    Sellschop, J.P.F.; Lemmer, R.H.; Toepffer, C.; Engelbrecht, C.A.

    1978-01-01

    At this pre-conference symposium lectures on 'applications of (heavy) ions' were delivered. The following topics were discussed: 1) heavy ions in archaeological dating, 2) nuclear physics in metallurgy, 3) nuclear physics in solid-state research, 4) nuclear probes in geological studies, and 5) nuclear approaches in biological investigations

  13. Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Meigs, M.J.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.

    1992-01-01

    The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The challenges do not seem insurmountable but should keep life interesting for those of us doing the work. A brief review of the project will allow a better understanding of the challenges in RIB production. Radioactive ion beams will be produced with the Isotope Separator On-Line (ISOL) postacceleration technique. In particular, radioactive atoms will be produced by reactions in the thick stopping target of an ISOL-type target-ion source assembly using intense beams from the Oak Ridge Isochronous Cyclotron equipped with a light-ion internal source. This ISOL target-ion source assembly will be mounted on a high-voltage platform with a mass separator. The target ion source will operate at potentials up to 50 kV with respect to the high voltage platform. The radioactive atoms produced by nuclear reactions in the target diffuse to the surface of the heated target material, desorb from this surface, and effuse through a heated transfer tube into an ion source where ionization and extraction take place. Two types of ion sources will be initially considered. A Forced Electron Beam Induced Arc Discharge source, similar to those used by the ISOLDE facility at CERN and by the UNISOR facility at ORNL, will be built to produce positive ions. These positive ions will be focused through an alkali vapor charge-exchange canal to produce negative ions for tandem injection. In addition, a direct negative surface ionization addition or modification to the above source will be built and investigated

  14. Heavy flavours production in quark-gluon plasma formed in high energy nuclear reactions

    Science.gov (United States)

    Kloskinski, J.

    1985-01-01

    Results on compression and temperatures of nuclear fireballs and on relative yield of strange and charmed hadrons are given . The results show that temperatures above 300 MeV and large compressions are unlikely achieved in average heavy ion collision. In consequence, thermal production of charm is low. Strange particle production is, however, substantial and indicates clear temperature - threshold behavior.

  15. Heavy-ion radiation chemistry

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1975-01-01

    New aspect of heavy ion radiation chemistry is reviewed. Experiment has been carried out with carbon ions and nitrogen ions accelerated by a 160 cm cyclotron of the Institute of Physical and Chemical Research. The results of experiments are discussed, taking into consideration the effects of core radius depending on heavy ion energy and of the branch tracks of secondary electrons outside the core on chemical reaction and the yield of products. The effect of core size on chemical reaction was not able to be observed, because the incident energy of heavy ions was only several tens of MeV. Regarding high radical density, attention must be given to the production of oxygen in the core. It is possible to produce O 2 in the core in case of high linear energy transfer (LET), while no production of O 2 in case of low LET radiation. This may be one of study problems in future. LET effects on the yield of decomposed products were examined on acetone, methyl-ethyl-ketone and diethyl ketone, using heavy ions (C and N) as well as gamma radiation and helium ions. These three ketones showed that the LET change of two gaseous products, H 2 and CO, was THF type. There are peaks at 50-70 eV/A in the yield of both products. The peaks suggest the occurrence of ''saturation'' in decomposition. Attention was drawn to acetone containing a small amount (2 wt.%) of H 2 O. H 2 O and CO produced from this system differ from those in the pure system. The hydrogen connection formed by such a small amount of H 2 O may mediate the energy transfer. Sodium acetate tri-hydrate produces CH 3 radical selectively by gamma-ray irradiation at 77 K. In this case, the production of CH 2 COO - increases with the increase of LET of radiation. This phenomenon may be an important study problem. (Iwakiri, K.)

  16. Annual report 1990 of the Heavy Ion Physics Department of Hahn-Meitner-Institut Berlin GmbH

    International Nuclear Information System (INIS)

    Eichler, J.; Oertzen, W. von; Lindenberger, H.; Homeyer, H.; Michaelsen, R.

    1991-05-01

    The efficiency of the VICKSI accelerator has again been enhanced by experiments with new ion beams using the isotopes C-14, Fe-54, Se-82, and I-127. Nuclear physics research work investigated hot nuclei, nuclear structures and reaction mechanisms. The research team in solid state physics studied selected problems in connection with heavy ion-solid interactions, deep implantation processes and thin-film structures. There is a complete survey of the scientific publications and lectures. (DG) [de

  17. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  18. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    Science.gov (United States)

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.

  19. Medium energy heavy ion accelerator 14 UD Pelletron- a BARC-TIFR facility: a 5 year progress report 1989-1994

    International Nuclear Information System (INIS)

    Chatterjee, A.; Tandon, P.N.

    1995-01-01

    The medium energy heavy ion accelerator (MEHIA) facility based on 14 UD Pelletron set up under the collaborative project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR) at the TIFR campus at Bombay has been serving as a joint BARC-TIFR facility for heavy-ion accelerator based research. As this accelerator has just completed five years of its successful operations, it has been thought to be an appropriate time to bring out a report of the research work carried out with the accelerator facility over these last five years. To put the research work in proper perspective, the present report is formatted to provide a short write-up highlighting the work carried out in each area of activity along with a list of the publications which have resulted from these investigations. Some theoretical work related to the experimental activities with the pelletron accelerator has also been included in the list of publications. The research work in the area of nuclear physics, which forms the main thrust of the research activities with the accelerator, covers areas of high spin states, high energy photons, resonances in heavy ion reactions, heavy ion elastic and transfer reactions, heavy ion fusion-fission reactions and radiochemical studies in heavy ion reactions. The interdisciplinary areas of research include condensed matter physics and accelerator based atomic physics. In addition to the above topics the present report also describes the work related to the pelletron accelerator and associated experimental facilities, gas detector development work, data acquisition systems and spectrometer for heavy recoil ions under development. The present status of the superconducting Linac booster project is also briefly described. (author). refs., tabs

  20. Nuclear Physics Laboratory 1976 annual report. [Nuclear Physics Laboratory, Univ. of Washington

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    Laboratory activities for the period spring, 1975 to spring, 1976 are described. The emphasis of the work can be discerned from the chapter headings: accelerator development; ion source development; instrumentation, detectors, research techniques; computer and computing; atomic physics; nuclear astrophysics; fundamental symmetries in nuclei; nuclear structure; radiative capture measurements and calculations; scattering and reactions; reactions with polarized protons and deuterons; heavy-ion elastic and inelastic scattering; heavy-ion deeply inelastic and fusion reactions; heavy ion transfer and intermediate structure reactions; medium-energy physics; and energy studies. Research by users and visitors is also described; and laboratory personnel, degrees granted, and publications are listed. Those summaries having significant amounts of information are indexed individually. (RWR)

  1. Light particle and gamma ray emission measurements in heavy ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1983-01-01

    Studies of neutron and charged particle emission in heavy ion reactions using the facilities at the HHIRF and the new computer facilities at Georgia State are briefly described. A progress report for 1982 to 1983 is combined with a proposal for work to be performed during 1983 to 1984. Present activities and immediate plans for a run already approved by the Program Advisory Committee of the HHIRF are discussed

  2. Nuclear interaction contribution to SEUs in heavy ion energy deposition in the ESA monitor

    CERN Document Server

    Bahamonde, Cristina

    2013-01-01

    The effects of nuclear interactions inducing Single Event Upsets in ESA SEU monitor are explored for heavy ion beams of different energies. The experimental and simulated results are compared, the possible causes of disagreement are suggested as well as the future steps to take.

  3. Production of high-energetic photons in the heavy ion reaction 136Xe + 48Ti at ELab = 18.5 MeV/u

    International Nuclear Information System (INIS)

    Enders, G.

    1991-05-01

    The production mechanism for high-energetic photons in heavy ion collisions was studied on the example of the deep inelastic reaction 136 Xe+ 48 Ti at a projectile energy of 18.5 MeV/u in an exclusive experiment, in which photons and heavy reaction fragments were detected in coincidence. (orig.) [de

  4. Nuclear de-excitation processes following medium energy heavy ion collisions

    International Nuclear Information System (INIS)

    Blann, M.

    1986-09-01

    As heavy ion reaction studies have progressed from beam energies below 10 MeV/nucleon to higher energies, many non-equilibrium reaction phenomena have been observed. Among these are nucleon emission with velocities in excess of the beam velocity, incomplete momentum transfer to evaporation residue and fission-like fragments, γ-rays with energies in excess of 100 MeV, and π 0 production when beam energies are below the threshold for production by the nucleon-nucleon collision mechanism. Additionally, prefission neutrons have been observed in excess of numbers expected from equilibrium models. A few of the approaches which have been applied to these phenomena are as follows: Intranuclear cascade: two body collisions are assumed to mediate the equilibration. The geometry and momentum space is followed semiclassically. The approach has many successes though it may suffer in a few applications is not following holes; TDHF considers one body processes only; in the energy regime of interest, two body processes are important so that this may not be a viable approach; Boltzmann-Uehling-Uhlenbeck or Vlasov-Uehling-Uhlenbeck (BUU/VUU) equations combine both one body and two body dynamics. The spatial and momentum evolution of the reactions are followed in a mean field. These should be the Cadillacs of the models. They are computationally tedious, and sometimes significant approximations are made in order to achieve computational tract ability; models of collective deceleration. A very simple model approach is discussed to interpret these phenomena, the Boltzmann master equation (BME). The hybrid model was the first to be applied to the question of heavy ion precompound decay, and the BME second. 26 refs., 5 figs., 2 tabs

  5. IVO, a device for In situ Volatilization and On-line detection of products from heavy ion reactions

    CERN Document Server

    Duellmann, C E; Eichler, R; Gäggeler, H W; Jost, D T; Piguet, D; Türler, A

    2002-01-01

    A new gaschromatographic separation system to rapidly isolate heavy ion reaction products in the form of highly volatile species is described. Reaction products recoiling from the target are stopped in a gas volume and converted in situ to volatile species, which are swept by the carrier gas to a chromatography column. Species that are volatile under the given conditions pass through the column. In a cluster chamber, which is directly attached to the exit of the column, the isolated volatile species are chemically adsorbed to the surface of aerosol particles and transported to an on-line detection system. The whole set-up was tested using short-lived osmium (Os) and mercury (Hg) nuclides produced in heavy ion reactions to model future chemical studies with hassium (Hs, Z=108) and element 112. By varying the temperature of the isothermal section of the chromatography column between room temperature and -80 deg. C, yield measurements of given species can be conducted, yielding information about the volatility o...

  6. Heavy ions at steamboat: summary of parallel sessions

    International Nuclear Information System (INIS)

    Ludlam, T.W.

    1984-01-01

    The interest in heavy ions at the intersection between particle and nuclear physics is motivated by the opportunity for an entirely new approach to the understanding of fundamental interactions by studying extreme states of nuclear matter. At this conference we have seen important new results on some of the central issues including: (1) how well can we predict the landscape of the extremes - that is, the phase structure of QCD and nuclear matter; (2) can we explore it with heavy ion collisions; and (3) can we recognize the appearance of new terrain. Our present understanding of the behavior of nuclear matter under extreme conditions is briefly discussed. 16 references

  7. Studies of heavy-ion reactions and transuranic nuclei. Progress report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.

  8. Studies of heavy ion reactions and transuranic nuclei. Progress report, August 1, 1979-July 31, 1980

    International Nuclear Information System (INIS)

    Huizenga, J.R.

    1980-07-01

    The study of heavy-ion reaction mechanisms at the SuperHILAC and LAMPF is reported. Preprints of five articles and manuscripts of four recent conference papers are given, along with complete citations of publications and a list of personnel. Significant work was performed in the following areas: the bombarding energy dependence of the 209 Bi + 136 Xe reaction; the fragment yields for specific Z and A for projectile-like fragments produced in the reaction of 8.3-MeV/u 56 Fe ions with targets of 56 Fe, 165 Ho, 209 Bi, and 238 U; and time distributions of fragments from delayed fission after muon capture for muonic 235 U, 238 U, 237 Np, 239 Pu, and 242 Pu

  9. Heavy-ion radiography and heavy-ion computed tomography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Holley, W.R.; McFarland, E.W.; Tobias, C.a.

    1982-02-01

    Heavy-ion projection and CT radiography is being developed into a safe, low-dose, noninvasive radiological procedure that can quantitate and image small density differences in human tissues. The applications to heavy-ion mammography and heavy-ion CT imaging of the brain in clinical patients suggest their potential value in cancer diagnosis

  10. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  11. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  12. Medical applications of nuclear physics and heavy-ion beams

    International Nuclear Information System (INIS)

    Alonso, Jose R.

    2000-01-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use

  13. Evolution of direct mechanisms with incident energy from the Coulomb-barrier to relativistic energies. - Two-center effects in nucleon transfer between nuclei. - Signatures of nucleon promotion in heavy ion reactions at barrier energies

    International Nuclear Information System (INIS)

    Oertzen, W. von; Voit, H.; Imanishi, B.

    1988-10-01

    This report contains a review article considering the evolution of direct mechanisms with incident energy in heavy ion reactions and two theoretical articles concerning two-center effects in transfer reactions between heavy ions and the nucleon promotion in heavy ion reactions. See hints under the relevant topics. (HSI)

  14. Resume and discussion of session on direct heavy ion reactions

    International Nuclear Information System (INIS)

    Hansen, O.

    1983-01-01

    A conference divides into sessions, but the physics does not always respect such divisions. I found the subject of barrier penetrabilities viewed in a coupled channels picture new, exciting and central to all heavy-ion reaction dynamics. The subject was discussed in bits and pieces over three different sessions, partly in the talks by Winther, Landowne, Braun-Munzinger and Broglia, and partly from the floor by the same people and by Smilanski, I have concentrated on that subject alone and I therefore must apologize to the speakers in my session who covered different material, that definitely merited further discussions. Also, I apologize to other session chairmen, whose territory I have invaded. (orig.)

  15. X detection in heavy ion induced reactions. Application to the lifetime measurement of a compound nucleus

    International Nuclear Information System (INIS)

    Liatard, E.

    1984-01-01

    The ionization of inner electronic shells can be used to determine the lifetime of a compound nucleus formed in a nuclear reaction. The principle of the measure is based on the comparison between the unknown lifetime of the nuclear process and the known lifetime of a K-shell vacancy created during the collision. Besides testing this method, which we call the ''atomic-clok'' method with the compound nucleus 112 Te formed by the reaction 20 Ne (205 MeV) + 92 Mo, the work in this thesis basically consists of a description and a study of the problems presented by the use of X-ray spectroscopy in nuclear-decay-time measurements and Z-identification of heavy nuclear products [fr

  16. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.; Woodruff, K.H.; MacFarland, E.W.

    1983-01-01

    High energy, heavy-ion beams offer superior discrimination of tissue electron densities at very low radiation doses. This characteristic has potential for diagnostic medical imaging of neoplasms arising in the soft tissues and organs because it can detect smaller inhomogeneities than x rays. Heavy-ion imaging may also increase the accuracy of cancer radiotherapy planning involving use of accelerated charged particles. In the current physics research program of passive heavy-ion imaging, critical modulation transfer function tests are being carried out in heavy-ion projection radiography and heavy-ion computerized tomography. The research goal is to improve the heavy-ion imaging method until it reaches the limits of its theoretical resolution defined by range straggling, multiple scattering, and other factors involved in the beam quality characteristics. Clinical uses of the imaging method include the application of heavy-ion computerized tomography to heavy-ion radiotherapy planning, to the study of brain tumors and other structures of the head, and to low-dose heavy-ion projection mammography, particularly for women with dense breasts where other methods of diagnosis fail. The ions used are primarily 300 to 570 MeV/amu carbon and neon ions accelerated at the Lawrence Berkeley Laboratory Bevalac

  17. An experimental approach to angular momentum transfer in heavy ion reactions

    International Nuclear Information System (INIS)

    Babinet, R.

    1980-01-01

    The current experimental status on angular momentum transfer status in heavy ion reactions is reviewed. After a short presentation of the basic theoretical concepts that are underlying all the research works in this field, the experimental techniques that have been commonly used are presented. Results obtained by the γ-multiplicity method are discussed first. Then come, for the very heavy systems, the sequential fission data, followed by the results of a recent experiment on light charged particles. The simple theoretical concepts that are introduced first are continuously used as guidelines to discuss the following results. The respective advantages but also the basic limitations of the above three experimental techniques are exposed. Although they are expected to work best in different regions of the mass table, it is shown, that they give complementary informations which have been most useful in improving our understanding of the tangential friction mechanism

  18. Synchrotrons for heavy ions: Bevalac experience

    International Nuclear Information System (INIS)

    Grunder, H.A.; Gough, R.A.; Alonso, J.R.

    1980-10-01

    The Bevalac should be viewed not as a model of accelerator hardware - a modern heavy ion complex will look quite different, but as a model for an operating versatile multifaceted, multiuser heavy ion facility. Of value to the planning of a new accelerator such as MARIA is the knowledge of operating modes peculiar to heavy ions and specific hardware requirements to carry out its mission with the mandated flexibility and reliability. This paper starts with a discussion of parameters and machine characteristics most suitable for medical and nuclear science applications. It then covers experience in interleaving these two research programs, and finally, concentrates on accelerator configuratin questions; injectors, repetition rate, vacuum systems and cost criteria which will be relevant to the design of MARIA

  19. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  20. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e + e - problem and heavy ion dynamics

  1. Systematic study of sub-barrier fusion enhancement in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, C E; Aleixo, A N; Barbosa, V C; Canto, L F; Donangelo, R [Universidade Federal Rural do Rio de Janeiro (Brazil). Dept. de Fisica

    1989-08-14

    A systematic study of the heavy-ion fusion-cross-section enhancement at sub-barrier energies is carried out. The asymptotic energy shift introduced in a previous paper as a measure of this enhancement is considered from a theoretical point of view. It is claimed that this energy shift is composed of two terms: One of them is related to the bulk properties of nuclear matter, and the other corresponds to deviations depending on the specific nuclear structure of the collision partners. We show that the former can be approximately described by the neck-formation model for fusion and the latter is frequently a consequence of static deformation or vibrational excitation of the projectile and/or the target. A comparison of the neck-formation effects with those arising from neutron flow suggests that there is a connection between these two mechanisms. (orig.).

  2. Biophysical aspects of heavy ion interactions in matter

    International Nuclear Information System (INIS)

    Schimmerling, W.; Wong, M.; Ludewigt, B.; Phillips, M.; Alpen, E.L.; Powers-Risius, P.; DeGuzman, R.J.; Townsend, L.W.; Wilson, J.W.

    1989-01-01

    The biological effects of high energy, high charge nuclei (HZE particles) occupy a central role in the management of space radiation hazards due to galactic cosmic rays. For the energy range of interest, the mean free path for nuclear interactions of these heavy ions is comparable to the thickness of the material traversed, and a significant fraction of stopping particles will undergo a nuclear reaction with the nuclei of the stopping material. Transport methods for HZE particles are dependent on models of the interaction of man-made systems with the space environment to an even greater extent than methods used for other types of radiation. Hence, there is a major need to validate these transport codes by comparison with experimental data. The basic physical properties of HZE particles will be reviewed and illustrated with the results of nuclear fragmentation experiments performed with 670A MeV neon ions incident on a water absorber and with measurements of multiple Coulomb scattering of uranium beams in copper. Finally, the extent to which physical measurements yield radiobiological predictions is illustrated for the example of neon

  3. Studies of heavy-ion reactions and transuranic nuclei: Progress report, September 1, 1987--August 31, 1988

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Huizenga, J.R.

    1988-08-01

    The effect of successively increasing gradients of the potential energy surface on mass and charge transport was studied experimentally and theoretically with a series of damped reactions induced by 48 Ca, 64 Ni, 58 Ni, and 40 Ca projectiles on 238 U targets. Combined transport-evaporation calculations that were performed for the interpretation of data demonstrate a systematic deficiency of quantitative reaction theory. A new type of experimental method has been employed to study several moments of the energy partition in damped reactions, measuring multiplicity correlations of neutrons emitted from the asymptotic fragments with a specially designed, directionally sensitive multiplicity counter. First results indicate significant departures of damped reaction systems from thermal equilibrium. Employing realistic Monte Carlo simulation of published experiments, it was demonstrated that the directions of net mass transfer and energy deposit are uncorrelated in damped reactions. Evaporative and preequilibrium neutron emission has been studied for the asymmetric heavy-ion system 139 La + 40 Ar. The disequilibrium energy transport phenomena observed in the experiment are quantitatively reproduced by model calculations. A strong impact-parameter dependence of preequilibrium emission is demonstrated. The emission patterns of α particles evaporated from high spin compound nuclei, previously attributed to exotic nuclear shapes, have been explained in realistic statistical model calculations for nuclei with conventional shapes. A new octal digital delay module has been designed and tested

  4. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  5. Towards an unambiguous determination of the excitation energy of the projectile in heavy-ion reactions?

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A.M.; Steckmeyer, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, G. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others

    2002-03-01

    The excitation energy of the quasi-projectiles produced in heavy-ion collisions is determined for the {sup 58}Ni+{sup 197}Au reactions at 52 and 90 AMeV. A new method is proposed for isolating unambiguously the particles evaporated by the source. It consists in observing them at small angles along the flight direction of the source. (authors)

  6. Delta-electron spectroscopy: An aid for the determination of reaction times in heavy ion reactions

    International Nuclear Information System (INIS)

    Skapa, H.

    1983-01-01

    For the systems I->Au and I->Bi at an incident energy of 6.2 MeV/u (I->Au) and 6.6 MeV/u (I->Bi) the emission probability of delta electrons was determined. In an energy range from 150 KeV to 1000 KeV electrons were spectroscoped in coincidence to elastically, quasielastically, and deep inelastically scattered ions. In deep inelastic reaction between reaction products with high and without a mean mass drift was discriminated. The contribution of the conversion electrons, determined from gamma spectra, extends in the range of deep inelastic reactions of about 60%. While the ratio of conversion electrons for deep inelastic events with large to such without mass drift shows a flat, monotoneous growth for the ratio of the measured emission probabilities a oscillation-like structure with about 400 KeV width results. An interpretation of this structure as interference effect by nuclear time delay yields for the case of large mass drift a nuclear retention time of 7.5 x 10 -21 s. (orig./HSI) [de

  7. Beam dynamics in heavy ion induction LINACS

    International Nuclear Information System (INIS)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed

  8. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1998-01-01

    (full text) During the last year our activities were spread over the three major domains: nuclear, atomic and material physics. The nuclear physics experimental programme covered a broad range of nuclear reactions induced by light and heavy ions. New experiments were performed at the compact C-30 cyclotron at Swierk, at University of Jyvaeskylae, GSI Darmstadt, LN Saturne. Prospects for future experiments on nucleon structure at Forschungszentrum Juelich were open. The collaboration with INR Kiev was tightened and work was done in order to prepare experiments at the C-200 heavy ion cyclotron in Warsaw. An effort to install the ion guide isotope separator on line (IGISOL) at the C-200 cyclotron has also to be mentioned A half a year stay of Dr. Nicholas Keeley in the Department, who received The Royal Society/Polish Academy of Science grant, resulted in many interesting results on breakup of light nuclei. Details can be found in the short abstracts presented in this report. As far as atomic physics is concerned, the activity of a group lead by Prof. Marian Jaskola yielded various new results. The experiments were performed at the University of Erlangen, in close collaboration with the Pedagogical University in Kielce and the University of Basel. Fast neutrons generated in the 3 H(d,n) 4 He reaction induced by the 2 MeV deuteron beam from the Van der Graaff accelerator at the Department were used to calibrate solid state-nuclear-track detectors. This was a very good year for material physics research: Jan Kaczanowski and Slawomir Kwiatkawski received Ph.D. degrees based on dissertation research performed in the material physics research programme, while Pawel Kolodziej completed his MSc. thesis in collaboration with the Institute of Electronic Materials Technology in Warsaw, Research Center Karlsruhe, University of Jena and CSNSM Orsay many results were obtained. Lech Nowicki and Prof. Andrzej Turos were awarded by the Director of the IPJ prizes for their scientific

  9. Nuclear reaction studies

    International Nuclear Information System (INIS)

    Alexander, J.M.; Lacey, R.A.

    1994-01-01

    Research focused on the statistical and dynamical properties of ''hot'' nuclei formed in symmetric heavy-ion reactions. Theses included ''flow'' measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study 40 Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs

  10. Role amplification of the coulomb interaction in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok; Soni, S K; Pancholi, S K; Gupta, S L [AN SSSR, Moscow. Radiotekhnicheskij Inst.

    1976-10-01

    The genarally adopted estimate of coulomb interaction in nuclear reactions based on the comparison of relative energies of real particles participating in the reaction with the coulomb barrier has been shown to provide wrong presentation of the role of coulomb interaction in the reaction mechanism. The relative energy of particles participating in virtual processes forming the reaction mechanism and its relation to the coulomb barrier turn out to be tens of per cent less than for the particles in an inlet channel. This is the main reason of increasing the role of coulomb interaction in the reaction mechanism. This increase is particularly significant for nuclei with large charges, in particular, in heavy ion reaction.

  11. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  12. {gamma}-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Korotkikh, V.L.; Chikin, K.A. [Scobeltsyn Institute of Nuclear Physics, Moscow State University (Russian Federation)

    2002-06-01

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant {gamma}-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions. (orig.)

  13. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    Science.gov (United States)

    Korotkikh, V. L.; Chikin, K. A.

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions.

  14. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Chikin, K.A.

    2002-01-01

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions. (orig.)

  15. Nuclear Physics Division biennial report 1993-1994

    International Nuclear Information System (INIS)

    Kumar, K.; Kataria, S.K.

    1995-01-01

    The activities of the Nuclear Physics Division of Bhabha Atomic Research Centre for the two year period January 1993 to December 1994 are summarised. The experimental nuclear physics research activities are centred around the 14 UD Pelletron accelerator. Instrumentation development for the research utilization of the accelerator as well as accelerator development activities connected with the superconducting LINAC booster are included. During the period the conversion of the 5.5 MV single stage Van de Graaff Accelerator into a 7 MV folded tandem accelerator for light and heavy ions, for use not only in low energy nuclear physics but also in various inter-disciplinary areas was carried out. The research activity in the field of study of heavy ion reactions involving elastic scattering, transfer reactions, fusion-fission phenomena, heavy ion resonances, high energy photons in nuclear reactions and level density determination from charged particle spectra emitted in heavy ion reactions are given. (author). refs., figs., tabs

  16. Nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  17. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1991-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections IIA, IIB, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  18. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R ampersand D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  19. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1988-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections 2A, 2B, 2C, and 2D, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  20. MARTINI: An event generator for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Gale, Charles; Jeon, Sangyong

    2009-01-01

    We introduce the modular algorithm for relativistic treatment of heavy ion interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus collisions. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p T region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modification factor in Au+Au collisions at the BNL Relativistic Heavy Ion Collider as a function of p T for different centralities and also as a function of the angle with respect to the reaction plane for noncentral collisions. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.

  1. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1992-08-01

    This report discusses the following topics; studies of light-charged-particle emission from fission and er reactions in the system 344-MeV 28 Si+ 121 Sb → 149 Tb; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; improvements in interactive data analysis and graphical representations; studies of the reaction 856-MeV 98 Mo + 51 V→ 149 Tb(E*=224-MeV): emission of intermediate-mass fragments; particle-particle correlations in compound nucleus reactions: preliminary consideration of lifetime estimates from small angle data; light particle emission studies using a new scintillator array; statistical evaporation calculations: developments with the computer codes LILITA-N90 and CASCADE; star collaboration studies: simulations for the conceptual design of the STAR detector system at RHIC; asymmetric fission of 149Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; and charged-particle evaporation from hot composite nuclei: evidence over a broad z range for distortions from cold nuclear profiles

  2. Nuclear chemical method for preparation of free carbenium ions and radiochemical investigation of reactions of these particles

    International Nuclear Information System (INIS)

    Nefedov, V.D.; Sinotova, E.N.; Toropova, M.A.

    1980-01-01

    Tritium nuclear transformation (β-decay) in the composition of the molecules of hydrocarbons, appearance of primary molecular ions and formation of free carbenium ion are the main items of nuclear-chemical method of preparation of free carbenium ions. The method permits to prepare carbenium ions present in free state, i.e. without counterion and without solvate sheath of variou nitial localization of the charge. The rate of carbenium ion generation is strictly definite and does not depend upon outer conditions. The method suggested permits to prepare carbenium ions in all phases, study their reactions with individual substances in gaseous, liquid and solid states. The study of ion-molecular reactions is carried out using radiochemical method. The analysis of the products is made using the method of gaseous radiochromatography. Development of preparation techniques of carbenium ions and their analogues, study of the reactions of these particles with different classes of compounds, investigation of the effect of different factors upon procedure of ion-molecular reactions are the main directions of the investigations

  3. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    International Nuclear Information System (INIS)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs

  4. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  5. Shannon information entropy in heavy-ion collisions

    Science.gov (United States)

    Ma, Chun-Wang; Ma, Yu-Gang

    2018-03-01

    The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

  6. Studying extremely peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Fatyga, M.

    1990-01-01

    Relativistic heavy ion facilities have been proposed (and in some cases constructed) with an intent to search for a new state of matter, a quark gluon plasma. As with all tools in the experimental physics, one should always search for ways in which relativistic heavy ions can be used to study physical phenomena beyond this original goal. New possibilities for a study of higher order photonuclear excitations in extremely peripheral collisions of relativistic heavy ions are discussed in this contribution. Data on the electromagnetic and nuclear fragmentation of a 14.6Gev/nucleon 28 Si projectile are presented

  7. Theoretical studies in nuclear reactions and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  8. Origin of a maximum of the astrophysical S factor in heavy-ion fusion reactions at deep subbarrier energies

    Science.gov (United States)

    Hagino, K.; Balantekin, A. B.; Lwin, N. W.; Thein, Ei Shwe Zin

    2018-03-01

    The hindrance phenomenon of heavy-ion fusion cross sections at deep subbarrier energies often accompanies a maximum of an astrophysical S factor at a threshold energy for fusion hindrance. We argue that this phenomenon can naturally be explained when the fusion excitation function is fitted with two potentials, with a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy. This analysis clearly suggests that the astrophysical S factor provides a convenient tool to analyze the deep subbarrier hindrance phenomenon, even though the S factor may have a strong energy dependence for heavy-ion systems unlike that for astrophysical reactions.

  9. Scattering chamber for the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Goodman, C.D.; Corum, J.E.

    1977-09-01

    A conceptual design is presented for a 62-in.-diam. general purpose scattering chamber to be used for nuclear research with heavy ions. The detector rotation mechanism is based on large diameter (approx. 58 in.) peripherally driven rings. This leaves the central region open for detectors and other apparatus and permits the use of a perpendicular ring for rotating a detector out of the reaction plane. A precision target slide with provisions for removing the entire slide under vacuum is part of the design. Access and viewing ports on the dished top and in the reaction plane will be provided. Cryogenic pumping will be used to keep the vacuum free from hydrocarbon vapors, water vapor, and oxygen

  10. Photon-photon and photon-hadron processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Baron, N.C.

    1993-11-01

    Photon-photon and photon-hadron interactions in relativistic heavy ion collisions are studied in the framework of the impact parameter dependent equivalent photon approximation. Improvements of this method, like formfactor inclusion and geometrical modifications are developed. In disruptive relativistic heavy ion collisions where the heavy ions overlapp during the collision, electromagnetic processes are an important background to other mechanisms. In peripheral (non-disruptive) relativistic heavy ion collisions where the ions pass each other without strong interactions, the electromagnetic processes can be studied in their pure form. The lepton pair production is an important diagnostic tool in relativistic heavy ion collisions. The coherent γγ lepton pair production is therefore extensively studied in disruptive but also in non-disruptive collisions. The effects of strong interactions on the coherent γγ lepton pair production in disruptive collisions are discussed in terms of a simple stopping model. Coherent γγ dielectron production contributes to the dilepton production in high energy hadron-hadron collisions. As an example, the coherent dielectron production in π - p collisions is studied in terms of the equivalent photon approximation. Peripheral ultrarelativistic heavy ion collisions open up new possibilities for γγ physics. Taking into account γA background reactions, typical γγ processes in the relevant invariant mass ranges are discussed. The extreme high energy part of the equivalent photon spectrum leads to hard photon-parton reactions. As a potential tool to investigate the gluon distribution function of nucleons, thee q anti q production via the γg fusion in ultrarelativistic heavy ion collisions is studied. It is the purpose of this work to investigate how photon-photon and photon-hadron reactions in relativistic heavy ion collisions may contribute to the understanding of QCD and the standard model. (orig.) [de

  11. Slowing down of relativistic heavy ions and new applications

    International Nuclear Information System (INIS)

    Geissel, H.; Scheidenberger, C.

    1997-10-01

    New precision experiments using powerful accelerator facilities and high-resolution spectrometers have contributed to a better understanding of the atomic and nuclear interactions of relativistic heavy ions with matter. Experimental results on stopping power and energy-loss straggling of bare heavy projectiles demonstrate large systematic deviations from theories based on first order perturbation. The energy-loss straggling is more than a factor of two enhanced for the heaviest projectiles compared to the relativistic Bohr formula. The interaction of cooled relativistic heavy ions with crystals opens up new fields for basic research and applications, i. e., for the first time resonant coherent excitations of both atomic and nuclear levels can be measured at the first harmonic. The spatial monoisotopic separation of exotic nuclei with in-flight separators and the tumor therapy with heavy ions are new applications based on a precise knowledge of slowing down. (orig.)

  12. Heavy ion reactions in the transition region

    International Nuclear Information System (INIS)

    Hendrie, D.L.

    1977-11-01

    Evidence is given for a serious and systematic failure of the DWBA to predict the cross sections for single nucleon transfers induced by heavy ions above about 10 MeV/Nucleon beam energies. This is perhaps related to a coherent coupling to an increasing cross section to the quasi-elastic continuum, which also shows an anomalous energy dependence at about the same energy

  13. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  14. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  15. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  16. Systematics of quasi-elastic processes induced by heavy ions

    International Nuclear Information System (INIS)

    Baltz, A.J.

    1976-01-01

    An attempt is made to delineate the areas in the systematics of quasi-elastic processes induced by heavy ions that are well described theoretically from the specific features that seem not to be understood. One- and two-particle transfer reactions are considered. A general systematic seen in transfer angular distribution data and theory, some successes and failures of the DWBA and coupled-channels theories in describing heavy-ion-reaction data, and the specific example 232 Th( 40 Ar,K) and implications for deep inelastic reactions with even heavier projectiles such as Kr and Xe are considered

  17. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  18. Central collisions of heavy ions

    International Nuclear Information System (INIS)

    Fung, Sun-yiu.

    1991-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R ampersand D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals

  19. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Yoshida, Tadashi; Takeuchi, Suehiro

    2003-10-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  20. Characteristics for heavy ions and micro-dosimetry in radiation detectors

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    1978-01-01

    The characteristics of radiation detectors for heavy ions generally present more complex aspects as compared with those for electron beam and γ-ray. There is the ''Katz theory'' applying the target theory in radiobiology phenomenologically to radiation detectors. Here, first, the Katz theory for radiation detectors is explained, then its applications to nuclear plates, solid state track detectors, scintillation detectors and thermoluminescence dosimeters are described, respectively. The theory is used for the calibration of the nuclear charge of heavy ions in nuclear plates and recently is used to simulate the flight tracks of heavy ions or magnetic monopoles. In solid state track detectors, the threshold value of the energy given along the tracks of heavy ions is inherent to a detector, and the Katz theory is applicable as the measure of the threshold. The theory seems to be superior to the other methods. However, it has disadvantages that the calculation is not simple and is difficult for wide objects. In scintillation detectors, the scintillation efficiency is not a single function of dE/dx, but depends on the kinds of heavy ions, which Katz succeeded to describe quantitatively with his theory. Such result has also been produced that the dependence of thermoluminescence dosimeters such as LiF on LET by Katz theory agreed fairly well with experiments. (Wakatsuki, Y.)

  1. Nuclear spectroscopic studies: Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1989-01-01

    The Nuclear Physics Group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility (HHIRF) and the Niels Bohr Institute Tandem Accelerator. Also, we are active in a collaboration (WA80) to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland. Our experimental work is four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  2. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  3. Kinematic relations in heavy-ion reactions

    International Nuclear Information System (INIS)

    Gippner, P.; Kalpakchieva, R.

    1988-01-01

    The present work gives a short overview of the non-relativistic kinematics of nuclear reactions derived on the basis of the conservation laws of energy and linear momentum. Section 2 contains kinematic relations valid for two-body reactions, sections 3 makes use of these relations to describe sequential fission as a special case of reactions with three particles in the exit channel. It is the aim of this work to comprise the kinematic formulae essential for planning of experiments, data analysis and critical examination of the obtained results. (author)

  4. Study of heavy ion collisions with TAPS

    NARCIS (Netherlands)

    Löhner, H.

    The photon spectrometer TAPS is a versatile instrument to measure nuclear bremsstrahlung and neutral mesons via their gamma decay. The formation and evolution of compressed nuclear matter is studied in heavy ion collisions at relativistic energies by analyzing the yield and spectral distribution of

  5. On-line Mass Spectrometric Study of Heavy-Ion Induced Reactions at Energies up to 86 MeV/amu

    CERN Multimedia

    2002-01-01

    The aim of the experiment was to measure isotopic distributions of Li, Na, K, Rb, Cs and Fr as reaction fragments in heavy ion collisions. In order to get an overall view of the new energy range for heavy ions available from the SC, different energies and projectile-target combinations had to be studied. The data taking status is now finished. |1|2C and |1|8O beams were used in bombarding |1|2C, |9|3Nb, |1|8|1Ta and |2|3|8U in order to look at target fragmentation, projectile fragmentation and evaporative residues of spallation processes. The experimental apparatus is composed of three parts: \\item a)~A target-oven-ionizer assembly where selective thermal diffusion and selective surface ionization takes place in order to obtain a chemical separation of the reaction products. \\item b)~The mass spectrometer where the different-mass fragments are selected. \\item c)~An electrostatic ion beam line through which the fragments are transported to a low-background area where the detector (an electron multiplier) is lo...

  6. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  7. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  8. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  9. New heavy-ion accelerator facility at Oak Ridge

    International Nuclear Information System (INIS)

    Stelson, P.H.

    1974-01-01

    Funds were obtained to establish a new national heavy-ion facility to be located at Oak Ridge. The principal component of this facility is a 25-MW tandem designed specifically for good heavy-ion acceleration, which will provide high quality beams of medium weight ions for nuclear research by itself. The tandem beams will also be injected into ORIC for additional energy gain, so that usable beams for nuclear physics research can be extended to about A = 160. A notable feature of the tandem is that it will be of the ''folded'' type, in which both the negative and positive accelerating tubes are contained in the same column. The accelerator system, the experimental lay-out, and the time schedule for the project are discussed

  10. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    International Nuclear Information System (INIS)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  11. Establishing the transport properties of QCD with heavy ion reactions. Final Scientific Report for DE-FG02-07ER41524

    International Nuclear Information System (INIS)

    Teaney, Derek

    2008-01-01

    During the time period from 9/1/07 - 3/1/08 the principle investigator was awarded a federal grant from the Department of Energy (DE-FG02-07ER41524) to establish the transport properties of QCD through heavy ion reactions. A relativistic viscous hydrodynamic computer code was developed in 2+1 dimensions which is suitable for extracting the shear viscosity from available heavy ion data. In addition, the transport coefficients of heavy mesons in strongly coupled N = 4 plasmas were determined using the gauge gravity duality. These transport coefficients are suppressed by 1/N c 2 which stymied previous efforts to determine the kinetics of these mesons.

  12. Investigation of Nuclear Fragmentation in Relativistic Heavy Ion Collisions Using Plastic - Nuclear - Track Detectors

    CERN Multimedia

    2002-01-01

    In this experiment CR39 plastic nuclear track detectors will be used which are sensitive to detect relativistic nuclear fragments with charges Z@$>$5. They will be analyzed using an automatic track measuring system which was developed at the University of Siegen.\\\\ \\\\ This allows to measure large quantities of tracks in these passive detectors and to perform high statistics experiments. We intend to measure cross sections for the production of nuclear fragments from heavy ion beams at the SPS. \\\\ \\\\ The energy independence of the cross sections predicted by the idea of limiting fragmentation will be tested at high energies. In exposures with different targets we plan to analyze the factorization of the fragmentation cross sections into a target depending factor and a factor depending on the beam particle and the fragment. The cross sections for one proton remov Coulomb dissociation. \\\\ \\\\ We plan to investigate Coulomb dissociation for different targets and different energies. Fragment and projectile charges ...

  13. Cluster emission at pre-equilibrium stage in Heavy Nuclear Reactions. A Model considering the Thermodynamics of Small Systems

    International Nuclear Information System (INIS)

    Bermudez Martinez, A.; Damiani, D.; Guzman Martinez, F.; Rodriguez Hoyos, O.; Rodriguez Manso, A.

    2015-01-01

    Cluster emission at pre-equilibrium stage, in heavy ion fusion reactions of 12 C and 16 O nuclei with 116 Sn, 208 Pb, 238 U are studied. the energy of the projectile nuclei was chosen at 0.25GeV, 0.5GeV and 1GeV. A cluster formation model is developed in order to calculate the cluster size. Thermodynamics of small systems was used in order to examine the cluster behavior inside the nuclear media. This model is based on considering two phases inside the compound nucleus, on one hand the nuclear media phase, and on the other hand the cluster itself. The cluster acts like an instability inside the compound nucleus, provoking an exchange of nucleons with the nuclear media through its surface. The processes were simulated using Monte Carlo methods. We obtained that the cluster emission probability shows great dependence on the cluster size. This project is aimed to implement cluster emission processes, during the pre-equilibrium stage, in the frame of CRISP code (Collaboration Rio-Sao Paulo). (Author)

  14. Multiple heavy-fragment breakup reactions

    International Nuclear Information System (INIS)

    Pelte, D.

    1986-01-01

    Data for heavy ion breakup reactions for projectiles between silicon 28 and argon 40 and targets between carbon 12 and zirconium 90 in the energy range 7 to 15 MeV/n are presented. The experimental method used to cope with the complexity of the exit channels in these reactions is discussed. Data on cross sections, isotopic distribution, charge distribution, energy dependence, Q-value and angular momentum of the target are discussed in relationship to model predictions

  15. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  16. Future Perspectives for the Application of Low Temperature Detectors in Heavy Ion Physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.

    2009-01-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics is given, and the next generation heavy ion facility FAIR is described with a special emphasis on the potential advantage of Low Temperature Detectors (LTDs) for applications in heavy ion physics. For prototype LTDs for the energy sensitive detection of heavy ions excellent results with respect to energy resolution down to δE/E = 1-2x10 -3 for a wide range of incident energies, and with respect to other detector properties, such as energy linearity with no indication of pulse height defects even for the heaviest ions, have been obtained. In addition, prototype detectors for hard X-rays have shown energy resolutions down to δE = 30-40eV at 60 keV. Consequently, both detector schemes have already been successfully used for first experiments. At present, the design and setup of large solid angle detector arrays is in progress. With the already achieved performance, LTDs promise a large potential for applications in atomic and nuclear heavy ion physics. A brief overview of prominent examples, including high-resolution nuclear spectroscopy, nuclear structure studies with radioactive beams, superheavy element research, as well as high-resolution atomic spectroscopy on highly charged ions and tests of QED in strong electromagnetic fields is presented.

  17. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research)

  18. Proceedings of the international conference on dynamical properties of heavy-ion reactions held at the University of the Witwatersrand, v. 1

    International Nuclear Information System (INIS)

    Engelbrecht, C.A.; Lemmer, R.H.; Sellschop, J.P.F.; Toeppfer, C.

    1978-01-01

    The report contains abstracts of the papers delivered at the conference. The abstracts have been grouped into the following chapters: Very heavy nuclei; Deep inelastic reactions and fusion; Resonances; Elastic and quasi-elastic scattering; Atomic physics with heavy ions; Miscellaneous; Post-deadline contributions. Each abstract has been submitted to INIS separately

  19. Nuclear spectroscopy with lithium ions

    International Nuclear Information System (INIS)

    Heiser, C.

    1977-02-01

    A survey of the state of nuclear spectroscopy with lithium ions is given. Proceeding from the physical and nuclear properties the specific topics arising by the acceleration of these ions are discussed. The results obtained from measurements of excitation functions of different lithium reactions, particularly of compound reactions, with several target nuclei are summarized. Besides compound reactions direct reactions are important, especially transfer reactions, elastic and inelastic scattering and exchange reactions. The results on high spin states obtained by in-beam gamma-spectroscopy are discussed in detail. Finally the possibilities are considered for accelerating lithium ions in the cyclotron U-120 and in the tandem generator EGP-10 of the ZfK. (author)

  20. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  1. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications

    International Nuclear Information System (INIS)

    Ibnouzahir, M.

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)

  2. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  3. Nuclear reactions of medium and heavy target nuclei with high-energy projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Damdinsuren, C.

    1988-01-01

    The cross sections of a number of target fragmentation products formed in nuclear reactions of 3.65 AGeV 12 C-ions and 3.65 GeV protons with 197 Au have been measured. The measurements have been done by direct counting of irradiated targets with Ge(Li) gamma-spectrometers. Comparison between these and other data has been used to test the hypotheses of factorization and limiting fragmentation. The total cross section for residue production in both reactions indicates that target residues are formed mainly in central collisions

  4. Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4 π detector

    Energy Technology Data Exchange (ETDEWEB)

    De Filippo, E.; Pagano, A. [INFN, Catania (Italy)

    2014-02-15

    Heavy-ion collisions have been widely used in the last decade to constrain the parameterizations of the symmetry energy term of the nuclear equation of state (EOS) for asymmetric nuclear matter as a function of baryonic density. In the Fermi energy domain one is faced with variations of the density within a narrow range of values around the saturation density ρ{sub 0}=0.16 fm{sup -3} down towards sub-saturation densities. The experimental observables which are sensitive to the symmetry energy are constructed starting from the detected light particles, clusters and heavy fragments that, in heavy-ion collisions, are generally produced by different emission mechanisms at different stages and time scales of the reaction. In this review the effects of dynamics and thermodynamics on the symmetry energy in nuclear reactions are discussed and characterized using an overview of the data taken so far with the CHIMERA multi detector array. (orig.)

  5. Nuclear matter in all its states

    International Nuclear Information System (INIS)

    Bonche, P.; Cugnon, J.; Babinet, R.; Mathiot, J.F.; Van Hove, L.; Buenerd, M.; Galin, J.; Lemaire, M.C.; Meyer, J.

    1986-01-01

    This report includes the nine lectures which have been presented at the Joliot-Curie School of Nuclear Physics in 1985. The subjects covered are the following: thermodynamic description of excited nuclei; heavy ion reactions at high energy (theoretical approach); heavy ion reactions at high energy (experimental approach); relativistic nuclear physics and quark effects in nuclei; quark matter; nuclear compressibility and its experimental determinations; hot nuclei; anti p-nucleus interaction; geant resonances at finite temperature [fr

  6. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  7. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  8. Summary of heavy ion theory

    International Nuclear Information System (INIS)

    Gavin, S.

    1994-09-01

    Can we study hot QCD using nuclear collisions? Can we learn about metallic hydrogen from the impact of comet Shoemaker-Levy 9 on Jupiter? The answer to both questions may surprise you exclamation point I summarize progress in relativistic heavy ion theory reported at DPF '94 in the parallel sessions

  9. Multi-nucleon transfer reaions with heavy ions

    International Nuclear Information System (INIS)

    Nadkarni, D.M.

    1975-01-01

    The reaction mechanisms of multinucleon transfer reactions with heavy ions such as O 16 , Ne 22 , Ar 40 , Ge 74 , Kr 84 and Xe 136 are discussed. As an example, the transfer reactions of Th 232 bombarded with O 16 , Ne 22 and Ar 40 ions are described. Some general features and a semiclassical picture of these reactions are presented. Cross sections, energy spectra and angular distributions are derived for the products of these reactions. The energy dependence of nucleon transfer cross sections in the interaction of Ge 74 with Th 232 is discussed. The importance of the study of multinucleon transfer reactions in the production of neutron-rich isotopes and transuranium elements is pointed out. (A.K.)

  10. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  11. Classical molecular dynamics simulation of weakly-bound projectile heavy-ion reactions

    Directory of Open Access Journals (Sweden)

    Morker Mitul R.

    2015-01-01

    Full Text Available A 3-body classical molecular dynamics approach for heavy-ion reactions involving weakly bound projectiles is developed. In this approach a weakly bound projectile is constructed as a two-body cluster of the constituent tightly bound nuclei in a configuration corresponding to the observed breakup energy. This 3-body system with their individual nucleon configuration in their ground state is dynamically evolved for given initial conditions using the three-stage classical molecular dynamics approach (3S-CMD. Various levels of rigidbody constraints on the projectile constituents and the target are considered at appropriate stages. This 3-dimensional approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but internal excitations and breakup probabilities at distances close to the barrier also. Dynamical simulations of 6Li+209Bi show all the possible reaction mechanism like complete fusion, incomplete fusion, scattering and breakup scattering. Complete fusion cross sections of 6Li+209Bi and 7Li+209Bi reactions are calculated in this approach with systematic relaxations of the rigid-body constraints on one or more constituent nuclei.

  12. The BNL Relativistic Heavy Ion Collider (A new frontier in nuclear physics)

    International Nuclear Information System (INIS)

    Makdisi, Y.I.

    1992-01-01

    The Relativistic Heavy Ion Collider at Brookhaven is in its second year of construction with a target date for completion in late 1997. In this report, I will describe the status of the project, the designated milestones and the capabilities of this collider that set it apart as the premier facility to probe the new frontier of nuclear matter under extreme temperatures and densities. Two large detectors and a pair of smaller detectors, which are in various stages of approval, form the experimental program at this point. They provide a complementary set of probes to study quark gluon plasma formation through different signatures. The two ring design of this collider allows for collisions between different ion species ranging from protons to gold

  13. Application of the UKP-2-1 accelerator of heavy ions in the field of nuclear and radiation physics. Chapter 2

    International Nuclear Information System (INIS)

    2003-01-01

    The UKP-2-1 accelerator is intended for research works conducting in the field of solid state physics, low energy nuclear physics, nuclear microanalysis, materials modification and others. The accelerator includes two autonomous beam transporting channels jointed by one accelerating potential. One of the channel is intended for hydrogen and inert gases' ions acceleration, obtained from duoplasmatron. The second one includes the source with cesium dispersion and it is intended for heavy ions acceleration. On the base of the accelerator the set of the analytical methods such as PIXE, RBS, NRA were developed allowing to study of samples element content, distribution of elements by depth, analysis of thin films thickness. The accelerator intensively using in the filed of inertial nuclear fusion and studies on Coulomb energy losses of plasma target fast protons. The experience of the accelerator in different environmental researches is gained as well. In particular of deuterium determination in the water samples by the nuclear reaction method and study of plutonium and uranium distribution in 'hot' particles by the proton-induced X-ray method are developed. Beginning of 1999 on the accelerator a new research activity trend related with nuclear physical analysis methods adaptation on charged particles beams for study of a biological objects has been developed. At present the accelerator hardware does not concedes to hardware of the best world laboratories

  14. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, R., E-mail: naharro@uhu.es [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Sanchez-Raya, M.; Gomez-Galan, J.A. [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Flores, J.L. [Departamento Ingenieria Electrica y Termica, Universidad de Huelva, 21071 Huelva (Spain); Duenas, J.A.; Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain)

    2012-05-11

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using {sup 12,13}C ions produced in heavy ion reactions. The actual latency of the system is about 20 {mu}s when using a clock frequency of 50 MHz.

  15. Electrodeless, multi-megawatt reactor for room-temperature, lithium-6/deuterium nuclear reactions

    International Nuclear Information System (INIS)

    Drexler, J.

    1993-01-01

    This paper describes a reactor design to facilitate a room-temperature nuclear fusion/fission reaction to generate heat without generating unwanted neutrons, gamma rays, tritium, or other radioactive products. The room-temperature fusion/fission reaction involves the sequential triggering of billions of single-molecule, 6 LiD 'fusion energy pellets' distributed in lattices of a palladium ion accumulator that also acts as a catalyst to produce the molecules of 6 LiD from a solution comprising D 2 O, 6 LiOD with D 2 gas bubbling through it. The D 2 gas is the source of the negative deuterium ions in the 6 LiD molecules. The next step is to trigger a first nuclear fusion/fission reaction of some of the 6 LiD molecules, according to the well-known nuclear reaction: 6 Li + D → 2 4 He + 22.4 MeV. The highly energetic alpha particles ( 4 He nuclei) generated by this nuclear reaction within the palladium will cause shock and vibrations in the palladium lattices, leading to compression of other 6 LiD molecules and thereby triggering a second series of similar fusion/fission reactions, leading to a third series, and so on. The absorption of the kinetic energy in the palladium will, in turn, generate a continuous flow of heat into the heavy water carrier, which would be removed with a heat exchanger. (author)

  16. The Ring Counter (RCo): A high resolution IC-Si-CsI(Tl) device for heavy ion reaction studies at 10-30 MeV/A

    International Nuclear Information System (INIS)

    Moroni, A.; Bruno, M.; Bardelli, L.; Barlini, S.; Brambilla, S.; Casini, G.; Cavaletti, R.; Chiari, M.; Cortesi, A.; D'Agostino, M.; De Sanctis, J.; Geraci, E.; Giordano, G.; Giussani, A.; Gramegna, F.; Guiot, B.; Kravchuk, V.; Lanchais, A.; Margagliotti, G.V.; Nannini, A.; Ordine, A.; Piantelli, S.; Vannini, G.; Vannucci, L.

    2006-01-01

    An annular detector (Ring Counter, RCo) is presented, which has been designed and built to detect and identify in mass and charge light charged particles and fragments with very low energy thresholds and high energy resolution. It complements the GARFIELD apparatus, operating at INFN Laboratori Nazionali di Legnaro, to detect the forward emitted products of nuclear heavy ion reactions. It consists of eight sectors of a three-stage telescope, each one formed by an ionization chamber followed by eight strips of a silicon detector and by two CsI(Tl) scintillators. Construction features and performances are described and discussed in details

  17. Coupled chemical reactions in dynamic nanometric confinement: VII. Biosensors based on swift heavy ion tracks with membranes

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Munoz, G. H.; García Arellano, H.; Alfonta, L.; Vacík, Jiří; Kiv, A.; Hnatowicz, Vladimír

    2017-01-01

    Roč. 172, 1-2 (2017), s. 159-173 ISSN 1042-0150 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : biotechnology * tracks * swift heavy ions * polymers * etching Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties) Impact factor: 0.443, year: 2016

  18. An intranuclear cascade calculation of high-energy heavy-ion interactions

    International Nuclear Information System (INIS)

    Yariv, Y.; Fraenkel, Z.

    1979-01-01

    The intranuclear cascade model of Chen is extended to high-energy reactions between two heavy ions. The results of the calculations are compared with experimental results for the inclusive proton and pion cross sections, two-particle correlations, particle multiplicity distributions and spallation cross section distributions from light ( 12 C+ 12 C) to heavy( 40 Ar + 238 U) projectile-target systems in the laboratory bombarding energy range E/A=250-1000 MeV. The comparison shows that the model is fairly successful in reproducing the various aspects of high-energy reactions between heavy ions. It is also shown that the assumption that high particle multiplicities are indicative of ''central'' (small impact parameter) collisions are well founded for heavy projectile-target systems. (B.G.)

  19. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  20. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    1975-04-01

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr

  1. Techniques for heavy-ion coupled-channels calculations. I. Long-range Coulomb coupling

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.; Macfarlane, M.H.; Pieper, S.C.

    1980-01-01

    Direct-reaction calculations for heavy ions require special computational techniques that take advantage of the physical peculiarities of heavy-ion systems. This paper is the first of a series on quantum-mechanical coupled-channels calculations for heavy ions. It deals with the problems posed by the long range of the Coulomb coupling interaction. Our approach is to use the Alder-Pauli factorization whereby the channel wave functions are expressed as products of Coulomb functions and modulating amplitudes. The equations for the modulating amplitudes are used to integrate inwards from infinity to a nuclear matching radius ( approx. = 20 fm). To adequate accuracy, the equations for the amplitudes can be reduced to first order and solved in first Born approximation. The use of the Born approximation leads to rapid recursion relations for the solutions of the Alder-Pauli equations and hence to a great reduction in computational labor. The resulting coupled-channels Coulomb functions can then be matched in the usual way to solutions of the coupled radial equations in the interior region of r space. Numerical studies demonstrate the reliability of the various techniques introduced

  2. Heavy ion linear accelerator for radiation damage studies of materials

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  3. Heavy ion linear accelerator for radiation damage studies of materials.

    Science.gov (United States)

    Kutsaev, Sergey V; Mustapha, Brahim; Ostroumov, Peter N; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238 U 50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  4. Bose-Einstein correlations between hard photons produced in heavy ions collisions

    International Nuclear Information System (INIS)

    Marques Moreno, F.M.

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: 86 KR + nat Ni at 60.0 A.MeV, and 181 Ta + 197 Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi 0 , e +- and γγ correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs

  5. Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu, Zhe

    2011-01-01

    The space-time propagation of heavy quarks in ultrarelativistic heavy ion collisions is studied within the partonic transport model Boltzmann approach of multiparton scatterings (BAMPS). In this model heavy quarks interact with the partonic medium via binary scatterings. The cross sections for these interactions are calculated with leading-order perturbative QCD, but feature a more precise Debye screening derived within the hard thermal loop approximation and obey the running of the coupling. Within this framework the elliptic flow and the nuclear modification factor of heavy quarks are computed for the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) energies and compared to available experimental data. It is found that binary scatterings alone cannot reproduce the data and therefore radiative corrections have to be taken into account.

  6. Respectives of heavy ion physics in JINR

    International Nuclear Information System (INIS)

    Flerov, G.N.

    1983-01-01

    Perspectives of heavy ion physics in JINR are discussed. The main attention is paid to directions that are connected with the application of intensive beams of U-400 cyclotron. Experiments into studying stability limits of heavy atomic nuclei are considered. The possibility of using beams of heavy ions in applied fields, particularly for the production of very thin nuclear filters is noted. Prospects of synthesis of superheavy elements (SHE) and SHE search in nature are also considered. The data on the events of spontaneous fission found in meteorite and hydrotherms and the data on lengths of tracks in olivines from meteorite prove the possibility of obtaining evidences of SHE existence in nature

  7. Classical simulations of heavy-ion fusion reactions and weakly

    Indian Academy of Sciences (India)

    2014-04-30

    Apr 30, 2014 ... Heavy-ion collision simulations in various classical models are discussed. ... are also simulated in a 3-stage classical molecular dynamics (3S-CMD) ... considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, ...

  8. CHICO, a heavy ion detector for Gammasphere

    International Nuclear Information System (INIS)

    Simon, M.W.; Cline, D.; Wu, C.Y.; Gray, R.W.; Teng, R.; Long, C.

    2000-01-01

    A 4π position-sensitive heavy-ion detector system, CHICO, has been developed primarily for use in conjunction with the 4π γ-ray facility, Gammasphere. The CHICO detector comprises an array of 20 Parallel Plate Avalanche Counters (PPACs) covering 12 deg. <θ<85 deg. and 95 deg. <θ<168 deg. and 280 deg. in phi. The PPACs have segmented delay-line cathode boards, measuring the polar scattering angle θ to 1 deg., and segmented anodes, measuring the azimuthal angle phi with 9 deg. resolution, while measuring the time-of-flight difference with 500 ps resolution. For binary reactions the kinematics can be reconstructed from the measured information, allowing identification of the target- and projectile-like nuclei with a mass resolution of Δm/m∼5%. The measured masses, recoil velocities, and recoil angles allow correction for Doppler shift and assignment of individual γ-rays to decay of the correct reaction product. This paper describes the design, operation and performance of the CHICO detector. The powerful combination of CHICO plus Gammasphere provides new research opportunities for the study of nuclear structure and reactions

  9. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  10. Experimental heavy ion physics at high energies. Progress report, September 1992--November 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report summarizes the research activities of the experimental high energy heavy ion physics group at Vanderbilt University carried out under Grant No. DE-FG05092ER40712 with the Department of Energy during the period Oct 1, 1992 to Nov 30, 1993. This research encompasses four areas of related inquiry in relativistic and high energy nuclear reactions. The preparation of the PHENIX experiment which has been approved as one of the two major experiments at RHIC to start in 1998. The RD10/RD45 Muon Identifier experiment which will provide essential input for the design of the Muon Endcap arm detector sub-system in PHENIX. The E855 Soft Photon Experiment at the AGS designed to clarify the status of a possible quark-gluon-plasma signature with presently available heavy-ion collisions. The construction CsI Ball detector project at Texas A&M which is designed as part of a comprehensive detector system which will probe the nuclear equation of state in the 50 MeV/nucleon domain.

  11. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  12. Measurement of charge of heavy ions in emulsion using a CCD camera

    CERN Document Server

    Kudzia, D; Dabrowska, A; Deines-Jones, P; Holynski, R; Olszewski, A; Nilsen, B S; Sen-Gupta, K; Szarska, M; Trzupek, A; Waddington, C J; Wefel, J P; Wilczynska, B; Wilczynski, H; Wolter, W; Wosiek, B; Wozniak, K

    1999-01-01

    A system has been developed for semi-automated determination of the charges of heavy ions recorded in nuclear emulsions. The profiles of various heavy ion tracks in emulsion, both accelerator beam ions and fragments of heavy projectiles, were obtained with a CCD camera mounted on a microscope. The dependence of track profiles on illumination, emulsion grain size and density, background in emulsion, and track geometry was analyzed. Charges of the fragments of heavy projectiles were estimated independently by the delta ray counting method. A calibration of both width and height of track profiles against ion charges was made with ions of known charges ranging from helium to gold nuclei. (author)

  13. Heavy ion deep inelastic collisions studied by discrete gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Krolas, W.

    1996-05-01

    The discrete gamma ray spectroscopy has been used as a tool to investigate the heavy ion collision. It has been shown that such experimental information supplemented by results of additional of-line radioactivity measurements is complete enough to reconstruct distributions of products of very complex nuclear reactions. Three experiments have been performed in which the 208 Pb + 64 Ni, 130 Te + 64 Ni and 208 Pb + 58 Ni systems have been created. The production cross sections of fragment isotopes have been determined and compared with existing model predictions

  14. Macroscopic/microscopic simulation of nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-01-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation

  15. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    1999-01-01

    Full text: The year 1998 can be considered as very successful both in harvesting important results from the existing collaborations as well as establishing new ones. In the frame of the COSY-11 collaboration cross section for η' production in p-p collision close to the threshold has been measured. In the region of excess energy between 1.5 and 4.1 MeV the η' cross sections are much lower than those of the π 0 and η production. There seems to be no indication that N * resonance doorway-like state governs the reaction mechanisms. The determined coupling constant g η'pp appears to be consistent with the prediction of the simple quark model. Results were published in Phys. Rev. Letters. Using the GEM detector, investigations of the isospin symmetry breaking were performed. Two reactions channels 3 Heπ 0 and 3 Hπ + from the reaction at proton momenta 700, 767, and 825 MeV/c were measured. Data analysis is in progress. The model of the meson cloud in the nucleon which is a speciality of our department has been successfully applied to explain the leading proton and neutron cross sections from the e + or e - proton collisions at the HERA ring. General formulas to calculate polarization of the particles with spin transmitted through the barrier in the presence of strong magnetic fields were obtained. New collaboration between our laboratory and the Institute for Nuclear Research in Kiev has been established. One PhD thesis was completed in the frame of this collaboration. We joined the new collaboration with Lund University concerning studies of hot nuclear matter properties using heavy ions from CELSIUS ring. First test of the phoswich detector for the forward wall was performed in Uppsala. Isoscalar giant dipole resonance strength distribution 3 ℎω has been evaluated in 208 Pb in the space of 1p1h and 2p2h excitation. The centroid energy of this state can directly be related to the nuclear incompressibility module. Our result indicates rather large values of

  16. Measurements of activation reaction rates in transverse shielding concrete exposed to the secondary particle field produced by intermediate energy heavy ions on an iron target

    International Nuclear Information System (INIS)

    Ogawa, T.; Morev, M.N.; Iimoto, T.; Kosako, T.

    2012-01-01

    Reaction rate distributions were measured inside a 60-cm thick concrete pile placed at the lateral position of a thick (stopping length) iron target that was bombarded with heavy ions, 400 MeV/u C and 800 MeV/u Si. Foils of aluminum and gold, as well as gold, tungsten and manganese covered with cadmium were inserted at various locations in the concrete pile to serve as activation detectors. Features of reaction rate distribution, such as the shape of the reaction rate profile, contribution of the neutrons from intra-nuclear cascade and that from evaporation to the activation reactions are determined by the analysis of measured reaction rates. The measured reaction rates were compared with those calculated with radiation transport simulation codes, FLUKA and PHITS, to verify their capability to predict induced activity. The simulated reaction rates agree with the experimental results within a factor of three in general. However, systematic discrepancies between simulated reaction rates and measured reaction rates attributed to the neutron source terms are observed.

  17. Heavy-ion collisions and the nuclear equation of state

    International Nuclear Information System (INIS)

    Keane, D.

    1993-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the course of this reporting period, the PI returned to Kent from a 15-month leave at Lawrence Berkeley Lab, which had been devoted 100% to work on this research project. The EOS Time Projection Chamber at LBL's Bevalac accelerator has continued to be the major focus of research for all of the supported personnel; about a year ago, this detector successfully took data in production mode for the first time, and accumulated in excess of 1000 hours of beam time before the termination of the Bevalac in February 1993. Reduction and analysis of these data is currently our first priority. Effort has also been devoted to the STAR detector at the Relativistic Heavy Ion Collider, in the form of contributions to the Conceptual Design Report, work on HV control hardware and software for use with the STAR Time Projection Chamber, and tracking software development

  18. Highlights from STAR heavy ion program arXiv

    CERN Document Server

    Okorokov, V.A.

    Recent experimental results obtained in STAR experiment at the Relativistic heavy-ion collider (RHIC) with ion beams will be discussed. Investigations of different nuclear collisions in some recent years focus on two main tasks, namely, detail study of quark-gluon matter properties and exploration of the quantum chromodynamics (QCD) phase diagram. Results at top RHIC energy show clearly the collective behavior of heavy quarks in nucleus-nucleus interactions. Jet and heavy hadron measurements lead to new constraints for energy loss models for various flavors. Heavy-ion collisions are unique tool for the study of topological properties of theory as well as the magneto-hydrodynamics of strongly interacting matter. Experimental results obtained for discrete QCD symmetries at finite temperatures confirm indirectly the topologically non-trivial structure of QCD vacuum. Finite global vorticity observed in non-central Au+Au collisions can be considered as important signature for presence of various chiral effects in ...

  19. Dissipative phenomena in deep inelastic heavy ion collisions

    International Nuclear Information System (INIS)

    Gross, D.H.E.; Krappe, H.J.; Lindenberger, K.H.; Lipperheide, R.; Moehring, K.

    1978-01-01

    During this meeting the following theoretical concepts for deep-inelastic heavy ion reactions were discussed: the energy transfer and friction, direct or statistical mechanisms, dissipation and fluctuation. (WL) [de

  20. Production techniques for rare earth and other heavy negative ions

    International Nuclear Information System (INIS)

    McK Hyder, H.R.; Ashenfelter, J.; McGrath, R.

    1998-01-01

    Current nuclear structure studies demand a wide range of heavy negative ion beams for tandem acceleration. Some of the wanted isotopes have low natural abundances and many have low or negative electron affinities. For these, gas injection or the use of hydrides, oxides, or fluorides is required to achieve usable intensities. The chemical properties of the target materials, and of the additive gases used to form molecular ions, often have detrimental effects on ion source performance and life. These effects include insulator breakdown, ionizer poisoning, and the erosion or deposition of material on critical electrodes. Methods of controlling sputter source conditions are being studied on the Wright Nuclear Structure Laboratory ion source test bench with the object of extending source life, increasing target efficiency, and achieving consistent negative ion outputs. Results are reported for several heavy ions including tellurium, neodymium, and ytterbium. copyright 1998 American Institute of Physics

  1. Method for calculating the characteristics of nuclear reactions with composite particle

    International Nuclear Information System (INIS)

    Zelenskaya, N.S.

    1978-01-01

    The purpose of the lectures is to attempt to give a brief review of the present status of the theory of nuclear reactions involving composite particles (heavy ions, 6 Li, 7 Li, and 9 Be ions, α-particles). In order to analyze such reactions, one should employ and ''exact'' method of distorted waves with a finite radius of interaction. Since the zero radius approximation is valid only at low momentum transfer, its rejection immediately includes all possible transferred momenta and consequently, the reaction mechanisms different from the usual cluster stripping we shall discuss a sufficiently general formalism of the distorted waves method, which does not use additional assumptions about the smaliness of the region of interaction between particles and about the possible reaction mechanisms. We shall also discuss all physical simplifications introduced in specific particular codes and the ranges of their applicability will be established. (author)

  2. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  3. Nuclear reaction mechanisms. Progress report, June 1976--July 1977

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.

    1977-01-01

    Research under the subject contract is on heavy ion induced reactions, both on experimental measurement and theoretical interpretation. Measurements have included determination of elastic scattering, evaporation residue, fission, quasi elastic and deep inelastic scattering cross sections. From these data we have extracted information on fusion barrier heights and radii, nucleus-nucleus potentials and fission parameterizations at high angular momenta. We have started investigating influence of excitation energies on inverse cross sections and of precompound decay in heavy ion reactions, and have investigated multidimensional potential energy surfaces for heavy ion collisions. Work which has been published is listed in the Publications Section; work not yet published and/or in progress is discussed herein.

  4. Nuclear reaction mechanisms. Progress report, June 1976--July 1977

    International Nuclear Information System (INIS)

    Blann, M.

    1977-01-01

    Research under the subject contract is on heavy ion induced reactions, both on experimental measurement and theoretical interpretation. Measurements have included determination of elastic scattering, evaporation residue, fission, quasi elastic and deep inelastic scattering cross sections. From these data we have extracted information on fusion barrier heights and radii, nucleus-nucleus potentials and fission parameterizations at high angular momenta. We have started investigating influence of excitation energies on inverse cross sections and of precompound decay in heavy ion reactions, and have investigated multidimensional potential energy surfaces for heavy ion collisions. Work which has been published is listed in the Publications Section; work not yet published and/or in progress is discussed herein

  5. Biological and medical research with accelerated heavy ions at the Bevalac, 1974--1977

    International Nuclear Information System (INIS)

    Elam, S.

    1977-04-01

    The Bevalac, a versatile high-energy heavy-ion accelerator complex, has been in operation for less than two years. A major purpose for which the Bevalac was constructed was to explore the possibility of heavy-ion teams for therapy for certain forms of cancer. Significant progress has been made in this direction. The National Cancer Institute has recognized the advantages that these and other accelerated particles offer, and heavy ions have been included in a long-term plan for particle therapy that will assess by means of controlled therapeutic tests the value of various modalities. Since accelerated heavy ions became available, the possibility of other contributions, not planned, became apparent. We are developig a new diagnostic method known as heavy-ion radiography that has greatly increased sensitivity for soft-tissue detail and that may become a powerful tool for localizing early tumors and metastases. We have discovered that radioactive beams are formed from fragmentation of stable deflected beams. Use of these autoradioactive beams is just beginning; however, we know that these beams will be helpful in localizing the region in the body where therapy is being delivered. In addition, it has been demonstrated that instant implantation of the radioactive beam allows direct measurements of blood perfusion rates in inaccessible parts of the body, and such a technique may become a new tool for the study of fast hot atom reactions in biochemistry, tracer biology and nuclear medicine. The Bevalac will also be useful for the continuation of previously developed methods for the control of acromegaly, Cushing's disease and, on a research basis, advanced diabetes mellitus with vascular disease. The ability to make small bloodless lesions in the brain and elsewhere with heavy-ion beams has great potential for nervous-system studies and perhaps later for radioneurosurgery

  6. Empire-3.2 Malta. Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation. User's Manual

    International Nuclear Information System (INIS)

    Herman, M.; Capote, R.; Sin, M.

    2013-08-01

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. The system can be used for theoretical investigations of nuclear reactions as well as for nuclear data evaluation work. Photons, nucleons, deuterons, tritons, helions ( 3 He), α's, and light or heavy ions can be selected as projectiles. The energy range starts just above the resonance region in the case of a neutron projectile, and extends up to few hundred MeV for heavy ion induced reactions. The code accounts for the major nuclear reaction models, such as optical model, Coupled Channels and DWBA (ECIS06 and OPTMAN), Multi-step Direct (ORION + TRISTAN), NVWY Multi-step Compound, exciton model (PCROSS), hybrid Monte Carlo simulation (DDHMS), and the full featured Hauser-Feshbach model including width fluctuations and the optical model for fission. Heavy ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters based on the RIPL-3 library covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, and γ-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations (BARFIT, MOMFIT). The results can be converted into the ENDF-6 format using the accompanying EMPEND code. Modules of the ENDF Utility Codes and the ENDF Pre-Processing codes are applied for ENDF file verification. The package contains the full EXFOR library of experimental data in computational format C4 that are automatically retrieved during the calculations. EMPIRE contains the resonance module that retrieves data from the electronic version of the Atlas of Neutron Resonances by Mughabghab (not provided with the EMPIRE distribution), to produce resonance section and related covariances for the

  7. Heavy residues from very mass asymmetric heavy ion reactions

    International Nuclear Information System (INIS)

    Hanold, K.A.

    1994-08-01

    The isotopic production cross sections and momenta of all residues with nuclear charge (Z) greater than 39 from the reaction of 26, 40, and 50 MeV/nucleon 129 Xe + Be, C, and Al were measured. The isotopic cross sections, the momentum distribution for each isotope, and the cross section as a function of nuclear charge and momentum are presented here. The new cross sections are consistent with previous measurements of the cross sections from similar reaction systems. The shape of the cross section distribution, when considered as a function of Z and velocity, was found to be qualitatively consistent with that expected from an incomplete fusion reaction mechanism. An incomplete fusion model coupled to a statistical decay model is able to reproduce many features of these reactions: the shapes of the elemental cross section distributions, the emission velocity distributions for the intermediate mass fragments, and the Z versus velocity distributions. This model gives a less satisfactory prediction of the momentum distribution for each isotope. A very different model based on the Boltzman-Nordheim-Vlasov equation and which was also coupled to a statistical decay model reproduces many features of these reactions: the shapes of the elemental cross section distributions, the intermediate mass fragment emission velocity distributions, and the Z versus momentum distributions. Both model calculations over-estimate the average mass for each element by two mass units and underestimate the isotopic and isobaric widths of the experimental distributions. It is shown that the predicted average mass for each element can be brought into agreement with the data by small, but systematic, variation of the particle emission barriers used in the statistical model. The predicted isotopic and isobaric widths of the cross section distributions can not be brought into agreement with the experimental data using reasonable parameters for the statistical model

  8. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  9. Theoretical studies in nuclear reaction and nuclear structure. Progress report, August 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    MacDonald, W.M.; Redish, E.F.

    1978-01-01

    The research program covers four major areas of nuclear theory: reaction theory including both few-body and many-body systems, intermediate energy reactions including nucleon-nucleon processes, pion physics, and nuclear dynamics. In many-body reaction theory the major achievement has been the development of a unitary and connected Hamiltonian formulation adapted to approximate calculations which include 3-body channels. A new analysis of isobaric analog states attracts high resolution data parameters which characterize these states and provide information about the nucleon-nucleon interaction. The multiple-scattering analysis of approximately GeV proton-nucleus scattering has been validated by agreement in absolute magnitude with new experimental data, and contributions of a nucleon isobar were identified. The Banerjee-Cammarata dynamical theory of the pion-nucleon interaction has been found to satisfy several independent tests of dispersion relations as well as predicting experimental phase shifts. In nuclear dynamics a new S-matrix theory of time-dependent Hartree-Fock promises to provide a new approach to heavy-ion reactions. A list of publications is included

  10. Dependence of asymmetries for charge distribution with respect to the reaction plane on initial energy in heavy-ion collisions

    International Nuclear Information System (INIS)

    Okorokov, V.A.

    2013-01-01

    In this paper, two combinations of correlators are defined in order to investigate the evolution of possible C/CP invariance violation in strong interactions with initial energy for heavy-ion collisions. These combinations correspond to absolute and relative asymmetry of distribution of electrically charge particles with respect to the reaction plane in heavy-ion collisions. Energy dependence of parameters under study was derived from data of STAR and ALICE experiments. Significant decreasing both absolute and relative asymmetry is observed at energies √s NN < 20 GeV. This feature agrees qualitatively with other results of stage-I beam energy scan program in STAR experiment. General behavior of dependence of absolute asymmetry on initial energy agrees reasonably with behavior of similar dependence of Chern–Simons diffusion rate calculated at different values of external Abelian magnetic field. The observed behavior of parameters under study versus energy can be considered as indication on possible transition to predominance of hadronic states over quark–gluon degrees of freedom in the mixed phase created in heavy-ion collisions at intermediate energies. (author)

  11. Report of the joint seminar on heavy-ion nuclear physics and nuclear chemistry in the energy region of tandem accelerators (II)

    International Nuclear Information System (INIS)

    1986-04-01

    A meeting of the second joint seminar on Heavy-Ion Nuclear Physics and Nuclear Chemistry in the Energy Region of Tandem Accelerators was held after an interval of two years at the Tokai Research Establishment of the JAERI, for three days from January 9 to 11, 1986. In the seminar, about 70 nuclear physicists and nuclear chemists of JAERI and other Institutes participated, and 38 papers were presented. These include general reviews and topical subjects which have been developed intensively in recent years, as well as the new results obtained by using the JAERI tandem accelerator. This report is a collection of the papers presented to the seminar. (author)

  12. Nuclear reaction data for IBA applications to cultural heritage diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Maino, G.; Menapace, E. [Bologna Univ., ENEA (Italy)

    2008-07-01

    Main aspects are discussed concerning nuclear reaction cross-sections for PIXE and PIGE (Particle Induced Gamma-ray Emission) analyses, especially referring to cultural heritage diagnostics, within the framework of ion beam analysis (IBA) methods, also reviewing recent results from international Conferences on Nuclear Data for Science and Technology and from NEANSC meetings and IAEA initiatives on the matter.To sum up this work, it is then worth remarking the following items: IBA techniques are powerful tools to derive unique information as for corrosion, degradation and, generally, conservation conditions of materials. Careful analyses of specific systems require accurate evaluations and establishment of complete databases, in particular for stopping powers and relevant cross sections. The physical parameters to be accurately determined are, therefore, nuclear reaction cross sections of importance for NRA analysis of light elements and stopping powers and ranges of light and heavy ions in various matrices. Light elements (H, Li, B, C, N, O, etc.) play an important role as constituents of many important organic as well inorganic materials in historical and artistic objects. To a large extent these materials occur in the near-surface area of a material with altered or degraded composition.

  13. Nuclear reaction data for IBA applications to cultural heritage diagnostics

    International Nuclear Information System (INIS)

    Maino, G.; Menapace, E.

    2008-01-01

    Main aspects are discussed concerning nuclear reaction cross-sections for PIXE and PIGE (Particle Induced Gamma-ray Emission) analyses, especially referring to cultural heritage diagnostics, within the framework of ion beam analysis (IBA) methods, also reviewing recent results from international Conferences on Nuclear Data for Science and Technology and from NEANSC meetings and IAEA initiatives on the matter.To sum up this work, it is then worth remarking the following items: IBA techniques are powerful tools to derive unique information as for corrosion, degradation and, generally, conservation conditions of materials. Careful analyses of specific systems require accurate evaluations and establishment of complete databases, in particular for stopping powers and relevant cross sections. The physical parameters to be accurately determined are, therefore, nuclear reaction cross sections of importance for NRA analysis of light elements and stopping powers and ranges of light and heavy ions in various matrices. Light elements (H, Li, B, C, N, O, etc.) play an important role as constituents of many important organic as well inorganic materials in historical and artistic objects. To a large extent these materials occur in the near-surface area of a material with altered or degraded composition

  14. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  15. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  16. Classical-limit S-matrix for heavy ion scattering

    International Nuclear Information System (INIS)

    Donangelo, R.J.

    1977-01-01

    An integral representation for the classical limit of the quantum mechanical S-matrix is developed and applied to heavy-ion Coulomb excitation and Coulomb-nuclear interference. The method combines the quantum principle of superposition with exact classical dynamics to describe the projectile-target system. A detailed consideration of the classical trajectories and of the dimensionless parameters that characterize the system is carried out. The results are compared, where possible, to exact quantum mechanical calculations and to conventional semiclassical calculations. It is found that in the case of backscattering the classical limit S-matrix method is able to almost exactly reproduce the quantum-mechanical S-matrix elements, and therefore the transition probabilities, even for projectiles as light as protons. The results also suggest that this approach should be a better approximation for heavy-ion multiple Coulomb excitation than earlier semiclassical methods, due to a more accurate description of the classical orbits in the electromagnetic field of the target nucleus. Calculations using this method indicate that the rotational excitation probabilities in the Coulomb-nuclear interference region should be very sensitive to the details of the potential at the surface of the nucleus, suggesting that heavy-ion rotational excitation could constitute a sensitive probe of the nuclear potential in this region. The application to other problems as well as the present limits of applicability of the formalism are also discussed

  17. Towards high-density matter with relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nagamiya, Shoji.

    1990-04-01

    Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)

  18. The discovery of nuclear compression phenomena in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schmidt, H.R.

    1991-01-01

    This article has attempted to review more than 15 years of research on shock compression phenomena, which is closely related to the goal of determining the nuclear EOS. Exciting progress has been made in this field over the last years and the fundamental physics of relativistic heavy ion-collisions has been well established. Overwhelming experimental evidence for the existence of shock compression has been extracted from the data. While early, inclusive measurements had been rather inconclusive, the advent of 4π-detectors like the GSI-LBL Plastic Ball had enabled the outstanding discovery of collective flow effects, as they were predicted by fluid-dynamical calculations. The particular case of conical Mach shock waves, anticipated for asymmetric collisions, has not been observed. What are the reasons? Surprisingly, the maximum energy of 2.1 GeV/nucleon for heavy ions at the BEVALAC had been found to be too low for Mach shock waves to occur. The small 20 Ne-nucleus is stopped in the heavy Au target. A Mach cone, however, if it had developed in the early stage of the collision will be wiped out by thermal motion in the process of slowing the projectile down to rest. A comparison of the data with models hints towards a rather hard EOS, although a soft one cannot be excluded definitively. A quantitative extraction is aggravated by a number in-medium and final-state effects which influence the calculated observables in a similar fashion as different choices of an EOS. Thus, as of now, the precise knowledge of the EOS of hot and dense matter is still an open question and needs further investigation. (orig.)

  19. [Research in heavy ion nuclear reactions

    International Nuclear Information System (INIS)

    Howell, E.H.; Liu, X.T.; Petitt, G.A.; Zhang, Z.

    1994-01-01

    The authors have been involved in several projects during the present contract period. These include participation in the RD93 test run performed last summer at the Alternating Gradient Synchrotron (AGS) at Brookhaven, analysis of the data from this run, Monte Carlo simulations using the GEANT code of the performance of the calorimeter/absorber used in RD45, and simulations of the performance of the muon detector system for the PHENIX detector at RHIC using the PISA code. They have been preparing for tests to be performed this summer at the AGS of a prototype muon identifier using limited streamer tube detectors of the type selected for use in the muon arm of the PHENIX detector at RHIC. They have begun work on Monte Carlo simulations of particle detection in the presence of intense background events for the E864 experiment which is approved for running at the AGS. Finally, the authors have completed their work on leakage from the absorber/calorimeter and have submitted a paper to Nuclear Instruments and Methods

  20. Semi-classical approaches to the phase space evolutions in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Remaud, B; Sebille, F; Raffray, Y; Gregoire, C; Vinet, L

    1986-01-06

    The properties of semi-classical phase space evolution equations - as the Vlasov/Boltzmann equations - are discussed in the context of the heavy ion reaction theory at intermediate energies (from 10 to 100 MeV per nucleon). The generalized coherent state set is shown to form a (over) complete basis for the phase space; then every solution of the Vlasov/Boltzmann equations can be defined as a convolution product of the generalized coherent state basis by an appropriate weight function w. The uniform approximation for w is shown to provide an accurate semi-classical description of fermion systems in their ground state: the examples of fermions in a harmonic well and of cold nuclei are discussed. The solution of the Vlasov equation amounts to follow the time evolution of the coherent states which play the role of a moving basis. For the Boltzmann equation, the collision term is taken into account by explicit or implicit variations of the function w. Typical applications are discussed: nuclear response to the giant monopole resonance excitation, fast nucleon emission in heavy-ion reactions. (orig.).

  1. Heavy ion measurements at ATLAS and CMS

    CERN Document Server

    Chapon, Emilien

    2018-01-01

    We present an overview of recent results from the ATLAS and CMS collaborations on heavy ion physics. Using data from proton-proton, proton-lead and lead-lead collisions at the LHC, these results help to shed light on the properties of nuclear matter.

  2. Nuclear structure in deep-inelastic reactions

    International Nuclear Information System (INIS)

    Rehm, K.E.

    1986-01-01

    The paper concentrates on recent deep inelastic experiments conducted at Argonne National Laboratory and the nuclear structure effects evident in reactions between super heavy nuclei. Experiments indicate that these reactions evolve gradually from simple transfer processes which have been studied extensively for lighter nuclei such as 16 O, suggesting a theoretical approach connecting the one-step DWBA theory to the multistep statistical models of nuclear reactions. This transition between quasi-elastic and deep inelastic reactions is achieved by a simple random walk model. Some typical examples of nuclear structure effects are shown. 24 refs., 9 figs

  3. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  4. Mutation induction by heavy ions

    Science.gov (United States)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  5. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  6. Study of Particle Production and Nuclear Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

    CERN Multimedia

    2002-01-01

    % EMU11 \\\\ \\\\ We propose to use nuclear emulsions for the study of nuclear collisions of $^{207}$Pb, $^{197}$Au, and any other heavy-ion beams when they are available. We have, in the past, used $^{32}$S at 200A~GeV and $^{16}$O at 200A and 60A~GeV from CERN (Experiment EMU08) and at present the analysis is going on with $^{28}$Si beam from BNL at 14.5A~GeV. It will be important to compare the previous and the present investigations with the new $^{207}$Pb beam at 60-160A~GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It woul...

  7. On intermediate structures in heavy ion reactions

    International Nuclear Information System (INIS)

    Rotter, I.

    1977-01-01

    The conceptions of the nuclear reaction theory are reinvestigated on the basis of the continuum shell model. The correlation of the resonance states via the continuum can lead to intermediate structures in the cross section. (Auth.)

  8. Whole study of nuclear matter collective motion in central collisions of heavy ions of the FOPI detector

    International Nuclear Information System (INIS)

    Bendarag, A.

    1999-01-01

    In this work we study the collective phenomena in the central collisions of heavy ions for the Au + Au, Xe + CsI and Ni + Ni systems at incident energies from 150 to 400 MeV/nucleon with the data of the FOPI detector. In order to describe completely the flow of the nuclear matter, we fit the double differential momentum distributions with two-dimensional Gaussian. We study the characteristic parameters of the collective flow (flow range, aspect ratios, flow parameter) versus the charge and the mass of the fragments as well as the incident energy and the centrality of the collisions. The transverse energy is used for selecting the central collisions. The method of the Gaussian fits requires also to reconstruct the reaction plane of the event. Then we correct the parameters for the finite number of particles effects and account for the influence of the acceptance of the detector. We confirm the importance of the thermal motion for the light charge or mass fragments and, conversely, the predominance of the collective motion for the heavy fragments. A common flow angle for all the types of particles is highlighted for the first time, demonstrating the power of the method of the Gaussian fits; The evolution of the other parameters confirms the observations done with other methods of flow analysis. These results should contribute to put constraints on the collision models and to enlarge our knowledge of the properties of the nuclear matter. (author)

  9. Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senguel, M.Y. [Atakent Mahallesi, 3. Etap, Halkali-Kuecuekcekmece, Istanbul (Turkey); Gueclue, M.C.; Mercan, Oe.; Karakus, N.G. [istanbul Technical University, Faculty of Science and Letters, Istanbul (Turkey)

    2016-08-15

    We calculate the cross sections of electromagnetic productions of muon- and tauon-pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement (Abrahamyan et al., Phys Rev Lett 108:112502, 2012) indicates that the neutrons are differently distributed from the protons; therefore this affects the cross section of the heavy-lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that the Wood-Saxon distribution function is more sensitive to the parameter R compared to the parameter a. (orig.)

  10. Charged particle-induced nuclear fission reactions

    Indian Academy of Sciences (India)

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of ...

  11. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  12. Enhancement of nuclear reaction rates in asymmetric binary ionic mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Clerouin, J.; Arnault, P.; Desbiens, N. [CEA, DAM, DIF, Arpajon (France); White, A.; Ticknor, C.; Kress, J.D.; Collins, L.A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2017-11-15

    Using orbital-free molecular dynamics simulations we study the structure and dynamics of increasingly asymmetric mixtures such as hydrogen-carbon, hydrogen-aluminium, hydrogen-copper, and hydrogen-silver. We show that, whereas the heavy component structure is close to an effective one-component plasma (OCP), the light component appears more structured than the corresponding OCP. This effect is related to the crossover towards a Lorentz-type diffusion triggered by strongly coupled, highly charged heavy ions, and witnessed by the change of temperature scaling laws of diffusion. This over-correlation translates into an enhancement of nuclear reaction rates much higher than its classical OCP counterpart. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Probing of complete and incomplete fusion dynamics in heavy-ion ...

    Indian Academy of Sciences (India)

    2014-04-04

    Apr 4, 2014 ... Heavy-ion induced reactions; complete and incomplete fusion; ... CF reaction the projectile completely fuses with the target nucleus and the highly excited .... input parameters have been used as default except the charge and ...

  14. Nuclear Physics Laboratory: Annual report

    International Nuclear Information System (INIS)

    1987-05-01

    Topics covered in this annual report are: astrophysics and cosmology, giant resonances in excited nuclei, heavy ions, fundamental symmetries, nuclear reactions, accelerator mass spectrometry, accelerators and ion sources, nuclear instrumentation, computer systems and the booster linac project

  15. Considerations regarding design of ion exchange columns for applications in heavy water nuclear reactors- a comprehensive review

    International Nuclear Information System (INIS)

    Joginder Kumar; Nema, M.K.

    2000-01-01

    In nuclear reactor applications the principal role of the purification system is to maintain a satisfactory chemistry of moderator and coolant which are different at various stages of reactor operations e.g. during reactor start up, for removal of neutron poison from the moderator, the purification flows are much different compared to steady state operation of the reactor. In order to cater to varying requirements regarding purification load, optimisation in connection with ion exchange column design plays an important role and becomes very challenging in Heavy Water Nuclear Reactors mainly due to the fact that heavy water is very very expensive. In this paper a comprehensive review is made for various designs adopted so far regarding IX column in Indian PHWRs of 220 MWe size for normal operations. Design and operating experience regarding large size IX column used for occasional needs during dilute chemical decontamination of 220 MWe PHWRs is also discussed. The experience regarding development testing of the proposed design of ion exchange column for 500 MWe PHWRs is also discussed

  16. Heavy ion deep inelastic collisions studied by discrete gamma ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krolas, W. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1996-05-01

    The discrete gamma ray spectroscopy has been used as a tool to investigate the heavy ion collision. It has been shown that such experimental information supplemented by results of additional of-line radioactivity measurements is complete enough to reconstruct distributions of products of very complex nuclear reactions. Three experiments have been performed in which the {sup 208}Pb + {sup 64}Ni, {sup 130}Te + {sup 64}Ni and {sup 208}Pb + {sup 58}Ni systems have been created. The production cross sections of fragment isotopes have been determined and compared with existing model predictions 64 refs, 59 figs, 19 tabs

  17. Semi-classical approaches for the proton emission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-05-01

    Semi-classical approaches are proposed to study the transition between the one- and two-body processes in intermediate energy heavy ion collisions. The Landau-Vlasov equation is used as a transport equation for nucleons in the nuclear matter. We apply our formalism to the fast proton ejection. On the one hand, the effects of the nucleon-nucleon collisions are studied for the particles which travel through the nucleus cores. On the other hand, the inertial emission turns out to be an important proton emission mechanism. Our results conflict the interpretation of the proton spectra in terms of moving sources. Reasonable agreements with the experimental data are found without reference to any thermal equilibrium

  18. Heavy-ion dosimetry

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained

  19. Modelling heavy-ion energy deposition in extended media

    International Nuclear Information System (INIS)

    Mishustin, I.; Pshenichnov, I.; Greiner, W.; Mishustin, I.; Pshenichnov, I.

    2010-01-01

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  20. Modelling heavy-ion energy deposition in extended media

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, I.; Pshenichnov, I.; Greiner, W. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, Frankfurt am Main (Germany); Mishustin, I. [Kurchatov Institute, Russian Research Center, Moscow (Russian Federation); Pshenichnov, I. [Institute for Nuclear Research, Russian Academy of Science, Moscow (Russian Federation)

    2010-10-15

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  1. Low energy nuclear reaction polyplasmon postulate

    Energy Technology Data Exchange (ETDEWEB)

    Russell, John L. [201 Heritage Drive, Apt. 208, Canton, GA 30093 (United States)], E-mail: RUSSELLJL@aol.com

    2008-11-15

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is

  2. Low energy nuclear reaction polyplasmon postulate

    International Nuclear Information System (INIS)

    Russell, John L.

    2008-01-01

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is absorbed in the plasmon

  3. Pre-compound emission in low-energy heavy-ion interactions

    Directory of Open Access Journals (Sweden)

    Kumar Sharma Manoj

    2017-01-01

    Full Text Available Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  4. Pre-compound emission in low-energy heavy-ion interactions

    Science.gov (United States)

    Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.

    2017-11-01

    Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  5. Cluster formation in nuclear reactions from mean-field inhomogeneities

    Science.gov (United States)

    Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo

    2018-05-01

    Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few

  6. Contribution to the source size study produced in the heavy ion reactions at 30MeV/u

    International Nuclear Information System (INIS)

    Khelfaoui, Ben Abed.

    1991-05-01

    In this work are given the measurement results of source sizes produced in the heavy ion reactions at intermediate energies, and are studied the correlations of light particles (proton-proton correlations) with very weak momentum. The used technics is an application of intensity interferometry to the case of particles submitted to hadronic interactions. The studied reactions were induced by a 20 We beam on 12 C, 59 Co, and 197 Au targets at 25 0 C and on 27 Al (at 22 0 C, 60 0 C and 80 0 C). Beam energy was 30 MeV/u [fr

  7. Ultrarelativistic heavy ions

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Studies with ultrarelativistic heavy ions combine aspects of cosmic ray physics, particle physics, nuclear physics, astrophysics and cosmogenesis. The leading theoretical concerns are the behavior of matter at very high-energy density and flux, the general behavior of space time in collisions, relativistic nuclear theory, and quantum chromodynamics. The field has developed over a period of more than thirty years, since the first observation of heavy nuclei in cosmic rays and the major developments of understanding of high-energy collisions made by Fermi and Landau in the early fifties. In the late sixties the discovery of the parton content of nucleons was rapidly followed by a great extension of high-energy collision phenomenology at the CERN ISR and subsequent confirmation of the QCD theory. In parallel the study of p-nucleus and nucleus-nucleus collisions at very high energies, especially at the CERN PS, Fermilab and the Bevalac, and in cosmic rays demonstrated that studies involving the nucleus opened up a new dimension in studies of the hadronic interaction. It is now at a high level of interest on an international scale, with major new accelerators being proposed to dedicate to this kind of study

  8. Beyond mean-field approach to heavy-ion reactions around the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Ayik Sakir

    2011-10-01

    Full Text Available Dissipation and fluctuations of one-body observables in heavy-ion reactions around the Coulomb barrier are investigated with a microscopic stochastic mean-field approach. By projecting the stochastic meanfield dynamics on a suitable collective path, transport coefficients associated with the relative distance between colliding nuclei and a fragment mass are extracted. Although microscopic mean-field approach is know to underestimate the variance of fragment mass distribution, the description of the variance is much improved by the stochastic mean-field method. While fluctuations are consistent with the empirical (semiclassical analysis of the experimental data, concerning mean values of macroscopic variables the semiclassical description breaks down below the Coulomb barrier.

  9. Experiments with stored heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Habs, D.; Jaeschke, E.

    1985-02-01

    The success of newly-developed methods of phase space cooling in proton and antiproton storage rings was sufficient for an examination of whether these methods could also be applied in storage rings for heavy ions. An expansion of these methods to heavy ion beams seems attractive for all sorts of reasons. Recently, this area was extensively discussed in a series of working meetings with the result that heavy ion storage rings are to be built for use in atomic and nuclear physics, with integrated radiation cooling and stochastic cooling, but primarily electron cooling. The current state of research and planning for the storage experiment is described. It is not intended to be a structural specification worked out in detail. The general design of the ring, however, has been established, and experimental details have deliberately been kept flexible, to thereby allow very different sorts of experiments to be conducted. The ring described with a maximum magnetic rigidity of Bp = 1.5 Tm, is designed in quadripartite symmetry. The total circumference is approximately 35 m, and there are four straight sections each 3.5 m long for the electron cooling sections, the experimental equipment, as well as HF system and injection. One of the most desirable properties of the reservoir is the multi-charge mode, which will significantly improve the operation which heavy ion beams, which reverse charge in electron cooling sections, target and residual vacuum. Initial considerations are presented with regard to stochastic and electron cooling. A review of possible classes of experiments is given and the schedule and financing of the project is outlined. 46 refs

  10. Slow, target associated particles produced in ultrarelativistic heavy-ion interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Anson, Z V; Arora, R; Avetyan, F A; Badyal, S K; Basova, E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bogdanov, V G; Bubnov, V I; Burnett, T H; Cai, X; Chasnikov, I Y; Chernova, L P; Chernyavsky, M M; Dressel, B; Eligbaeva, G Z; Eremenko, L E; Friedlander, E M; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V; Heckman, H H; Huang, H; Jakobsson, B; Judek, B; Kachroo, S; Kadyrov, F G; Kalyachkina, G S; Kanygina, E K; Karabova, M; Kaul, G L; Kaur, M; Kharlamov, S P; Koss, Y; Krasnov,; Kumar,; Lal, P; Larionova,; Lepetan,; Lindstrom,; Liu,; Lokanathan, S; Lord, J; Lukicheva, N S; Luo, S B; Mangotra, L K; Marutyan,; Maslennikova, N V; Mittra, I S; Mookerjee, S; Mueller, C; Nasrulaeva, H; Nasyrov, S H; Navotny, V S; Orlova, G I; Otterlund, I; Palsania, H S; Peresadko, N G; Petrov, N V; Plyushchev, V A; Qian, W Y; Raniwala,; EMU01 Collaboration

    1991-06-20

    The slow, target associated particles produced in ultrarelativistic heavy-ion interactions are a quantitative probe of the cascading processes in the spectator parts of the target nucleus. These processes are directly influenced by the proper timescale for the formation of hadronic matter. In this letter we show experimental data on singly and multiply charged particles, with velocities smaller than 0.7c, produced in ultrarelativistic heavy-ion interactions in nuclear emulsion. (orig.).

  11. Transport of heavy ions through matter within ion optical systems

    International Nuclear Information System (INIS)

    Schwab, T.

    1991-04-01

    In this thesis for the first time higher-order ion-optical calculations were connected with the whole phase-space changes of the heavy ions in passing through matter. With the developed programs and the newly proposed analytical methods atomic and nuclear interactions of the heavy ions within ion optical systems can be described realistically. The results of this thesis were applied to the conception of the fragment separator (FRS) and to the planning and preparation of experiments at the new GSI accelerator facility. Especially for the description of the ion-optical combination of FRS and the storage ring ESR the developed programs and methods proved to be necessary. A part of the applied theories on the atomic stopping could be confirmed in the framework of this thesis in an experiment with the high-resolving spectrometer SPEC at GANIL. The method of the isotopically pure separation of projectile fragments by means of magnetic analysis and the electronic energy loss could be also experimentally successfully tested at several energies (60-400 MeV/u). Furthermore in this thesis also application-related problems regarding a tumor therapy with heavy ions were solved. A concept for a medical separator (BMS) was developed, which separates light diagnosis beams isotopically purely and beyond improves the energy sharpness by means of an especially shaped (monoenergetic) stopper so that an in-situ range determination is possible with an accuracy of about one millimeter. (orig./HSI) [de

  12. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  13. Status of the RHIC and BNL/CERN heavy ion programs

    International Nuclear Information System (INIS)

    Ozaki, S.

    1993-01-01

    With the gold beam operation at the Brookhaven AGS started in 1992, and with the lead beam operation at the CERN SPS planned for 1994--1995, investigation of high nucleon density states through high energy heavy ion collisions is becoming a reality. In addition, the Relativistic Heavy Ion Collider (RHIC) at BNL, which is dedicated to the study of ultra-high energy heavy ion collisions, is under construction with a target completion date in 1997. There also is a plan to run the proposed CERN LHC for a few months a year for the heavy ion program. These colliders should provide opportunities to extend our knowledge of nuclear matter to the extraordinary states of extreme high temperature and high density, thus opening the way to the creation and study of quark-gluon plasma. The lattice gauge calculation based on the theory of strong interactions (QCD) predicts that, at such states, quarks and gluons are deconfined from individual nucleons and form a hot plasma. In this paper, the status of heavy ion stationary target programs at the BNL AGS and the CERN SPS, the progress of RHIC construction, and heavy ion research potential at LHC will be presented. The status of the CERN LHC will be covered elsewhere in these Proceedings

  14. Constituent quarks and charge particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Mazumder, Rakesh; Sahoo, Raghunath; Nandi, Basanta Kumar

    2012-01-01

    Relativistic heavy-ion collisions aims at producing a state of matter which is governed by partonic degree of freedom. The pseudorapidity density of particle multiplicity and transverse energy are the key observables which provide the properties of matter produced in heavy-ion collisions. Study of their dependence on centrality and collision energy is of paramount importance to understand the particle production mechanism. This may provide insight into the partonic phase that might be created in nuclear collisions. Here, in a constituent quarks framework, charged particle and transverse energy production in heavy-ion collisions are studied both as a function of centrality and collision energy, and hence the study gives a prediction for Pb + Pb collisions

  15. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    International Nuclear Information System (INIS)

    Horn, K.M.; Doyle, B.; Segal, M.N.; Adler, R.J.; Glatstein, E.

    1995-01-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3 He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in 'nested'-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3 He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment

  16. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    Science.gov (United States)

    Horn, K. M.; Doyle, B.; Segal, M. N.; Hamm, R. W.; Adler, R. J.; Glatstein, E.

    1995-12-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery — with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use and innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data is also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in "nested"-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  17. Excitation functions for quasielastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; de Reilhac, L.; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1978-01-01

    The excitation functions for the production of 210 Bi, 210 Po, /sup 207-211/At, and 211 Rn through quasielastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two charges, and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ar, 40 Ca, 56 Fe, and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measuremnts of incident energies and cross sections were performed close to the reaction thresholds. All excitation functions exhibit the typical features of quasielastic transfer reactions: a sharp increase at low energy, and a constant value at high incident energy. The position of the thresholds are strongly influenced by the energetics of the reaction: High cross sections are observed under the strong interaction barrier if the energy balance at the minimum distance of approach is positive. This balance is equal to the difference between the interaction potentials in the entrance and exit channels, corrected for the mass balance. The constant cross sections observed for the high energy part of a given excitation function are consistent with the assumption that the curve P (R) which represents the transfer probability versus the distance between the nucleus centers does not vary with incident energy. This assumption implies the constancy of the optimum distance of approach R/sub opt/, of the R window ΔR for which P (R) is significant, and of the magnitude of P (R). Moreover the data show that the high energy cross sections for one-proton transfer are independent of the projectile, while odd-even effects of the projectile atomic number Z on the two-charge transfer cross sections are observed for the lightest incident ions 14 N to 20 Ne

  18. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  19. Review of heavy ion collider proposals

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1985-01-01

    In this paper we review proposals for heavy-ion colliders generated during the last few years for several national laboratories. The proposals span over a large range of energy and luminosity to accommodate the experimental needs of both the nuclear and the high-energy physicists. We report also briefly efforts in the same field happening in Europe

  20. Future of the ATLAS heavy ion program

    CERN Document Server

    ATLAS-Collaboration, The; The ATLAS collaboration

    2012-01-01

    The primary goal of the heavy ion program at the LHC is to study the properties of deconfined strongly interacting matter, often referred to as ``quark-gluon plasma'' (QGP), created in ultra-relativistic nuclear collisions. That matter is found to be strongly coupled with a viscosity to entropy ratio near a conjectured quantum lower bound. ATLAS foresees a rich program of studies using jets, Upsilons, measurements of global event properties and measurements in proton-nucleus collisions that will measure fundamental transport properties of the QGP, probe the nature of the interactions between constituents of the QGP, elucidate the origin of the strong coupling, and provide insight on the initial state of nuclear collisions. The heavy ion program through the third long shutdown should provide one inverse nb of 5.5~TeV Pb+Pb data. That data will provide more than an order of magnitude increase in statistics over currently available data for high-pT observables such as gamma-jet and Z-jet pairs. However, potentia...

  1. The Mesozoic Era of relativistic heavy ion physics and beyond

    International Nuclear Information System (INIS)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 x 10 12 degrees K evolved to become today's Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles

  2. Beam modulation for heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Kanai, T.; Minohara, S.; Sudou, M.

    1993-01-01

    The first clinical trial of heavy ion radiation therapy is scheduled in 1994 by using the heavy ion medical accelerator in Chiba (HIMAC). In order to start the clinical trial, first, it is necessary to know the physical characteristics of high energy heavy ions in human bodies, for example, dose and linear energy transfer (LET) distribution. Also the knowledge on the biological effectiveness of heavy ions is required. Based on these biophysical properties of heavy ions, monoenergetic heavy ion beam should be modulated so as to make the spread Bragg peak suitable to heavy ion radiation therapy. In order to establish a methodology to obtain the most effective spread Bragg peak for heavy ion radiation therapy, a heavy ion irradiation port at the RIKEN ring cyclotron facility was constructed. By using a 135 MeV/u carbon beam, the biophysical properties of the heavy ions were investigated, and a range modulator was designed to have uniform biological response in the spread Bragg peak. The physical and biological rationality of the spread Bragg peak were investigated. The dose, LET and biological effect of a monoenergetic heavy ion beam, the design of the range modulator, and the distributions of LET and biological dose for the spread Bragg peak are reported. (K.I.)

  3. Formation and disintegration of high-density nuclear matter in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo

    1976-01-01

    The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)

  4. Heavy ion and proton-induced single event multiple upset

    International Nuclear Information System (INIS)

    Reed, R.A.; Carts, M.A.; Marshall, P.W.

    1997-01-01

    Individual ionizing heavy ion events are shown to cause two or more adjacent memory cells to change logic states in a high density CMOS SRAM. A majority of the upsets produced by normally incident heavy ions are due to single-particle events that causes a single cell to upset. However, for grazing angles a majority of the upsets produced by heavy-ion irradiation are due to single-particle events that cause two or more cells to change logic states. Experimental evidence of a single proton-induced spallation reaction that causes two adjacent memory cells to change logic states is presented. Results from a dual volume Monte-Carlo simulation code for proton-induced single-event multiple upsets are within a factor of three of experimental data for protons at normal incidence and 70 degrees

  5. [Experimental and theoretical nuclear physics]: 1988 Annual report

    International Nuclear Information System (INIS)

    1988-05-01

    This paper describes the highlights of the past year of the Nuclear Physics Laboratory at the University of Washington. Particular topics discussed are: astrophysics, giant resonance, heavy ion induced reactions, fundamental symmetries, nuclear reactions, medium energy reactions, accelerator mass spectrometry, Van de Graaf and ion sources, the booster linac project, instrumentation and computer systems

  6. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Xue, J.M. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Morris, J.R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Gao, Y.; Wang, Y.G.; Yan, S. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<{approx}25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  7. Energy density, stopping and flow in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Sorge, H.; von Keitz, A.; Mattiello, R.; Stoecker, H.; Greiner, W.

    1990-01-01

    The Lorentz invariant molecular dynamics approach (RQMD) is employed to investigate the space-time evolution of heavy ion collisions at energies (E kin = 10AGeV hor-ellipsis 200AGeV). The calculations for various nucleus nucleus reactions show a high degree of stopping power. The importance of secondary rescattering at these beam energies is demonstrated. The computed nucleon rapidity distributions are compared to available experimental data. It is demonstrated that nonlinear, collective effects like full stopping of target and projectile and matter flow could be expected for heavy projectiles only. For nuclear collisions in the Booster era at BNL and for the lead beam at CERN SPS the authors predict a stimulating future: then a nearly equilibrated, long lived (8 fm/c) macroscopic volume of very high energy density (> 1 GeV/fm 3 ) and baryon density (> 5 times ground state density) is produced

  8. Direct inner shell ionization accompanying heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-07-01

    51 V+ 40 Ar (180 MeV) fusion reaction is studied by means of K X-ray-particle-γ-ray coincidences. K X-ray yields associated with various evaporation residues are determined separately for two ionization processes: the direct ionization by the projectile prior to the nuclear interaction and the postcollisional ionization due to the internal conversion of γ-rays. Implications for possible measurements of nuclear reaction times are discussed. 24 refs., 9 figs., 2 tabs. (author)

  9. Measurement of stopping power of heavy ions

    International Nuclear Information System (INIS)

    Kitahara, Tetsuo

    1981-01-01

    The stopping power of heavy ions is discussed. In the low energy region, heavy ions keep some of their orbital electrons, and have equilibrium electron charge. The stopping power of penetrating particles depends on this effective charge. At present, it is hard to estimate this effective charge theoretically, accordingly, the estimation is made experimentally. Another difficulty in this estimation is that the Born approximation is not effective for heavy ions. In the low energy region, electronic stopping and nuclear stopping contribute to the stopping power. For the electronic stopping, a formula for the stopping power was given by Lindhard et al. The experimental values were obtained at GSI, and are inconsistent with the estimation by the Lindhard's formula. In the high energy region, where the Born approximation can be used, the Bethe's formula is applied, but the experimental data are scarce. Oscillations are seen in the Z dependence graph of the experimental stopping cross sections. Experimental works on the stopping power have been done. The differential and the integral methods were carried out. (Kato, T.)

  10. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  11. Studies in heavy ion activation analysis Pt. 4

    International Nuclear Information System (INIS)

    Lass, B.D.; Ojo, J.F.; Schweikert, E.A.

    1980-01-01

    The use of 7 MeV 6 Li + for heavy ion activation analysis was investigated. A survey of reactions, involving targets of lithium through oxygen inclusive, were studied for production of β + radioactivation products with half-lives of 10 1 -10 5 seconds. Specific activities for all reactions under the experimental conditions are reported and their use for analysis is assessed. (author)

  12. SIS: an accelerator installation for heavy ions of high energy

    International Nuclear Information System (INIS)

    The two major sections of the report cover the scientific experimental program and the accelerator installation. Topics covered in the first include: heavy ion physics in the medium energy region; nuclear physics at relativistic energies; atomic physics loss and capture cross sections for electrons; spectroscopy of few-electron systems; atomic collision processes; biological experiments; nuclear track techniques in biology; and experiments with protons and secondary radiation. The second includes: concept for the total installation; technical description of the SIS 12; technical description of the SIS 100; status of the UNILAC injector; development options for the SIS installations; properties of the heavy ion beam; and structural work and technical supply provisions. In this SIS project proposal, an accelerator installation based on two synchrotrons is described with which atomic nuclei up to uranium can be accelerated to energies of more than 10 GeV/μ. With the SIS 12, which is the name of the first stage, heavy ion physics at intermediate energies can be pursued up to 500 MeV/μ. The second stage, a larger synchrotron, the SIS 100, has a diameter of 250 m. With this device, it is proposed to open up the domain of relativistic heavy ion physics up to 14 GeV/μ (for intermediate mass particles) and 10 GeV/μ (for uranium)

  13. Nuclear spectroscopic studies. Progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1984-01-01

    Progress is reported on nuclear structure and nuclear reaction studies utilizing heavy-ion beams. Projects at the HHIRF, the Brookhaven Tandem Accelerator, and the Nuclear Science Facility at Daresbury, England are described. Studies have been concentrated on: (1) the structure of deformed and transitional nuclei in the angular momentum range from 20 to 40 h by (HI,xn) reactions; (2) the 1- and 2-nucleon transfer reactions between spherical heavy ion projectiles and deformed targets; and (3) the low-energy properties of nuclei far from stability. Theoretical studies are also reported. Publications are listed

  14. Physics of Ultrarelativistic Heavy Ions

    International Nuclear Information System (INIS)

    Giubellino, P.

    1996-01-01

    This paper is devoted to a general presentation of the physics of Ultrarelativistic Heavy Ions, as seen from the experimentalist close-quote s point of view. The aim of this research is the study of nuclear matter under extreme conditions of temperature and pressure, extending in this way our understanding of the strong interactions in general, and of colour confinement in particular. This young field of Physics has been growing rapidly in the past years, and any attempt to cover it in few pages will be rather sketchy and many important aspects will have to be left out. I will mainly try to cover the general motivations to undertake this study, and just mention the experimental challenges to be faced, the results from the experiments at CERN and BNL, and finally the fascinating program ahead of us, with a glimpse at the CERN LHC used as a heavy-ion collider. copyright 1996 American Institute of Physics

  15. Proceedings of the 7. Workshop on Nuclear Physics

    International Nuclear Information System (INIS)

    1984-01-01

    The courses, seminaries and contributions of the 7.Work Meeting on Nuclear Physics are presented. In the courses and seminaries parts, a method to solve nuclear systems, the present stage of development of heavy ions reactions at high energies, the project and experiences for accelerators, in addition to, some important topics on tokamaks are presented. In the part of contributions, the theoretical and experimental results of reactions with light and heavy ions involving high energies, the studies of nuclear phenomena and techniques for improving instruments of radiation detection are presented. (M.C.K.) [pt

  16. The Dubna double-arm time-of-flight spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Schilling, K.D.; Gippner, P.; Seidel, W.; Stary, F.; Will, E.; Heidel, K.; Lukyanov, S.M.; Penionzhkevich, Yu.E.; Salamatin, V.S.; Sodan, H.; Chubarian, G.G.

    1986-05-01

    The double-arm time-of-flight spectrometer DEMAS designed for the detection and identification of heavy-ion reaction products at incident energies below 10 MeV/amu is presented. Based on the kinematic coincidence method, the relevant physical information is obtained from the measurement of the two correlated velocity vectors of the binary fragments. Construction and performance of the different detector systems applied to measure the time-of-flight values, the position coordinates and the kinetic energies of both fragments are presented in detail. The description of the data acquisition and analysing procedures is followed by the discussion of some experimental examples to demonstrate the spectrometer performance. A mass resolution of typically 4 - 5 amu (fwhm) is routinely achieved. (author)

  17. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    International Nuclear Information System (INIS)

    Barboza, N.O.

    1996-10-01

    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of ∼17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, ∼200 g/cm 3 and ∼20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases ∼350 MJ of energy in optimized power plant scenarios

  18. Nuclear interactions of high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.

    1992-01-01

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, ''limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays

  19. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  20. Liquid-drop model description of heavy ion fusion at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, C E; Barbosa, V C; Canto, L F; Donangelo, R

    1987-10-05

    The enhancement of the heavy ion fusion cross section at sub-barrier energies is studied in the liquid-drop model approach. The shape of the system is described by two spheres smoothly connected by a neck, and the kinetic and potential energies are calculated within this parametrization. Underbarrier fusion cross sections for symmetric projectile-target combinations are calculated in the WKB approximation and a comparison with the available data is made. The agreement is quite satisfactory, except for those systems in which the reaction is strongly affected by the details of the nuclear structure of the collision partners.

  1. Nuclear physics research requirements for electron and heavy ion machines

    International Nuclear Information System (INIS)

    Vogt, E.

    1983-03-01

    There has been a great deal of interest in a variety of new machines intended to probe atomic nuclei for hadronic and quark aspects which lie beyond the familiar shell model view of nuclei. This paper gives the physics perspective within which the proposals for such machines have arisen and discusses the two classes of tools - high energy cw electron machines and relativistic heavy ion machines - which lie at opposite ends of the arsenal being gathered for the pursuit of QCD in nuclei. The electron machines present a reasoned analytic approach to the simplest systems and the heavy ion machines a major thrust for starting new physics in the quark-gluon sea

  2. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  3. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  4. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1986-01-01

    The research conducted by the program is: (1) to investigate in detail the role of energy and angular momentum dissipation in the mechanisms of subbarrier fusion, in fusion at and above the barrier, in quasi-elastic and in strongly damped reactions of heavy ions; (2) to extend the above reaction mechanism studies in the regime of 10 to 50 MeV/amu employing techniques of complete detection including γ-rays, light charged particles, neutrons and heavy ions in real or kinematic 4π counting when possible; (3) the study of structural and shape changes of nuclei at very high spins and excitations; and (4) the development and use of novel techniques and instrumentation in the above studies. 76 refs., 27 figs

  5. Heavy ion elastic scattering of code : OPTHI

    International Nuclear Information System (INIS)

    Ismail, M.; Divatia, A.S.

    1982-01-01

    A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)

  6. Towards relativistic heavy ion collisions 'by small steps towards the stars'

    International Nuclear Information System (INIS)

    Scott, D.K.

    1980-01-01

    Current attempts to search for the exotic processes occurring in relativistic heavy ion collisions are reviewed under the headings; peripheral collisions (peripheral collisions as a function of energy, new features at intermediate energies, ground state correlations, microscopic aspects), central collisions (low energy perspective, time scales in heavy ion collisions, spatial, temporal localization and the onset of the nuclear fireball, models of particle emission in central relativistic collisions, the heart of the matter, multiplicity selection, the emission of composite particles), a search for the exotic (the limits of temperature and pressure, temporal and spatial limits, the limits of nuclear matter and nuclei,). 229 references. (U.K.)

  7. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  8. System for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  9. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  10. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  11. Prospect of heavy ion studies in Japan

    International Nuclear Information System (INIS)

    Sakai, M.

    1976-01-01

    The status and future developments of heavy ion facilities in Japan are presented. New tandem, linear accelerator and Mumatron for studies of nuclear matter are under construction. Mumatron which provides 500 MeV/nucleon with rather small intensity consists of four parts, namely, Wideroe-type linear accelerator, Alvarez-type linear accelerator, Cockcroft-Walton accelerator and synchrotron. Mumatron is expected not only to open an entirely new field of nuclear physics but for application to the cancer therapy

  12. Proceedings of the workshop on microscopic and phenomenological studies of the interactions between light-heavy ions

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1993-01-01

    The workshop 'Microscopic and Phenomenological Studies of the Interactions between Light-Heavy Ions' was held at Institute for Nuclear Study, University of Tokyo from Dec. 24 to Dec. 26, 1991. The workshop included 1) studies of the nucleus-nucleus interactions of the systems as 16 O- 16 O, 16 O- 15 N, etc., or the studies of the elastic and inelastic scatterings and the transfer reactions in such systems, 2) structure and reactions of neutron-rich nuclei, 3) microscopic derivation of the effective two-nucleon interactions, 4) development of the methods of techniques applied to the heavier systems. (author)

  13. Appendix to the report of the Committee on 'Nuclear Physics and Heavy Ion Research' 1983-1985

    International Nuclear Information System (INIS)

    1987-04-01

    In the appendix to the scientific report of the research project of the West German Ministry of Research and Technology on 'Nuclear physics and heavy ion research', publications are compiled which have been published on individual projects in the three years of research. Only articles from journals were included, in order to keep the size of this index within reason. The table is compiled in alphabetical sequence of the universities involved. (orig./HP) [de

  14. Neutron emission in heavy ion induced reactions at 10 MeV/A

    International Nuclear Information System (INIS)

    Benrachi, F.

    1984-01-01

    The neutron emission mechanism in reactions induced by heavy ions (in which a high energy component had already been observed) has been investigated. To get informations on the desexcitation mode which is responsible of that component and on the sharing of the excitation energy between the fragments, a very disymmetric system 14 N+ 165 Ho at E inc=10,5 MeV/a.m.u. was studied. The neutrons are preferentially emitted forward in the direction of the quasi-projectile and are in average highly energetic. The calculations of the excitation energies and of the multiplicities showed that the detected events are mainly coming from peripheral processes with a weak angular momentum exchange. The analysis of the energy spectra and of the invariance cross section maps pointed out a strong asymmetry and then proved that at least two neutron sources were involved in that reaction mechanism. Studying these two components in terms of a sequential mechanism i.e. an emission from the totally equilibrated quasi-target and quasi-projectile, the whole neutron emission could not be explained. To interpret the experimental results, non statistical models with a preequilibrium emission at the collision beginning were used [fr

  15. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    Mueller, D.; Grisham, L.; Kaganovich, I.; Watson, R. L.; Horvat, V.; Zaharakis, K. E.; Peng, Y.

    2002-01-01

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  16. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  17. HMI Section of Nuclear and Radiation Physics - annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This annual report contains extended abstracts of the scientific work performed at the named institute together with a list of publications and talks. The scientific work is concerned with the theory of nuclear and atomic processes with heavy ions, the experimental study of heavy ion reactions, nuclear structure studies, nuclear solid-state physics, atomic collisions, and the operation of VICKSI. (HSI)

  18. Quasi-Classical Description of Heavy Ion Reactions

    International Nuclear Information System (INIS)

    Luk'yanov, V.K.

    1994-01-01

    A method for calculating the distorted waves for a realistic nuclear complex potential with the Coulomb forces included is developed using the quasi-classical and high energy approximations. The distorted waves are obtained in the analytical form and applications are made to elastic, inelastic scattering and to the one-nucleon transfer reactions. 9 refs., 2 figs

  19. Nuclear physics at GANIL. A compilation 1994-1995

    International Nuclear Information System (INIS)

    Bex, M.; Galin, J.

    1996-09-01

    Different aspects of heavy ion reactions have been investigated at GANIL. Recent results on nuclear fragmentation and nuclear reaction kinetics are presented. 67 items are indexed and abstracted separately for INIS database. (K.A.)

  20. Nuclear physics at GANIL. A compilation 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    Bex, M; Galin, J [eds.

    1996-09-01

    Different aspects of heavy ion reactions have been investigated at GANIL. Recent results on nuclear fragmentation and nuclear reaction kinetics are presented. 67 items are indexed and abstracted separately for INIS database. (K.A.).