WorldWideScience

Sample records for heavy vehicle emissions

  1. A Comprehensive Examination of Heavy Vehicle Emissions Factors

    Science.gov (United States)

    2010-08-01

    This report summarizes the findings from reviewing the literature on several topics that are related to heavy vehicle emissions including engine and fuel types, vehicle technologies that can be used to reduce or mitigate vehicle emissions, the factor...

  2. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  3. Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China.

    Science.gov (United States)

    Song, Congbo; Ma, Chao; Zhang, Yanjie; Wang, Ting; Wu, Lin; Wang, Peng; Liu, Yan; Li, Qian; Zhang, Jinsheng; Dai, Qili; Zou, Chao; Sun, Luna; Mao, Hongjun

    2018-05-09

    The relative importance of contributions of gasoline vehicles (GVs) and diesel vehicles (DVs), heavy-duty diesel vehicles (HDDVs) and non-HDDVs to on-road vehicle emissions remains unclear. Vehicle emission factors (EFs), including fine particulate matter (PM 2.5 ), NO-NO 2 -NO x , and carbon monoxide (CO), were measured (August 4-18, 2017) in an urban tunnel in Tianjin, northern China. The average EFs (mg km -1 veh -1 ) of the fleet were as follows: 9.21 (95% confidence interval: 1.60, 23.07) for PM 2.5 , 62.08 (21.21, 138.25) for NO, 20.42 (0.79, 45.48) for NO 2 , 83.72 (26.29, 162.87) for NO x , and 284.54 (18.22, 564.67) for CO. The fleet-average EFs exhibited diurnal variations, due to diurnal variations in the proportion of HDDVs in the fleet, though the hourly proportion of HDDVs never exceeded 10% during the study period. The reconstructed average EFs for on-road vehicle emissions of PM 2.5 , NO, NO 2 , and NO x , and CO were approximately 2.2, 1.7, 1.5, 2.0, and 1.6 times as much as those in the tunnel, respectively, due to the higher HDDV fractions in the whole city than those in the tunnel. The EFs of PM 2.5 , NO, NO 2 , and NO x , and CO from each HDDV were approximately 75, 81, 24, 65, and 33 times of those from each non-HDDV, respectively. HDDVs were responsible for approximately 81.92%, 83.02%, 59.79%, 79.79%, and 66.77% of the total PM 2.5 , NO, NO 2 , and NO x , and CO emissions from on-road vehicles in Tianjin, respectively. DVs, especially HDDVs, are major sources of on-road PM 2.5 , NO-NO 2 -NO x , and CO emissions in northern China. The contribution of HDDVs to fleet emissions calculated by the EFs from Chinese 'on-road vehicle emission inventory guidebook' were underestimated, as compared to our results. The EFs from on-road vehicles should be updated due to the rapid progression of vehicle technology combined with emission standards in China. The management and control of HDDV emissions have become urgent to reduction of on-road vehicle

  4. Real-world NOx emissions of Euro V and Euro VI heavy duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, R.; Dekker, H.; Vonk, W.

    2012-04-15

    TNO regularly performs measurements to determine the in-service performance and durability with respect to the pollutant emissions of heavy-duty vehicles under representative driving conditions. The 2011 measurement programme yields new insights regarding the emission performance of the upcoming Euro VI technology for heavy-duty vehicles, mandatory as of 31 December 2013 and, together with the results from earlier performed programmes, leads to conclusions on the emission performance of past and present generations of heavy-duty vehicles (Euro V, EEV)

  5. Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles

    Science.gov (United States)

    Shah, Sandip D.; Johnson, Kent C.; Wayne Miller, J.; Cocker, David R.

    Emissions from heavy-duty diesel (HDD) vehicles are affected by many factors. Changes in engine technology, operating mode, fuel properties, vehicle speed and ambient conditions can have significant effects on emission rates of regulated species. This paper presents the results of on-road emissions testing of 11 HDD vehicles (model years 1996-2000) over the ARB Four Phase driving schedule and the urban dynamometer driving schedule (UDDS). Emission rates were found to be highly dependent on vehicle operating mode. Per mile NO x emission rates for vehicle operation at low speeds, in simulated congested traffic, were three times higher per mile emissions then while cruising on the freeway. Comparisons of NO x emission factors to EMFAC baseline emission factors were within 5-40% for vehicles of various model years tested over the UDDS. A comparison of NO x emission factors for a weighted average of the ARB four phase driving schedule yielded values within 17-57% of EMFAC values. Generally, particulate matter (PM) emission rates were lower than EMFAC values.

  6. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  7. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  8. Emission factors for heavy metals from diesel and petrol used in European vehicles

    NARCIS (Netherlands)

    Pulles, M.P.J.; Denier van der Gon, H.A.C.; Appelman, W.A.J.; Verheul, M.

    2012-01-01

    Abstract: Heavy metals constitute an important group of persistent toxic pollutants occurring in ambient air and other media. One of the suspected sources of these metals in the atmosphere is combustion of transport fuels in road vehicles. However estimates of the emissions of these metals from road

  9. Chassis dynamometer study of emissions from 21 in-use heavy-duty diesel vehicles

    International Nuclear Information System (INIS)

    Yanowitz, J.; Graboski, M.S.; Ryan, L.B.A.; Alleman, T.L.; McCormick, R.L.

    1999-01-01

    Regulated emissions from 21 in-use heavy-duty diesel vehicles were measured on a heavy-duty chassis dynamometer via three driving cycles using a low-sulfur diesel fuel. Emissions of particulate matter (PM), nitrogen oxides (NO x ), carbon monoxide (CO), total hydrocarbon (THC), and PM sulfate fraction were measured. For hot start tests, emissions ranged from 0.30 to 7.43 g/mi (mean 1.96) for PM; 4.15--54.0 g/mi (mean 23.3) for NO x ; 2.09--86.2 g/mi (mean 19.5) for CO; and 0.25--8.25 g/mi (mean 1.70) for THC. When emissions are converted to a g/gal basis, the effect of driving cycle is eliminated for NO x and largely eliminated for PM. Sulfate comprised less than 1% of the emitted PM for all vehicles and test cycles. A strong correlation is observed between emissions of CO and PM. Cold starting at 77 F produced an 11% increase in PM emissions. Multivariate regression analyses indicate that in-use PM emissions have decreased at a slower rate than anticipated based on the stricter engine certification test standards put into effect since 1985. NO x emissions do not decrease with model year for the vehicles tested here. Smoke opacity measurements are not well correlated with mass emissions of regulated pollutants

  10. On-road emission characteristics of heavy-duty diesel vehicles in Shanghai

    Science.gov (United States)

    Chen, Changhong; Huang, Cheng; Jing, Qiguo; Wang, Haikun; Pan, Hansheng; Li, Li; Zhao, Jing; Dai, Yi; Huang, Haiying; Schipper, Lee; Streets, David G.

    On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NO x for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km -1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.

  11. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    Science.gov (United States)

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger

  12. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    Science.gov (United States)

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  13. MOVES2014: Heavy-duty Vehicle Emissions Report

    Science.gov (United States)

    This report updates MOVES methods for evaluating current HD diesel NOx emission rates based on comparisons to independent data from EPA’s IUVP and Houston drayage programs. The report also details methods/assumptions made for HD gasoline HC, CO and NOx emission rates using reduct...

  14. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article investigates the issue of PM emissions from HDV vehicles. The theoretical part discusses the problem of emission of this toxic compound in terms of particle structure taking into account the mass and dimensions of PM. Next, the methodology of the research and the results of the measurements performed under the conditions of actual operation were presented. The test drive routes were chosen in accordance with the operational purpose of the selected test vehicles. Two heavy vehicles were used for the study: a tractor with trailer and an eighteen meter long city bus. The test vehicles complied with the Euro V standard, with the second vehicle additionally complying with the EEV standard and being equipped with a DPF. The analysis of the research results was performed in the aspect of determining the operating time densities of vehicles and their drive systems as well as defining their emission characteristics and ecological indicators. PM and PN emissions were measured in the tests and particle size distribution was determined. It was shown that the exhaust gas after treatment system used in the city bus had a positive influence on the ecological indicators and had contributed to the reduction of PN emissions for heavier particles.

  15. Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

    International Nuclear Information System (INIS)

    Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

    2000-01-01

    The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments

  16. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  17. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Directory of Open Access Journals (Sweden)

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  18. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  19. Particulate emissions from new heavy duty vehicles (Euro IV and V); Partikeludslip fra nye tunge koeretoejer (Euronorm IV og V)

    Energy Technology Data Exchange (ETDEWEB)

    Jordal-Joergensen, J.; Ohm, A.; Willumsen, E. (COWI A/S, Kgs. Lyngby (DK))

    2008-07-01

    The new Danish act on environmental zones allows local authorities to define zones where EURO III or older heavy duty vehicles should be equipped with a particulate filter. The introduction of EURO IV and V has reduced particulate emissions from heavy duty vehicles by approximately 80 % based on the mass of particles. There is, however, substantial uncertainty about the impact on the number of ultrafine particles, since they are not covered by Euronorm standards. When passing the bill, the Danish Minister for the Environment of the time stated that all relevant knowledge about particle emission from heavy duty vehicles needed to be collected for subsequent publication. To this end, the Danish Environmental Protection Agency (DEPA) commissioned a literature survey. The purpose of the survey is to provide an overview of the latest knowledge in the field of particle emissions from heavy duty vehicles, with special focus on the average size of the particle emissions. Another objective of the study is to analyse the direct emissions of NO{sub 2} from heavy duty vehicles classified under EURO IV and V. (au)

  20. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later...

  1. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    Science.gov (United States)

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...

  2. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of..., exhaust emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For Otto-cycle heavy-duty engines fueled with either gasoline or liquefied petroleum gas, and intended...

  3. Scenarios for use of biogas for heavy-duty vehicles in Denmark and related GHG emissions impacts

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Winther, Morten; Jørgensen, Uffe

    2017-01-01

    of biogas is of concern. This study has analysed the potential biomass and biogas production from all Danish organic waste sources under different scenario assumptions for future scenario years. The analysis includes energy demand of the road transportation sector by means of transport and fuel types......, and potential use of the limited biogas resource taking into account alternative fuel options available for transportation (electricity, hydrogen, biofuels). Further, the total differences in fuel consumption and GHG emissions due to the replacement of diesel-powered heavy-duty vehicles by gas-powered heavy...

  4. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    Science.gov (United States)

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-02

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required.

  5. GHG emissions from sugar cane ethanol, plug-in hybrids, heavy duty gasoline vehicles and hybrids, and materials review

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided updates of new work and new pathways added to the GHGenius model. The model was developed to analyze lifecycle emissions of contaminants associated with the production and use of alternative and traditional fuels, and is continually updated with new information on existing processes and new innovations. The report described the addition of a new table that showed fossil energy consumption per km driven. New information on energy requirements to remove sulphur from gasoline and diesel fuel in Canada were provided. The report also outlined a new pathway for plug-in hybrid battery-powered electric and gasoline vehicles. Vehicle weight was included as part of the user inputs for modelling gasoline powered heavy duty vehicles and gasoline hybrid heavy duty vehicles. Information on the production processes of ethanol from sugar cane were also added to the model. Amounts of energy consumed during the manufacture of materials for vehicles were also incorporated into the model. 34 refs., 39 tabs., 6 figs

  6. Heavy Vehicle Technologies Program Retrospective and Outlook

    International Nuclear Information System (INIS)

    James J. Eberhardt

    1999-01-01

    OHVT Mission is to conduct, in collaboration with our heavy vehicle industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy efficient and able to use alternative fuels while simultaneously reducing emissions

  7. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  8. Modelling of NO{sub x} emission factors from heavy and light-duty vehicles equipped with advanced aftertreatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.L.M., E-mail: monalisa@unifor.br [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Silva, C.M. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Moreno-Tost, R. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Farias, T.L. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Jimenez-Lopez, Antonio [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain)

    2011-08-15

    Highlights: {yields} Alternative SCR materials. {yields} Catalysts used in heavy-duty vehicles are based on V{sub 2}O{sub 5}-WO{sub 3}-TiO{sub 2}. {yields}Zeolites containing transition metal ions as catalysts for urea SCR has increased. {yields} FeZSM5 catalyst can be a possible candidate as far as pollutants regulation is considered. {yields} Regarding N{sub 2}O emissions mordenite based SCR do not emit this pollutant. - Abstract: NO{sub x} emission standards are becoming stringiest over the world especially for heavy-duty vehicles. To comply with current and future regulations some vehicle manufacturers are adopting exhaust aftertreatment systems known as Selective Catalytic Reduction (SCR). The catalysts are based on Vanadium (Va) and the reductant agent based on ammonia. However, Va is listed on the California Proposition 65 List as potentially causing cancer and alternatives are being studied. This paper presents a model based on neural networks that integrated with a road vehicle simulator allows to estimate NO{sub x} emission factors for different powertrain configurations, along different driving conditions, and covering commercial, zeolite and mordenite alternatives as the base monolith for SCR. The research included the experimental study of copper based and iron based zeolites (ZSM5 and Cuban natural mordenite). The response of NO{sub x} conversion efficiency was monitored in a laboratory for varying space velocity, oxygen, sulfur, water, NO{sub x} and SO{sub 2} emulating the conditions of a Diesel engine exhaust along a trip. The experimental data was used for training neural networks and obtaining a mathematical correlation between the outputs and inputs of the SCR system. The developed correlation was integrated with ADVISOR road vehicle simulator to obtain NO{sub x} emission factors and to test each SCR system installed on light-duty and heavy-duty vehicles for standardized driving cycles and real measured driving cycles. Despite having lower NO

  9. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... to Otto-cycle engines used in such MDPVs, except as specified in subpart S of this part. The term... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later...

  10. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  11. 75 FR 68575 - Revisions To In-Use Testing for Heavy-Duty Diesel Engines and Vehicles; Emissions Measurement and...

    Science.gov (United States)

    2010-11-08

    ... later model year vehicles when operated under a wide range of real world driving conditions.\\1\\ The... ``data driven'' emission measurement allowances through a comprehensive research, development, and... Vehicles; Emissions Measurement and Instrumentation; Not-to-Exceed Emission Standards; and Technical...

  12. 75 FR 68448 - Revisions to In-Use Testing for Heavy-Duty Diesel Engines and Vehicles; Emissions Measurement and...

    Science.gov (United States)

    2010-11-08

    ... later model year vehicles when operated under a wide range of real world driving conditions.\\1\\ The... diesel engines (through the Engine Manufacturers Association (EMA)) to develop ``data driven'' emission... Vehicles; Emissions Measurement and Instrumentation; Not-to-Exceed Emission Standards; and Technical...

  13. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  14. Lifecycle-analysis for heavy vehicles

    International Nuclear Information System (INIS)

    Gaines, L.

    1998-01-01

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants

  15. Integrated powertrain control for optimizing CO2-NOx emission trade-off in heavy duty hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Willems, F.P.T.; Spronkmans, S.J.

    2011-01-01

    Energy management in modern vehicles typically relates to optimizing the powerflow in the (hybrid) powertrain, whereas emission management is associated with the combustion engine and its aftertreatment system. To achieve maximum performance in both fuel economy and hazardous emissions, the concept

  16. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, E.H.

    2002-07-22

    The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

  17. HEAVY-DUTY GREENHOUSE GAS EMISSIONS MODEL ...

    Science.gov (United States)

    Class 2b-8 vocational truck manufacturers and Class 7/8 tractor manufacturers would be subject to vehicle-based fuel economy and emission standards that would use a truck simulation model to evaluate the impact of the truck tires and/or tractor cab design on vehicle compliance with any new standards. The EPA has created a model called “GHG Emissions Model (GEM)”, which is specifically tailored to predict truck GHG emissions. As the model is designed for the express purpose of vehicle compliance demonstration, it is less configurable than similar commercial products and its only outputs are GHG emissions and fuel consumption. This approach gives a simple and compact tool for vehicle compliance without the overhead and costs of a more sophisticated model. Evaluation of both fuel consumption and CO2 emissions from heavy-duty highway vehicles through a whole-vehicle operation simulation model.

  18. 40 CFR 205.52 - Vehicle noise emission standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vehicle noise emission standards. 205... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52 Vehicle noise emission standards. (a) Low Speed Noise Emission Standard. Vehicles which are manufactured after...

  19. Emissions of nitrogen oxides and particulates of diesel vehicles

    OpenAIRE

    Kadijk, G.; Ligterink, N.E.; Mensch, P. van; Spreen, J.S.; Vermeulen, R.J.; Vonk, W.A.

    2015-01-01

    In real-world conditions, modern Euro VI heavy-duty vehicles produce an average of ten times less nitrogen oxide (NOx)emissions than previous generations of Euro IV and Euro V heavy-duty vehicles. However, Euro 6 passenger cars and light commercial vehicles present an entirely different picture since, despite a continual tightening of European emissions limits, the real-world NOx emissions of new diesel passenger cars and light commercial vehicles have remained virtually unchanged over the la...

  20. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  1. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Otto-cycle HDE. (d) Every manufacturer of new motor vehicle engines subject to the standards prescribed... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  2. International Conference on Heavy Vehicles HVParis 2008 : Heavy Vehicle Transport Technology (HVTT 10)

    OpenAIRE

    JACOB, Bernard; NORDENGEN, Paul; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    Sommaire : Heavy vehicles and WIM technology, testing and standards. Interactions between heavy vehicles or trains and the infrastructure, environment and other system users. Heavy vehicle and road management information: measurements, data quality, data management. Freight mobility and safety. Vehicle classification, size and weight evaluation, regulations and enforcement. Traffic and road safety. WIM of road vehicles, trains and aeroplanes.

  3. Emissions of nitrogen oxides and particulates of diesel vehicles

    NARCIS (Netherlands)

    Kadijk, G.; Ligterink, N.E.; Mensch, P. van; Spreen, J.S.; Vermeulen, R.J.; Vonk, W.A.

    2015-01-01

    In real-world conditions, modern Euro VI heavy-duty vehicles produce an average of ten times less nitrogen oxide (NOx)emissions than previous generations of Euro IV and Euro V heavy-duty vehicles. However, Euro 6 passenger cars and light commercial vehicles present an entirely different picture

  4. Emissions credits from natural gas vehicles

    International Nuclear Information System (INIS)

    Anderson, J.F.; Kodjak, D.

    1997-01-01

    Dedicated natural gas vehicles (NGVs) often are capable of testing to lower than federally required engine certification standards. NGVs often meet inherently low emission vehicle (ILEV) and ultra low emission vehicle (ULEV) standards. Over the useful life of the vehicle, a significant amount of mobile source emission reduction credits (MSERCs) can be generated. This paper will discuss key elements of establishing a workable methodology to quantify the emissions benefits generated through the purchase and use of heavy-duty natural gas vehicles instead of heavy-duty diesel vehicles. The paper will focus on a public fleet of transit buses owned by the Massachusetts Bay Transit Agency, the Massachusetts Port Authority, and a private fleet of waste haulers. Public fleets may generate emission credits as a key compliance option to offset emission shortfalls from changes to the Employee Commute Options (ECO) program, the Inspection and Maintenance program, and facilitate annual surface transportation conformity. Private fleets may generate emission credits for open market trading to area and stationary sources seeking to buy credits from mobile sources, where allowed by EPA and state policy

  5. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  6. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  7. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    Science.gov (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  8. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions.

    Science.gov (United States)

    Mendoza-Villafuerte, Pablo; Suarez-Bertoa, Ricardo; Giechaskiel, Barouch; Riccobono, Francesco; Bulgheroni, Claudia; Astorga, Covadonga; Perujo, Adolfo

    2017-12-31

    Euro VI emission standards for heavy-duty vehicles (HDVs) introduced for the first time limits for solid particle number (PN) and NH 3 emissions. EU regulation also includes a Portable Emissions Measurement System (PEMS) based test at type approval, followed by in-service conformity (ISC) testing. A comprehensive study on the real-time on-road emissions of NO x , NH 3 , N 2 O and PN from a Euro VI HDV equipped with a Diesel Oxidation Catalyst (DOC), a Diesel Particle Filter (DPF), a Selective Catalytic Reduction (SCR) system and an Ammonia Oxidation Catalyst (AMOX) is presented. Our analyses revealed that up to 85% of the NO x emissions measured during the tests performed are not taken into consideration if the boundary conditions for data exclusion set in the current legislation are applied. Moreover, it was found that the highest NO x emissions were measured during urban operation. Analyses show that a large fraction urban of operation is not considered when 20% power threshold as boundary condition is applied. They also show that cold start emissions account for a large fraction of the total NO x emitted. Low emissions of PN (2.8×10 10 to 6.5×10 10 #/kWh) and NH 3 (1.0 to 2.2ppm) were obtained during the on-road tests, suggesting effectiveness of the vehicle's after-treatment (DPF and AMOX). Finally, a comparison between speed-based (as currently defined by Euro VI legislation) and land-use-based (using Geographic Information System (GIS)) calculation of shares of operation was performed. Results suggest that using GIS to categorize the shares of operation could result in different interpretations depending on the criteria adopted for their definition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Developing Markets for Zero-Emission Vehicles in Goods Movement

    Science.gov (United States)

    2018-03-01

    This report evaluates the market status and potential freight market penetration of zero emission vehicles (ZEVs) and near ZEVs in the medium and heavy duty class within the California market. It evaluates alternative technologies, primarily battery ...

  10. Development of the heavy manipulator vehicle system

    International Nuclear Information System (INIS)

    Herbst, C.; Paustian, P.; Kruger, W.

    1993-01-01

    After the severe reactor accident of Tschernobyl in 1986 MaK System started to develop a Heavy Manipulator Vehicle System under contract from German nuclear technology assistance company ''KHG'' (Kerntechnische Hilfsdienst GmbH). The system comprises a remote controlled manipulator vehicle, a mobile mission control stand as well as a transport/service unit. In order to fulfill the high demands of this complex system a couple of new developments had to be started. The paper describes some of these developments and gives an overview about the main features of the Heavy Manipulator Vehicle System (HMV). (author)

  11. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Enevoldsen, I.

    of heavier trucks moving at larger speeds, and partly because the authorities want to permit transportation of special heavy goods at a larger part of the road net. These needs will in many cases cause the strengthening of the bridges becomes necessary. In order to keep the expenses of such strengthening...... the results obtained using the numerical models given in details in "Heavy Vehicles on Minor Highway Bridges : dynamic modelling of vehicles and bridges". The models are established using a ordinary vehicle which consists of a 48 t Scania with a 3 axle tractor and a 3 axle trailer, joined in a flexible hinge...

  12. Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a control materials and equipment on heavy-duty vehicles. Photo by Dennis Schroeder, NREL Illustration of a Ray David, NREL National Renewable Energy Laboratory (NREL) researchers are assisting heavy-duty

  13. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  14. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  15. Fault Tolerant Autonomous Lateral Control for Heavy Vehicles

    OpenAIRE

    Talbot, Craig Matthew; Papadimitriou, Iakovos; Tomizuka, Masayoshi

    2004-01-01

    This report summarizes the research results of TO4233, "Fault Tolerant Autonomous Lateral Control for Heavy Vehicles". This project represents a continuing effort of PATH's research on Automated Highway Systems (AHS) and more specifically in the area of heavy vehicles. Research on the lateral control of heavy vehicles for AHS has been going on at PATH since 1993. MOU129, "Steering and Braking Control of Heavy Duty Vehicles" was the first project and it was followed by MOU242, "Lateral Control...

  16. Assessing the roll stability of heavy vehicles in South Africa

    CSIR Research Space (South Africa)

    Benade, R

    2016-07-01

    Full Text Available of these crashes involve heavy vehicle rollover. The regulations in the National Road Traffic Act of South Africa that govern heavy vehicle design do not directly address the roll stability of heavy vehicles. The internationally accepted method of regulating roll...

  17. High-resolution mapping of motor vehicle carbon dioxide emissions

    Science.gov (United States)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  18. Emissions from US waste collection vehicles

    International Nuclear Information System (INIS)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  19. Impact of reformulated fuels on motor vehicle emissions

    Science.gov (United States)

    Kirchstetter, Thomas

    Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate

  20. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  1. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines: Evaporative and Refueling Emission Regulations for Gasolineand Methanol-Fueled Light-Duty Vehicles and Light-Duty Trucks and Heavy-Duty Vehicles; Technical Amen

    Science.gov (United States)

    On March 24, 1993 EPA finalized a new test procedure to measure evaporative emissions from motor vehicles. The amendments modify several of the test procedure’s tolerances, equipment specifications, and procedural steps.

  2. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    R.R. Fessler; G.R. Fenske

    1999-12-13

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency

  3. Standardisation of heavy vehicle crash investigation procedures in South Africa

    CSIR Research Space (South Africa)

    Dube, S

    2015-07-01

    Full Text Available regarding accidents involving heavy vehicles and even less is known about the real cause of these accidents. This paper reports on the findings of a study on the status of heavy vehicle accident investigation procedures in South Africa. This study involved a...

  4. Biofuels, vehicle emissions, and urban air quality.

    Science.gov (United States)

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  5. Cost of lower NO x emissions: Increased CO 2 emissions from heavy-duty diesel engines

    Science.gov (United States)

    Krishnamurthy, Mohan; Carder, Daniel K.; Thompson, Gregory; Gautam, Mridul

    This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared. The objective of this study was to determine the changes in brake-specific emissions of NO x as a result of emission regulations, and to highlight the effect these have had on brake-specific CO 2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO 2 and NO x. Comparison of on-road in-use emissions data suggests NO x reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995-2002. However, the results indicate that the fuel consumption; hence, CO 2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.

  6. Emissions control techniques applied to industrial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Martin, B.

    2004-12-15

    As emission standards for industrial vehicles become increasingly stringent, many research projects are seeking to develop after-treatment systems. These systems will have to combine efficiency, durability and low operating cost.

  7. Managing the diffusion of low emission vehicles

    NARCIS (Netherlands)

    Vooren, A. van der; Alkemade, F.

    2012-01-01

    There is significant uncertainty among technology providers, governments, and consumers about which technology will be the vehicle technology of the future. Governments try to stimulate the diffusion of low emission vehicles with diverse policy measures such as purchase price subsidies. However, the

  8. 40 CFR 86.004-11 - Emission standards for 2004 and later model year diesel heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    .... This section applies to 2004 and later model year diesel HDEs. (a)(1) Exhaust emissions from new 2004 and later model year diesel HDEs shall not exceed the following: (i)(A) Oxides of Nitrogen plus Non... diesel HDE families in any or all of the emissions ABT programs for HDEs, within the restrictions...

  9. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  10. Evaluation of duty cycles for heavy-duty urban vehicles : final report of IEA AMF Annex 29

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Erkkila, K. [VTT Technical Research Centre of Finland, Espoo (Finland); Clark, N. [West Virginia Univ., Morgantown, WV (United States); Rideout, G. [Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre, Emissions Research and Measurement Div

    2007-07-01

    Heavy-duty vehicles in Europe and North America will require incylinder measures or exhaust gas after-treatment technology to control emissions and meet ever stringent emission requirements. Alternatively, manufacturers can choose clean burning alternative fuels such as natural gas. Although there are no international standards for heavy-duty vehicle chassis dynamometer testing at present, the IEA Implementing Agreements offer excellent platforms for international collaborative research. Harmonization of test methods for vehicles and fuels is one important task. This paper reported on the work of 3 laboratories that have produced emission results for complete heavy-duty vehicles. VTT Technical Research of Finland, Environment Canada and West Virginia University measured standard size urban buses driving various duty cycles on chassis dynamometers. The number of transient test cycles per laboratory varied from 6 to 16. European and North American diesel and natural gas vehicles were included in the vehicle matrix. The objective was to demonstrate how the driving cycle affects the emission performance of conventional and advanced urban buses. Several driving cycles were run on urban buses to better understand the characteristics of different duty cycles; produce a key for cross-interpretation of emission results generated with different cycles; and study the interaction between vehicle, exhaust after-treatment and fuel technologies and test procedures. Fuel consumption and exhaust emissions were measured. The results varied significantly not only by test cycle, but also by vehicle technology. In general, vehicles emissions were directly proportioned to the amount of fuel consumed, with the exception of NOx-emissions from SCR-vehicles. There was a clear difference in the emission profiles of European and North American vehicles. In Europe, fuel efficiency was emphasized, while in North America, more focus was given to regulated exhaust emissions, especially low

  11. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  12. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui; Yang Lifu; Junqing Jing; Yanling Luo [Jiangsu Xuzhou Construction Machinery Research Institute, Jiangsu (China)

    2011-01-15

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range. (author)

  13. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe

    International Nuclear Information System (INIS)

    Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F.

    2010-01-01

    The aim of the present study was to compare the life cycle, in terms of greenhouse gas (GHG) emissions, of diesel and liquefied natural gas (LNG) used as fuels for heavy-duty vehicles in the European market (EU-15). A literature review revealed that the numerous studies conducted have reported different results when the authors departed from different baseline assumptions and reference scenarios. For our study, we concentrated on the European scenario and on heavy-duty road transport vehicles, given their important incidence on the global emissions of GHG. Two possible LNG procurement strategies were considered i.e. purchasing it directly from the regasification terminal (LNG-TER) or producing LNG locally (at the service station) with small-scale plants (LNG-SSL). We ascertained that the use of LNG-TER enables a 10% reduction in GHG emissions by comparison with diesel, while the emissions resulting from the LNG-SSL solution are comparable with those of diesel.

  14. A survey of light-vehicle driver education curriculum on sharing the road with heavy vehicles.

    Science.gov (United States)

    Baker, Stephanie; Schaudt, William A; Freed, J C; Toole, Laura

    2012-07-01

    Light-vehicle driver education programs that contain content about sharing the road with heavy vehicles may be helpful in reducing future light-vehicle/heavy-vehicle interactions. However, the extent of curricula in the United States including such content is unclear. Researchers developed an online survey targeted at instructors/administrators of state driver education programs to identify curricula addressing heavy vehicles and to determine perceived effectiveness. Ninety-one percent of respondents indicated that the light-vehicle driver education curriculum they teach/administer included a component covering how to safely share the road with heavy vehicles (82% perceived this component to be effective). Although a large proportion of these programs included a component on how to safely share the road with heavy vehicles, participants indicated there may be room for improvement. Participants recommended that future improvements to driver education programs include updated materials and student hands-on experience with heavy vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Autonomous prediction of performance-based standards for heavy vehicles

    CSIR Research Space (South Africa)

    Berman, R

    2015-11-01

    Full Text Available In most countries throughout the world, heavy vehicle use on public roads are governed by prescriptive rules, typically by imposing stringent mass and dimension limits in an attempt to control vehicle safety. A recent alternative framework is a...

  16. Managing the Diffusion of Low Emission Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van der Vooren, A.; Alkemade, F. [Innovation Studies Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508TC Utrecht (Netherlands)

    2012-03-13

    There is significant uncertainty among technology providers, governments, and consumers about which technology will be the vehicle technology of the future. Governments try to stimulate the diffusion of low emission vehicles with diverse policy measures such as purchase price subsidies. However, the effect of such support measures on the speed and direction of technological change is unclear as different vehicle technologies might be preferred under different policy conditions. Decision makers, such as firm actors involved in green technology management, are thus strongly dependent on government policy when making strategic decisions. For these firm actors, determining their strategy regarding low emission vehicles is a complex task in a changing environment of coevolving consumer preferences, technology characteristics, and green technology policies. This paper presents an agent-based model of the competition between several emerging and market-ready low emission vehicle technologies and the dominant fossil-fuel-based internal combustion engine vehicles. The simulations illustrate the effects of different policy measures on technological change and their implications for the strategic actions of firm actors. More specifically, collaboration and standardization strategies can lead to synergies that contribute to technological change without risking early lock-in.

  17. Substantiation of the road toll for heavy transport vehicles

    OpenAIRE

    Burmaka, N.; Chernykh, A.

    2010-01-01

    The existing and possible additional sources of developing state and local road funds of Ukraine have been considered. The formula for calculating monthly road toll for heavy transport vehicles has been proposed. This formula includes the payment rate per every kilometer of distance, the vehicle capacity utilization factor and the run with the load. The payment rate per every kilometer of distance for transport vehicles depending on the allowed total weight has been substantiated. The given r...

  18. 40 CFR 86.1724-01 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  19. 77 FR 50502 - California State Nonroad Engine Pollution Control Standards; In-Use Heavy-Duty Vehicles (As...

    Science.gov (United States)

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL 9716-9] California State Nonroad Engine Pollution Control Standards; In- Use Heavy-Duty Vehicles (As Applicable to Yard Trucks and Two-Engine Sweepers); Opportunity... control of emissions from new nonroad engines which are used in construction equipment or vehicles or used...

  20. Calculation of ground vibration spectra from heavy military vehicles

    Science.gov (United States)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  1. Heavy and Overweight Vehicle Defects Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL

    2012-12-01

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  2. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  3. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  4. Development of South African vehicle emission factors

    CSIR Research Space (South Africa)

    Forbes, P

    2009-10-01

    Full Text Available for each pollutant, which have been derived from monitoring campaigns in Europe and the USA. In this study, direct exhaust emission monitoring was performed on 58 diesel and 78 petrol passenger vehicles in both idling and accelerated modes. South African...

  5. On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.

    Science.gov (United States)

    Kear, Tom; Niemeier, D A

    2006-12-15

    This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.

  6. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    Science.gov (United States)

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost

  7. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    Science.gov (United States)

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  8. Medium- and Heavy-Duty Vehicle Field Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prohaska, Robert S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-11

    This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.

  9. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  10. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1999-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  11. Modeling vehicle emissions in different types of Chinese cities: Importance of vehicle fleet and local features

    International Nuclear Information System (INIS)

    Huo Hong; Zhang Qiang; He Kebin; Yao Zhiliang; Wang Xintong; Zheng Bo; Streets, David G.; Wang Qidong; Ding Yan

    2011-01-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. - Highlights: → We examine vehicle emissions in 22 Chinese cities of different types and locations. → Vehicle emission factors of the cities differ by 50-90% due to distinct local features. → Each vehicle type contributes differently to total emissions among the cities. → A substantial increase in vehicle emissions in most Chinese cities is foreseeable. → City-specific fleet and local features are important in research and policy making. - Vehicle emission characteristics of Chinese cities are remarkably different, and local features need to be taken into account in vehicle emission studies and control strategy.

  12. Effect of Vehicle Characteristics on Unpaved Road Dust Emissions

    National Research Council Canada - National Science Library

    Gillies, J. A; Etyemezian, V; Kuhns, H; Nikolic, D; Gillette, D. A

    2005-01-01

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road...

  13. Potential Energy and Emission Benefits of Vehicle Automation and Connectivity

    Science.gov (United States)

    2017-08-01

    Driving behavior greatly impacts vehicle tailpipe emissions. Connected and automated vehicle (CAV) technologies are designed to smooth driving and relieve traffic congestion and are therefore expected to reduce fuel consumption and tailpipe emissions...

  14. Heavy Vehicle Crash Characteristics in Oman; 2009–2011

    Directory of Open Access Journals (Sweden)

    Islam Al-Bulushi

    2015-05-01

    Full Text Available In recent years, Oman has seen a shift in the burden of diseases towards road accidents. The main objective of this paper, therefore, is to describe key characteristics of heavy vehicle crashes in Oman and identify the key driving behaviours that influence fatality risks. Crash data from January 2009 to December 2011 were examined and it was found that, of the 22,543 traffic accidents that occurred within this timeframe, 3,114 involved heavy vehicles. While the majority of these crashes were attributed to driver behaviours, a small proportion was attributed to other factors. The results of the study indicate that there is a need for a more thorough crash investigation process in Oman. Future research should explore the reporting processes used by the Royal Oman Police, cultural influences on heavy vehicle operations in Oman and improvements to the current licensing system.

  15. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.

  16. Marginal abatement cost curves for Heavy Duty Vehicles. Background report

    Energy Technology Data Exchange (ETDEWEB)

    Schroten, A.; Warringa, G.; Bles, M.

    2012-09-15

    Cost curves were calculated for CO2 abatement technologies for Heavy Duty Vehicles. These curves were elaborated for eight different vehicle categories (six categories of truck and two subcategories), as well as for an 'average' truck and bus. Given that cost curves depend very much on underlying assumptions, the MACH model (Marginal Abatement Costs of Heavy duty vehicles) was developed. This model allows users to enter their own assumptions with respect to parameters like fuel prices and cost and lifetime of individual technologies, with the model then generating new cost curves for the various vehicle categories. This background report contains a description of the model and a summary of the results of several model runs.

  17. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2000-01-01

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given

  18. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  19. Development of heavy load carrying vehicle for nuclear power station

    International Nuclear Information System (INIS)

    Terabayashi, Yasuharu; Oono, Hiroo; Aizu, Takao; Kawaguchi, Kaname; Yamanaka, Masayuki; Hirobe, Tamio; Inagaki, Yoshiaki.

    1985-01-01

    In nuclear power stations, in order to carry out sound and stable operation, the routine inspection and regular inspection of machinery and equipment are performed, therefore, the transportation of heavy things is frequently carried out. Especially, the transportation of heavy things over the steps of passages and stairs requires much labor. Therefore, Chubu Electric Power Co., Inc. and Chubu Plant Service Co., Ltd. carried out the research on the development of a vehicle for transporting heavy components of nuclear power plants. In this research, it was aimed at developing a vehicle which can carry heavy components and get over a step, climb and descend stairs, and run through a narrow passage having many curves as well as running on flat ground. For this purpose, the actual state of the transportation of heavy things was investigated during the regular inspection of a nuclear power station, and on the basis of this results, a prototype vehicle was made and tested. Thereafter, a transporting vehicle of actual scale was made and tested. The investigation of actual state and the examination of the fundamental concept, the design, trial manufacture and verifying test are reported. (Kako, I.)

  20. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS

    Directory of Open Access Journals (Sweden)

    Barouch eGiechaskiel

    2015-12-01

    Full Text Available Emission inventories are used to quantify sources and identify trends in the emissions of air pollutants. They use vehicle-specific emission factors that are typically determined in the laboratory, through remote-sensing, vehicle chasing experiments and, more recently, on-board Portable Emission Measurement Systems (PEMS. Although PEMS is widely applied to measure gaseous pollutants, their application to Solid Particle Number (SPN emissions is new. In this paper, we discuss the current status of determining SPN emission factors both on the chassis dynamometer and on-road using PEMS-SPN. First, we determine the influence of the measurement equipment, ambient temperature, driving style and cycle characteristics, and the extra mass of the PEMS equipment on the SPN emissions. Afterward, we present the SPN emissions under type-approval conditions as well as on the road of two heavy-duty diesel vehicles equipped with Diesel Particulate Filter (DPF (one Euro VI, two light-duty diesel vehicles equipped with DPF, one light-duty vehicle equipped with a Port Fuel Injection engine (PFI, and seven Gasoline Direct Injection (GDI passenger cars (two Euro 6. We find that cold-start and strong accelerations tend to substantially increase SPN emissions. The two heavy-duty vehicles showed emissions around 2×10^13 p/km (Euro V truck and 6×10^10 p/km (Euro VI truck, respectively. One of the DPF-equipped light-duty vehicles showed emissions of 8×10^11 p/km, while the other one had one order of magnitude lower emissions. The PFI car had SPN emissions slightly higher than 1×10^12 p/km. The emissions of GDI cars spanned approximately from 8×10^11 p/km to 8×10^12 p/km. For the cars without DPF, the SPN emissions remained within a factor of two of the laboratory results. This factor was on average around 0.8 for the Euro 6 and 1.6 for the Euro 5 GDIs. The DPF equipped vehicles showed a difference of almost one order of magnitude between laboratory and on-road tests

  1. Automated Vehicle Regulation: An Energy and Emissions Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron

    2016-05-18

    This presentation provides a summary of the current automated vehicles polices in the United States and how they related to reducing greenhouse gas (GHG) emissions. The presentation then looks at future automated vehicle trends that will increase and reduce GHG emissions and what current policies utilized in other areas of law could be adapted for automated vehicle GHG emissions.

  2. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Motor vehicle emissions budgets. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2424 Motor vehicle emissions budgets. (a) Motor vehicle emissions budget for the Hampton Roads maintenance area adjusting the...

  3. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Motor vehicle emissions budgets. 52.244... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.244 Motor vehicle emissions budgets. (a) Approval of the motor vehicle emissions budgets for the following ozone rate-of-progress and...

  4. Safety aspects of heavy goods vehicle construction.

    NARCIS (Netherlands)

    Schreuder, D.A.

    2017-01-01

    Road freight transport is an essential element in the present socio-economic structure of society. This society is consumption oriented, characterised by large concentrations of population, and concentrated centers of production an consumption that are geographically far apart. Thus heavy goods

  5. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Enevoldsen, I.

    of heavier trucks moving at larger speeds, and partly because the authorities want to permit transportation of special heavy goods at a larger part of the road net. These needs will in many cases cause the strengthening of the bridges becomes necessary. In order to keep the expenses of such strengthening...

  6. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Enevoldsen, I.

    The present paper worked out as a part of a research project on "Dynamic amplification factor of vehicle loadings on smaller bridges" establishes a two-dimensional spectral description of the road roughness surface based on measurements from a Danish road using so-called Profilograph used by Dani...

  7. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  8. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems; FINAL

    International Nuclear Information System (INIS)

    Peter J. Blau

    2000-01-01

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35% fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials

  9. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  10. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.

    Science.gov (United States)

    Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-25

    Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  11. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    Science.gov (United States)

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  12. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...

  13. Emissions from light and medium goods vehicles in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The article analyses atmospheric pollution of light goods vehicles (i.e. freight vehicles lighter than 6 tonnes) and medium goods vehicles (i.e. 6-24 t delivery trucks) in Denmark, and evaluated the scope for emission reductions. Light goods vehicles are very inefficient vehicles, and moreover have...

  14. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  15. EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES

    Science.gov (United States)

    A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...

  16. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2010-12-29

    ...-HQ-OAR-2010-0162; FRL-9219-4; NHTSA 2010-0079] RIN 2060-AP61; RIN 2127-AK74 Greenhouse Gas Emissions... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on...

  17. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    Science.gov (United States)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  18. Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    2000-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  19. Modelling vertical uniform contact stress of heavy vehicle tyres

    CSIR Research Space (South Africa)

    Steenkamp, Anton J

    2016-07-01

    Full Text Available over the selected operating range of 25 kN to 45 kN which is the typical load range for heavy vehicle tyres due to legal axle load limits. The polynomial formulas require only the tyre inflation pressure and vertical tyre load as inputs, in order...

  20. Market Innovation in the Transport and Heavy Vehicle Market

    DEFF Research Database (Denmark)

    Borgström, Benedikte; Agndal, Henrik; Cui, Lianguang

    The purpose is to better understand the interrelatedness of new business models in the truck market and developments in the road transport sector. Based on a three year research project in cooperation with a European heavy vehicle manufacturer, we describe short cases showing some of the business...

  1. Accelerated pavement testing efforts using the heavy vehicle simulator

    CSIR Research Space (South Africa)

    Du Plessis, Louw

    2017-10-01

    Full Text Available This paper provides a brief description of the technological developments involved in the development and use of the Heavy Vehicle Simulator (HVS) accelerated pavement testing equipment. This covers the period from concept in the late 1960’s...

  2. Heavy vehicle simulator testing of trial sections for CALTRANS.

    CSIR Research Space (South Africa)

    Rust, FC

    1993-10-01

    Full Text Available ) commissioned the University of California at Berkely (UCB), Dynatest Consulting and the Council for Scientific and Industrial Research (CSIR) in South Africa to conduct a pilot study to evaluate the potential of the South African Heavy Vehicle Simulator (HVS...

  3. Road user charges for heavy goods vehicles (HGV)

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). This report on road transport is a continuation of previous reporting from EEA on estimates for the external costs of air...

  4. Trends in Aggregate Vehicle Emissions: Do We Need To Emissions Test?

    OpenAIRE

    Matthew Kahn

    1995-01-01

    Vehicle emissions are falling. As the oldest vehicles in the fleet are scrapped and are replaced by cleaner vehicles, aggregate emissions decline. Given this trend, must costly used car regulation continue? The Clean Air Act of 1990 requires more stringent used car testing without considering the counter-factual of how aggregate emissions would evolve in the absence of more regulation. This paper use data on vehicle scrappage rates, vehicle emissions by model year, and county air quality leve...

  5. Modeling vehicle emissions in different types of Chinese cities: importance of vehicle fleet and local features.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; He, Kebin; Yao, Zhiliang; Wang, Xintong; Zheng, Bo; Streets, David G; Wang, Qidong; Ding, Yan

    2011-10-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Research on Correlation between Vehicle Cycle and Engine Cycle in Heavy-duty commercial vehicle

    Science.gov (United States)

    lin, Chen; Zhong, Wang; Shuai, Liu

    2017-12-01

    In order to study the correlation between vehicle cycle and engine cycle in heavy commercial vehicles, the conversion model of vehicle cycle to engine cycle is constructed based on the vehicle power system theory and shift strategy, which considers the verification on diesel truck. The results show that the model has high rationality and reliability in engine operation. In the acceleration process of high speed, the difference of model gear selection leads to the actual deviation. Compared with the drum test, the engine speed distribution obtained by the model deviates to right, which fits to the lower grade. The grade selection has high influence on the model.

  7. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Hang, Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, Anant [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  8. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  9. 40 CFR 86.1828-10 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  10. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Science.gov (United States)

    2010-10-01

    ... heavy vehicles, equipment and machinery? (a) Applicability. The rules in this section apply to the transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end... heavy vehicles, equipment or machinery with crawler tracks or wheels. (1) In addition to the...

  11. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  12. Notification: Evaluating the Internal Controls for EPA's Vehicle Emissions Testing Program

    Science.gov (United States)

    Project #OPE-FY17-0009, Mar 6, 2017. The EPA OIG plans to begin preliminary research to determine whether the EPA’s existing internal controls are effective at detecting and preventing light-, medium-, and heavy-duty on-road vehicle emissions fraud.

  13. Recent evidence concerning higher NO x emissions from passenger cars and light duty vehicles

    Science.gov (United States)

    Carslaw, David C.; Beevers, Sean D.; Tate, James E.; Westmoreland, Emily J.; Williams, Martin L.

    2011-12-01

    Ambient trends in nitrogen oxides (NO x) and nitrogen dioxide (NO 2) for many air pollution monitoring sites in European cities have stabilised in recent years. The lack of a decrease in the concentration of NO x and in particular NO 2 is of concern given European air quality standards are set in law. The lack of decrease in the concentration of NO x and NO 2 is also in clear disagreement with emission inventory estimates and projections. This work undertakes a comprehensive analysis of recent vehicle emissions remote sensing data from seven urban locations across the UK. The large sample size of 84,269 vehicles was carefully cross-referenced to a detailed and comprehensive database of vehicle information. We find that there are significant discrepancies between current UK/European estimates of NO x emissions and those derived from the remote sensing data for several important classes of vehicle. In the case of light duty diesel vehicles it is found that NO x emissions have changed little over 20 years or so over a period when the proportion of directly emitted NO 2 has increased substantially. For diesel cars it is found that absolute emissions of NO x are higher across all legislative classes than suggested by UK and other European emission inventories. Moreover, the analysis shows that more recent technology diesel cars (Euro 3-5) have clear increasing NO x emissions as a function of Vehicle Specific Power, which is absent for older technology vehicles. Under higher engine loads, these newer model diesel cars have a NO x/CO 2 ratio twice that of older model cars, which may be related to the increased use of turbo-charging. Current emissions of NO x from early technology catalyst-equipped petrol cars (Euro 1/2) were also found to be higher than emission inventory estimates - and comparable with NO x emissions from diesel cars. For heavy duty vehicles, it is found that NO x emissions were relatively stable until the introduction of Euro IV technology when

  14. Heavy Vehicle Essential Power Systems Workshop

    International Nuclear Information System (INIS)

    Susan Rogers

    2001-01-01

    Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road

  15. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport

    Science.gov (United States)

    Quiros, David C.; Smith, Jeremy; Thiruvengadam, Arvind; Huai, Tao; Hu, Shaohua

    2017-11-01

    Heavy-duty on-road vehicles account for 70% of all freight transport and 20% of transportation-sector greenhouse gas (GHG) emissions in the United States. This study measured three prevalent GHG emissions - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - from seven heavy-duty vehicles, fueled by diesel and compressed natural gas (CNG), and compliant to the MY 2007 or 2010 U.S. EPA emission standards, while operated over six routes used for freight movement in California. Total combined (tractor, trailer, and payload) weights were 68,000 ± 1000 lbs. for the seven vehicles. Using the International Panel on Climate Change (IPCC) radiative forcing values for a 100-year time horizon, N2O emissions accounted for 2.6-8.3% of total tailpipe CO2 equivalent emissions (CO2-eq) for diesel vehicles equipped with Diesel Oxidation Catalyst, Diesel Particulate Filter, and Selective Catalytic Reduction system (DOC + DPF + SCR), and CH4 emissions accounted for 1.4-5.9% of CO2-eq emissions from the CNG-powered vehicle with a three-way catalyst (TWC). N2O emissions from diesel vehicles equipped with SCR (0.17-0.30 g/mi) were an order of magnitude higher than diesel vehicles without SCR (0.013-0.023 g/mi) during highway operation. For the vehicles selected in this test program, we measured 11-22% lower CO2-eq emissions from a hybrid compared to conventional diesel vehicles during transport over lower-speed routes of the freight transport system, but 20-27% higher CO2-eq emissions during higher-speed routes. Similarly, a CNG vehicle emitted up to 15% lower CO2-eq compared to conventional diesel vehicles over more neutral-grade highway routes, but emitted up to 12% greater CO2-eq emissions over routes with higher engine loads.

  16. [Investigation of emission characteristics for light duty vehicles with a portable emission measurement system].

    Science.gov (United States)

    Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan

    2008-10-01

    Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city.

  17. Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction.

    Science.gov (United States)

    Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug

    2018-09-01

    On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Distributed Road Grade Estimation for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sahlholm, Per

    2011-07-01

    An increasing need for goods and passenger transportation drives continued worldwide growth in traffic. As traffic increases environmental concerns, traffic safety, and cost efficiency become ever more important. Advancements in microelectronics open the possibility to address these issues through new advanced driver assistance systems. Applications such as predictive cruise control, automated gearbox control, predictive front lighting control, and hybrid vehicle state-of-charge control decrease the energy consumption of vehicles and increase the safety. These control systems can benefit significantly from preview road grade information. This information is currently obtained using specialized survey vehicles, and is not widely available. This thesis proposes new methods to obtain road grade information using on-board sensors. The task of creating road grade maps is addressed by the proposal of a framework where vehicles using a road network collect the necessary data for estimating the road grade. The estimation can then be carried out locally in the vehicle, or in the presence of a communication link to the infrastructure, centrally. In either case the accuracy of the map increases over time, and costly road surveys can be avoided. This thesis presents a new distributed method for creating accurate road grade maps for vehicle control applications. Standard heavy duty vehicles in normal operation are used to collect measurements. Estimates from multiple passes along a road segment are merged to form a road grade map, which improves each time a vehicle retraces a route. The design and implementation of the road grade estimator are described, and the performance is experimentally evaluated using real vehicles. Three different grade estimation methods, based on different assumption on the road grade signal, are proposed and compared. They all use data from sensors that are standard equipment in heavy duty vehicles. Measurements of the vehicle speed and the engine

  19. Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2001-01-01

    The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given

  20. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  1. Combined emergency braking and turning of articulated heavy vehicles

    OpenAIRE

    Morrison, G; Cebon, David

    2017-01-01

    ‘Slip control’ braking has been shown to reduce the emergency stopping distance of an experimental heavy goods vehicle by up to 19%, compared to conventional electronic/anti-lock braking systems (EBS). However, little regard has been given to the impact of slip control braking on the vehicle’s directional dynamics. This paper uses validated computer models to show that slip control could severely degrade directional performance during emergency braking. A modified slip control strategy, ‘atte...

  2. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  3. Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets

    Science.gov (United States)

    Haugen, M.; Bishop, G.

    2017-12-01

    New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver

  4. Towards zero emission urban logistics: Challenges and issues for implementation of electric freight vehicles in city logistics

    NARCIS (Netherlands)

    Quak, H.; Nesterova, N.

    2014-01-01

    Purpose Electric freight vehicles (EFVs) are one of the solutions to improve city logistics’ sustainability. EFVs, that are electric powered light and heavy vehicles with a number plate, have the potential to make zero emission city logistics possible within the urban area. However, although trials

  5. 75 FR 39251 - Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty...

    Science.gov (United States)

    2010-07-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9173-5] Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty Diesel Engines Employing Selective Catalyst Reduction Technology... engine manufacturers have recently begun utilizing a NO X emission control technology called selective...

  6. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    International Nuclear Information System (INIS)

    Wai-Lin Litzke; James Wegrzyn

    2001-01-01

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications

  7. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523 and 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions... fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles, responding to the...

  8. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F. [Universita Politecnica delle Marche, Dipartimento di Energetica, Via Brecce Bianche, 1-60131 Ancona (Italy)

    2010-06-15

    The aim of the present study was to compare the life cycle, in terms of greenhouse gas (GHG) emissions, of diesel and liquefied natural gas (LNG) used as fuels for heavy-duty vehicles in the European market (EU-15). A literature review revealed that the numerous studies conducted have reported different results when the authors departed from different baseline assumptions and reference scenarios. For our study, we concentrated on the European scenario and on heavy-duty road transport vehicles, given their important incidence on the global emissions of GHG. Two possible LNG procurement strategies were considered i.e. purchasing it directly from the regasification terminal (LNG-TER) or producing LNG locally (at the service station) with small-scale plants (LNG-SSL). We ascertained that the use of LNG-TER enables a 10% reduction in GHG emissions by comparison with diesel, while the emissions resulting from the LNG-SSL solution are comparable with those of diesel. (author)

  9. Pavement Response to Variable Tyre Pressure of Heavy Vehicles

    Directory of Open Access Journals (Sweden)

    Arshad Ahmad Kamil

    2016-01-01

    Full Text Available In recent years, the effect of overinflated tyre pressure and increased heavy vehicles’ axle load on flexible pavements has become a subject of great concern because of the higher stress levels induced and damage caused to road pavements. This paper aims to evaluate the effect of variable tyre inflation pressures (using actual tyre contact/footprint area to determine the responses of flexible pavement. A full scale experiment was conducted on a heavy vehicle with 1:1:2 axle configuration, 10 R 20 tyre size and attached trailer with constant axle load. Measurements were made for actual tyre-pavement contact area. KENPAVE linear elastic program was then used to analyse the effects of the measured actual tyre-pavement contact area and the results was compared using conventional circular tyre contact area. A comparative analysis was then made between the actual contact area and the conventional circular tyre contact area. It was found that high tyre inflation pressure produce smaller contact area, giving more detrimental effect on the flexible pavement. It was also found that the temperature of tyres when the heavy vehicles are operational give less significant impact on tyre inflation pressure for the Malaysian climate.

  10. AMMONIA EMISSIONS FROM THE EPA'S LIGHT DUTY TEST VEHICLE

    Science.gov (United States)

    The paper discusses measurements of ammonia (NH3) emissions from EPA's light duty test vehicle while operated on a dynamometer. The vehicle's (1993 Chevrolet equipped with a three-way catalyst) emissions were measured for three transient (urban driving, highway fuel economy, and ...

  11. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Paul H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deter, Dean D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  12. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  13. Spatial distribution of vehicle emission inventories in the Federal District, Brazil

    Science.gov (United States)

    Réquia, Weeberb João; Koutrakis, Petros; Roig, Henrique Llacer

    2015-07-01

    Air pollution poses an important public health risk, especially in large urban areas. Information about the spatial distribution of air pollutants can be used as a tool for developing public policies to reduce source emissions. Air pollution monitoring networks provide information about pollutant concentrations; however, they are not available in every urban area. Among the 5570 cities in Brazil, for example, only 1.7% of them have air pollution monitoring networks. In this study we assess vehicle emissions for main traffic routes of the Federal District (state of Brazil) and characterize their spatial patterns. Toward this end, we used a bottom-up method to predict emissions and to characterize their spatial patterns using Global Moran's (Spatial autocorrelation analysis) and Getis-Ord General G (High/Low cluster analysis). Our findings suggested that light duty vehicles are primarily responsible for the vehicular emissions of CO (68.9%), CH4 (93.6%), and CO2 (57.9%), whereas heavy duty vehicles are primarily responsible for the vehicular emissions of NMHC (92.9%), NOx (90.7%), and PM (97.4%). Furthermore, CO2 is the pollutant with the highest emissions, over 30 million tons/year. In the spatial autocorrelation analysis was identified cluster (p < 0.01) for all types of vehicles and for all pollutants. However, we identified high cluster only for the light vehicles.

  14. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  15. The importance of high vehicle power for passenger car emissions

    Science.gov (United States)

    Carslaw, David C.; Williams, Martin L.; Tate, James E.; Beevers, Sean D.

    2013-04-01

    In this paper we use a quantile regression technique to explore the emissions characteristics of petrol and diesel passenger cars to reveal the importance of high vehicle power on exhaust emissions. A large database of ≈67,000 passenger cars from vehicle emission remote sensing data was used from surveys from several campaigns around the UK. Most previous remote sensing studies have focused on presenting mean emission estimates by vehicle type over time. However, as shown in the current work, considerably more insight can be gained into vehicle emission characteristics if techniques are used that can describe and model the full distribution of vehicle emissions as a function of important explanatory variables. For post-2000 model year (Euro 3-5) diesel cars it is shown that there is a strong dependence of vehicle specific power for emissions of NOx that was absent in earlier models and is absent for other pollutants such as CO, hydrocarbons and 'smoke'. Furthermore, we also find a stronger dependence on vehicle specific power for older catalyst-equipped petrol vehicles (Euro 1/2) on emissions of NOx that is less important for other emissions such as CO and hydrocarbons. Moreover, it is shown that while the rated maximum power output of petrol cars has remained almost constant over the past 15-20 years, the power output from diesel cars has increased markedly by about 50%. These results suggest that changes to vehicle technology, driving conditions and driver behaviour have become more important determinants of passenger car NOx emissions in recent years and may help explain why urban ambient concentrations of NOx have not decreased as much as anticipated.

  16. Particle number emissions of gasoline hybrid electric vehicles; Partikelanzahl-Emission bei Hybridfahrzeugen mit Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Scott [Horiba Instruments Inc., Ann Arbor, MI (United States)

    2012-04-15

    Hybrid Electric Vehicles (HEV) are commonly reputed to be environmentally friendly. Different studies show that this assumption raises some questions in terms of particle number emissions. Against the background that upcoming emission standards will not only limit particle matter emissions but also particle number emissions for gasoline engines, the exhaust behaviour of downsized gasoline engines used in HEV should be investigated more extensively. A Horiba study compares the particle number emissions of a gasoline vehicle to those of a gasoline powered HEV. (orig.)

  17. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-06

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  18. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1998-06-01

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  19. New Approaches for Estimating Motor Vehicle Emissions in Megacities

    Science.gov (United States)

    Marr, L. C.; Thornhill, D. A.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Kolb, C. E.; Knighton, W. B.; Mazzoleni, C.; Zavala, M. A.; Molina, L. T.

    2007-12-01

    The rapid proliferation of megacities and their air quality problems is producing unprecedented air pollution health risks and management challenges. Quantifying motor vehicle emissions in the developing world's megacities, where vehicle ownership is skyrocketing, is critical for evaluating the cities' impacts on the atmosphere at urban, regional, and global scales. The main goal of this research is to quantify gasoline- and diesel-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA). We apply positive matrix factorization to fast measurements of gaseous and particulate pollutants made by the Aerodyne Mobile Laboratory as it drove throughout the MCMA in 2006. We consider carbon dioxide; carbon monoxide; volatile organic compounds including benzene and formaldehyde; nitrogen oxides; ammonia; fine particulate matter; particulate polycyclic aromatic hydrocarbons; and black carbon. Analysis of the video record confirms the apportionment of emissions to different engine types. From the derived source profiles, we calculate fuel-based fleet-average emission factors and then estimate the total motor vehicle emission inventory. The advantages of this method are that it can capture a representative sample of vehicles in a variety of on-road driving conditions and can separate emissions from gasoline versus diesel engines. The results of this research can be used to help assess the accuracy of emission inventories and to guide the development of strategies for reducing vehicle emissions.

  20. Fuel composition impact on heavy duty diesel engine combustion & emissions

    NARCIS (Netherlands)

    Frijters, P.J.M.

    2012-01-01

    The Heavy Duty Diesel or compression ignition (CI) engine plays an important economical role in societies all over the world. Although it is a fuel efficient internal combustion engine design, CI engine emissions are an important contributor to global pollution. To further reduce engine emissions

  1. Fifty years of fuel quality and vehicle emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K. [CONCAWE, Brussels (Belgium)

    2013-04-01

    In the late 1970s, with growing emphasis on urban air quality in Europe, CONCAWE embarked on new research related to fuels and vehicles. After only a few years, it became clear that fuel properties and specifications would be increasingly important to the future of the European refining industry, and considerable research was completed in the 1970s to better understand the impact of fuel composition on vehicle performance and emissions. This early work led to the formation of the first Fuels and Emissions Management Group (FEMG) in 1982, almost 20 years after the formation of the CONCAWE Association. Since these early days, FEMG has been responsible for ensuring CONCAWE's strategic outlook on future vehicle and fuel developments, monitoring regulatory and vehicle developments, and overseeing a diverse portfolio of fuel quality and vehicle emissions research. Since the 1980s, tremendous progress has been made in improving European air quality, in part by reducing emissions from road transport and other sectors, and major improvements in European fuel qualities have contributed to these reductions. Nevertheless, many challenges are still ahead, especially further reductions in pollutant emissions from vehicles while also reducing greenhouse gas (GHG) emissions from transport. In the near-term, these GHG reductions will largely come from improvements in engine and vehicle fuel consumption and by blending of GHG-reducing bio-blending components. Dealing with these challenges to fuel quality and performance will require a continuing focus on CONCAWE's founding principles: sound science, cost effectiveness and transparency.

  2. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  3. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data.

    Science.gov (United States)

    Kan, Zihan; Tang, Luliang; Kwan, Mei-Po; Zhang, Xia

    2018-03-21

    The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles' mobile activities ( MA ) and stationary activities ( SA ). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA , SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles' activities in road networks.

  4. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  5. Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles

    Science.gov (United States)

    Nelson, Peter F.; Tibbett, Anne R.; Day, Stuart J.

    Diesel vehicles are an important source of emissions of air pollutants, particularly oxides of nitrogen (NO x), particulate matter (PM), and toxic compounds with potential health impacts including volatile organic compounds (VOCs) such as benzene and aldehydes, and polycyclic aromatic hydrocarbons (PAHs). Current developments in engine design and fuel quality are expected to reduce these emissions in the future, but many vehicles exceed 10 years of age and may make a major contribution to urban pollutant concentrations and related health impacts for many years. In this study, emissions of a range of toxic compounds are reported using in-service vehicles which were tested using urban driving cycles developed for Australian conditions. Twelve vehicles were chosen from six vehicle weight classes and, in addition, two of these vehicles were driven through the urban drive cycle using a range of diesel fuel formulations. The fuels ranged in sulphur content from 24 to 1700 ppm, and in total aromatics from 7.7 to 33 mass%. Effects of vehicle type and fuel composition on emissions are reported. The results show that emissions of these toxic species were broadly comparable to those observed in previous dynamometer and tunnel studies. Emissions of VOCs and smaller PAHs such as naphthalene, which are derived largely from the combustion process, appear to be related, and show relatively little variability when compared with the variability in emissions of aldehydes and larger PAHs. In particular, aldehyde emissions are highly variable and may be related to engine operating conditions. Fuels of lower sulphur and aromatic content did not have a significant influence on emissions of VOCs and aldehydes, but tended to result in lower emissions of PAHs. The toxicity of vehicle exhaust, as determined by inhalation risk and toxic equivalency factor (TEF)-weighted PAH emissions, was reduced with fuels of lower aromatic content.

  6. Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs.

    Science.gov (United States)

    Edwards, Morgan R; Klemun, Magdalena M; Kim, Hyung Chul; Wallington, Timothy J; Winkler, Sandra L; Tamor, Michael A; Trancik, Jessika E

    2017-08-24

    Evaluating technology options to mitigate the climate impacts of road transportation can be challenging, particularly when they involve a tradeoff between long-lived emissions (e.g., carbon dioxide) and short-lived emissions (e.g., methane or black carbon). Here we present trends in short- and long-lived emissions for light- and heavy-duty transport globally and in the U.S., EU, and China over the period 2000-2030, and we discuss past and future changes to vehicle technologies to reduce these emissions. We model the tradeoffs between short- and long-lived emission reductions across a range of technology options, life cycle emission intensities, and equivalency metrics. While short-lived vehicle emissions have decreased globally over the past two decades, significant reductions in CO 2 will be required by mid-century to meet climate change mitigation targets. This is true regardless of the time horizon used to compare long- and short-lived emissions. The short-lived emission intensities of some low-CO 2 technologies are higher than others, and thus their suitability for meeting climate targets depends sensitively on the evaluation time horizon. Other technologies offer low intensities of both short-lived emissions and CO 2 .

  7. Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement.

    Science.gov (United States)

    Zheng, Xuan; Wu, Ye; Jiang, Jingkun; Zhang, Shaojun; Liu, Huan; Song, Shaojie; Li, Zhenhua; Fan, Xiaoxiao; Fu, Lixin; Hao, Jiming

    2015-11-17

    Black carbon (BC) emissions from heavy-duty diesel vehicles (HDDVs) are rarely continuously measured using portable emission measurement systems (PEMSs). In this study, we utilize a PEMS to obtain real-world BC emission profiles for 25 HDDVs in China. The average fuel-based BC emissions of HDDVs certified according to Euro II, III, IV, and V standards are 2224 ± 251, 612 ± 740, 453 ± 584, and 152 ± 3 mg kg(-1), respectively. Notably, HDDVs adopting mechanical pump engines had significantly higher BC emissions than those equipped with electronic injection engines. Applying the useful features of PEMSs, we can relate instantaneous BC emissions to driving conditions using an operating mode binning methodology, and the average emission rates for Euro II to Euro IV diesel trucks can be constructed. From a macroscopic perspective, we observe that average speed is a significant factor affecting BC emissions and is well correlated with distance-based emissions (R(2) = 0.71). Therefore, the average fuel-based and distance-based BC emissions on congested roads are 40 and 125% higher than those on freeways. These results should be taken into consideration in future emission inventory studies.

  8. Global time trends in PAH emissions from motor vehicles

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu; Wang, Rong; Wang, Bin; Shen, Guofeng; Li, Wei; Su, Shenshen; Huang, Ye; Wang, Xilong; Liu, Wenxin; Li, Bengang; Sun, Kang

    2011-04-01

    Emission from motor vehicles is the most important source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Emission factors of individual PAHs for motor vehicles reported in the literature varied 4 to 5 orders of magnitude, leading to high uncertainty in emission inventory. In this study, key factors affecting emission factors of PAHs (EF PAH) for motor vehicles were evaluated quantitatively based on thousands of EF PAH measured in 16 countries for over 50 years. The result was used to develop a global emission inventory of PAHs from motor vehicles. It was found that country and vehicle model year are the most important factors affecting EF PAH, which can be quantified using a monovariate regression model with per capita gross domestic production (purchasing power parity) as a sole independent variable. On average, 29% of variation in log-transformed EF PAH could be explained by the model, which was equivalent to 90% reduction in overall uncertainty on arithmetic scale. The model was used to predict EF PAH and subsequently PAH emissions from motor vehicles for various countries in the world during a period from 1971 to 2030. It was estimated that the global emission reached its peak value of approximate 101 Gg in 1978 and decreased afterwards due to emission control in developed countries. The annual emission picked up again since 1990 owing to accelerated energy consumption in China and other developing countries. With more and more rigid control measures taken in the developing world, global emission of PAHs is currently passing its second peak. It was predicted that the emission would decrease from 77 Gg in 2010 to 42 Gg in 2030.

  9. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  10. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles; FINAL

    International Nuclear Information System (INIS)

    R.R. Fessler; G.R. Fenske

    1999-01-01

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 2030, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of$24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency

  11. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Science.gov (United States)

    2010-07-01

    ..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...

  12. Hennepin County`s experience with heavy-duty ethanol vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

  13. Utility emissions associated with electric and hybrid vehicle (EHV) charging

    International Nuclear Information System (INIS)

    1993-04-01

    This project is a joint effort between the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) to conduct a comprehensive, in-depth assessment of the emission impacts of electric and hybrid vehicles (EHVs). The study determines local and regional emission impacts under a variety of scenarios, covering both conservative and optimistic assumptions about vehicle efficiency, power plant efficiency, and other factors. In all scenarios, EHV use significantly reduces urban emissions of CO, VOC, and TSP. Changes in NO x and CO 2 emissions are very sensitive to average or marginal power plant emissions and vehicle efficiency assumptions. NO x and CO 2 emissions changes vary dramatically by region. Certain combinations of EHV and CV scenarios and regions result in significant reductions, while other combinations result in significant increases. Careful use of these results is advised. In all scenarios, SO 2 increases with EHV use although the amount is small-less than 1% of total utility emissions even vath the deployment of 12 million EHVS. But because of emission cap provisions of the Clean Air Act Amendments of 1990, national SO 2 totals will not be allowed to increase. Thus, utilities will have to apply more stringent measures to combat increased SO 2 emissions due to the increased use of electric vehicles

  14. Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements.

    Science.gov (United States)

    Liggio, John; Gordon, Mark; Smallwood, Gregory; Li, Shao-Meng; Stroud, Craig; Staebler, Ralf; Lu, Gang; Lee, Patrick; Taylor, Brett; Brook, Jeffrey R

    2012-05-01

    Measurements of black carbon (BC) with a high-sensitivity laser-induced incandescence (HS-LII) instrument and a single particle soot photometer (SP2) were conducted upwind, downwind, and while driving on a highway dominated by gasoline vehicles. The results are used with concurrent CO(2) measurements to derive fuel-based BC emission factors for real-world average fleet and heavy-duty diesel vehicles separately. The derived emission factors from both instruments are compared, and a low SP2 bias (relative to the HS-LII) is found to be caused by a BC mass mode diameter less than 75 nm, that is most prominent with the gasoline fleet but is not present in the heavy-duty diesel vehicle exhaust on the highway. Results from both the LII and the SP2 demonstrate that the BC emission factors from gasoline vehicles are at least a factor of 2 higher than previous North American measurements, and a factor of 9 higher than currently used emission inventories in Canada, derived with the MOBILE 6.2C model. Conversely, the measured BC emission factor for heavy-duty diesel vehicles is in reasonable agreement with previous measurements. The results suggest that greater attention must be paid to black carbon from gasoline engines to obtain a full understanding of the impact of black carbon on air quality and climate and to devise appropriate mitigation strategies. © 2012 American Chemical Society

  15. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    Science.gov (United States)

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  16. Emissions deterioration for three alternative fuel vehicle types: Natural gas, ethanol, and methanol vehicles

    International Nuclear Information System (INIS)

    Winebrake, J.J.; Deaton, M.L.

    1997-01-01

    Although there have been several studies examining emissions from in-use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. The authors conduct the analysis on three alternative fuel types (natural gas, methanol, and ethanol) and on five pollutants (carbon monoxide, carbon dioxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). They find that for most cases they studied, deterioration differences are not statistically significant; however, several exceptions suggest that air quality planners and regulators must further analyze AFV emissions deterioration in order to properly include these technologies into broader air quality management schemes

  17. Electron emission from solids induced by swift heavy ions

    International Nuclear Information System (INIS)

    Xiao Guoqing

    2000-01-01

    The recent progresses in experimental and theoretical studies of the collision between swift heavy ion and solids as well as electron emission induced by swift heavy ion in solids were briefly reviewed. Three models, Coulomb explosion, thermal spike and repulsive long-lived states, for interpreting the atomic displacements stimulated by the electronic energy loss were discussed. The experimental setup and methods for measuring the electron emission from solids were described. The signification deviation from a proportionality between total electron emission yields and electronic stopping power was found. Auger-electron and convoy-electron spectra are thought to be a probe for investigating the microscopic production mechanisms of the electronic irradiation-damage. Electron temperature and track potential at the center of nuclear tracks in C and polypropylene foils induced by 5 MeV/u heavy ions, which are related to the electronic excitation density in metals and insulators respectively, were extracted by measuring the high resolution electron spectra

  18. Concerning the debate on electric-powered-vehicle emissions

    International Nuclear Information System (INIS)

    Sporckmann, B.

    1994-01-01

    The fact that electric-powered vehicles do not emit pollutants locally is obvious and must be considered as the main motive for their use. The global air pollution situation can only be of secondary importance because within the foreseeable future emissions linked to the use of electric-powered vehicles will remain within the variation width of power generation emissions that is not to be influenced. All the same, it is indispensable to consider the global situation. The author compares electric-powered vehicles with conventional ones by referring to the power generation of all federal German states. (orig.) [de

  19. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing

    International Nuclear Information System (INIS)

    Lau, Jason; Hung, W.T.; Cheung, C.S.

    2012-01-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. - Highlights: ► Emissions collected in 3 different periods to examine changes in emission over time. ► LPG vehicles generally emit more gaseous pollutants compared to other vehicles. ► Large increase in emissions from modern petrol/LPG vehicles after 2 years' operation. ► CO and NO emissions of modern diesel vehicles are similar to those of older vehicles. - Remote sensing measurements show large increases in gaseous emissions from vehicles in Hong Kong after 2 years of operation, indicating that engine and catalyst performance deteriorate rapidly.

  20. The impact of electric vehicles on CO2 emissions

    International Nuclear Information System (INIS)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective

  1. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  2. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  3. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data

    Directory of Open Access Journals (Sweden)

    Zihan Kan

    2018-03-01

    Full Text Available The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles’ mobile activities (MA and stationary activities (SA. First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS. Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA, SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles’ activities in road networks.

  4. Evolution of on-road vehicle exhaust emissions in Delhi

    Science.gov (United States)

    Goel, Rahul; Guttikunda, Sarath K.

    2015-03-01

    For a 40-year horizon (1990-2030), on-road vehicle exhaust emissions were evaluated, retrospectively and prospectively, for the largest urban agglomeration in India - the Greater Delhi region with a combined population of 22 million in 2011 (Delhi along with Ghaziabad, Noida, Greater Noida, Faridabad and Gurgaon). Emissions of particulate matter, sulfur dioxide, carbon monoxide and volatile organic compounds (VOCs) reached their peak during late 1990s through early 2000s after which they reduced significantly through year 2012. On the other hand, nitrogen oxides (NOx) and carbon dioxide show an increasing trend. The most reduction in emissions between 1998 and 2012 occurred as a result of implementation of four sets of vehicular emission standards, removal of lead, reduction of sulfur content, mandatory retirement of older commercial vehicles, and conversion of diesel and petrol run public transport vehicles to compressed natural gas. In addition, changes in the vehicular technology have also contributed to controlling emissions especially in case of auto-rickshaws and motorized two-wheelers, which changed from two-stroke to four-stroke. The rising trend of NOx along with the presence of VOCs indicates increasing tendency to form ground-level ozone and as a result, smog in the region. We predict that the current regime of vehicle technology, fuel standards, and high growth rate of private vehicles, is likely to nullify all the past emission reductions by the end of 2020s.

  5. Assessment of the influence on vehicle emissions of driving style, vehicle technology and traffic measures

    NARCIS (Netherlands)

    Burgwal, H.C. van de; Gense, N.L.J.; Mierlo, J. van; Maggetto, G.

    2002-01-01

    The influence of traffic measures and driving style on different vehicle emissions and on primary energy consumption, and the definition of vehicle parameters influencing the relation between them, is an interesting issue to be assessed in order to allow more realistic estimations of the impact of

  6. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  7. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    Science.gov (United States)

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  8. Multiple photon emission in heavy particle decays

    International Nuclear Information System (INIS)

    Asakimori, K.; Burnett, T.H.; Cherry, M.L.

    1994-03-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b → u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel. (author). 7 refs, 6 figs, 2 tabs

  9. Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector.

    Science.gov (United States)

    Clark, Nigel N; McKain, David L; Johnson, Derek R; Wayne, W Scott; Li, Hailin; Akkerman, Vyacheslav; Sandoval, Cesar; Covington, April N; Mongold, Ronald A; Hailer, John T; Ugarte, Orlando J

    2017-01-17

    Pump-to-wheels (PTW) methane emissions from the heavy-duty (HD) transportation sector, which have climate change implications, are poorly documented. In this study, methane emissions from HD natural gas fueled vehicles and the compressed natural gas (CNG) and liquefied natural gas (LNG) fueling stations that serve them were characterized. A novel measurement system was developed to quantify methane leaks and losses. Engine related emissions were characterized from twenty-two natural gas fueled transit buses, refuse trucks, and over-the-road (OTR) tractors. Losses from six LNG and eight CNG stations were characterized during compression, fuel delivery, storage, and from leaks. Cryogenic boil-off pressure rise and pressure control venting from LNG storage tanks were characterized using theoretical and empirical modeling. Field and laboratory observations of LNG storage tanks were used for model development and evaluation. PTW emissions were combined with a specific scenario to view emissions as a percent of throughput. Vehicle tailpipe and crankcase emissions were the highest sources of methane. Data from this research are being applied by the authors to develop models to forecast methane emissions from the future HD transportation sector.

  10. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  11. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Science.gov (United States)

    2010-07-01

    ... shall have tires with appropriate tire wear. (b) Special provisions for durability data vehicles. (1... previous model year emission data vehicles, running change vehicles, fuel economy data vehicles, and...

  12. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  13. Vehicle emissions and consumer information in car advertisements

    Directory of Open Access Journals (Sweden)

    Thomson George

    2008-04-01

    Full Text Available Abstract Background The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Methods Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001–2005 was undertaken (n = 514 advertisements. This was supplemented with vehicle data from official websites. Results The advertisements studied provided some information on fuel type (52%, and engine size (39%; but hardly any provided information on fuel efficiency (3%, or emissions (4%. Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2 emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting. The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1–10 scale. The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km, as well as the best "greenhouse" and "air pollution" ratings. Conclusion To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union. Similar regulations are already in place for the marketing of many other consumer products.

  14. Vehicle emissions and consumer information in car advertisements

    Science.gov (United States)

    Wilson, Nick; Maher, Anthony; Thomson, George; Keall, Michael

    2008-01-01

    Background The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Methods Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001–2005 was undertaken (n = 514 advertisements). This was supplemented with vehicle data from official websites. Results The advertisements studied provided some information on fuel type (52%), and engine size (39%); but hardly any provided information on fuel efficiency (3%), or emissions (4%). Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2) emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting). The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1–10 scale). The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km), as well as the best "greenhouse" and "air pollution" ratings. Conclusion To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union). Similar regulations are already in place for the marketing of many other consumer products. PMID:18445291

  15. Vehicle emissions and consumer information in car advertisements.

    Science.gov (United States)

    Wilson, Nick; Maher, Anthony; Thomson, George; Keall, Michael

    2008-04-29

    The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001-2005 was undertaken (n = 514 advertisements). This was supplemented with vehicle data from official websites. The advertisements studied provided some information on fuel type (52%), and engine size (39%); but hardly any provided information on fuel efficiency (3%), or emissions (4%). Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2) emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting). The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1-10 scale). The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km), as well as the best "greenhouse" and "air pollution" ratings. To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union). Similar regulations are already in place for the marketing of many other consumer products.

  16. Investigating the Potential of Ridesharing to Reduce Vehicle Emissions

    Directory of Open Access Journals (Sweden)

    Roozbeh Jalali

    2017-06-01

    Full Text Available As urban populations grow, cities need new strategies to maintain a good standard of living while enhancing services and infrastructure development. A key area for improving city operations and spatial layout is the transportation of people and goods. While conventional transportation systems (i.e., fossil fuel based are struggling to serve mobility needs for growing populations, they also represent serious environmental threats. Alternative-fuel vehicles can reduce emissions that contribute to local air pollution and greenhouse gases as mobility needs grow. However, even if alternative-powered vehicles were widely employed, road congestion would still increase. This paper investigates ridesharing as a mobility option to reduce emissions (carbon, particulates and ozone while accommodating growing transportation needs and reducing overall congestion. The potential of ridesharing to reduce carbon emissions from personal vehicles in Changsha, China, is examined by reviewing mobility patterns of approximately 8,900 privately-owned vehicles over two months. Big data analytics identify ridesharing potential among these drivers by grouping vehicles by their trajectory similarity. The approach includes five steps: data preprocessing, trip recognition, feature vector creation, similarity measurement and clustering. Potential reductions in vehicle emissions through ridesharing among a specific group of drivers are calculated and discussed. While the quantitative results of this analysis are specific to the population of Changsha, they provide useful insights for the potential of ridesharing to reduce vehicle emissions and the congestion expected to grow with mobility needs. Within the study area, ridesharing has the potential to reduce total kilometers driven by about 24% assuming a maximum distance between trips less than 10 kilometers, and schedule time less than 60 minutes. For a more conservative maximum trip distance of 2 kilometers and passenger

  17. BENCHMARKING FOR THE ROMANIAN HEAVY COMMERCIAL VEHICLES MARKET

    Directory of Open Access Journals (Sweden)

    Pop Nicolae Alexandru

    2014-07-01

    Full Text Available The globalization has led to a better integration of international markets of goods, services and capital markets, fact which leads to a significant increase of investments in those regions with low labor cost and with access to commercial routes. The development of international trade has imposed a continuous growth of the volumes of transported goods and the development of a transport system, able to stand against the new pressure exercised by cost, time and space. The solution to efficient transport is the intermodal transportation relying on state-of-the-art technological platforms, which integrates the advantages specific to each means of transportation: flexibility for road transportation, high capacity for railway, low costs for sea, and speed for air transportation. Romania’s integration in the pan-European transport system alongside with the EU’s enlargement towards the east will change Romania’s positioning into a central one. The integrated governmental program of improving the intermodal infrastructure will ensure fast railway, road and air connections. For the Danube harbors and for the sea ports, EU grants and allowances will be used thus increasing Romania’s importance in its capacity as one of Europe’s logistical hubs. The present paper intends to use benchmarking, the management and strategic marketing tool, in order to realize an evaluation of the Romanian heavy commercial vehicles market, within European context. Benchmarking encourages change in a complex and dynamic context where a permanent solution cannot be found. The different results stimulate the use of benchmarking as a solution to reduce gaps. MAN’s case study shows the dynamics of the players on the Romanian market for heavy commercial vehicles, when considering the strong growth of Romanian exported goods but with a modest internal demand, a limited but developing road infrastructure, and an unfavorable international economical context together with

  18. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    Science.gov (United States)

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control

  19. Costs, emissions reductions, and vehicle repair: evidence from Arizona.

    Science.gov (United States)

    Ando, A; McConnell, V; Harrington, W

    2000-04-01

    The Arizona inspection and maintenance (I/M) program provides one of the first opportunities to examine the costs and effectiveness of vehicle emission repair. This paper examines various aspects of emission reductions, fuel economy improvements, and repair costs, drawing data from over 80,000 vehicles that failed the I/M test in Arizona between 1995 and the first half of 1996. We summarize the wealth of data on repair from the Arizona program and highlight its limitations. Because missing or incomplete cost information has been a serious shortcoming for the evaluation of I/M programs, we develop a method for estimating repair costs when they are not reported. We find surprising evidence that almost one quarter of all vehicles that take the I/M test are never observed to pass the test. Using a statistical analysis, we provide some information about the differences between the vehicles that pass and those that do not. Older, more polluting vehicles are much more likely never to pass the I/M test, and their expected repair costs are much higher than those for newer cars. This paper summarizes the evidence on costs and emission reductions in the Arizona program, comparing costs and emissions reductions between cars and trucks. Finally, we examine the potential for more cost-effective repair, first through an analysis of tightening I/M cut points and then by calculating the cost savings of achieving different emission reduction goals when the most cost-effective repairs are made first.

  20. Advanced vehicle dynamics of heavy trucks with the perspective of road safety

    Science.gov (United States)

    Trigell, Annika Stensson; Rothhämel, Malte; Pauwelussen, Joop; Kural, Karel

    2017-10-01

    This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.

  1. Concentration of heavy metals from traffic emissions on plant ...

    African Journals Online (AJOL)

    In recent years, emission and combustion of fossils and fuels have been identified as primary sources of atmospheric metallic burden. Detailed information about this is not readily available in Nigeria. This study was therefore carried out to determine the concentration of heavy metals (e.g. lead, mercury and cadmium} ...

  2. Emissions from ethanol- and LPG-fueled vehicles

    International Nuclear Information System (INIS)

    Pitstick, M.E.

    1995-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles

  3. Gaseous and particulate emissions from rural vehicles in China

    Science.gov (United States)

    Yao, Zhiliang; Huo, Hong; Zhang, Qiang; Streets, David G.; He, Kebin

    2011-06-01

    Rural vehicles (RVs) could contribute significantly to air pollutant emissions throughout Asia due to their considerable population, extensive usage, and high emission rates, but their emissions have not been measured before and have become a major concern for the accuracy of regional and global emission inventories. In this study, we measured CO, HC, NO x and PM emissions of RVs using a combined on-board emission measurement system on real roads in China. We also compared the emission levels of the twenty RVs to those of nineteen Euro II light-duty diesel trucks (LDDTs) that we measured for previous studies. The results show that one-cylinder RVs have lower distance-based emission factors compared to LDDTs because of their smaller weight and engine power, but they have significantly higher fuel-based PM emission factors than LDDTs. Four-cylinder RVs have equivalent emission levels to LDDTs. Based on the emission factors and the activity data obtained, we estimate that the total emissions of RVs in China in 2006 were 1049 Gg of CO, 332 Gg of HC, 933 Gg of NO x, and 54 Gg of PM, contributing over 40% to national on-road diesel CO, NO x, and PM emissions. As RVs are a significant contributor to national emissions, further research work is needed to improve the accuracy of inventories at all levels, and the government should strengthen the management of RVs to facilitate both policy making and research work.

  4. Heavy Vehicle Propulsion System Materials Program semiannual progress report for October 1996 through March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designers; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) cost effective high performance materials and processing; (2) advanced manufacturing technology; (3) testing and characterization; and (4) materials and testing standards.

  5. Zero emission vehicle for dense grid urban public transportation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ovidio, G. [University of l' Aquila, Faculty of Engineering, DAU (Italy)

    2000-07-01

    This paper reports the operating scheme of a public transportation vehicle with zero polluting emission, working in urban areas in a transport network which has short and regular stop spacing not greater than 400-500 m, and by segments covered by 'shuttle-type' vehicles with high operating frequencies. In particular, the traction of the vehicle, of electric type exclusively, is supported by the functional coupling of an accumulation and alimentation system composed respectively of Fuel Cell e Flywheel Energy Storage Unite. This study proposes and analyzes a typology of hybrid vehicle of which the configuration of traction is specialized for the exigency connected to the different phases of the motion. The study contains the analysis and the measurement of the principal components of the propulsion system to the vary of the loading capabilities of the vehicles and of the geometric characteristic of the transport network.

  6. Estimating national exhaust emissions from railway vehicles in Turkey

    International Nuclear Information System (INIS)

    Dincer, Faruk; Elbir, Tolga

    2007-01-01

    The estimated exhaust emissions from railway vehicles in Turkey were presented. The emissions of nitrogen oxides (NO x ), hydrocarbon compounds (HC), carbon monoxide (CO), particulate matter (PM), sulfur dioxide (SO 2 ) and carbon dioxide (CO 2 ) from the diesel locomotives and railcars were calculated using the railway traffic data recorded by Turkish State Railways (TSR) for the period of 2000-2005. EPA emission factors were used for different vehicle types and operation modes such as shunting and line-hauling. Total emissions from railway vehicles in Turkey were estimated as 384 t y - 1 for HC, 1016 t y - 1 for CO, 6799 t y - 1 for NO X , 256 t y - 1 for PM, 357 t y - 1 for SO 2 and 383 537 t y - 1 for CO 2 for the year 2005. The distribution of emissions with respect to type of railway vehicles shows that the mainline locomotives contribute ∝ 91% to the total emissions. The increases of 22%, 39% and 49% in the current numbers of mainline locomotives, shunting locomotives and diesel railcars, respectively corresponding to the full capacity of railway network in Turkey will increase the annual emissions to 431 t y - 1 for HC, 1121 t y - 1 for CO, 7399 t y - 1 for NO X , 342 t y - 1 for PM, 552 t y - 1 for SO 2 and 420 256 t y - 1 for CO 2 . Total railway emissions constitute 0.15%, 0.08% and 4.21% of total Turkish traffic emissions for HC, CO and NO X , respectively. (author)

  7. Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Anand R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sharpe, Ben [International Council on Clean Transportation (United States); Delgado, Oscar [International Council on Clean Transportation (United States); Bandivadekar, Anup [International Council on Clean Transportation (United States); Garg, Mehul [International Council on Clean Transportation (United States)

    2017-06-14

    The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data and vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the

  8. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  9. Online Traffic Signal Control for Reducing Vehicle Carbon Dioxide Emissions

    Science.gov (United States)

    Oda, Toshihiko; Otokita, Tohru; Niikura, Satoshi

    In Japan, carbon dioxide (CO2) emissions caused by vehicles have been increasing year by year and it is well known that CO2 causes a serious global warming problem. For urban traffic control systems, there is a great demand for realization of signal control measures as soon as possible due to the urgency of the recent environmental situation. This paper describes a new traffic signal control for reducing vehicle CO2 emissions on an arterial road. First, we develop a model for estimating the emissions using the traffic delay and the number of stops a driver makes. Second, to find the optimal control parameters, we introduce a random search method with rapid convergence suitable for an online traffic control. We conduct experiments in Kawasaki to verify the effectiveness of our method. The experiments show that our approach decreases not only the emissions but also congestion and travel time significantly, compared to the method implemented in the real system.

  10. Vehicle and fuel taxes cut emissions

    International Nuclear Information System (INIS)

    Johansson, Lasse.

    1991-01-01

    Rapidly growing road traffic accounts for a large share of the air pollution produced within Sweden's borders. Nitrogen oxides, carbon dioxide, lead, hydrocarbons and ozone formation cause extensive damage to the environment. Economic instruments are an important means of tackling emissions from the hundreds of thousands of mobile pollution sources on the country's roads

  11. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  12. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  13. Impact of overweight vehicles (with heavy axle loads) on bridge deck deterioration.

    Science.gov (United States)

    2012-03-01

    Bridge deck slabs develop compressive stresses from global flexural deformation and locally from high-level : wheel loads when it is subjected to overweight trucks. This study quantified the impact of overweight vehicles : with heavy axle loads on br...

  14. Integrated vehicle-based safety systems (IVBSS) : heavy truck platform field operational test data analysis plan.

    Science.gov (United States)

    2009-11-23

    This document presents the University of Michigan Transportation Research Institutes plan to perform : analysis of data collected from the heavy truck platform field operational test of the Integrated Vehicle- : Based Safety Systems (IVBSS) progra...

  15. Aggregate strength for bituminous surfacings for low volume roads: a heavy vehicle simulator experience

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-09-01

    Full Text Available This paper discusses an investigation using the CSIR Transportek Heavy Vehicle Simulator (HVS) to determine the impact of using aggregates softer than specified in chip seals and to propose possible relaxations in the currently specified strength...

  16. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Greenhouse gas emission standards for... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1818-12 Greenhouse gas emission standards for light-duty... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons...

  17. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte

    2009-11-15

    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  18. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  19. Road user charges for heavy goods vehicles (HGV). Tables with external costs of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Skou Andersen, M.

    2013-02-15

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). The amended Eurovignette Directive (2011/76/EU) relating to the charging of HGVs for use of major European motorways prescribes that from 2013, Member States may include air pollution costs in any charging structure for roads under the Trans-European Network (TEN-T) and for comparable domestic motorways. The tables published here provide the basis for the inclusion of a vehicle-specific air pollution component in road user charges. Air pollution costs have been calculated on the basis of the formula prescribed in the directive, taking into account the fact that road transport emissions are mixed in a low volume of air. Following Article 9 in the Eurovignette Directive, additional revenues from external-cost charges must be used by Member States to benefit the transport sector and promote sustainable mobility. Making use of scientific developments subsequent to the 2007 Handbook of external costs (Maibach et al., 2008), the EEA is able to provide an updated estimate of the external costs of air pollution from road transport. The tables in this report indicate for each country and for the relevant vehicle categories, estimates of the external costs of air pollution in 2010 prices. The high level of detail gives member countries an informed basis to group the vehicle categories for administrative purposes. The tables also include estimates for three non-EU member countries of the EEA, of which one (Switzerland) pioneered the first HGV road user charge in Europe. (LN)

  20. Electric vehicles in China: emissions and health impacts.

    Science.gov (United States)

    Ji, Shuguang; Cherry, Christopher R; J Bechle, Matthew; Wu, Ye; Marshall, Julian D

    2012-02-21

    E-bikes in China are the single largest adoption of alternative fuel vehicles in history, with more than 100 million e-bikes purchased in the past decade and vehicle ownership about 2× larger for e-bikes as for conventional cars; e-car sales, too, are rapidly growing. We compare emissions (CO(2), PM(2.5), NO(X), HC) and environmental health impacts (primary PM(2.5)) from the use of conventional vehicles (CVs) and electric vehicles (EVs) in 34 major cities in China. CO(2) emissions (g km(-1)) vary and are an order of magnitude greater for e-cars (135-274) and CVs (150-180) than for e-bikes (14-27). PM(2.5) emission factors generally are lower for CVs (gasoline or diesel) than comparable EVs. However, intake fraction is often greater for CVs than for EVs because combustion emissions are generally closer to population centers for CVs (tailpipe emissions) than for EVs (power plant emissions). For most cities, the net result is that primary PM(2.5) environmental health impacts per passenger-km are greater for e-cars than for gasoline cars (3.6× on average), lower than for diesel cars (2.5× on average), and equal to diesel buses. In contrast, e-bikes yield lower environmental health impacts per passenger-km than the three CVs investigated: gasoline cars (2×), diesel cars (10×), and diesel buses (5×). Our findings highlight the importance of considering exposures, and especially the proximity of emissions to people, when evaluating environmental health impacts for EVs.

  1. Various light particles emissions accompaning light heavy ion collisions

    International Nuclear Information System (INIS)

    Billerey, R.

    1981-01-01

    In this work we have investigated light particles emission accompanying heavy-ion induced reactions. The experiments were performed at the isochronous cyclotron of the I.S.N. de Grenoble and we got in and out of plane correlations between solid state and gazeous detectors. In 14 N (100 MeV) + 27 Al we have chosen, light particles emitted in coincidence with deep inelastic fragments or evaporation residues have been measured. Likewise we observed the correlations between fragments and fragments. The particularities we found between protons and alpha emissions are to be assigned to differences in separation energies, but their relative energies and angular momenta have also a significant part [fr

  2. Optimization of heavy metals total emission, case study: Bor (Serbia)

    Science.gov (United States)

    Ilić, Ivana; Bogdanović, Dejan; Živković, Dragana; Milošević, Novica; Todorović, Boban

    2011-07-01

    The town of Bor (Serbia) is one of the most polluted towns in southeastern Europe. The copper smelter which is situated in the centre of the town is the main pollutant, mostly because of its old technology, which leads to environmental pollution caused by higher concentrations of SO 2 and PM 10. These facts show that the word is about a very polluted region in Europe which, apart from harming human health in the region itself, poses a particular danger for wider area of southeastern Europe. Optimization of heavy metal's total emission was undertaken because years of long contamination of the soil with heavy metals of anthropogenic origin created a danger that those heavy metals may enter the food chains of animals and people, which can lead to disastrous consequences. This work represents the usage of Geographic Information System (GIS) for establishing a multifactor assessment model to quantitatively divide polluted zones and for selecting control sites in a linear programming model, combined with PROMETHEE/GAIA method, Screen View modeling system, and linear programming model. The results show that emissions at some control sites need to be cut for about 40%. In order to control the background of heavy metal pollution in Bor, the ecological environment must be improved.

  3. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Science.gov (United States)

    2010-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...

  4. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  5. Mobil emission reduction credits for natural gas vehicle programs

    International Nuclear Information System (INIS)

    Baker, G.F.

    1993-01-01

    Since the passage of the Clean Air Act Amendments in 1990, there has been increasing interest among regulators and business interests alike in innovative, market-based strategies to air quality control. In particular, larger metropolitan areas have begun to examine marketable emission reduction credit (ERC) programs. These programs limit the total allowable emissions in a non-attainment area, allocate these emission open-quotes creditsclose quotes among sources in the region, and allow the sources to redistribute their allowances through trading. This approach provides for the most cost-effective distribution of control burdens among affected sources, taking advantage of the differences in marginal control costs. Some control measures applied to mobile sources may be significantly less expensive than those applied to stationary sources, making mobile sources an excellent candidate for inclusion in an ERC program. However, there are several potential problems involving quantification, enforcement, and credit trading issues that hinder the development of mobile source ERC programs. This paper will evaluate those obstacles and discuss how they are being addressed in a Natural Gas Vehicle (NGV) program currently under development for the Houston ozone non-attainment area. Specifically, the study will outline the credit validation (i.e., quantification) procedure, including baseline emission determination and emission testing for each NGV in the program. In addition, the study will describe the vehicle/fuel consumption tracking system, and discuss issues related to credit trading with stationary sources. Finally, observations are made concerning the applicability of mobile ERC programs for other emission control measures such as old vehicle scrappage and vehicle Inspection and Maintenance programs

  6. Black carbon and polycyclic aromatic hydrocarbon emissions from vehicles in the United States-Mexico border region: pilot study.

    Science.gov (United States)

    Kelly, Kerry; Wagner, David; Lighty, JoAnn; Quintero Núñez, Margarito; Vazquez, F Adrian; Collins, Kimberly; Barud-Zubillaga, Alberto

    2006-03-01

    The investigators developed a system to measure black carbon (BC) and particle-bound polycyclic aromatic hydrocarbon (PAH) emission factors during roadside sampling in four cities along the United States-Mexico border, Calexico/Mexicali and El Paso/Juarez. The measurement system included a photoacoustic analyzer for BC, a photoelectric aerosol sensor for particle-bound PAHs, and a carbon dioxide (CO2) analyzer. When a vehicle with measurable emissions passed the system probe, corresponding BC, PAH, and CO2 peaks were evident, and a fuel-based emission factor was estimated. A picture of each vehicle was also recorded with a digital camera. The advantage of this system, compared with other roadside methods, is the direct measurement of particulate matter components and limited interference from roadside dust. The study revealed some interesting trends: Mexican buses and all medium-duty trucks were more frequently identified as high emitters of BC and PAH than heavy-duty trucks or passenger vehicles. In addition, because of the high daily mileage of buses, they are good candidates for additional study. Mexican trucks and buses had higher average emission factors compared with U.S. trucks and buses, but the differences were not statistically significant. Few passenger vehicles had measurable BC and PAH emissions, although the highest emission factor came from an older model passenger vehicle licensed in Baja California.

  7. Characteristics of black carbon emissions from in-use light-duty passenger vehicles.

    Science.gov (United States)

    Zheng, Xuan; Zhang, Shaojun; Wu, Ye; Zhang, K Max; Wu, Xian; Li, Zhenhua; Hao, Jiming

    2017-12-01

    Mitigating black carbon (BC) emissions from various combustion sources has been considered an urgent policy issue to address the challenges of climate change, air pollution and health risks. Vehicles contribute considerably to total anthropogenic BC emissions and urban BC concentrations. Compared with heavy-duty diesel vehicles, there is much larger uncertainty in BC emission factors for light-duty passenger vehicles (LDPVs), in particular for gasoline LDPVs, which warrants further studies. In this study, we employed the dynamometer and the Aethalometer (AE-51) to measure second-by-second BC emissions from eight LDPVs by engine technology and driving cycle. The average BC emission factors under transient cycles (e.g., ECE-15, New European Driving Cycle, NEDC, Worldwide Harmonized Light Vehicles Test Cycle, WLTC) are 3.6-91.5 mg/km, 7.6 mg/km and 0.13-0.58 mg/km, respectively, for diesel (N = 3), gasoline direct injection (GDI) (N = 1) and gasoline port-fuel injection (PFI) engine categories (N = 4). For gasoline PFI LDPVs, the instantaneous emission profiles show a strong association of peak BC emissions with cold-start and high-speed aggressive driving. Such impacts lead to considerable BC emission contributions in cold-start periods (e.g., the first 47 s-94 s) over the entire cycle (e.g., 18-76% of the NEDC and 13-36% of the WLTC) and increased BC emission factors by 80-440% under the WLTC compared to the NEDC. For diesel BC emissions, the size distribution exhibits a typical unimodal pattern with one single peak appearing approximately from 120 to 150 nm, which is largely consistent with previous studies. Nevertheless, the average mass ratios of BC to particle mass (PM) range from 0.38 to 0.54 for three diesel samples, representing substantial impacts from both driving and engine conditions. The significant discrepancy between gasoline BC emission factors obtained from tailpipe exhaust versus ambient conditions suggest that more comparative

  8. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.

    Science.gov (United States)

    Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry

    2018-05-15

    Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.

  9. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  10. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  11. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  12. Historic and projected vehicle use and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Data are presented in this chapter that show a decline in total carbon dioxide emissions per vehicle of about 20 between 1970 and 1987. However, it is also shown that the fuel economy gains of the 1970s and early 1980s in many countries have begun to erode. In the US, low fuel prices combined with a failure to strengthen fuel efficiency standards have led to recent declines in new-car fuel efficiency. Even if these trends are reversed carbon dioxide in the transport sector will not be reduced if over all motor vehicle use continues along present lines

  13. Nitrous Oxide (N2O) Emissions from Vehicles

    International Nuclear Information System (INIS)

    Becker, K.H.; Kurtenbach, R.; Lorzer, J.C.; Wiesen, P.; Jensen, T.; Wallington, T.J.

    2000-01-01

    N2O is an important greenhouse gas and accurate emission data are required to assess its impact on global climate. It is well established that automobiles, particularly those equipped with 3-way catalysts, emit N2O. However, the vehicle contribution to the global N2O budget is uncertain. We report results of N2O emission measurements performed in a road tunnel in Germany and using a chassis dynamometer system in the USA. We estimate that the global vehicle fleet emits (0.12±0.06) Tg yr-1 of N2O. From the emission factor (g N2O/g CO2) determined an annual N2O emission of (0.12±0.06) Tg yr-1 of N2O (0.08±0.04 Tg N yr-1) for the global vehicle fleet has been estimated which represents 1-4% of the atmospheric growth rate of this species. 9 refs

  14. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    Science.gov (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  15. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  16. Evaluation of EDAR vehicle emissions remote sensing technology.

    Science.gov (United States)

    Ropkins, Karl; DeFries, Timothy H; Pope, Francis; Green, David C; Kemper, Jim; Kishan, Sandeep; Fuller, Gary W; Li, Hu; Sidebottom, Jim; Crilley, Leigh R; Kramer, Louisa; Bloss, William J; Stewart Hager, J

    2017-12-31

    Despite much work in recent years, vehicle emissions remain a significant contributor in many areas where air quality standards are under threat. Policy-makers are actively exploring options for next generation vehicle emission control and local fleet management policies, and new monitoring technologies to aid these activities. Therefore, we report here on findings from two separate but complementary blind evaluation studies of one new-to-market real-world monitoring option, HEAT LLC's Emission Detection And Reporting system or EDAR, an above-road open path instrument that uses Differential Absorption LIDAR to provide a highly sensitive and selective measure of passing vehicle emissions. The first study, by Colorado Department of Public Health and Environment and Eastern Research Group, was a simulated exhaust gas test exercise used to investigate the instrumental accuracy of the EDAR. Here, CO, NO, CH 4 and C 3 H 8 measurements were found to exhibit high linearity, low bias, and low drift over a wide range of concentrations and vehicle speeds. Instrument accuracy was high (R 2 0.996 for CO, 0.998 for NO; 0.983 for CH 4 ; and 0.976 for C 3 H 8 ) and detection limits were 50 to 100ppm for CO, 10 to 30ppm for NO, 15 to 35ppmC for CH 4 , and, depending on vehicle speed, 100 to 400ppmC 3 for C 3 H 8 . The second study, by the Universities of Birmingham and Leeds and King's College London, used the comparison of EDAR, on-board Portable Emissions Measurement System (PEMS) and car chaser (SNIFFER) system measurements collected under real-world conditions to investigate in situ EDAR performance. Given the analytical challenges associated with aligning these very different measurements, the observed agreements (e.g. EDAR versus PEMS R 2 0.92 for CO/CO 2 ; 0.97 for NO/CO 2 ; ca. 0.82 for NO 2 /CO 2 ; and, 0.94 for PM/CO 2 ) were all highly encouraging and indicate that EDAR also provides a representative measure of vehicle emissions under real-world conditions. Copyright

  17. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  18. Policies for Promotion of Electric Vehicles and Factors Influencing Consumers’ Purchasing Decisions of Low Emission Vehicles

    Directory of Open Access Journals (Sweden)

    Matjaz Knez

    2017-06-01

    Full Text Available Recently different studies of green transport have become interesting for policy makers,car manufacturers, customers and energy suppliers. Many stakeholders from the publicand private sectors are investing a lot of effort to identify consumer behaviour for futureimprovements in development of green products and effective strategies, which couldaccelerate the transition to sustainable future. This paper presents the effects of electricvehicle promotional policies and customer preferences about alternative fuel vehicles.This study has shown that the electric vehicle promotional policies adopted in Sloveniahave been unsuccessful, as the share of first-time registered electric vehicles in 2013 wasbelow 1%. For different segments of people whose opinions about low emission vehiclesdiffer, different measures must be adopted. When designing promotional policies focusmust be on the most relevant factors such as the total vehicle price and fuel economy.

  19. Differences between emissions measured in urban driving and certification testing of heavy-duty diesel engines

    Science.gov (United States)

    Dixit, Poornima; Miller, J. Wayne; Cocker, David R.; Oshinuga, Adewale; Jiang, Yu; Durbin, Thomas D.; Johnson, Kent C.

    2017-10-01

    Emissions from eight heavy-duty diesel trucks (HDDTs) equipped with three different exhaust aftertreatment systems (ATS) for controlling nitrogen oxide (NOx) emissions were quantified on a chassis dynamometer using driving schedules representative of stop-and-go and free-flow driving in metropolitan areas. The three control technologies were: 1) cooled exhaust gas recirculation (CEGR) plus a diesel particulate filter (DPF); 2) CEGR and DPF plus advanced engine controls; and 3) CEGR and DPF plus selective catalytic reduction with ammonia (SCR). Results for all control technologies and driving conditions showed PM emission factors were less than the standard, while selected non-regulated emissions (ammonia, carbonyls, and C4-C12 hydrocarbons) and a greenhouse gas (nitrous oxide) were at measurement detection limits. However, NOx emission factors depended on the control technology, engine calibration, and driving mode. For example, emissions from engines with cooled-exhaust gas recirculation (CEGR) were 239% higher for stop-and-go driving as compared with free-flow. For CEGR plus selective catalytic reduction (SCR), the ratio was 450%. A deeper analysis was carried out with the assumption that emissions measured for a drive cycle on either the chassis or in-use driving would be similar. Applying the same NTE rules to the chassis data showed emissions during stop-and-go driving often exceeded the certification standard and >90% of the driving did not fall within the Not-To-Exceed (NTE) control area suggesting the NTE requirements do not provide sufficient emissions control under in-use conditions. On-road measurement of emissions using the same mobile lab while the vehicle followed a free-flow driving schedule verified the chassis results. These results have implications for scientists who build inventories using certification values instead of real world emission values and for metropolitan populations, who are exposed to elevated emissions. The differences in values

  20. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Acevedo, Helmer; Mantilla, Juan

    2011-01-01

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  1. Evaluating the development of life and progress of heavy vehicles ...

    African Journals Online (AJOL)

    Regarding the investigation of new technologies, we have to think to make changes in vehicle technology or finding alternative technology. According to the first priority, criteria and the weight of analytic hierarchy process, the technical criteria, first the action should be done in technical improvements of the vehicle, and also ...

  2. Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2017-12-01

    Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving

  3. Vehicle emissions and effects on air quality: indoors and outdoors

    International Nuclear Information System (INIS)

    Perry, R.; Gee, I.L.

    1994-01-01

    Vehicle emissions of non-regulated volatile organic compounds (VOCs), such as benzene, can form a major contribution to pollution of the indoor as well as the outdoor environment. Several of these compounds are considered to be a health risk and are important factors in the production of photochemical smog. The introduction of unleaded and particularly 'super unleaded' fuels has significantly increased levels of aromatic compounds in petrol world-wide and has led to changes in fuel composition with respect to olefins and the use of oxygenates. Increased aromatics, olefins and other compounds in fuels used in vehicles not fitted with catalytic converters have shown to increase emissions of benzene, 1,4-budatiene and other VOCs as well as contributing to increases in photochemical smog precursors. Increases in VOC levels in ambient air clearly produce increased indoor air pollution, particularly in naturally ventilated buildings. (author) 6 figs., 5 tabs., 30 refs

  4. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  5. Alkali and heavy metals emissions of the PCFB-process

    International Nuclear Information System (INIS)

    Kuivalainen, R.; Eriksson, T.; Koskinen, J.; Lehtonen, P.

    1995-01-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed by A. Ahlstrom Corporation since 1986. As a part of the development, a 10 MV PCFB Test Facility was constructed at Hans Ahlstrom Laboratory in Karhula, Finland in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 'Alkali and heavy metal emissions of the PCFB-process' is part of national LIEKKI 2 research program and it continues the work started under alkali measurement project Y33 in 1994. The objective of the project is to measure vapor phase alkali and heavy metal concentrations in the PCFB flue gas after high-temperature high-pressure particulate filter and to investigate the effects of process conditions and sorbents on alkali release. The measured Na concentrations were between 0,03 and 0,21 ppm(w). The results of K were between 0,01 and 0,08 ppm(w). The accuracy of the results is about +-50 percent at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions at 800-850 deg C are at the same order of magnitude as the guideline emission limits given by gas turbine manufacturers for flue gas at 1000-1200 deg C. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in autumn 1995 in cooperation with laboratories of VTT Energy and Tampere University of Technology. (author)

  6. Light vehicle regulated and unregulated emissions from different biodiesels

    International Nuclear Information System (INIS)

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    2009-01-01

    In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NOx emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NOx emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO2 emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.

  7. Assessing the ground vibrations produced by a heavy vehicle traversing a traffic obstacle.

    Science.gov (United States)

    Ducarne, Loïc; Ainalis, Daniel; Kouroussis, Georges

    2018-01-15

    Despite advancements in alternative transport networks, road transport remains the dominant mode in many modern and developing countries. The ground-borne motions produced by the passage of a heavy vehicle over a geometric obstacle (e.g. speed hump, train tracks) pose a fundamental problem in transport annoyance in urban areas. In order to predict the ground vibrations generated by the passage of a heavy vehicle over a geometric obstacle, a two-step numerical model is developed. The first step involves simulating the dynamic loads generated by the heavy vehicle using a multibody approach, which includes the tyre-obstacle-ground interaction. The second step involves the simulation of the ground wave propagation using a three dimensional finite element model. The simulation is able to be decoupled due to the large difference in stiffness between the vehicle's tyres and the road. First, the two-step model is validated using an experimental case study available in the literature. A sensitivity analysis is then presented, examining the influence of various factors on the generated ground vibrations. Factors investigated include obstacle shape, obstacle dimensions, vehicle speed, and tyre stiffness. The developed model can be used as a tool in the early planning stages to predict the ground vibrations generated by the passage of a heavy vehicle over an obstacle in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    Science.gov (United States)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in

  9. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    Recent advances in the area of Metal Matrix Composites (MMC's) have brought these materials to a maturity stage where the technology is ready for transition to large-volume production and commercialization. The new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel, especially when they are selectively reinforced with carbon, silicon carbide, or aluminum oxide fibers. Most of the developments in the MMC materials have been spurred, mainly by applications that require high structural performance at elevated temperatures, the heavy vehicle industry could also benefit from this emerging technology. Increasing requirements of weight savings and extended durability are the main drivers for potential insertion of MMC technology into the heavy vehicle market. Critical elements of a typical tractor-trailer combination, such as highly loaded sections of the structure, engine components, brakes, suspensions, joints and bearings could be improved through judicious use of MMC materials. Such an outcome would promote the DOE's programmatic objectives of increasing the fuel efficiency of heavy vehicles and reducing their life cycle costs and pollution levels. However, significant technical and economical barriers are likely to hinder or even prevent broad applications of MMC materials in heavy vehicles. The tradeoffs between such expected benefits (lower weights and longer durability) and penalties (higher costs, brittle behavior, and difficult to machine) must be thoroughly investigated both from the performance and cost viewpoints, before the transfer of MMC technology to heavy vehicle systems can be properly assessed and implemented. MMC materials are considered to form one element of the comprehensive, multi-faceted strategy pursued by the High Strength/Weight Reduction (HS/WR) Materials program of the U.S. Department of Energy (DOE) for structural weight savings and quality enhancements in

  10. Search for neutron emission during the electrolysis of heavy water

    International Nuclear Information System (INIS)

    Coelho, P.R.P.; Saxena, R.N.; Morato, S.P.; Goldman, I.D.; Pinho, A.G. de; Nascimento, I.C.

    1990-03-01

    A liquid scintillator detector NE 213 with pulse shape discrimination technique was used to observe neutrons during the electrolysis of heavy water with a palladium cathode. From the measured fore and background couting rates, a neutron emission rate of (8.2 ± 2.9) x 10 -3 n/(sec.g.) Pd was determined implying (2.9 ± 1.0) x 10 -24 fusions / [(dd pair).sec.] as compared to ≅ 10 -23 fusion/ [(dd pair).sec.] reported by Jones et al. using titanium electrode. (author) [pt

  11. Evidence for heavy ion emission of 230U

    International Nuclear Information System (INIS)

    Pan Qiangyan; Yang Weifan; Yuan Shuanggui; Li Zongwei; Ma Taotao; Guo Junsheng; Liu Mingyi; Liu Hongye; Xu Shuwei; Gan Zaiguo; Kong Dengming; Qiao Jimin; Luo Zihua; Zhang Mutian; Wang Shuhong

    1999-01-01

    Radioisotope of 230 Pa was synthesized by proton irradiation of ThO 2 powder targets with thickness of about 2g/cm 2 . Pure 230 Pa was extracted and deep purified from thorium and fission products by the radiochemical method. Thin 230 Pa→ 230 U sources were prepared for measuring the cluster decay of 230 U. Two cases of decay via heavy ion emission, which were most probably for the neon decays of 230 U, were detected by using solid-state track registration detectors. The preliminary branching ratio relative to α-decay comes out to be (1.3 +- 0.8) x 10 -14

  12. Observation of heavy cluster emission from radioactive 230U nuclei

    International Nuclear Information System (INIS)

    Pan Qiangyan; Yuan Shuanggui; Yang Weifan; Li Zongwei; Ma Taotao; Guo Junsheng; Liu Mingyi; Liu Hongye; Xu Shuwei; Gan Zaiguo; Kong Dengming; Qiao Jimin; Luo Zihua; Zhang Mutian; Wang Shuhong

    1999-01-01

    230 Pa was produced with the reaction 232 Th (p, 3n) 230 Pa in the irradiation powder targets of ThO 2 with 35 MeV proton beam. Sources of 230 Pa→ 230 U + β - were prepared by radiochemical method. Using solid-state track registration detectors, two events of 230 U decay with heavy cluster emission have been observed. The preliminary branching ratio to α-decay comes out to be B = λ Ne /λ α = (1.3 ± 0.8) x 10 -14

  13. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as...

  14. Toxicity and health effects of vehicle emissions in Shanghai

    Science.gov (United States)

    Ye, Shun-Hua; Zhou, Wei; Song, Jian; Peng, Bao-Cheng; Yuan, Dong; Lu, Yuan-Ming; Qi, Ping-Ping

    In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP ( n=806) were much higher than those of the controls ( n=413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who

  15. Toxicity and health effects of vehicle emissions in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Shunhua Ye; Wei Zhou; Jian Song; Baocheng Peng; Dong Yuan; Yuanming Lu; Pingping Qi [Shanghai Medical University (China). Dept. of Environmental Health

    2000-07-01

    In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP (n = 806) were much higher than those of the controls (n = 413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who

  16. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    International Nuclear Information System (INIS)

    Swaczyna, Paweł; Bzowski, Maciej

    2017-01-01

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10 6 times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  17. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-09-10

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10{sup 6} times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  18. A comparative analysis of several vehicle emission models for road freight transportation

    NARCIS (Netherlands)

    Demir, E.; Bektas, T.; Laporte, G.

    2011-01-01

    Reducing greenhouse gas emissions in freight transportation requires using appropriate emission models in the planning process. This paper reviews and numerically compares several available freight transportation vehicle emission models and also considers their outputs in relations to field studies.

  19. Study on Emission Measurement of Vehicle on Road Based on Binomial Logit Model

    OpenAIRE

    Aly, Sumarni Hamid; Selintung, Mary; Ramli, Muhammad Isran; Sumi, Tomonori

    2011-01-01

    This research attempts to evaluate emission measurement of on road vehicle. In this regard, the research develops failure probability model of vehicle emission test for passenger car which utilize binomial logit model. The model focuses on failure of CO and HC emission test for gasoline cars category and Opacity emission test for diesel-fuel cars category as dependent variables, while vehicle age, engine size, brand and type of the cars as independent variables. In order to imp...

  20. Bayesian Parameter Estimation for Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Eric; Konan, Arnaud; Duran, Adam

    2017-03-28

    Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.

  1. Developing a 'Research Test Bed' to introduce innovative Emission Testing Technology to improve New Zealand's Vehicle Emission Standards

    International Nuclear Information System (INIS)

    Cox, Stephen J

    2012-01-01

    Vehicle exhaust emissions arise from the combustion of the fuel and air mixture in the engine. Exhaust emission gases generally include carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbons (HC), particulates, and the greenhouse gas carbon dioxide (CO2). In New Zealand improvements have occurred in emissions standards over the past 20 years however significant health related issues are now being discovered in Auckland as a direct effect of high vehicle emission levels. Pollution in New Zealand, especially via vehicle emissions are an increasing concern and threatens New Zealand's 'clean and green' image. Unitec Institute of Technology proposes establishing a Vehicle Emissions Testing Facility, and with an understanding with Auckland University, National Institute of Water and Atmosphere Research Ltd (NIWA) this research group can work collaboratively on vehicle emissions testing. New Zealand research providers would support an application in the UK led by the University of Huddersfield to a range of European Union Structural Funds. New Zealand has an ideal 'vehicle emissions research environment' supported by significant expertise in vehicle emission control technology and associated protocols at the University of Auckland, and the effects of high vehicle emissions on health at the National Institutes of Water and Atmosphere (NIWA).

  2. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    International Nuclear Information System (INIS)

    Askin, Amanda C.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2015-01-01

    We present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. The model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives. -- Highlights: •We present a parametric analysis of factors U.S. Class 7–8 trucks through 2050. •Conventional diesels will be more than 70% of U.S. heavy-duty vehicles through 2050. •CNG trucks are well suited to large, urban fleets with private refueling. •Ultra-efficient long haul diesel trucks are preferred over LNG at current fuel prices

  3. On-road emissions of light-duty vehicles in europe.

    Science.gov (United States)

    Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano

    2011-10-01

    For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry.

  4. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  5. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  6. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  7. Development of database of real-world diesel vehicle emission factors for China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Zhang, Qiang; Wagner, David Vance; Huo, Hong; Zhang, Yingzhi; Zheng, Bo; He, Kebin

    2015-05-01

    A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT (Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5 (Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent, which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models. Copyright © 2015. Published by Elsevier B.V.

  8. Road vehicle emissions of molecular hydrogen (H 2) from a tunnel study

    Science.gov (United States)

    Vollmer, Martin K.; Juergens, Niklas; Steinbacher, Martin; Reimann, Stefan; Weilenmann, Martin; Buchmann, Brigitte

    Motor vehicle combustion emissions of molecular hydrogen (H 2), carbon monoxide (CO), and carbon dioxide (CO 2) were measured during a 6-week period from November 2004 to January 2005 in Gubrist Tunnel, Switzerland, to determine vehicle emission factors for these trace gases and the ratios of the concentration growths ΔH2/ΔCO and ΔH2/ΔCO2 in the tunnel under real-world highway driving conditions. For H 2, molar mixing ratios at the tunnel exit were found to be 7-10 ppm (parts-per-million, 10-6) during rush hours. Mean emission factors of E=49.7(±16.5)mgkm-1, ECO=1.46(±0.54)gkm-1, and E=266(±69)gkm-1 were calculated. E was largest during weekday rush-hour traffic, a consequence of the more frequent accelerations in congested traffic when fuel combustion is not optimal. E was smaller for heavy-duty vehicles (HDV) compared to light-duty vehicles (LDV), a finding which was attributed to the diesel vs. gasoline engine technology. The mean ΔH2/ΔCO molecular ratio was 0.48±0.12. This ratio increased to ˜0.6 during rush hours, suggesting that H 2 yield is favored relative to CO under fuel-rich conditions, presumably a consequence of an increasing contribution of the water-gas-shift reaction. The mean ΔH2/ΔCO2 molecular ratio was 4.4×10-3 but reduced to 2.5×10-3 when the relative HDV abundance was at maximum. Using three different approaches, road traffic H 2 emissions were estimated for 2004 for Switzerland at 5.0-6.6 Gg and globally at 4.2-8.1 Tg. Despite projections of increasing traffic, Swiss H 2 emissions are not expected to change significantly in the near future, and global emissions are likely to decrease due to improved exhaust gas clean-up technologies.

  9. Road user charges for heavy goods vehicles (HGV):Tables with external costs of air pollution

    OpenAIRE

    Andersen, Mikael Skou

    2013-01-01

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). This report on road transport is a continuation of previous reporting from EEA on estimates for the external costs of air pollution from industrial facilities (EEA, 2011).

  10. Evaluation of a performance-based standards approach to heavy vehicle design to reduce pavement wear

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2013-11-01

    Full Text Available As a result of successful initiatives in Australia, New Zealand and Canada, the introduction of a performance-based standards (PBS) approach in the heavy vehicle sector in South Africa was identified by the Council for Scientific and Industrial...

  11. US Department of Energy workshop on future fuel technology for heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The objective of the workshop described in this report was to develop consensus on a program strategy for use of alternative fuels in heavy vehicles. Participants represented fuel providers, additive suppliers, the trucking industry, engine manufacturers, and government or national laboratory staff. Breakout sessions were co-facilitated by national laboratory staff and industry representatives.

  12. Design of power steering systems for heavy-duty long-haul vehicles

    NARCIS (Netherlands)

    Silvas, E.; Backx, E.A.; Hofman, T.; Voets, H.; Steinbuch, M.

    2014-01-01

    Conventionally, all auxiliaries present in a heavy-duty vehicle (e.g., power-steering pump, air-conditioning compressor) are engine-driven systems, which put high constraints on their performance. Outputs (e.g., speed, temperature) and energy consumption are dictated by engine speed, while most

  13. International Conference on Heavy Vehicles : HVParis 2008 : Weigh-In-Motion (ICWIM5)

    OpenAIRE

    JACOB, Bernard; O'BRIEN, Eugene; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    The conference addresses the broad range of technical issues related to heavy vehicles, surface transport technology, safety and weight measurement systems. It provides access to current research, best practice and related policy issues. It is a multi-disciplinary, inter-agency supported event.

  14. Euro VI technologies and costs for Heavy Duty vehicles: the expert panels summary of stakeholders responses

    NARCIS (Netherlands)

    Gense, N.L.J.; Riemersma, I.J.; Such, C.l; Ntziachristos, L.

    2006-01-01

    This report is the result of the work carried out under on the Europeans Commission’s call for tender regarding “Technical support for the Commission DG Environment on the development of Euro 5 standards for light-duty vehicles and Euro VI standards for heavy-duty vehicles” (Reference:

  15. Road Transport Management System (RTMS): a self regulation initiative in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2007-07-01

    Full Text Available This paper describes the most recent developments of an initiative to introduce meaningful self-regulation in the heavy vehicle transport industry through a Road Transport Management System (RTMS) with the aim of contributing to the road authorities...

  16. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  17. X-ray emission in heavy ion collisions. Final report

    International Nuclear Information System (INIS)

    Watson, R.L.

    1984-01-01

    A detailed accounting of the yearly activities of the research program entitled X-ray Emission in Heavy Ion Collisions may be found in the annual progress reports submitted in accordance with the terms of the contract. The principal goals of the program to be summarized herein were (a) to delineate the mechanisms whereby highly ionized atoms in the condensed phase deexcite and return to charge neutrality, (b) to investigate the charge quenching processes acting to reduce the charge states of highly ionized projectiles, and (c) to attain a better understanding of the interactions occurring between highly charged ions and solid surfaces. These projects all relate to problems associated with the ultimate application of controlled thermonuclear reactions as a practical energy source

  18. 40 CFR 93.118 - Criteria and procedures: Motor vehicle emissions budget.

    Science.gov (United States)

    2010-07-01

    ... emissions budget. 93.118 Section 93.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... and procedures: Motor vehicle emissions budget. (a) The transportation plan, TIP, and project not from a conforming transportation plan and TIP must be consistent with the motor vehicle emissions budget...

  19. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  20. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  1. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    Science.gov (United States)

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  2. Projection of Chinese motor vehicle growth, oil demand, and CO2 emissions through 2050

    Science.gov (United States)

    2007-01-01

    During this study a methodology was developed to project growth trends of the motor vehicle population and associated oil demand and carbon dioxide (CO2) emissions in China through 2050. In particular, the numbers of highway vehicles, motorcycles, an...

  3. Mitigating gas emissions at signalised intersections using wireless vehicle detectors

    Directory of Open Access Journals (Sweden)

    Moses Kwasi Torkudzor

    2015-09-01

    Full Text Available Traffic congestion on roads wastes travel times and increases fuel consumption as well as gas emissions which are dangerous to human health. This has led to growing concern about environmental protection and energy conservation and a number of studies to increase fuel economy and reduce gas emissions. To increase travel times so as to reduce fuel consumption and gas emissions, traffic signals at intersections must be well implemented. It is therefore necessary to employ the current technology of wireless sensor networks to enhance the optimisation of the signalised intersections so as to address such a concern. In this study, a vehicular traffic control model was developed to optimise a signalised intersection, using wireless vehicle detectors. Real-time traffic volume gathered were analysed to obtain the peak hour traffic volume causing congestion. The intersection was modelled and simulated in Synchro7 as an actuated signalised model using results from the analysed data. The model for morning peak and evening peak periods gave optimal cycle lengths which result in the reduction of gas emissions, fuel consumption and delay at the intersection.

  4. Evaluation of emission characteristics and compliance of emission standards for in-use petrol driven vehicles in Delhi.

    Science.gov (United States)

    Sarin, S M; Singh, A; Sharma, N; Sharma, K; Shanmugum, P

    2001-01-01

    The tail pipe CO (carbon monoxide) and HC (hydrocarbon) emission characteristics of in-use petrol driven vehicles were evaluated between November 1996 through September 1997 in Delhi. A total of 4300 vehicles were checked at CRRI Pollution Checking Centre. Approximately 90% of the total vehicles meet the prescribed CO emission standards even without following routine I/M practices. The age of the vehicles appeared to have influence on the emission characteristics. The non-compliance level was found to be higher for older vehicles. Insignificant correlation was observed between CO and HC emissions for all categories of in-use petrol driven vehicles. The emission reduction (gain) in CO and HC emissions was observed for two wheelers equipped with four-stroke engines and four wheelers fitted with catalytic converters over their respective conventional vehicles. The observed high compliance levels indicate that existing tail pipe emission standards are lenient and need to be reviewed. The emission standards are proposed for different categories of in-use petrol driven vehicles.

  5. CORRELATION ANALYSIS OF DRIVING CONDITIONS AND ON-ROAD EMISSIONS TRENDS FOR VEHICLES

    Directory of Open Access Journals (Sweden)

    Jawad H. Al-rifai

    2017-01-01

    Full Text Available This paper presents the impact of road grade, vehicle speed, nu mber of vehicles and vehicle type on vehicle emissions. ANOVA analyses were conducte d among different driving conditions and vehicle emissions to discover the signif icant effects of driving conditions on measured emission rates. This study is intended t o improve the understanding of vehicle emission levels in Jordan. Gas emissio ns in real-world driving conditions were measured by a por table emissions measurement un it over six sections of an urban road. The road grade, speed, type and number of veh icles were found to have a significant influence on the rate of gas emissions. Road grade and diesel-fueled vehicles were positively correlate d with average emission rates . The average emission rates were higher at speeds ranging between 60–69 km/h than at three other speed ranges. The results of ANOVA showed a strong and consistent reg ression between rates of emissions measured and grade, speed and diesel vehicle parameters. The grade parameter contributed the most to the rate of emissions compare d to other parameters. Gasoline vehicles contributed the least.

  6. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.

    Science.gov (United States)

    Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T

    2017-12-01

    Today's heavy-duty natural gas-fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas-fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas-fueled fleet penetration is low, today's total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas-fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "pump-to-wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Newly collected pump-to-wheels methane emissions data for current natural gas technologies

  7. PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy

    Science.gov (United States)

    Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan

    2012-12-01

    Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.

  8. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Ma Hongrui; Balthasar, Felix; Tait, Nigel; Riera-Palou, Xavier; Harrison, Andrew

    2012-01-01

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  9. Investigation Of The Effects Of Heavy Metal Pollution In Black Sea Seaside Caused From Vehicles By Using Verbascum Sinuatum L. (Scrophulariaceae

    Directory of Open Access Journals (Sweden)

    Neslihan Duru

    2011-12-01

    Full Text Available In this study, the heavy metal pollution caused by vehicle traffic was investigated in the leaves of Verbascum sinuatum L.(Scrophulariaceae collected from the Blacksea coast ranging between Samsun, Ordu, Giresun, Trabzon, Rize and Hopa. Sample collection procedure was made in 23 stations in the related route. Heavy metal concentrations in the leaf samples of each station were determined with Perkin Emler Optic Emission Spectrometry (ICP-OES. Heavy metal concentration in samples was showed an order as Lead (Pb ; Zinc (Zn ; Chromium (Cr ; Nickel (Ni ; Copper (Cu ; Cadmium (Cd. The results of this study showed that the heavy metal accumulation in samples increased with an increase in traffic and V. sinuatum used as a biological indicator of this accumulation.

  10. Secondary organic aerosol formation from road vehicle emissions

    Science.gov (United States)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  11. Emission characteristics of petrol and diesel driven vehicles in Rewa town

    International Nuclear Information System (INIS)

    Mishra, R.M.; Gupta, A.K.; Parihar, Sarita

    1993-01-01

    Air pollution by road traffic is likely to be severe in most of the major cities of India, in near future. An emission survey was conducted in Rewa town to obtain the basic data on emission characteristics of inservice vehicles. About 250 two wheelers, 110 cars and 350 diesel vehicles were tested for the emissions of carbon monoxide and hydrocarbons. Present paper summarizes the data of vehicular emissions observed in this survey and discusses the emission level of different categories of vehicles, in the light of the proposed national standards and the emission standards enforced in developed countries. (author). 9 refs., 4 tabs

  12. 77 FR 1973 - Petition for Exemption From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A...

    Science.gov (United States)

    2012-01-12

    ... From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A., Inc. AGENCY: National Highway... effective in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of the Theft Prevention Standard 49 CFR part 541, Federal Motor Vehicle Theft Prevention Standard. FUSA...

  13. 78 FR 53498 - Petition for Exemption From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A...

    Science.gov (United States)

    2013-08-29

    ... From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A., Inc. AGENCY: National Highway... deterring motor vehicle theft as compliance with the parts-marking requirements of the Theft Prevention Standard 49 CFR part 541, Federal Motor Vehicle Theft Prevention Standard. FUSA requested confidential...

  14. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  15. Potential air pollutant emission from private vehicles based on vehicle route

    Science.gov (United States)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  16. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1993-01-01

    The study of intermediate-energy heavy-ion nuclear reactions is reported. This work has two foci: the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities and the study of the relevant reaction mechanisms. Nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has the following objectives: to study energy, mass, and angular momentum deposition by studying incomplete fusion reactions; to gain confidence in the understanding of how highly excited systems decompose by studying all emissions from the highly excited systems; to push these kinds of studies into the intermediate energy domain (where intermediate mass fragment emission is not improbable) with excitation function studies; and to learn about the dynamics of the decays using particle-particle correlations. The last effort focuses on simple systems, where definitive statements are possible. These avenues of research share a common theme, large complex fragment production. It is this feature, more than any other, which distinguishes the intermediate energy domain

  17. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  18. Comparison of real-world and certification emission rates for light duty gasoline vehicles.

    Science.gov (United States)

    Khan, Tanzila; Frey, H Christopher

    2018-05-01

    U.S. light duty vehicles are subject to the U.S. Environmental Protection Agency (EPA) emission standards. Emission compliance is determined by certification testing of selected emissions from representative vehicles on standard driving cycles using chassis dynamometers. Test results are also used in many emission inventories. The dynamometer based emission rates are adjusted to provide the certification levels (CL), which must be lower than the standards for compliance. Although standard driving cycles are based on specific observations of real-world driving, they are not necessarily real-world representative. A systematic comparison of the real-world emission rates of U.S. light duty gasoline vehicles (LDGVs) versus CL, and emission standards has not been previously reported. The purpose of this work is to compare regulatory limits (both CLs and emission standards) and the real-world emissions of LDGVs. The sensitivity of the comparisons to cold start emission was assessed. Portable Emission Measurement Systems (PEMS) were used to measure hot stabilized exhaust emissions of 122 LDGVs on a specified 110 mile test route. Cold start emissions were measured with PEMS for a selected vehicle sample of 32 vehicles. Emissions were measured for carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NO x ). For each vehicle, a Vehicle Specific Power (VSP) modal emission rate model was developed. The VSP modal rates were weighted by the standard driving cycles and real-world driving cycles to estimate the respective cycle average emission rates (CAERs). Measured vehicles were matched with certification test vehicles for comparison. For systematic trends in comparison, vehicles were classified into four groups based on the Tier 1 and Tier 2 emission regulation, and the vehicle type such as passenger car and passenger truck. Depending on the cycle-pollutant and the vehicle groups, hot stabilized CAERs are on average either statistically

  19. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    Science.gov (United States)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  20. On-road vehicle emissions and their control in China: A review and outlook.

    Science.gov (United States)

    Wu, Ye; Zhang, Shaojun; Hao, Jiming; Liu, Huan; Wu, Xiaomeng; Hu, Jingnan; Walsh, Michael P; Wallington, Timothy J; Zhang, K Max; Stevanovic, Svetlana

    2017-01-01

    The large (26-fold over the past 25years) increase in the on-road vehicle fleet in China has raised sustainability concerns regarding air pollution prevention, energy conservation, and climate change mitigation. China has established integrated emission control policies and measures since the 1990s, including implementation of emission standards for new vehicles, inspection and maintenance programs for in-use vehicles, improvement in fuel quality, promotion of sustainable transportation and alternative fuel vehicles, and traffic management programs. As a result, emissions of major air pollutants from on-road vehicles in China have peaked and are now declining despite increasing vehicle population. As might be expected, progress in addressing vehicle emissions has not always been smooth and challenges such as the lack of low sulfur fuels, frauds over production conformity and in-use inspection tests, and unreliable retrofit programs have been encountered. Considering the high emission density from vehicles in East China, enhanced vehicle, fuel and transportation strategies will be required to address vehicle emissions in China. We project the total vehicle population in China to reach 400-500 million by 2030. Serious air pollution problems in many cities of China, in particular high ambient PM 2.5 concentration, have led to pressure to accelerate the progress on vehicle emission reduction. A notable example is the draft China 6 emission standard released in May 2016, which contains more stringent emission limits than those in the Euro 6 regulations, and adds a real world emission testing protocol and a 48-h evaporation testing procedure including diurnal and hot soak emissions. A scenario (PC[1]) considered in this study suggests that increasingly stringent standards for vehicle emissions could mitigate total vehicle emissions of HC, CO, NO X and PM 2.5 in 2030 by approximately 39%, 57%, 59% and 79%, respectively, compared with 2013 levels. With additional actions

  1. A Vector Approach to Regression Analysis and Its Implications to Heavy-Duty Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2001-02-14

    An alternative approach is presented for the regression of response data on predictor variables that are not logically or physically separable. The methodology is demonstrated by its application to a data set of heavy-duty diesel emissions. Because of the covariance of fuel properties, it is found advantageous to redefine the predictor variables as vectors, in which the original fuel properties are components, rather than as scalars each involving only a single fuel property. The fuel property vectors are defined in such a way that they are mathematically independent and statistically uncorrelated. Because the available data set does not allow definitive separation of vehicle and fuel effects, and because test fuels used in several of the studies may be unrealistically contrived to break the association of fuel variables, the data set is not considered adequate for development of a full-fledged emission model. Nevertheless, the data clearly show that only a few basic patterns of fuel-property variation affect emissions and that the number of these patterns is considerably less than the number of variables initially thought to be involved. These basic patterns, referred to as ''eigenfuels,'' may reflect blending practice in accordance with their relative weighting in specific circumstances. The methodology is believed to be widely applicable in a variety of contexts. It promises an end to the threat of collinearity and the frustration of attempting, often unrealistically, to separate variables that are inseparable.

  2. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses

    Energy Technology Data Exchange (ETDEWEB)

    M.C.H. Lim; G.A. Ayoko; L. Morawska; Z.D. Ristovski; E.R. Jayaratne [Queensland University of Technology, Brisbane, Qld. (Australia). International Laboratory for Air Quality and Health, School of Physical and Chemical Sciences

    2007-08-15

    The effects of fuel characteristics and engine operating conditions on elemental composition of emissions from twelve heavy duty diesel buses have been investigated. Two types of diesel fuels - low sulfur diesel (LSD) and ultra low sulfur diesel (ULSD) fuels with 500 ppm and 50 ppm sulfur contents respectively and 3 driving modes corresponding to 25%, 50% and 100% power were used. Elements present in the tailpipe emissions were quantified by inductively coupled plasma mass spectrometry (ICPMS) and those found in measurable quantities included Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge. Multivariate analyses using multi-criteria decision making methods (MCDM), principal component analysis (PCA) and partial least squares (PLS) facilitated the extraction of information about the structure of the data. MCDM showed that the emissions of the elements were strongly influenced by the engine driving conditions while the PCA loadings plots showed that the emission factors of the elements were correlated with those of other pollutants such as particle number, total suspended particles, CO, CO{sub 2} and NOx. Partial least square analysis revealed that the emission factors of the elements were strongly dependent on the fuel parameters such as the fuel sulfur content, fuel density, distillation point and cetane index. Strong correlations were also observed between these pollutants and the engine power or exhaust temperature. The study provides insights into the possible role of fuel sulfur content in the emission of inorganic elements from heavy duty diesel vehicles. 39 refs., 1 fig., 4 tabs.

  3. Signal treatments to reduce heavy vehicle crash-risk at metropolitan highway intersections.

    Science.gov (United States)

    Archer, Jeffery; Young, William

    2009-05-01

    Heavy vehicle red-light running at intersections is a common safety problem that has severe consequences. This paper investigates alternative signal treatments that address this issue. A micro-simulation analysis approach was adopted as a precursor to a field trial. The simulation model emulated traffic conditions at a known problem intersection and provided a baseline measure to compare the effects of: an extension of amber time; an extension of green for heavy vehicles detected in the dilemma zone at the onset of amber; an extension of the all-red safety-clearance time based on the detection of vehicles considered likely to run the red light at two detector locations during amber; an extension of the all-red safety-clearance time based on the detection of potential red-light runners during amber or red; and a combination of the second and fourth alternatives. Results suggested safety improvements for all treatments. An extension of amber provided the best safety effect but is known to be prone to behavioural adaptation effects and wastes traffic movement time unnecessarily. A green extension for heavy vehicles detected in the dilemma zone and an all-red extension for potential red-light runners were deemed to provide a sustainable safety improvement and operational efficiency.

  4. Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations.

    Science.gov (United States)

    Kendall, Alissa; Price, Lindsay

    2012-03-06

    Beginning with model year 2012, light-duty vehicles sold in the U.S. are subject to new rules that regulate tailpipe greenhouse gas (GHG) emissions based on grams of CO(2)-equivalent per mile (gCO(2)e/mi). However, improvements in vehicle technology, lower-carbon fuels, and improvements in GHG accounting practices which account for distortions related to emissions timing all contribute to shifting a greater portion of life cycle emissions away from the vehicle use phase and toward the vehicle production phase. This article proposes methods for calculating time-corrected life cycle emissions intensity on a gCO(2)e/mi basis and explores whether regulating only tailpipe CO(2) could lead to an undesirable regulatory outcome, where technologies and vehicle architectures with higher life cycle GHGs are favored over technologies with lower life cycle emissions but with higher tailpipe GHG emissions. Two life cycle GHG assessments for future vehicles are presented in addition to time correction factors for production and end-of-life GHG emissions. Results demonstrate that, based on the vehicle designs considered here, there is a potential for favoring vehicles with higher life cycle emissions if only tailpipe emissions are regulated; moreover, the application of time correction factors amplifies the importance of production emissions and the potential for a perverse outcome.

  5. Motor Vehicle Emission Modeling and Software Simulation Computing for Roundabout in Urban City

    Directory of Open Access Journals (Sweden)

    Haiwei Wang

    2013-01-01

    Full Text Available In urban road traffic systems, roundabout is considered as one of the core traffic bottlenecks, which are also a core impact of vehicle emission and city environment. In this paper, we proposed a transport control and management method for solving traffic jam and reducing emission in roundabout. The platform of motor vehicle testing system and VSP-based emission model was established firstly. By using the topology chart of the roundabout and microsimulation software, we calculated the instantaneous emission rates of different vehicle and total vehicle emissions. We argued that Integration-Model, combing traffic simulation and vehicle emission, can be performed to calculate the instantaneous emission rates of different vehicle and total vehicle emissions at the roundabout. By contrasting the exhaust emissions result between no signal control and signal control in this area at the rush hour, it draws a conclusion that setting the optimizing signal control can effectively reduce the regional vehicle emission. The proposed approach has been submitted to a simulation and experiment that involved an environmental assessment in Satellite Square, a roundabout in medium city located in China. It has been verified that setting signal control with knowledge engineering and Integration-Model is a practical way for solving the traffic jams and environmental pollution.

  6. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    Science.gov (United States)

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  7. On-road vehicle emission control in Beijing: past, present, and future.

    Science.gov (United States)

    Wu, Ye; Wang, Renjie; Zhou, Yu; Lin, Bohong; Fu, Lixin; He, Kebin; Hao, Jiming

    2011-01-01

    Beijing, the capital of China, has experienced rapid motorization since 1990; a trend that is likely to continue. The growth in vehicles and the corresponding emissions create challenges to improving the urban air quality. In an effort to reduce the impact of vehicle emissions on urban air quality, Beijing has adopted a number of vehicle emission control strategies and policies since the mid 1990 s. These are classified into seven categories: (1) emission control on new vehicles; (2) emission control on in-use vehicles; (3) fuel quality improvements; (4) alternative-fuel and advanced vehicles; (5) economic policies; (6) public transport; and (7) temporal traffic control measures. Many have proven to be successful, such as the Euro emission standards, unleaded gasoline and low sulfur fuel, temporal traffic control measures during the Beijing Olympic Games, etc. Some, however, have been failures, such as the gasoline-to-LPG taxi retrofit program. Thanks to the emission standards for new vehicles as well as other controls, the fleet-average emission rates of CO, HC, NO(X), and PM(10) by each major vehicle category are decreasing over time. For example, gasoline cars decreased fleet-average emission factors by 12.5% for CO, 10.0% for HC, 5.8% for NO(X), and 13.0% for PM(10) annually since 1995, and such a trend is likely to continue. Total emissions for Beijing's vehicle fleet increased from 1995 to 1998. However, they show a clear and steady decrease between 1999 and 2009. In 2009, total emissions of CO, HC, NO(X), and PM(10) were 845,000 t, 121,000 t, 84,000 t, and 3700 t, respectively; with reductions of 47%, 49%, 47%, and 42%, relative to 1998. Beijing has been considered a pioneer in controlling vehicle emissions within China, similar to the role of California to the U.S. The continued rapid growth of vehicles, however, is challenging Beijing's policy-makers.

  8. How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?

    International Nuclear Information System (INIS)

    Zheng, Bo; Zhang, Qiang; Borken-Kleefeld, Jens; Huo, Hong; Guan, Dabo; Klimont, Zbigniew; Peters, Glen P.; He, Kebin

    2015-01-01

    Highlights: • We build a projection model to predict vehicular GHG emissions on provincial basis. • Fuel efficiency gains cannot constrain vehicle GHGs in major southern provinces. • We propose an integrated policy set through sensitivity analysis of policy options. • The policy set will peak GHG emissions of 90% provinces and whole China by 2030. - Abstract: Increasing emissions from road transportation endanger China’s objective to reduce national greenhouse gas (GHG) emissions. The unconstrained growth of vehicle GHG emissions are mainly caused by the insufficient improvement of energy efficiency (kilometers traveled per unit energy use) under current policies, which cannot offset the explosion of vehicle activity in China, especially the major southern provinces. More stringent polices are required to decline GHG emissions in these provinces, and thereby help to constrain national total emissions. In this work, we make a provincial-level projection for vehicle growth, energy demand and GHG emissions to evaluate vehicle GHG emission trends under various policy options in China and determine the way to constrain national emissions. Through sensitivity analysis of various single policies, we propose an integrated policy set to assure the objective of peak national vehicle GHG emissions be achieved around 2030. The integrated policy involves decreasing the use of urban light-duty vehicles by 25%, improving fuel economy by 25% by 2035 comparing 2020, and promoting electric vehicles and biofuels. The stringent new policies would allow China to constrain GHG emissions from road transport sector around 2030. This work provides a perspective to understand vehicle GHG emission growth patterns in China’s provinces, and proposes a strong policy combination to constrain national GHG emissions, which can support the achievement of peak GHG emissions by 2030 promised by the Chinese government

  9. Preliminary report to NEDO (April, 1995). California zero-emission vehicle program review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In 1998, auto manufacturers will be required to sell Zero Emission Vehicles (ZEVs) in California. The California Air Resources Board (CARB) adopted this mandate in 1990 and have endorsed it repeatedly since. The regulations establish four new vehicle categories; namely, TLEVs (transitional low emission vehicles), LEVs (low emission vehicles), ULEVs (ultra low emission vehicles), and ZEVs (zero emission vehicles). The opponents of the mandate including the auto manufacturers and the oil industry are increasingly optimistic that the mandates can be eliminated or delayed. National and state political trends support this optimism. However, supporters of the mandates insist that the CARB support the existing mandates. The CARB adopted a compromise measure that kept the mandates intact through the year 2003. The opponents argue that the mandates are neither economically nor technologically feasible. The CARB have become receptive towards the economic impact arguments presented by the oil/auto coalition. (NEDO)

  10. Impact of reformulated gasoline on emissions from current and future vehicles

    International Nuclear Information System (INIS)

    Colucci, J.M.; Benson, J.D.

    1993-01-01

    Gasolines reformulated specifically for reducing vehicle emissions will result in the most significant changes in the U.S. refining industry since the advent of unleaded gasoline. This paper will review the results from the Auto/Oil Air Quality Improvement Research Program showing the beneficial effects on vehicle emissions of individually decreasing gasoline aromatic, olefin and sulfur contents, 90% distillation temperature, and Reid vapor pressure, and of adding oxygenates. The paper discusses the importance of reformulated gasolines for reducing emissions from existing vehicles by complying with requirements in the Clean Air Act and California's Low Emission Vehicle/Clean Fuels Program. It will show the importance of controlling Vehicle/Clean Fuels Program. It will show the importance of controlling specific aromatic and olefin compounds in gasoline, and it will discuss how automotive manufacturers will utilize reformulated gasolines to meet future stringent vehicle emission standards

  11. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    Science.gov (United States)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  12. U.S. regional greenhouse gas emissions analysis comparing highly resolved vehicle miles traveled and CO2 emissions: mitigation implications and their effect on atmospheric measurements

    Science.gov (United States)

    Mendoza, D. L.; Gurney, K. R.

    2010-12-01

    for US census regions and individual states. At the national level, rural roads show a 5% higher CO2 relative fraction compared to the VMT relative fraction, mostly due to a 15% higher CO2 fraction on rural interstates as a result of a higher proportion of heavy-duty vehicles such as large trucks. The diesel vehicle fleet has a 62% higher CO2 fraction compared to VMT with the largest contributors being buses and the heaviest truck classes. The differences become larger when analyzed at the state level. For example, Tennessee has 30% higher CO2 fractions compared to VMT on rural interstates and New York has 175% higher CO2 fractions compared to VMT for the bus vehicle class. Using VMT as a proxy for CO2 emissions results in incorrect estimations of CO2 emissions because of the strong space and time variations in fleet composition and road type. At the national scale the differences among the two methods are very small, but the spatial signature of CO2 emitted by onroad traffic is very strong and highly dependent on the region which can be confirmed with atmospheric measurements from aircraft and flux towers.

  13. On-board measurements of emissions from light-duty gasoline vehicles in three mega-cities of China

    Science.gov (United States)

    Huo, Hong; Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Zhang, Qiang; Ding, Yan; He, Kebin

    2012-03-01

    This paper is the second in a series of three papers aimed at understanding the emissions of vehicles in China by conducting on-board emission measurements. This paper focuses on light-duty gasoline vehicles. In this study, we measured 57 light-duty gasoline vehicles (LDGVs) in three Chinese mega-cites (Beijing, Guangzhou, and Shenzhen), covering Euro 0 through Euro IV technologies, and generated CO, HC, and NOx emission factors and deterioration rates for each vehicle technology. The results show that the vehicle emission standards have played a significant role in reducing vehicle emission levels in China. The vehicle emission factors are reduced by 47-81%, 53-64%, 46-71%, and 78-82% for each phase from Euro I to Euro IV. Euro 0 vehicles have a considerably high emission level, which is hundreds of times larger than that of Euro IV vehicles. Three old taxis and four other Euro I and Euro II LDGVs are also identified as super emitters with equivalent emission levels to Euro 0 vehicles. Of the measured fleet, 23% super emitters were estimated to contribute 50-80% to total emissions. Besides vehicle emission standards, measures for restricting super emitters are equally important to reduce vehicle emissions. This study is intended to improve the understanding of the vehicle emission levels in China, but some key issues such as emission deterioration rates are yet to be addressed with the presence of a sufficient amount of vehicle emission measurements.

  14. Investigation on dynamical interaction between a heavy vehicle and road pavement

    Science.gov (United States)

    Yang, Shaopu; Li, Shaohua; Lu, Yongjie

    2010-08-01

    This paper presents a model for three-dimensional, heavy vehicle-pavement-foundation coupled system, which is modelled as a seven-DOF vehicle moving along a simply supported double-layer rectangular thin plate on a linear viscoelastic foundation. The vertical tyre force is described by a single point-contact model, while the pavement-foundation is modelled as a double-layer plate on a linear viscoelastic foundation. Using the Galerkin method and quick direct integral method, the dynamical behaviour of the vehicle-pavement-foundation coupled system is investigated numerically and compared with that of traditional vehicle system and pavement system. The effects of coupling action on vehicle body vertical acceleration, suspension deformations, tyre forces and pavement displacements are also obtained. The investigation shows that the coupling action could not be neglected even on a smooth road surface, such as highway. Thus, it is necessary to investigate the dynamics of vehicle and pavement simultaneously based on the vehicle-pavement-foundation coupled system.

  15. Experimental Verification of Discretely Variable Compression Braking Control for Heavy Duty Vehicles

    OpenAIRE

    Vahidi, Ardalan; Stefanopoulou, Anna G.; Farias, Phil; Tsao, Tsu Chin

    2003-01-01

    In this report a recursive least square scheme with multiple forgetting factors is proposed for on-line estimation of road grade and vehicle mass. The estimated mass and grade can be used to robustify many automatic controllers in conventional or automated heavy-duty vehicles. We demonstrate with measured test data from the July 26-27, 2002 test dates in San Diego, CA, that the proposed scheme estimates mass within 5% of its actual value and tracks grade with good accuracy. The experimental s...

  16. Application of GIS to modified models of vehicle emission dispersion

    Science.gov (United States)

    Jin, Taosheng; Fu, Lixin

    This paper reports on a preliminary study of the forecast and evaluation of transport-related air pollution dispersion in urban areas. Some modifications of the traditional Gauss dispersion models are provided, and especially a crossroad model is built, which considers the great variation of vehicle emission attributed to different driving patterns at the crossroad. The above models are combined with a self-developed geographic information system (GIS) platform, and a simulative system with graphical interfaces is built. The system aims at visually describing the influences on the urban environment by urban traffic characteristics and therefore gives a reference to the improvement of urban air quality. Due to the introduction of a self-developed GIS platform and a creative crossroad model, the system is more effective, flexible and accurate. Finally, a comparison of the simulated (predicted) and observed hourly concentration is given, which indicates a good simulation.

  17. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    Science.gov (United States)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  18. Design optimization of zero-emission vehicle chassis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Killing, D.; Saleh, F.; Kashani-Zadeh, H.; Kim, I.Y. [Queen' s Univ., Kingston, ON (Canada)

    2007-07-01

    This paper described the design of a zero emission chassis for a prototype 2-passenger, zero emission, 3 season drive-by-wire vehicle capable of driving at a speed of 60 km/h for up to 100 km. The chassis design was part of vehicle design project developed to improve collaboration tools and methodologies used by engineers in the automotive design field. The chassis was comprised of tube members in a truss structure to reduce equipment requirements. Design iterations were conducted to ensure that the chassis met with interior space requirements. Static and dynamic finite element analyses were used to minimize chassis weight, and to ensure that structural requirements were preserved. ANSYS implicit FEA simulation tools with specific loading configurations were then used to consider torsional stiffness, bending stiffness and natural frequency. A crashworthiness analysis was then conducted using explicit FEA analysis tools. The analysis focused on full frontal impact and considered maximum deceleration and the head injury criterion (HIC) over a specific time range. Non-structural mass elements were added in specific locations to address the low mass of the chassis. The chassis was then given an initial velocity of 48 km/h and impacted into a wall. Weight was chosen as the objective function for the pseudo-topology optimization process. Structural characteristics developed from the static and dynamic FEA were used as constraints, and cockpit dimensions were tracked. It was concluded that the weight of the chassis was reduced from 139 kg to 103.4 kg using the optimization process. 2 refs.

  19. Zero-emission vehicle technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T.

    1995-08-01

    This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

  20. Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles

    Science.gov (United States)

    Moussa, Samar G.; Leithead, Amy; Li, Shao-Meng; Chan, Tak W.; Wentzell, Jeremy J. B.; Stroud, Craig; Zhang, Junhua; Lee, Patrick; Lu, Gang; Brook, Jeffery R.; Hayden, Katherine; Narayan, Julie; Liggio, John

    2016-04-01

    Hydrogen cyanide (HCN) is considered a marker for biomass burning emissions and is a component of vehicle exhaust. Despite its potential health impacts, vehicular HCN emissions estimates and their contribution to regional budgets are highly uncertain. In the current study, Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) was used to measure HCN emission factors from the exhaust of individual diesel, biodiesel and gasoline vehicles. Laboratory emissions data as a function of fuel type and driving mode were combined with ambient measurement data and model predictions. The results indicate that gasoline vehicles have the highest emissions of HCN (relative to diesel fuel) and that biodiesel fuel has the potential to significantly reduce HCN emissions even at realistic 5% blend levels. The data further demonstrate that gasoline direct injection (GDI) engines emit more HCN than their port fuel injection (PFI) counterparts, suggesting that the expected full transition of vehicle fleets to GDI will increase HCN emissions. Ambient measurements of HCN in a traffic dominated area of Toronto, Canada were strongly correlated to vehicle emission markers and consistent with regional air quality model predictions of ambient air HCN, indicating that vehicle emissions of HCN are the dominant source of exposure in urban areas. The results further indicate that additional work is required to quantify HCN emissions from the modern vehicle fleet, particularly in light of continuously changing engine, fuel and after-treatment technologies.

  1. An integrated heavy metal emission inventory in Alsace and Baden-Wurtemberg

    International Nuclear Information System (INIS)

    Veaux, Ch.; Zundel, T.; Rentz, O.

    1997-01-01

    The emissions of the heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn into the air, water and by-products, caused by stationary combustion plants in Baden-Wurtemberg (Germany) and Alsace (France) aRe assessed. The main emphasis of the study is on the development of an adequate, process specific tool allowing to determine multi-media heavy metal emissions by bottom ash or slag, filter ash, by-products of the flue gas desulfurization device (FGD by-products), and flue gas from the use of fossil fuels in Baden-Wurtemberg and Alsace. The heavy metal mass streams are analysed systematically with regard to fuel composition, boiler type, operation mode and flue gas treatment devices to define representative plants with regard to the partitioning of heavy metal streams. For these representative plants, partition factors, which characterise the distribution of heavy metals streams. The emission factors are derived from the partition factors and the heavy concentrations in the fuels used. Then, the emission factors are associated with data on emission sources referring to the configuration of combustion installations and activity data (annual consumption of fuel) to assess the heavy metal emissions in the study region. Heavy metal emissions through bottom ash, filter ash, FGD by-products and flue gas as well as heavy metal deposition in plants are assessed for the sectors 'public power plants', industrial combustion' and 'domestic heating' for the base year 1992. The results are available for Baden-Wurtemberg and Alsace for each heavy metal, sector, emission pathway, and combustion technique. (authors)

  2. Heavy vehicle driver workload assessment. Task 7B, in-cab text message system and cellular phone use by heavy vehicle drivers in a part-task driving simulator

    Science.gov (United States)

    This report contains the results of a simulator study conducted to serve as a supplement to a National Highway Traffic Safety Administration (NHTSA) heavy vehicle driver workload field study. Its purpose was the evaluation of effects of cellular phon...

  3. Facing the Global Economic Crisis: the Case of Swedish Heavy Vehicle Subcontractors

    OpenAIRE

    Helmersson, Andreas; Radway, Robert

    2010-01-01

    In this paper, we investigate organisational responses to an economic crisis within a group of seven subcontractors in the Swedish heavy vehicle industry. Although the participating firms had similar exposures to an abrupt and severe shift in demand, their performances during the crisis varied extensively. One year after the crisis began, some firms were still encountering financial problems threatening their survival, yet others had orchestrated a recovery that was generating healthy cash fl...

  4. Heavy vehicle simulator operations: protocol for instrumentation, data collection and data storage - 2nd draft

    CSIR Research Space (South Africa)

    Jones, DJ

    2002-09-01

    Full Text Available The instrumentation used is discussed under the relevant sections. Keywords: Accelerated pavement testing (APT), Heavy Vehicle Simulator (HVS) Proposals for implementation: Follow protocol in all future HVS testing. Update as required... future HVS testing. The protocol discusses staffing, site selection and establishment, and data collection, analysis and storage. 1.2. Accelerated Pavement Testing Accelerated Pavement Testing (APT) can be described as a controlled application...

  5. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  6. 19 CFR 12.73 - Motor vehicle and engine compliance with Federal antipollution emission requirements.

    Science.gov (United States)

    2010-04-01

    ... requirements. This section is ancillary to the regulations of the U.S. Environmental Protection Agency (EPA.... Those regulations should be consulted for more detailed information concerning EPA emission requirements... and exclusions from emission requirements based on age of vehicle. The following motor vehicles...

  7. 76 FR 72404 - Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM10

    Science.gov (United States)

    2011-11-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9495-4] Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM 10 Maintenance Plan for Sacramento County; CA AGENCY: Environmental Protection Agency (EPA... found that the motor vehicle emissions budgets (MVEBs) for particulate matter with an aerodynamic...

  8. Particulate emission rates from light-duty vehicles in the South Coast Air Quality Management District

    International Nuclear Information System (INIS)

    Durbin, T.D.; Norbeck, J.M.; Smith, M.R.; Truex, T.J.

    1999-01-01

    This paper presents the results of a particulate emission rate study conducted on 129 light-duty gasoline and 19 light-duty diesel vehicles for the Coordinating Research Council's (CRC's) Project E-24-2. Total particulate emission rates for newer gasoline vehicles were low with modest increases with vehicle age and older technology. Average FTP particulate emission rates as a function of model year for gasoline vehicles were found to be 2.5 mg/mi for 1991 and newer models, 14.4 mg/mi for 1986--1990 models, 49.0 mg/mi for 1981--1985 models, and 33.8 mg/mi for 1980 and older models. High gaseous emitters were found to have approximately 5--10 times the particulate emission rates of normal emitters. The diesel vehicles had an average particulate emission rate of 561 mg/mi. It should be noted that the light-duty diesel vehicles were predominantly older, pre-1985 vehicles; the 1985 and newer diesel vehicles had substantially lower particulate emissions, i.e., less than 100 mg/mi. Emission inventory estimates in the South Coast Air Basin based on the fleet emission rates were higher than those obtained using the default values in EMFAC7G, due primarily to the contribution of high emitters

  9. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    International Nuclear Information System (INIS)

    Robert J. Englar

    2000-01-01

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model

  10. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  11. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data

    International Nuclear Information System (INIS)

    Gately, Conor K.; Hutyra, Lucy R.; Peterson, Scott; Sue Wing, Ian

    2017-01-01

    On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the ‘excess’ emissions from traffic congestion, finding modest congestion enhancement (3–6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated ‘excess’ consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. - Highlights: • A high resolution, bottom-up inventory of

  12. Heavy vehicle simulator (HVS) evaluation of load transfer efficiency and continuously reinforced concrete inlays on the N3 near Pietermartizburg

    CSIR Research Space (South Africa)

    Du Plessis, L

    2006-07-01

    Full Text Available The paper addresses two different heavy Vehicle Simulator (HVS) studies conducted on concrete: Load transfer through aggregate interlock and the use of dowels and the evaluation of the performance of an in-service continuously reinforced concrete...

  13. Self regulation initiative in heavy vehicle transport to address road safety, accelerated road deterioration and transport productivity in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2006-06-01

    Full Text Available Heavy vehicle overloading and road safety continue to be major problems in South Africa notwithstanding efforts at more effective enforcement by the road and traffic authorities. Overloading causes premature road deterioration and, together...

  14. Real-world emissions of in-use off-road vehicles in Mexico.

    Science.gov (United States)

    Zavala, Miguel; Huertas, Jose Ignacio; Prato, Daniel; Jazcilevich, Aron; Aguilar, Andrés; Balam, Marco; Misra, Chandan; Molina, Luisa T

    2017-09-01

    Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO 2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20-60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off

  15. Comparisons of the nanoparticle emission characteristics between GDI and PFI vehicles

    International Nuclear Information System (INIS)

    Jang, Jihwan; Lee, Jongtae; Kim, Jeongsoo; Park, Sungwook

    2015-01-01

    To compare the particle emissions of gasoline direct injection (GDI) and port fuel injection (PFI) vehicles in this study, the particulate matter of exhaust emissions was sampled from a constant volume sampler tunnel and tailpipe using a chassis dynamometer. Using the gravimetric method and a condensation particle counter, the particulate matter mass (PM) and particle number (PN) of the particle size according to the current regulations were measured. Nanometer-sized particle emissions, which are smaller than regulated particle emissions, were measured by an engine exhaust particle sizer. Four test vehicles, which included two GDI vehicles and two PFI vehicles, were tested in various driving modes. The test results show that the particle emissions from the GDI vehicles were higher than the particle emissions from the PFI vehicles. In addition, the test vehicles had the highest emissions in cold start conditions. In the GDI vehicles, the PM and PN satisfied the current regulations but PN did not satisfy the EURO 6c regulations that will be implemented in 2017. In all driving modes, the particle size distribution show that the most common particle size was approximately 50 nm, and the results according to the driving patterns of each mode were confirmed

  16. Comparisons of the nanoparticle emission characteristics between GDI and PFI vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jihwan [Graduate School of Hanyang University (Korea, Republic of); Lee, Jongtae; Kim, Jeongsoo [National Institute of Environmental Research (Korea, Republic of); Park, Sungwook, E-mail: parks@hanyang.ac.kr [Hanyang University, School of Mechanical Engineering (Korea, Republic of)

    2015-12-15

    To compare the particle emissions of gasoline direct injection (GDI) and port fuel injection (PFI) vehicles in this study, the particulate matter of exhaust emissions was sampled from a constant volume sampler tunnel and tailpipe using a chassis dynamometer. Using the gravimetric method and a condensation particle counter, the particulate matter mass (PM) and particle number (PN) of the particle size according to the current regulations were measured. Nanometer-sized particle emissions, which are smaller than regulated particle emissions, were measured by an engine exhaust particle sizer. Four test vehicles, which included two GDI vehicles and two PFI vehicles, were tested in various driving modes. The test results show that the particle emissions from the GDI vehicles were higher than the particle emissions from the PFI vehicles. In addition, the test vehicles had the highest emissions in cold start conditions. In the GDI vehicles, the PM and PN satisfied the current regulations but PN did not satisfy the EURO 6c regulations that will be implemented in 2017. In all driving modes, the particle size distribution show that the most common particle size was approximately 50 nm, and the results according to the driving patterns of each mode were confirmed.

  17. Comparisons of the nanoparticle emission characteristics between GDI and PFI vehicles

    Science.gov (United States)

    Jang, Jihwan; Lee, Jongtae; Kim, Jeongsoo; Park, Sungwook

    2015-12-01

    To compare the particle emissions of gasoline direct injection (GDI) and port fuel injection (PFI) vehicles in this study, the particulate matter of exhaust emissions was sampled from a constant volume sampler tunnel and tailpipe using a chassis dynamometer. Using the gravimetric method and a condensation particle counter, the particulate matter mass (PM) and particle number (PN) of the particle size according to the current regulations were measured. Nanometer-sized particle emissions, which are smaller than regulated particle emissions, were measured by an engine exhaust particle sizer. Four test vehicles, which included two GDI vehicles and two PFI vehicles, were tested in various driving modes. The test results show that the particle emissions from the GDI vehicles were higher than the particle emissions from the PFI vehicles. In addition, the test vehicles had the highest emissions in cold start conditions. In the GDI vehicles, the PM and PN satisfied the current regulations but PN did not satisfy the EURO 6c regulations that will be implemented in 2017. In all driving modes, the particle size distribution show that the most common particle size was approximately 50 nm, and the results according to the driving patterns of each mode were confirmed.

  18. Electrically heated catalysts for cold-start emission control on gasoline- and methanol-fueled vehicles

    International Nuclear Information System (INIS)

    Heimrich, M.J.; Albu, S.; Ahuja, M.

    1992-01-01

    Cold-start emissions from current technology vehicles equipped with catalytic converters can account for over 80 percent of the emissions produced during the Federal Test Procedure (FTP). Excessive pollutants can be emitted for a period of one to two minutes following cold engine starting, partially because the catalyst has not reached an efficient operating temperature. Electrically heated catalysts, which are heated prior to engine starting, have been identified as a potential strategy for controlling cold-start emissions. This paper summarizes the emission results of three gasoline-fueled and three methanol-fueled vehicles equipped with electrically heated catalyst systems. Results from these vehicles demonstrate that heated catalyst technology can provide FTP emission levels of nonmethane organic gases (NMOG), carbon monoxide (CO), and oxides of nitrogen (NO x ) that show promise of meeting the Ultra-Low Emission Vehicle (ULEV) standards established by the California Air Resources Board

  19. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1992-01-01

    Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production

  20. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  1. Light-particle emission and heavy residues from nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Caplar, R.; Hoelbling, S.; Gentner, R.; Lassen, L.; Oberstedt, A.

    1991-01-01

    We have investigated the interrelation between light-particle multiplicities and mass resp. charge distributions of heavy residues from complete and incomplete fusion of heavy ions. We have shown that a simple statistical model provides the possibility of quantitatively correlating heavy-residue distributions and corresponding light-particle multiplicities both at the Coulomb barrier and at higher energies where preequilibrium emission occurs. (author). 8 refs, 4 figs, 1 tab

  2. The Story of Ever Diminishing Vehicle Tailpipe Emissions as Observed in the Chicago, Illinois Area.

    Science.gov (United States)

    Bishop, Gary A; Haugen, Molly J

    2018-05-15

    The University of Denver has collected on-road fuel specific vehicle emissions measurements in the Chicago area since 1989. This nearly 30 year record illustrates the large reductions in light-duty vehicle tailpipe emissions and the remarkable improvements in emissions control durability to maintain low emissions over increasing periods of time. Since 1989 fuel specific carbon monoxide (CO) emissions have been reduced by an order of magnitude and hydrocarbon (HC) emissions by more than a factor of 20. Nitric oxide (NO) emissions have only been collected since 1997 but have seen reductions of 79%. This has increased the skewness of the emissions distribution where the 2016 fleet's 99th percentile contributes ∼3 times more of the 1990 total for CO and HC emissions. There are signs that these reductions may be leveling out as the emissions durability of Tier 2 vehicles in use today has almost eliminated the emissions reduction benefit of fleet turnover. Since 1997, the average age of the Chicago on-road fleet has increased 2 model years and the percentage of passenger vehicles has dropped from 71 to 52% of the fleet. Emissions are now so well controlled that the influence of driving mode has been completely eliminated as a factor for fuel specific CO and NO emissions.

  3. Bridge Expansion Joint in Road Transition Curve: Effects Assessment on Heavy Vehicles

    Directory of Open Access Journals (Sweden)

    Paola Di Mascio

    2017-06-01

    Full Text Available Properly-designed road surfaces provide a durable surface on which traffic can pass smoothly and safely. In fact, the main causes that determine the structural decay of the pavement and its parts are the traffic loads. These repeated actions can create undesirable unevennesses on the road surface, which induce vertical accelerations on vehicles, up to hindering contact between pavement and tire, with dangerous consequences on traffic safety. The dynamic actions transmitted by the vehicles depend on these irregularities: often, a bridge expansion joint (BEJ, introducing a necessary discontinuity between different materials, determines from the beginning a geometric irregularity in the running surface. Besides, some structural conditions could emphasize the problem (e.g., local cracking due to the settlement of the subgrade near the abutment or the discontinuity of stiffness due to the presence of different materials. When the BEJ is located in a transition curve, an inevitable vertical irregularity between road and joint can reach values of some centimeters, with serious consequences for the road safety. This paper deals with the analysis of a case study of a BEJ. Several test surveys were performed in order to fully characterize the effects on both vehicles and pavement. The three-dimensional representation of the pavement surface and the acceleration measurements on a heavy test vehicle were performed to analyze the joint behavior under traffic. Finally, a finite element model was implemented to evaluate the stress contribution on vehicle components induced by the vertical irregularities.

  4. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  5. A Study on BC Emission from Vehicles using Different Types of Fuel

    Science.gov (United States)

    Kim, K.; Son, J.; Kim, J.; Kim, S.; Park, G.; Sung, K.; Kim, I.; Chung, T.; Park, T.; Kang, S.; Ban, J.; Kim, J.; Hong, Y. D.; Woo, J. H.; Lee, T.

    2017-12-01

    Black carbon (BC) is an anthropogenic aerosol from fossil fuels, and biomass burning. It absorbs solar radiation, and heats the atmosphere leading 0.4W m-2 radiative forcing. BC is a particle that can cause serious effects on human body as well. Toxicological studies of black carbon suggests that BC may be an important carrier of toxic chemicals to human body. The recent researches show that one of the main precursor of BC is vehicle emission, but the inventory of BC emission rate from vehicle is inadequate in South Korea. This study tries to find differences of BC emission from different sizes of vehicles using different types of fuels. Fuels used in vehicles are gasoline, liquefied petroleum gas (LPG), and diesel. BC was directly measured from the tail pipe of vehicles using Aethalometer (AE33, Magee Scientific Corporation). This study was conducted in Transport Pollutant Research Center, National Institute of Environmental Research, South Korea. Measurement was progressed with the five different test modes of speeds. Speed modes includes 4.7, 17.3, 34.1, 65.4, and 97.3 km h-1. Emission rate of BC was high in the slowest speed mode, and showed decrease with increase of the speed of vehicles. Gasoline vehicles had the relatively higher emission rate of BC than the LPG vehicle, while the emission rate of BC for Diesel with DPF (Diesel Particle Filter) was observed to be the lowest.

  6. Effect of interactions between vehicles and pedestrians on fuel consumption and emissions

    Science.gov (United States)

    Li, Xiang; Sun, Jian-Qiao

    2014-12-01

    This paper presents a study of variations of fuel consumption and emissions of vehicles due to random street crossings of pedestrians. The pedestrian and vehicle movement models as well as the interaction model between the two entities are presented. Extensive numerical simulations of single and multiple cars are carried out to investigate the traffic flow rate, vehicle average speed, fuel consumption, CO, HC and NOx emissions. Generally more noncompliant road-crossings of pedestrians lead to higher level of fuel consumptions and emissions of vehicles, and the traffic situation can be improved by imposing higher vehicle speed limit to some extent. Different traffic characteristics in low and high vehicle density regions are studied. The traffic flow is more influenced by crossing pedestrians in the low vehicle density region, while in the high vehicle density region, the interactions among vehicles dominate. The main contribution of this paper lies in the qualitative analysis of the impact of the interactions between pedestrians and vehicles on the traffic, its energy economy and emissions.

  7. Omnidirectional configuration and control approach on mini heavy loaded forklift autonomous guided vehicle

    Directory of Open Access Journals (Sweden)

    Adam Norsharimie

    2017-01-01

    Full Text Available This paper presents the omnidirectional configuration and control approach on Mini Heavy Loaded Forklift Autonomous Guided Vehicle (MHeLFAGV for flexibility maneuverability in confine and narrow area. The issue in turning motion for nonholonomic vehicle in confine area becoming a motivation in MHeLFAGV design to provide holonomic vehicle with flexible movement. Therefore an omni-wheeled named Mecanum wheel has been configured in this vehicle design as well as omnidirectional control algorithm. MHeLFAGV system is developed with collaboration and inspired from Vacuumshmelze (M Sdn. Bhd. Pekan, Pahang in order to have a customized mini forklift that able to work in a very confined warehouse (170cm × 270cm square with heavy payload in a range of 20-200kg. In electronics control design, two stages of controller boards are developed namely as Board 1 and 2 that specifically for movement controller board and monitoring controller board respectively. In addition separate module of left, right, forward, backward, diagonal and zigzagging movement is developed as embedded modules for MHeLFAGV system’s control architecture. A few experiments are done to verify the algorithm for each omnidirectional movement of MHeLFAGV system in the wide area. The waypoint of MHeLFAGV movement is plotted using Global Positioning System (GPS as well as a digital compass by mapping the longitude and latitude of the vehicle. There are slightly different between the targeted movements with recorded data since Mecanum wheeled affected by the uneven surface of the landscape. The experiment is also further on moving in confine are on the actual targeted warehouse.

  8. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Science.gov (United States)

    2013-04-08

    ...The EPA is announcing two public hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''), which will be published separately in the Federal Register. The hearings will be held in Philadelphia, PA on April 24, 2013 and in Chicago, IL on April 29, 2013. The comment period for the proposed rulemaking will end on June 13, 2013.

  9. Auto-vehicles and environment: Emission limits and innovative technology

    International Nuclear Information System (INIS)

    Pinchera, G.

    1992-01-01

    Brief descriptions are given of the main design and performance characteristics and maintenance requirements of the principal types of catalytic converters currently being marketed in Italy. An assessment is made of the contribution of these devices to air pollution abatement in Italy as car owners conform to recently passed stricter emission limits. A historical review is made of trends in auto-vehicle pollution limits in the USA and Italy. Comparisons are made of efforts by industrialized countries to reduce air pollution in the transportation sector. Here, the author notes the slowness of Italy's response to the air pollution problem, in particular, this foreign-oil-dependent Nation's over-emphasis on energy consuming and highly polluting road transport systems, as well as, its lack of technology utilization and commercialization in the pollution equipment sector. Suggestions are made as to ways to overcome the worsening situation with regard to urban area traffic derived air pollution, e.g., the bolstering of mass transit systems and more R ampersand D investment in pollution abatement technologies

  10. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China.

    Science.gov (United States)

    Hong-Li, Wang; Sheng-Ao, Jing; Sheng-Rong, Lou; Qing-Yao, Hu; Li, Li; Shi-Kang, Tao; Cheng, Huang; Li-Ping, Qiao; Chang-Hong, Chen

    2017-12-31

    Volatile Organic Compounds (VOCs) source profiles of on-road vehicles were widely studied as their critical roles in VOCs source apportionment and abatement measures in megacities. Studies of VOCs source profiles from on-road motor vehicles from 2001 to 2016 were summarized in this study, with a focus on the comparisons among different studies and the potential impact of different factors. Generally, non-methane hydrocarbons dominated the source profile of on-road vehicle emissions. Carbonyls, potential important components of vehicle emission, were seldom considered in VOCs emissions of vehicles in the past and should be paid more attention to in further study. VOCs source profiles showed some variations among different studies, and 6 factors were extracted and studied due to their impact to VOCs source profile of on-road vehicles. Vehicle types, being dependent on engine types, and fuel types were two dominant factors impacting VOCs sources profiles of vehicles. In comparison, impacts of ignitions, driving conditions and accumulated mileage were mainly due to their influence on the combustion efficiency. An opening and interactive database of VOCs from vehicle emissions was critically essential in future, and mechanisms of sharing and inputting relative research results should be formed to encourage researchers join the database establishment. Correspondingly, detailed quality assurance and quality control procedures were also very important, which included the information of test vehicles and test methods as detailed as possible. Based on the community above, a better uncertainty analysis could be carried out for the VOCs emissions profiles, which was critically important to understand the VOCs emission characteristics of the vehicle emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet

    International Nuclear Information System (INIS)

    Hao, Han; Wang, Hewu; Ouyang, Minggao

    2011-01-01

    Passenger vehicles are the main consumers of gasoline in China. We established a bottom-up model which focuses on the simulation of energy consumptions and greenhouse gas (GHG) emissions growth by China’s passenger vehicle fleet. The fuel conservation and GHG emissions mitigation effects of five measures including constraining vehicle registration, reducing vehicle travel, strengthening fuel consumption rate (FCR) limits, vehicle downsizing and promoting electric vehicle (EV) penetration were evaluated. Based on the combination of these measures, the fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were analyzed. Under reference scenario with no measures implemented, the fuel consumptions and life cycle GHG emissions will reach 520 million tons of oil equivalent (Mtoe) and 2.15 billion tons in 2050, about 8.1 times the level in 2010. However, substantial fuel conservation can be achieved by implementing the measures. By implementing all five measures together, the fuel consumption will reach 138 Mtoe in 2030 and decrease to 126 Mtoe in 2050, which is only 37.1% and 24.3% of the consumption under reference scenario. Similar potential lies in GHG mitigation. The results and scenarios provided references for the Chinese government’s policy-making. -- Highlights: ► We established a bottom-up model to simulate the fuel consumptions and GHG (Greenhouse gas) emissions growth by China’s passenger vehicle fleet. ► Five measures including constraining vehicle registration, reducing vehicle travel, improving fuel efficiency, vehicle downsizing and promoting EV penetration were evaluated. ► The fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were provided as references for policy-making.

  12. Estimation of the emission factors of PAHs by traffic with the model of atmospheric dispersion and deposition from heavy traffic road.

    Science.gov (United States)

    Ozaki, N; Tokumitsu, H; Kojima, K; Kindaichi, T

    2007-01-01

    In order to consider the total atmospheric loadings of the PAHs (polycyclic aromatic hydrocarbons) from traffic activities, the emission factors of PAHs were estimated and from the obtained emission factors and vehicle transportation statistics, total atmospheric loadings were integrated and the loadings into the water body were estimated on a regional scale. The atmospheric concentration of PAHs was measured at the roadside of a road with heavy traffic in the Hiroshima area in Japan. The samplings were conducted in summer and winter. Atmospheric particulate matters (fine particle, 0.6-7 microm; coarse particle, over 7 microm) and their PAH concentration were measured. Also, four major emission sources (gasoline and diesel vehicle emissions, tire and asphalt debris) were assumed for vehicle transportation activities, the chemical mass balance method was applied and the source partitioning at the roadside was estimated. Furthermore, the dispersion of atmospheric particles from the vehicles was modelled and the emission factors of the sources were determined by the comparison to the chemical mass balance results. Based on emission factors derived from the modelling, an atmospheric dispersion model of nationwide scale (National Institute of Advanced Industrial Science and Technology - Atmospheric Dispersion Model for Exposure and Risk assessment) was applied, and the atmospheric concentration and loading to the ground were calculated for the Hiroshima Bay watershed area.

  13. Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation

    Science.gov (United States)

    Shah, Izhar Hussain; Zeeshan, Muhammad

    2016-02-01

    Light Duty Vehicles (LDVs) hold a major share in Islamabad's vehicle fleet and their contribution towards air pollution has not been analyzed previously. Emissions for the base year (2014) and two optimistic 'what-if' scenarios were estimated by using the International Vehicle Emissions (IVE) model. Considering the recent implementation of Euro II as emission standard in Pakistan, scenario 1 assumed entire LDV fleet meeting at least Euro II standards while scenario 2 assumed all LDVs meeting Euro IV standards except motorcycles which would be meeting Euro III emission standards. Higher average age for all vehicles and lower share of Euro compliant vehicles was found in the base case. Low engine stress mode (lower speeds with frequent decelerations) was observed for all vehicles especially on arterials and residential roads. Highest overall emissions (59%) were observed on arterials, followed by residential roads (24%) and highways (17%) with higher emissions observed during morning (8-10 am) and evening (4-6 pm) rush hours. Composite emission factors were also calculated. Results reveal that 1094, 147, 11.1, 0.2 and 0.4 kt of CO2, CO, NOx, SO2 and PM10 respectively were emitted in 2014 by LDVs. Compared with the base year, scenario 1 showed a reduction of 9%, 69%, 73%, 13% and 31%, while scenario 2 exhibited a reduction of 5%, 92%, 90%, 92% and 81% for CO2, CO, NOx, SO2 and PM10 respectively. As compared to the base year, a 20 year CO2-equivalent Global Warming Potential (GWP) reduced by 55% and 64% under scenario 1 and 2 respectively, while a 100 year GWP reduced by 40% and 44% under scenario 1 and 2 respectively. Our results demonstrated significant co-benefits that could be achieved in emission reduction and air quality improvement in the city by vehicle technology implementation.

  14. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    Science.gov (United States)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  15. Modeling and predicting low-speed vehicle emissions as a function of driving kinematics.

    Science.gov (United States)

    Hao, Lijun; Chen, Wei; Li, Lei; Tan, Jianwei; Wang, Xin; Yin, Hang; Ding, Yan; Ge, Yunshan

    2017-05-01

    An instantaneous emission model was developed to model and predict the real driving emissions of the low-speed vehicles. The emission database used in the model was measured by using portable emission measurement system (PEMS) under actual traffic conditions in the rural area, and the characteristics of the emission data were determined in relation to the driving kinematics (speed and acceleration) of the low-speed vehicle. The input of the emission model is driving cycle, and the model requires instantaneous vehicle speed and acceleration levels as input variables and uses them to interpolate the pollutant emission rate maps to calculate the transient pollutant emission rates, which will be accumulated to calculate the total emissions released during the whole driving cycle. And the vehicle fuel consumption was determined through the carbon balance method. The model predicted the emissions and fuel consumption of an in-use low-speed vehicle type model, which agreed well with the measured data. Copyright © 2016. Published by Elsevier B.V.

  16. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    Science.gov (United States)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  17. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    Science.gov (United States)

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  18. Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

    2010-06-01

    Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

  19. Accidents in The Netherlands involving heavy motor vehicles : an analysis concerning underrun protection of rear ends, compared to the sides and the front ends. On behalf of RDW Vehicle Technology & Information Centre.

    NARCIS (Netherlands)

    Kampen, L.T.B. van

    1998-01-01

    In this report accident data concerning heavy vehicles (all motor vehicles with a total weight of more than 3500 kg) are studied. Special attention is given to the question whether accidents involving heavy motor vehicles gave specific reason for concern regarding other road users with respect to

  20. Evaluation of On-Road Vehicle Emission Trends in the United States

    Science.gov (United States)

    Harley, R. A.; Dallmann, T. R.; Kirchstetter, T.

    2010-12-01

    Mobile sources contribute significantly to emissions of nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM2.5), and black carbon (BC). These emissions lead to a variety of environmental problems including air pollution and climate change. At present, national and state-level mobile source emission inventories are developed using statistical models to predict emissions from large and diverse populations of vehicles. Activity is measured by total vehicle-km traveled, and pollutant emission factors are predicted based on laboratory testing of individual vehicles. Despite efforts to improve mobile source emission inventories, they continue to have large associated uncertainties. Alternate methods, such as the fuel-based approach used here, are needed to evaluate estimates of mobile source emissions and to help reduce uncertainties. In this study we quantify U.S. national emissions of NOx, CO, PM2.5, and BC from on-road diesel and gasoline vehicles for the years 1990-2010, including effects of a weakened national economy on fuel sales and vehicle travel from 2008-10. Pollutant emissions are estimated by multiplying total amounts of fuel consumed with emission factors expressed per unit of fuel burned. Fuel consumption is used as a measure of vehicle activity, and is based on records of taxable fuel sales. Pollutant emission factors are derived from roadside and tunnel studies, remote sensing measurements, and individual vehicle exhaust plume capture experiments. Emission factors are updated with new results from a summer 2010 field study conducted at the Caldecott tunnel in the San Francisco Bay Area.

  1. Comparative field evaluation of vehicle cruise speed and acceleration level impacts on hot stabilized emissions

    International Nuclear Information System (INIS)

    El-Shawarby, Ihab; Ahn, Kyoungho; Rakha, Hesham

    2005-01-01

    The main objectives of this paper are two fold. First, the paper evaluates the impact of vehicle cruise speed and acceleration levels on vehicle fuel-consumption and emission rates using field data gathered under real-world driving conditions. Second, it validates the VT-Micro model for the modeling of real-world conditions. Specifically, an on-board emission-measurement device was used to collect emissions of oxides of nitrogen, hydrocarbons, carbon monoxide, and carbon dioxide using a light-duty test vehicle. The analysis demonstrates that vehicle fuel-consumption and emission rates per-unit distance are optimum in the range of 60-90 km/h, with considerable increase outside this optimum range. The study demonstrates that as the level of aggressiveness for acceleration maneuvers increases, the fuel-consumption and emission rates per maneuver decrease because the vehicle spends less time accelerating. However, when emissions are gathered over a sufficiently long fixed distance, fuel-consumption and mobile-source emission rates per-unit distance increase as the level of acceleration increases because of the history effects that accompany rich-mode engine operations. In addition, the paper demonstrates the validity of the VT-Micro framework for modeling steady-state vehicle fuel-consumption and emission behavior. Finally, the research demonstrates that the VT-Micro framework requires further refinement to capture non-steady-state history behavior when the engine operates in rich mode. (Author)

  2. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles

    International Nuclear Information System (INIS)

    Karlsson, Hua Lu

    2004-01-01

    In this paper, three unregulated components, ammonia, nitrous oxide and hydrogen cyanide, emitted from five passenger vehicles are investigated. With focus upon emission factors from existing production technology, vehicles produced between 1989 and 1998 with considerable mileage (7000 to 280,000) are chosen. Among the five vehicles, four were sold in the European market, whereas one was sold in the US market. The vehicles are tested on a chassis dynamometer. An EU2000 Driving Cycle (NEDC) and a US Urban Driving Cycle (UDC) of the Federal Test Procedure 75 (FTP-75) are used in the study. The regulated emissions are measured using a Horiba Mexa series. Unregulated emissions, ammonia (NH 3 ), nitrous oxide (N 2 O) and hydrogen cyanide (HCN) are analysed by mass spectrometer, gas chromatography and CNT-NA, TIM315-74W method, respectively. Both the unregulated emissions and the regulated emissions show driving cycle dependency; and they are also improved with newer vehicle and emission control technology. However, a gasoline direct injection vehicle (relatively new technology in this study) has rather high regulated emissions, whereas the NH 3 , N 2 O and HCN emissions are low

  3. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles.

    Science.gov (United States)

    Karlsson, Hua Lu

    2004-12-01

    In this paper, three unregulated components, ammonia, nitrous oxide and hydrogen cyanide, emitted from five passenger vehicles are investigated. With focus upon emission factors from existing production technology, vehicles produced between 1989 and 1998 with considerable mileage (7000 to 280,000) are chosen. Among the five vehicles, four were sold in the European market, whereas one was sold in the US market. The vehicles are tested on a chassis dynamometer. An EU2000 Driving Cycle (NEDC) and a US Urban Driving Cycle (UDC) of the Federal Test Procedure 75 (FTP-75) are used in the study. The regulated emissions are measured using a Horiba Mexa series. Unregulated emissions, ammonia (NH(3)), nitrous oxide (N(2)O) and hydrogen cyanide (HCN) are analysed by mass spectrometer, gas chromatography and CNT-NA, TIM315-74W method, respectively. Both the unregulated emissions and the regulated emissions show driving cycle dependency; and they are also improved with newer vehicle and emission control technology. However, a gasoline direct injection vehicle (relatively new technology in this study) has rather high regulated emissions, whereas the NH(3), N(2)O and HCN emissions are low.

  4. Pre-equilibrium (exciton) model and the heavy-ion reactions with cluster emission

    CERN Document Server

    Betak, E

    2015-01-01

    We bring the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model enlarged for considering also the heavy ion collisions. At this moment, the calculations have been done without treatment of angular momentum variables, but all the approach can be straightforwardly applied to heavy-ion reactions with cluster emission including the angular momentum variables. The direct motivation of this paper is a possibility of producing the superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, $\\alpha$-particles).

  5. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies

    International Nuclear Information System (INIS)

    Tarroja, Brian; Shaffer, Brendan; Samuelsen, Scott

    2015-01-01

    Alternative vehicles must appropriately interface with the electric grid and renewable generation to contribute to decarbonization. This study investigates the impact of infrastructure configurations and management strategies on the vehicle–grid interface and vehicle greenhouse gas reduction potential with regard to California's Executive Order S-21-09 goal. Considered are battery electric vehicles, gasoline-fueled plug-in hybrid electric vehicles, hydrogen-fueled fuel cell vehicles, and plug-in hybrid fuel cell vehicles. Temporally resolved models of the electric grid, electric vehicle charging, hydrogen infrastructure, and vehicle powertrain simulations are integrated. For plug-in vehicles, consumer travel patterns can limit the greenhouse gas reductions without smart charging or energy storage. For fuel cell vehicles, the fuel production mix must be optimized for minimal greenhouse gas emissions. The plug-in hybrid fuel cell vehicle has the largest potential for emissions reduction due to smaller battery and fuel cells keeping efficiencies higher and meeting 86% of miles on electric travel keeping the hydrogen demand low. Energy storage is required to meet Executive Order S-21-09 goals in all cases. Meeting the goal requires renewable capacities of 205 GW for plug-in hybrid fuel cell vehicles and battery electric vehicle 100s, 255 GW for battery electric vehicle 200s, and 325 GW for fuel cell vehicles. - Highlights: • Consumer travel patterns limit greenhouse gas reductions with immediate charging. • Smart charging or energy storage are required for large greenhouse gas reductions. • Fuel cells as a plug-in vehicle range extender provided the most greenhouse gas reductions. • Energy storage is required to meet greenhouse gas goals regardless of vehicle type. • Smart charging reduces the required energy storage size for a given greenhouse gas goal

  6. Assessment of risks for elevated NOx emissions of diesel vehicles outside the boundaries of RDE. Identifying relevant driving and vehicle conditions and possible abatement measures

    NARCIS (Netherlands)

    Mensch, P. van; Cuelenaere, R.F.A.; Ligterink, N.E.

    2017-01-01

    With RDE (Real Driving Emissions) legislation a new chapter in emission testing has started for light-duty vehicles. RDE legislation poses new and more complex engineering targets for manufacturers. The expectation is that RDE will bring major improvements in the emission performance of LD vehicles

  7. Investigating the impact of in-vehicle transients on diesel soot emissions

    Directory of Open Access Journals (Sweden)

    Filipi Zoran

    2008-01-01

    Full Text Available This paper describes development of a test cell setup for concurrent running of a real engine and a simulation of the vehicle system, and its use for investigating highly-dynamic engine-in-vehicle operation and its effect on diesel engine emissions. Running an engine in the test cell under conditions experienced in the vehicle enables acquiring detailed insight into dynamic interactions between power train sub-systems, and the impact of it on fuel consumption and transient emissions. This type of data may otherwise be difficult and extremely costly to obtain from a vehicle prototype test. In particular, engine system response during critical transients and the effect of transient excursions on emissions are investigated using advanced, fast-response test instrumentation and emissions analyzers. Main enablers of the work include the highly dynamic AC electric dynamometer with the accompanying computerized control system and the computationally efficient simulation of the driveline/vehicle system. The latter is developed through systematic energy-based proper modeling that tailors the virtual model to capture critical powertrain transients while running in real time. Coupling the real engine with the virtual driveline/vehicle offers a chance to easily modify vehicle parameters, and even study different power train configurations. In particular, the paper describes the engine-in-the-loop study of a V-8, 6l engine coupled to a virtual 4´4 off road vehicle. This engine is considered as a high-performance option for this truck and the real prototype of the complete vehicle does not exist yet. The results shed light on critical transients in a conventional powertrain and their effect on NOx and soot emissions. Measurements demonstrate very large spikes of particulate concentration at the initiation of vehicle acceleration events. Characterization of transients and their effect on particulate emission provides a basis for devising engine-level or

  8. Analysis of energy consumption and emission of the heterogeneous traffic flow consisting of traditional vehicles and electric vehicles

    Science.gov (United States)

    Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao

    2017-12-01

    Electric vehicle (EV) has become a potential traffic tool, which has attracted researchers to explore various traffic phenomena caused by EV (e.g. congestion, electricity consumption, etc.). In this paper, we study the energy consumption (including the fuel consumption and the electricity consumption) and emissions of heterogeneous traffic flow (that consists of the traditional vehicle (TV) and EV) under three traffic situations (i.e. uniform flow, shock and rarefaction waves, and a small perturbation) from the perspective of macro traffic flow. The numerical results show that the proportion of electric vehicular flow has great effects on the TV’s fuel consumption and emissions and the EV’s electricity consumption, i.e. the fuel consumption and emissions decrease while the electricity consumption increases with the increase of the proportion of electric vehicular flow. The results can help us better understand the energy consumption and emissions of the heterogeneous traffic flow consisting of TV and EV.

  9. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data.

    Science.gov (United States)

    Gately, Conor K; Hutyra, Lucy R; Peterson, Scott; Sue Wing, Ian

    2017-10-01

    On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the 'excess' emissions from traffic congestion, finding modest congestion enhancement (3-6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated 'excess' consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Final Rule for Control of Air Pollution From New Motor Vehicles: Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulfur Control Requirements

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) is announcing more protective tailpipe emissions standards for all passenger vehicles, including sport utility vehicles (SUVs), minivans, vans and pick-up trucks.

  11. [Methodical approaches to evaluation of air pollution by emissions of motor vehicles in population areas].

    Science.gov (United States)

    Lyapkalo, A A; Dement'ev, A A; Tsurgan, A M

    2014-01-01

    There are results of comparative analysis of air pollution by emissions of motor vehicles in the residential districts of Ryazan via different methodical approaches. Emissions were calculated regarding analysis of the traffic intensity on the elements of the city traffic network. Relative emissions, equivalent relative emissions and relative coefficient of emission hazard were calculated for each district. Rating of the comparing districts was done according to the pollution level using the above-mentioned indices. Gorodskaya Roscha was detected as the most polluted district. The most informative approach was comparison of the residential districts according to the equivalent relative emissions and relative coefficient of emission hazard.

  12. Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kenneth; Bennion, Kevin; Miller, Eric; Prohaska, Bob

    2016-03-02

    NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impacts of duty cycle on performance requirements.

  13. Condition-based dynamic maintenance operations planning and grouping. Application to commercial heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bouvard, K., E-mail: keomany.bouvard@volvo.co [Volvo Technology, 99 route de Lyon, 69806 Saint Priest cedex (France); Laboratoire d' Automatique de Genie Informatique et Signal - FRE3303 - Polytech' Lille, 59655 Villeneuve d' Ascq (France); Artus, S., E-mail: samuel.artus@volvo.co [Volvo Technology, 99 route de Lyon, 69806 Saint Priest cedex (France); Berenguer, C., E-mail: christophe.berenguer@utt.f [Universite de technologie de Troyes - Institut Charles Delaunay and UMR CNRS 6279 - 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France); Cocquempot, V., E-mail: vincent.cocquempot@univ-lille1.f [Laboratoire d' Automatique de Genie Informatique et Signal - FRE3303 - Polytech' Lille, 59655 Villeneuve d' Ascq (France)

    2011-06-15

    This paper aims at presenting a method to optimize the maintenance planning for a commercial heavy vehicle. Such a vehicle may be considered as a multi-components system. Grouping maintenance operations related to each component reduces the global maintenance cost of the system. Classically, the optimization problem is solved using a priori reliability characteristics of components. Two types of methods may be used, i.e. static or dynamic methods. Static methods provide a fixed maintenance planning, whereas dynamic methods redefine the groups of maintenance operations at each decision time. Dynamic procedures can incorporate component information such as component states or detected failures. For deteriorating systems, reliability characteristics of each component may be estimated thanks to deterioration models and may be updated when a degradation measure is available. This additional information on degradation features allows to better follow the real state of each component and to improve the maintenance planning.

  14. Benchmarking Anthropogenic Heavy Metals Emissions: Australian and Global Urban Environmental Health Risk Based Indicators of Sustainability

    Science.gov (United States)

    Dejkovski, Nick

    2016-01-01

    In Australia, the impacts of urbanisation and human activity are evident in increased waste generation and the emissions of metals into the air, land or water. Metals that have accumulated in urban soils almost exclusively anthropogenically can persist for long periods in the environment. Anthropogenic waste emissions containing heavy metals are a…

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION OF EMISSION CONTROLS FOR HEAVY-DUTY DIESEL ENGINES

    Science.gov (United States)

    While lower emissions limits that took effect in 2004 and reduced sulfur content in diesel fuels will reduce emissions from new heavy-duty engines, the existing diesel fleet, which pollutes at much higher levels, may still have a lifetime of 20 to 30 years. Fleet operators seekin...

  16. A fuel-based approach to estimating motor vehicle exhaust emissions

    Science.gov (United States)

    Singer, Brett Craig

    Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories

  17. Idle emissions from medium heavy-duty diesel and gasoline trucks.

    Science.gov (United States)

    Khan, A B M S; Clark, Nigel N; Gautam, Mridul; Wayne, W Scott; Thompson, Gregory J; Lyons, Donald W

    2009-03-01

    Idle emissions data from 19 medium heavy-duty diesel and gasoline trucks are presented in this paper. Emissions from these trucks were characterized using full-flow exhaust dilution as part of the Coordinating Research Council (CRC) Project E-55/59. Idle emissions data were not available from dedicated measurements, but were extracted from the continuous emissions data on the low-speed transient mode of the medium heavy-duty truck (MHDTLO) cycle. The four gasoline trucks produced very low oxides of nitrogen (NOx) and negligible particulate matter (PM) during idle. However, carbon monoxide (CO) and hydrocarbons (HCs) from these four trucks were approximately 285 and 153 g/hr on average, respectively. The gasoline trucks consumed substantially more fuel at an hourly rate (0.84 gal/hr) than their diesel counterparts (0.44 gal/hr) during idling. The diesel trucks, on the other hand, emitted higher NOx (79 g/hr) and comparatively higher PM (4.1 g/hr), on average, than the gasoline trucks (3.8 g/hr of NOx and 0.9 g/hr of PM, on average). Idle NOx emissions from diesel trucks were high for post-1992 model year engines, but no trends were observed for fuel consumption. Idle emissions and fuel consumption from the medium heavy-duty diesel trucks (MHDDTs) were marginally lower than those from the heavy heavy-duty diesel trucks (HHDDTs), previously reported in the literature.

  18. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  19. A Study on Vehicle Emission Factor Correction Based on Fuel Consumption Measurement

    Science.gov (United States)

    Wang, Xiaoning; Li, Meng; Peng, Bo

    2018-01-01

    The objective of this study is to address the problem of obvious differences between the calculated and measured emissions of pollutants from motor vehicle by using the existing "Environmental Impact Assessment Specification of Highway Construction Projects". First, a field study collects the vehicle composition ratio, speed, slope, fuel consumption and other essential data. Considering practical applications, the emission factors corresponding to 40km/h and 110km/h and 120km/h velocity are introduced by data fitting. Then, the emission factors of motor vehicle are revised based on the measured fuel consumption, and the pollutant emission modified formula was calculated and compared with the standard recommendation formula. The results show the error between calculated and measured values are within 5%, which can better reflect the actual discharge of the motor vehicle.

  20. National Emissions Inventory Vehicle Miles Traveled, U.S., 2014, EPA/OAR/OAQPS/AQAD

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service contains layers that depict gridded Vehicle Miles Traveled (VMT) for 2014 from the National Emission Inventory (NEI). The default 2014 National...

  1. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Table S6 provides emission rates in g/km of volatile organic compounds measured from gasoline vehicle exhaust during chassis dynamometer...

  2. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    Science.gov (United States)

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  3. Executive Summary: EPA's Waiver Decision on California's Greenhouse Gas Emission Standards for New Motor Vehicles

    Science.gov (United States)

    This letter from EPA Administrator Stephen Johnson to Governor Schwarzenegger denies California's request for a waiver of Federal preemption for motor vehicle greenhouse gas emission standards submitted by the California Air Resources Board (CARB).

  4. Impact of freeway weaving segment design on light-duty vehicle exhaust emissions.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Chen, Shuyan; Li, Tiezhu

    2018-06-01

    In the United States, 26% of greenhouse gas emissions is emitted from the transportation sector; these emisssions meanwhile are accompanied by enormous toxic emissions to humans, such as carbon monoxide (CO), nitrogen oxides (NO x ), and hydrocarbon (HC), approximately 2.5% and 2.44% of a total exhaust emissions for a petrol and a diesel engine, respectively. These exhaust emissions are typically subject to vehicles' intermittent operations, such as hard acceleration and hard braking. In practice, drivers are inclined to operate intermittently while driving through a weaving segment, due to complex vehicle maneuvering for weaving. As a result, the exhaust emissions within a weaving segment ought to vary from those on a basic segment. However, existing emission models usually rely on vehicle operation information, and compute a generalized emission result, regardless of road configuration. This research proposes to explore the impacts of weaving segment configuration on vehicle emissions, identify important predictors for emission estimations, and develop a nonlinear normalized emission factor (NEF) model for weaving segments. An on-board emission test was conducted on 12 subjects on State Highway 288 in Houston, Texas. Vehicles' activity information, road conditions, and real-time exhaust emissions were collected by on-board diagnosis (OBD), a smartphone-based roughness app, and a portable emission measurement system (PEMS), respectively. Five feature selection algorithms were used to identify the important predictors for the response of NEF and the modeling algorithm. The predictive power of four algorithm-based emission models was tested by 10-fold cross-validation. Results showed that emissions are also susceptible to the type and length of a weaving segment. Bagged decision tree algorithm was chosen to develop a 50-grown-tree NEF model, which provided a validation error of 0.0051. The estimated NEFs are highly correlated with the observed NEFs in the training

  5. Electric drive choices for light, medium, and heavy duty vehicles to reduce their climate change impact in Canada

    International Nuclear Information System (INIS)

    Fitzpatrick, N.P.

    2009-01-01

    The evolution of electric drive technologies from 1988, at the 9 th International Electric Vehicle Symposium (EVS 9) in Toronto, to 2007 at EVS 23 in Anaheim, is described. Total hybridization of Canada's fleet of light, medium and heavy duty vehicles would result in greenhouse reductions savings of 30 Mt of CO 2 E per year, similar to the saving from a 25% reduction in vehicle weight. Further savings in greenhouse reductions from plug-in hybrids require a battery cost similar to that needed for electric vehicles. Further development of both ultracapacitors and batteries is needed as is work on other parts of the electric drive supply chain. (author)

  6. ELVIS: Comparing Electric and Conventional Vehicle Energy Consumption and CO2 Emissions

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Torp, Kristian

    2017-01-01

    Making the transition from conventional combustion vehicles (CVs) to electric vehicles (EVs) requires the users to be comfortable with the limited range of EVs. We present a system named ELVIS that enables a direct comparison of energy/fuel consumption, CO2 emissions, and travel-time between CVs...

  7. Cold Temperature Effects on Speciated VOC Emissions from Modern GDI Light-Duty Vehicles 1

    Science.gov (United States)

    In this study, speciated VOC emissions were characterized from three modern GDI light-duty vehicles. The vehicles were tested on a chassis dynamometer housed in a climate-controlled chamber at two temperatures (20 and 72 °F) using the EPA Federal Test Procedure (FTP) and a portio...

  8. Marine spark-ignition engine and off-road recreational vehicle emission regulations : discussion document

    International Nuclear Information System (INIS)

    2004-07-01

    In February 2001, the Minister of Environment Canada outlined a series of measures to reduce emissions from vehicles and engines, including off-road engines. This report describes proposed regulations to control emissions form outboard engines, personal watercraft engines, snowmobiles, off-highway motorcycles, all-terrain vehicles and utility vehicles. Since most marine engines and recreational vehicles sold in Canada are imported, the agenda includes the development of new regulations under Division 5 of the Canadian Environmental Protection Act (CEPA) to align Canada's emission standards for off-road vehicles with those of the United States Environmental Protection Agency. A harmonized approach on emissions standards is expected to result in fewer transition and implementation problems. This report describes which vehicles and engines will be subjected to the planned regulations along with those that will be exempted. Planned emission standard swill apply to vehicles and engines of the 2007 and later model years. Persons affected by the planned regulations were also identified. tabs., figs

  9. Waste management of a heavy vehicle maintenance: A study on reverse logistics for steel leftovers

    Directory of Open Access Journals (Sweden)

    Pedro Henrique de Oliveira Buono

    2017-09-01

    Full Text Available In addition to environmental performance, supply chain management is increasingly important in business context. Thus, companies started to give more importance to the management of by-products and the proper disposal of waste generated. In this sense, the objective of the study was to analyze the waste management in a maintenance workshop for heavy vehicles. Therefore, was conducted a case study in a maintenance workshop for heavy vehicles in the state of São Paulo that provides services for the main plants of this sector in the region. Data were collected over a period of 18 months and they were treated by the method of Input Per Service Material unit (MIPS, which allows measuring the environmental gains from the use of a certain material within the supply chain. As a result of the steel sale would be discarded and that, by the reverse logistics back to be included in the production cycle, it was found that 2000 tonnes of water and 20 tons of air are no longer polluted and used in the production of new material and more 245 tons of abiotic materials are no longer generated

  10. Real-time black carbon emission factor measurements from light duty vehicles.

    Science.gov (United States)

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  11. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines

    Science.gov (United States)

    Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially

  12. Requirements towards an ecologically based heavy vehicle charge for road haulage; Anforderungen an eine umweltorientierte Schwerverkehrsabgabe fuer den Strassengueterverkehr

    Energy Technology Data Exchange (ETDEWEB)

    Rothengatter, W.; Doll, K.

    2001-10-01

    The report investigates the consequences of introducing a kilometre-based road user charge for heavy goods vehicles with a gross weight over 12 tons on the German inter-urban road network in 2003. Starting from the calculations of average road infrastructure costs presented by the Government Commission for Infrastructure Financing in September 2000, toll levels of 0.25 DM exclusively on the motorway network and 0.40 DM on the entire inter-urban road network are used for the scenario development. In the latter case an additional improvement of railway service supply is considered. In all pricing scenarios charges are differentiated by vehicle weight (12 t-18 t, >18 t) and by emission standard (Pre-Euro - Euro-5). The effects of the resulting three pricing scenarios investigated embrace the shift of traffic to the secondary road network, productivity increase within the transport sector, effects on the fleet structure and the reactions of shippers with respect to transport demand, modal choice and location choice. For these purpose, different models, data sources and current experiences, mainly from Switzerland, have been applied. The results are expressed in changes of the vehicle mileage and the development of an environmental cost indicator by mode, road type, vehicle weight and emission factor in 2010. The study concludes, that due to the application of efficiency measures, increased cost burdens of the hauliers can be partly compensated. Thus, the estimated shift of demand from road to rail is found to be rather modest. In case of a charge of 0.40 DM on the entire road network, combined with an improved rail supply the demand for rail transport is estimated to increase by 14%, while road traffic decreases by only 3.3%. In case only the motorways are priced, a shift of vehicle mileage of 4% to the secondary network is calculated. Very positive conclusions are drawn on the possibility of increasing the share of clean lorries by a differentiation of tariffs by

  13. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced. For geo......Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced...... for vertical separation between the coils in range of 100-180 mm. It is observed that lower vertical separation results in higher overlapping of the zones and the coils behave as they are effectively placed close to center of air gap. The analysis in this work provides a better understanding of the space...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....

  14. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Prucz, Jacky C; Shoukry, Samir N; William, Gergis W; Evans, Thomas H

    2006-09-30

    The extensive research and development effort was initiated by the U.S. Department of Energy (DOE) in 2002 at West Virginia University (WVU) in order to investigate practical ways of reducing the structural weight and increasing the durability of heavy vehicles through the judicious use of lightweight composite materials. While this project was initially focused on specific Metal Matrix Composite (MMC) material, namely Aluminum/Silicon Carbide (Al/SiC) commercially referenced as ''LANXIDE'', the current research effort was expanded from the component level to the system level and from MMC to other composite material systems. Broadening the scope of this research is warranted not only by the structural and economical deficiencies of the ''LANXIDE'' MMC material, but also by the strong coupling that exists between the material and the geometric characteristics of the structure. Such coupling requires a truly integrated design approach, focused on the heaviest sections of a van trailer. Obviously, the lightweight design methods developed in this study will not be implemented by the commercial industry unless the weight savings are indeed impressive and proven to be economically beneficial in the context of Life Cycle Costs (LCC). ''Bulk Haul'' carriers run their vehicles at maximum certified weight, so that each pound saved in structural weight would translate into additional pound of cargo, and fewer vehicles necessary to transport a given amount of freight. It is reasonable to ascertain that a typical operator would be ready to pay a premium of about $3-4 for every additional pound of cargo, or every pound saved in structural weight. The overall scope of this project is to devise innovative, lightweight design and joining concepts for heavy vehicle structures, including cost effective applications of components made of metal matrix composite (MMC) and other composite materials in selected sections of such

  15. Road Safety Data, Collection, Transfer and Analysis DaCoTa. Factsheet Traffic safety basic facts 2010 : heavy goods vehicles and buses.

    NARCIS (Netherlands)

    Pace, J.-F. López de Cozar, E. Pérez-Fuster, P. Sanmartín, J. Kirk, A. Yannis, G. Evgenikos, P. Argyropoulou, E. Papantoniou, P. Broughton, J. Knowles, J. Brandstaetter, C. Candappa, N. Christoph, M. Vis, M. Haddak, M. & Moutengou, E.

    2012-01-01

    Heavy Goods Vehicles (HGVs) are defined as goods vehicles of over 3,5 tons maximum permissible gross vehicle weight. Road traffic accidents involving HGVs tend to be more severe than other accidents because of the great size and mass of these vehicles. Buses and coaches are included in this Basic

  16. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    Science.gov (United States)

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90

  17. Methods for measurements of energy and emissions related to motor vehicles: Identification of needs for improvements

    Energy Technology Data Exchange (ETDEWEB)

    Karl-Erik Egebaeck, K.E. [Luleaa Univ. of Technology, Luleaa (Sweden). Dept. of Environmental Technology; Karlsson, Hua L. [MTC AB, Haninge (Sweden); Westerholm, R. [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry

    2002-01-01

    The official methods in use today for emission testing of vehicles and engines were primarily developed for the characterisation of exhaust emissions from motor vehicles fuelled with petrol or diesel oil. The setting of new lower emission standards will make it difficult to obtain sufficient accuracy, using the present systems, for the quantification of exhaust emissions in the future. Development of new emission control technology and improved fuels has made it possible to meet these more stringent standards. Consequently new emission standards will lead to a need for new and improved methodologies and new instrumentation for the characterisation of the emissions from vehicles/engines/fuels. The present report comprises a discussion and comments on questions related to improved methods for emission measurements. The report is based on a study of the literature, site visits to laboratories and research institutes etc in the US and a meeting with representatives of the EU Commission, carried out during the spring of 2001. The conclusions and recommendations in the pre-study report are summarised in sub titles: General, regulated emissions, unregulated emissions, greenhouse gases and fuel consumption. Since the questions and problems discussed have an international connection they should be discussed in an international forum. However, before such discussions can be organised the problems related to measurement of emissions and fuel consumption must be more extensively studied than in this pre-study.

  18. Fuel choices for fuel-cell vehicles : well-to-wheel energy and emission impacts

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Because of their high energy efficiencies and low emissions, fuel-cell vehicles (FCVs) are undergoing extensive research and development. While hydrogen will likely be the ultimate fuel to power fuel-cell vehicles, because of current infrastructure constraints, hydrogen-carrying fuels are being investigated as transitional fuel-cell fuels. A complete well-to-wheels (WTW) evaluation of fuel-cell vehicle energy and emission effects that examines (1) energy feedstock recovery and transportation; (2) fuel production, transportation, and distribution; and (3) vehicle operation must be conducted to assist decision makers in selecting the fuel-cell fuels that achieve the greatest energy and emission benefits. A fuel-cycle model developed at Argonne National Laboratory--called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model--was used to evaluate well-to-wheels energy and emission impacts of various fuel-cell fuels. The results show that different fuel-cell fuels can have significantly different energy and greenhouse gas emission effects. Therefore, if fuel-cell vehicles are to achieve the envisioned energy and emission reduction benefits, pathways for producing the fuels that power them must be carefully examined.

  19. Road transport management system: a self regulation initiative to promote load optimisation, vehicle maintenance and driver wellness in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-04-01

    Full Text Available with inadequate vehicle maintenance, driver fatigue and poor driver health, contributes significantly to South Africa’s poor road safety record. This paper describes the most recent developments of an initiative to introduce meaningful self-regulation in the heavy...

  20. Vehicle emission trends and spatial distribution in Shandong province, China, from 2000 to 2014

    Science.gov (United States)

    Sun, Shida; Jiang, Wei; Gao, Weidong

    2016-12-01

    Vehicle emissions have become a major source of air pollution in Shandong province, which has experienced a sharp growth of vehicle numbers in recent years and now has the largest vehicle population in China. This paper combines the COPERT IV model with the vehicle age distribution to estimate the temporal trends and map the spatial distributions of vehicle emissions in Shandong province during the period ranging from 2000 to 2014. Both conventional air pollutants and greenhouse gases are included. In addition, a high-resolution vehicle emission inventory at the prefecture level is developed and mapped on a 0.05° × 0.05° grid based on road information. Our results show that the emissions of all of the conventional air pollutants have decreased to various extents over the recent past, but greenhouse gas emissions have continued to increase due to the lack of effective control strategies. The total emissions of CO, NMVOC, NOX, PM10, CO2, CH4 and N2O from the Shandong vehicle fleet changed from 1734.5 Gg, 277.9 Gg, 177.0 Gg, 12.4 Gg, 19239.7 Gg, 11.3 Gg and 0.6 Gg, respectively, in 2000 to 1723.3 Gg, 234.2 Gg, 513.8 Gg, 29.5 Gg, 138,419.5 Gg, 15.3 Gg and 3.9 Gg, respectively, in 2014. Vehicle emissions were mainly concentrated in cities and became more dispersed in Shandong province between 2000 and 2014.

  1. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    Directory of Open Access Journals (Sweden)

    Rachana Vidhi

    2018-02-01

    Full Text Available Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030. This policy is based on vehicle grid interaction and relies on shared mobility through the electric vehicle fleet. There are several human behavioral changes necessary to achieve 100% adoption of electric vehicles. This paper reviews different steps in the lifecycle of an electric vehicle (EV, their impact on environmental emissions, and recommends policies suitable for different socio-economic group that are relevant to the Indian market. To reduce air pollution through adoption of electric vehicles, the Indian government needs to adopt policies that increase sale of electric vehicles, increase percentage of renewable energy in the electricity mix, and prevent air pollution caused from battery manufacturing. The recommended policies can be customized for any market globally for reducing air pollution through increased adoption of electric vehicles.

  2. Modelling the impacts of a carbon emission-differentiated vehicle tax system on CO2 emissions intensity from new vehicle purchases in Ireland

    International Nuclear Information System (INIS)

    Giblin, S.; McNabola, A.

    2009-01-01

    The increasing awareness of the effects of climate change on the environment and the economic pressure on oil supply has focused international attention on reducing CO 2 emissions and energy usage across all sectors. In order to meet their Kyoto protocol commitments and in line with European Union policy, the Irish government has introduced a carbon-based tax system for new vehicles purchased from the 1st of July 2008. This new legislation aims to reduce carbon emissions in the transport sector, a sector which is responsible for a significant proportion of both. This paper presents the results of the development, calibration, and application of a car choice model which predicts the changes in CO 2 emissions intensity from new vehicle purchases as a result of the changes in vehicle tax policy and fuel price in Ireland. The model also predicts the impact of such changes on tax revenue for the Irish government and the changes in the split between the number of diesel and petrol vehicles purchased. The investigation found that the introduction of these new carbon-based taxes in Ireland will result in a reduction of 3.6-3.8% in CO 2 emissions intensity and a reduction in annual tax revenue of EUR191 M. (author)

  3. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    OpenAIRE

    Burke, A.F.; Miller, M.

    1997-01-01

    The study focused on the emission reduction and fuel economy benefits of the application of hybrid/electric powertrain technology to tight-duty vehicles (mid-size and compact passenger cars). The approach taken was to calculate the exhaust emissions (gm/mi) energy use (Wh/mi and mpg) for a wide range of vehicle designs (steel and light-weight materials), engines, energy storage devices, control strategies, and driving cycles using two vehicle simulation programs (SIMPLEV and AVTE). The full f...

  4. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke

    2016-03-15

    Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    Science.gov (United States)

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  6. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  7. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    Science.gov (United States)

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  8. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  9. Mathematical Model of the Emissions of a selected vehicle

    Directory of Open Access Journals (Sweden)

    Matušů Radim

    2014-10-01

    Full Text Available The article addresses the quantification of exhaust emissions from gasoline engines during transient operation. The main targeted emissions are carbon monoxide and carbon dioxide. The result is a mathematical model describing the production of individual emissions components in all modes (static and dynamic. It also describes the procedure for the determination of emissions from the engine’s operating parameters. The result is compared with other possible methods of measuring emissions. The methodology is validated using the data from an on-road measurement. The mathematical model was created on the first route and validated on the second route.

  10. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  11. Evaluating the emissions from heavy-duty construction equipment.

    Science.gov (United States)

    2008-12-01

    Gaseous and particle emissions from construction engines are an important fraction of the total air pollutants and are gaining increasing : regulatory attention. Quantification of NOx and PM is necessary to inventory the contribution of the construct...

  12. 40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... for Light-Duty Vehicles and Light-Duty Trucks § 86.1708-99 Exhaust emission standards for 1999 and... are incorporated by reference (see § 86.1). (v) Hybrid electric vehicle requirements. Deterioration factors for hybrid electric vehicles shall be based on the emissions and mileage accumulation of the...

  13. Emission of medium-heavy fragments in asymetric heavy ion collisions at intermediate and relativistic incident energies

    International Nuclear Information System (INIS)

    Milkau, T.U.E.

    1991-11-01

    For the study of the emission of medium-heavy fragments in asymmetric heavy ion collisions a series of experiments was performed and thereby following systems at intermediate and relativistic incident energies studied: 84 Kr+ 197 Au at E/A=35 MeV, 40 Ar+ 197 Au at E/A=30 MeV, respectively 220 MeV, and 12 C+ 197 Au at E/A=99 MeV, 301 MeV, 601 MeV, respectively 1105 MeV. In the experiments highly resolving detector telescopes with low thresholds were applied to the measurement of the energy and angular distributions of the medium-heavy fragments. The spectra were analyzed in the picture of longitudinally moving sources. Thereby beyond the production cross sections the angular distributions, the decreasement parameters in the high-energetic region of the energy spectra, and the position of the maxima were determined as characteristic parameters. The following picture resulted: The production cross sections for medium-heavy fragments showed a steep increasement and then a saturation, but with a strong projectile dependence. The charge distributions could be described by a power law, the parameter of which showed a universal dependence on the total incident energy. In the angular distributions the transition from an anisotropic emission at low energies to an isotropic emission from a nearly resting source at relativistic energies was distinctly to be recognized. The decreasement parameters of the energy distribution increased - for different projectiles differently strongly - logarithmically with growing incident energy. And the maxima of the energy distribution travelled with growing incident energy to smaller and smaller fragment energies. From this systematics a schematic model of the fragmentation can be obtained. (orig./HSI) [de

  14. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    Science.gov (United States)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  15. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Hankey, Steve; Marshall, Julian D. [Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, MN 55455 (United States)

    2010-09-15

    Urban form - for example, sprawl versus infill development - impacts people's daily travel patterns and annual vehicle-kilometers traveled (VKT). This paper explores how urban form impacts greenhouse gas (GHG) emissions from passenger-vehicles, the largest source of urban transportation GHG emissions. Our research uses a recently published urban scaling rule to develop six scenarios for high- and low-sprawl US urban growth. We develop and apply a Monte Carlo approach that describes ensemble statistics for several dozen urban areas rather than forecasting changes in individual urban areas. Then, employing three vehicle- and fuel-technology scenarios, we estimate total passenger VKT and resulting GHG emissions for US urban areas. Our results indicate that comprehensive compact development could reduce US 2000-2020 cumulative emissions by up to 3.2 GtCO{sub 2}e (15-20% of projected cumulative emissions). In general, vehicle GHG mitigation may involve three types of approaches: more-efficient vehicles, lower-GHG fuels, and reduced VKT. Our analyses suggest that all three categories must be evaluated; otherwise, improvements in one or two areas (e.g., vehicle fuel economy, fuel carbon content) can be offset by backsliding in a third area (e.g., VKT growth). (author)

  16. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hankey, Steve; Marshall, Julian D.

    2010-01-01

    Urban form - for example, sprawl versus infill development - impacts people's daily travel patterns and annual vehicle-kilometers traveled (VKT). This paper explores how urban form impacts greenhouse gas (GHG) emissions from passenger-vehicles, the largest source of urban transportation GHG emissions. Our research uses a recently published urban scaling rule to develop six scenarios for high- and low-sprawl US urban growth. We develop and apply a Monte Carlo approach that describes ensemble statistics for several dozen urban areas rather than forecasting changes in individual urban areas. Then, employing three vehicle- and fuel-technology scenarios, we estimate total passenger VKT and resulting GHG emissions for US urban areas. Our results indicate that comprehensive compact development could reduce US 2000-2020 cumulative emissions by up to 3.2 GtCO 2 e (15-20% of projected cumulative emissions). In general, vehicle GHG mitigation may involve three types of approaches: more-efficient vehicles, lower-GHG fuels, and reduced VKT. Our analyses suggest that all three categories must be evaluated; otherwise, improvements in one or two areas (e.g., vehicle fuel economy, fuel carbon content) can be offset by backsliding in a third area (e.g., VKT growth).

  17. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    International Nuclear Information System (INIS)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-01-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs. (letter)

  18. On-board emission measurement of high-loaded light-duty vehicles in Algeria.

    Science.gov (United States)

    Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2008-01-01

    A sample of eight private gasoline and diesel conventional light-duty vehicles (LDVs) in use with various ages, carrying a load of 460 kg, were tested on a representative trip in the traffic flow of the city of Blida to obtain emission factors representing the actual use conditions of Algerian LDVs. The gas sampling system (mini-constant volume sampling) as well as the analyzers are carried on-board the vehicle. Around 55 tests were conducted during 3 months covering more than 480 km under various real driving conditions. The mean speed downtown is about 16.1 km/hr with a rather low acceleration, an average of 0.60 m/sec2. For each test, kinematics are recorded as well as the analysis of the four emitted pollutants carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbons. Emission factors were evaluated according to speed for each category of gasoline and diesel engines. The influence of some parameters such as cold/hot start, age of vehicle and its state of maintenance are discussed. Results are compared with the European database ARTEMIS for comparable vehicles. These measurements contribute to the development of unit emission of the vehicles used in Algeria, which are necessary for the calculation of emission inventory of pollutants and greenhouse gases from the road transportation sector. The unit emissions constitute a tool of decisionmaking aid regarding the conception of new regulations of vehicle control and inspection in Algeria and even in similar developing countries.

  19. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    Science.gov (United States)

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. [Real world instantaneous emission simulation for light-duty diesel vehicle].

    Science.gov (United States)

    Huang, Cheng; Chen, Chang-Hong; Dai, Pu; Li, Li; Huang, Hai-Ying; Cheng, Zhen; Jia, Ji-Hong

    2008-10-01

    Core architecture and input parameters of CMEM model were introduced to simulation the second by second vehicle emission rate on real world by taking a light-duty diesel car as a case. On-board test data by a portable emission measurement system were then used to validate the simulation results. Test emission factors of CO, THC, NO(x) and CO2 were respectively 0.81, 0.61, 2.09, and 193 g x km(-1), while calculated emission factors were 0.75, 0.47, 2.47, and 212 g x km(-1). The correlation coefficients reached 0.69, 0.69, 0.75, and 0.72. Simulated instantaneous emissions of the light duty diesel vehicle by CMEM model were strongly coherent with the transient driving cycle. By analysis, CO, THC, NO(x), and CO2 emissions would be reduced by 50%, 47%, 45%, and 44% after improving the traffic situation at the intersection. The result indicated that it is necessary and feasible to simulate the instantaneous emissions of mixed vehicle fleet in some typical traffic areas by the micro-scale vehicle emission model.

  1. Method for modeling driving cycles, fuel use, and emissions for over snow vehicles.

    Science.gov (United States)

    Hu, Jiangchuan; Frey, H Christopher; Sandhu, Gurdas S; Graver, Brandon M; Bishop, Gary A; Schuchmann, Brent G; Ray, John D

    2014-07-15

    As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.

  2. Analysis of pavement structure sensitivity to passage of oversized heavy duty vehicle in terms of bearing capacity

    Science.gov (United States)

    Dawid, Rys; Piotr, Jaskula

    2018-05-01

    Oversized heavy duty vehicles occur in traffic very rarely but they reach extremely high weights, even up to 800 tonne. The detrimental impact of these vehicles on pavement structure is much higher than in case of commercial vehicles that comprise typical traffic, thus it is necessary to assess the sensitivity of pavement structure to passage of oversized vehicles. The paper presents results of sample calculations of load equivalency factor of a heavy duty oversized vehicle with usage of mechanistic-empirical approach. The effects of pavement thickness, type of distress (cracking or rutting) and pavement condition (new or old with structural damage) were considered in the paper. Analysis revealed that a single pass of an 800 tonne oversized vehicle is equivalent to pass of up to 377 standard 100 kN axles. Load equivalency factor calculated for thin structures is almost 3 times lower than for thick structures, however, the damage effect caused by one pass of an oversized vehicle is higher in the case of thin structure. Bearing capacity of a pavement structure may be qualified as sufficient for passage of an oversized heavy duty vehicle when the measured deflection, for example in an FWD test, does not exceed the maximum deflections derived from mechanistic-empirical analysis. The paper presents sample calculation of maximum deflections which allow to consider passage of an oversized vehicle as safe over different pavement structures. The paper provides road administration with a practical tool which helps to decide whether to issue a permit of passage for a given oversized vehicle.

  3. Technical analysis on energy conservation and emission reduction of new energy electric vehicle in China

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    With the global environmental problems and energy crisis continuously emerging, all countries are taking active measures to achieve the benign development of domestic economy and society. Vehicle, as a large oil consumption and emissions of carbon dioxide, nend to be a revolutionary change. Therefore, the development of new energy electric vehicle has become the consensus of the world. On this background, this paper has sorted out the current state and the related development planning of new energy electric vehicles in different countries to predict the car ownership of the new energy electric vehicles using elastic coefficient method and setting different path of development, conclude that under the consideration of energy conservation and emissions reduction factors, our country should mainly promote the BEV to realize the maximum energy conservation and emissions reduction.

  4. Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, L; Callahan, T; Leone, D; Naegeli, D; Shouse, K; Smith, L; Whitney, K [Southwest Research Inst., San Antonio, TX (United States)

    1998-04-01

    The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

  5. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.

    Science.gov (United States)

    Aggestam, Vivianne; Buick, Jon

    2017-08-01

    Agricultural industrialisation and globalisation have steadily increased the transportation of food across the world. In efforts to promote sustainability and self-sufficiency, organic milk producers in Sweden are required to produce a higher level of cattle feed on-farm in the hope that increased self-sufficiency will reduce reliance on external inputs and reduce transport-related greenhouse gas emissions. Using data collected from 20 conventional and 20 organic milk producers in Sweden this paper aims to assess the global warming impact of farmyard vehicles and the transportation of feed produced 'off-farm' in order to compare the impact of vehicle-related emissions from the different production methods. The findings show organic and conventional production methods have different vehicle-related emission outputs that vary according to a reliance on either road transportation or increased farmyard machinery use. Mechanical weeding is more fuel demanding than conventional agrichemical sprayers. However, artificial fertilising is one of the highest farmyard vehicle-related emitters. The general findings show organic milk production emits higher levels of farm vehicle-related emissions that fail to be offset by reduced emissions occurring from international transport emissions. This paper does not propose to cover a comprehensive supply chain carbon footprint for milk production or attempt to determine which method of production has the largest climatic impact. However, it does demonstrate that Sweden's legal requirements for organic producers to produce more feed on-farm to reduce transport emissions have brought emissions back within Sweden's greenhouse gas inventory and raises questions around the effectiveness of policies to reduce vehicle-related emissions. Further research is needed into the effectiveness of climate change mitigation on food production policies, in particular looking at various trade-offs that affects the entire food supply chain.

  6. Assessing retro-reflective markers (RRMs usage on heavy vehicles with respect to MS 828:2011

    Directory of Open Access Journals (Sweden)

    Mohd Amirudin M.R

    2017-01-01

    Full Text Available Malaysia is continuously developing and enhancing the safety system and policies for road users. One of the essential elements of safety is a good marking and thus the visibility of vehicles on the road. Since 2011, MS 828:2011 has been gazetted to guide industry on the right specification to follow with regards to RRMs. However, the RRMs that being used by heavy and long vehicle including in the current market were not up to the standard. Thus, the objectives of this study is to identify the current status of RRMs in Malaysia besides to measure the photometric values of current RRMs and to determine the usage rate of substandard RRMs on heavy vehicles and current market. Market surveillance and sample testing were conducted to determine on current RRMs usage and to analyse the RRMs with respect to MS 828:2011. As a result, 62% of RRMs condition on heavy vehicles are still not in a good condition or covered by dust. Also, only 4% of the RRMs sample complied to MS 828:2011. From this paper, it can be concluded that majority or 96% of the RRMs in current market and have been used by current heavy vehicles are substandard markings.

  7. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China

    Science.gov (United States)

    Huang, C.; Wang, H. L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J. A.; Zhou, M.; Jing, S. A.; Lu, J.; Chen, C. H.

    2015-10-01

    Volatile organic compound (VOC) species from vehicle exhausts and gas evaporation were investigated by chassis dynamometer and on-road measurements of nine gasoline vehicles, seven diesel vehicles, five motorcycles, and four gas evaporation samples. The secondary organic aerosol (SOA) mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were estimated based on the mixing ratio of measured C2-C12 VOC species and inferred carbon number distributions. High aromatic contents were measured in gasoline exhausts and contributed comparatively more SOA yield. A vehicular emission inventory was compiled based on a local survey of on-road traffic in Shanghai and real-world measurements of vehicle emission factors from previous studies in the cities of China. The inventory-based vehicular organic aerosol (OA) productions to total CO emissions were compared with the observed OA to CO concentrations (ΔOA / ΔCO) in the urban atmosphere. The results indicate that vehicles dominate the primary organic aerosol (POA) emissions and OA production, which contributed about 40 and 60 % of OA mass in the urban atmosphere of Shanghai. Diesel vehicles, which accounted for less than 20 % of vehicle kilometers of travel (VKT), contribute more than 90 % of vehicular POA emissions and 80-90 % of OA mass derived by vehicles in urban Shanghai. Gasoline exhaust could be an important source of SOA formation. Tightening the limit of aromatic content in gasoline fuel will be helpful to reduce its SOA contribution. Intermediate-volatile organic compounds (IVOCs) in vehicle exhausts greatly contribute to SOA formation in the urban atmosphere of China. However, more experiments need to be conducted to determine the contributions of IVOCs to OA pollution in China.

  8. Real-world vehicle emission factors in Chinese metropolis city--Beijing.

    Science.gov (United States)

    Wang, Qi-dong; He, Ke-bin; Huo, Hong; Lents, James

    2005-01-01

    The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15 + EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15 + EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are - 0.42-2.99, -0.32-0.81 and -0.11-11 with FTP75 testing, 0.11-1.29, -0.77-0.64 and 0.47-10.50 with Beijing 1997 testing and 0.25-1.83, 0.09-0.75 and - 0.58-1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI + TWC vehicles' pollution emissionfactors decrease with different degree. The retrofit vehicle (Santana) will reduce 4.44%-58.44% CO, -4.95%-36.79% NOx, -32.32%-33.89% HC, and -9.39%-14.29% fuel consumption, and especially that the MPI + TWC vehicle will decrease CO by 82.48%-91.76%, NOx by 44.87%-92.79%, HC by 90.00%-93.89% and fuel consumption by 5.44%-10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.

  9. Vehicle emissions inspection and maintenance: Where do we go from here?

    International Nuclear Information System (INIS)

    Harrington, W.; McConnell, V.D.

    1993-01-01

    Throughout the 1980's, vehicle emissions inspection and maintenance (I ampersand M) programs were established in those regions of the United States with the worst pollution problems. Contrary to expectation, the programs do not appear to have achieved large emissions reductions at low costs. To improve their performance, the U.S. Environmental Protection Agency has proposed a more extensive test of a vehicle's emissions equipment than the test currently used in most I ampersand M programs. Two components of the test favored by the agency appear to be cost-effective in reducing emissions. A third component does not seem cost-effective in reducing emissions. A third component does not seem cost-effective but may be helpful in establishing the actual emissions reductions brought about by I ampersand M programs

  10. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.

    Science.gov (United States)

    Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.

  11. Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry

    Directory of Open Access Journals (Sweden)

    Lin Boqiang

    2017-07-01

    Full Text Available China is facing huge pressure on CO2 emissions reduction. The heavy industry accounts for over 60% of China’s total energy consumption, and thus leads to a large number of energy-related carbon emissions. This paper adopts the Log Mean Divisia Index (LMDI method based on the extended Kaya identity to explore the influencing factors of CO2 emissions from China’s heavy industry; we calculate the trend of decoupling by presenting a theoretical framework for decoupling. The results show that labor productivity, energy intensity, and industry scale are the main factors affecting CO2 emissions in the heavy industry. The improvement of labor productivity is the main cause of the increase in CO2 emissions, while the decline in energy intensity leads to CO2 emissions reduction, and the industry scale has different effects in different periods. Results from the decoupling analysis show that efforts made on carbon emission reduction, to a certain extent, achieved the desired outcome but still need to be strengthened.

  12. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    Science.gov (United States)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  13. Development of Advanced High Strength Steel for Improved Vehicle Safety, Fuel Efficiency and CO2 Emission

    Science.gov (United States)

    Kumar, Satendra; Singhai, Mrigandra; Desai, Rahul; Sam, Srimanta; Patra, Pradip Kumar

    2016-10-01

    Global warming and green house gas emissions are the major issues worldwide and their impacts are clearly visible as a record high temperatures, rising sea, and severe `flooding and droughts'. Motor vehicles considered as a major contributor on global warming due to its green house gas emissions. Hence, the automobile industries are under tremendous pressure from government and society to reduce green house gas emission to maximum possible extent. In present work, Dual Phase steel with boron as microalloying is manufactured using thermo-mechanical treatment during hot rolling. Dual phase steel with boron microalloying improved strength by near about 200 MPa than dual phase steel without boron. The boron added dual phase steel can be used for manufacturing stronger and a lighter vehicle which is expected to perform positively on green house gas emissions. The corrosion resistance behavior is also improved with boron addition which would further increase the life cycle of the vehicle even under corrosive atmosphere.

  14. A method for measuring particle number emissions from vehicles driving on the road.

    Science.gov (United States)

    Shi, J P; Harrison, R M; Evans, D E; Alam, A; Barnes, C; Carter, G

    2002-01-01

    Earlier research has demonstrated that the conditions of dilution of engine exhaust gases profoundly influence the size distribution and total number of particles emitted. Since real world dilution conditions are variable and therefore difficult to simulate, this research has sought to develop and validate a method for measuring particle number emissions from vehicles driving past on a road. This has been achieved successfully using carbon dioxide as a tracer of exhaust gas dilution. By subsequent adjustment of data to a constant dilution factor, it is possible to compare emissions from different vehicles using different technologies and fuels based upon real world emission data. Whilst further optimisation of the technique, especially in terms of matching the instrument response times is desirable, the measurements offer useful insights into emissions from gasoline and diesel vehicles, and the substantial proportion of particles emitted in the 3-7 nanometre size range.

  15. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710

    Directory of Open Access Journals (Sweden)

    N. Hudda

    2013-01-01

    Full Text Available To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs with chassis dynamometer or tunnel studies, and remote sensing studies cannot evaluate particulate compounds. We developed an alternative method that links real-time on-road pollutant measurements from a mobile platform with real-time traffic data, and allows efficient calculation of both the average and the spread of EFs for light-duty gasoline-powered vehicles (LDG and heavy-duty diesel-powered vehicles (HDD. This is the first study in California to report EFs under a full range of real-world driving conditions on multiple freeways. Fleet average LDG EFs were in agreement with most recent studies and an order of magnitude lower than observed HDD EFs. HDD EFs reflected the relatively rapid decreases in diesel emissions that have recently occurred in Los Angeles/California, and on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, HDD EFs were often lower than on other freeways. When freeway emission rates (ER were quantified as the product of EF and vehicle miles traveled (VMT per time per mile of freeway, despite a two- to three-fold difference in HDD fractions between freeways, ERs were found to be generally similar in magnitude. Higher LDG VMT on low HDD fraction freeways largely offset the difference. Therefore, the conventional assumption that freeways with the highest HDD fractions are significantly worse sources of total emissions in Los Angeles may no longer be~true.

  16. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710.

    Science.gov (United States)

    Hudda, N; Fruin, S; Delfino, R J; Sioutas, C

    2013-01-11

    To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs) with chassis dynamometer or tunnel studies, and remote sensing studies cannot evaluate particulate compounds. We developed an alternative method that links real-time on-road pollutant measurements from a mobile platform with real-time traffic data, and allows efficient calculation of both the average and the spread of EFs for light-duty gasoline-powered vehicles (LDG) and heavy-duty diesel-powered vehicles (HDD). This is the first study in California to report EFs under a full range of real-world driving conditions on multiple freeways. Fleet average LDG EFs were in agreement with most recent studies and an order of magnitude lower than observed HDD EFs. HDD EFs reflected the relatively rapid decreases in diesel emissions that have recently occurred in Los Angeles/California, and on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, HDD EFs were often lower than on other freeways. When freeway emission rates (ER) were quantified as the product of EF and vehicle miles traveled (VMT) per time per mile of freeway, despite a twoto three-fold difference in HDD fractions between freeways, ERs were found to be generally similar in magnitude. Higher LDG VMT on low HDD fraction freeways largely offset the difference. Therefore, the conventional assumption that free ways with the highest HDD fractions are significantly worse sources of total emissions in Los Angeles may no longer be true.

  17. Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet

    International Nuclear Information System (INIS)

    Bandivadekar, Anup; Cheah, Lynette; Evans, Christopher; Groode, Tiffany; Heywood, John; Kasseris, Emmanuel; Kromer, Matthew; Weiss, Malcolm

    2008-01-01

    The unrelenting increase in the consumption of oil in the US light-duty vehicle fleet (cars and light trucks) presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce petroleum use and greenhouse gas emissions from motor vehicles. Even so, achieving a noticeable reduction on both fronts in the near term will require rapid penetration of these technologies into the vehicle fleet, and not all alternatives can meet both objectives simultaneously. Placing a much greater emphasis on reducing fuel consumption rather than improving vehicle performance can greatly reduce the required market penetration rates. Addressing the vehicle performance-size-fuel consumption trade-off should be the priority for policymakers rather than promoting specific vehicle technologies and fuels

  18. Time trend of polycyclic aromatic hydrocarbon emission factors from motor vehicles

    Science.gov (United States)

    Tao, Shu; Shen, Huizhong; Wang, Rong; Sun, Kang

    2010-05-01

    Motor vehicle is an important emission source of polycyclic aromatic hydrocarbons (PAHs) and this is particularly true in urban areas. Motor vehicle emission factors (EFs) for individual PAH compound reported in the literature varied for 4 to 5 orders of magnitude, leading to high uncertainty in emission estimation. In this study, the major factors affecting EFs were investigated and characterized by regression models. Based on the model developed, a motor vehicle PAH emission inventory at country level was developed. It was found that country and model year are the most important factors affecting EFs for PAHs. The influence of the two factors can be quantified by a single parameter of per capita gross domestic production (purchasing power parity), which was used as the independent variables of the regression models. The models developed using randomly selected 80% of measurements and tested with the remained data accounted for 28 to 48% of the variations in EFs for PAHs measured in 16 countries over 50 years. The regression coefficients of the EF prediction models were molecular weight dependent. Motor vehicle emission of PAHs from individual countries in the world in 1985, 1995, 2005, 2015, and 2025 were calculated and the global emission of total PAHs were 470, 390, and 430 Gg in 1985, 1995, and 2005 and will be 290 and 130 Gg in 2015 and 2025, respectively. The emission is currently passing its peak and will decrease due to significant decrease in China and other developing countries.

  19. Neutron emission during lithium deuteride hydration in heavy water

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Kezerashvili, G.Ya.; Muratov, V.V.; Sinitskij, S.L.

    1989-01-01

    An experiment on neutron detection during lithium deuteride hydration in heavy water using a system of SNM-17 or SNM-18 gas counters was set up. Signals were simultaneously detected by 6 counters and the data were stored in a computer. At the same time the temperature of the reaction ampule external surface was measured. It was found that the neutron number per 1 gram of lithium deuteride reacted with water in the ampule was equal to several dozens if their initial energy was about 2.5 MeV. 4 refs.; 2 figs

  20. Spontaneous emission of heavy-ions from uranium

    International Nuclear Information System (INIS)

    Carvalho, H.G. de; Martins, J.B.; Souza, I.O. de; Tavares, O.A.P.

    1974-09-01

    The experimental evidences that 238 U, and perhaps other heavy nuclei, besides undergoing spontaneous fission, are also emitters of ions in the mass-range from 20 to 70. Estimates obtained by means of the WKB method indicate half-lifes of 10 15 to 10 18 years for some of these processes, which agree with our findings. Our results are supported by a systematic observation of neon and argon with abnormal isotopic abundance in both radioactive minerals and helium-bearing natural gases

  1. In-use vehicle emissions in China: Beijing study

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Hongyan H.; Gallagher, Kelly Sims (Energy Technology Innovation Policy Research Group, Harvard Kennedy School, Cambridge, MA (US)); Li, Mengliang; Qin, Kongjian; Zhang, Jianwei (China Automotive Research and Technology Center (CN)); Liu, Huan; He, Kebin (Department of Environmental Engineering and Science, Tsinghua Univ. (CN))

    2009-05-01

    China's economic boom in the last three decades has spurred increasing demand for transportation services and personal mobility. Consequently, vehicle population has grown rapidly since the early 1990s, especially in megacities such as Beijing, Guangzhou, and Tianjin. As a result, mobile sources have become more conspicuous contributors to urban air pollution in Chinese cities. Tianjin was our first focus city, and the study there took us about two years to complete. Building upon the experience and partnership generated through the Tianjin study, the research team carried out the Beijing study from fall 2007–fall 2008. Beijing was chosen to be our second focus city for several reasons: it has the largest local fleet and the highest percentage of the population owning vehicles among all Chinese cities, and it has suffered from severe air pollution, partially due to the ever-growing population of on-road vehicles.

  2. ANALYSIS OF REAL-TIME VEHICLE HYDROCARBON EMISSIONS DATA

    Science.gov (United States)

    The report gives results of analyses using real-time dynamometer test emissions data from 13 passenger cars to examine variations in emissions during different speeds or modes of travel. The resulting data provided a way to separately identify idle, cruise, acceleration, and dece...

  3. Prevalence of refraction errors and color blindness in heavy vehicle drivers.

    Science.gov (United States)

    Erdoğan, Haydar; Ozdemir, Levent; Arslan, Seher; Cetin, Ilhan; Ozeç, Ayşe Vural; Cetinkaya, Selma; Sümer, Haldun

    2011-01-01

    To investigate the frequency of eye disorders in heavy vehicle drivers. A cross-sectional type study was conducted between November 2004 and September 2006 in 200 driver and 200 non-driver persons. A complete ophthalmologic examination was performed, including visual acuity, and dilated examination of the posterior segment. We used the auto refractometer for determining refractive errors. According to eye examination results, the prevalence of the refractive error was 21.5% and 31.3% in study and control groups respectively (P<0.05). The most common type of refraction error in the study group was myopic astigmatism (8.3%) while in the control group simple myopia (12.8%). Prevalence of dyschromatopsia in the rivers, control group and total group was 2.2%, 2.8% and 2.6% respectively. A considerably high number of drivers are in lack of optimal visual acuity. Refraction errors in drivers may impair the traffic security.

  4. Extent and variations in mobile phone use among drivers of heavy vehicles in Denmark

    DEFF Research Database (Denmark)

    Troglauer, Thomas; Hels, Tove; Christens, P.

    2006-01-01

    A substantial body of research has shown that use of mobile phones while driving can impair driving performance and increase the risk of being involved in accidents. Similarly, mobile phone use seems to be an increasing activity thus representing a relevant traffic safety issue. This paper...... investigates the extent and variations in mobile phone use among drivers of heavy vehicles in Denmark. The data was collected through written questionnaires and had a response rate of 58%. It was found that more than 99% of the drivers used mobile phones while driving. Despite a prohibition of hand-held mobile...... the number of stops and the amount of phone use. 0.5% reported that their use of mobile phones had contributed to an accident, while 6% had experienced their mobile phone use causing a dangerous situation. However, 66% reported experiencing dangerous situations because of others road users' mobile phone use...

  5. Quantifying displaced carbon dioxide emissions from electric vehicles in Ireland

    OpenAIRE

    Foley, Aoife M.; Leahy, Paul G.; McKeogh, Eamon J.; Ó Gallachóir, Brian P.

    2010-01-01

    Under EU Directive 2009/28/EC on Renewable Energy each Member State is mandated to ensure that 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020. The Irish Government intends to achieve this target with a number of policies including an increase in the use of biofuels in transport by 3% by 2010 and ensuring that 10% of all vehicles in the transport fleet are powered by electricity by 2020. Electric vehicles (EVs) do not emit exh...

  6. Vehicle emission implications of drivers' smart advisory system for traffic operations in work zones.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei

    2016-05-01

    Wireless communication systems have been broadly applied in various complicated traffic operations to improve mobility and safety on roads, which may raise a concern about the implication of the new technology on vehicle emissions. This paper explores how the wireless communication systems improve drivers' driving behaviors and its contributions to the emission reduction, in terms of Operating Mode (OpMode) IDs distribution used in emission estimation. A simulated work zone with completed traffic operation was selected as a test bed. Sixty subjects were recruited for the tests, whose demographic distribution was based on the Census data in Houston, Texas. A scene of a pedestrian's crossing in the work zone was designed for the driving test. Meanwhile, a wireless communication system called Drivers Smart Advisory System (DSAS) was proposed and introduced in the driving simulation, which provided drivers with warning messages in the work zone. Two scenarios were designed for a leading vehicle as well as for a following vehicle driving through the work zone, which included a base test without any wireless communication systems, and a driving test with the trigger of the DSAS. Subjects' driving behaviors in the simulation were recorded to evaluate safety and estimate the vehicle emission using the Environmental Protection Agency (EPA) released emission model MOVES. The correlation between drivers' driving behavior and the distribution of the OpMode ID during each scenario was investigated. Results show that the DSAS was able to induce drivers to accelerate smoothly, keep longer headway distance and stop earlier for a hazardous situation in the work zone, which driving behaviors result in statistically significant reduction in vehicle emissions for almost all studied air pollutants (p-values range from 4.10E-51 to 2.18E-03). The emission reduction was achieved by the switching the distribution of the OpMode IDs from higher emission zones to lower emission zones

  7. Atomic nuclei decay modes by spontaneous emission of heavy ions

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Ivascu, M.; Sandulescu, A.

    1984-01-01

    The great majority of the known nuclei, including the so-called stable nuclides, are in fact metastable with respect to several modes of spontaneous superasymmetric splitting. If the lifetime against these processes is larger than 10 30 s, the phenomenon is not detectable with available experimental techniques, hence one can admit stability from the practical point of view. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relatively to the alpha decay for these natural radioactivities. From a huge amount of systematical calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained for parent nuclei - heavy clusters leading to a magic ( 208 Pb) or almost daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-life n the 10 10 -10 30 s range. The shell structure and pairing effects are clearly manifested in these new decay modes

  8. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong

    International Nuclear Information System (INIS)

    Yan, H.H.; Guo, H.; Ou, J.M.

    2014-01-01

    Highlights: • Halocarbon emissions from MVACS were characterized using bottom up approach. • Quantification of emission inventory was revealed using AUV Tools. • Potential emission reduction was estimated under 3 possible mitigation scenarios. • The results are useful for the policy makers to formulate and implement future phase-out schedule. - Abstract: During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO 2 -equivelant (CO 2 -eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10 5 tons CO 2 -eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong

  9. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H.H.; Guo, H., E-mail: ceguohai@polyu.edu.hk; Ou, J.M.

    2014-08-15

    Highlights: • Halocarbon emissions from MVACS were characterized using bottom up approach. • Quantification of emission inventory was revealed using AUV Tools. • Potential emission reduction was estimated under 3 possible mitigation scenarios. • The results are useful for the policy makers to formulate and implement future phase-out schedule. - Abstract: During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO{sub 2}-equivelant (CO{sub 2}-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10{sup 5} tons CO{sub 2}-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong.

  10. Light-absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions.

    Science.gov (United States)

    Xie, Mingjie; Hays, Michael D; Holder, Amara L

    2017-08-04

    Light-absorbing organic carbon (OC), also termed brown carbon (BrC), from laboratory-based biomass burning (BB) has been studied intensively to understand the contribution of BB to radiative forcing. However, relatively few measurements have been conducted on field-based BB and even fewer measurements have examined BrC from anthropogenic combustion sources like motor vehicle emissions. In this work, the light absorption of methanol-extractable OC from prescribed and laboratory BB and gasoline vehicle emissions was examined using spectrophotometry. The light absorption of methanol extracts showed a strong wavelength dependence for both BB and gasoline vehicle emissions. The mass absorption coefficients at 365 nm (MAC 365 , m 2 g -1 C) - used as a measurement proxy for BrC - were significantly correlated (p burn conditions and fuel types may impact BB BrC characteristics. The average MAC 365 of gasoline vehicle emission samples is 0.62 ± 0.76 m 2  g -1 C, which is similar in magnitude to the BB samples (1.27 ± 0.76 m 2  g -1 C). These results suggest that in addition to BB, gasoline vehicle emissions may also be an important BrC source in urban areas.

  11. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    Science.gov (United States)

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels.

  12. Impact of methanol and CNG fuels on motor-vehicle toxic emissions

    International Nuclear Information System (INIS)

    Black, F.; Gabele, P.

    1991-01-01

    The 1990 Clean Air Act Amendments require that the Environmental Protection Agency investigate the need for reduction of motor vehicle toxic emissions such as formaldehyde, acetaldehyde, benzene, 1,3-butadiene, and polycyclic organic matter. Toxic organic emissions can be reduced by utilizing the control technologies employed for regulated THC (NMHC) and CO emissions, and by changing fuel composition. The paper examines emissions associated with the use of methanol and compressed natural gas fuels. Both tailpipe and evaporative emissions are examined at varied ambient temperatures ranging from 20 C to 105 F. Tailpipe emissions are also examined over a variety of driving cycles with average speeds ranging from 7 to 48 mph. Results suggest that an equivalent ambient temperatures and average speeds, motor vehicle toxic emissions are generally reduced with methanol and compressed natural gas fuels relative to those with gasoline, except for formaldehyde emissions, which may be elevated. As with gasoline, tailpipe toxic emissions with methanol and compressed natural gas fuels generally increase when ambient temperature or average speed decreases (the sensitivity to these variables is greater with methanol than with compressed natural gas). Evaporative emissions generally increase when fuel volatility or ambient temperature increases (however, the relative contribution of evaporative sources to the aggregate toxic compound emissions is small)

  13. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  14. Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2011-03-01

    Full Text Available We report on the real-world use over the course of one year of a nickel-metal-hydride plug-in hybrid—the Toyota Plug-In HV—by a set of 12 northern California households able to charge at home and work. From vehicle use data, energy and greenhouse-emissions implications are also explored. A total of 1557 trips—most using under 0.5 gallons of gasoline—ranged up to 2.4 hours and 133 miles and averaged 14 minutes and 7 miles. 399 charging events averaged 2.6 hours. The maximum lasted 4.6 hours. Most recharges added less than 1.4 kWh, with a mean charge of 0.92 kWh. The average power drawn was under one-half kilowatt. The greenhouse gas emissions from driving and charging were estimated to be 2.6 metric tons, about half of the emissions expected from a 22.4-mpg vehicle (the MY2009 fleet-wide real-world average. The findings contribute to better understanding of how plug-in hybrids might be used, their potential impact, and how potential benefits and requirements vary for different plug-in-vehicle designs. For example, based on daily driving distances, 20 miles of charge-depleting range would have been fully utilized on 81% of days driven, whereas 40 miles would not have been fully utilized on over half of travel days.

  15. Travel Effects and Associated Greenhouse Gas Emissions of Automated Vehicles

    Science.gov (United States)

    2018-04-01

    In much the same way that the automobile disrupted horse and cart transportation in the 20th century, automated vehicles hold the potential to disrupt our current system of transportation and the fabric of our built environment in the 21st century. E...

  16. Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)

    International Nuclear Information System (INIS)

    Manjunath, Archana; Gross, George

    2017-01-01

    A key motivator for wider deployment of electric vehicles (EVs) – vehicles that are fully powered by battery charged from grid electricity – is to bring about environmental cleanliness. This goal is based on the fact that EVs produce zero tailpipe emissioon the associated carbon emissins. However, the generation and transmission of the charge electricity produce emissions that are not explicitly accounted by current measurement metrics for EV greenhouse gas (GHG) emissions and as such, the notion of environmental cleanliness of EVs becomes questionable. In this paper, we propose a comprehensive metric to quantify the actual environmental impacts of EVs. The new metric that we call the electric vehicle emissions index (EVEI) captures CO_2 emissions in the electricity production to consumption stages. Our metric is the first that provides transparency in the comparison of total emissions among various EV models, as well as in the side-by-side comparison of an EV with a gasoline vehicle (GV). Illustrative results indicate that the actual environmental impacts of an EV may show wide spatial variations and in some case, these impacts may be even greater than that of GV. Such insights that the EVEI provides may be useful in a wide range of applications, particularly in policy and incentive formulation. - Highlights: • We propose the Electric Vehicle Emission Index (EVEI) metric. • EVEI indicates the EV environmental impacts w.r.t gasoline vehicles (GVs). • Fuel economy and resource mix are the major contributors to emissions. • Results indicate EVs may prove to be dirtier than GVs in certain areas of usage. • Insights may prove to be valuable to policy and incentive formulation.

  17. The consequences of an increase in heavy goods vehicles for passenger car drivers' mental workload and behaviour : A simulator study

    NARCIS (Netherlands)

    De Waard, D.; Kruizinga, A; Brookhuis, K.A.

    The effects of an increase in Heavy Goods Vehicles (HGVs) on merging behaviour and on mental workload of motorists during filtering in and out of traffic were studied. Participants drove in a driving simulator in a total of 12 conditions; twice in each of two weather conditions and in three traffic

  18. 75 FR 70237 - California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto...

    Science.gov (United States)

    2010-11-17

    ... for the current CARB categories of heavy-duty vehicles are within-the-scope of the previously granted...) (Diesel) and 53 FR 7022 (March 4, 1988) (Otto-cycle). \\3\\ 69 FR 59920 (October 6, 2004). CARB's current... threshold test of materiality and * * * thereafter assess such material evidence against a standard of proof...

  19. Initiative to introduce a performance-based standards (PBS) approach for heavy vehicle design and operations in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-05-01

    Full Text Available The introduction of PBS for heavy vehicles in South Africa was first identified in the National Overload Control Strategy as a potential concession of a proposed Self-regulation initiative. In August 2004 a PBS committee was established...

  20. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    Science.gov (United States)

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  1. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Sobotka, L.G.

    1989-01-01

    The production of large fragments, fragments with mass between light particles and fission fragments, in intermediate and high energy nuclear reactions has fostered the proposal of a number of novel reaction mechanisms. These include liquid-vapor equilibrium and nuclear shattering. Temporarily left in the wake of these exciting proposed mechanisms was the old standard, statistical decay of compound nuclei. To be sure, the standard treatment of compound nucleus decay did not deal with large fragment production. However, this omission was not due to any fundamental deficiency of statistical models, but rather an uncertainty concerning exactly how to splice large fragment emission into statistical models. A large portion of our program deals with this problem. Specifically, by studying the yields of large fragments produced in sufficiently low energy reactions we are attempting to deduce the asymmetry and l-wave dependence of large fragment emission from compound nuclear intermediates. This, however, is only half of the problem. Since the novel mechanisms proposed for large fragment emission were spawned by intermediate and high energy reaction data, we must also realize the relevance of the compound nucleus mechanisms at high energies. It is not unreasonable to suspect that compound nucleus-like objects are formed with less than complete momentum transfer and perhaps less than complete mass transfer. Therefore the study of energy, mass, and angular momentum transfer in incomplete fusion and non-compound reactions. This thread joins the apparently divergent subjects covered in this report

  2. Fragment emission in relativistic heavy-ion reactions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Subramanian, P.R.; Buchwald, G.; Graebner, G.; Rosenhauer, A.; Maruhn, J.A.; Greiner, W.

    1982-05-01

    The authors present a theoretical description of nuclear collisions which consists of a three-dimensional fluid-dynamical model, a chemical equilibrium break-up calculation for local light fragment (i.e. p, n, d, t, 3 He, 4 He) production and a final thermal evaporation of these particles. The light fragment cross section and some properties of the heavy target residues are calculated for the asymmetric systems Ne+U at 400 MeV/N, Ne+Pb at 800 MeV/N and C+Sn at 86 MeV/N. The results of the model calculations are compared with recent experimental data. Several observable signs of the collective hydrodynamical processes are consistent with the present data. An event-by-event analysis of the flow patterns of the various clusters is proposed which can yield deeper insight into collision dynamics. (author)

  3. Stoichiometric and lean burn heavy-duty gas engines: a dilemma between emissions and fuel consumption?

    NARCIS (Netherlands)

    Steen, M. van der; Rijke, J. de; Seppen, J.J.

    1996-01-01

    This paper compares stoichiometric with lean burn technology for heavy-duty gas engines (natural gas and LPG) and demonstrates that there is a future for both engine concepts on the multilateral global market. Emission limits in Europe as expected in the near future will facilitate both engine

  4. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles. Keywords. Light charged particles; heavy-ion induced reactions; particle spectra and angular distri-.

  5. Light particle and gamma ray emission measurements in heavy-ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1982-01-01

    The development of a position-sensitive neutron detector and a data acquisition system at HHIRF for studying light particle emission in heavy ion reactions is described. Results are presented and discussed for the reactions 12 C + 158 Gd, 13 C + 157 Gd, and 20 Ne + 150 Nd

  6. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  7. Effect of γ-ray emission on transuranium element production cross sections in heavy ion reactions

    International Nuclear Information System (INIS)

    Il'inov, A.S.; Oganesyan, Yu.Ts.; Cherepanov, E.A.

    1980-01-01

    The effect of competition of the γ ray emission with neutron evaporation and of compound nuclei fission induced by heavy ion reactions on the production cross sections for transuranium elements is considered. It is shown that taking account of γ ray emission leads to the broadening of the excitation functions of the (HI, xny) reactions such as 18 O+ 238 U, 40 Ar+ 206 Pb, 40 Ar+ 207 Pb and 40 Ar+ 208 Pb reactions and to the displacement of their maximum toward the higher energies as well as to an increase of the absolute cross sections which is especially strong close to the fusion barrier. Cross sections for the radiative capture of heavy ions by a heavy target nucleus in 40 Ar+ 206 Pb, 40 Ar+ 208 Pb, 48 Ca+ 204 Pb and 48 Ca+ 208 Pb reactions are estimated

  8. Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections.

    Science.gov (United States)

    Keshavarzmohammadian, Azadeh; Henze, Daven K; Milford, Jana B

    2017-06-20

    This study investigates emission impacts of introducing inexpensive and efficient electric vehicles into the US light duty vehicle (LDV) sector. Scenarios are explored using the ANSWER-MARKAL model with a modified version of the Environmental Protection Agency's (EPA) 9-region database. Modified cost and performance projections for LDV technologies are adapted from the National Research Council (2013) optimistic case. Under our optimistic scenario (OPT) we find 15% and 47% adoption of battery electric vehicles (BEVs) in 2030 and 2050, respectively. In contrast, gasoline vehicles (ICEVs) remain dominant through 2050 in the EPA reference case (BAU). Compared to BAU, OPT gives 16% and 36% reductions in LDV greenhouse gas (GHG) emissions for 2030 and 2050, respectively, corresponding to 5% and 9% reductions in economy-wide emissions. Total nitrogen oxides, volatile organic compounds, and SO 2 emissions are similar in the two scenarios due to intersectoral shifts. Moderate, economy-wide GHG fees have little effect on GHG emissions from the LDV sector but are more effective in the electricity sector. In the OPT scenario, estimated well-to-wheels GHG emissions from full-size BEVs with 100-mile range are 62 gCO 2 -e mi -1 in 2050, while those from full-size ICEVs are 121 gCO 2 -e mi -1 .

  9. Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai, China

    Science.gov (United States)

    Huang, Cheng; Tao, Shikang; Lou, Shengrong; Hu, Qingyao; Wang, Hongli; Wang, Qian; Li, Li; Wang, Hongyu; Liu, Jian'gang; Quan, Yifeng; Zhou, Lanlan

    2017-11-01

    CO, THC, NOx, and PM emission factors of 51 light-duty gasoline vehicles (LDGVs) spanning the emission standards from Euro 2 to Euro 5 were measured by a chassis dynamometer. High frequencies of high-emitting vehicles were observed in Euro 2 and Euro 3 LDGV fleet. 56% and 33% of high-emitting vehicles contributed 81%-92% and 82%-85% of the emissions in Euro 2 and Euro 3 test fleet, respectively. Malfunctions of catalytic convertors after high strength use are the main cause of the high emissions. Continuous monitoring of a gasoline vehicle dominated tunnel in Shanghai, China was conducted to evaluate the average emission factors of vehicles in real-world. The results indicated that the emission factors of LDGVs were considerably underestimated in EI guidebook in China. The overlook of high-emitting vehicles in older vehicle fleet is the main reason for this underestimation. Enhancing the supervision of high emission vehicles and strengthening the compliance tests of in-use vehicles are essential measures to control the emissions of in-use gasoline vehicles at the present stage in China.

  10. PM₂.₅ emissions from light-duty gasoline vehicles in Beijing, China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Huo, Hong; He, Kebin; Zhang, Yingzhi; Liu, Huan; Ye, Yu

    2014-07-15

    As stricter standards for diesel vehicles are implemented in China, and the use of diesel trucks is forbidden in urban areas, determining the contribution of light-duty gasoline vehicles (LDGVs) to on-road PM2.5 emissions in cities is important. Additionally, in terms of particle number and size, particulates emitted from LDGVs have a greater health impact than particulates emitted from diesel vehicles. In this work, we measured PM2.5 emissions from 20 LDGVs in Beijing, using an improved combined on-board emission measurement system. We compared these measurements with those reported in previous studies, and estimated the contribution of LDGVs to on-road PM2.5 emissions in Beijing. The results show that the PM2.5 emission factors for LDGVs, complying with European Emission Standards Euro-0 through Euro-4 were: 117.4 ± 142, 24.1 ± 20.4, 4.85 ± 7.86, 0.99 ± 1.32, 0.17 ± 0.15 mg/km, respectively. Our results show a significant decline in emissions with improving vehicle technology. However, this trend is not reflected in recent emission inventory studies. The daytime contributions of LDGVs to PM2.5 emissions on highways, arterials, residential roads, and within urban areas of Beijing were 44%, 62%, 57%, and 57%, respectively. The contribution of LDGVs to PM2.5 emissions varied both for different road types and for different times. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Emission Reduction Potential with the Renewal of the Vehicle Fleet in Croatia

    International Nuclear Information System (INIS)

    Zidov, B.; Brlek, G.; Brajkovic, J.; Karan, M.

    2015-01-01

    The European Union has identified the typical areas of application of measures to tackle the problem of pollutants emissions into the air. Road transport is recognized as the largest polluter of the environment and an increase in CO2 emissions is most difficult to suppress in this type of transport. Looking at the projected trend of emission reductions in Croatia, it is clear that for achieving the minimum targets by 2050, as proposed by the European Union, implementation of the very strong measures in the coming period will be inevitable. The main aim of the paper refers to the analysis of potential emission reduction of pollutants generated by passenger vehicles registered in Croatia, assuming the implementation of measures that will result in technological renewal of the fleet at the national level. Generally considering, passenger cars before the Euro 1 standard, Euro 1 and Euro 2 standards together emit nearly 40 percent of all CO2 emissions generated by passenger cars registered in Croatia. Assuming replacement of all cars up to and including Euro 2, with Euro 6 vehicles, and taking into account certain assumptions, the potential reductions in emissions of NOx, CO, CH4 and particles were quantified. The potential reduction in NOx emissions is approximately 3,061 tons, in CO emissions approximately 14482 tons, in CH4 approximately 114 tons and in particulate matter approximately 257 tons. Depending on the engine size, with the replacement of the typical gasoline 20 years old passenger vehicle with the new one, without changing the driving mode, annual savings of up to 209 liters of gasoline fuel and reduction of CO2 emissions by 475 kg could be achieved (according to the assumptions described in the paper). With the replacement of diesel vehicles under the same conditions, the savings of up to 311 liters of diesel fuel annually and reduction of CO2 emissions by 815 kg could be achieved. (author).

  12. Diffusion analysis of the emerging consumer market for low emission vehicles

    DEFF Research Database (Denmark)

    Morton, C.; Anable, J.; Nelson, J.D.

    A large degree of public and private funding is being allocated to accelerating the introduction of Ultra Low Emission powertrains for passenger cars, especially plug-in Hybrid and Pure Battery Electric Vehicles (EVs). If these new vehicles are to make a significant contribution towards increasing...... energy security whilst decreasing levels of air pollution and greenhouse gas emissions, a detailed understanding of the likely consumer demand for them is a fundamental requirement. The success of these new vehicles will be as much dependent on their desirability to customers as to their technical...... ability. This paper draws upon Roger’s Diffusion of Innovation Theory to understand the potential importance of consumer ‘innovativeness’ as a precursor to at least the early adoption of new vehicle technology. It presents preliminary results from a household self completion survey conducted over two case...

  13. Criteria and air-toxic emissions from in-use automobiles in the National Low-Emission Vehicle program.

    Science.gov (United States)

    Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich

    2005-09-01

    The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.

  14. Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles.

    Science.gov (United States)

    Wen, Dongqi; Zhai, Wenjuan; Xiang, Sheng; Hu, Zhice; Wei, Tongchuan; Noll, Kenneth E

    2017-11-01

    Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO 2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations. The paper provides emission factors (EFs) that are a function of traffic volume and mode of

  15. Air emission in France. Metropolitan area heavy metals; Emissions dans l'air en France. Metropole metaux lourds

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Substances and index currently in survey are: Heavy metals: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se), Zinc (Zn). Density ratios relating to population, area, gross product, primary energy consumption, etc. Annual emissions are provided for each substance since 1990. Dates corresponding to the maximum and minimum values are also included. Results are provisional for 2001. (author)

  16. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    Science.gov (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  17. Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vertin, K.; Glinsky, G.; Reek, A.

    2012-08-01

    The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

  18. Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations

    Directory of Open Access Journals (Sweden)

    Yoon Seong Kim

    2017-01-01

    Full Text Available Makers of heavy-duty diesel engines (HDDEs need to reduce their inventory of old-generation products in preparation for the demand for next-generation products that satisfy new emission regulations. In this paper, a new demand forecasting model is proposed to reflect special conditions raised by the technological generational shift owing to new emission regulation enforcement. In addition, sensitivity analyses are conducted to better accommodate uncertainty involved at the time of prediction. Our proposed model can help support manufacturers’ production and sales management for a series of products in response to new emission regulations.

  19. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Yacovitch, Tara I.; Fortner, Edward C.; Roscioli, Joseph R.; Floerchinger, Cody; Herndon, Scott C.; Kolb, Charles E.; Knighton, Walter B.; Paramo, Victor Hugo; Zirath, Sergio; Mejía, José Antonio; Jazcilevich, Aron

    2017-12-01

    Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC), organic carbon (OC), and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41-2.48 g kg-1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO), CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios measured in California using

  20. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2017-12-01

    Full Text Available Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC, organic carbon (OC, and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM, as well as carbon monoxide (CO, nitrogen oxides (NOx, sulfur dioxide (SO2, ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41–2.48 g kg−1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO, CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios

  1. Microscopic study of proton emission from heavy nuclei

    International Nuclear Information System (INIS)

    Sahu, B.B.; Patra, S.K.; Agarwalla, S.K.

    2011-01-01

    In recent years many theoretical calculations have been employed to explain the observed lifetimes of proton radioactivity and alpha decay processes in the region of proton rich nuclei. These data are very promising for the analysis of possible irregularities in the structure of these proton-rich nuclei. They are also of great interest in rapid proton capture processes. Some new results for proton radioactivity in this region of proton-rich nuclei have indicated that the proton emission mode is rather competitive with the alpha decay one. In the energy domain of radioactivity, proton can be considered as a point charge having highest probability of being present in the parent nucleus

  2. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...

  3. A review of the global emissions, transport and effects of heavy metals in the environment

    International Nuclear Information System (INIS)

    Friedman, J.R.; Ashton, W.B.; Rapoport, R.D.