WorldWideScience

Sample records for heavy rare gases

  1. Method for storing radioactive rare gases

    International Nuclear Information System (INIS)

    Watabe, Atsushi; Nagao, Hiroyuki; Takiguchi, Yukio; Kanazawa, Toshio; Soya, Masataka.

    1975-01-01

    Object: To safely and securely store radioactive rare gases for a long period of time. Structure: The waste gases produced in nuclear power plant are cooled by a cooler and then introduced into a low temperature adsorbing device so that the gases are adsorbed by adsorbents, and then discharged into atmosphere through the purifying gas discharge line. When the radioactive rare gases reach a level of saturation in the amount of adsorption, they are heated and extracted by a suction pump and heated by a heater. The gases are then introduced into an oxygen-impurity removing device and the purified rare gases containing no oxygen and impurities are cooled by a cooler and fed into a gas holder. When the amount of radioactive rare gases stored within the gas holder reaches a given level, they are compressed and sealed by a compressure into a storing cylinder and residual gases in the piping are sucked and recovered into the gas holder, after which the cylinder is removed and stored in a fixed room. (Kamimura, M.)

  2. Plant for removing radioactive rare gases

    International Nuclear Information System (INIS)

    An, Buzai; Kanazawa, Toshio

    1977-01-01

    The outline of the pilot plant to remove and recover radioactive rare gases generated from nuclear power plants, reprocessing installations for nuclear fuel, nuclear research installations, etc. is described below. Among the studies of various processes such as liquefaction and distillation, absorption into solvents, active carbon adsorption, diaphragm method, etc., the liquefaction and distillation process by rectification at low temperature has been positively developed. It is in the stage of practical application for removing rare gases in waste gases from reprocessing and nuclear power plants. This is the process with high safety and excellent rare gas removing capability. Further research and development have been also made for selective adsorption and desorption method at low temperature which is very efficient as there is no release of long life nuclides such as Krypton-85. Rare gases recovered by the above mentioned removal systems must be stored safely for a long time as their half lives are long and specific radioactivities are high. The study has been made continuously on the storage methods including adsorption in cylinders and remotely automatically sealing storing system. (Kobatake, H.)

  3. Rare gases in Samoan xenoliths

    Science.gov (United States)

    Poreda, R. J.; Farley, K. A.

    1992-09-01

    The rare gas isotopic compositions of residual harzburgite xenoliths from Savai'i (SAV locality) and an unnamed seamount south of the Samoan chain (PPT locality) provide important constraints on the rare gas evolution of the mantle and atmosphere. Despite heterogeneous trace element compositions, the rare gas characteristics of the xenoliths from each of the two localities are strikingly similar. SAV and PPT xenoliths have 3He/ 4He ratios of11.1 ± 0.5 R A and21.6 ± 1 R A, respectively; this range is comparable to the 3He/ 4He ratios in Samoan lavas and clearly demonstrates that they have trapped gases from a relatively undegassed reservoir. The neon results are not consistent with mixing between MORB and a plume source with an atmospheric signature. Rather, the neon isotopes reflect either a variably degassed mantle (with a relative order of degassing of Loihi Honda et al. that the 20Ne/ 22Ne ratio in the mantle more closely resembles the solar ratio than the atmospheric one. 40Ar/ 36Ar ratios in the least contaminated samples range from 4,000 to 12,000 with the highest values in the 22 RA PPT xenoliths. There is no evidence for atmospheric 40Ar/ 36Ar ratios in the mantle source of these samples, which indicates that the lower mantle may have 40Ar/ 36Ar ratios in excess of 5,000. Xenon isotopic anomalies in 129Xe and 136Xe are as high as 6%, or about half of the maximum MORB excess and are consistent with the less degassed nature of the Samoan mantle source. These results contradict previous suggestions that the high 3He/ 4He mantle has a near-atmospheric heavy rare gas isotopic composition.

  4. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  5. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  6. XPS and XAES measurements on trapped rare gases in transition metals

    International Nuclear Information System (INIS)

    Baba, Y.; Yamamoto, H.; Sasaki, T.A.

    1992-01-01

    Electronic structures of rare gases implanted in various transition metals have been investigated by means of an X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy (XAES). The Auger-parameter method is applied to the evaluation of electronic relaxation energy of rare gas atoms due to the surrounding metal potential. The extra-atomic relaxation energy of four kinds of rare gases (Ne, Ar, Kr, Xe) in the same metal matrix (Ti) increases with the atomic mass of the rare gases. On the other hand, the extra-atomic relaxation energy of the same rare gas (Xe) in different metal matrices ranges from 3.0 eV (in Mo). These values increase with the number of d-electrons in the metals. This tendency and the absolute values of the relaxation energies are in good agreement with those calculated for 3d transition metals referenced to their gas-phase values. Based on these results, it is concluded that the energetically implanted rare gases are trapped at the substitution site in the metal lattice as an isolated atom, and the trapped atoms feel the surrounding metal potential. It is also made clear that the potential affecting the implanted atom is d-like, and the relaxation energy of the implanted rare gas during the photoemission process is almost equal to those of the metal itself. (orig.)

  7. Method of processing radioactive rare gase

    International Nuclear Information System (INIS)

    Tagusagawa, Atsushi; Tuda, Kazuaki.

    1988-01-01

    Purpose: To obtain a safety processing method without using mechanical pumps or pressure-proof containers and, accordingly, with no risk for the leakage of radioactive rare gas. Method: A container filled with zeolige is inserted with a cover being opened into an autoclave. Meanwhile, krypton-containing gases are supplied to an adsorption tower filled with adsorbents, cooled, adsorbed and then heated to desorb adsorbed krypton. The krypton-containing gases are introduced due to the pressure difference to the autoclave thereby causing krypton to adsorb at ambient temperature to zeolite. Then, the inside of the autoclave is heated to desorb krypton and adsorbed moistures from zeolite and the pressure is elevated. After sending the gases under pressure to the adsorption tower, the zeolite-filled container is taken out from the autoclave, tightly closed and then transferred to a predetermined site. (Takahashi, M.)

  8. Electron thermalization in rare gases and their mixtures

    International Nuclear Information System (INIS)

    Bronic, I.K.; Kimura, M.

    1996-01-01

    The time evolution and temperature dependence of electron energy distribution functions (EDFs) are studied in pure rare gases (He, Ne, Ar, Kr, Xe) as well as in their mixtures by using solutions of the Boltzmann equation. A clear difference between the gases having the Ramsauer endash Townsend (RT) minimum in the momentum-transfer cross section, (RT gases: Ar, Kr, and Xe), and those without the RT minimum (non-RT gases: He and Ne) is pointed out. The influence of the position and the depth of the RT minimum on the EDF and time evolution is studied for three different initial electron energies. A formula proposed for describing thermalization time in a mixture is tested on (i) a non-RT endash non-RT gas mixture, (ii) a RT endash non-RT mixture and (iii) a RT endash RT gas mixture. The linear combination of the reciprocal thermalization times in gas mixture with the component concentrations as weighting factors is found to be valid for gases with a similar energy dependence of the momentum-transfer cross section, σ m , and also for all rare-gas binary mixtures if the initial electron energy is sufficiently below the RT minimum. Conspicuous deviations from the linear relationship are observed in mixtures of gases whose energy dependence of σ m (or the stopping cross section) are different, and theoretical rationales for these findings are provided. copyright 1996 American Institute of Physics

  9. Isotopic studies of rare gases in terrestrial samples and in natural nucleosynthesis

    International Nuclear Information System (INIS)

    Reynolds, J.H.

    1988-08-01

    This project is concerned with research in rare gas mass spectrometry. The broad objective is to read the natural record that isotopes of the rare gases comprise as trace constituents of natural gases, rocks, and meteorites. In past years, these interests have led to the study of such diverse problems as the dating of rocks, the early chronology and isotopic structure of the solar system as revealed by extinct radioactivities, and the elemental and isotopic composition of trapped primordial rare gases in meteorites. In recent years, the project has focused progressively more on terrestrial problems

  10. Isotopic studies of rare gases in terrestrial samples and in natural nucleosynthesis

    International Nuclear Information System (INIS)

    1987-07-01

    This project is concerned with research in rare gas mass spectrometry. The broad objective is to read the natural record that isotopes of the rare gases comprise as trace constituents of natural gases, rocks, and meteorites. In past years, these interests have led to the study of such diverse problems as the dating of rocks, the early chronology and isotopic structure of the solar system as revealed by extinct radioactivities, and the elemental and isotopic composition of trapped primordial rare gases in meteorites. In recent years, the project has focused progressively more on terrestrial problems

  11. Energy of solution of rare gases in metals; Energie de dissolution des gaz rares dans les metaux

    Energy Technology Data Exchange (ETDEWEB)

    Blin, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In order to calculate the energy of solution of rare gases in metals, a method which has given good results in the case of solid solutions in metals has been applied. Nevertheless, it was necessary for this, to know the compressibility of gases under conditions which are not feasible in a laboratory. H. Jensen has studied this compressibility in a precise way for the rare gases Ar, Kr, Xe. It has thus been possible to calculate the energy of solution of these gases in different metals. These calculations have been carried out most thoroughly for the case of uranium. (author) [French] Nous avons applique au calcul de l'energie de dissolution des gaz rares dans les metaux, une methode qui a donne de bons resultats dans le cas des solutions solides metalliques. Il fallait pour cela connaitre la compressibilite des gaz rares dans des conditions impossibles a realiser en laboratoire. Cette compressibilite a ete etudiee par H. Jensen de facon precise pour les gaz rares A, Kr, Xe. Nous avons pu, de ce fait, calculer les energies de dissolution de ces gaz dans les differents metaux. Les calculs ont ete faits plus completement dans le cas de l'uranium. (auteur)

  12. Energy of solution of rare gases in metals; Energie de dissolution des gaz rares dans les metaux

    Energy Technology Data Exchange (ETDEWEB)

    Blin, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In order to calculate the energy of solution of rare gases in metals, a method which has given good results in the case of solid solutions in metals has been applied. Nevertheless, it was necessary for this, to know the compressibility of gases under conditions which are not feasible in a laboratory. H. Jensen has studied this compressibility in a precise way for the rare gases Ar, Kr, Xe. It has thus been possible to calculate the energy of solution of these gases in different metals. These calculations have been carried out most thoroughly for the case of uranium. (author) [French] Nous avons applique au calcul de l'energie de dissolution des gaz rares dans les metaux, une methode qui a donne de bons resultats dans le cas des solutions solides metalliques. Il fallait pour cela connaitre la compressibilite des gaz rares dans des conditions impossibles a realiser en laboratoire. Cette compressibilite a ete etudiee par H. Jensen de facon precise pour les gaz rares A, Kr, Xe. Nous avons pu, de ce fait, calculer les energies de dissolution de ces gaz dans les differents metaux. Les calculs ont ete faits plus completement dans le cas de l'uranium. (auteur)

  13. Excess electron transport and delayed muonium formation in condensed rare gases

    International Nuclear Information System (INIS)

    Eshchenko, D.G.; Storchak, V.G.; Brewer, J.H.; Morris, G.D.; Cottrell, S.P.; Cox, S.F.J.

    2002-01-01

    Experimental studies of excess electron transport in solid and liquid phases of Ne and Ar are presented and compared with those for He. The technique of muon spin relaxation in frequently reversed electric fields was used to study the phenomenon of delayed muonium formation, whereby excess electrons liberated in the μ + ionization track converge upon the positive muons and form μ + e - atoms. This process is shown to be crucially dependent upon the electron's interaction with its environment (i.e., whether it occupies the conduction band or becomes localized) and upon its mobility in these states. The characteristic lengths involved are 10 -6 to 10 -4 cm; the characteristic times range from nanoseconds to tens of microseconds. Such a microscopic length scale sometimes enables the electron to spend its entire free lifetime in a state which may not be detected by conventional macroscopic techniques. The end-of-track processes are compared in (i) liquid and solid helium (where the electron is known to be localized in a bubble in the liquid phase and is thought to behave in a similar manner in the solid); (ii) liquid and solid neon (where both localized and bandlike electrons are found in the liquid phase while most are delocalized in the solid); and (iii) liquid and solid argon (where most electrons are bandlike in both phases). This scaling from light to heavy rare gases enables us to demonstrate new features of excess electron localization on the microscopic scale and provides insight into the structure of the end of the muon track in condensed rare gases

  14. Rare gases adsorption and separation on silver doped adsorbent

    International Nuclear Information System (INIS)

    Deliere, Ludovic

    2015-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) implements means for detecting nuclear tests in an International Monitoring System (IMS). The Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) has developed in the mid-90's, the SPALAX system (Systeme de Prelevement d'Air en Ligne avec l'Analyse des radioXenons). Xenon analysis, including radioactive isotopes from the fission reaction during the explosion, requires the development of highly efficient process for xenon concentration. In this work, the adsorption and diffusion phenomena of noble gases are studied in silver exchanged ZSM-5 zeolite. The 'experience/Monte Carlo simulation' coupling is used to determine the essential thermodynamic data on the adsorption of noble gases and to characterize the adsorption sites. The presence of a strong adsorption site, identified as silver nanoparticles and intervening at low concentration of noble gases (including xenon and radon) in some silver exchanged zeolites, achieves adsorption and selectivity performance to date unrivaled. These results allow considering their use in many critical applications in the field of capture and separation of rare gases: rare gas industrial production, reprocessing of spent fuel from gas, radon in air pollution control. (author) [fr

  15. Evidence for solar flare rare gases in the Khor Temiki aubrite.

    Science.gov (United States)

    Rajan, R. S.; Price, P. B.

    1973-01-01

    It has been found by studying a number of gas-rich meteorites, including Khor Temiki that there is a correlation between the abundance of 'track-rich' grains and the concentration of trapped rare gases. The amount of solar flare gas in Khor Temiki is examined. It is pointed out that the Khor Temiki enstatite is an ideal sample in which to look for evidence of solar flare gases because there has been little or no diffusion loss of solar wind gases.

  16. Isotopic studies of rare gases in terrestrial samples and natural nucleosynthesis

    International Nuclear Information System (INIS)

    1990-07-01

    This project is concerned with research in rare gas mass spectrometry. We read the natural record that isotopes of the rare gases provide. We study fluids using a system (RARGA) that is sometimes deployed in the field. In 1990 there was a strong effort to reduce the backlog of RARGA samples on hand, so that it was a year of intensive data gathering. Samples from five different areas in the western United States and samples from Guatemala and Australia were analyzed. In a collaborative study we also began analyzing noble gases from rocks associated with the fluids. An important objective, continuing in 1991, is to understand better the reasons for somewhat elevated 3 He/ 4 He ratios in regions where there is no contemporary volcanism which could produce the effect by addition of mantle helium. Our helium data have given us and our collaborators some insights, which are to be followed up, into gold mineralization in geothermal regions. Our DOE work in calibrating a sensitive laser microprobe mass spectrometer for noble gases in fluid inclusions continues. Having completed a series of papers on noble gases in diamonds, we next will attempt to make precise isotopic measurements on xenon from mantle sources, in search of evidence for terrestrially elusive 244 Pu decay

  17. Greenhouse gases: How does heavy oil stack up?

    International Nuclear Information System (INIS)

    Ottenbreit, R.J.

    1991-01-01

    Life-cycle emissions of direct greenhouse gases (GHG) have been calculated to elucidate the global warming impacts of various fossil fuel feedstocks. Calculations were made for the transportation sector using five fossil fuel sources: natural gas, light crude oil, conventional heavy oil, crude bitumen recovered through in-situ steam stimulation, and crude bitumen recovered through mining. Results suggest that fuels sourced from light crude oil have the lowest GHG emissions, while conventional heavy oil has the highest GHG emission levels for this application. Emissions of methane can constitute a significant portion of the life-cycle GHG emissions of a fossil fuel. For all the fossil fuels examined, except conventional heavy oil, GHG emissions associated with their production, transport, processing, and distribution are less than one third of their total life-cycle emissions. The remainder is associated with end use. This confirms that consumers of fossil fuel products, rather than fossil fuel producers, have the most leverage to reduce GHG emissions. 2 figs

  18. New approach to design and performance assessment of delay lines for radioactive rare gases

    International Nuclear Information System (INIS)

    Wilhelmova, L.; Dvorak, Z.; Cejnar, F.

    1981-01-01

    The evaluation and analysis are discussed of the dynamic adsorption of rare gases in the delay lines of nuclear power plants. The method of statistical momenta was used for deriving relations for the calculation of penetration curves of radioactive isotopes of rare gases through a delay line. Relations were also derived for the calculation of the capacity of delay line adsorption beds for both continuous and discontinuous operation. The procedures for the design and the derivation of the function of delay lines take into account the actual conditions of delay line operation in nuclear power plants. (author)

  19. Removal of rare gases from large volume airstreams

    International Nuclear Information System (INIS)

    Hopke, P.K.; Leong, K.H.; Stukel, J.J.; Lewis, C.; Jebackumar, R.; Illinois Univ., Urbana; Illinois Univ., Urbana

    1986-01-01

    The cost-effective removal of low levels of rare gases and particularly radon from large volume air flows is a difficult problem. The use of various scrubbing systems using non-conventional fluids has been studied. The parameters for both a packed tower absorber and a gas scrubber have been calculated for a system using perfluorobenzene as the fluid. Based on these parameters, a packed bed tower of conventional proportions is feasible for the removal of >95% of 37 Bq/m 3 of radon from a flow of 4.7 m 3 /second. (author)

  20. Behaviour of rare gases in solids at high temperature; Comportement des gaz rares dans les solides a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blin, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In this article a number of simple results regarding the solubility and displacement of rare gases in solids have been assembled. These results were obtained from elementary considerations on highly compressed gases and on dislocations. They provide a better understanding of the now fairly numerous experiments dealing with the swelling of irradiated fuels, this swelling being due to the presence of a high proportion of gases in the fission products. Finally, the chances of success of the various methods which may be devised to diminish the swelling are examined. (author) [French] Nous avons rassemble dans ce texte un certain nombre de resultats simples relatifs a la solubilite et au deplacement des gaz rares dans les solides. Ces resultats ont ete obtenus par des considerations elementaires sur les gaz tres comprimes et sur les dislocations. Ils permettent de mieux comprendre les experiences, maintenant assez nombreuses, qui ont trait au gonflement des combustibles irradies; gonflement qui est du a la presence d'une forte proportion de gaz dans les produits de fission. On examine finalement les chances de succes des differents moyens que l'on peut imaginer pour attenuer le gonflement. (auteur)

  1. A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation

    International Nuclear Information System (INIS)

    Koch, L.

    1959-12-01

    In the first part is studied the properties of atoms excited by the passage of α particles through the various rare gases at atmospheric pressure. A spectral analysis of the emitted light showed that certain impurities play an important part in producing the fluorescence, and it has led to the conclusion that the light emission contains at least two components - one very short - lived due to the direct deexcitation of the rare gas, the other relatively slower due to the energy transfers to the impurity. The measurement of the life-time of the excited states has confirmed this foregoing hypothesis, the rapid part of the impulse is extremely short: less than 2,25.10 -9 s in the case of xenon; the slower part has a life-time depending directly on the nitrogen concentration, nitrogen being the impurity giving the largest effect in all cases. The study of rare gases under the influence of an electric field has made it possible to show that the amount of light produced by an α particle can be multiplied (by 60, for example, in a field of 600 V:cm) so that the luminescent efficiency is greater than in the case of INaTI. In the second part the characteristics of the rare gases acting as scintillators is examined, the most important property being the absence of fluorescence saturation when the intensity of the excitation incident on the gas is very large. This, together with the very short time of scintillation has made it possible to study a certain number of nuclear physical applications (heavy particle energy-measurements, kinetic studies on nuclear reactors, neutron spectroscopy). (author) [fr

  2. Generation and amplification of sub-THz radiation in a rare gases plasma formed by a two-color femtosecond laser pulse

    Science.gov (United States)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2018-06-01

    A new approach to constructing the source of radiation in the sub-THz frequency range is discussed. It is based on the strong-field ionization of heavy rare gases with Ramsauer minimum in the transport cross-section by a two-color () femtosecond laser pulse. Then a four-photon nonlinear process ( are the frequencies from the spectral width of the pulse with frequency ω, and is the frequency from the spectral width of the second harmonic 2ω) with a transition to the initial state results in a low-frequency spontaneous emission that can be amplified in the strongly nonequilibrium laser plasma if the position of the photoelectron peaks is located in the region of growing energy transport cross-section.

  3. Heavy mineral survey for rare earths in the Northern part of Palawan

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Santos, G.P.; Magsambol, W.N.; Ramos, A.F.; Petrache, C.A.; Tabora, E.U.

    1992-01-01

    A reconnaissance geochemical survey for rare earths was carried out over the northern half of Palawan with considerable success. The survey represents the first systematic geochemical exploration effort to look for indigenous rare earth resources in the Philippines. Total area covered was about 5,000 sq km. The survey entailed the systematic collection of 740 heavy mineral panned concentrate and stream sediment samples along streams and rivers. The average sampling density was about one set of sample per 2-15 sq km. A total of 218 heavy mineral samples were analyzed for lathanum, cerium, praseodymium, neodymium and yttrium. Analysis of stream sediments for rare earths was discontinued due to the high detection limit of the X-ray fluorescence spectrometer. Results of the survey clearly indicated the effectiveness of heavy mineral sampling for rare earths at the reconnaissance level of exploration. Six anomalous and well-defined areas of interest were delineated for possible rare earth mineralization. Three priority zones were further outlined from the six prospective areas for possible follow-up surveys. Mineralogical examination of heavy minerals revealed the presence of major allanite and minor monazite as the potential hosts of rare earths in the priority zone number one. Gray monazite was identified in the priority zone number two as the rare earth mineral. Minute specks and grains of gold were visibly present in some of the heavy mineral samples taken in this area. A combined mineralization of rare earths and gold in this area is a possibility. The discovery of the first gray nodular monazite in Palawan may extend the age of the oldest rocks in the Philippines to Lower Paleozoic. A separate study to establish the age of the oldest rocks in the country is likewise necessary. (auth.). 27 refs.; 6 figs.; 8 tabs

  4. Stopping power for heavy ions in gases: a comparative study

    International Nuclear Information System (INIS)

    Diwan, P.K.; Singh, Lakhwant; Singh, Gurinder; Shyam Kumar

    1999-01-01

    The accurate knowledge of stopping power for heavy ions in gases is of paramount importance in nuclear reaction studies for the identification of reaction products involving ΔE-E telescope detectors. In the present work, it has been calculated the stopping power values for different heavy ions, such as Ne, Ar, Cu, Kr and Ag in various gas absorbers like H 2 , He, N 2 , Ne, Ar, Kr and Xe in the energy domain ∼ 2.5-6 MeV/n using the SRIM-98 code recently developed by Ziegler and the formulations of Benton and Henke, Hubert et al, Mukherjee and Nayak and Northcliffe and Schilling. This study has been undertaken in order to establish the validity of various semiempirical formulations for gas targets

  5. Method and apparatus for condensing radioactive rare gases by means of use of ejector and selective adsorption and desorption process including cycles

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Tsuda, Koji; Watanabe, Yukio; Miharada, Hassui; Tani, Akira.

    1975-01-01

    Object: To recover rare gases in waste gases at one stage as high density as possible while effectively utilizing adsorption beds. Structure: The waste gases pass through an ejector and are subject to treatment of dehumidification and decarbonization in a pretreatment station, after which the gases enter a first low temperature adsorption bed through a heat exchanger and a first valve. If breaking should occur in the first adsorption bed, the waste gases would be introduced into a second adsorption bed for adsorption treatment. The first adsorption bed, which has completed adsorption, is heated to a regenerative temperature while adsorption is being performed at the second adsorption bed, and degases containing rare gases are recycled through a second and third valves and are mixed into raw waste gases by the action of the ejector. After the above adsorption and desorption have been repeated several times by alternately using the first and second adsorption bed the adsorption bed is heated to a temperature lower than the regenerative temperature to recycle the desorption gases to feed and then heated to the regenerative temperature, and the desorbed rare gases are fed to the succeeding system through a pump. (Yoshihara, H.)

  6. Isotopic studies of rare gases in terrestrial samples and natural nucleosynthesis

    International Nuclear Information System (INIS)

    Reynolds, J.H.

    1991-01-01

    This project is concerned with research in rare gas mass spectrometry. We read the natural record that isotopes of the rate gases provide. We study fluids using a system (RARGA) that is sometimes deployed in the field. In 1990 there was a strong effort to reduce the backlog of RARGA samples on hand, so that it was a year of intensive data gathering. Samples from five different areas in the Western United States and samples from Guatemala and Australia were analyzed. In a collaborative study we also began analyzing noble gases from rocks associated with the fluids. An important objective, continuing in 1991, is to understand better the reasons for somewhat elevated 3 He/ 4 He ratios in regions where there is no contemporary volcanism which could produce the effect by addition of mantle helium. Our helium data have given us and our collaborators some insights, which are to be followed up, into gold mineralization in geothermal regions. Our DOE work in calibrating a sensitive laser microprobe mass spectrometer for noble gases in fluid inclusions continues. Having completed a series of papers on noble gases in diamonds, we next will attempt to make precise isotopic measurements on xenon from mantle sources in search of evidence for terrestrially elusive 244 Pu decay. 41 refs., 3 figs

  7. Device for separating and concentrating rare gases containing krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    In orer to highly concentrate krypton by means of adsorption and desorption of activated carbon, in a device for continuously separating and concentrating rare gases containing krypton gas by means of adsorbing and desorbing operation of activated carbon, the device includes adsorbers arranged in parallel and more than two stages of adsorbers arranged in series with the first mentioned adsorbers with the amount of activated carbon filled successively reduced, and a cooling mechanism for cooling the adsorbers when adsorbed and a heating mechanism for heating the adsorbers when desorbed.

  8. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis

    International Nuclear Information System (INIS)

    Smith Stegen, Karen

    2015-01-01

    This article sounds the alarm that a significant build-out of efficient lighting and renewable energy technologies may be endangered by shortages of rare earths and rare earth permanent magnets. At the moment, China is the predominant supplier of both and its recent rare earth industrial policies combined with its own growing demand for rare earths have caused widespread concern. To diversify supplies, new mining—outside of China—is needed. But what many observers of the “rare earth problem” overlook is that China also dominates in (1) the processing of rare earths, particularly the less abundant heavy rare earths, and (2) the supply chains for permanent magnets. Heavy rare earths and permanent magnets are critical for many renewable energy technologies, and it will require decades to develop new non-Chinese deposits, processing capacity, and supply chains. This article clarifies several misconceptions, evaluates frequently proposed solutions, and urges policy makers outside of China to undertake measures to avert a crisis, such as greater support for research and development and for the cultivation of intellectual capital. - Highlights: • Rare earths are needed for many efficient lighting and renewable energy technologies. • The industries for rare earths and permanent magnets are dominated by China. • China's reliability is compromised, necessitating non-Chinese mining and processing. • Recycling, substitution and reducing rare earth content are long-term solutions only. • Policy makers should support development of supply chains and intellectual capital

  9. Heavy and Light chain amyloidosois presenting as complete heart block: A rare presentation of a rare disease.

    Science.gov (United States)

    Priyamvada, P S; Morkhandikar, S; Srinivas, B H; Parameswaran, S

    2015-01-01

    Amyloidosis is an uncommon disease characterized by deposition of proteinaceous material in the extracellular matrix, which results from abnormal protein folding. Even though more than 25 precursor proteins are identified, majority of systemic amyloidosis results from deposition of abnormal immunoglobulin (Ig) light chains. In heavy chain amyloidosis (AH), deposits are derived from both heavy chain alone, whereas in heavy and light chain amyloidosis (AHL), the deposits are derived from Ig heavy chains and light chains. Both AH and AHL are extremely rare diseases. Here, we report an unusual presentation of IgG (lambda) AHL amyloidosis in the background of multiple myeloma, where the initial clinical presentation was complete heart block, which preceded the definitive diagnosis by 18 months.

  10. Treatment and separation of radioactive fission products tritium, rare gases and iodine in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Schnez, H.

    1975-07-15

    Rare gases must be separated from the process off-gases of the head-end of the Purex and Thorex processes. To achieve high decontamination factors, the quantity of off-gas should be kept as low as possible. For rare gas separation, there are two possible methods of routing the off-gas: (a) the open flushing gas circuit, in which the purified off-gas (generally air) is passed off via the stack and (b) the closed circuit in which the off-gas (nitrogen or rare gases) is recycled to the dissolver after purification. Tritium must not be entrained into the second extraction cycle or be emitted with off-gases in the form of water vapor (HTO) or HT, but must remain completely in the aqueous phase. Most of the process water is recycled, as a result of which the tritium becomes concentrated in it. This tritiated water is then subjected to tritium rectification at a suitable point in the process. Iodine is very difficult to isolate to a small number of process stages. Present aim is to release the iodine in the dissolver stage into the off-gas, so as to prevent it being entrained into the extraction part. By the injection of hot nitrogen or water vapor into the dissolver or into iodine-containing condensates, all of the iodine is passed into the gaseous phase. Scrubbers can also be used together with iodine-containing condensates to adjust the scrubbing solution. Capital cost of separation plants account for 1 to 10 percent of the total cost of the reprocessing installation, and even more if a sophisticated tritium separation system is required. (DLC)

  11. Heavy and Light chain amyloidosois presenting as complete heart block: A rare presentation of a rare disease

    Directory of Open Access Journals (Sweden)

    P S Priyamvada

    2015-01-01

    Full Text Available Amyloidosis is an uncommon disease characterized by deposition of proteinaceous material in the extracellular matrix, which results from abnormal protein folding. Even though more than 25 precursor proteins are identified, majority of systemic amyloidosis results from deposition of abnormal immunoglobulin (Ig light chains. In heavy chain amyloidosis (AH, deposits are derived from both heavy chain alone, whereas in heavy and light chain amyloidosis (AHL, the deposits are derived from Ig heavy chains and light chains. Both AH and AHL are extremely rare diseases. Here, we report an unusual presentation of IgG (lambda AHL amyloidosis in the background of multiple myeloma, where the initial clinical presentation was complete heart block, which preceded the definitive diagnosis by 18 months.

  12. Method of start-up operation of a liquefaction and distillation apparatus for processing waste gases containing radioactive rare gases

    International Nuclear Information System (INIS)

    Ota, Masakazu; Tani, Akira; Hashimoto, Hiroshi; An, Bunzai; Kanazawa, Toshio.

    1975-01-01

    Object: To enable reduction of cooling time, simplification of maintenance, and release of cooling gas outside system. Structure: In starting of the liquefaction and distillation apparatus, liquid nitrogen is introduced into the tower bottom of a rectification tower from a liquid nitrogen tank through a liquid nitrogen supply line to vaporize the liquid nitrogen with help of heat entered from outside and a heater. The vaporized nitrogen gas moves up while cooling the interior of the rectification tower and is guided by a vacuum pump from the top of tower toward the purifying gas line and low temperature heat exchanger and disharging into atmosphere. When the interior of the apparatus is sufficiently cooled in a manner as described above, the liquid nitrogen supply line is closed, the liquid nitrogen is fed to a condenser, and the waste gases containing the radioactive rare gases from the raw exhaust supply line are introduced into the rectification tower for entry of normal operation. (Kamimura, M.)

  13. Determination of the heavy rare earth radionuclides in melted rock

    International Nuclear Information System (INIS)

    Li Yinming; Wang Yalong; Zhang Quanshi

    1995-01-01

    There are some heavy rare earth radionuclides in the melted rocks, such as 160 Tb, 168,170 Tm, 88,91 Y, 174,177 Lu, 169 Yb, etc.. Because their contents are very low in the melted rocks and the light rare earth fission products are interfered with their determination, it is very complicated to measure them quantitatively. So a new method has been studied in which P507 resin is used to separate and purify the rare earths. Radioactive sources are prepared by the pieces of filter paper for determining chemical yield with X-fluorescence analysis, and radioactive activity is determined with the γ-spectra analysis. It is proved that this method has satisfied the demands of experiments

  14. Physical modelling of the dispersion of heavy gases released in an accident for the assessment of hazardous areas in built-up terrain

    International Nuclear Information System (INIS)

    Marotzke, K.

    1993-01-01

    The report on experimental results which were obtained above all within the heavy gas dispersion phase of the clouds. This phase extends up to a distance from the source distance in which the initial heavy gas concentration has decreased to about 1% by volume of the source concentration. The lower ignition limit of all gases of interest for industrial applications is above this threshold; the ignition distances of combustible gases can therefore be determined directly in the physical model. The concentration field in the complex near field of the cloud is modelled physically. The results obtained in the wind tunnel serve as input data for a numeric model; the concentrations and the dose values at points in the far field can be calculated with the model. The main section contains a detailed dimensional analysis for the two fundamentally possible emission types, i.e. spontaneous and continuous emissions. An experimental program was developed on this basis. With the program, the heavy gas dispersion under the influence of 25 different obstacle configurations was investigated. The results were represented in diagrams. With the aid of the diagrams, the lower ignition distances can be determined for combustible gases; for toxic gases, the initial conditions for the numeric far field model. (orig./KW) [de

  15. Production techniques for rare earth and other heavy negative ions

    International Nuclear Information System (INIS)

    McK Hyder, H.R.; Ashenfelter, J.; McGrath, R.

    1998-01-01

    Current nuclear structure studies demand a wide range of heavy negative ion beams for tandem acceleration. Some of the wanted isotopes have low natural abundances and many have low or negative electron affinities. For these, gas injection or the use of hydrides, oxides, or fluorides is required to achieve usable intensities. The chemical properties of the target materials, and of the additive gases used to form molecular ions, often have detrimental effects on ion source performance and life. These effects include insulator breakdown, ionizer poisoning, and the erosion or deposition of material on critical electrodes. Methods of controlling sputter source conditions are being studied on the Wright Nuclear Structure Laboratory ion source test bench with the object of extending source life, increasing target efficiency, and achieving consistent negative ion outputs. Results are reported for several heavy ions including tellurium, neodymium, and ytterbium. copyright 1998 American Institute of Physics

  16. Development of a low-temperature two-stage fluidized bed incinerator for controlling heavy-metal emission in flue gases

    International Nuclear Information System (INIS)

    Peng, Tzu-Huan; Lin, Chiou-Liang; Wey, Ming-Yen

    2014-01-01

    This study develops a low-temperature two-stage fluidized bed system for treating municipal solid waste. This new system can decrease the emission of heavy metals, has low construction costs, and can save energy owing to its lower operating temperature. To confirm the treatment efficiency of this system, the combustion efficiency and heavy-metal emission were determined. An artificial waste containing heavy metals (chromium, lead, and cadmium) was used in this study. The tested parameters included first-stage temperature and system gas velocity. Results obtained using a thermogravimetric analyzer with a differential scanning calorimeter indicated that the first-stage temperature should be controlled to at least 400 °C. Although, a large amount of carbon monoxide was emitted after the first stage, it was efficiently consumed in the second. Loss of the ignition values of ash residues were between 0.005% and 0.166%, and they exhibited a negative correlation with temperature and gas velocity. Furthermore, the emission concentration of heavy metals in the two-stage system was lower than that of the traditional one-stage fluidized bed system. The heavy-metal emissions can be decreased by between 16% and 82% using the low-temperature operating process, silica sand adsorption, and the filtration of the secondary stage. -- Graphical abstract: Heavy-metal emission concentrations in flue gases under different temperatures and gas velocities (dashed line: average of the heavy-metal emission in flue gases in the one-stage fluidized-bed incinerator). Highlights: • Low temperature two-stage system is developed to control heavy metal. • The different first-stage temperatures affect the combustion efficiency. • Surplus CO was destroyed efficiently by the secondary fluidized bed combustor. • Metal emission in two-stage system is lower than in the traditional system. • Temperature, bed adsorption, and filtration are the main control mechanisms

  17. Compressibility and specific heats of heavier condensed rare gases near the liquid-vapour critical point

    International Nuclear Information System (INIS)

    March, N.H.

    2003-08-01

    Sarkisov (J. Chem. Phys. 119, 373, 2003) has recently discussed the structural behaviour of a simple fluid near the liquid-vapour critical point. His work, already compared with computer simulation studies, is here brought into direct contact for the heavier condensed rare gases Ar, Kr and Xe with (a) experiment and (b) earlier theoretical investigations. Directions for future studies then emerge. (author)

  18. A study on rare gas - oxygen reactions excited by low temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiroaki; Kiuchi, Kiyoshi; Saburi, Tei; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The concentration of radioactive rare gases like Xe and Kr in nuclear fuels on PWRs and BWRs increases promptly with dependent on the burn-up ratio. These gases are affect to the long performance of nuclear fuel elements due to accumulate in gap between cladding and fuel, because it has the low thermal conductivity. It is also required to develop the practical means to correct these gases including in the off-gas in nuclear plants for inhibiting the environmental pollution. On the present study, we carried out the fundamental research to evaluate the chemical reactivity of these gases under heavy irradiation. We proposed the new excitation mechanism of these gases by expecting the formation of low energy plasma under irradiation. The chemical reactivity on rare gas-oxygen system was examined by using the low energy plasma driven reaction apparatus installed the RF excitation source. The density of electrons and lower pressure limit for the RF excitation was depended on the ionization energy of each gas. It is clarified that Xe is easy to form gaseous oxide due to the high excitation efficiency in low energy plasma. (author)

  19. Circular Cationic Compounds B3Rgn+ of Triangular Ion B3 Trapping Rare Gases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruiwen; LI Anyong; LI Zhuozhe

    2017-01-01

    The circular cationic compounds B3Rgn+(n=1-3,Rg=He-Rn) formed by the electron-deficient aromatic ion B3+ trapping rare gases were studied theoretically.The formed B-Rg bond has large bonding energy in the range of 60--209 kJ/mol,its length is close to the stun of covalent radii of B and Rg,for Ar-Rn.The analyses based on the natural bond orbitals and electron density topology show that the B-Rg bonds for Ar-Rn have strong covalent character.The geometric structures,binding energy,bond nature and thermodynamic stability of the boron-rare gas compounds show that these species for Ar-Rn may be experimentally available.Several different theoretical studies have demonstrated that these triangular cations are aromatic.

  20. Isotopic studies of rare gases in terrestrial samples and natural nucleosynthesis

    International Nuclear Information System (INIS)

    1991-05-01

    This project is concerned with research in rare gas mass spectrometry. Using a two-pronged attack, we study fluids using a system (RARGA) designed for fluid analysis in bulk which is sometimes deployed in the field and a laser microprobe mass spectrometer for fluid inclusion studies. In 1991 the RARGA project continued monitoring helium isotope variations associated with renewed seismic activity in Long Valley Caldera and expanded our geothermal data base to include Lassen National Park. An important objective, continuing in 1992, is to understand better the reasons for somewhat elevated 3 He/ 4 He ratios in regions where there is no contemporary volcanism which could produce the effect by addition of mantle helium. To this end, 1991 saw continued efforts to understand variations in composition between fluids and associated reservoir rocks and extended the data base to include fluids from the Gulf of Mexico. Our DOE work in calibrating a sensitive laser microprobe mass spectrometer for noble gases in fluid inclusions continues with successful returns particularly in calibrating neutron irradiated samples for tracing halogen ratios. In connection with observations of neutron-produced noble gas nuclides in granites, we have begun comparing measurements with calculations for both thermal and epithermal neutrons. We submitted a third paper on noble gases in diamonds, concentrating on observed effects of 4 He, 3 He, and fission xenon implantation from nuclear processes in adjacent material in the matrix rock. 16 refs., 1 tab

  1. Trace determination of yttrium and some heavy rare-earths by adsorptive stripping voltammetry

    International Nuclear Information System (INIS)

    Wang, J.; Zadeii, J.M.

    1986-01-01

    The interfacial and redox behaviour of rare-earth chelates the Solochrome Violet RS are exploited for developing a sensitive adsorptive stripping procedure. Yttrium and heavy rare earths such as dysprosium, holmium and ytterbium can thus be measured at ng/ml levels and below, by controlled adsorptive accumulation of the metal chelate at the hanging mercury drop electrode, followed by voltammetric measurement of the surface species. With a 3-min preconcentration time, the detection limit ranges from 5 x 10 -10 to 1.4 x 10 -9 M. The relative standard deviation at the 7 ng/ml level ranges from 4 to 7%. A separation method is required to differentiate between the individual rare-earth metals. (author)

  2. No Giant Two-Ion Anisotropy in the Heavy-Rare-Earth Metals

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A new Bose-operator expansion of tensor operators is applied to the heavy-rare-earth metals. The Er data for the cone phase have been analyzed successfully with single-ion anisotropy and isotropic exchange interaction. The Tb data can be understood on the same basis. The previously found large two......-ion anisotropy was due to an inadequate treatment of the large single-ion anisotropy leading to an incorrect expression for the spin-wave energy....

  3. Elastic, thermal and high pressure structural properties of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Soni, P.; Pagare, G.; Sanyal, S.P.

    2009-01-01

    Pressure induced structural phase transition of two heavy rare earth antimonides (RESb; RE=Ho, Er) have been studied theoretically by using an inter-ionic potential theory. This method has been found quite satisfactory in the case of pnictides of rare earth and describes the crystal properties in the framework of rigid-ion modal. The long-range Coulomb interaction, short-range repulsive interaction and van der Waals (vdW) interactions are properly incorporated in this theory. These compounds exhibit first order crystallographic phase transition from their NaCl-type structure to CsCl-type structure at 27 GPa and 33.2 GPa, respectively. The bulk moduli of RESb compounds are compared with the experimental values of elastic constants. We have also calculated the Debye temperature by incorporating the elastic constants for both the rare earth antimonides. (author)

  4. Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earth's mantle

    International Nuclear Information System (INIS)

    Allegre, C.J.; Staudacher, T.; Sarda, P.; Paris-6 Univ., 75; Paris-7 Univ., 75

    1987-01-01

    To explain the rare gas content and isotopic composition measured in modern terrestrial materials we explore in this paper an Earth model based on four reservoirs: atmosphere, continental crust, upper mantle and lower mantle. This exploration employs three tools: mass balance equations, the concept of mean age of outgassing and the systematic use of all of the rare gases involving both absolute amount and isotopic composition. The results obtained are as follows: half of the Earth's mantle is 99% outgassed. Outgassing occurred in an early very intense stage within the first 50 Ma of Earth history and a slow continuous stage which continues to the present day. The mean age of the atmosphere is 4.4 Ga. Our model with four main reservoirs explains quantitatively both isotopic and chemical ratios, assuming that He migrates from the lower to the upper mantle whereas the heavy rare gases did not. Noble gas fluxes for He, Ar and Xe from different reservoirs have been estimated. The results constrain the K content in the earth to 278 ppm. Several geodynamic consequences are discussed. (orig.)

  5. QCD improved exclusive rare B-decays at the heavy b-quark limit

    International Nuclear Information System (INIS)

    Liu Dongsheng.

    1993-09-01

    The renormalization effects from the b-quark scale down to the non-perturbative QCD regime are studied for rare B-decays at the heavy b-quark limit. Phenomenological consequences of these effects are investigated. We find that the anomalous scaling behaviour plays a positive role in making non-perturbative model calculations consistent with recent CLEO measurements of B → K*γ. (author). 21 refs, 3 tabs

  6. Origin of planetary primordial rare gas - The possible role of adsorption.

    Science.gov (United States)

    Fanale, F. P.; Cannon, W. A.

    1972-01-01

    The degree of physical adsorption of Ne, Ar, Kr, and Xe on pulverized samples of the Allende meteorite at 113 K has been measured. The observed pattern of equilibrium enrichment of heavy rare gases over light on the pulverized meteorite surfaces relative to the gas phase is similar to the enrichment pattern exhibited by planetary primordial rare gas when compared with the composition of solar rare gas. Results indicate that, at 113 K, a total nebular pressure of from .01 to .001 atm would be required to explain the Ar, Kr, and Xe abundances in carbonaceous chondrites with an adsorption mechanism. This pressure estimate is compatible with the range of possible nebular pressures suggested by astrophysical arguments. However, the subsequent mechanism by which initially adsorbed gas might have been transferred into the interiors of grains cannot be identified at present.

  7. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, Akemi, E-mail: yasukawa@cc.hirosaki-u.ac.jp [School of Home Economics, Faculty of Education, Hirosaki University, 1-bunkyo, Hirosaki, Aomori 036-8560 (Japan); Kandori, Kazuhiko [School of Chemistry, Osaka University of Education, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 (Japan); Tanaka, Hidekazu [Department of Material Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 (Japan); Gotoh, Keiko [Faculty of Human Life and Environment, Nara Women' s University, Kita-uoya-nishi, Nara 630-8506 (Japan)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.

  8. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    International Nuclear Information System (INIS)

    Yasukawa, Akemi; Kandori, Kazuhiko; Tanaka, Hidekazu; Gotoh, Keiko

    2012-01-01

    Highlights: ► LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. ► The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln 3+ contents. ► A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0–0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y 3+ , Gd 3+ , Dy 3+ , Er 3+ and Yb 3+ ) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X Ln ]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X Y ] ≤ 0.10 for substituting Y system and at [X Ln ] ≤ 0.01–0.03 for substituting the other Ln systems. LnPO 4 was mixed with LnCaHap at higher [X Ln ] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X Y ] = 0–0.10 were investigated using XRD, TEM, ICP-AES, IR and TG–DTA in detail.

  9. Spectral study of the luminescence produced by the excitation of noble gases by alpha-rays; Etude spectrale de la luminescence due a l'excitation des gaz rares par les rayons alpha

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Luminescence spectra of the noble gases He, A, Kr and Xe are studied under excitation by {alpha} rays. It is shown that the energy is transferred from excited levels of these gases to Hg and N{sub 2} impurities for impurity concentrations respectively less than 10{sup 6} and 10{sup 4}. These results confirm previous measurements concerning the period of luminescence and its variations versus nitrogen concentration in noble gases. (author) [French] On etudie les spectres de luminescence des gaz rares, He, A, Kr et Xe excites par une source intense de rayons {alpha}. Le transfert d'energie des etats excites des gaz rares sur les impuretes mercure et azote pour des concentrations respectives de ces impuretes inferieures a 1 ppm et 100 ppm est demontre. Ces resultats confirment les mesures anterieures concernant la duree de luminescence et ses variations avec la concentration d'azote dans les gaz rares. (auteur)

  10. Method of controlling a distillatory coulumn in a liquefaction and distillation device for radioactive rare gases

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awata, Yoshihisa.

    1975-01-01

    Object: To automatically and securely perform controlling purity of column bottom liquid, which is most difficult in the liquefaction and distillation device. Structure: In a liquefaction and distillation device for liquefying and separating rare gas krypton in fuel reprocessing gases, a difference in temperature between the column bottom liquid (column top) and the distillation portion is detected so as to maintain temperature in the distillation portion of the distilling column constant, and the vaporization amount of column bottom liquid is varied with the difference in temperature to control purity of the column bottom liquid. (Kamimura, M.)

  11. A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation; Etude de la fluorescence des gaz rares excites par des particules nucleaires. Utilisation pour la detection des rayonnements nucleaires par scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-12-15

    In the first part is studied the properties of atoms excited by the passage of {alpha} particles through the various rare gases at atmospheric pressure. A spectral analysis of the emitted light showed that certain impurities play an important part in producing the fluorescence, and it has led to the conclusion that the light emission contains at least two components - one very short - lived due to the direct deexcitation of the rare gas, the other relatively slower due to the energy transfers to the impurity. The measurement of the life-time of the excited states has confirmed this foregoing hypothesis, the rapid part of the impulse is extremely short: less than 2,25.10{sup -9} s in the case of xenon; the slower part has a life-time depending directly on the nitrogen concentration, nitrogen being the impurity giving the largest effect in all cases. The study of rare gases under the influence of an electric field has made it possible to show that the amount of light produced by an {alpha} particle can be multiplied (by 60, for example, in a field of 600 V:cm) so that the luminescent efficiency is greater than in the case of INaTI. In the second part the characteristics of the rare gases acting as scintillators is examined, the most important property being the absence of fluorescence saturation when the intensity of the excitation incident on the gas is very large. This, together with the very short time of scintillation has made it possible to study a certain number of nuclear physical applications (heavy particle energy-measurements, kinetic studies on nuclear reactors, neutron spectroscopy). (author) [French] On etudie dans la premiere partie les proprietes des atomes excites par le passage de particules {alpha} dans les differents gaz rares a la pression atmospherique. L'etude spectrale de la lumiere emise a montre que certaines impuretes jouent un role considerable dans la fluorescence et on a ete amene a penser que l'emission de lumiere comporte au moins deux

  12. Studies on the adsorption behaviour of heavy rare earths with a strong cation exchanger DOWEX 50W-2X8

    International Nuclear Information System (INIS)

    Vijayalakshmi, R.; Singh, D.K.; Anitha, M.; Kotekar, M.K.; Dasgupta, K.; Singh, H.

    2014-01-01

    Rare earths have been a very fascinating area of research since long due to its wide applicability's in many field including superconductors, lasers, phosphors, medical, electronics, magnet, optics etc. Separation of rare earths is a challenging task and over the years many separation schemes based on solvent extraction, ion exchange, membrane etc have been developed and deployed. In the present work, we have investigated the adsorption behavior of heavy rare earths from a crude concentrate analyzing ∼ 80% Y 2 O 3 , ∼12% Dy 2 O 3 , ∼4% Er 2 O 3 etc., with a strong cationic exchanger namely Dowex 50W-2X8 in order to separate them in pure form. To start with, Y was selected as a representative of heavy rare earths and the conditions were optimized in batch experiments and later were applied to the feed solution containing Dy, Er, Ho etc. in a column study. Effects of experimental variables such as contact time, pH, weight of resin, concentration of the feed metal, temperature, desorption agents, on adsorption of Y was studied

  13. Gases and carbon in metals

    International Nuclear Information System (INIS)

    Jehn, H.; Fromm, E.; Hoerz, G.

    1978-01-01

    This issue is part of a series of data on 'gases and carbon in metals'. The present survey includes results from papers dealing with gases and carbon in actinides and recommends critically selected data for each element. Firstly data od binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility limit, dissociation pressure of compunds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas adsorption and gas desorption kinetics, compound formation, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. Within a ternary system the topics are arranged in the same way as in binary systems. (HB) [de

  14. Method of purification of rare gases from oxygen

    International Nuclear Information System (INIS)

    Aleshin, Eh.G.; Goryashchenko, S.S.; Slovetskaya, K.I.; Rubinshtejn, A.M.; Nefedov, B.K.; Konoval'chikov, L.D.

    1989-01-01

    A method of thorough purification of inert gases from oxygen is suggested. High-silicon zeolite of the ZSM-5 type with the ratio SiO 2 /Al 2 O 3 =40 in case of chromium content 1.3-3.5 mass % is used as oxygen sorbent, which ensures increased absorbability. The method permits to realize multiple regeneration of sorbent without considerable loss of absorbability. 1 tab

  15. Targeting heavy rare earth elements in carbonatite complexes

    Science.gov (United States)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are

  16. High pressure behaviour of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Soni, Pooja; Srivastava, Vipul; Sanyal, S.P.

    2008-01-01

    We have investigated theoretically the high-pressure structural phase transition and cohesive properties of two heavy rare earth mono anyimonides (LnSb; Ln = Dy and Lu) by using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 4f electrons of the RE ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves and the values of high-pressure behaviour have been discussed and compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 23.6 GPa and 25.4 GPa respectively. At phase transition the % volume collapse for both the compounds are little higher than the measured ones. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. The bulk moduli of LnSb compounds are obtained from the P-V curve fitted by the Birch equation of state. We also calculated the Ln-Ln distance as a function of pressure. (author)

  17. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants.

    Science.gov (United States)

    Shan, Xiao-Quan; Wang, Zhongwen; Wang, Weisheng; Zhang, Shuzhen; Wen, Bei

    2003-02-01

    A labile rhizosphere soil solution fraction has been recommended to predict the bioavailability of heavy metals and rare earth elements to plants. This method used moist rhizosphere soil in combination with a mixture of 0.01 mol L(-1) of low-molecular-weight organic acids (LMWOAs) as extractant. The extracted soil solutions were fractionated into two colloidal fractions of soil solution fraction, F(lrss). For the soil solutions extracted with a mixture of LMWOAs the concentrations of heavy metals and rare earth elements in F(2) and F(3) were quite similar. However, the mean concentrations of Cr, Ni, Zn, Cu, Pb, Cd, La, Ce, Pr, and Nd in F(lrss) accounted for 79.9%, 91.3%, 90.8%, 60.1%, 77.5%, 75.3%, 81.2%, 77.2%, 80.3%, and 79.5%, respectively, of their concentrations in F(2). In contrast, there were no differences in the extractable metal concentrations between the three fractions while the first step of the method recommended by the European Community of Reference (BCR), where 0.1 mol L(-1) acetic acid was used as an extractant. The single correlation analysis was made between metal concentrations in the different fractions of soil solutions and their concentrations in wheat. If the first step of BCR method was used there was no good correlation between heavy metals in soil pools and that in wheat shoots and roots. When LMWAOs were used a good correlation was obtained between the concentrations of heavy metals in soil pools and that in wheat roots, which followed a general order of r(1 kD, LMWOAs) >r(0.2 microm, LMWOAs) approximately r(0.45 microm, LMWOAs). In the case of rare earth elements the good correlation was obtained for both the wheat roots and shoots. Generally, the correlation coefficients obtained by LMWAOs were better than that obtained by the first step of BCR method. Therefore, LMWAOs and F(lrss) were strongly recommended to predict the bioavailability of metals in soil pools to plants.

  18. Utilization of the noble gases in studies of underground nuclear detonations

    International Nuclear Information System (INIS)

    Smith, C.F.

    1973-01-01

    The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases, except argon, have been used as tracers, as have xenon-127 and krypton-85. Argon-37 and krypton-85 have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases, and the degree to which the sampled gas truly represents the underground gas mixture, can be studied with the aid of the fission-product gases. Radon-222 and helium are released to the cavity from the surrounding rock, and are, therefore, useful in studies of the interaction of the detonation with the surrounding medium

  19. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe.

    Science.gov (United States)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valérie

    2012-01-14

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found.

  20. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe

    International Nuclear Information System (INIS)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valerie

    2012-01-01

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found. (authors)

  1. Distribution of rare-earth (Y, La, Ce) and other heavy metals in the profiles of the podzolic soil group

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Goryachkin, S. V.; Savichev, A. T.

    2011-05-01

    Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.

  2. Rare earth elements behavior in Peruibe black mud

    International Nuclear Information System (INIS)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da

    2015-01-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  3. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  4. Experimental and theoretical investigations on the release and propagation of heavy gas; Experimentelle und theoretische Untersuchungen zur Schwergasfreisetzung und -ausbreitung

    Energy Technology Data Exchange (ETDEWEB)

    Rauchegger, Christian

    2013-06-01

    The hazardous potential of accidental heavy gas releases, especially those involving flammable and toxic gases, is widely known. In order to predict the area in which these gases are in hazardous concentrations, an estimation of the dispersion of these gases must be carried out. While the hazardous area for flammable heavy gases is determined by the lower explosion limit (ca. > 1 vol.%), the release of toxic heavy gases can result in a much larger hazardous area, as toxic gases, even in very low concentrations (ca. < 3000 ppm), have the potential to be highly damaging. The VDI guideline 3783, which is considered as state-of-the-art in Germany, can be used to estimate the dispersion of heavy gases. However, VDI 3783 gives no method for the prediction of the height and width of a heavy gas cloud, which are both required for quantitative risk analysis as well as for a possible coupling of a Lagrangian particle model with the VDI 3783 heavy gas dispersion model. Therefore, further calculation methods were used to describe these dimensions and were evaluated against, experimental studies of the length, width and height of the heavy and neutral gas field. The influence of the source height on the heavy gas dispersion was also investigated. It was found that elevating the source leads to a reduction of the length of the heavy gas area. Once the source reaches a critical height, a heavy gas area at ground level no longer exists. Therefore, for release heights above the critical height, heavy gas dispersion effects can be neglected and the calculation of the heavy gas area according to VDI 3783 part 2 is therefore no longer necessary. The release of heavy gases can occur from a process plant as well as from a standard gas bottle. For the release of heavy gases from standard gas bottles, a mathematical model has been developed to predict the time-dependent mass flow. This model takes into account the time-dependent temperature distribution of the bottle wall, and contains a

  5. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2017-08-24

    Heavy fuel oil (HFO) obtained from crude oil distillation is a widely used fuel in marine engines and power generation technologies. In the present study, the pyrolysis and combustion of a Saudi Arabian HFO in nitrogen and in air, respectively, were investigated using non-isothermal thermo-gravimetric analysis (TGA) coupled with a Fourier-transform infrared (FTIR) spectrometer. TG and DTG (differential thermo-gravimetry) were used for the kinetic analysis and to study the mass loss characteristics due to the thermal degradation of HFO at temperatures up to 1000°C and at various heating rates of 5, 10 and 20°C/min, in air and N2 atmospheres. FTIR analysis was then performed to study the composition of the evolved gases. The TG/DTG curves during HFO combustion show the presence of three distinct stages: the low temperature oxidation (LTO); fuel decomposition (FD); and high temperature oxidation (HTO) stages. The TG/DTG curves obtained during HFO pyrolysis show the presence of two devolatilization stages similar to that seen in the LTO stage of HFO combustion. Apart from this, the TG/DTG curves obtained during HFO combustion and pyrolysis differ significantly. Kinetic analysis was also performed using the distributed activation energy model, and the kinetic parameter (E) was determined for the different stages of HFO combustion and pyrolysis processes, yielding a good agreement with the measured TG profiles. FTIR analysis showed the signal of CO2 as approximately 50 times more compared to the other pollutant gases under combustion conditions. Under pyrolytic conditions, the signal intensity of alkane functional groups was the highest followed by alkenes. The TGA-FTIR results provide new insights into the overall HFO combustion processes, which can be used to improve combustor designs and control emissions.

  6. Thermodynamic and structural study of two-dimensional melting within monolayers or rare gases or methane physically adsorbed upon the surface of layer-like solids

    International Nuclear Information System (INIS)

    Tessier, Christine

    1983-01-01

    The 2D (two-dimensional) melting of monolayers of rare gases or methane physically adsorbed on the basal face of lamellar solids (graphite, boron nitride and lamellar halides) has been studied. Two different experimental measurements have been made: i) adsorption isotherms; ii) neutron diffraction spectra. The main part of this report deals with the 2D liquid-incommensurate solid transition within monolayers of rare gases or methane adsorbed on the basal face of lamellar halides. This transition is first order. It is observed only if certain conditions of dimensional incompatibility between the substrate and the absorbate are fulfilled. It is little affected by the structure of the underlying substrate. A number of thermodynamic parameters associated with it, are constants once properly scaled. These constants agree well with theoretical estimates for 6-12 Lennard Jones particles adsorbed on a smooth surface. For the monolayer of Xe adsorbed on graphite the temperature of the tricritical point above which melting becomes a continuous transition has been measured. The isotope effect associated with 2D melting has been investigated by comparing the behaviour of monolayers of CH 4 and CD 4 adsorbed on boron nitride. The vapor pressure of Xe has been determined in the temperature range 101-120 K. (author) [fr

  7. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    Science.gov (United States)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  8. A cluster dynamics study of fission gases in uranium dioxide

    International Nuclear Information System (INIS)

    Skorek, Richard

    2013-01-01

    During in-pile irradiation of nuclear fuels a lot of rare gases are produced, mainly xenon and krypton. The behaviour of these highly insoluble fission gases may lead to an additional load of the cladding, which may have detrimental safety consequences. For these reasons, fission gas behaviour (diffusion and clustering) has been extensively studied for years.In this work, we present an application of Cluster Dynamics to address the behaviour of fission gases in UO_2 which simultaneously describes changes in rare gas atom and point defect concentrations in addition to the bubble size distribution. This technique, applied to Kr implanted and annealed samples, yields a precise interpretation of the release curves and helps justifying the estimation of the Kr diffusion coefficient, which is a data very difficult to obtain due to the insolubility of the gas. (author) [fr

  9. Studies on up-gradation of Erbium from a heavy fraction of rare earths with EHEHPA

    International Nuclear Information System (INIS)

    Singh, D.K.; Anitha, M.; Yadav, K.K.; Kotekar, M.K.; Vijayalakshmi, R.; Singh, H.

    2014-01-01

    Erbium is an important heavy rare earth element, which finds wide applications. Recently, use of Erbium oxide as structural coating material in fusion reactor has stimulated the interest in obtaining Erbium in pure form. The separation of Erbium from other rare earths such as Dy, Ho, Y, Yb, Tm etc is very difficult due to low separation factor owing to their similar chemical properties. Additionally due to very low concentration ( 2 O 3 : 1.09, Dy 2 O 3 : 58.07, Er 2 O 3 : 22.0, Ho 2 O 3 : 13.33, Yb 2 O 3 : 4.74, Tm 2 O 3 :0.67 is obtained during purification of Y by Aliquat 336 from thiocyanate medium. In the present investigation this HRE fraction is taken as the feed material for up-gradation of Er by an acidic extractant namely 2 ethyl hexyl - 2 ethyl hexyl phosphonic acid (EHEHPA)

  10. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  11. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  12. Rare particles

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of 14 C from 223 Ra. 35 references

  13. Gases and carbon in metals. Pt. 14

    International Nuclear Information System (INIS)

    Jehn, H.; Speck, H.; Hehn, W.; Fromm, E.; Hoerz, G.

    1981-01-01

    This issue is part of a series of data on 'Gases and Carbon in Metals' which supplements the data compilation in the book 'Gase und Kohlenstoff in Metallen' (Gases and Carbon in Metals), edited by E. Fromm and E. Gebhardt, Springer-Verlag, Berlin 1976. The present survey includes results from papers published after the copy deadline and recommends critically selected data. Furthermore, it comprises a bibliography of relevant literature. For each element, firstly data on binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility, solubility limit, dissociation pressure of compounds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas absorption and gas desorption kinetics, compound formation kinetics, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. (orig./GE)

  14. Heavy flavors

    International Nuclear Information System (INIS)

    Cox, B.; Gilman, F.J.; Gottschalk, T.D.

    1986-11-01

    A range of issues pertaining to heavy flavors at the SSC is examined including heavy flavor production by gluon-gluon fusion and by shower evolution of gluon jets, flavor tagging, reconstruction of Higgs and W bosons, and the study of rare decays and CP violation in the B meson system. A specific detector for doing heavy flavor physics and tuned to this latter study at the SSC, the TASTER, is described. 36 refs., 10 figs

  15. Evaluation of the effect of heavy rare earth elements on the microstructure and mechanical and electrical properties of zirconia - Yttria ceramics

    International Nuclear Information System (INIS)

    Lazar, Dolores Ribeiro Ricci

    2002-01-01

    The use of Yttria concentrates for synthesis and processing of zirconia based ceramics, applied as structural and solid electrolyte materials, was investigated in this work. Terbium, dysprosium, holmium, erbium and ytterbium are chemical elements, classified as heavy rare earths, that can be found in those concentrates due to their association with yttrium ores. The ceramic characteristics were compared to zirconia - Yttria and zirconia - Yttria - rare earth oxide systems. The dopant content was 3 and 9 mol%. The raw materials were prepared by the coprecipitation route using solutions from the chemical processing of zircon and monazite ores and obtained by dissolution of high purity rare earth oxides. In the first part of this work, calcination, milling and ceramic processing were studied to produce ceramics with densities up to 95% TD. Samples were prepared in optimized conditions for the evaluation of the effect of each heavy rare earth element. Powders were characterized by chemical analysis. X-ray diffraction, scanning and transmission electron microscopy, gas adsorption (BET) and laser diffraction for the determination of the agglomerate size distributions. Green pellets were characterized by mercury porosimetry and the sintering kinetic was studied by dilatometry. The characterization of the as-sintered pellets was performed by the apparent density measurement (Archimedes method). X-ray diffraction, microstructure analysis by scanning and transmission electron microscopy, Vickers indentation tests for hardness and fracture toughness determination, dynamic mechanical analysis for the elastic modulus measurement, and impedance spectroscopy for electrical resistivity measurement. It was observed that the presence of heavy rare earths in a concentrate containing 85 wt% of Yttria has no significant influence on the properties of zirconia based ceramics. TZP ceramics, containing 3 mol% of dopants, have grain size smaller than 0.4μm, and Vickers hardness and

  16. Behaviour of rare confined gases in a high-temperature ceramic matrix: modelling through semi-empirical approaches

    International Nuclear Information System (INIS)

    Arayro, Jack

    2015-01-01

    Uranium dioxide UO_2 is the standard fuel in nuclear pressurized water reactors (PWR). During the operation of the reactor the fuel pellets undergo thermal and mechanical stresses. For this reason it is very important to understand these thermomechanical properties of this system both in normal operation conditions and accidental situations (300 to 2000 K). During fission reactions of uranium, rare gases such as xenon are produced within the fuel. Due to their low solubility, these gases will either be released or form intra- and inter-granular bubbles inside the UO_2. The presence of these bubbles in the fuel has an impact on the thermomechanical properties of the latter. We focus in this thesis on the study of intragranular bubbles and their impact on the thermomechanical properties of UO_2, through modeling at the atomic scale. At this scale, intragranular bubbles take the shape of an octahedron, presenting mainly (111) and (100) facets. Given the complexity of the study of the stability of this octahedron, we have simplified the problem in order to study it in a more systematic way and to decouple the various effects. First, the stability of (100) and (111) extended surfaces of UO_2 and microstructural modifications generated by their relaxation were studied. In a second step, we determined adsorption isotherms of xenon on these relaxed surfaces, and compared them to the incorporation ones inside an empty box in order to isolate surface effects. A specific attention has been given to the microstructure of xenon in these systems. Finally, an analysis of the mechanical properties (pressure and stress profiles near by the surface) was achieved in order to get the pertinent quantities that will fed-up micromechanical models at higher scale. (author)

  17. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  18. Radiolytic generation of gases in reactors

    International Nuclear Information System (INIS)

    Ramshesh, V.; Venkateswarlu, K.S.

    1988-01-01

    Water or heavy water is used in different circuits in a reactor. Their most common use is as a moderator and/or as a coolant. Light water is used at other places such as in end shield, calandria vault etc., In the process they are exposed to intense ionizing radiation and undergo radiolytic degradation. The molecular produts of radiolysis are hydrogen, hydrogen peroxide and oxygen. As is commonly known if hydrogen is formed beyond a certain level, in the presence of oxygen it may lead to combustion or even explosion. Thus one should comprehend the basic principles of radiolysis and see whether the concentration of these gases under various conditions can be worked out. This report attempts to analyse in depth the radiolytic generation of gases in reactor systems. (author). 3 tabs

  19. Radiation damage produced by swift heavy ions in rare earth phosphates

    International Nuclear Information System (INIS)

    Romanenko, Anton

    2017-01-01

    This work is devoted to the study of radiation damage produced by swift heavy ions in rare earth phosphates, materials that are considered as perspective for radioactive waste storage. Single crystals of rare earth phosphates were exposed to 2.1 GeV gold (Au) and 1.5 GeV xenon (Xe) ions of and analyzed mainly by Raman spectroscopy. All phosphates were found almost completely amorphous after the irradiation by 2.1 GeV Au ions at a fluence of 1 x 10 13 ions/cm 2 . Radiation-induced changes in the Raman spectra include the intensity decrease of all Raman bands accompanied by the appearance of broad humps and a reduction of the pronounced luminescence present in virgin samples. Analyzing the Raman peak intensities as a function of irradiation fluence allowed the calculation of the track radii for 2.1 GeV Au ions in several rare earth phosphates, which appear to be about 5.0 nm for all studied samples. Series of samples were studied to search for a trend of the track radius depending on the rare earth element (REE) cation. Among the monoclinic phosphates both Raman and small-angle X-ray scattering (SAXS) suggest no significant change of the track radius with increasing REE mass. In contrast, within the tetragonal phosphates Raman spectroscopy data suggests a possible slight decreasing trend of the track radius with the increase of REE atomic number. That finding, however, requires further investigation due to the low reliability of the qualitative Raman analysis. Detailed analysis of Raman spectra in HoPO 4 showed the increase of peak width at the initial stage of the irradiation and subsequent decrease to a steady value at higher fluences. This observation suggested the existence of a defect halo around the amorphous tracks in HoPO 4 . Raman peaks were found to initially shift to lower wavenumbers with reversing this trend at the fluence of 5 x 10 11 for NdPO 4 and 1 x 10 12 ions/cm 2 for HoPO 4 . At the next fluence steps peaks moved in the other direction, passed

  20. Low-energy scattering of excited helium atoms by rare gases

    International Nuclear Information System (INIS)

    Peach, G.

    1978-01-01

    The construction of semi-empirical model potentials for systems composed of helium in an excited state (Hestar) and a rare-gas atom (He or Ne) is described. The model of the atom-atom pair which has been adopted is one in which the excited electron is included explicitly, but the residual He + ion and the rare-gas atom are treated simply as cores which may be polarised. The results obtained are in satisfactory agreement with other calculations where they are available. (author)

  1. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  2. Radioactive rare gas recoverying device

    International Nuclear Information System (INIS)

    Kasai, Shigeo

    1989-01-01

    The apparatus of the present invention comprises a vessel for containing coolants, an introduction valve and an introduction pipe for introducing radioactive rare gases and an adsorption floor disposed in the coolants. A josephson device is disposed being immersed in the coolants between a radiation detector for detecting the radioactive level adsorbed to the adsorption floor and a driving section for driving the introduction valve by the signal from the detector. With this constitution, radioactive rare gases introduced into the coolants and then cooled and liquefied are recovered by the adsorption floor. As the adsorption proceeds and when the radioactivity level exceeds a maximum level in the effective shielding range of the recovery apparatus, the signal current from the radiation detector also exceeds a predetermined level. If radioactivity exceeds the maximum level, the electrical resistance of the josephson device is increased infinitely by the josephson effect to close the introduction valve. Accordingly, the radioactivity is not absorbed beyond the effective shielding range. (I.S.)

  3. Theory of diffusion of rare gases in solids

    International Nuclear Information System (INIS)

    Lidiard, A.B.

    1980-01-01

    This paper reviews the basic theoretical description of the solubility and diffusion of rare gas atoms in crystalline solids. It then shows how this description can be used in conjunction with atomistic calculations to understand experimental observations. This understanding is particularly good for ionic compounds and a brief summary of the present situation is given for three main classes, namely those with the rocksalt structure, the fluorite structure and the caesium chloride structure. (author)

  4. Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 250C. I. The rare earth chlorides

    International Nuclear Information System (INIS)

    Spedding, F.H.; Weber, H.O.; Saeger, V.W.; Petheram, H.H.; Rard, J.A.; Habenschuss, A.

    1976-01-01

    The osmotic coefficients of the aqueous trichlorides of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y were determined from 0.1 M to saturation at 25 0 C. Semiempirical least-squares equations were obtained for the osmotic coefficients as a function of molality and these equations were used to calculate water activities and mean molal activity coefficients. The water activities of the light rare earth chlorides at constant molalities are higher than for the heavy rare earths, while the mean molal activity coefficients are larger for the heavy rare earths than for the light ones. The above effects are discussed in terms of changes in the cationic radii and hydration of the rare earth ions

  5. Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality

    OpenAIRE

    Adams, Allan; Carr, Lincoln D.; Schafer, Thomas; Steinberg, Peter; Thomas, John E.

    2012-01-01

    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These sy...

  6. Apparatus for studying the diffusion of rare gases in stainless steel

    International Nuclear Information System (INIS)

    Stohr, J.A.; Alfille, L.

    1959-01-01

    This apparatus enables measurements to be carried out on the diffusion of gaseous fission products and of gases in general across thin metallic walls at high temperatures. This work was initially intended to solve the problems involved in systems for detecting the rupture of a fuel element can (D.R.G.) by the diffusion of fission products through the cans at high temperatures. The extension of the work to other fields is envisaged. (author) [fr

  7. Radiation damage produced by swift heavy ions in rare earth phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, Anton

    2017-02-13

    This work is devoted to the study of radiation damage produced by swift heavy ions in rare earth phosphates, materials that are considered as perspective for radioactive waste storage. Single crystals of rare earth phosphates were exposed to 2.1 GeV gold (Au) and 1.5 GeV xenon (Xe) ions of and analyzed mainly by Raman spectroscopy. All phosphates were found almost completely amorphous after the irradiation by 2.1 GeV Au ions at a fluence of 1 x 10{sup 13} ions/cm{sup 2}. Radiation-induced changes in the Raman spectra include the intensity decrease of all Raman bands accompanied by the appearance of broad humps and a reduction of the pronounced luminescence present in virgin samples. Analyzing the Raman peak intensities as a function of irradiation fluence allowed the calculation of the track radii for 2.1 GeV Au ions in several rare earth phosphates, which appear to be about 5.0 nm for all studied samples. Series of samples were studied to search for a trend of the track radius depending on the rare earth element (REE) cation. Among the monoclinic phosphates both Raman and small-angle X-ray scattering (SAXS) suggest no significant change of the track radius with increasing REE mass. In contrast, within the tetragonal phosphates Raman spectroscopy data suggests a possible slight decreasing trend of the track radius with the increase of REE atomic number. That finding, however, requires further investigation due to the low reliability of the qualitative Raman analysis. Detailed analysis of Raman spectra in HoPO{sub 4} showed the increase of peak width at the initial stage of the irradiation and subsequent decrease to a steady value at higher fluences. This observation suggested the existence of a defect halo around the amorphous tracks in HoPO{sub 4}. Raman peaks were found to initially shift to lower wavenumbers with reversing this trend at the fluence of 5 x 10{sup 11} for NdPO{sub 4} and 1 x 10{sup 12} ions/cm{sup 2} for HoPO{sub 4}. At the next fluence steps

  8. Effect of rare earth oxide additives on the performance of NiMH batteries

    International Nuclear Information System (INIS)

    Tanaka, Toshiki; Kuzuhara, Minoru; Watada, Masaharu; Oshitani, Masahiko

    2006-01-01

    To date, we have performed research on nickel-metal hydride (NiMH) batteries used in many applications and have found that addition of rare earth oxides to the nickel electrode and the hydrogen-storage alloy (MH) electrode improves battery performance significantly. Because heavy rare earth oxides of such as Er, Tm, Yb and Lu have remarkable properties that shift the oxygen evolution overpotentials of nickel electrodes to more noble potentials, it is possible to improve high-temperature charge efficiency of nickel-metal hydride secondary batteries by adding them to nickel electrodes. Furthermore, addition of heavy rare earth oxides to MH electrodes depresses an acceleration of the alloy corrosion and improves service life of the battery at high temperatures. Accordingly, addition of heavy rare earth oxides is effective for NiMH batteries used in high-temperature applications such as electric vehicles (EVs), hybrid vehicles (HEVs) and rapid charge devices. In this study, we discussed how the addition of heavy rare earth oxides affects NiMH battery characteristics

  9. Creating a multi-national development platform: Thorium energy and rare earth value chain

    International Nuclear Information System (INIS)

    Kennedy, J.; Kutsch, J.

    2014-01-01

    Rare earths and thorium are linked at the mineralogical level. Changes in thorium regulations and liabilities resulted in the development of excessive market concentrations in the rare earth value chain. High value monazite rare earth resources, a by-product of heavy mineral sands mining, constituted a significant portion of global rare earth supply (and nearly 100% of heavy rare earths) until legislative changes, interpretation and enforcement regarding “source materials” in the early 1980s eliminated these materials from the supply chain.

  10. Electron scattering in dense atomic and molecular gases: An empirical correlation of polarizability and electron scattering length

    International Nuclear Information System (INIS)

    Rupnik, K.; Asaf, U.; McGlynn, S.P.

    1990-01-01

    A linear correlation exists between the electron scattering length, as measured by a pressure shift method, and the polarizabilities for He, Ne, Ar, Kr, and Xe gases. The correlative algorithm has excellent predictive capability for the electron scattering lengths of mixtures of rare gases, simple molecular gases such as H 2 and N 2 and even complex molecular entities such as methane, CH 4

  11. Spin-disorder resistivity of heavy rare-earth metals from Gd to Tm: An ab-initio study

    Science.gov (United States)

    Glasbrenner, James; Belashchenko, Kirill

    2010-03-01

    Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin disorder scattering. In the paramagnetic state, this spin-disorder resistivity (SDR) decreases through the Gd-Tm series. Models based on the assumption of fully localized 4f states treated as S or J multiplets predict that SDR is proportional to S^2 (S is the 4f shell spin) times a quantum correction (S+1)/S or (J+1)/J. The interpretation of this correction using experimental results is ambiguous. Since the 4f bandwidth is not small compared to the multiplet splitting, it is not clear whether the 4f shells in rare-earth metals behave as if they were fully localized and have a good quantum number S or J. To address this issue, in this work we calculate the paramagnetic SDR of the rare-earth metal Gd-Tm series using a non-collinear implementation of the tight-binding linear muffin-tin orbital method. The conductance is found using the Landauer-B"uttiker approach applied to the active region of a varying size, averaging the conductance over random spin-disorder configurations and fitting its size dependence to Ohm's law. The results are compared with experiment and discussed. The sensitivity to basis set and the treatment of the 4f electrons, as well as the role of exchange enhancement in the conduction band is considered. The issue of the quantum correction is examined in light of the new results.

  12. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  13. Rare earth mobility in hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Cornell, D.H.; Schade, J.; Scheepers, R.; Watkeys, M.K.

    1988-01-01

    Rocks and ores which form by magmatic processes display a range of chondrite-normalised rare earth profiles. One REE (rare earth elements) profile feature which seems unrelated to magmatic processes is the birdwing profile, in which both heavy and light rare earths are enriched relative to the middle rare earths. Birdwing rare earth profiles are an easily identified geochemical anomaly. It is proposed that rare earth geochemistry could be applied in geochemical prospecting for ore formed by hydrothermal processes. 5 figs

  14. Enhanced separation of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herbst, R. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soderstrom, M. D. [Cytec Solvay Group, Tempe, AZ (United States); Jakovljevic, B. [Cytec Solvay Group, Niagara Falls, ON (Canada)

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earth element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.

  15. Lifecycle-analysis for heavy vehicles

    International Nuclear Information System (INIS)

    Gaines, L.

    1998-01-01

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants

  16. Quantum statistics of dense gases and nonideal plasmas

    CERN Document Server

    Ebeling, Werner; Filinov, Vladimir

    2017-01-01

    The aim of this book is the pedagogical exploration of the basic principles of quantum-statistical thermodynamics as applied to various states of matter – ranging from rare gases to astrophysical matter with high-energy density. The reader will learn in this work that thermodynamics and quantum statistics are still the concepts on which even the most advanced research is operating - despite of a flood of modern concepts, classical entities like temperature, pressure, energy and entropy are shown to remain fundamental. The physics of gases, plasmas and high-energy density matter is still a growing field and even though solids and liquids dominate our daily life, more than 99 percent of the visible Universe is in the state of gases and plasmas and the overwhelming part of matter exists at extreme conditions connected with very large energy densities, such as in the interior of stars. This text, combining material from lectures and advanced seminars given by the authors over many decades, is a must-have intr...

  17. New data on the Geochemistry of Gases in the Potash Deposits

    Directory of Open Access Journals (Sweden)

    I. I. Chaykovskiy

    2014-12-01

    Full Text Available The composition of the gas phase of salt rocks from a number of potash deposits located in Europe (Verkhnekamskoe, Starobinskoe and Asia (Tubegatanskoe, Zhylyanskoe Satimolinskoe was studied. It allowed dividing them into two groups. In Asian deposits, only authigenic dry gases were formed by diagenetic decomposition of organic matter. Structural exposure of these deposits led to the oxidation of methane and hydrogen and enrichment by carbon dioxide. European deposits were not structurally exposed to the oxidation process, but were exposed during salt rock formation. They experienced influx of heavy hydrocarbons from the underlying strata. The history of the formation of gas regime at the Verkhnekamskoe potash deposit could be divided into three stages. First stage may be characterized by a syngenetic capture of deep gases and authigenic organic matter converted during diagenesis to methane, which percentage gradually increases with an increase of the thickness of impermeable salt strata. Then the deep gases invaded the salt formation during sedimentation of the upper carnallite layers and top salt rock. Third stage was associated with folding processes accompanied by a mobilization of fluids scattered in the gas-fluid inclusions, and with probable influx of heavy hydrocarbons and carbon dioxide resulted in formation of the secondary salt zones. Replacement of carnallite layers leads to the release of isomorphous ammonium ion and formation of a hydrogen.

  18. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity

    Directory of Open Access Journals (Sweden)

    Zach eAanderud

    2015-01-01

    Full Text Available Dormancy is a life history trait that may have important implications for linking microbial communities to the functioning of natural and managed ecosystems. Rapid changes in environmental cues may resuscitate dormant bacteria and create pulses of ecosystem activity. In this study, we used heavy-water (H218O stable isotope probing (SIP to identify fast-growing bacteria that were associated with pulses of trace gases (CO2, CH4, and N2O from different ecosystems (agricultural site, grassland, deciduous forest, and coniferous forest following a soil-rewetting event. Irrespective of ecosystem type, a large fraction (69 - 74% of the bacteria that responded to rewetting were below detection limits in the dry soils. Based on the recovery of sequences, in just a few days, hundreds of rare taxa increased in abundance and in some cases became dominant members of the rewetted communities, especially bacteria belonging to the Sphingomonadaceae, Comamonadaceae, and Oxalobacteraceae. Resuscitation led to dynamic shifts in the rank abundance of taxa that caused previously rare bacteria to comprise nearly 60% of the sequences that were recovered in rewetted communities. This rapid turnover of the bacterial community corresponded with a 5 20 fold increase in the net production of CO2 and up to a 150% reduction in the net production of CH4 from rewetted soils. Results from our study demonstrate that the rare biosphere may account for a large and dynamic fraction of a community that is important for the maintenance of bacterial biodiversity. Moreover, our findings suggest that the resuscitation of rare taxa from seed banks contribute to ecosystem functioning.

  19. Use of EDTA for potentiometric back titration of rare earths and analysis of their mixtures

    International Nuclear Information System (INIS)

    Zayed, M.A.; Rizk, M.S.; Khalifa, H.; Omer, W.F.

    1987-01-01

    Advantage was taken of the stoichiometric reaction between mercury(II), rare earths, alkaline earths, heavy metal ions and EDTA in urotropine buffered media to determine rare earths by back-titration of excess EDTA in the course of estimating a variety of lanthanides or analysing their binary mixture with one of the alkaline earth metals by selective control of pH; or analysing their binary mixtures with heavy metals using fluoride as a good masking agent for rare earths; or analysing their ternary mixtures with both heavy and alkaline earth metals in two steps, one by selective control of pH and the other by masking of rare earths with fluoride at lower pH to estimate the heavy metal. The procedures given are simple, rapid and extremely reliable. 19 refs. (author)

  20. Multiple ionization of noble gases by 2.0 MeV proton impact: comparison with equi-velocity electron impact ionization

    International Nuclear Information System (INIS)

    Melo, W.S.; Santos, A.C.F.; Sant'Anna, M.M.; Sigaud, G.M.; Montenegro, E.C.

    2002-01-01

    Absolute single- and multiple-ionization cross sections of rare gases (He, Ne, Ar, Kr and Xe) have been measured for collisions with 2.0 MeV p + . A comparison is made with equi-velocity electron impact ionization cross sections as well as with the available proton impact data. For the light rare gases the single-ionization cross sections are essentially the same for both proton and electron impacts, but increasing differences appear for the heavier targets. (author). Letter-to-the-editor

  1. Saturation characteristics of liquid rare gas ionization chambers and recombination luminescence in liquid rare gas scintillation

    International Nuclear Information System (INIS)

    Takahashi, Tan; Konno, Satoshi; Kubota, Shinzo; Nakamoto, Jun; Miyajima, Mitsuhiro.

    1978-01-01

    From the saturation characteristics of liquid rare gases (Ar and Xe), the mean distance between electrons and ions. W-value, and the ratio of freely diffusion electrons were determined on the basis of the theory of Onsager. Their relationships with the scintillation due to recombination are also discussed. In the first part of this report, an analytic equation for the probability that an electron escapes from preferential recombination under the existence of an electric field is derived. The equation was then numerically solved with a computer code developed by Freeman. The adjusted parameters and the results of calculations for both Xe and Ar are presented together with the experimental results. Some discrepancy appeared between the analytical and the experimental results when the electric field was weak, and it is ascribable to the existence of the columnar (cluster) recombination and the effect of attachment due to the pulse method employed in the experiments. In the second part, the effect of electric field on the scintillation of liquid rare gases is considered, based on the theory of Onsager. (Aoki, K.)

  2. Investigation of the shape of the imaginary part of the optical-model potential for electron scattering by rare gases

    International Nuclear Information System (INIS)

    Staszewska, G.; Schwenke, D.W.; Truhlar, D.G.

    1984-01-01

    We present a comparative study of several empirical and nonempirical models for the absorption potential, which is the imaginary part of an optical-model potential, for electron scattering by rare gases. We show that the elastic differential cross section is most sensitive to the absorption potential for high-impact energy and large scattering angles. We compare differential cross sections calculated by several models for the absorption potential and by several arbitrary modifications of these model potentials. We are able to associate the effect of the absorption potential on the elastic differential cross section with its form at small electron-atom distances r, and we are able to deduce various qualitative features that the absorption potential must possess at small and large r in order to predict both accurate differential cross sections and accurate absorption cross sections. Based on these observations, the Pauli blocking conditions of the quasifree scattering model for the absorption potential are modified empirically, thus producing a more accurate model that may be applied to other systems; e.g., electron-molecule scattering, with no adjustable parameters

  3. Gases and carbon in metals - thermodynamics, kinetics, and properties. Pt. 11

    International Nuclear Information System (INIS)

    Jehn, H.; Speck, H.; Fromm, E.; Hoerz, G.

    1980-01-01

    This issue is part of a series of data on Gases and Carbon in Metals which supplements the data compilation in the book Gase and Kohlenstoff in Metallen (Gases and Carbon in Metals), edited by E.Fromm and E.Gebhardt, Springer-Verlag, Berlin 1976. The present survey includes results from papers published after the copy deadline and recommends critically selected data. Furthermore it comprises a bibliography of relevant literature. For each element the information is given in two parts. In a first section data are listed and in a second section the relevant literature is compiled. For each element, firstly data on binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility, solubility limit, dissociation pressure of compounds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas absorption and gas desorption kinetics, compound formation kinetics, precipitation kinetics, and property changes. (orig./GE)

  4. Geological and geochemical characteristics of the secondary biogenic gas in coalbed gases, Huainan coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojun, Zhang; Zhenglin, Cao; Mingxin, Tao; Wanchun, Wang; Jinlong, Ma

    2010-09-15

    The research results show that the compositions of coalbed gases in Huainan coalfield have high content methane, low content heavy hydrocarbons and carbon dioxide, and special dry gas. The evolution coal is at the stage of generation of thermogenic gases, but the d13C1 values within the range of biogenic gas (d13C1 values from -56.7{per_thousand} to -67.9{per_thousand}). The d13C2 value of coalbed gases in Huainan coalfield shows not only the features of the thermogenic ethane, but also the mixed features of the biogenic methane and thermogenic ethane. In geological characteristics, Huainan coalfield has favorable conditions of generation of secondary biogenic gas.

  5. Semi-leptonic and rare decays

    CERN Document Server

    Borzumati, Francesca M; Aoki, M; Bevan, A; Cottingham, W N; Dighe, Amol S; Gambino, Paolo; De Groot, N; Harrison, P F; Khalil, S; Kim, C S; Liniger, P; Misiak, M; Reina, L; Ricciardi, G; Shibata, E I; Uraltsev, N; Wyler, D

    2001-01-01

    We review the theoretical and experimental results on semi-leptonic and rare B decays presented in working group 2 of the UK phenomenology workshop on heavy flavour physics and CP violation in Durham, 2000. (0 refs).

  6. Separation process of heavy rare earth elements from xenotime ore

    International Nuclear Information System (INIS)

    Sri Sukmajaya; Tri Handini; Wahyu Rachmi Pusparini; Dwi Biyantoro

    2016-01-01

    Separation process of heavy rare earth elements from xenotime ore had been done. A 100 mesh of xenotime ore was upgrade using water, sodium silicate and oleic acid in pH 9. Mixed of slurry by air blown in room temperature along 30 minutes. The middle of slurry xenotime was be separated, then dried and so added soda caustic, potassium carbonate and ammonium dihydrogen phosphate. The mix was be homogenized then leached in furnace to 700°C temperature along 4 hours. The frits of leaching product would be leached using 1200 mL volume of water that made oxidation by HCl onto pH 4 by agitated heated in 70°C temperature. The mix was filtered, then solid settled was be dried and then to processed again in water HCl acidified leaching alike before until pH 4 with minimized HCl added least 2 mL. The solid settled filled into 1000 mL of beker glass, added HCl viscous in 300 mL volume, hydrogen peroxide and BaCl_2/Na_2SO_4/Na_2S then heated to 100°C temperature. Let in room temperature then was filtrated. The solid settled as ThSO_4/ThS, RaSO_4/RaS. The filtrate to be settled using 15g (NH_4)_2CO_3 in 100 mL volume of water while mixed until the solution reached pH 2. The solid settled was be dried, then into the filtrate added 10 mL volume of formic acid. The solid settled of filtration was be dried. The solution of filtrate to be settled using (NH_4)_2CO_3 until pH 4. The solid settled was be filtered and dried. The filtrate was be settled using oxalic acid. The analysis of standard of oxide rare earth had been done using XRF Am"2"4"1 source. Result of these process got 100 mesh xenotime upgrade those leached in 700°C along 4 hours used (NH_4)H_2PO_4 so HRE total lifted up from 4.31 to 8.16%. Resulted of HRE oxide yield was 17.76% in pH 2. HRE oxide yield in pH 4 was 38.45%, and HRE oxide yield was 6.38% as oxalic compound, so the total HRE oxide yield was 62.59%. (author)

  7. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  8. μ+ charge exchange and muonium formation in low pressure gases

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Garner, D.M.

    1982-04-01

    Using the basic muon spin rotation technique, the fractions of energetic positive muons thermalizing in diamagnetic environments (fsub(μ)) or as the paramagnetic muonium atom (fsub(Mu)) have been measured in low pressure pure gases (He, Ne, Ar, Kr, Xe, H 2 , N 2 , NH 3 , and CH 4 ) as well as in several gas mixtures (Ne/Xe, Ne/Ar, Ne/NH 3 , Ne/CH 4 ). In the pure gases, the muonium fractions fsub(Mu) are generally found to be smaller than expected from analogous proton charge exchange studies, particularly in the molecular gases. This is probably due to hot atom reactions of muonium following the charge exchange regime. Comparisons with monium formation in condensed matter as well as positronium formation in gases are also presented. In the gas mixtures, the addition of only a few hundred ppm of a dopant gas, which is exothermic for muonium formation (e.g. Xe), gives rise to an fsub(Mu) characteristic of the pure dopant gas itself, demonstrating the importance of the neutralization process right down to thermal energies. In all cases, the experimental signal amplitudes are found to be strongly pressure dependent, which is interpreted in terms of the time spent by the muon as neutral muonium in the charge exchange regime: tsub(n) < 0.2 ns. This time is generally shorter in the case of molecular gases than in rare gases

  9. Rare earths in iron and steelmaking and gaseous desulphurisation

    International Nuclear Information System (INIS)

    Kay, D.A.R.; Subramanian, S.V.; Meng, V.; Kumar, R.V.

    1985-01-01

    Rare earth (RE) additions, either as mischmetal or rare earth silicide, are used in many ladle treatment processes in modern ferrous metallurgy. In ironmaking they provide the basis for the control of graphite morphology in cast irons and in steelmaking additions are made to aluminum-killed steels for desulphurisation and the control of inclusion composition and morphology. Rare earth oxides may also be used in the desulphurisation of medium calorific value gaseous fuels and stack gases. In this paper, Ce-S-O and La-S-O phase stability diagrams are used to determine the role of the rare earths in the external processing of iron and steel, and gaseous desulphurisation

  10. Glass Membrane For Controlled Diffusion Of Gases

    Science.gov (United States)

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  11. Rare Earth Chalcogels NaLnSnS4 (Ln = Y, Gd, Tb) for Selective Adsorption of Volatile Hydrocarbons and Gases

    KAUST Repository

    Edhaim, Fatimah

    2017-06-28

    The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS4, NaGdSnS4, and NaTbSnS4 is reported. Rare earth metal ions like Y3+, Gd3+, and Tb3+ react with the chalcogenide clusters [SnS4]4– in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649 m2·g–1 (NaYSnS4), 479 m2·g–1 (NaGdSnS4), and 354 m2·g–1 (NaTbSnS4). Electron microscopy and physisorption studies reveal that the new materials have pores in the macro (above 50 nm) and meso (2–50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO2 over CH4 or H2. The notable adsorption capacity for toluene (NaYSnS4: 1108 mg·g–1; NaGdSnS4: 921 mg·g–1; and NaTbSnS4: 645 mg·g–1) and high selectivity for gases (CO2/H2: 172 and CO2/CH4: 50 for NaYSnS4, CO2/H2: 155 and CO2/CH4: 37 for NaGdSnS4, and CO2/H2: 75 and CO2/CH4: 28 for NaTbSnS4) indicate potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes.

  12. Long-range dispersion interactions. II. Alkali-metal and rare-gas atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Zhang, J.-Y.

    2007-01-01

    The dispersion coefficients for the van der Waals interactions between the rare gases Ne, Ar, Kr, and Xe and the low-lying states of Li, Na, K, and Rb are estimated using a combination of ab initio and semiempirical methods. The rare-gas oscillator strength distributions for the quadrupole and octupole transitions were derived by using high-quality calculations of rare-gas polarizabilities and dispersion coefficients to tune Hartree-Fock single-particle energies and expectation values

  13. Measurements of the Secondary Electron Emission from Rare Gases at 4.2K

    CERN Document Server

    Bozhko, Y.; Hilleret, N.

    2013-01-01

    Dependence of the secondary electron yield (SEY) from the primary beam incident energy and the coverage has been measured for neon, argon, krypton and xenon condensed on a target at 4.2K. The beam energy ranged between 100 eV and 3 keV, the maximal applied coverage have made up 12000, 4700, 2500 and 1400 monolayers correspondingly for neon, argon, krypton and xenon. The SEY results for these coverages can be considered as belonging only to investigated gases without influence of the target material. The SEY dependencies versus the primary beam energy for all gases comprise only an ascending part and therefore, the maximal measured SEY values have been obtained for the beam energy of 3keV and have made up 62, 73, 60.5 and 52 for neon, argon, krypton and xenon correspondingly. Values of the first cross-over have made up 21 eV for neon, 14 eV for argon, 12.5 eV for krypton and 10.5 eV for xenon. An internal field appearing across a film due to the beam impact can considerably affect the SEY measurements that dem...

  14. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: a pilot study.

    Science.gov (United States)

    Hao, Zhe; Li, Yonghua; Li, Hairong; Wei, Binggan; Liao, Xiaoyong; Liang, Tao; Yu, Jiangping

    2015-06-01

    The Baiyun Obo deposit is the world's largest rare earth elements (REE) deposit. We aimed to investigate levels of REE, heavy metals (HMs) and uranium (U) based on morning urine samples in a population in Baiyun Obo and to assess the possible influence of rare earth mining processes on human exposure. In the mining area, elevated levels were found for the sum of the concentrations of light REE (LREE) and heavy REE (HREE) with mean values at 3.453 and 1.151 μg g(-1) creatinine, which were significantly higher than those in the control area. Concentrations of HMs and U in the population increased concomitantly with increasing REE levels. The results revealed that besides REE, HMs and U were produced with REE exploitation. Gender, age, educational level, alcohol and smoking habit were major factors contributing to inter-individual variation. Males were more exposed to these metals than females. Concentrations in people in the senior age group and those with only primary education were low. Drinking and smoking were associated with the levels of LREE, Cr, Cu, Cd and Pb in morning urine. Hence this study provides basic and useful information when addressing public and environmental health challenges in the areas where REE are mined and processed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ion mobilities in Xe/Ne and other rare-gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, D; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT), UMR 5002 CNRS, 118 route de Narbonne, 31062 Toulouse (France); Phelps, A V [JILA, University of Colorado and National Institute of Technology, Boulder, Colorado (United States); Urquijo, J de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Post Office Box 48-3, 62251, 80309-0440 Cuernavaca, Moreno (Mexico); Basurto, E [Departmento de Ciencias Basicas, Universidad Autonoma Metropolitana, 02200 Mexico Distrito Federal (Mexico)

    2003-10-01

    The ion mobility or drift velocity data important for modeling glow discharges in rare gas mixtures are not generally available, nor are the ion-neutral scattering cross sections needed to calculate these data. In this paper we propose a set of cross sections for Xe{sup +} and Ne{sup +} collisions with Xe and Ne atoms. Ion mobilities at 300 K calculated using this cross section set in a Monte Carlo simulation are reported for reduced field strengths, E/N, up to 1500x10{sup -21} V m{sup 2}, in pure gases and in Xe/Ne mixtures containing 5% and 20% Xe/Ne, which are mixtures of interest for plasma display panels (PDPs). The calculated Xe{sup +} mobilities depend strongly on the mixture composition, but the Ne{sup +} mobility varies only slightly with increasing Xe in the mixture over the range studied here. The mobilities in pure gases compare well with available experimental values, and mobilities in gas mixtures at low E/N compare well with our recent measurements which will be published separately. Results from these calculations of ion mobilities are used to evaluate the predictions of Blanc's law and of the mixture rule proposed by Mason and Hahn [Phys. Rev. A 5, 438 (1972)] for determining the ion mobilities in mixtures from a knowledge of the mobilities in each of the pure gases. The mixture rule of Mason and Hahn is accurate to better than 10% at high field strengths over a wide range of conditions of interest for modeling PDPs. We conclude that a good estimate of ion mobilities at high E/N in Xe/Ne and other binary rare gas mixtures can be obtained using this mixture rule combined with known values of mobilities in parent gases and with the Langevin form for mobility of rare gas ions ion in other gases. This conclusion is supported by results in Ar/Ne mixtures which are also presented here.

  16. Carbon recovery by fermentation of CO-rich off gases - Turning steel mills into biorefineries.

    Science.gov (United States)

    Molitor, Bastian; Richter, Hanno; Martin, Michael E; Jensen, Rasmus O; Juminaga, Alex; Mihalcea, Christophe; Angenent, Largus T

    2016-09-01

    Technological solutions to reduce greenhouse gas (GHG) emissions from anthropogenic sources are required. Heavy industrial processes, such as steel making, contribute considerably to GHG emissions. Fermentation of carbon monoxide (CO)-rich off gases with wild-type acetogenic bacteria can be used to produce ethanol, acetate, and 2,3-butanediol, thereby, reducing the carbon footprint of heavy industries. Here, the processes for the production of ethanol from CO-rich off gases are discussed and a perspective on further routes towards an integrated biorefinery at a steel mill is given. Recent achievements in genetic engineering as well as integration of other biotechnology platforms to increase the product portfolio are summarized. Already, yields have been increased and the portfolio of products broadened. To develop a commercially viable process, however, the extraction from dilute product streams is a critical step and alternatives to distillation are discussed. Finally, another critical step is waste(water) treatment with the possibility to recover resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Localized-itinerant magnetism: a simple model with applications to intermetallic of heavy rare-earths

    International Nuclear Information System (INIS)

    Ranke Perlingueiro, P.J. von.

    1986-01-01

    We have investigated various magnetic quantities of a system consisting of conduction electrons coupled to localized spins. In obtaining the magnetic state equations (which relate the ionic and electronic magnetisations to temperature and the model parameters) we have adopted the molecular field approximation. This simple model is of interest to the magnetism of the heavy rare earth intermettallics. For these systems the localized spin is that of the 4f shell; it is described by the parameters g (the Lande's factor) and J (the total angular momentum of the 4f electrons in the ground state). We derive an analytical linear relation between the critical temperature and The Gennes Factors J(J+1)(g-1) which is experimentally observed for RAl 2 . A fitting between the experimental points and the theoretical prediction gives for the exchange parameter the value J o = 48.6 meV. We have also performed a parametric study of the model, using a rectangular energy density of states. The results are shown on tables and diagrams. (author) [pt

  18. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  19. Erosion of volatile elemental condensed gases by keV electron and light-ion bombardment

    International Nuclear Information System (INIS)

    Schou, J.

    1991-11-01

    Erosion of the most volatile elemental gases by keV electron and light-ion bombardment has been studied at the experimental setup at Risoe. The present work includes frozen neon, argon, krypton, nitrogen, oxygen and three hydrogen isotopes, deuterium, hydrogen deuteride and hydrogen. The yield of these condensed gases has been measured as a function of film thickness and primary energy for almost all combinations of primary particles (1-3 keV electrons, 5-10 keV hydrogen- and helium ions) and ices. These and other existing results show that there are substantial common features for the sputtering of frozen elemental gases. Within the two groups, the solid rare gases and the solid molecular gases, the similarity is striking. The hydrogenic solids deviate in some respects from the other elements. The processes that liberate kinetic energy for the particle ejection in sputtering are characteristic of the specific gas. (au) 3 tabs., 12 ills., 159 refs

  20. Study on Yen Phu rare earth ore concentrate treatment technology and separation of major heavy rare earth elements by solvent extraction method

    International Nuclear Information System (INIS)

    Le Ba Thuan; Pham Quang Trung; Vu Lap Lai

    2003-01-01

    PC88A and Aliquat 336 systems have been optimized using the computer simulation program. The solution containing > 80% pure Y 2 O 3 after upgrading by PC88A (18 extraction, 18 scrubbing and 10 stripping stages) is purified further by another cycle of SX (24 extraction, 10 scrubbing and 10 stripping stages) with 25% Aliquat 336 in kerosene in presence of 1.0 M NH 4 SCN and 2.0 M NH 4 Cl. The impurities of Ho, Er, and another heavy elements are extracted leaving >99.9% pure Y 2 O 3 in the aqueous phase. The yield of the process is > 85%. 4. Separation and purification of europium: The isolation and purification of europium consists of following steps: isolation of Eu by reduction on zinc column and precipitation in the form EuSO 4 by H 2 SO 4 under CO 2 atmosphere; first purification by conversion of EuSO 4 to EuCl 3 , reduction and precipitation in the form EuSO 4 ; and second purification by reduction on zinc column and precipitation of other rare earth elements in the form RE(OH) 3 by NH 4 Cl-NH 4 OH buffer of pH = 10 under atmosphere N 2 . Eu 2 O 3 of 99.9% purity has been recovered with overall yield. 5. Separation and purification of gadolinium: The middle subgroup after Eu removing is subject to Gd recovery by SX with PC88A. The SX parameters for Gd separation had been optimized by computer program. The separation process consists of 12 extraction, 12 scrubbing and 6 stripping stages. The acidity of scrubbing solution is 1.0.M HCl. The purity and yield of the Gd separation process were > 98% and >85% respectively. The obtained Gd 2 O 3 was purified by Eu removing using zinc column and H 2 SO 4 . The final purity of the Gd 2 O 3 was reached value 99%. 6. Overall schema for individual separation of some rare earth elements of high purity from Yenphu rare earth ore concentrate: Based on the above obtained results, overall schema for individual separation of some rare earth elements (Y, Gd, Eu and Sm) of high purity from Yenphu rare earth ore concentrate has been

  1. Rare earths from uranium mineralization occurrences in the Permian of the Gemericum, the Western Carpathians

    International Nuclear Information System (INIS)

    Rojkovic, I.; Medved, J.; Walzel, E.; Posta, S.; Sulovsky, P.

    1989-01-01

    Uranium mineralization in the Permian of the Gemericium is accompanied by apatite, monazite and xenotime. The study of rare earth elements distribution is based on the results of instrumental neutron activation analysis and optical emission spectroscopy analysis of rocks and energy-dispersive X-ray microanalyses of minerals. The main light rare earth elements bearing mineral is monazite; for heavy rare earth elements it is xenotime. The rocks accompanying uranium mineralization have increased rare earth elements contents. The mobilization and concentration of uranium mineralization took place during the Alpine metallogenic processes. These processes were also associated with rare earth elements mobilization is which total and selective enrichment in light rare earth elements and heavy rare earth elements was observed. (author). 12 figs., 6 tabs., 5 refs

  2. Rapid-relocation model for describing high-fluence retention of rare gases implanted in solids

    Science.gov (United States)

    Wittmaack, K.

    2009-09-01

    It has been known for a long time that the maximum areal density of inert gases that can be retained in solids after ion implantation is significantly lower than expected if sputter erosion were the only limiting factor. The difference can be explained in terms of the idea that the trapped gas atoms migrate towards the surface in a series of detrapping-trapping events so that reemission takes place well before the receding surface has advanced to the original depth of implantation. Here it is shown that the fluence dependent shift and shape of implantation profiles, previously determined by Rutherford backscattering spectrometry (RBS), can be reproduced surprisingly well by extending a simple retention model originally developed to account only for the effect of surface recession by sputtering ('sputter approximation'). The additional migration of inert gas atoms is formally included by introducing an effective shift parameter Yeff as the sum of the sputtering yield Y and a relocation efficiency Ψrel. The approach is discussed in detail for 145 keV Xe + implanted in Si at normal incidence. Yeff was found to increase with increasing fluence, to arrive at a maximum equivalent to about twice the sputtering yield. At the surface one needs to account for Xe depletion and the limited depth resolution of RBS. The (high-fluence) effect of implanted Xe on the range distributions is discussed on the basis of SRIM calculations for different definitions of the mean target density, including the case of volume expansion (swelling). To identify a 'range shortening' effect, the implanted gas atoms must be excluded from the definition of the depth scale. The impact-energy dependence of the relocation efficiency was derived from measured stationary Xe concentrations. Above some characteristic energy (˜20 keV for Ar, ˜200 keV for Xe), Y exceeds Ψrel. With decreasing energy, however, Ψrel increases rapidly. Below 2-3 keV more than 90% of the reemission of Ar and Xe is estimated

  3. Rare decays of B-mesons

    International Nuclear Information System (INIS)

    Ali, A.

    1992-01-01

    This article is dedicated to the memory of Andrei D. Sakharov, a great scientist and human rights activist. Sakharov was blessed with the rare gift of prophetic prediction in matters concerning both science and society. His paper in 1967 on the baryon asymmetry of the universe relating it to the baryon instability, CP-violation, and thermodynamic non-equilibrium, was a very long shot. In view of subsequent theoretical developments in grand unified theories of elementary particle physics and cosmology, where the Sakharov conditions can be accommodated, this paper represents indeed a very fine example of scientific genius and prophecy. His political judgement, exemplified by his visionary essay Progress, Coexistence, and Intellectual Freedom, written in 1968, was equally stunning. Among other topics Sakharov was also very much interested in physics of the heavy quarks. In this paper we review theoretical predictions about an interesting aspect of heavy quark physics, namely rare phenomena in the decays of B-meson involving flavor changing neutral current (FCNC) processes

  4. A comprehensive analysis of the content of heavy rare-earth elements and platinum in snow samples to assess the ecological hazard of air pollution in urban areas

    Science.gov (United States)

    Vinokurov, S. F.; Tarasova, N. P.; Trunova, A. N.; Sychkova, V. A.

    2017-07-01

    Snow samples from the territory of the Setun River Valley Wildlife Sanctuary are analyzed for the content of rare-earth elements, heavy metals, and other hazardous elements by the inductively coupled plasma mass-spectrometry method. The changes in the concentrations of rare-earth elements, Pt, Pd, and indicator ratios of elements in the solid fractions of snow are revealed. A trend toward a decrease in the content of several elements northeastward of the Moscow Ring Road (MRR) is established. The level of seasonal atmospheric contamination of the area under study is assessed, and a possible source is identified.

  5. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  6. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China

    International Nuclear Information System (INIS)

    Tang, Shunlin; Feng, Chaohui; Feng, Xinbin; Zhu, Jianming; Sun, Ruoyu; Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua; Zhou, Ting

    2017-01-01

    Highlights: • The first speciated Hg isotope ratios in coal combustion flue gases are presented. • Significant Hg isotope kinetic MDF was observed during Hg forms transformation. • Emitted gaseous Hg highly enriches in heavy Hg isotopes relative to feed coal. - Abstract: Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ 202 Hg = −2.04 ± 0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7–2.6‰ in δ 202 Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  7. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shunlin, E-mail: tangshunlin@hpu.edu.cn [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Feng, Chaohui [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Feng, Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China); Zhu, Jianming [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100086 (China); Sun, Ruoyu, E-mail: ruoyu.sun@tju.edu.cn [CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Zhou, Ting [State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China)

    2017-04-15

    Highlights: • The first speciated Hg isotope ratios in coal combustion flue gases are presented. • Significant Hg isotope kinetic MDF was observed during Hg forms transformation. • Emitted gaseous Hg highly enriches in heavy Hg isotopes relative to feed coal. - Abstract: Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ{sup 202}Hg = −2.04 ± 0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7–2.6‰ in δ{sup 202}Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  8. Environmental impacts of heavy metals, rare earth elements and natural radionuclides in marine sediment from Ras Tanura, Saudi Arabia along the Arabian Gulf.

    Science.gov (United States)

    El-Taher, Atef; Alshahri, Fatimh; Elsaman, Reda

    2018-02-01

    Ras Tanura city is one of the most important cities in Saudi Arabia because of the presence of the largest and oldest oil refinery in the Middle East which was began operations in September 1945. Also its contains gas plant and two ports. The concentration of natural radionuclides, heavy metals and rare earth elements were measured in marine sediment samples collected from Ras Tanura. The specific activities of 238 U, 226 Ra, 232 Th, 40 K and 137 Cs (Bq/kg) were measured using A hyper-pure Germanium detector (HPGe), and ranged from (20.4 ± 4.0-55.1 ± 9.9), (6.71 ± 0.7-46.1 ± 4.5), (3.51 ± 0.5-18.2 ± 1.5), (105 ± 4.4-492 ± 13) and from (0.33 ± 0.04-2.10 ± 0.4) for 238 U, 226 Ra, 232 Th, 40 K and 137 Cs respectively. Heavy metals and rare earth elements were measured using ICPE-9820 Plasma Atomic Emission Spectrometer. Also the frequency distributions for all radioactive variables in sediment samples were analyzed. Finally the radiological hazards due to natural radionuclides in marine sediment were calculated to the public and it's diagramed by Surfer program in maps. Comparing with the international recommended values, its values found to be within the international level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Alaska's rare earth deposits and resource potential

    Science.gov (United States)

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  10. Geochemistry of coal-measure source rocks and natural gases in deep formations in Songliao Basin, NE China

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Jingkui; Zhang, Shuichang; Hu, Guoyi; He, Kun [State Key Laboratory for Enhanced Oil Recovery, Beijing (China); Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration and Development, PetroChina (China); Key Laboratory for Petroleum Geochemistry, China National Petroleum Corp. (China)

    2010-12-01

    The natural gases developed in deep volcanic rock reservoirs of the Songliao Basin, NE China are characterized by enriched {delta}{sup 13}C value for methane and frequently reversal carbon isotopic distribution pattern. Although many researchers consider such gas type as an abiogenic origin, we believe the natural gases have a biogenic origin mainly except little inorganic gases and the reversal carbon isotopic distribution pattern of gases is caused by mixing of different origin gases. Methane carbon isotopic values for majority samples fall in the range from - 24 permille to - 32 permille, which is heavier than typical coal-type gases in other Chinese basins. There are several reasons caused heavy carbon isotope of methane: (1) Carbon isotopic values of source kerogen are 3-5 permille heavier than these from other basins; (2) Source rocks are at extremely high maturity stage with vitrinite reflectance mostly above 3.0%; (3) Portion of gas is derived from basement mudrock or slate with higher maturity. The observation on the organic from deep formation reveals that there is a relatively high content for liptinite, which reaches approximately 8 to 10%. The macerals component of source rock shows that the source rocks have some ability to generate oil. Small portion of oil was generated from high hydrogen content macerals in coals and shales as proof by oil found in microcrack and in micropore of coal and oil-bearing fluid inclusions grown in volcanic reservoir. The occurrence of pyrobitumen in volcanic reservoir indicates preexisted oil had been cracked into wet gas, and this kind of gas had also been found in gas pools. Heavy isotopic methane is derived from coal at extremely high maturity stage. There may be little inorganic alkane gases in deep layers for their geochemistry and special geological setting of Songliao Basin. Artificial mixing experiments of different origins gases confirm that inorganic gas such as gas from well FS1 mixed with other end members

  11. Trace elements in land plants: concentration ranges and accumulators of rare earths, Ba, Ra, Mn, Fe, Co and heavy halogens

    International Nuclear Information System (INIS)

    Koyama, M.; Shirakawa, M.; Takada, J.; Katayama, Y.; Matsubara, T.

    1987-01-01

    More than 2000 samples of land plant leaves, mostly of tree, were analyzed by neutron activation analysis in order to find out macroscopic relations between distributions of chemical elements in plants and soil characteristics. The distributions of the elements in plants were also examined from the view point of botanical taxonomy or phylogeny. New species which accumulate Co, rare earths, Ba, Ra, heavy halogens and some other elements were found. Capability or potentiality for accumulating elements could be related to higher ranks of taxonomy, that is, genus or family. The nature of soil is also found to have profound effects on the extent of accumulation of elements in plants. (author)

  12. Behavior of new complexes of tetrakis(4-methoxylphenyl)porphyrin with heavy rare earth elements in reversed-phase high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Jun-Feng; Wang, Hong; Hou, An-Xin; Wang, Chang-Fa; Zhang, Hua-Shan

    2004-08-01

    An HPLC method has been developed for the separation of new complexes of tetrakis(4-methoxylphenyl)porphyrin (TMOPP) with four heavy rare earth elements (RE = Y, Er, Tm, and Yb). The function of amine and acid in the mobile phase has been investigated and a reasonable explanation is presented. Successful separation of the RE-TMOPP-Cl complexes is accomplished in 10 min with a mobile phase consisting of methanol-water-acetic acid-triethanolamine. The detection limits (S/N= 3) for the four complexes are 0.01 microg/mL. This method is rapid, sensitive, and simple.

  13. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  14. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    Directory of Open Access Journals (Sweden)

    R. G. Prinn

    2018-06-01

    Full Text Available We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment. AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2 gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites. The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1 to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs, nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6 and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes; (2 to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br; (3 to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18 and hydrofluoroolefins (HFOs; e.g., CH2  =  CFCF3 have been identified in AGAGE, initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4

  15. Rare earth element lithogeochemistry of granitoid mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.P.; Fryer, B.J. (Memorial Univ. of Newfoundland, St. John' s (Canada). Dept. of Earth Sciences)

    1983-12-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl/sup -/ complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F/sup -/ and CO/sub 3//sup 2 -/ become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl/sup -/ versus F/sup -/ versus CO/sub 3//sup 2 -/ in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F/sup -/ and CO/sub 3//sup 2 -/ in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution.

  16. Rare earth element lithogeochemistry of granitoid mineral deposits

    International Nuclear Information System (INIS)

    Taylor, R.P.; Fryer, B.J.

    1983-01-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl - complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F - and CO 3 2- become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl - versus F - versus CO 3 2- in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F - and CO 3 2- in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution

  17. Methods for natural gas and heavy hydrocarbon co-conversion

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Nelson, Lee O [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  18. Formation and migration properties of the rare gases He, Ne, Ar, Ke, and Xe in nickel

    International Nuclear Information System (INIS)

    Melius, C.F.; Wilson, W.D.; Bisson, C.L.

    1980-01-01

    The energies of formation and migration of various rare gas-point defect complexes in an f.c.c. nickel lattice have been calculated for He, Ne, Ar, Kr, and Xe. Formation energies of rare gas atoms at interstitial sites are compared with those in substitutional sites. Binding energies are presented for self-interstitials and vacancies trapped to the various rare gas substitutionals. Migration energies and migration paths are also presented for various rare gas interstitials and substitutionals with and without trapped vacancies and self-interstitials. The migration energies are compared with the breakup energies for the corresponding complexes. It is found that divacancy-rare gas complexes are rather stable and will migrate at relatively low energies compared to other substitutional rare gas migration processes. (author)

  19. Marine Phosphorites as Potential Resources for Heavy Rare Earth Elements and Yttrium

    Directory of Open Access Journals (Sweden)

    James R. Hein

    2016-08-01

    Full Text Available Marine phosphorites are known to concentrate rare earth elements and yttrium (REY during early diagenetic formation. Much of the REY data available are decades old and incomplete, and there has not been a systematic study of REY distributions in marine phosphorite deposits that formed over a range of oceanic environments. Consequently, we initiated this study to determine if marine phosphorite deposits found in the global ocean host REY concentrations of high enough grade to be of economic interest. This paper addresses continental-margin (CM and open-ocean seamount phosphorites. All 75 samples analyzed are composed predominantly of carbonate fluorapatite and minor detrital and authigenic minerals. CM phosphorites have low total REY contents (mean 161 ppm and high heavy REY (HREY complements (mean 49%, while seamount phosphorites have 4–6 times higher individual REY contents (except for Ce, which is subequal; mean ΣREY 727 ppm, and very high HREY complements (mean 60%. The predominant causes of higher concentrations and larger HREY complements in seamount phosphorites compared to CM phosphorites are age, changes in seawater REY concentrations over time, water depth of formation, changes in pH and complexing ligands, and differences in organic carbon content in the depositional environments. Potential ore deposits with high HREY complements, like the marine phosphorites analyzed here, could help supply the HREY needed for high-tech and green-tech applications without creating an oversupply of the LREY.

  20. Separation of rare earth by column chromatography using organic resins XAD/DEPHA

    Energy Technology Data Exchange (ETDEWEB)

    Zini, J.; Ferreira, J.C.; Bergamaschi, V.S.; Santos, I.; Carvalho, F.M.S., E-mail: jcferrei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio

    2013-07-01

    The designation of light and heavy rare earth was used the fractionation used in separation processes. In this study the process of separation of rare earth, in groups, by chromatographic column consisting in fixing of cations these elements in an organic resin Amberlite XAD16 functionalized with the extracting agent DEPHA and another portion functionalized with a mixture of extractors DEPHA/TOP. The preparation of these resins was performed in two forms, one directly as the extracting agent to the resin and the other to be used in ethyl alcohol. Conditioned resins were introduced in chromatographic columns in separation of groups, light and heavy, using a standard solution of cerium nitrate and standard solution of holmium nitrate groups to represent light and heavy respectively. The characterization technique used to identify the rare earth elements was Spectrometry X-Ray Fluorescence (XRF). The results using the technique of chromatography were satisfactory, obtaining 100% separation of the elements. (author)

  1. Separation of rare earth by column chromatography using organic resins XAD/DEPHA

    International Nuclear Information System (INIS)

    Zini, J.; Ferreira, J.C.; Bergamaschi, V.S.; Santos, I.; Carvalho, F.M.S.

    2013-01-01

    The designation of light and heavy rare earth was used the fractionation used in separation processes. In this study the process of separation of rare earth, in groups, by chromatographic column consisting in fixing of cations these elements in an organic resin Amberlite XAD16 functionalized with the extracting agent DEPHA and another portion functionalized with a mixture of extractors DEPHA/TOP. The preparation of these resins was performed in two forms, one directly as the extracting agent to the resin and the other to be used in ethyl alcohol. Conditioned resins were introduced in chromatographic columns in separation of groups, light and heavy, using a standard solution of cerium nitrate and standard solution of holmium nitrate groups to represent light and heavy respectively. The characterization technique used to identify the rare earth elements was Spectrometry X-Ray Fluorescence (XRF). The results using the technique of chromatography were satisfactory, obtaining 100% separation of the elements. (author)

  2. Environmental aspects in the processing of rare earth ores and minerals

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2011-01-01

    In India, rare earths are extracted from the mineral monazite which occurs abundantly along with other heavy minerals in the coastal beach sands. Monazite, apart from rare earths, also contains uranium and thorium. Rare earths can be obtained from monazite either by acid digestion route or by alkaline digestion route. In India, although pilot scale studies have been carried out extraction of rare earths by acid digestion route, however, alkali digestion route has been predominantly followed for commercial extraction of rare earths

  3. Emissions of greenhouse gases in the United States, 1987--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  4. The present status of rare gas release control

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi

    1974-01-01

    Of the rare gases Ar, Kr and Xe released from nuclear facilities, the problem of release control can be confined to 41 Ar, 85 Kr and 133 Xe. The cases of the latter two are described, as 41 Ar is not much significant. 133 Xe, having relatively short half-life, can be dealt sufficiently by holding-up in case of light water reactors. 85 Kr of long half-life must be removed : the methods are low temperature adsorption, liquefaction distillation, absorption and diaphragm method. As for future problem, there is disposal of concentrated rare gas. (Mori, K.)

  5. Heavy flavor measurements at LHC

    CERN Document Server

    Spagnolo, S; The ATLAS collaboration

    2013-01-01

    ATLAS and CMS measurements in the area of heavy flavor physics are reviewed with focus on the most recent results. The topics discussed include heavy flavor production rates and properties, exclusive b-hadron production, with attention to the recent observations of rare b-hadrons and to the measurements of Lambda_b production cross section, lifetime and mass. Differential production cross sections and polarization measurements of Upsilon states are presented, along with production ratios of chi_c states in the charmonium system. Evidence for a new Xsi_b state and observations of structures in the J/Psi phi spectrum from B+- decays to J/Psi phi K+- in the CMS data are also reported. Precision studies of the Bs system and determination of CP-violation sensitive parameters are discussed. Finally the status of the searches for rare decays is presented.

  6. Heavy flavor measurements at LHC

    CERN Document Server

    Spagnolo, S; The ATLAS collaboration

    2013-01-01

    ATLAS and CMS measurements in the area of heavy flavor physics are reviewed with focus on the most recent results. The topics discussed include heavy flavor production rates and properties, exclusive b-hadron production, with attention to the recent observations of rare b-hadrons and to the precise measurements of Lambda_b production cross section, lifetime and mass. Differential production cross sections and polarization measurements of Upsilon states are presented, along with production ratios of chi_c states in the charmonium system. Evidence for a new Xsi_b state and observations of structures in the J/Psi phi spectrum from B+- decays to J/Psi phi K+- in the CMS data are also reported. Precision studies of the Bs system and determination of CP-violation sensitive parameters are discussed. Finally the status of the searches for rare FCNC decays is presented.

  7. Magnetism in heavy-electron metals

    International Nuclear Information System (INIS)

    Ott, H.R.

    1997-01-01

    Originally it was believed that the presence of heavy-mass charge carriers at low temperatures in some special rare-earth or actinide compounds was simply the result of a suppression of magnetic order in these materials. Various experiments reveal, however, that magnetic order may occur from a heavy-electron state or that a heavy-electron state may also develop within a magnetically ordered materix. It turned out that pure compounds without any sign of a cooperative phase transition down to very low temperatures are rare but examples are known where microscopic experimental probes give evidence for strong magnetic correlations involving moments of much reduced magnitude (≤ 0.1μ Β ) in such cases. It apperas that electronic and magnetic inhomogeneities, both in real and reciprocal space occur which are not simply the result of chemical inhomogeneities. Long range magnetic order among strongly reduced magnetic moments seems to be a particular feature of some heavy-electron materials. Other examples show, that disorder may lead to a suppression of cooperative phase transitions and both macroscopic and microscopic physical properties indicate that conservative model calculations are not sufficient to describe the experimental observations. The main difficulty is to find a suitable theoretical approach that considers the various interactions of similar strength on an equal footing. Different examples of these various features are demonstrated and discussed. (au)

  8. Classic Bartter syndrome: a rare cause of failure to thrive in a child

    OpenAIRE

    Vieira, Helena; Mendes, Leonor; Mendes, Patricia; da Silva, José Esteves

    2012-01-01

    Bartter syndrome is a group of rare autosomal-recessive disorders caused by a defect in distal tubule transport of sodium and chloride. Blood gases and plasma electrolytes raise suspicion of this diagnosis and the definitive diagnosis is made by genetic study. Early treatment improves prognosis. The authors present the case of an 11-month-old child with early failure to thrive and severe regurgitation. Blood gases revealed hypochloraemic metabolic alkalosis, hyponatraemia and hypokalaemia. Bl...

  9. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    Science.gov (United States)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  10. Contribution to the chromatography of atmospheric gases (1963); Contribution a la chromatographie des gaz de l'air (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Ghalamsiah, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    In the first part, the author studies the gas-phase chromatographic separation of the atmospheric rare gases, of hydrogen, and of some gaseous compounds of carbon (CO, CO{sub 2}, CH{sub 4}) using inactive gases to obtain the most favourable operational conditions far this separation. In the second part, the optimum conditions for detecting non-active gases using an ionisation chamber and a {sup 239}Pu radioactive source emitting 5.15 MeV {alpha} particles are determined. (author) [French] Dans une premiere partie, l'auteur etudie la separation par chromatographie en phase gazeuse des gaz rares de l'air, de l'hydrogene, et de quelques composes gazeux du carbone (CO, CO{sub 2}, CH{sub 4}) en utilisant des gaz inactifs an vue d'obtenir les conditions experimenales les plus favorables en vue de cette separation. Dans une deuxieme partie, les conditions optimales de detection de gaz non actifs a l'aide d'une chambre d'ionisation, en utilisant comme source radioactive du {sup 239}Pu qui emet des particules {alpha} de 5,15 MeV, sont determinees. (auteur)

  11. Reactions on carbonaceous materials with hydrogenating gases

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Simon, W; Kronig, W

    1933-02-08

    A process is given for the production of valuable hydrocarbons by treatment of distillable carbonaceous materials with added hydrogenating gases under pressure in contact with catalysts. The process comprises adding to the initial materials before or during the said treatment organic sulphonic acids together with metals of groups 4 to 8 of the periodic system or compounds thereof, or free organic carboxylic acids which when inorganic salts are simultaneously present do not combine therewith to form complex ansolvo acids, or acid salts of strong acids or acid salts of heavy metals, lithium, magnesium, and aluminum, with the exception of aluminum hydrosilicates, or inorganic oxygen containing acids of sulfur or nitrogen or the anhydrides of said inorganic oxygen-containing acids.

  12. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  13. Physico-chemical characteristics and Heavy metal levels in Drinking ...

    African Journals Online (AJOL)

    Physico-chemical characteristics and Heavy metal levels in Drinking Water ... composition was analysed using X-ray Fluorescence spectroscopy. Majority of the water samples had neutral pH (6.80 – 7.20) few were slightly alkaline and one was acidic. ... Heavy metals (copper and lead), rare earth metals (gallium, rubidium, ...

  14. Electronegative gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined

  15. Rare earth chalcogels NaLnSnS{sub 4} (Ln = Y, Gd, Tb) for selective adsorption of volatile hydrocarbons and gases

    Energy Technology Data Exchange (ETDEWEB)

    Edhaim, Fatimah; Rothenberger, Alexander [Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2017-08-16

    The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS{sub 4}, NaGdSnS{sub 4}, and NaTbSnS{sub 4} is reported. Rare earth metal ions like Y{sup 3+}, Gd{sup 3+}, and Tb{sup 3+} react with the chalcogenide clusters [SnS{sub 4}]{sup 4-} in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649 m{sup 2}.g{sup -1} (NaYSnS{sub 4}), 479 m{sup 2}.g{sup -1} (NaGdSnS{sub 4}), and 354 m{sup 2}.g{sup -1} (NaTbSnS{sub 4}). Electron microscopy and physisorption studies reveal that the new materials have pores in the macro (above 50 nm) and meso (2-50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO{sub 2} over CH{sub 4} or H{sub 2}. The notable adsorption capacity for toluene (NaYSnS{sub 4}: 1108 mg.g{sup -1}; NaGdSnS{sub 4}: 921 mg.g{sup -1}; and NaTbSnS4: 645 mg.g{sup -1}) and high selectivity for gases (CO{sub 2}/H{sub 2}: 172 and CO{sub 2}/CH{sub 4}: 50 for NaYSnS{sub 4}, CO{sub 2}/H{sub 2}: 155 and CO{sub 2}/CH{sub 4}: 37 for NaGdSnS{sub 4}, and CO{sub 2}/H{sub 2}: 75 and CO{sub 2}/CH{sub 4}: 28 for NaTbSnS{sub 4}) indicate potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Removing radioactive noble gases from nuclear process off-gases

    International Nuclear Information System (INIS)

    Lofredo, A.

    1977-01-01

    A system is claimed for separating, concentrating and storing radioactive krypton and xenon in the off-gases from a boiling water reactor, wherein adsorption and cryogenic distillation are both efficiently used for rapid and positive separation and removal of the radioactive noble gases, and for limiting such gases in circulation in the system to low inventory at all times, and wherein the system is self-regulating to eliminate operator options or attention

  17. Release of gases from uranium metal at high temperatures

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Shankaran, P.S.; Chhapru, G.C.; Ramakumar, K.L.; Venugopal, V.

    2008-01-01

    Depending on the ambient environmental conditions, different gaseous species could get entrapped in uranium metal ingots or pellets. On heating, melting or vapourising uranium metal, these get released and depending on the composition, may cause detrimental effects either within the metal matrix itself or on the surrounding materials/environment. For instance, these gases may affect the performance of the uranium metal, which is used as fuel in the heavy water moderated research reactors, CIRUS and DHRUVA. Hence, detailed investigations have been carried out on the release of gases over a temperature range 875-1500 K employing hot vacuum extraction technique, in specimen uranium pellets made from uranium rods/ingots. Employing an on-line quadrupole mass spectrometer, the analysis of released gases was carried out. The isobaric interference between carbon monoxide and nitrogen at m/e = 28 in the mass spectrometric analysis has been resolved by considering their fragmentation patterns. Since no standards are available to evaluate the results, only the reproducibility is tested. The precision (relative standard deviation at 3σ level) of the method is ±5%. The minimum detectable gas content employing the method is 5.00 x 10 -09 m 3 . About 4 x 10 -04 m 3 /kg of gas is released from uranium pellets, with hydrogen as the main constituent. The gas content increases with storage in air

  18. Trace elements in land plants: concentration ranges and accumulators of rare earths, Ba, Ra, Mn, Fe, Co, and heavy halogens

    International Nuclear Information System (INIS)

    Koyama, Mutsuo; Shirakawa, Masahiro; Takada, Jitsuya; Katayama, Yukio; Matsubara, Takashi

    1986-01-01

    More than 2000 samples of land plant leaves, mostly of tree, have been analysed by neutron activation analysis in order to find out macroscopic relations between distributions of chemical elements in plants and soil characteristics. The distributions of the elements in plants were also examined from the view point of botanical taxonomy or phylogeny. New species which accumulate Co, rare earths, Ba, Ra, heavy halogens and other elements have been found. Capability or potentiality for accumulating elements could be related to primarily to species. In several cases, however, it is related to higher ranks of taxonomy, that is, genus or family. The nature of soil is also found to have profound effects on the extent of accumulation of elements in plants. (author)

  19. Study on evolution of gases from fluoropolymer films bombarded with heavy ions

    International Nuclear Information System (INIS)

    Minamisawa, Renato Amaral; Zimmerman, Robert Lee; Budak, Satilmis; Ila, Daryush

    2008-01-01

    Ion beam bombardment provides a unique way of material modification by inducing a high degree of localized electronic excitation. The ion track, or affected volume along the ion path through the material is related to the total damage and possible structural changes. Here we study the evolution of gases emitted by poly(tetrafluorethylene-co-perfluoro-(propyl vinyl ether)) (PFA) fluoropolymer bombarded with MeV gold ions. The gas was monitored by a residual gas analyzer (RGA), as a function of the ion fluence. Micro-Raman, atomic force microscopy and optical absorption were used to analyze the chemical structure changes and sputtering yield

  20. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  1. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.

    1999-01-01

    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate temperatu......Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  2. A Significant Enhancement of Cluster Formation of Krypton and Xenon Gases

    Institute of Scientific and Technical Information of China (English)

    LIU Bingchen

    2001-01-01

    @@ Clusters of rare gases have currently become a kind of widely used targets in the study of high-intensity laser interaction with matter[1,2]. However, a good understanding of the cluster media is vital if results from laser-cluster interaction experiments are to be interpreted correctly. During the course of investigation of the time history of a cluster jet generated in supersonic expansion of rare gases into vaccum through a supersonic conical nozzle (26 mm long, opening angle 5°) by time resolving Rayleigh scattering measurements in which a 532 nm 0.3 mJ laser beam was used, we find that the general trend of argon clusters is similar to that reported by R.A. Smith et al.[3]. However, the picture for Krypton and Xenon gases is completely different. A two-peak structure of the scattered light intensity, instead of a single-peak one, has been revealed. It is interesting to note that the second peak is much more stronger than the first one. As an example, Fig.1 shows the time history of Xen clusters produced at a gas backing pressure P0=3 atm. In the Figure, the peak intensity of the second peak is surprisingly 62 times higher than the first one, indicating that the average cluster size c in the latter case is increased about 62 times under the assumption that during the expansion process all the atoms in the gas condensate into clusters. The result, which is believed to be related to a double gas ejection via the pulsed valve′s two adjacent openings, is of significant importance since this effect would be promising for applications in which very large size clusters are required while a relatively modest vacuum maintains. Meanwhile, this finding may provide us with the opportunity of a further understanding into the nucleation mechanism of expanding gases in a nozzle.

  3. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  4. Study of rare gases behavior in uranium dioxide: diffusion and bubble nucleation and growth mechanisms

    International Nuclear Information System (INIS)

    Michel, A.

    2011-01-01

    During in-reactor irradiation of the nuclear fuel, fission gases, mainly xenon and krypton, are generated that are subject to several phenomena: diffusion and precipitation. These phenomena can have adverse consequences on the fuel physical and chemical properties and its in-reactor behavior. The purpose of this work is to better understand the behavior of fission gases by identifying diffusion, bubble nucleation and growth mechanisms. To do this, studies involving separate effects have been established coupling ion irradiations/implantations with fine characterizations on Large Scale Facilities. The influence of several parameters such as gas type, concentration and temperature has been identified separately. Interpretation of the Thermal Desorption Spectrometry (TDS) measurements has enabled us to determine xenon and krypton diffusion coefficients in uranium dioxide. A heterogeneous nucleation mechanism on defects was determined by means of experiments on the JANNuS platform in Orsay that consists of a coupling of an implantor, an accelerator and a Transmission Electron Microscope (TEM). Finally, TEM and X-ray Absorption Spectroscopy characterizations of implanted and annealed samples put in relieve a bubble growth mechanism by atoms and vacancies capture. (author) [fr

  5. Towards the heavy-ion program at J-PARC

    International Nuclear Information System (INIS)

    Sako, H.; Chujo, T.; Gunji, T.; Harada, H.; Imai, K.; Kaneta, M.; Kinsho, M.; Liu, Y.; Nagamiya, S.; Nishio, K.; Ozawa, K.; Saha, P.K.; Sakaguchi, T.; Sato, S.; Tamura, J.

    2014-01-01

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10 10 –10 11  Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed

  6. Towards the heavy-ion program at J-PARC

    Science.gov (United States)

    Sako, H.; Chujo, T.; Gunji, T.; Harada, H.; Imai, K.; Kaneta, M.; Kinsho, M.; Liu, Y.; Nagamiya, S.; Nishio, K.; Ozawa, K.; Saha, P. K.; Sakaguchi, T.; Sato, S.; Tamura, J.

    2014-11-01

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 1010-1011 Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  7. On fluorozirconates and fluorohafnates of rare earths

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Antipov, P.I.; Novoselova, A.V.

    1980-01-01

    It has been shown by the method of X-ray phase analysis that on interaction between rare-earth fluorides and zirconium and hafnium tetrafluorides, compounds with 1:1, 1:2, 1:3 molar ratios of components are formed. Compounds of the LnHfF 4 type are prepared for all rare-earths. Fluoro-metals of the LnHf 2 F 11 composition are typical only of light lanthanides from lanthanum to neodymium, while pentafluorated salts Ln(EF 5 ) 3 are formed in the reaction between EF 4 with fluorides of heavy rare-earth elements from samarium to lutecium, as well as with yttrium trifluoride. Parameters of unit cells of heptafluohafnates and pentafluometallates are determined

  8. Orbital order and effective mass enhancement in t2 g two-dimensional electron gases

    Science.gov (United States)

    Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan

    2015-03-01

    It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.

  9. Greenhouse Gases

    Science.gov (United States)

    ... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...

  10. Tritium separation from heavy water by electrolysis with solid polymer electrolyte

    International Nuclear Information System (INIS)

    Ogata, Y.; Ohtani, N.; Kotaka, M.

    2003-01-01

    A tritium separation from heavy water by electrolysis using a solid polymer electrode layer was specified. The cathode was made of stainless steel or nickel. The electrolysis was performed for 1 hour at 5, 10, 20, and 30 deg C. Using a palladium catalyst, generated hydrogen and oxygen gases were recombined, which was collected with a cold trap. The activities of the samples were measured by a liquid scintillation counter. The apparent tritium separation factors of the heavy and light water at 20 deg C were ∼2 and ∼12, respectively. (author)

  11. [Gases in vitreoretinal surgery].

    Science.gov (United States)

    Janco, L; Vida, R; Bartos, M; Villémová, K; Izák, M

    2012-02-01

    To evaluate the importance and benefits of using gases in vitreoretinal surgery. The gases represent a wide group of substances used in eye surgery for more than 100 years. The role of intraocular gases in vitreoretinal surgery is irreplaceable. Their use is still considered to be the "gold standard". An important step in eye surgery was the introduction of expanding gases--sulfur hexafluoride and perfluorocarbons into routine clinical practice. The most common indications for the use of intraocular gases are: retinal detachment, idiopathic macular hole, complications of vitreoretinal surgery and others. The introduction of intraocular gases into routine clinical practice, along with other modern surgical techniques resulted in significant improvement of postoperative outcomes in a wide range of eye diseases. Understanding the principles of intraocular gases use brings the benefits to the patient and physician as well. Due to their physical and chemical properties they pose far the best and most appropriate variant of intraocular tamponade. Gases also bring some disadvantages, such as difficulties in detailed fundus examination, visual acuity testing, ultrasonographic examination, difficulties in application of intravitreal drugs or reduced possibility of retina laser treatment. The gases significantly change optical system properties of the eye. The use of gases in vitreoretinal surgery has significantly increased success rate of retinal detachment surgery, complicated posterior segment cases, trauma, surgery of the macula and other diseases.

  12. Isoreticular rare earth fcu-MOFs for the selective removal of H 2 S from CO 2 containing gases

    KAUST Repository

    Bhatt, Prashant

    2017-05-04

    In this work, we present the implementation of reticular chemistry and the molecular building block approach to unveil the appropriateness of Rare Earth (RE) based Metal-Organic Frameworks (MOFs) with fcu topology for H2S removal applications. Markedly, RE-fcu-MOFs, having different pore apertures sizes in the range of 4.7-6.0 Å and different functionalities, showed excellent properties for the removal of H2S from CO2 and CH4 containing gases such as natural gas, biogas and landfill gas. A series of cyclic mixed gas breakthrough experiments were carried out on three isoreticular fcu-MOFs, containing linkers of different lengths (between 8.4 and 5 Å), by using simulated natural gas mixture containing CO2/H2S/CH4 (5%/5%/90%) under different adsorption and regeneration conditions. The fcu-MOF platform has good H2S removal capacity with a high H2S/CO2 selectivity, outperforming benchmark materials like activated carbon and Zeolites in many aspects. The comparison of H2S removal performance with the related structures of the RE-fcu-MOFs provides insightful information to shed light on the relationship between the structural features of the MOF and its associated H2S separation properties. The excellent H2S/CO2 and H2S/CH4 selectivity of these materials offer great prospective for the production of pure H2S, with acceptable levels of CO2for Claus process to produce elemental sulfur.

  13. Electrons and Spin Waves in Heavy Rare Earth Metals

    DEFF Research Database (Denmark)

    Mackintosh, A. R.

    1972-01-01

    this understanding on a more quantitative basis. The experimental evidence on the electronic structure of the rare earths is still rather meager but, so far as it goes, is in accord with the detailed description provided by band structure calculations. On the other hand, the experimental study of the magnon...

  14. Anomalies in photofission of rare earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gann, A.V.; Nazarova, T.S.; Noga, V.I.; Ranyuk, Y.N.; Sorokin, P.V.; Telegin, Y.N.

    1979-09-01

    Measurements of photofission produced by 1-GeV bremsstrahlung in the heavy rare earth elements show an anomalously large cross section compared to that predicted by the liquid drop model. These measurements check the results obtained previously with 1-GeV protons by Andronenko et al. (JETP Lett. 24, 573 (1976)).

  15. Towards the heavy-ion program at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Sako, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Chujo, T. [University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Gunji, T. [Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198 (Japan); Harada, H. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kaneta, M. [Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kinsho, M. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Liu, Y. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nagamiya, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nishio, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Ozawa, K. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Saha, P.K. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Sakaguchi, T. [Broohaven National Laboratory, Upton, NY 11973-5000 (United States); Sato, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Tamura, J. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan)

    2014-11-15

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10{sup 10}–10{sup 11} Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  16. Classic Bartter syndrome: a rare cause of failure to thrive in a child.

    Science.gov (United States)

    Vieira, Helena; Mendes, Leonor; Mendes, Patricia; da Silva, José Esteves

    2012-06-28

    Bartter syndrome is a group of rare autosomal-recessive disorders caused by a defect in distal tubule transport of sodium and chloride. Blood gases and plasma electrolytes raise suspicion of this diagnosis and the definitive diagnosis is made by genetic study. Early treatment improves prognosis. The authors present the case of an 11-month-old child with early failure to thrive and severe regurgitation. Blood gases revealed hypochloraemic metabolic alkalosis, hyponatraemia and hypokalaemia. Blood pressure was normal and polyuria was documented. She began therapy with potassium chloride supplementation and indomethacin. There was clinical improvement and plasma potassium and bicarbonate normalised. The molecular study confirmed it was the classic form of Bartter syndrome. Despite being rare in clinical practice, which may lead to unnecessary medical investigation and diagnosis delay, in a child with failure to thrive, hypochloraemic metabolic alkalosis and hypokalaemia, this diagnosis must be considered.

  17. Design of 57.5 MHz CW RFQ structure for the Rare Isotope ...

    Indian Academy of Sciences (India)

    The Rare Isotope Accelerator (RIA) facility includes a driver LINAC for production of 400 kW CW heavy-ion beams. The initial acceleration of heavy ions delivered from an ECR ion source can be effectively performed by a 57.5 MHz 4 m long RFQ. The principal specifications of the RFQ are: (1) formation of extremely low ...

  18. Using heavy atom rare gas matrix to control the reactivity of 4-methoxybenzaldehyde: A comparison with benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Nihal [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Department of Physics, Anadolu University, 26470 Eskisehir (Turkey); Sharma, Archna; Reva, Igor; Fausto, Rui [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Lapinski, Leszek [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2012-04-14

    Different patterns of photochemical behavior were observed for 4-methoxybenzaldehyde (p-anisaldehyde) isolated in xenon and in argon matrices. Monomers of the compound isolated in solid Xe decarbonylate upon middle ultraviolet irradiation, yielding methoxybenzene (anisole), and CO. On the other hand, p-anisaldehyde isolated in an Ar matrix and subjected to identical irradiation, predominantly isomerizes to the closed-ring isomeric ketene (4-methoxycyclohexa-2,4-dien-1-ylidene) methanone. Experimental detection of a closed-ring ketene photoproduct, generated from an aromatic aldehyde, constitutes a rare observation. The difference between the patterns of photochemical transformations of p-anisaldehyde isolated in argon and xenon environments can be attributed to the external heavy-atom effect, where xenon enhances the rate of intersystem crossing from the singlet to the triplet manifold in which decarbonylation (via p-methoxybenzoyl radical) takes place. The parent compound, benzaldehyde, decarbonylates (to benzene + CO) when subjected to middle ultraviolet irradiation in both argon and xenon matrices. This demonstrates the role of the methoxy p-anisaldehyde substituent in activation of the reaction channel leading to the formation of the ketene photoproduct.

  19. A simple and rapid gas chromatographic method for the determination of dissolved deuterium and nitrogen in heavy water coolant of a nuclear reactor

    International Nuclear Information System (INIS)

    Nair, B.K.S.

    1976-01-01

    A known volume of a heavy water sample is equilibrated with a known volume of pure helium gas at atmospheric pressure in a sample tube. The dissolved gases evolve into the helium and distribute themselves between the gaseous and liquid phases according to their equilibrium partial pressures. These partial pressures of the gases in the equilibrium gas mixture are determined by analysing it gas-chromatographically. From these analytical data and the absorption coefficients of deuterium and nitrogen, their original concentrations in heavy water are calculated. Corrections for the increase in the total pressure of the gaseous phase owing to evolved gases are calculated and found to be negligible. Air contamination during sampling and analysis can be detected by the presence of the oxygen peak in the chromatogram and corrected for. The calculation is facilitated by programming it on an electronic calculator. The method is much simpler and faster than the vacuum method usually applied for this analysis. One determination can be completed in about an hour. The average deviation and standard deviation have been estimated at 0.19 ml/litre heavy water and 0.25 ml/litre heavy water respectively in deuterium, and 0.36 and 0.68 ml/litre in nitrogen. (author)

  20. Excitation of rare gases in an electron-beam-controlled discharge: report on preliminary experiments

    International Nuclear Information System (INIS)

    Bingham, F.W.

    1976-05-01

    Data from the preliminary phase of a study of rare-gas-excimer production in an electron-beam-controlled discharge are presented. The results indicate that it is possible to maintain an arc-free discharge in preionized Ar and Xe gas for a period of several microseconds at applied external E/p values up to 5 V/cm/Torr. In these experiments ultraviolet radiation emitted during the discharge signaled the presence of excited rare-gas molecules. Application of the external electric field significantly enhanced the ultraviolet intensity from xenon-gas discharges but produced little enhancement from argon-gas discharges

  1. Emerging industrial processes for low grade rare earth mineral concentrates

    International Nuclear Information System (INIS)

    Soldenhoff, Karin; Ho, Elizabeth

    2015-01-01

    Historically rare earth recovery has mainly been derived from the processing of monazite, bastnasite and xenotime containing ores amenable to beneficiation, yielding high grade mineral concentrates. A notable exception is the recovery of heavy rare earths from ionic clays in Southern China. Recently, projects are being proposed to treat a range of mineral concentrates which tend to be lower grade with wide ranging modal mineralogy for rare earths and associated gangue minerals. This has a significant impact on processing routes. This paper discusses processes proposed for emerging rare earth producers and how different projects have responded to particular challenges including: Control of phosphorous due to the presence of xenotime or monazite type minerals; Control of phosphorous due to the presence of rare earth containing apatite; Rare earth recovery from polymetallic ores; Control of radionuclides in rare earth processing, etc.

  2. Heavy Silicone Oil and Intraocular Inflammation

    Directory of Open Access Journals (Sweden)

    Francesco Morescalchi

    2014-01-01

    Full Text Available In the past two decades, many advances have been made in vitrectomy instrumentation, surgical techniques, and the use of different tamponade agents. These agents serve close retinal breaks, confine eventual retinal redetachment, and prevent proliferative vitreoretinopathy (PVR. Long-acting gases and silicone oil are effective internal tamponade agents; however, because their specific gravity is lower than that of the vitreous fluid, they may provide adequate support for the superior retina but lack efficacy for the inferior retina, especially when the fill is subtotal. Thus, a specific role may exist for an internal tamponade agent with a higher specific gravity, such as heavy silicone oils (HSOs, Densiron 68, Oxane HD, HWS 45-300, HWS 46-3000, and HeavySil. Some clinical evidence seems to presume that heavy tamponades are more prone to intraocular inflammation than standard silicone if they remain in the eye for several months. In this review, we discuss the fundamental clinical and biochemical/molecular mechanisms involved in the inflammatory response after the use of heavy tamponade: toxicity due to impurities or instability of the agent, direct toxicity and immunogenicity, oil emulsification, and mechanical injury due to gravity. The physical and chemical properties of various HSOs and their efficacy and safety profiles are also described.

  3. Pressure shifts and electron scattering in atomic and molecular gases

    International Nuclear Information System (INIS)

    Rupnik, K.; McGlynn, S.P.; Asaf, U.

    1994-01-01

    In this work, the authors focus on one aspect of Rydberg electron scattering, namely number density effects in molecular gases. The recent study of Rydberg states of CH 3 I and C 6 H 6 perturbed by H 2 is the first attempt to investigate number density effects of a molecular perturber on Rydberg electrons. Highly excited Rydberg states, because of their ''large orbital'' nature, are very sensitive to the surrounding medium. Photoabsorption or photoionization spectra of CH 3 I have also been measured as a function of perturber pressure in 11 different binary gas mixtures consisting of CH 3 I and each one of eleven different gaseous perturbers. Five of the perturbers were rare gases (He, Ne, Ar, Kr, Xe) and six were non-dipolar molecules (H 2 , CH 4 , N 2 , C 2 H 6 , C 3 H 8 ). The goal of this work is to underline similarities and differences between atomic and molecular perturbers. The authors first list some results of the molecular study

  4. A composition for protection the stylobate in high-rise construction from the harmful effects of car exhaust gases

    Science.gov (United States)

    Sokolova, Irina

    2018-03-01

    In large cities, high-rise buildings are usually located along highways with heavy traffic. The study was carried out with the aim of creating a material for protection the stylobate of a high-rise building from the harmful effects of car exhaust gases. A polymer-silicate composition based on schungite and schungisite components is proposed. The composition has the properties of a wall material resistant to the corrosive environment of car exhaust gases. The results of the composition studies are presented. The possibility of increase the durability of exterior slabs for stylobate walls of high-rise buildings is substantiated, provided the proposed material is applied.

  5. Progress and tendency in heavy ion irradiation mutation breeding

    International Nuclear Information System (INIS)

    Zhou Libin; Li Wenjian; Qu Ying; Li Ping

    2008-01-01

    In recent years, the intermediate energy heavy ion biology has been concerned rarely comparing to that of the low-energy ions. In this paper, we summarized the advantage of a new mutation breeding method mediated by intermediate energy heavy ion irradiations. Meanwhile, the present state of this mutation technique in applications of the breeding in grain crops, cash crops and model plants were introduced. And the preview of the heavy ion irradiations in gene-transfer, molecular marker assisted selection and spaceflight mutation breeding operations were also presented. (authors)

  6. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  7. Economic Hazardous Gases Management for SOX Removal from Flue Gases

    International Nuclear Information System (INIS)

    Isaack, S.L.; Mohi, M.A.; Mohamed, S.T.

    1995-01-01

    Hazardous gases emerging from industries accumulate as pollutants in air and falls as acid rains resulting also in water and soil pollution. To minimize environmental pollution, the present process is suggested in order to desulfurize flue gases resulting from burning fuel oil in a 100/MWh steam power plant. The process makes use of the cheap Ca C O 3 powder as the alkaline material to sequistre the sulphur oxide gases. The resulting sulphur compounds, namely calcium sulphate and gypsum have a great market demand as reducing and sulphiting agents in paper industry and as an important building material. About 44000 ton of gypsum could be produced yearly when treating flue gases resulting from a 100 MWh unit burning fuel oil. Feasibility study shows that a great return on investment could be achieved when applying the process. 1 fig

  8. Cardiac arrest following ventilator fire: A rare cause

    Directory of Open Access Journals (Sweden)

    K Nazeer Ahmed

    2012-01-01

    Full Text Available Operating room fires are rare events, but when occur they result in serious and sometimes fatal consequences. Anaesthesia ventilator fire leading to cardiac arrest is a rare incident and has not been reported. We report a near catastrophic ventilator fire leading to cardiac arrest in a patient undergoing subtotal thyroidectomy. In the present case sparks due to friction or electrical short circuit within the ventilator might have acted as source of ignition leading to fire and explosion in the oxygen rich environment. The patient was successfully resuscitated and revived with uneventful recovery and no adverse sequelae. The cardiac arrest was possibly due to severe hypoxia resulting from inhalation of smoke containing high concentrations of carbon monoxide and other noxious gases.

  9. Gas capture and rare gas retention by accreting planets in the solar nebula

    International Nuclear Information System (INIS)

    Mizuno, H.; Nakazawa, K.; Hayashi, C.

    1982-01-01

    In this paper, the physico-chemical effects of the nebula gas on the planets are reviewed from a standpoint of planetary formation in the solar nebula. The proto-Earth growing in the nebula was surrounded by a primordial atmosphere with a solar chemical composition and solar isotopic composition. When the mass of the proto-Earth was greater than 0.3 times the present Earth mass, the surface was molten because of the blanketing effect of the atmosphere. Therefore, the primordial rare gases contained in the primordial atmosphere dissolved into the molten Earth material without fractionation and in particular the dissolved neon is expected to be conserved in the present Earth material. Hence, if dissolved neon with a solar isotopic ratio is discovered in the Earth material, it will indicate that the Earth was formed in the nebula and that the dissolved rare gases were one of the sources which degassed to form the present atmosphere. (author)

  10. Spontaneous emission of heavy-ions from uranium

    International Nuclear Information System (INIS)

    Carvalho, H.G. de; Martins, J.B.; Souza, I.O. de; Tavares, O.A.P.

    1974-09-01

    The experimental evidences that 238 U, and perhaps other heavy nuclei, besides undergoing spontaneous fission, are also emitters of ions in the mass-range from 20 to 70. Estimates obtained by means of the WKB method indicate half-lifes of 10 15 to 10 18 years for some of these processes, which agree with our findings. Our results are supported by a systematic observation of neon and argon with abnormal isotopic abundance in both radioactive minerals and helium-bearing natural gases

  11. Rare earth mineralogy of the Olympic Dam Cu-U-Au-Ag deposit, South Australia

    International Nuclear Information System (INIS)

    Lottermoser, B.G.; Day, A.

    1993-01-01

    Rare earth elements (REE) and yttrium accompany uranium and copper mineralisation within the polymetallic Olympic Dam deposit. The light and heavy rare earths tend to occur in different host minerals. Most of the light rare earths (LREE) are present as the essential structural constituents of LREE fluorocarbonates such bastnaesite and synchysite, or in phosphates such as florencite and monazite. Yttrium and the heavy rare earths (HREE) occur mostly as minor concentrations in the form of cation substitutions within uranium minerals such as uraninite and coffinite, as well as brannerite to a lesser extent. Selective dissolution of uraninite and coffinite during acid leaching leads to the liberation of yttrium and HREE from their host minerals, resulting in higher percentage extractions of HREE than LREE in uranium bearing leach liquors. LREE liberation is more restricted because only the synchysite dissolves to any significant extent, while bastnaesite is more difficult to dissolve. 9 refs., 2 figs

  12. Simple and double two-colour photoionization of rare gas atoms

    International Nuclear Information System (INIS)

    Guyetand, O.

    2008-05-01

    The present work deals with simple and double ionization of rare gases by harmonic radiation produced by, and combined with, an intense femtosecond infrared laser. Technical aspects related to the use of harmonic generation and to the detection of ions and electrons in coincidence are exposed. Theoretical background for two colour, few-photon, single and double ionization is detailed. Spectra and angular distributions of the photoelectrons measured in helium are described and compared with TDSE (time-dependent Schroedinger equation) theoretical calculations, for various conditions of the harmonic photons. The shape of the angular distributions can be explained within the frame of two distinct analytic approaches: the perturbation theory and the soft-photon approximation. The double ionization measurements have been performed on xenon, a complex atom characterized by many possible routes leading to double ionization. The analysis of energy and angular correlations of the two photoelectrons proves the feasibility of such experiments that combines harmonic and infrared radiations. It shows that two step processes are dominant in the case of xenon. This work appeals for extending few-photon, double ionization experiments to lighter rare gases. (author)

  13. [Use of chemical war gases at the Russian-German front during the First World War].

    Science.gov (United States)

    Budko, A A; Ivanovskii, Yu V

    2016-02-01

    The First World War was notable for the widespread use of machine military hardware and absolutely new type of weapon--chemical weapon. As a result of the first gas attack by chlorine undertaken by the German army against the Russian armies on May, 31st, 1915, heavy poisonings have received 9100 people, 6000 of them died. Chemical attack of Germany against Russia was limited by the use chemical gases of suffocating action: chlorine, bromine,phosgene and diphosgene. It is not known exactly, how many times Germany attacked Russian positions with use of chemical gases. On available data, in the First World War from application by German of the chemical weapon Russia has suffered more, than any other of the at war countries: from five hundred thousand poisoned have died nearby 66,000 people. In turn, having received in the order the chemical weapon of own manufacture, Russian army itself tried to attack in the German armies. It is authentically known only about several cases of application dy Russian of fighting poison gases, and in all cases of loss of germen were insignificant.

  14. Heavy Flavour Production and Decay at ATLAS

    CERN Document Server

    Jones, RWL; The ATLAS collaboration

    2013-01-01

    ATLAS is taking advantage of its large integrated luminosity band sophisticated muon and dimuon triggers to make competitive measurements of heavy flavour production and decay. Inclusive production and heavy flavour jet production is discussed before turning to charm and onium production. The production and decay of individual B hadron species is then addressed, including the current best measurement of the Λb lifetime. A much improved analysis of CP related quantities in Bs decays is presented, before turning to recent results and prospects for rare B decays.

  15. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  16. Batch Simulation of Rare Earths Extractive Separation by Di (2-Ethylhexyl) Phosphoric Acid and Tributylphosphate in Kerosene

    International Nuclear Information System (INIS)

    Kraikaew, Jarunee; Srinuttakul, Wanee

    2004-01-01

    Liquid-liquid extraction is applied to separate individual rare earths. In this research, 6-stage continuous countercurrent solvent extraction was simulated to extract rare earths from rare earth nitrate solution, which was obtained from monazite processing, to estimate the possible optimum operating conditions for pilot or industrial plants. The solvent(S) per feed(F) ratio (S/F) was varied from 1 to 3. The organic are 1.0 and 1.5 Molars (M) Di (2-ethylhexyl) phosphoric acid (D2EHPA) in kerosene. 50% tributylphosphate (TBP) in kerosene was applied for comparison. It was found that D2EHPA was a good extracting agent for heavy rare earths while TBP extracted well both light and heavy rare earths. After extraction with TBP and D2EHPA, the extraction efficiency at solvent per feed ratio (S/F) =2 and 3 showed a slight difference. S/F =2 was selected commercially for operation

  17. PULSE RADIOLYSIS IN SUPERCRITICAL RARE GAS FLUIDS

    International Nuclear Information System (INIS)

    HOLROYD, R.

    2007-01-01

    Recently, supercritical fluids have become quite popular in chemical and semiconductor industries for applications in chemical synthesis, extraction, separation processes, and surface cleaning. These applications are based on: the high dissolving power due to density build-up around solute molecules, and the ability to tune the conditions of a supercritical fluid, such as density and temperature, that are most suitable for a particular reaction. The rare gases also possess these properties and have the added advantage of being supercritical at room temperature. Information about the density buildup around both charged and neutral species can be obtained from fundamental studies of volume changes in the reactions of charged species in supercritical fluids. Volume changes are much larger in supercritical fluids than in ordinary solvents because of their higher compressibility. Hopefully basic studies, such as discussed here, of the behavior of charged species in supercritical gases will provide information useful for the utilization of these solvents in industrial applications

  18. Overview of rare B-decays

    CERN Document Server

    Prisciandaro, Jessica

    2017-01-01

    Being extremely suppressed in the Standard Model, rare decays of heavy-flavoured particles are a powerful probe of New Physics, and allow to reach energies beyond those accessible through direct searches. Several new results have been obtained by the LHC experiments. In particular, $b \\to sl^+l^-$ transitions give access to a large spectrum of observables, which provide complementary information on possible New Physics contributions. In this sector, tensions with Standard Model predictions have been observed.

  19. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  20. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    Earth and the rest of the inner solar were made by collecting the solids, to the rather efficient exclusion of the gases. In this grand separation the noble gases, because they are noble, were partitioned strongly into the gas phase. The resultant generalization is that the noble gases are very scarce in the materials of the inner solar system, whence their common synonym "rare gases."This scarcity is probably the most important single feature to remember about noble-gas cosmochemistry. As illustration of the absolute quantities, for example, a meteorite that contains xenon at a concentration of order 10 -10 cm3STP g -1 (4×10-15 mol g-1) would be considered relatively rich in xenon. Yet this is only 0.6 ppt (part per trillion, fractional abundance 10-12) by mass. In most circumstances, an element would be considered efficiently excluded from some sample if its abundance, relative to cosmic proportions to some convenient reference element, were depleted by "several" orders of magnitude. But a noble gas would be considered to be present in quite high concentration if it were depleted by only four or five orders of magnitude (in the example above, 10-10 cm3STP g-1 of xenon corresponds to depletion by seven orders of magnitude), and one not uncommonly encounters noble-gas depletion of more than 10 orders of magnitude.The second most important feature to note about noble-gas cosmochemistry is that while a good deal of the attention given to noble gases really is about chemistry, traditionally a good deal of attention is also devoted to nuclear phenomena, much more so than for most other elements. This feature is a corollary of the first feature noted above, namely scarcity. A variety of nuclear transmutation processes - decay of natural radionuclides and energetic particle reactions - lead to the production of new nuclei that are often new elements. Most commonly, the quantity of new nuclei originating in nuclear transmutation is very small compared to the quantity already

  1. Metal-atom fluorescence from the quenching of metastable rare gases by metal carbonyls

    International Nuclear Information System (INIS)

    Hollingsworth, W.E.

    1982-11-01

    A flowing afterglow apparatus was used to study the metal fluorescence resulting from the quenching of metastable rare-gas states by metal carbonyls. The data from the quenching or argon, neon, and helium by iron and nickel carbonyl agreed well with a restricted degree of freedom model indicating a concerted bond-breaking dissociation

  2. Rare decays and search for new physics

    CERN Document Server

    Koppenburg, Patrick

    2014-01-01

    In absence of direct signs of new physics at the LHC, rare decays of heavy flavoured particles provide an ideal laboratory to look for deviations from the Standard Model and explore an energy regime beyond the LHC reach. Here, new results from the LHC and the $B$ factories are presented, with a particular focus on electroweak penguin-mediated $b\\rightarrow s$ transitions

  3. MBE growth and characterisation of light rare-earth superlattices

    DEFF Research Database (Denmark)

    Ward, R.C.C.; Wells, M.R.; Bryn-Jacobsen, C.

    1996-01-01

    The molecular beam epitaxy growth techniques which have already successfully produced a range of heavy rare-earth superlattices have now been extended to produce superlattices of two light rare-earth elements, Nd/Pr, as well as superlattices and alloy films of a heavy/light system, Ho/Pr. High......-resolution X-ray diffraction analysis shows the Nd/Pr superlattices to be of high structural quality, while the Ho/Pr superlattices are significantly less so. In the Ho/Pr superlattices, Pr is found to retain its bulk dhcp crystal structure even in thin layers (down to 6 atomic planes thick) sandwiched between...... thick layers of hcp Ho. In addition, neutron diffraction studies of the He/Pr superlattices have shown that the helical Ho magnetic order is not coherent through the dhcp Pr layers, in contrast to previous hcp/hcp superlattices Ho/Y, Ho/Lu and Ho/Er. The series of Ho:Pr alloy films has shown structural...

  4. Separation of Rare Earths from Uranium and Thorium

    International Nuclear Information System (INIS)

    Krebs, Damien

    2014-01-01

    Greenland Minerals and Energy - Key Highlights – A unique world class mining project: 1. World-class, large scale development project: • Economically robust, proven technology, large-scale, long life production of rare earths concentrate and uranium; • Large JORC resource base to produce ~7kt HREO, 37kt LREO & 3Mlbs U_3O_8 per annum over 30 year mine life; • Ideally located near international airport, existing towns and potential hydro-electric power source. 2. Very attractive commodity portfolio: • Heavy rare earths and uranium are both recognised as strategically important commodities for the future; • Rare earths market characterised by limited capacity and increasing demand (particularly Dy, Nd, Tb, Eu and Y). 3. Strong management and technical team: • Experienced management team with proven track record; • Well-respected and knowledgeable technical/project team in place with exceptional local expertise. 4. Highly advantageous ore-type, makes for simple cost-effective processing, highly scalable production: • High upgrade through beneficiation brings optionality to Kvanefjeld project; • Leaching can be done in Greenland, or owing to the high-grade concentrate, can be shipped to other locations; • Allows to single concentrator in Greenland, multiple refineries/partners globally. 5. Globally significant, long life, low cost, multi-commodity asset: • Company to become one of the largest producers of rare earths globally and a significant U_3O_8 mine; • Potential to supply >20% of global critical (including heavy) rare earth element demand; • Company has low cost of production due to multiple by-product opportunities. 6. Low political risk: • Stable, low-risk operating environment with government looking to develop new industries and employment; • GME fully permitted to evaluate the project, exploration licence now includes radioactive elements; • Management and board have a solid working relationship with the government and are

  5. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    International Nuclear Information System (INIS)

    Hackbarth, Liisa

    2015-01-01

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H_2O)_5][B(CN)_4]_3.0.5 H_2O, where LRE"3"+ is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H_2O)_7][B(CN)_4]_3 and the [HRE(H_2O)_8][B(CN)_4]_3.3 H_2O, where HRE"3"+ is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical measurements indicate that the tetracyanidoborates with rare earth metal cations

  6. Uncertainties in gas dispersion at the Bruce heavy water plant

    International Nuclear Information System (INIS)

    Alp, E.; Ciccone, A.

    1995-07-01

    There have been concerns regarding the uncertainties in atmospheric dispersion of gases released from the Bruce Heavy Water Plant (BHWP). The concern arises due to the toxic nature of H 2 S, and its combustion product SO 2 . In this study, factors that contribute to the uncertainties, such as the effect of the shoreline setting, the potentially heavy gas nature of H 2 S releases, and concentration fluctuations, have been investigated. The basic physics of each of these issues has been described along with fundamental modelling principles. Recommendations have been provided on available computer models that would be suitable for modelling gas dispersion in the vicinity of the BHWP. (author). 96 refs., 4 tabs., 25 figs

  7. Uncertainties in gas dispersion at the Bruce heavy water plant

    Energy Technology Data Exchange (ETDEWEB)

    Alp, E; Ciccone, A [Concord Environmental Corp., Downsview, ON (Canada)

    1995-07-01

    There have been concerns regarding the uncertainties in atmospheric dispersion of gases released from the Bruce Heavy Water Plant (BHWP). The concern arises due to the toxic nature of H{sub 2}S, and its combustion product SO{sub 2}. In this study, factors that contribute to the uncertainties, such as the effect of the shoreline setting, the potentially heavy gas nature of H{sub 2}S releases, and concentration fluctuations, have been investigated. The basic physics of each of these issues has been described along with fundamental modelling principles. Recommendations have been provided on available computer models that would be suitable for modelling gas dispersion in the vicinity of the BHWP. (author). 96 refs., 4 tabs., 25 figs.

  8. Radioactive gases monitor system: tritium, radon, noble gases

    International Nuclear Information System (INIS)

    Egey, J.Z.; Matatagui, E.

    2015-01-01

    A system for monitoring the radioactive gases tritium, radon and noble gases is described. We present the description of the sensor and the associated electronics that have been developed to monitor the presence of radioactive gases in air or other gaseous effluents. The system has a high sensitivity and a wide range of operation. The sensor is an ionization chamber, featuring the internal circulation of the gas to monitor and the associated electronics has a resolution better than 10 E-15A (fA). It allows the detection of the individual pulses that are produced during the alpha decay of radon and its daughter elements. The measurement system is made up of a commercial data acquisition system connected to a computer. The acquired data is presented on a graphical display and it is stored for later processing and analysis. We have a system that is of simple construction and versatile. Here we present the experimental results. (authors) [es

  9. Process of radioactive waste gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.; Schroter, H.J.

    1975-01-01

    A method is described in which the radiation level of waste gases from nuclear power plants containing both activation and fission gases is controlled at or below limits permitted by applicable standards by passing such gases, prior to release to the atmosphere, through an adsorptive delay path including a body of activated carbon having the relation to the throughput and character of such gases. (U.S.)

  10. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  11. Analysis of Heavy-Tailed Time Series

    DEFF Research Database (Denmark)

    Xie, Xiaolei

    This thesis is about analysis of heavy-tailed time series. We discuss tail properties of real-world equity return series and investigate the possibility that a single tail index is shared by all return series of actively traded equities in a market. Conditions for this hypothesis to be true...... are identified. We study the eigenvalues and eigenvectors of sample covariance and sample auto-covariance matrices of multivariate heavy-tailed time series, and particularly for time series with very high dimensions. Asymptotic approximations of the eigenvalues and eigenvectors of such matrices are found...... and expressed in terms of the parameters of the dependence structure, among others. Furthermore, we study an importance sampling method for estimating rare-event probabilities of multivariate heavy-tailed time series generated by matrix recursion. We show that the proposed algorithm is efficient in the sense...

  12. Isoreticular rare earth fcu-MOFs for the selective removal of H 2 S from CO 2 containing gases

    KAUST Repository

    Bhatt, Prashant; Belmabkhout, Youssef; Assen, Ayalew Hussen Assen; Weselinski, Lukasz Jan; Jiang, Hao; Cadiau, Amandine; Xue, Dongxu; Eddaoudi, Mohamed

    2017-01-01

    . Markedly, RE-fcu-MOFs, having different pore apertures sizes in the range of 4.7-6.0 Å and different functionalities, showed excellent properties for the removal of H2S from CO2 and CH4 containing gases such as natural gas, biogas and landfill gas. A series

  13. Müllerian duct anomaly with congenital rectovaginal fistula: A rare ...

    African Journals Online (AJOL)

    Pregnancy in a rudimentary horn is a rare form of ectopic gestation and associated with ... of rudimentary horn pregnancy (RHP) is challenging. ... resulting in life-threatening heavy bleeding. ... intrauterine missed abortion. .... the rudimentary horn of unicornuate uterus (on table diagnosis) which had a successful outcome:.

  14. Sampling of contaminants from product gases of biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Lappi, M.; Kurkela, E.; Simell, P.; Oesch, P.; Nieminen, M. [VTT Energy, Espoo (Finland). New Energy Technologies

    1998-12-01

    Reliable sampling and analysis of products from biomass gasification are essential for the successful process development and economical operation of commercial gasifiers. One of the most important and most difficult analytical tasks is to characterise the emissions from the gasifiers. This report presents a review of the sampling and analytical systems employed and developed when doing research on coal and biomass gasification. In addition to the sampling systems published in the literature, experiences obtained in various biomass gasification R and D projects of VTT in 1985-1995 are described. The present sampling methods used for different gas contaminants at VTT are also briefly presented. This report focuses mainly on the measurement of tars, nitrogen compounds and sulphur gases. Isokinetic and non-isokinetic sampling train systems are described and, in addition, special sampling apparatus based on liquid-quenched probe and gas dilution is briefly outlined. Sampling of tars with impinger systems and sampling of heavy tars with filter techniques are described in detail. Separate sampling of particulates is briefly discussed. From inorganic compounds the sampling systems used for H{sub 2}S and other sulphur gases, NH{sub 3} and HCN and HCl are presented. Proper storage of the samples is also included in the report. (orig.) 90 refs.

  15. Prototype inverted sputter source for negative heavy ions

    International Nuclear Information System (INIS)

    Minehara, Eisuke; Kobayashi, Chiaki; Kikuchi, Shiroh

    1977-10-01

    A sputter source from which negative heavy ion beam is extracted through a tungsten wire and disc ionizer was built and tested. An alkali metal surface ionization gun with the ionizer is described, and also performance of the surface ionization gun and of the sputter source for negative heavy ions using the gun is reported. The gun was tested for three alkali metals, i.e. sodium, potassium and cesium. Total potassium beam current of 1-2mA was obtained at entrance aperture of the magnet. Sputtering materials and gases for producing negative heavy ions are carbon, copper, aluminium, molybdenum, oxygen and air. With carbon and leakage air, the beam intensities analyzed are: 2-5μA (at Faraday cup) and 4.6-11μA (at exit slit) for C - , 3-5μA (at Faraday cup) and 6.8-11μA (at exit slit) for 2C - , and 11-15μA (at Faraday cup) and 25-34μA (at exit slit) for O - . Total beam current at the entrance aperture was 200-400μA. (auth.)

  16. Rare earths: critical elements for various applications and challenges in their separation

    International Nuclear Information System (INIS)

    Singh, D.K.; Chakravartty, J.K.

    2015-01-01

    High purity rare earths oxides, metal and alloys find wide applications in high tech area such as nuclear energy, permanent magnets, materials for storing hydrogen, phosphors, laser, etc. Rare earths consists a group of 15 elements from La to Lu in the periodic table and it also includes Sc and Y. Due to similar chemical nature owing to common oxidation state of +3, rare earths are very difficult to separate from each other. They have very low separation factors with acidic extractants like D2EHPA and EHEHPA and hence require large number of stages in various cascade of extraction process. Monazite (a source of rare earths, thorium and uranium) is processed at IREL to separate rare earths from thorium and uranium. The rare earths are fractionated into three groups namely light rare earths (LRE), middle rare earths (MRE) and heavy rare earths (HRE) by solvent extraction method employing EHEHPA as extractant

  17. Down-hole catalytic upgrading of heavy crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J.G.; Kessler, R.V.; Sawicki, R.A.; Belgrave, J.D.M.; Laureshen, C.J.; Mehta, S.A.; Moore, R.G.; Ursenbach, M.G. [University of Calgary, Calgary, AB (Canada). Dept. of Chemical and Petroleum Engineering

    1996-07-01

    Several processing options have been developed to accomplish near-well bore in-situ upgrading of heavy crude oils. These processes are designed to pass oil over a fixed bed of catalyst prior to entering the production well, the catalyst being placed by conventional gravel pack methods. The presence of brine and the need to provide heat and reactant gases in a down-hole environment provide challenges not present in conventional processing. These issues were addressed and the processes demonstrated by use of a modified combustion tube apparatus. Middle-Eastern heavy crude oil and the corresponding brine were used at the appropriate reservoir conditions. In-situ combustion was used to generate reactive gases and to drive fluids over a heated sand or catalysts bed, simulating the catalyst contacting portion of the proposed processes. The heavy crude oil was found to be amenable to in-situ combustion at anticipated reservoir conditions, with a relatively low air requirement. Forcing the oil to flow over a heated zone prior to production results in some upgrading of the oil, as compared to the original oil, due to thermal effects. Passing the oil over a hydroprocessing catalyst located in the heated zone results in a product that is significantly upgraded as compared to either the original oil or thermally processed oil. Catalytic upgrading is due to hydrogenation and the results in about a 50% sulfur removal and an 8{degree} API gravity increase. Additionally, the heated catalyst was found to be efficient at converting CO to additional H{sub 2}. While all of the technologies needed for a successful field trial of in-situ catalytic upgrading exist, a demonstration has yet to be undertaken. 27 refs., 5 figs., 5 tabs.

  18. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .

  19. Power Generation Utilizing Process Gases to Avoid Flaring; Elkraftproduktion ur processgas som idag facklas

    Energy Technology Data Exchange (ETDEWEB)

    Naesvall, Henrik; Larfeldt, Jenny

    2011-01-15

    There is an increasing awareness that process gases, such as associated gases in oil extraction and byproduct gases in liquidizing of natural gas, can be utilized for energy production. Efficient energy production through the use of a gas turbine is profitable both from economical and environmental point of view compared to simply getting rid of the process gas in flares. Gases with an elevated amount of heavier hydrocarbons generally speaking burns faster and more intense compared to standard natural gas. In gas turbines with so called premixed, low emitting combustor systems this might induce changes in flame stability and the combustion stability connected with this. This might in turn affect the emissions from the gas turbine, the operation life and ability to operate. This work aimed at proving the potential of running Siemens standard SGT-600 and SGT-700 engines on gas with elevated amount of heavy hydrocarbons. Pentane (C{sub 5}H{sub 12}) was used as a model substance for heavy hydrocarbons and a facility for feeding and mixing pentane with natural gas was designed and built at Siemens delivery test bed in Finspaang. The two engines were demonstrated to be able to operate on the mixed fuel at various loads. The results show that both engines are able to stable operation on fuels with up to 10% by volume pentane content. Stable in the sense that no change in combustion dynamics was noted and the control system worked as normal. There were no impact on the temperature distribution through the turbine that could be seen and a boroscope inspection after the test did not reveal anything unusual. A slight increase in emissions of nitrogen oxides (NO{sub x}) was detected explained by a slightly more intense flame which also explains the simultaneous lowering of carbon monoxide (CO) emissions. Unexpected difficulties were faced by the external laboratories when the sampled gas samples should be analysed. If the difficulties in analysing the samples could have been

  20. Physics of heavy fermions heavy fermions and strongly correlated electrons systems

    CERN Document Server

    Onuki, Yoshichika

    2018-01-01

    A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challengin...

  1. A Novel Synthesis Routine for Woodwardite and Its Affinity towards Light (La, Ce, Nd and Heavy (Gd and Y Rare Earth Elements

    Directory of Open Access Journals (Sweden)

    Sirio Consani

    2018-01-01

    Full Text Available A synthetic Cu-Al-SO4 layered double hydroxide (LDH, analogue to the mineral woodwardite [Cu1−xAlx(SO4x/2(OH2·nH2O], with x < 0.5 and n ≤ 3x/2, was synthesised by adding a solution of Cu and Al sulphates to a solution with NaOH. The pH values were kept constant at 8.0 and 10.0 by a continuous addition of NaOH. The material obtained had poor crystallinity, turbostratic structure, and consisted of nanoscopic crystallites. The analyses performed in order to characterise the obtained materials (X-ray diffraction (XRD, thermogravimetry (TG, and Fourier Transform Infra-Red (FTIR spectroscopy showed that the Cu-Al-SO4 LDH is very similar to woodwardite, although it has a smaller layer spacing, presumably due to a lesser water content than in natural samples. The synthesis was performed by adding light rare earth elements (LREEs (La, Ce, and Nd and heavy rare earth elements (HREEs (Gd and Y in order to test the affinity of the Cu-Al-SO4 LDH to the incorporation of REEs. The concentration of rare earth elements (REEs in the solid fraction was in the range of 3.5–8 wt %. The results showed a good affinity for HREE and Nd, especially for materials synthesised at pH 10.0, whereas the affinities for Ce and La were much lower or non-existent. The thermal decomposition of the REE-doped materials generates a mixture of Cu, Al, and REE oxides, making them interesting as precursors in REE oxide synthesis.

  2. Non-equilibrium dynamics of one-dimensional Bose gases

    International Nuclear Information System (INIS)

    Langen, T.

    2013-01-01

    Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom

  3. K isomerism and collectivity in neutron-rich rare-earth isotopes.

    OpenAIRE

    Patel, Zena

    2016-01-01

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated an...

  4. Purification of flue gases from biofuels for use in green houses as carbon dioxide source

    International Nuclear Information System (INIS)

    Kuopanportti, H.; Rissanen, R.; Vuollet, A.; Kanniainen, T.; Tikka, A.; Ramm-Schmidt, L.; Seppaelae, R.; Piira, T.

    2007-01-01

    The objectives of the project was to develop technologies by which the flue gases from burning bio fuels and peat can be purified for used in green houses as a low cost source of carbon dioxide. Traditionally carbon dioxide has been produced by burning propane or natural gas or by injecting bottled carbon dioxide gas directly into the green house. The new methods should be more affordable than the present ones. The flue gases from burning wood and peat need cleaning, because they contain substances that are harmful to plants. Also the food use of the plants may cause additional restrictions. Harmful substances are e.g. the nitrogen oxides, sulphur compounds and heavy metals. The most complex ones are the nitrogen oxides, as they cannot be sufficiently removed by traditional cleaning methods. A pilot plant was designed for testing the influence of with new methods cleaned combustion gases on commercially important crops. The project has started 01.04.2005 and was ended 30.06.2006. During the project time, commercial solutions were in construction, thus the pilot plant was decided to be built when the commercial application had been taken in use. (orig.)

  5. Table of laser lines in gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, R; Englisch, W; Guers, K

    1980-01-01

    Numerous applications of lasers require use of specific wavelengths (gas analysis including remote sensing, Raman spectroscopy, optical pumping, laser chemistry and isotope separation). Scientists active in these fields have been compelled to search, in addition to the available, mostly obsolete, laser-line tables, the entire recent literature in order to find suitable laser transitions. Over 6100 laser transitions are presented. An additional list of the lines arranged in order of wavelength should greatly facilitate the search for a laser material that generates a specific wavelength. Further information has also been supplied by listing the pump transition for each of the FIR lines obtained with the optically pumped organic vapors. In addition to the laser lines, the operating conditions under which emission has been achieved are briefly specified at the top of the list for each active medium. The order in which the atomic laser media are listed is based on the periodic system, beginning with the noble gases, continuing with hydrogen and the alkalies to the halogens and the rare earths. The molecular laser media are arranged in order of chemical composition, beginning with the compounds of noble gases (the excimers), then other diatomic molecules, triatomic molecules, and ending with the more complex molecules of organic vapors. (WHK).

  6. Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Scazza, Francesco

    2015-01-01

    This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173 Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.

  7. Rare occupational cause of nasal septum perforation: Nickel exposure

    Directory of Open Access Journals (Sweden)

    Ertugrul Cagri Bolek

    2017-10-01

    Full Text Available Many etiologies are held accountable for nasal septum perforations. Topical nasal drug usage, previous surgeries, trauma, nose picking, squamous cell carcinoma, some rheumatological disorders such as granulomatosis with polyangiitis (Wegener granulomatosis, some infectious diseases such as syphilis and leprosy are among the causes of the perforations. Occupational heavy metal exposures by inhalation rarely may also cause nasal septum perforation. Here, we present a 29-year-old patient without any known diseases, who is a worker at a metallic coating and nickel-plating factory, referred for investigation of his nasal cartilage septum perforation from an otorhinolaryngology clinic. The patient questioning, physical examination and laboratory assessment about rheumatic and infectious diseases were negative. There was a metallic smell in the breath during the physical examination. The analysis showed serum nickel level at 31 μg/l and urine nickel at 18 μg/l (84.11 μg/g creatinine. Other possible serum and urine heavy metal levels were within normal ranges. Nickel exposure is usually together with other heavy metals (chromium or cadmium, it is rarely alone. Nickel ingested by inhalation usually leads to respiratory problems such as reduced olfactory acuity, ulcers, septum perforation or tumors of the nasal sinuses. This case demonstrates the importance of occupational anamnesis and awareness of diagnosis. Int J Occup Med Environ Health 2017;30(6:963–967

  8. Predictions of wet natural gases condensation rates via multi-component and multi-phase simulation of supersonic separators

    International Nuclear Information System (INIS)

    Shooshtari, Seyed Heydar Rajaee; Shahsavand, Akbar

    2014-01-01

    Proper correction of water and heavy hydrocarbon dew points of sweet natural gases is essential from various technical and economical standpoints. Supersonic separators (3S) are proved to be capable of achieving these tasks with maximum reliability and minimal expenses. The majority of the previous articles have focused on the flow behavior of pure fluids across a 3S unit. Multicomponent fluid flow inside 3S accompanied with condensation phenomenon will drastically increase the complexity of the simulation process. We tackle this issue by considering a proper combination of fundamental governing equations and phase equilibrium calculations to predict various operating conditions and composition profiles across two multi-component and multi-phase 3S units. Various Iranian sweet gases are used as real case studies to demonstrate the importance of 3S unit practical applications. Simulation results clearly illustrate the effectiveness of 3S units for faithful dehydration of various natural gases, while successfully controlling its dew point, suitable for any practical applications. Conventional HYSYS simulation software is used to validate the simulation results

  9. China's Rare Earth Supply Chain: Illegal Production, and Response to new Cerium Demand

    Science.gov (United States)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-07-01

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China's supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructed a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the US market starting from 2018. Results showed that market share of the illegal sector has grown since 2007-2015, ranging between 22% and 25% of China's rare earth supply, translating into 59-65% illegal heavy rare earths and 14-16% illegal light rare earths. There will be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Finally, we illustrate revenue streams for different ore compositions in China in 2015.

  10. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hackbarth, Liisa

    2015-11-24

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H{sub 2}O){sub 5}][B(CN){sub 4}]{sub 3}.0.5 H{sub 2}O, where LRE{sup 3+} is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H{sub 2}O){sub 7}][B(CN){sub 4}]{sub 3} and the [HRE(H{sub 2}O){sub 8}][B(CN){sub 4}]{sub 3}.3 H{sub 2}O, where HRE{sup 3+} is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical

  11. Positron annihilation in low-temperature rare gases. II. Argon and neon

    International Nuclear Information System (INIS)

    Canter, K.F.; Roellig, L.O.

    1975-01-01

    Lifetime measurements of slow-positron and ortho-positronium (o-Ps) annihilation were made in argon and neon gases at room temperature and below. The argon experiments cover the temperature range 115 to 300 0 K and the density range 0.0356 to 0.0726 g/cm 3 (approximately equal to 20 to 40 amagat). The slow-positron spectra in argon exhibit a departure from free-positron annihilation below 200 0 K. The departure becomes more marked as the temperature is lowered. No deviation from free o-Ps pickoff annihilation is observed in argon at low temperatures. The neon measurements cover the temperature range 30 to 300 0 K and the density range 0.032 to 0.89 g/cm 3 (approximately equal to 35 to 980 amagat). No effect of temperature on the slow-positron spectra throughout the temperature and density ranges investigated in neon is observed. The spectra are very exponential with a corresponding decay rate which is temperature as well as time independent and is directly proportional to density over the ranges investigated. The o-Ps data are more eventful in that the o-Ps lifetime at near-liquid densities is approximately 20 nsec, a factor of nearly 4 greater than the value obtained using the pickoff-annihilation coefficient obtained at lower densities. This is evidence for positronium-induced cavities in low-temperature neon. A brief discussion of the argon and neon results is given in the context of the explanations offered for the low-temperature effects observed in helium gas

  12. Rare resource supply crisis and solution technology for semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Hu, Sophia; Yoo, Youngsun; Takahisa, Kenji; Enami, Tatsuo

    2016-03-01

    There are growing concerns over future environmental impact and earth resource shortage throughout the world and in many industries. Our semiconductor industry is not excluded. "Green" has become an important topic as production volume become larger and more powerful. Especially, the rare gases are widely used in semiconductor manufacturing because of its inertness and extreme chemical stability. One major component of an Excimer laser system is Neon. It is used as a buffer gas for Argon (Ar) and Krypton (Kr) gases used in deep ultraviolet (DUV) lithography laser systems. Since Neon gas accounting for more than 96% of the laser gas mixture, a fairly large amount of neon gas is consumed to run these DUV lasers. However, due to country's instability both in politics and economics in Ukraine, the main producer of neon gas today, supply reduction has become an issue and is causing increasing concern. This concern is not only based on price increases, but has escalated to the point of supply shortages in 2015. This poses a critical situation for the semiconductor industry, which represents the leading consumer of neon gas in the world. Helium is another noble gas used for Excimer laser operation. It is used as a purge gas for optical component modules to prevent from being damaged by active gases and impurities. Helium has been used in various industries, including for medical equipment, linear motor cars, and semiconductors, and is indispensable for modern life. But consumption of helium in manufacturing has been increased dramatically, and its unstable supply and price rise has been a serious issue today. In this article, recent global supply issue of rare resources, especially Neon gas and Helium gas, and its solution technology to support semiconductor industry will be discussed.

  13. Analysis of application of alternative drive systems for international heavy-duty transport on Wroclaw-Dresden-Prague routes

    Science.gov (United States)

    Skrętowicz, Maria; Sroka, Zbigniew

    2017-11-01

    The depletion of the fossil fuels resources, significant increase of the air pollution caused by the use of internal combustion engines, and emission of carbon dioxide which is responsible for the greenhouse effect escalates the development of vehicle's alternative drive systems. Generally, the emphasis is given to the alternative fuels (natural gas CNG, mixture of propane-butane gases LPG, hydrogen, alcohol fuels, biofuels) and hybrid or electric vehicles. Roads between large industrial and commercial centres, i.e. Wroclaw - Dresden - Prague, are used mainly by heavy-duty vehicles. Consequently, the contribution of the road transport to the ecological threat in this realm is significant. The objectives of this research were the assessment of the traffic volume and emission rate of exhaust gases caused by heavy-duty vehicles on the analysed roads and evaluation of the possibility of using existing and alternative drive systems in vehicles driving on the roads in the analysed region.

  14. Solvent Extraction of Rare Earths by Di-2 Ethylhexyl Phosphoric Acid

    International Nuclear Information System (INIS)

    Srinuttrakul, Wannee; Kranlert, Kannika; Kraikaew, Jarunee; Pongpansook, Surasak; Chayavadhanangkur, Chavalek; Kranlert, Kannika

    2004-10-01

    Solvent extraction has been widely applied for individual rare earth separation because the separation time is rapid and a large quantity of products is obtained. In this work, this technique was utilized to extract mixed rare earths, obtained from monazite digestion process. Di-2-ethylhexyl phosphoric acid (D2EHPA) was used as an extractant. The factors affected the extraction including HNO 3 concentration in mixed rare earth nitrate solution and the amount of D2EHPA were studied. The appropriate concentrations of HNO 3 and D2EHPA were found to be 0.01 and 1.5 M, respectively. From the result of equilibrium curve study, it was observed that heavy rare earths were extracted more efficient than light rare earths. A 6-stage continuous countercurrent solvent extraction was simulated for rare earth extraction. The optimum ratio of solvent to feed solution (S/F) was 2. Because of the high cost of D2EHPA, 1.0 M of D2EHPA was suitable for the rare earth extraction by the continuous countercurrent solvent extraction

  15. Preliminary geological assessment for rare earths at Ombo Area, San Vicente, Northern Palawan

    International Nuclear Information System (INIS)

    Ramos, Angelito F.; Santos, Gabriel Jr.; Magsambol, Wilfred N.; Castillo, Marilyn K.; Tabora, Estrelita U.

    2001-04-01

    A preliminary geological assessment for rare earths was conducted along Ombo beach area, San Vicente, northern Palawan to evaluate the potential geologic reserve and to determine the relative concentration of REE, thorium and uranium. This investigation also aims to establish the distribution of heavy minerals. The study area, covering, about 6500 m 2 is comprised of the undisturbed beach sand deposits confined between the high tide line and the base of the mountains that borders the coastline. The investigation involved the establishment of shallow test pits with depths varying from one meter ot less than three meters. A total of 23 heavy mineral panned concentrates were collected. All the samples were analyzed for REE, Th and U using the portable X-MET 820 x-ray fluorescence and GR-320 gamma ray spectrometer. Radiometric measurements were also taken along the stretch of Ombo beach to establish the natural background radioactivity. The radiometric values vary from 27 cps to 420 cps. The high readings could be attributed to the presence of radioactive rare earth bearing minerals, principally allanite. This initial investigation indicates a positive geologic reserve of approximately 19,000 metric tons beach sand deposits, containing an average grade of 22.19% REE (Ce, La), 0.85% Th and 0.55% U. The average distribution of heavy minerals is 3600 gm heavies per cubic meter. Moreover, a probable geologic reserve of about 41,000 metric tons with an average grade of 22.13% REE (Ce, La), 0.85% Th and 0.55% U was also determined. The average distribution of heavy minerals is about 3300 gm heavies per cubic meter. (Author)

  16. Rare occupational cause of nasal septum perforation: Nickel exposure.

    Science.gov (United States)

    Bolek, Ertugrul Cagri; Erden, Abdulsamet; Kulekci, Cagri; Kalyoncu, Umut; Karadag, Omer

    2017-10-06

    Many etiologies are held accountable for nasal septum perforations. Topical nasal drug usage, previous surgeries, trauma, nose picking, squamous cell carcinoma, some rheumatological disorders such as granulomatosis with polyangiitis (Wegener granulomatosis), some infectious diseases such as syphilis and leprosy are among the causes of the perforations. Occupational heavy metal exposures by inhalation rarely may also cause nasal septum perforation. Here, we present a 29-year-old patient without any known diseases, who is a worker at a metallic coating and nickel-plating factory, referred for investigation of his nasal cartilage septum perforation from an otorhinolaryngology clinic. The patient questioning, physical examination and laboratory assessment about rheumatic and infectious diseases were negative. There was a metallic smell in the breath during the physical examination. The analysis showed serum nickel level at 31 μg/l and urine nickel at 18 μg/l (84.11 μg/g creatinine). Other possible serum and urine heavy metal levels were within normal ranges. Nickel exposure is usually together with other heavy metals (chromium or cadmium), it is rarely alone. Nickel ingested by inhalation usually leads to respiratory problems such as reduced olfactory acuity, ulcers, septum perforation or tumors of the nasal sinuses. This case demonstrates the importance of occupational anamnesis and awareness of diagnosis. Int J Occup Med Environ Health 2017;30(6):963-967. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. A Unique Yttrofluorite-Hosted Giant Heavy Rare Earth Deposit: Round Top Mountain, Hudspeth County, Texas, USA

    Science.gov (United States)

    Pingitore, N. E.; Clague, J. W.; Gorski, D.

    2013-12-01

    Round Top Mountain is a surface-exposed peraluminous rhyolite laccolith, enriched in heavy rare earth elements, as well as niobium-tantalum, beryllium, lithium, fluorine, tin, rubidium, thorium, and uranium. The extreme extent of the deposit (diameter one mile) makes it a target for recovery of valuable yttrium and HREEs, and possibly other scarce elements. The Texas Bureau of Economic Geology estimated the laccolith mass as at least 1.6 billion tons. A Preliminary Economic Assessment for Texas Rare Earth Resources listed an inferred mineral resource of 430,598,000 kg REOs (rare earth oxides), with over 70% Y+HREEs (YHREE). Put in global perspective, China is thought to produce ~25,000 tons YHREE per year, and exports but a small fraction of that. Because of the extremely fine grain size of the late-phase fluorine-carried critical fluid mineralization, it has not been clear which minerals host the YHREEs. X-ray Absorption Spectroscopy experiments at the Stanford Synchrotron Radiation Lightsource revealed that virtually all of the YHREE content resides in yttrofluorite, rather than in the other reported REE minerals in the deposit, bastnaesite and xenotime. The extended x-ray absorption fine structure (XAFS) spectra of the sample suite were all quite similar, and proved a close match to known model compound specimens of yttrofluorite from two locations, in Sweden and New Mexico. Small spectral variation between the two model compounds and among the samples is attributable to the variable elemental composition and altervalent substitutional nature of yttrofluorite (Ca [1-x] Y,REE [x])F[2+x]. We found no other reported deposit in the world in which yttrofluorite is the exclusive, or even more than a minor, YHREE host mineral. Leaching experiments show that the YHREEs are easily liberated by dissolution with dilute sulfuric acid, due to the solubility of yttrofluorite. Flotation separation of the yttrofluorite had been demonstrated, but was rendered inefficient by the

  18. Validation of OpenFoam for heavy gas dispersion applications.

    Science.gov (United States)

    Mack, A; Spruijt, M P N

    2013-11-15

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms.

    Science.gov (United States)

    Maldonado, Alejandro F; Aucar, Gustavo A

    2009-07-21

    Fully relativistic calculations of NMR magnetic shielding on XYH3 (X = C, Si, Ge and Sn; Y = Br, I), XHn (n = 1-4) molecular systems and noble gases performed with a fully relativistic polarization propagator formalism at the RPA level of approach are presented. The rate of convergence (size of basis set and time involved) for calculations with both kinetic balance prescriptions, RKB and UKB, were investigated. Calculations with UKB makes it feasible to obtain reliable results for two or more heavy-atom-containing molecules. For such XYH3 systems, the influence of heavy vicinal halogen atoms on sigma(X) is such that heavy atom effects on heavy atoms (vicinal plus their own effects or HAVHA + HAHA effects) amount to 30.50% for X = Sn and Y = I; being the HAHA effect of the order of 25%. So the vicinal effect alone is of the order of 5.5%. The vicinal heavy atom effect on light atoms (HALA effect) is of the order of 28% for X = C and Y = I. A similar behaviour, but of opposite sign, is observed for sigma(Y) for which sigmaR-NR (I; X = C) (HAHA effect) is around 27% and sigmaR-NR(I; X = Sn) (HAVHA + HAHA effects) is close to 21%. Its electronic origin is paramagnetic for halogen atoms but both dia- and paramagnetic for central atoms. The effect on two bond distant hydrogen atoms is such that the largest variation of sigma(H) within the same family of XYH3 molecules appears for X = Si and Y = I: around 20%. In this case sigma(H; X = Sn, Y = I) = 33.45 ppm and sigma(H; X = Sn, Y = H) = 27.82 ppm.

  20. Study of rare earth elements, uranium and thorium migration in rocks from Espinharas uranium deposit, Paraiba - Brazil

    International Nuclear Information System (INIS)

    Conceicao, Cirilo C.S.

    2009-01-01

    The determination of rare earth elements as natural analogue in patterns geologic has grown as a tool for predicting the long-term safety of nuclear disposal in geological formation. Migration of natural radionuclides is one of the most serious problems in the waste deposit from nuclear fuel cycle. Rare earth elements show the same kinetic behavior in rocks as natural radionuclides. This similar property of the analogues allows perform studies and models on the subject of radionuclides migration. The aim of this study was to determine the distribution of rare earth elements in rocks located at Espinharas - Paraiba - Brazil, uranium deposit. In this work are presented the results from the study above the distribution of rare earth elements in function of the degree of mineralized rocks, composition and the conditions of radioactive equilibrium of the uranium and thorium in some fractures on the rocks from radioactive occurrence of Espinharas-Brazil. The results show that there is a correlation of heavy rare earth elements, uranium and Thorium concentrations to oxidation factor of the rocks. However this correlation was not observed for light rare earth elements. It means that heavy rare earth elements follow the natural radionuclides in oxidation process of rocks. The samples were analyzed by ICP-MS, alpha and gamma spectrometry, X-ray diffraction and fluorimetry. (author)

  1. Actinide targets for the synthesis of super-heavy elements

    International Nuclear Information System (INIS)

    Roberto, J.B.; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.

    2015-01-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of "4"8Ca beams on actinide targets. These target materials, including "2"4"2Pu, "2"4"4Pu, "2"4"3Am, "2"4"5Cm, "2"4"8Cm, "2"4"9Cf, and "2"4"9Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including "2"4"9Bk, "2"5"1Cf, and "2"5"4Es are described.

  2. Transient absorption studies in pure rare gases from 2500 A to 4000 A

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, L F; Chang, R S.F. [Naval Research Lab., Washington, DC (USA)

    1980-01-01

    The broad band absorption in electron beam excited rare gas plasmas was measured for neon, argon, krypton and xenon gas. A broad continuum emission from a xenon flashlamp was used as the probe source. Absorption data was obtained over a 1500 A range. Absorption peaks in argon, neon and xenon correlate well with the predicted peak absorption cross sections for the respective dimer ions. No absorption peak in krypton was observed. Secondary absorption peaks of comparable magnitude to the dimer absorption peak were also observed in argon and xenon.

  3. Abatement of waste gases and water during the processes of semiconductor fabrication.

    Science.gov (United States)

    Wen, Rui-mei; Liang, Jun-wu

    2002-10-01

    The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

  4. Rare gases transition probabilities for plasma diagnostics

    International Nuclear Information System (INIS)

    Katsonis, K.; Siskos, A.; Ndiaye, A.; Clark, R.E.H.; Cornille, M.; Abdallah, J. Jr

    2005-01-01

    Emission spectroscopy is a powerful optical diagnostics tool which has been largely used in studying and monitoring various industrial, laboratory and natural plasmas. As these plasmas are rarely in Local Thermodynamic Equilibrium (LTE) a prerequisite of satisfactory evaluation of the plasma electron density n e and temperature T e is the existence of a detailed Collisional-Radiative (C-R) model taking into account the main physical processes influencing the plasma state and dynamics of its main constituents. The theoretical spectra which such a model generates match the experimental ones whenever the experimental values of ne and T e are introduced. In practice, in validating such models, discrepancies are observed which often are due to the atomic data included in the C-R model. In generating theoretical spectra pertaining to each atom(ion) multiplet, the most sensible atomic data are the relevant transition probabilities A j→i and electron collision excitation cross sections σ i→j . We note that the latter are actually poorly known, especially for low ionization stages and near the excitation threshold. We address here the evaluation of the former, especially of the A j→i of the Ar 2+ ion responsible for the Ar III spectra and of those of the Xe 2+ ion which are evaluated in an analogous way. Extensive studies of the Ar III and Xe III spectra exist, but the present status of Aj i cannot be considered sufficient for the generation of the theoretical spectra even of the most prominent visible lines coming from the Ar III multiplets 4s - 4p, 5p (corresponding to the well known '' red '' and 'blue' lines of Ar I) 4p - 4d, 5d and 3p - 4s, 5s (resonant) and the analogous Xe III multiplets (which have principal quantum numbers increased by two). Due to the gap observed in the Grotrian diagrams, the resonant lines which, together with the important metastable ones, belong to the 3p - 4s, 5s multiplets, (5p - 6s, 7s for Xe III), give spectra in the UV region. On

  5. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  6. Device for the catalytic after-burning of exhaust gases in the exhaust gas system of an internal-combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Lange, K

    1975-06-19

    The invention deals with a device which protects the catalyst for the after-burning of exhaust gases against damage by high temperatures. When the catalyst temperature reaches a certain limiting value, a throttle is activated by an electrical control device influenced by a temperature sensor via a servomotor. The throttle valve opens a by-pass for the exhaust gases which had previously flowed through the system for catalytic after-burning. In order to prevent the throttle from rusting due to its rare use, it is regularly put into use after switching off the ignition of the internal-combustion engine by the still briefly present oil pressure in the engine via an oil pressure switch and the mentioned control device.

  7. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  8. High order harmonic generation in noble gases using plasmonic field enhancement

    International Nuclear Information System (INIS)

    Ciappina, Marcelo F.; Shaaran, Tahir; Lewenstein, Maciej

    2013-01-01

    Theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement are presented. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. It is demonstrated that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. The models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Method of contacting solids and gases

    Energy Technology Data Exchange (ETDEWEB)

    1942-08-06

    A continuous method is described for contacting solids and gases. The process involves passing a confined stream of gases through an extended path including a treating zone and imposing a pressure on the stream of gases at least sufficient to overcome the resistence of said path to the flow of said gases. A solid in finely divided form is then introduced into said stream of gases, maintaining a vertical column of finely divided solid in fluidized state of a height which will produce a pressure at the column bottom at least equal to the gas pressure at the point of entry of the solids into the stream. The solids then pass from the bottom of the column into the stream.

  10. Heavy Ion Acceleration at J-PARC

    Science.gov (United States)

    SATO, Susumu

    2018-02-01

    J-PARC, the Japan Proton Accelerator Research Complex, is an accelerator, which provides a high-intensity proton beam. Recently as a very attractive project, the acceleration of heavy ions produced by supplementary ion sources, called J-PARC-HI, is seriously contemplated by domestic as well as international communities. The planned facility would accelerate heavy ions up to U92+ with a beam energy 20 AGeV ( of 6.2 AGeV). The highlight of the J-PARC-HI project is its very high beam rate up to 1011 Hz, which will enable the study of very rare events. Taking advantage of this high intensity, J-PARC-HI will carry out frontier studies of new and rare observables in this energy region: (i) nuclear medium modification of chiral property of vector mesons through low-mass di-lepton signal, (ii) QCD critical pointcharacterization through event-by-event fluctuation signals of particle production, (iii) systematic measurements related to the equation of state through collective flow signal or two-particle momentum correlation signal, or (iv) the search of hyper nuclei with multi strangeness including or exceeding S = 3. The current plan of J-PARC-HI aims to carrying out the first experimental measurements in 2025.

  11. Rare Earth Elements: A Tool for Understanding the Behaviour of Trivalent Actinides in the Geosphere

    International Nuclear Information System (INIS)

    Buil, Belen; Gomez, Paloma; Garralon, Antonio; Turrero, M. Jesus

    2007-01-01

    Rare earth element (REE) concentrations have been determined in groundwaters, granite and fracture fillings in a restored uranium mine. The granitoids normalized REE patterns of groundwaters show heavy rare earth elements (HREE)-enrichment and positive Eu anomalies. This suggests that the REE are fractionated during leaching from the source rocks by groundwaters. Preferential leaching of HREE would be consistent with the greater stability of their aqueous complexes compared to those of the light rare earth elements (LREE), together with the dissolution of certain fracture filling minerals, dissolution/alteration of phyllosilicates and colloidal transport. (authors)

  12. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    Science.gov (United States)

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  13. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  14. Sputtering gases and pressure effects on the microstructure, magnetic properties and recording performance of TbFeCo films

    International Nuclear Information System (INIS)

    Murakami, Motoyoshi; Birukawa, Masahiro

    2008-01-01

    The MsHc value is considered to be a key factor in high-density recording, and controlling the microstructure on the magnetic underlayer was found to be an effective way of increasing the MsHc of the amorphous TbFeCo magneto-optical (MO) medium. In this paper, we investigate the TbFeCo film's magnetic properties and the effects on the microcolumnar structure, which depends on the sputtering conditions of using various sputtering gases including Ar, Kr, and Xe, and the recording characteristics of TbFeCo memory layers. With heavy sputtering gases such as Kr or Xe, the columnar structure can be prepared in a TbFeCo film at a pressure lower than 1.0 Pa. The columnar structure of a recording layer can be effectively formed thanks to the effects of the magnetic underlayer, which has a fine surface even in the sputtering process in which Xe gas is used. The above applies to the sputtering process in which Ar gas is used. Also, when Xe gas is used in the sputtering process, coercivity Hc is increased through the formation of a well-segregated microcolumnar structure built on domain wall pinning sites, and we obtain a large MsHc and a high squareness ratio of the Kerr-hysteresis loop. Our results indicate that processing a TbFeCo film with heavy sputtering gases is suitable for tiny mark stability because the temperature gradient of Hc is increased. The objective of the low-pressure sputtering process using Xe gas to produce the columnar structure is to achieve ultra-high-density recording with tiny mark stability in the TbFeCo medium. This has been confirmed with magnetic force microscope (MFM) images of stable tiny marks recorded on TbFeCo film

  15. Adducts of rare earth tris-acetylacetonates with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Dzyubenko, N.G.; Kalenichenko, Yu.V.; Martynenko, L.I.

    1988-01-01

    Adducts of rare earth and yttrium (r.e.e., M) acetylacetonates with dimethyl sulfoxide (DMSO), MA 3 xnDMSO are synthesized. The acetylacetonates of light r.e.e. (M=La-Tb) are shown by different physico-chemical methods to form diadducts of the MA 3 x2DMSOxH 2 O composition, where A - -acetylacetonate-ion, and the acetyl-acetonates of heavy r.e.e. (M=Dy-Lu, Y)-monoadducts MA 3 xDMSO. The estimation of adduct thermal stability is carried out using the values of seeming activation energy of their thermal degradation. Monoadducts are shown to give volatile forms of rare earth acetylacetonates during heating in vacuum, and diadducts do not form volatile forms of acetylacetonates

  16. Industrial gases

    International Nuclear Information System (INIS)

    Hunter, D.; Jackson, D.; Coeyman, M.

    1993-01-01

    Industrial gas companies have fought hard to boost sales and hold margins in the tough economic climate, and investments are well down from their 1989-'91 peak. But 'our industry is still very strong long term' says Alain Joly, CEO of industry leader L'Air Liquide (AL). By 1994, if a European and Japanese recovery follows through on one in the U.S., 'we could see major [investment] commitments starting again,' he says. 'Noncryogenic production technology is lowering the cost of gas-making possible new applications, oxygen is getting plenty of attention in the environmental area, and hydrogen also fits into the environmental thrust,' says Bob Lovett, executive v.p./gases and equipment with Air Products ampersand Chemicals (AP). Through the 1990's, 'Industrial gases could grow even faster than in the past decade,' he says. Virtually a new generation of new gases applications should become reality by the mid-1990s, says John Campbell, of industry consultants J.R. Campbell ampersand Associates (Lexington, MA). Big new oxygen volumes will be required for powder coal injection in blast furnaces-boosting a steel mill's requirement as much as 40% and coal gasification/combined cycle (CGCC). Increased oil refinery hydroprocessing needs promise hydrogen requirements

  17. Heavy fermions and superconductivity in doped cuprates

    International Nuclear Information System (INIS)

    Tornow, S.; Zevin, V.; Zwicknagl, G.

    1996-01-01

    We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd 2-x Ce x CuO 4 . The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T c which may help to assess the validity of the underlying assumptions. (orig.)

  18. Quantum chemical investigation of attractive non-covalent interactions between halomethanes and rare gases.

    Science.gov (United States)

    McAllister, Linda J; Bruce, Duncan W; Karadakov, Peter B

    2012-11-01

    The interaction between rare gas atoms and trifluoromethylhalides and iodomethane is investigated using ab initio and density functional theory (DFT) methods: MP2, CCSD, B3LYP, M06, M06-L, M06-2X, M06-HF, X3LYP, PBE, B97-D, B3LYP-D3, and M06-L-D3, in combination with the aug-cc-pVTZ and aug-cc-pVTZ-PP basis sets. A weakly attractive interaction is observed for all complexes, whose strength increases as the rare gas and halogen bond donor become more polarizable, and as the group bound to the halogen bond donor becomes more electron-withdrawing. The separation between iodine and krypton in the complex CF(3)I···Kr, calculated at the MP2 and B3LYP-D3 levels of theory, agrees very well with recent experimental results (Stephens, S. L.; Walker, N. R.; Legon, A. C. J. Chem. Phys. 2011, 135, 224309). Analysis of the ability of theoretical methods to account for the dispersion interaction present in these complexes leads to the conclusion that MP2 and B3LYP-D3, which produce very similar results, are the better performing methods, followed by B97-D and the M06 suite of functionals; the popular B3LYP as well as X3LYP perform poorly and significantly underestimate the interaction strength. The orbitals responsible for the interaction are identified through Edmiston-Ruedenberg localization; it is shown that, by combining the key orbitals, it is possible to observe a molecular orbital picture of a σ-hole interaction.

  19. Progress of sintered NdFeB permanent magnets by the diffusion of non-rare earth elements and their alloy compounds

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available It has been found that the coercivity (HC and corrosivity of sintered NdFeB magnets are closely related to the components and microstructure of their intergranular phase.The traditional smelting NdFeB magnets with adding heavy rare earth elements can modify intergranular phase to improve the HC and corrosion resistance of magnets.However,it makes the additives be homogenously distributed on the main phase,and causes magnetic decrease and cost increase.With the addition of non-rare earth materials into grain boundary,the microstructure of intergranular phase as well as its electrochemical potential and wettability can be optimized.As a result,the amount of heavy rare earth elements and cost of magnets could be reduced whilst the HC and corrosion resistance of magnets can be improved.This paper summarized the research on regulating the components and the microstructure of intergranular phase in sintered NdFeB magnets by non-rare earth metals and compounds,and its influence on coercivity and corrosion resistance.

  20. Hythane (H2 and CH4) production from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals via up-flow anaerobic self-separation gases reactor

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed; Elreedy, Ahmed; Pascal, Peu; Sophie, Le Roux; Tawfik, Ahmed

    2017-01-01

    Highlights: • Bio-hythane production from polyester wastewater via UASG reactor was assessed. • Impacts of influent contamination by 1,4-dioxane and heavy metals were discussed. • Maximum volumetric H 2 and CH 4 productions of 0.12 and 1.06 L/L/d were achieved. • Significant drop in CH 4 production was resulted at OLR up to 1.07 ± 0.06 gCOD/L/d. • Bioenergy recovery through UASG economically achieved a net profit of 10,231 $/y. - Abstract: A long-term evaluation of hythane generation from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals was investigated in a continuous up-flow anaerobic self- separation gases (UASG) reactor inoculated with mixed culture. The reactor was operated at constant hydraulic retention time (HRT) of 96 h and different organic loading rates (OLRs) of 0.31 ± 0.04, 0.71 ± 0.08 and 1.07 ± 0.06 gCOD/L/d. Available data showed that volumetric hythane production rate was substantially increased from 0.093 ± 0.021 to 0.245 ± 0.016 L/L/d at increasing OLR from 0.31 ± 0.04 to 0.71 ± 0.08 gCOD/L/d. However, at OLR exceeding 1.07 ± 0.06 gCOD/L/d, it was dropped to 0.114 ± 0.016 L/L/d. The reactor achieved 1,4-dioxane removal efficiencies of 51.8 ± 2.8, 35.9 ± 1.6 and 26.3 ± 1.6% at initial 1,4-dioxane concentrations of 1.14 ± 0.28, 1.97 ± 0.41 and 4.21 ± 0.30 mg/L, respectively. Moreover, the effect and potential removal of the contaminated by heavy metals (i.e., Cu 2+ , Mn 2+ , Cr 3+ , Fe 3+ and Ni 2+ ) were highlighted. Kinetic modelling and microbial community dynamics were studied, according to each OLR, to carefully describe the UASG performance. The economic analysis showed a stable operation for the anaerobic digestion of unsaturated polyester resin wastewater using UASG, and the maximum net profit was achieved at OLR of 0.71 ± 0.08 gCOD/L/d.

  1. Determination of individual rare earth elements in Vietnamese monazite by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Mong Sinh

    1993-01-01

    Radiochemical neutron activation analysis (RNAA) has been applied for determination of rare earth elements (REE) in Vietnamese monazite. The chemical separation procedure used is based on the chromatographic elution of rare earth groups, after the separation of 233 Pa(Th) in irradiated monazite samples by coprecipitation with MnO 2 , the rare earth elements were retained by Biorad AG1 x 8 resin column in 10% 15.4M HNO 3 -90% methanol solution. The elution of heavy rare earth (HREE) and middle rare earth (MREE) groups was carried out with 10% 1M HNO 3 - 90% methanol and 10% 0.05M HNO 3 -90% methanol solution, respectively; while the light rare earths (LREE) were eluted from the column by 0.1M HNO 3 solution. The accuracy of the method was checked by the analysis of granodiorite GSP-I and the rare earth values were in good agreement. (author) 7 refs.; 3 tabs

  2. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  3. Towards a heavy-ion transport capability in the MARS15 Code

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Gudima, K.K.; Mashnik, S.G.; Rakhno, I.L.; Striganov, S.

    2004-01-01

    In order to meet the challenges of new accelerator and space projects and further improve modelling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data. The MARS Monte Carlo code is widely used in numerous accelerator, detector, shielding and cosmic ray applications. The needs of the Relativistic Heavy-Ion Collider, Large Hadron Collider, Rare Isotope Accelerator and NASA projects have recently induced adding heavy-ion interaction and transport physics to the MARS15 code. The key modules of the new implementation are described below along with their comparisons to experimental data.

  4. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  5. Dew point measurements of flue gases in steam generators with brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schinkel, W.

    1980-01-01

    This paper examines empirical data on sulfuric acid condensation and resulting internal corrosion in brown coal fired steam generators. Due to the high sulfur content in brown coal (0.5% to 5.0%) and relative short duration of the gases in the combustion chamber the concentrations of sulfur trioxide present in the flue gases can condense at the heat exchange surfaces of the steam generators. A number of diagrams show sulfuric acid dew point temperatures depending on brown coal sulfur content, the influence of combustion air supply on the dew point, and condensing speed and the rate of corrosion in relation to different heat exchange surface temperatures. The conclusion is made that a five-fold increase in corrosion can be caused by a 10 K higher flue gas dew point, a 5 K cooling of heating surfaces can also cause heavy corrosion at a certain dew point. Maximum corrosion results at 20 to 50 K differences between flue gas dew point and heat exchange surfaces. Optimum operation of steam generators with minimal internal corrosion requires the consideration of flue gas and heating surface temperatures as well as flue gas sulfur acid dew points. (10 refs.) (In German)

  6. Tritium separation from heavy water using electrolysis

    International Nuclear Information System (INIS)

    Ogata, Y.; Sakuma, Y.; Ohtani, N.; Kodaka, M.

    2001-01-01

    A tritium separation from heavy water by the electrolysis using a solid polymer electrode (SPE) was specified on investigation. The heavy water (∼10 Bq g -1 ) and the light water (∼70 Bq g -1 ) were electrolysed using an electrolysis device (Tripure XZ001, Permelec Electrode Ltd.) with the SPE layer. The cathode was made of stainless steel (SUS314). The electrolysis was carried out at 20 A x 60 min, with the electrolysis temperature at 10, 20, or 30degC, and 15 A x 80 min at 5degC. The produced hydrogen and oxygen gases were recombined using a palladium catalyst (ND-101, N.E. Chemcat Ltd.) with nitrogen gas as a carrier. The activities of the water in the cell and of the recombined water were analyzed using a liquid scintillation counter. The electrolysis potential to keep the current 20 A was 2-3 V. The yields of the recombined water were more than 90%. The apparent separation factors (SF) for the heavy water and the light water were ∼2 and ∼12, respectively. The SF value was in agreement with the results in other work. The factors were changed with the cell temperature. The electrolysis using the SPE is applicable for the tritium separation, and is able to perform the small-scale apparatus at the room temperature. (author)

  7. The flotation of rare earths - a contribution to industrial hygiene

    International Nuclear Information System (INIS)

    Andrews, W.H.; Collins, D.N.; Hollick, C.T.

    1990-01-01

    Conventional processing of heavy mineral deposits containing radioactive rare earth minerals such as monazite and xenotime may cause industrial hygiene problems through atmospheric dust and contamination of product concentrates. An alternative procedure has been developed by Wimmera Industrial Mineral Pty. Ltd. at the Drung South deposit in Victoria. The radioactive minerals are removed from bulk heavy mineral concentrates by flotation with little loss of other economic minerals. With fine ores, recoveries of over 95% have been achieved and with coarse ores over 80%. The potential for generation of radioactive dust or product contamination in subsequent processing is correspondingly reduced. Several flotation regimes, which have proven effective are discussed. 7 refs., 7 tabs., 1 fig

  8. Irradiation technologies used for combustion gases and diluted sulfurous gases decontamination

    International Nuclear Information System (INIS)

    Villanueva Z, Loreto

    1998-01-01

    A brief description of irradiation technology used for ambient decontamination is presented here. The system is adequate fort gas and liquid effluents and solid wastes. In particular, the characteristics and applications of the irradiation done with an electron beam to gas effluent is described, mainly to clean combustion gases and other industrial gases containing sulfur and nitrogen oxides, S O x and N O x , respectively. This technology permits the remove of these contaminants and the acquisition of a solid byproduct, an ammonia sulfate-nitrate, apt for fertilizer applications. (author)

  9. Pathology, toxicology, and latency of irritant gases known to cause bronchiolitis obliterans disease: Does diacetyl fit the pattern?

    Directory of Open Access Journals (Sweden)

    Brent D. Kerger

    2015-01-01

    Full Text Available Bronchiolitis obliterans (BO is a rare disease involving concentric bronchiolar fibrosis that develops rapidly following inhalation of certain irritant gases at sufficiently high acute doses. While there are many potential causes of bronchiolar lesions involved in a variety of chronic lung diseases, failure to clearly define the clinical features and pathological characteristics can lead to ambiguous diagnoses. Irritant gases known to cause BO follow a similar pathologic process and time course of disease onset in humans. Studies of inhaled irritant gases known to cause BO (e.g., chlorine, hydrochloric acid, ammonia, nitrogen oxides, sulfur oxides, sulfur or nitrogen mustards, and phosgene indicate that the time course between causal chemical exposures and development of clinically significant BO disease is typically limited to a few months. The mechanism of toxic action exerted by these irritant gases generally involves widespread and severe injury of the epithelial lining of the bronchioles that leads to acute respiratory symptoms which can include lung edema within days. Repeated exposures to inhaled irritant gases at concentrations insufficient to cause marked respiratory distress or edema may lead to adaptive responses that can reduce or prevent severe bronchiolar fibrotic changes. Risk of BO from irritant gases is driven substantially by toxicokinetics affecting concentrations occurring at the bronchiolar epithelium. Highly soluble irritant gases that cause BO like ammonia generally follow a threshold-dependent cytotoxic mechanism of action that at sufficiently high doses results in severe inflammation of the upper respiratory tract and the bronchiolar epithelium concurrently. This is followed by acute respiratory distress, pulmonary edema, and post inflammatory concentric fibrosis that become clinically obvious within a few months. In contrast, irritant gases with lower solubility like phosgene also follow a threshold-dependent mechanism

  10. A Study of the Diffusion and Precipitation of Rare Gases in Metals; Étude de la diffusion et de la précipitation des gaz rares dans les métaux; ИЗУЧЕНИЕ РАСПРОСТРАНЕНИЯ И ОСАЖДЕНИЯ ИНЕРТНЫХ ГАЗОВ В МЕТАЛЛАХ; Estudio de la difusion y de la precipitacion de los gases nobles en los metales

    Energy Technology Data Exchange (ETDEWEB)

    Brebec, M. Gilbert; Levy, Viviane; Leteurtre, Jean; Adda, Yves [Centre d' Études Nucléaires de Saclay, Gif-sur-Yvette (S. et O.) (France)

    1963-08-15

    In an attempt to explain the mechanism of swelling of irradiated uranium, we studied the behaviour ol various rare gases(helium, argon, krypton, xenon) in several metals (silver, zirconium, uranium). Rare-gas/metal alloys of different concentrations were produced by electric discharge. It was shown that the introduction mechanism is probably based on the penetration of rare gas ions into the metallic lattice combined with redeposition. Using these alloys we studied: (a) Changes in the crystal lattice, including variations in crystal parameter due to introduction of rare gases into the lattice, and formation of defects through bombardment by the rare gas ions. (b) Diffusion of the Xe and Kr fission gases in various metals (silver, uranium). (c) Precipitation of rare gases (helium, argon, xenon, krypton) in the form of bubbles in various metals (silver, uranium, zirconium). These studies were carried out partly by optical microscopy and partly by transmission electron microscopy. (author) [French] En vue d'essayer de préciser les mécanismes du gonflement de l'uranium irradié nous avons étudié le comportement de différents gaz rares (hélium, argon, krypton, xénon) dans différents métaux (argent, zirconium, uranium). Des alliages gaz rare-métal de différentes concentrations ont été réalisés par décharge électrique. On a montré que le mécanisme d'introduction est probablement basé sur une pénétration des ions gaz rare dans le réseau métallique combinée à une redéposition. Sur de tels alliages nous avons étudié: a) Les modifications du réseau cristallin. - Variations de paramètre cristallin dû à l'introduction des gaz rares dans le réseau. - Création de défauts dus au bombardement par les ions gaz rares. b) La diffusion des gaz de fission Xe et Kr dans différents métaux (argent, uranium). c) La précipitation des gaz rares (hélium, argon, xénon, krypton) sous forme de bulles dans différents métaux (argent, uranium, zirconium

  11. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  12. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  13. Optical Lattice Gases of Interacting Fermions

    Science.gov (United States)

    2015-12-02

    interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015

  14. Subsurface contributions in epitaxial rare-earth silicides

    Energy Technology Data Exchange (ETDEWEB)

    Luebben, Olaf; Shvets, Igor V. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College, Dublin (Ireland); Cerda, Jorge I. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, Madrid (Spain); Chaika, Alexander N. [Institute of Solid State Physics, RAS, Chernogolovka (Russian Federation)

    2015-07-01

    Metallic thin films of heavy rare-earth silicides epitaxially grown on Si(111) substrates have been widely studied in recent years because of their appealing properties: unusually low values of the Schottky barrier height, an abrupt interface, and a small lattice mismatch. Previous studies also showed that these silicides present very similar atomic and electronic structures. Here, we examine one of these silicides (Gd{sub 3}Si{sub 5}) using scanning tunneling microscopy (STM) image simulations that go beyond the Tersoff-Hamann approach. These simulations strongly indicate an unusual STM depth sensitivity for this system.

  15. Hypokalemic periodic paralysis: Three rare secondary causes

    Directory of Open Access Journals (Sweden)

    Prasanna Eswaradass Venkatesan

    2015-01-01

    Full Text Available Periodic paralysis is a rare neuromuscular disorder, related to a defect in muscle ion channels, characterized by episodes of painless muscle weakness, which may be precipitated by heavy exercise, fasting, or high-carbohydrate meals. Hypokalemic periodic paralysis may be familial (primary or secondary. Here, we report three cases of secondary causes of hypokalemic periodic paralysis. On evaluation, case 1 had distal renal tubular acidosis (RTA due to Sjogren′s syndrome, case 2 had drug induced proximal RTA (Fanconi′s syndrome and case 3 had thyrotoxicosis. Clinician must be aware of causes of secondary PP as recognition and diagnosis can completely prevent further attacks of periodic paralysis. Each of the above case is rare, but completely treatable if diagnosed. Low dose steroids with bicarbonate replacement in case 1, stopping tenofovir in case 2 and carbimazole therapy in case 3 prevented further attacks of periodic paralysis and cardiopulmonary complications.

  16. Thin films nanostructured to multidetection catalytic from rare earth minerals: A) purification of perovskite

    International Nuclear Information System (INIS)

    Silva, M.G. da; Souza, C.P. de; Gomes, U.U.; Paskocimas, C.A.

    2010-01-01

    This project aims at the use of Brazilian mineral pretreated with high contents of rare earth (La, Ce) aiming at the elaboration of thin films which have physical properties (optical, electrical and catalytic) scalable. The property of greatest interest is the interaction in terms of selective catalytic gases methane, carbon monoxide and ammonia. The materials were characterized by X-ray diffraction (XRD) and transition electron microscopy (TEM). Crystalline residue samples were subjected to a series of chemical treatments followed by alkaline fusion. From a first approach, it was possible to separate the phosphate and silicate mineral residue, separating the rare earth elements to then extract the oxide phases of these materials as complex mixtures. (author)

  17. Behaviour of heavy water in nuclear reactors of the CEA; Comportement de l'eau lourde dans les piles du C.E.A

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J; Dirian, G; Roth, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    In the two heavy water reactors of the CEA: Zoe and P-2, we do: A) the supervision of the isotopic composition of the heavy water; B) the supervision of gases released by the decomposition of the heavy water under radiation, and to their recombination; C) periodic analyses of impurities. (M.B.) [French] Dans les deux piles a eau lourde du Commissariat a l'Energie Atomique: Zoe et P 2, nous effectuons: A) la surveillance de la composition isotopique de l'eau lourde; B) la surveillance des gaz degages par la decomposition de l'eau lourde sous radiation, et a leur recombinaison; C) des analyses periodiques d'impuretes. (M.B.)

  18. Hyperthermal (10-500 eV) collisions of noble gases with Ni(100) surface. Comparison between light and heavy atom collisions

    International Nuclear Information System (INIS)

    Kim, C.

    1995-01-01

    Collisional events between 10-500 eV atomic beams (He, Ne, Ar, Kr, and Xe) and a Ni(100) surface are investigated by the classical trajectory method. The calculation employs a molecular dynamics approach combined with a Langevin method for treating energy dissipation to infinite solid. We find that low energy collisions of heavy atoms (Xe and Kr) are characterized by extensive many-body interactions with top layer surface atoms. On the other hand, light atom (Ne and He) collisions can be approximated as a sequence of binary collisions even at these energies. Such a difference in the collisional nature gives rise to the following consequences. Low energy heavy atoms transfer energy mostly to the surface atoms during 45 angle collision. They scatter from the surface with a narrow angular distribution centered in a supraspecular direction. The ratio of the scattered to incident particle energy rapidly decreases with increasing beam energy of heavy atoms. The sputtering yield for Ni atoms by heavy atom bombardment increases quite linearly with beam energy, which is attributed to a linear proportionality between the beam energy and the energy transfered to a surface. Near the threshold energy sputtering can occur more efficiently by light atom bombardment. The energy transfer ratio to solid continuously increases with beam energy for light atoms. For heavy projectiles, on the other hand, this ratio reaches a maximum at the energy of ca, 100 eV, above which it stays nearly constant but slightly decreases. ((orig.))

  19. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content.

    Science.gov (United States)

    Dewil, Raf; Baeyens, Jan; Appels, Lise

    2007-06-18

    Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.

  20. Heavy fermions and superconductivity in doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, S. [Max-Planck-Inst. fur Phys. Komplexer Syst., Stuttgart (Germany). Aussenstelle Stuttgart; Zevin, V. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Zwicknagl, G. [Max-Planck-Inst. fur Phys. Komplexer Syst., Stuttgart (Germany). Aussenstelle Stuttgart

    1996-10-01

    We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd{sub 2-x}Ce{sub x}CuO{sub 4}. The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T{sub c} which may help to assess the validity of the underlying assumptions. (orig.)

  1. Reale Gase, tiefe Temperaturen

    Science.gov (United States)

    Heintze, Joachim

    Wir werden uns in diesem Kapitel zunächst mit der van der Waals'schen Zustandsgleichung befassen. In dieser Gleichung wird versucht, die Abweichungen, die reale Gase vom Verhalten idealer Gase zeigen, durch physikalisch motivierte Korrekturterme zu berücksichtigen. Es zeigt sich, dass die van derWaals-Gleichung geeignet ist, nicht nur die Gasphase, sondern auch die Phänomene bei der Verflüssigung von Gasen und den kritischen Punkt zu beschreiben.

  2. Reducing the Livestock related green house gases emission

    Directory of Open Access Journals (Sweden)

    D Indira

    2012-08-01

    Full Text Available Cattle rearing generate more global warming green house gases than driving cars. These green house gases leads to changes in the climate. This climate change affects the livestock, man and natural environment continuously. For this reason it is important for livestock farmers to find the ways which minimize these gases emission. In this article the causes of climate change and effects, measures to be taken by farmers and their efficiency in reducing green house gases emission were reviewed briefly to make the farmers and students aware of the reduction of global warming green house gases and measures to be taken for reducing these gases. [Vet. World 2012; 5(4.000: 244-247

  3. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  4. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  5. Contribution to the study of rare earth separation by ion exchange, using ammonium lactate

    International Nuclear Information System (INIS)

    Gratot, I.

    1958-01-01

    Using the technique of chromatography on a column of Dowex 50 resin, heated to 87 deg. C, we have studied the separation of rare earths (from holmium to praseodymium) which may be produced with the cyclotron by heavy ions, α or protons. From an ammonium lactate solution M at pH 5, separations are carried out by varying the dilution as a function of the quantity of the target rare earth and of its position during elution. When weighable quantities of the rare earth (more than 5 mg) appear towards the end of the elution, the separation is little affected this case approaches that of a tracer mixture of rare earths; if on the other hand weighable quantities of the rare earth are washed through at the beginning of the chromatogram, the dilution must be adjusted in order to obtain a good separation. (author) [fr

  6. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  7. Study on the excited diatomic molecules of rare gas

    International Nuclear Information System (INIS)

    Kasama, Kunihiko; Arai, Shigeyoshi

    1981-01-01

    The study on the excited diatomic molecules of rare gas is presented. The absorption spectra, the mechanism of formation and attenuation and the reactions with other molecules are described. The excitation of rare gas was made by using a pulsed electron beam generator. The absorption of excited diatomic molecules was measured as the functions of time. Two absorption peaks were observed. The electron states of rare gases were estimated. The observed and calculated transition values were given for each peak. The absorption spectra of Ne change with time. The spectra of Ar do not change with time. Four and eleven absorption maxima were seen in the spectra of Kr and Xe, respectively. In the case of Ar, the thermal equilibrium existed. The constants of the production and attenuation rates were obtained as the functions of Ar gas pressure. In the case of Ne, there wad definitely the time dependence of absorption spectra. The attenuation constant was obtained for each transition between various vibration levels. It is necessary to consider the relaxation from high vibrational levels. The energy transfer between vibrational levels hardly occurred in Ne because the intervals are large. When there are other molecules, the attnuation was accelerated. (Kato, T.)

  8. Gases in uranium exploration

    International Nuclear Information System (INIS)

    Wright, R.J.; Pacer, J.C.

    1981-01-01

    Interest continues to grow in the use of helium and radon detection as a uranium exploration tool because, in many instances, these radiogenic gases are the only indicators of deeply buried mineralization. The origin of these gases, their migration in the ground, the type of samples and measurement techniques are discussed. Case histories of comparative tests conducted on known uranium deposits at three geologically diverse sites in the United States of America are also presented. (author)

  9. Process for the manufacture of a gas largely free of inert gases for synthesis. Verfahren zur Herstellung eines weitgehend inertfreien Gases zur Synthese

    Energy Technology Data Exchange (ETDEWEB)

    Eisenlohr, K H; Gaensslen, H; Kriebel, M; Tanz, H

    1983-11-10

    In a process for producing a gas largely free of inert gases for the synthesis of alcohols, particularly methanol, and of hydrocarbons from coal or heavy hydrocarbons by gasification under pressure with oxygen and steam, the crude gas is cooled, the impurities are removed by washing with methanol and the methanol is removed from the cold pure gas by molecular sieves. The pure gas is then cooled further by evaporation and methane is distilled from the liquid part while simultaneously obtaining the synthetic gas consisting of hydrogen and carbon monoxide which is largely free of methane. The methane is wholly or partly compressed and then split into carbon monoxide and hydrogen using steam and oxygen. The split gas is fed back and mixed with the synthesis gas or the partly cleaned crude gas. The synthesis gas heated to the ambient temperature, freed of impurities and free of methane is compressed to the required synthesis pressure.

  10. New Trident Molecule with Phosphoric Acid Functionality for Trivalent Rare Earth Extraction

    Directory of Open Access Journals (Sweden)

    Keisuke Ohto

    2017-11-01

    Full Text Available Tripodal extraction reagent with three phosphoric acid groups, together with the corresponding monopodal molecule has been prepared to investigate some metals extraction behavior, in particular, trivalent rare earth elements (REEs. The tripodal reagent exhibited extremely high selectivity for metals with high valency such as Zr(IV, In(III, Lu(III, and Fe(III. Tripodal reagent also exhibited exceptionally high extraction ability compared with the corresponding monopodal one in the extraction of trivalent rare earths. The result for the stoichiometry of tripodal reagent to heavy rare earths showed the inflection point between Er (2:1 for a ligand with ion and Tm (1:1. The extraction reactions were determined for all rare earths with both reagents. The extraction equilibrium constants (Kex, the separation factors (β, half pH values (pH1/2, difference half pH values (ΔpH1/2 for extraction of REEs with both reagents are estimated.

  11. Landfill gases and some effects on vegetation

    Science.gov (United States)

    Franklin B. Flower; Ida A. Leone; Edward F. Gilman; John J. Arthur

    1977-01-01

    Gases moving from refuse landfills through soil were studied in New Jersey. The gases, products of anaerobic decomposition of organic matter in the refuse, caused injury and death of peach trees, ornamentals, and commercial farm crops, and create possible hazards to life and property because of the entrance of combustible gases into residences. Remedial measures are...

  12. Implantation damage in heavy gas implanted 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Nicolaï, J., E-mail: julien.nicolai@univ-poitiers.fr [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Declémy, A. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Gilabert, E. [Centre d’Etude Nucléaire de Bordeaux-Gradignan, 33175 Gradignan Cedex (France); Beaufort, M.-F.; Barbot, J.-F. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France)

    2016-05-01

    Single crystals of SiC were implanted with heavy inert gases (Xe, Ar) at elevated temperatures (300–800 °C) and for a large range of fluence (1 × 10{sup 12}–1 × 10{sup 15} ions cm{sup −2}). Thermodesorption measurements suggest that gas is trapped by implantation-induced vacancy-type defects impeding any gas diffusion. The damage accumulation versus dose was studied through the tensile elastic strain determined by using X-ray diffraction. Results show that at low dose the strain is predictable via a thermally activated direct impact model. The low thermal activation energy at saturation suggests a dynamic recovery process dominated by the migration of interstitial-type defects as its relaxation during post thermal annealing. As compared with light-gas implantation the heavy-gas to defect ratio is low enhancing the formation of strongly perturbed zones rather than the formation of bubble precursors.

  13. Kinetic theory of nonideal gases and nonideal plasmas

    CERN Document Server

    Klimontovich, Yu L

    2013-01-01

    Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor

  14. Calorimetric measurements on slightly soluble gases in water

    International Nuclear Information System (INIS)

    Olofsson, G.; Oshodj, A.A.; Qvarnstroem, E.; Wadsoe, I.

    1984-01-01

    Calorimetric measurements have been made of enthalpies of solution Δsub(sol)Hsub(m)sup(infinity) in water of helium, neon, argon, krypton, xenon, methane, ethane, propane, n-butane, and oxygen at 288.15, 298.15, and 308.15 K. Values of the heat-capacity changes Δsub(sol)Csub(p,m)sup(infinity) have been derived. The found values for both the enthalpy and heat-capacity changes for the rare gases and for oxygen fully confirm the values derived by Benson and Krause, Jr. (1976), and Benson, Krause, Jr., and Peterson (1979) from the results of their very careful gas-solubility measurements. The partial molar heat capacities Csub(p,2)sup(infinity) of the hydrocarbons studied were derived. The group-additivity schemes that have been used successfully for the estimation of values for Csub(p,2)sup(infinity) for various non-ionic organic compounds do not correctly predict values of Csub(p,2)sup(infinity) for the hydrocarbons in the present study. (author)

  15. Application of 241Am EDXRF to the determination of rare earth samples of solvent extraction processes

    International Nuclear Information System (INIS)

    Yan Chunhua; Jia Jiangtao; Liao Chunsheng; Li Biaoguo

    1998-01-01

    A rapid energy dispersive X-ray fluorescence spectroscopy (EDXRF) analysis system is established to determine rare earth concentrations. The characteristic K-shell series X-rays of rare earths were excited by a 1.1 x 10 9 Bq 241 Am radioisotope source. The spectra were recorded and analyzed using a multi-channel analyzer, employing a high-purity Ge detector. In this method, the Compton scattering peak, absorption of elements, and specific simplification are considered. Samples of light, middle and heavy rare earths during separation processes in both hydrochloride solution and rare earth loaded organic phases were analyzed off-line. Some comparative results measured by ICP are also given. The results show that the method can be used for a wide range of rare earth concentrations (0.1-300 g l -1 rare earth oxide). Being rapid, effective, precise and non-destructive, the method can be applied to on-line analysis to determine rare earth concentrations during separation by solvent extraction. (orig.)

  16. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  17. Occurrence, emission and ignition of combustible strata gases in Witwatersrand gold mines and Bushveld platinum mines, and means of ameliorating related ignition and explosion hazards, Part 1: literature and technical review.

    CSIR Research Space (South Africa)

    Cook, AP

    1998-10-01

    Full Text Available 60 62 63 64 9 Terminology and abbreviations The terms combustible, flammable and inflammable, to describe gases encountered in mining, are all used commonly in literature and within the South African mining industry. The Concise Oxford English... dictionary defines them as: combustible: capable of burning inflammable: easily set on fire flammable: rarely used except in “nonflammable”. In this report combustible and flammable are used to describe gas or gases that will burn or explode in air...

  18. Experimental investigation of the chemistry of excited states of rare gases. Technical progress report, October 15, 1975--July 15, 1976

    International Nuclear Information System (INIS)

    Setser, D.W.

    1976-07-01

    Total quenching rate constants and branching ratios for rare gas halide excimer formation have been measured for Ar( 3 P 0 , 2 ), Kr( 3 P 2 ) and Xe( 3 P 2 ) reacting with chlorine and fluorine-containing molecules. Emphasis was focused on systems giving KrF* and XeF* as products. All halogen containing molecules quench metastable rare gas atoms with gas kinetic cross-sections. However, only diatomic halogens and small molecules with O-X or N-X bonds quench the metastable with high branching ratios for excimer formation. The product channels for the reagents which do not yield the rare gas halides as the main exit channel remain to be identified. The work that has been done provides a good survey of halogen donors. This work will assist in selection of the best halogen-containing molecules for use in rare gas halide excimer lasers. Tunable dye laser fluorescence experiments have been done to obtain radiative lifetimes and two body quenching rate constants (with ground state Ar) for excited states of Ar*(3p 5 ,4p) and Ar*

  19. Some aspects of the interaction of photons and electrons with rare gas atoms

    International Nuclear Information System (INIS)

    Westerveld, W.B.

    1979-01-01

    Processes for excitation in rare gas atoms are described, due to absorption of photons and bombardment with electrons. The differences and similarities between excitation by absorption of light (spectroscopy) and by electron impact (collision physics) are qualified. Oscillator strengths from the self-absorption of resonance radiation in rare gases are determined. The excitation of 2'P and 3'P states of helium by electrons has been studied by observing excitation cross sections and polarization fractions obtained from XUV radiation. A description is given of a recently completed apparatus to study inelastic electron-atom scattering processes by coincidence techniques. An introduction is given to the theory which relates the parameters describing an excited state of an atom to the angular distribution of the radiation emitted in the decay of the excited state. (Auth.)

  20. Numerical analysis of mixing process of two component gases in vertical fluid layer

    International Nuclear Information System (INIS)

    Hatori, Hirofumi; Takeda, Tetsuaki; Funatani, Shumpei

    2015-01-01

    When the depressurization accident occurs in the Very-High-Temperature Reactor (VHTR), it is expected that air enter into the reactor core. Therefore, it is important to know a mixing process of different kind of gases in the stable or unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to research the mixing process of two component gases and flow characteristics of the localized natural convection, we have carried out numerical analysis using three dimensional CFD code. The numerical model was consisted of a storage tank and a reverse U-shaped vertical slot. They were separated by a partition plate. One side of the left vertical fluid layer was heated and the other side was cooled. The right vertical fluid layer was also cooled. The procedure of numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left vertical fluid layer, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by a steady state analysis. The unsteady state analysis was started when the partition plate was opened. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. The result obtained in this numerical analysis is as follows. The temperature difference of the left vertical fluid layer was set to 100 K. The combination of the mixed gas was nitrogen and argon. After 76 minutes elapsed, natural circulation occurred. (author)

  1. Non-destructive profile measurement of intensive heavy ion beams; Zerstoerungsfreie Profilmessung intensiver Schwerionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Frank

    2010-02-08

    linear dependence on the gas-pressure for constant profile width and as well as the light yield being proportional to the differential energy loss. For nitrogen, spectral investigation shows a four times higher light yield compared to rare gas species, normalized with respect to the differential energy loss. Helium is the only rare gas that shows broadened beam profiles. All other rare gases and nitrogen show reasonable beam profiles that correspond well with each other. Furthermore the dose-distribution in a cave for beam energies ≥ 100 AMeV was measured and simulated in order to develop a shielding concept that protects the camera system against radiation damage. According to simulations the neutron dose decreases by 94 % in the center of a 1 m{sup 3} concrete cube. Possible profile distortions due to effects like momentum transfer, gas dynamics and the electrical field of the ion beam are discussed. Technical improvements are presented.

  2. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys

    International Nuclear Information System (INIS)

    Scheunert, G; Ward, C; Hendren, W R; Bowman, R M; Lapicki, A A; Hardeman, R; Mooney, M; Gubbins, M

    2014-01-01

    Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe 65 Co 35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature. (paper)

  3. Apparatus for studying the diffusion of rare gases in stainless steel; Appareil pour etude de la diffusion des gaz rares dans l'acier inoxydable

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Alfille, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    This apparatus enables measurements to be carried out on the diffusion of gaseous fission products and of gases in general across thin metallic walls at high temperatures. This work was initially intended to solve the problems involved in systems for detecting the rupture of a fuel element can (D.R.G.) by the diffusion of fission products through the cans at high temperatures. The extension of the work to other fields is envisaged. (author) [French] Cet appareil permet d'effectuer des mesures sur la diffusion des produits de fission gazeux, et des gaz en general, au travers de parois metalliques minces a haute temperature. Au depart, ce procede devait contribuer a resoudre les problemes poses aux systemes detecteurs de rupture de gaine (D.R.G.), par la diffusion des produits de fission au travers des gaines de cartouches a haute temperature. Son extension a d'autres etudes est envisagee. (auteur)

  4. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  5. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was

  6. Origins of geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  7. Magnetic fluctuations in heavy-fermion metals

    DEFF Research Database (Denmark)

    Mason, T.E.; Petersen, T.; Aeppli, G.

    1995-01-01

    Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order......, the nature of the antiferromagnetic order and magnetic fluctuations is qualitatively quite different. UPd2Al3 resembles a rare earth magnetic system with coupling of the 4f electrons to the conduction electrons manifested in a broadening of otherwise conventional spin wave excitations. This is in marked...

  8. Rare earth industries: Upstream business

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many factors contribute to the rush to invest in the unprecedented revival of rare earths. One major reason has to do with the rapidly growing world demand. The other reason relates to the attractive price of rare earths which is projected to stay strong in the coming years. This is because supply is predicted to have difficulty keeping pace with demand. Experts believe a major driver of global rare earths demand is the forecasted expansion in the green economy. Climate change is a major driver of the green economy. With climate change, there is concern that the uncontrolled emission of the greenhouse gases, especially carbon dioxide, can lead to catastrophic consequences for the world. This has been documented in countless studies and reports. Another important driver of the green economy is the growing shortfall in many resources. The world is now experiencing declines in key resources to meet a growing global demand. With more than 6 billion people now in the world and growing, the pressure exerted on global resources including energy, water and food is a major concern. Recent demand surge in China and India has dented the supply position of major world resources. The much quoted Stern Report from the UK has warned that, unless immediate steps are taken to reduce greenhouse gas emissions, it may be a costly exercise to undertake the corrections later. Since energy use, especially fossil fuels, is a major contributor to climate change, greener options are being sought. Add to that the fact that the fossil energy resources of the world are declining, the need to seek alternatives becomes even more urgent. One option is to change to renewable energy sources. These include such potentials as solar, wind and biomass. Rare earths have somehow become a critical feature of the technologies in such renewable. Another option is to improve the efficient use of energy in transport, buildings and all the other energy intensive industries. Again the technologies in

  9. Thermodynamics and kinetics of the formation of rare earth intermetallics

    International Nuclear Information System (INIS)

    Deodhar, S.S.

    1975-01-01

    Heats of reaction of rare earth intermetallics with iron, cobalt and nickel were determined using Differential Thermal Analysis technique. The intermetallic compounds studied were of MgCu 2 type Laves phases and the rare earth elements studied were praseodymium, gadolinium, dyprosium and erbium. The reactions were exothermic and the heats of reaction were generally high. They varied from the low of -2.5 kcal/g mole for Fe 2 Gd to the high of -35.3 kcal/g mole for Ni 2 Er. The magnitudes of heats of reaction were always greater for the intermetallics of heavy rare earth elements. The rare earth intermetallics studied were either ferromagnetic or antiferromagnetic. The variations in the magnetic moments and the heats of reaction with respect to the atomic number of the rare earth elements followed certain trends. The similarities were observed in the trends of two properties. Electronic configuration for the MgCu 2 type rare earth intermetallics is proposed using Engel--Brewer correlation for metallic structures and the structural features of the Laves phase compounds. Kinetics of the reactions between the rare earth elements and iron, cobalt, and nickel was studied. The rate of reaction was diffusion controlled in each case. The Valensi--Carter equation for the diffusion mechanism satisfactorily described the kinetic behavior. The magnitudes of activation energies and frequency factors were determined. The reactions can be characterized by their reaction temperatures since they always begin at definite temperatures. It was observed that the reaction began at a higher temperature if the activation energy for the reaction was high

  10. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-11-29

    ... Mandatory Reporting of Greenhouse Gases; Final Rule #0;#0;Federal Register / Vol. 76, No. 229 / Tuesday... 98 [EPA-HQ-OAR-2011-0147; FRL-9493-9] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial errors...

  11. 76 FR 47391 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-08-04

    ... Mandatory Reporting of Greenhouse Gases; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 150 / Thursday...-HQ-OAR-2011-0147; FRL-9443-1] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... provisions in the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial...

  12. Transport of intense particle beams with application to heavy ion fusion

    International Nuclear Information System (INIS)

    Buchanan, H.L.; Chambers, F.W.; Lee, E.P.; Yu, S.S.; Briggs, R.J.; Rosenbluth, M.N.

    1979-01-01

    An attractive feature of the high energy (> GeV) heavy ion beam approach to inertial fusion, as compared with other particle beam systems, is the relative simplicity involved in the transport and focusing of energy on the target inside a reactor chamber. While this focusing could be done in vacuum by conventional methods with multiple beams, there are significant advantages in reactor design if one can operate at gas pressures around one torr. In this paper we summarize the results of our studies of heavy ion beam transport in gases. With good enough charge and current neutralization, one could get a ballistically-converging beam envelope down to a few millimeters over a 10 meter path inside the chamber. Problems of beam filamentation place important restrictions on this approach. We also discuss transport in a self-focused mode, where a relatively stable pressure window is predicted similar to the observed window for electron beam transport

  13. Development of Time Projection Chambers with Micromegas for Rare Event Searches

    CERN Document Server

    Tomas, Alfredo; Villar, J A

    The Rare Event Searches is a heterogeneous field from the point of view of their physical motivations: double betha neutrinoless decay experiments, direct detection of WIMPs as well as axions and other WISPs (candidates for the DM, but also motivated by other questions from Particle Physics). The field is rather defined by the requirements of these experiments, essentially a very sensitive detector with low background which is usually operated in underground laboratories. The availability of a rich description of the event registered by the detector is a powerful tool for the discrimination of the signal from the background. The topological description of the interaction that can be delivered by a gaseous TPC is a useful source of information about the event. The generic requirements for a gaseous TPC that is intended for rare event searches are very good imaging capabilities, high gain and efficiency, stability and reliability and radio-purity, which could imply working with particular gases, in absence of q...

  14. Rare earth elements-critical resources for green energy and digital technology

    International Nuclear Information System (INIS)

    Singh, D.

    2013-01-01

    High technology and environment applications of the Rare Earth Elements (REE) have grown dramatically in diversity and importance over the past few decades. The REE forms largest economical coherent group in the periodic table. The versatility and specialty of the REE has given them a level of technological, environment and economical importance. As technological applications of REE have multiplied over the past several decades, the demand for them has increased dramatically. The green energy is the segment, which is largely contributed in its performance by the REE. The increasing concern about the impact of green house gases around the globe has made countries to explore clean energy technologies to reduce emissions. India has ambitious plans for generating solar power of 30,000 MW and wind energy of 50,000 MW by 2013. Critical component with respect to wind energy is the high strength rare earth permanent magnet, while in hybrid electrical motors REEs like lanthanum are used in LiMH battery pack

  15. Santa Lucia (2008) (L6) Chondrite, a Recent Fall: Composition, Noble Gases, Nitrogen and Cosmic Ray Exposure Age

    Science.gov (United States)

    Mahajan, Ramakant R.; Varela, Maria Eugenia; Joron, Jean Louis

    2016-04-01

    The Santa Lucia (2008)—one the most recent Argentine meteorite fall, fell in San Juan province, Argentina, on 23 January 2008. Several masses (total ~6 kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour. Chemical data [olivine (Fa24.4) and low-Ca pyroxene (En77.8 Fs20.7 Wo1.6)] indicate that Santa Luica (2008) is a member of the low iron L chondrite group, corresponding to the equilibrated petrologic type 6. The meteorite name was approved by the Nomenclature Committee (NomCom) of the Meteoritical Society (Meteoritic Bulletin, no. 97). We report about the chemical composition of the major mineral phases, its bulk trace element abundance, its noble gas and nitrogen data. The cosmic ray exposure age based on cosmogenic 3He, 21Ne, and 38Ar around 20 Ma is comparable to one peak of L chondrites. The radiogenic K-Ar age of 2.96 Ga, while the young U, Th-He are of 1.2 Ga indicates that Santa Lucia (2008) lost radiogenic 4He more recently. Low cosmogenic (22Ne/21Ne)c and absence of solar wind noble gases are consistent with irradiation in a large body. Heavy noble gases (Ar/Kr/Xe) indicated trapped gases similar to ordinary chondrites. Krypton and neon indicates irradiation in large body, implying large pre-atmospheric meteoroid.

  16. Deviation from the Knudsen law on quantum gases

    International Nuclear Information System (INIS)

    Babac, Gulru

    2014-01-01

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases

  17. Heavy-heavy and heavy-light quarks interactions generated by QCD vacuum

    Directory of Open Access Journals (Sweden)

    Musakhanov Mirzayusuf

    2017-01-01

    Full Text Available The QCD vacuum is populated by instantons that correspond to the tunneling processes in the vacuum. This mechanism creates the strong vacuum gluon fields. As result, the QCD vacuum instantons induce very strong interactions between light quarks, initially almost massless. Such a strong interactions bring a large dynamical mass M of the light quarks and bound them to produce almost massless pions in accordance with the spontaneous breaking of the chiral symmetry (SBCS. On the other hand, the QCD vacuum instantons also interact with heavy quarks and responsible for the generation of the heavy-heavy and heavy-light quarks interactions, with a traces of the SBCS. If we take the average instanton size ρ¯=0.33$\\bar \\rho = 0.33$ fm, and the average inter-instanton distance R¯=1$\\bar R = 1$ fm we obtain the dynamical light quark mass to be M = 365 MeV and the instanton media contribution to the heavy quark mass ΔM=70 MeV. These factors define the coupling between heavy-light and heavy-heavy quarks induced by the QCD vacuum instantons. We consider first the instanton effects on the heavy-heavy quarks potential, including its spin-dependent part. We also discuss those effects on the masses of the charmonia and their hyperfine mass splittings. At the second part we discuss the interaction between a heavy and light quarks generated by instantons and it’s effects.

  18. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd–Lu)

    Energy Technology Data Exchange (ETDEWEB)

    Mioduski, Tomasz [Institute of Nuclear Chemistry and Technology, 03195 Warszawa (Poland); Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl [Department of Chemistry, University of Warsaw, 02093 Warszawa (Poland); Zeng, Dewen, E-mail: dewen-zeng@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2015-06-15

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  19. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  20. Acquired cutis laxa associated with light and heavy chain deposition disease

    Directory of Open Access Journals (Sweden)

    Reena A Majithia

    2018-01-01

    Full Text Available Acquired cutis laxa (ACL is a rare connective tissue disorder characterized by pendulous and coarsely wrinkled skin. There have been few cases of its association to monoclonal immunoglobulin deposition disease (MIDD, which constitutes the light chain (LCDD, heavy chain (HCDD, and light and heavy chain (LHCDD deposition disease. MIDD predominantly involves the kidney. Skin is the next common organ to be affected by HCDD, which presents as ACL. We report the case of a 40-year-old male who presented with ACL associated with LHCDD. The clinical features of ACL in the present case appeared prior to the development of clinical features related to LHCDD.

  1. 40 CFR 89.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... determined to calibration gas tolerances by chromatographic analysis of total hydrocarbons plus impurities or.... (2) Mixtures of gases having the following chemical compositions shall be available: (i) C3H8 and... check gases shall contain propane with 350 ppmC ±75 ppmC hydrocarbon. The three oxygen interference...

  2. A numerical model of heavy gas dispersion

    International Nuclear Information System (INIS)

    Bidokhtti, A.A.

    1993-01-01

    A simple mathematical model describing the motion of a dense gas released continuously into and environment is presented. The model correctly predicts the laboratory experiments which were carried out by Britter and Snyder (1987). It is an entrainment model better known as box model. In this model, the effects of temperature change and phase change are not considered and it is for a steady-state case. Further work is required for including these effects which are often associated with the mechanisms involved in accidental or natural release of heavy gases in the environment. The results of such a model will be extended to the practical situations which are and will be common to the nuclear industry at the Atomic Energy Organization of Iran. The applicability of such studies to these situations will be discussed

  3. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  4. Use of gases in dairy manufacturing: A review.

    Science.gov (United States)

    Adhikari, Bhaskar Mani; Truong, Tuyen; Bansal, Nidhi; Bhandari, Bhesh

    2017-06-13

    Use of gases (air, carbon dioxide and nitrogen) has been practiced in the manufacture of dairy products (i.e., ice cream, whipped cream and butter) to improve their texture, mouthfeel and shelf-life extension. Many attempts have also been made to incorporate other gases such as hydrogen, nitrous oxide, argon, xenon, and helium into the dairy systems for various product functionalities such as whipping, foaming, texture, aroma enhancement, and therapeutic properties. The gases can be dissolved in aqueous and fat phases or remain in the form of bubbles stabilized by protein or fat particles. The gas addition or infusion processes are typically simple and have been used commercially. This review focuses on the use of various gases in relation to their individually physical properties along with their specific roles in manufacturing and controlling quality of dairy products. It also recaps on how gases are included in the dairy systems. The information is important in understanding of addition of specific gas(es) into food systems, particularly dairy products, that potentially provide intervention opportunities for modifying and/or creating innovative food structures and functionalities.

  5. Study On Beneficiation Technology Of Dong Pao Rare-Earth-Barite-Fluorite With Two Product Plans About Content And Recovery Of Rare-Earth Fine Ores

    International Nuclear Information System (INIS)

    Duong Van Su; Truong Thi Ai; Bui Ba Duy; Bui Thi Bay; Nguyen Hong Ha; Le Thi Hong Ha; Doan Thi Mo; Doan Dac Ban; Nguyen Hoang Son

    2014-01-01

    The ore sample used in the research was taken from the F3 ore bodies and the sample of the F7, F9 and F16 ore bodies which contain the average of 5.98% TR 2 O 3 ; they are multi-metals ore which is difficult to enrich, highly weather with very complex ingredients. The process of the experiment is the ore is crushed, ground, screened and classified reasonably to -0.1 mm and divided into 3 particle size with the following technique: (1) -0.020 mm is primary sludge and the rare-earth fine ore; (2) 0.075-1 mm is gotten through the sludge concentrating table with the output is the 2 parts: the heavy part which is dried magnetic separator with high magnetism to get the rare-earth fine ore and the light one; (3) Light minerals, non-magnetic and ferromagnetic minerals group are ground together to 85% of them get size within -0.075 mm then mix it with 0.020-0.075 mm group. Using flotation separator, get barite-rare earth mixture and fluorite. After that, we separate this mixture by secondary flotation and get refined rare earth, barite and fluorite mineral. The result of the theme: (1) product plan A-rare-earth fine ore has TR 2 O 3 content archive 42.07% with recovery is 69.70%; (2) product plan B-rare-earth fine ore has TR 2 O 3 content archive 29.64% with recovery is 80.01%. (author)

  6. Heavy water at Trail, British Columbia

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2006-01-01

    Today Canada stands on the threshold of a nuclear renaissance, based on the CANDU reactor family, which depends on heavy water as a moderator and for cooling. Canada has a long history with heavy water, with commercial interests beginning in 1934, a mere two years after its discovery. At one time Canada was the world's largest producer of heavy water. The Second World War stimulated interest in this rather rare substance, such that the worlds largest supply (185 kg) ended up in Canada in 1942 to support nuclear research work at the Montreal Laboratories of the National Research Council. A year later commercial production began at Trail, British Columbia, to support work that later became known as the P-9 project, associated with the Manhattan Project. The Trail plant produced heavy water from 1943 until 1956, when it was shut down. During the war years the project was so secret that Lesslie Thomson, Special Liaison Officer reporting on nuclear matters to C.D. Howe, Minister of Munitions and Supply, was discouraged from visiting Trail operations. Thomson never did visit the Trail facility during the war. In 2005 the remaining large, tall concrete exchange tower was demolished at a cost of about $2.4 million, about the same as it cost to construct the facility about 60 years ago. Thus no physical evidence remains of this historic facility and another important artifact from Canada's nuclear history has disappeared forever. It is planned to place a plaque at the site at some point in the future. (author)

  7. Heavy water at Trail, British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E. [Ontario (Canada)

    2006-09-15

    Today Canada stands on the threshold of a nuclear renaissance, based on the CANDU reactor family, which depends on heavy water as a moderator and for cooling. Canada has a long history with heavy water, with commercial interests beginning in 1934, a mere two years after its discovery. At one time Canada was the world's largest producer of heavy water. The Second World War stimulated interest in this rather rare substance, such that the worlds largest supply (185 kg) ended up in Canada in 1942 to support nuclear research work at the Montreal Laboratories of the National Research Council. A year later commercial production began at Trail, British Columbia, to support work that later became known as the P-9 project, associated with the Manhattan Project. The Trail plant produced heavy water from 1943 until 1956, when it was shut down. During the war years the project was so secret that Lesslie Thomson, Special Liaison Officer reporting on nuclear matters to C.D. Howe, Minister of Munitions and Supply, was discouraged from visiting Trail operations. Thomson never did visit the Trail facility during the war. In 2005 the remaining large, tall concrete exchange tower was demolished at a cost of about $2.4 million, about the same as it cost to construct the facility about 60 years ago. Thus no physical evidence remains of this historic facility and another important artifact from Canada's nuclear history has disappeared forever. It is planned to place a plaque at the site at some point in the future. (author)

  8. Thermoelectric transport in rare-earth compounds

    International Nuclear Information System (INIS)

    Koehler, Ulrike

    2007-01-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce 3 Rh 4 Sn 13 are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu 1-x Yb x Rh 2 Si 2 and Ce x La 1-x Ni 2 Ge 2 by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  9. Heavy quark effective theory and heavy baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    The heavy quark effective theory (HQET) is applied to study the weak decay of heavy mesons and heavy baryons and to predict the form factors for heavy to heavy and heavy to light transitions. 28 refs, 10 figs, 2 tabs

  10. Production of Rare Earth Elements from Malaysian Monazite by Selective Precipitation

    International Nuclear Information System (INIS)

    Che Nor Aniza Che Zainul Bahri; Al- Areqi, W.M.; Amran Abdul Majid; Mohd Izzat Fahmi Mohd Ruf

    2016-01-01

    Rare earth elements (REEs) are very valuable and have high demands for advanced technology nowadays. REEs can be classified to light rare earth elements (LREEs) and heavy rare earth elements (HREEs). Malaysian rare earth ore especially monazite, is rich with LREEs compared to HREEs. Therefore a study was carried out to extract the REE from Malaysian monazite. The objectives of this study are to determine the content of REEs in Malaysian monazite leach solution, as well as to produce high grade of REEs. Concentrated sulphuric acid was used in digestion process and the filtrate containing the REEs was determined using Inductively Coupled Plasma- Mass Spectrometry (ICP-MS). Ammonia solution was used for REEs precipitation from monazite leach solution. The result indicated that REEs was successfully separated from monazite leach solution through selective precipitation using ammonia at pH 2.34 and the percentage of REEs that successfully separated was 70.03 - 81.85 %. The percentage of REEs which successfully separated from final solution was 96.05 - 99.10 %. Therefore, to have high purification of individual REEs, solvent extraction process should be carried out. (author)

  11. Monte Carlo simulation for neutron yield produced by bombarding thick targets with high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Yoon, Moo Hyun; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2013-04-15

    One of radiation shielding issues at heavy-ion accelerator facilities is to estimate neutron production by primary heavy ions. A few Monte Carlo transport codes such as FLUKA and PHITS can work with primary heavy ions. Recently IBS/RISP((Rare Isotope Science Project) started to design a high-energy, high-power rare isotope accelerator complex for nuclear physics, medical and material science and applications. There is a lack of experimental and simulated data about the interaction of major beam, {sup 238}U with materials. For the shielding design of the end of first accelerating section section, we calculate a differential neutron yield using the FLUKA code for the interaction of 18.5 MeV/u uranium ion beam with thin carbon stripper of 1.3 μm). The benchmarking studies were also done to prove the yield calculation for 400 MeV/n {sup 131}Xe and other heavy ions. In this study, the benchmarking for Xe-C, Xe-Cu, Xe-Al, Xe-Pb and U-C, other interactions were performed using the FLUKA code. All of results show that the FLUKA can evaluate the heavy ion induced reaction with good uncertainty. For the evaluation of neutron source term, the calculated neutron yields are shown in Fig. 2. The energy of Uranium ion beam is only 18.5 MeV/u, but the energy of produced secondary neutrons was extended over 100 MeV. So the neutron shielding and the damage by those neutrons is expected to be serious. Because of thin stripper, the neutron intensity at forward direction was high. But the the intensity of produced secondary photons was relatively low and mostly the angular property was isotropic. For the detail shielding design of stripper section of RISP rare istope accelerator, the benchmarking study and preliminary evaluation of neutron source term from uranium beam have been carried out using the FLUKA code. This study is also compared with the evaluation results using the PHITS code performed coincidently. Both studies shows that two monte carlo codes can give a good results for

  12. The role of top in heavy flavor physics

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, J.L. [Stanford Linear Accelerator Center, Stanford, CA (United States)

    1997-01-01

    The implications of the massive top quark on heavy flavor transitions are explored. We review the generation of quark masses and mixings and the determination techniques, and present the status of the elements of the weak mixing matrix. Purely leptonic decays of heavy mesons are briefly summarized. We present a general introduction to flavor changing neutral currents and an extensive summary of radiative and other rare decay modes. The physics of neutral meson mixing is reviewed and applied to each meson system. We describe the phenomenology of CP violation and how it may be measured in meson decays. Standard Model predictions are given in each case and the effects of physics beyond the Standard Model are also discussed. Throughout, we contrast these transitions in the K and B meson systems to those in the D meson and top-quark sectors.

  13. The role of top in heavy flavor physics

    International Nuclear Information System (INIS)

    Hewett, J.L.

    1997-01-01

    The implications of the massive top quark on heavy flavor transitions are explored. We review the generation of quark masses and mixings and the determination techniques, and present the status of the elements of the weak mixing matrix. Purely leptonic decays of heavy mesons are briefly summarized. We present a general introduction to flavor changing neutral currents and an extensive summary of radiative and other rare decay modes. The physics of neutral meson mixing is reviewed and applied to each meson system. We describe the phenomenology of CP violation and how it may be measured in meson decays. Standard Model predictions are given in each case and the effects of physics beyond the Standard Model are also discussed. Throughout, we contrast these transitions in the K and B meson systems to those in the D meson and top-quark sectors

  14. Dissolution of the rare-earth mineral bastnaesite by acidic amide ionic liquid for recovery of critical

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Chemical Science Division, Oak Ridge, TN (United States); Freiderich, John W. [Chemical Science Division, Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moyer, Bruce A. [Chemical Science Division, Oak Ridge, TN (United States); Stankovich, Joseph J. [Chemical Science Division, Oak Ridge, TN (United States)

    2015-08-19

    Rare-earth elements provide the cornerstones to clean sustainable energy and modern technologies such as computers, communications, and transportation. As such, the recovery of rare earths (REs) from minerals such as bastnaesite remains important for modern times. As the light lanthanides (La–Nd) constitute the majority (typically > 98.7 %) of the REs in bastnaesite with the heavy REs (Sm–Lu) contributing the remainder (approximately 1.3 %), an enrichment of heavier REs may serve as an effective means of assisting rare-earth recovery. Such an extractive metallurgy process involving ionic liquids (ILs) leads to an enrichment of heavy REs by nearly an order of magnitude. The acidic IL N,N-dimethylacetamidium bis(trifluoromethylsulfonyl)imide (DMAH+NTf2) in the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM+NTf2) dissolves froth flotation bastnaesite, synthetic bastnaesite analogues (RECO3F), RE2O3, and RE2(CO3)3 minerals. Furthermore, an overall reaction for the dissolution of bastnaesite is proposed for this IL system. This IL system may provide the initial stages of a greater RE separation scheme for bastnaesite froth flotation concentrates.

  15. Shale gases, a windfall for France?

    International Nuclear Information System (INIS)

    Tonnac, Alain de; Perves, Jean-Pierre

    2013-11-01

    After having recalled the definition and origin of shale gases, the different non conventional gases and their exploitation techniques (hydraulic fracturing and horizontal drilling) this report examines whether these gases are an opportunity for France. Some characteristics and data of the fossil and gas markets are presented and commented: world primary energy consumption, proved reserves of non conventional gases and their locations, European regions which may possess reserves of shale gases and coal-bed methane, origins of gas imports in France. The second part addresses shale gas deposits and their exploitation: discussion of the influence of the various rock parameters, evolution of production. The third part discusses the exploitation techniques and specific drilling tools. The issue of exploitation safety and security is addressed as well as the associated controversies: about the pollution of underground waters, about the fact that deep drillings result in pollution, about the risks associated with hydraulic fracturing and injections of chemical products, about the hold on ground and site degradation, about water consumption, about pollution due to gas pipeline leakage, about seismic risk, about noise drawbacks, about risks for health, about exploration and production authorization and license, and about air pollution and climate. The last part addresses the French situation and its future: status of the energy bill, recommendations made by a previous government, cancellation of authorizations, etc. Other information are provided in appendix about non conventional hydrocarbons, about shale gas exploitation in the USA, and about the Lacq gas

  16. Heavy particle detection characteristics of an MWPC operating at low (1 <= p <= 30 mbar) gas pressures

    International Nuclear Information System (INIS)

    Moeller, G.; Presser, G.; Staehler, J.

    1981-01-01

    Pulse heights, timing properties and detection efficiencies of an MWPC were measured with 5.5 MeV alpha particles for different counting gases at low pressures. The pulse heights show a striking nonmonotonic dependence on the gas pressure that can be explained by a simple model of the amplification process at high reduced electric fields. The consequences of the observed pressure dependence of pulse heights for the detection of heavy ions with low pressure MWPCs are discussed. (orig.)

  17. Organic pollutants and heavy metals in rainwater runoff and their fate in the unsaturated soil zone. Final report

    International Nuclear Information System (INIS)

    Grotehusmann, D.; Rohlfing, R.; Weyer, G.; Dittrich, D.; Gowik, P.; Pernak, P.

    1991-01-01

    This bibliographic study is part of the BMFT intergrated project ''Possibilitiis and limits of [ drainage in consederation of the soil and groundwater protection''. Subjects: Environmental relevance and general distribution of organic pollutants; organic pollutants in rain water, soil, and groundwater; fate of organic pollutants in soil; environmental relevance of heavy metals in soil, rain water, and runof; fate of heavy metals in the unsaturated soil rare. (orig./BBR) [de

  18. Explosive and corrosive concentration analysis of gases produced in a CANDU type (N2, D2, O2, H2) nuclear power plant

    International Nuclear Information System (INIS)

    Binetti, E.O.

    1987-01-01

    The primary loop gas of an automatic control system of a nuclear power plant is of great importance as regards conservation and safety of the plant. These gases are produced by dissociation due to radiation effects on heavy water. The system is based on a sample capture equipment, a chromatographic analyzer with its associated electronics, a sample separator and conditioner, a temperature and pressure control system of the transport gas, all included in the reactor building, apart from other supporting instrumentation. (Author)

  19. A Geochemical Approach for Monitoring a CO2 Pilot Site: Rousse, France. A Major gases, CO2-Carbon Isotopes and Noble Gases Combined Approach Une méthode géochimique pour la surveillance d’un site pilote de stockage de CO2 : Rousse, France. Approche combinant les gaz majeurs, l’isotopie du carbone du CO2 et les gaz rares

    Directory of Open Access Journals (Sweden)

    Garcia B.

    2012-02-01

    Full Text Available This paper presents the geochemical characterization of various gas end-members involved in a depleted gas field CO2 storage pilot (Rousse, France. In this pilot, CO2 is produced by oxycombustion from natural gas transformed into fuel gas at the Lacq plant, and transported in a pipeline 30 km away to the depleted gas reservoir of Rousse. Gases produced at Rousse before CO2 injection, the Lacq fuel gas and the CO2 resulting from the oxy-fuel combustion were sampled, together with gases from a –45 m monitoring well and from soils in the vicinity of the Rousse structure. For all samples, the bulk gas composition, the carbon isotopic compositions and the abundance and isotopic signatures of the noble gases were determined. The bulk gas compositions of the Rousse natural gas are comparable to the Lacq fuel gas with methane as the main compound with residual C2-C5 and CO2. Soil gases are typical mixtures of air with biogenic CO2 (up to 9-10%, while the monitoring well gases display typical air compositions with no excess CO2 The Rousse gas and the Lacq fuel gas have δ13CCH4 values of –41.0‰ and –43.0‰ respectively. The injected CO2 out of the oxycombustion chamber has a δ13CCO2 of –40.0‰, whereas δ13CCO2 value for soils samples is comprised between –15 and –25‰. The Rousse natural gas and the Lacq fuel gas are both characterized by a high He enrichment, and depletion in Ne, Ar and Kr compared to the air values. The oxyfuel combustion process provides a CO2 with the He enrichment of the Lacq fuel gas, and a Ne, Ar and Kr composition reflecting that of the oxygen produced at the Air Separation Unit (ASU. Indeed, Ne is depleted relatively to the air, while Kr is enriched up to tenfold, which results from the cryogenic separation of the air noble gases within the ASU. Soil samples noble gas compositions are equivalent to that of the air. In the light of these results, the compositions of the various end-members involved in this CO2

  20. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    Science.gov (United States)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  1. Jagiellonian University Selected measurements of rare decays at the LHCb

    CERN Document Server

    INSPIRE-00392248

    2017-01-01

    The LHCb spectrometer is specifically designed to study heavy-flavour physics. These proceedings present a selection of rare decays analyses performed with 1 fb−1 and 2 fb−1 of proton–proton collision data collected at the center-of-mass energies of 7 and 8 TeV, respectively. Rare decays are highly suppressed (or forbidden) in the Standard Model, thus could provide indirect evidence of New Physics. Results of the angular analyses of the B0 → K∗0μ+μ−, B0 → K∗0e+e−, Λb0 → Λμ+μ−, and Bs0 → ϕμ+μ− decays, along with branching fraction measurements for the latter two channels, are summarized. In addition, a test of lepton flavour universality in B+ → K+ℓℓ decays and searches for the lepton flavour violating decays are presented.

  2. Cosmology tests in rare kaon decays

    Directory of Open Access Journals (Sweden)

    Duk Viacheslav

    2016-01-01

    Full Text Available The Standard Model (SM of particle physics is an extremely successful theory that effectively describes strong and electroweak interactions up to the energies presently accessible. Still, the SM does not explain the observed parameters of neutrino oscillations, baryon asymmetry of the Universe and Dark Matter (DM, and contains a fine-tuning of 16 orders of magnitude (the gauge hierarchy problem. Various New Physics (NP models beyond the SM have been developed in order to address the above limitations. This paper concentrates on several models related to cosmology and their tests in rare kaon decays. In particular, recent NA48/2 results on the search for heavy neutrinos, light in-flatons and dark photons are presented. Prospects for the ongoing NA62 experiment are discussed.

  3. Investor's and procurement guide South Africa. Pt. 1. Heavy minerals, rare earth elements, antimony

    International Nuclear Information System (INIS)

    Graupner, Torsten; Schwarz-Schampera, Ulrich; Hammond, Napoleon Q.; Opperman, Rehan; Long'a Tongu, Elisa; Kenan, Abdul O.; Nondula, Unathi; Tsanwani, Matamba

    2014-01-01

    This is the first part of the ''Investor's and Procurement Guide South Africa'', a handbook for investing and doing business in South Africa's mineral industry. It is anticipated that this publication will aid potential investors into considering South Africa as an investment destination, not only for raw materials, but also for related industries. This manual supplements the many publications available on the economic geology and mineral wealth in South Africa and has been designed to guide prospective and current investors, suppliers and mine equipment exporters through the process of doing business in Africa's biggest and dynamic economy. As well as detailing the mineral raw materials heavy minerals, rare-earth metals and antimony, the handbook provides a general introduction to South Africa and its infrastructure, the economical, political and judicial frame of the South African mining industry and an overview of the economic geology. South Africa has a long and complex geological history which dates back in excess of 3.6 billion years. The country has a vast mineral wealth, undoubtedly due to the fact that a significant proportion of the Archaean and younger rocks have been preserved. The mining of the enormous Witwatersrand gold deposits, commencing in 1886, has led to the establishment of South Africa's well-developed infrastructure and to the sustained growth of an industrial and service sector in the country. With the world's largest resources of PGMs, gold, chromite, vanadium and manganese and significant resources of iron, coal and numerous other minerals and metals, the minerals industry will continue to play a pivotal role in the growth of South Africa's economy in the foreseeable future. South Africa is one of the top destinations in Africa for foreign direct investments. South African headquartered companies have been major investors into foreign direct investments on the African continent in the past decade. Investing in South African companies

  4. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  5. Heavy rare earth elements affect early life stages in Paracentrotus lividus and Arbacia lixula sea urchins

    International Nuclear Information System (INIS)

    Oral, Rahime; Pagano, Giovanni; Siciliano, Antonietta; Gravina, Maria; Palumbo, Anna; Castellano, Immacolata; Migliaccio, Oriana; Thomas, Philippe J.; Guida, Marco; Tommasi, Franca; Trifuoggi, Marco

    2017-01-01

    Background: Heavy rare earth elements (HREEs) have been scarcely studied for their toxicity, in spite of their applications in several technologies. Thus HREEs require timely investigations for their adverse health effects. Methods: Paracentrotus lividus and Arbacia lixula embryos and sperm were exposed to trichloride salts of five HREEs (Dy, Ho, Er, Yb and Lu) and to Ce(III) as a light REE (LREE) reference to evaluate: 1) developmental defects (% DD) in HREE-exposed larvae or in the offspring of HREE-exposed sperm; 2) mitotic anomalies; 3) fertilization success; and 4) reactive oxygen species (ROS) formation, and nitric oxide (NO) and malondialdehyde (MDA) levels. Nominal HREE concentrations were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Results: HREEs induced concentration-related DD increases in P. lividus and A. lixula larvae, ranging from no significant DD increase at 10 −7 M HREEs up to ≅100% DD at 10 −5 M HREE. Larvae exposed to 10 −5 M Ce(III) resulted in less severe DD rates compared to HREEs. Decreased mitotic activity and increased aberration rates were found in HREE-exposed P. lividus embryos. Significant increases in ROS formation and NO levels were found both in HREE-exposed and in Ce(III) embryos, whereas only Ce(III), but not HREEs resulted in significant increase in MDA levels. Sperm exposure to HREEs (10 −5 –10 −4 M) resulted in a concentration-related decrease in fertilization success along with increase in offspring damage. These effects were significantly enhanced for Dy(III), Ho(III), Er(III) and Yb(III), compared to Lu(III) and to Ce(III). Conclusion: HREE-associated toxicity affected embryogenesis, fertilization, cytogenetic and redox endpoints showing different toxicities of tested HREEs. - Highlights: • Different toxicities were exerted by five tested HREEs on sea urchin early life stages. • Sea urchin embryos and sperm were sensitive to HREE levels ranging from 1 to 100 μM, according to

  6. Spectrophotometric determination of rare earths in binary mixtures

    International Nuclear Information System (INIS)

    Krasnova, A.V.; Shvarev, V.S.

    1978-01-01

    The possibility was investigated of using the reaction with brompyrogallol red (BPR) (dibrompyrogallosulfophthalein) for analyzing binary mixtures of rare earth metals close in ordinal numbers (La-Y, La-Eu, La-Sm, La-Nd, Nd-Y, Nd-Eu). Heavy REM are masked by nitrile-acetic acid (NAA). The experimental design method was used to determine optimum conditions. The optimizing parameters were the optical density measured with respect to water and the amount of the component bound into the complex. It was found that optimum conditions for the analysis of investigated mixtures differ only in the amount of NAA necessary to mask the heavy element [NAA]/[Sm 3+ ]=4; [NAA]/[Eu 3+ ]=5; [NAA]/Nb 3+ ]=10; [NAA]/[Y 3+ ]=2.5. The optimum acidity and the amount of BPR are always the same: pH 6.5; [BPR]/[La 3+ ]=[BPR]/[Nd 3+ ]=4. The given method for analyzing binary mixtures of lanthanoids surpasses considerably in sensitivity the methods based on intrinsic absorption spectra, while retaining the same reproducibility

  7. Solubility of gases in water at high temperature

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, R.J.; Japas, M.L.

    1981-01-01

    In the primary circuits of the PWR, it is usual to find apolar gases such as the noble gases like, nitrogen, hydrogen (deuterium) and oxygen. These gases enter into the circuit partly due to failures in the fuel elements, accidental entries of air into the system and corrosion processes and radiolisis in the coolant media. For the operation of several auxiliary systems in the primary circuit, it is important to know the solubility of these gases in the flux of the circuit and the evaluation of physicochemical processes that take place. A cell has been built that allows to carry out determinations of solubility in the range of 350 deg C and 100 Mega Pascal. Three alternative experimental techniques have been developed to determine the solubility of the gases which are compared to each other. Measures of solubility of argon in H2O and D2O have been made in a wide range of temperatures. (V.B.) [es

  8. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    Science.gov (United States)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched

  9. Laser-aided diagnostics of plasmas and gases

    CERN Document Server

    Muraoka, K

    2000-01-01

    Updated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of each method and shows how they can complement each other in the study of gases and plasmas.The first part of the book presents a general introduction to the laser-aided study of gases and plasmas, including the various principles and hardware needed for each method, while the second part describes the applications of each general system in detail.Beneficial to a wide spectrum of academic and industrial researchers, this book provides a solid examination of the various options and methods available when involved in the analysis and diagnostics of gases and plasmas.

  10. Granular Gases: Probing the Boundaries of Hydrodynamics

    International Nuclear Information System (INIS)

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  11. Design of the Advanced Rare Isotope Separator ARIS at FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, M., E-mail: hausmann@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, A.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Amthor, A.M. [Dept. of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Avilov, M.; Bandura, L.; Bennett, R.; Bollen, G.; Borden, T. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Burgess, T.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chouhan, S.S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, V.B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Morrissey, D.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Pellemoine, F.; Portillo, M.; Ronningen, R.M.; Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Sherrill, B.M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Zeller, A. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States)

    2013-12-15

    The Facility for Rare Isotopes Beams (FRIB) at Michigan State University will use projectile fragmentation and induced in-flight fission of heavy-ion primary beams at energies of 200 MeV/u and higher and at a beam power of 400 kW to generate rare isotope beams for experiments in nuclear physics, nuclear astrophysics, and fundamental symmetries, as well as for societal needs. The Advanced Rare Isotope Separator (ARIS) has been designed as a three-stage fragment separator for the efficient collection and purification of the rare isotope beams of interest. A vertically bending preseparator (first stage) with production target and beam dump is fully integrated into a production target facility hot cell with remote handling. The new separator compresses the accepted momentum width of up to ±5% of the beam by a factor of three in the standard operational mode. Provisions for alternate operational modes for specific cases are included in the design. This preseparator is followed by two, horizontally-bending separator stages (second and third stages) utilizing the magnets from the existing A1900 fragment separator at the National Superconducting Cyclotron Laboratory (NSCL). These stages can alternatively be coupled to a single high-resolution separator stage, resulting in the flexibility to optimize the operation for different experiments, including momentum tagging and in-flight particle identification of rare isotope beams. The design of ARIS will be presented with an emphasis on beam physics characteristics, and anticipated operational modes will be described.

  12. Study of rare and suppressed processes in B meson decays with the ATLAS experiment

    CERN Document Server

    Iengo, P; The ATLAS collaboration

    2014-01-01

    The large amount of Heavy Flavor data collected by the ATLAS experiment is potentially sensitive to New Physics, which could be evident in processes that are naturally suppressed in the Standard Model. The most recent results on the search for the rare decay Bs (B0) -> mu+mu- are presented, as well as results of the angular analysis of the semileptonic rare decay Bd → K*0 mu+mu- -> K+pi-mu+mu-, extracting the distribution parameter AFB and FL (the accuracy obtained from data collected in 2011 is comparable to the best previous measurement in the region q^2(mu+mu-) -> 16 GeV^2)

  13. 30 CFR 75.322 - Harmful quantities of noxious gases.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Harmful quantities of noxious gases. 75.322... quantities of noxious gases. Concentrations of noxious or poisonous gases, other than carbon dioxide, shall... Governmental Industrial Hygienists in “Threshold Limit Values for Substance in Workroom Air” (1972). Detectors...

  14. Properties of gases, liquids, and solutions principles and methods

    CERN Document Server

    Mason, Warren P

    2013-01-01

    Physical Acoustics: Principles and Methods, Volume ll-Part A: Properties of Gases, Liquids, and Solutions ponders on high frequency sound waves in gases, liquids, and solids that have been proven as effective tools in examining the molecular, domain wall, and other types of motions. The selection first offers information on the transmission of sound waves in gases at very low pressures and the phenomenological theory of the relaxation phenomena in gases. Topics include free molecule propagation, phenomenological thermodynamics of irreversible processes, and simultaneous multiple relaxation pro

  15. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  16. Collisions of halogen (2P) and rare gas (1S) atoms

    International Nuclear Information System (INIS)

    Becker, C.H.

    1978-12-01

    Differential cross sections I (THETA) at several collision energies measured in crossed molecular beam experiments are reported for several combinations of halogen atoms ( 2 P) scattered off rare gas-rare gas atoms ( 1 S 0 ), namely, F + Ne, F + Ar, F + Kr, F + Xe, C1 + Xe. The scattering is described by an elastic model appropriate to Hund's case c coupling. With the use of this model, the X 1/2, I 3/2, and II 1/2 interaction potential energy curves are derived by fitting calculated differential cross sections, based on analytic representations of the potentials, to the data. The F - Xe X 1/2 potential shows a significant bonding qualitatively different than for the other F-rare gases. The I 3/2 and II 1/2 potentials closely resemble the van der Waals interactions of the one electron richer ground state rare gas-rare gas systems. Coupled-channel scattering calculations are carried out for F + Ar, F + Xe, and C1 + Xe using the realistic potential curves derived earlier. The results justify the use of the elastic model, and give additional information on intramultiplet and intermultiplet transitions. The transitions are found to be governed by the crossing of the two Ω = 1/2 potentials in the complex plane. The measured I (theta) and I (THETA) derived from the coupled-channel computations show small oscillations or perturbations (Stueckelberg oscillations) though quantitative agreement is not obtained.The nature of the anomalous F - Xe X 1/2 potential is discussed as is the approximation of a constant spin orbit coupling over the experimentally accessible range of internuclear distances for these open shell molecules. 55 references

  17. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    Science.gov (United States)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  18. Fuel gases in Algeria

    International Nuclear Information System (INIS)

    Arachiche, B.; Elandaloussi, H.

    1996-01-01

    For a country like Algeria, fuel gases represent an important economical challenge. To answer the increasing energy demand in the transportation sector, the use of fuel gases allows to preserve the petroleum reserves and to create specific industrial structures devoted to LPG-f (liquefied petroleum gas-fuel) and NGV (natural gas for vehicles). This paper presents the energy policy of Algeria, its reserves, production, and exportations of hydrocarbons and the internal rational use of energy sources according to its economic and environmental policy and to its internal needs. The energy consumption of Algeria in the transportation sector represents 2/3 of the petroleum products consumed in the internal market and follows a rapid increase necessary to the socio-economic development of the country. The Algerian experience in fuel gases is analysed according to the results of two successive experimentation periods for the development of NGV before and after 1994, and the resulting transportation and distribution network is described. The development of LPG-f has followed also an experimental phase for the preparation of regulation texts and a first statement of the vehicles conversion to LPG-f is drawn with its perspectives of development according to future market and prices evolutions. (J.S.)

  19. Record of the solar corpuscular radiation in minerals from lunar soils - A comparative study of noble gases and tracks

    International Nuclear Information System (INIS)

    Wieler, R.; Etique, P.

    1980-01-01

    A comparative study is made of trapped light noble gases and solar flare tracks in mineral separates from lunar soils in an investigation aimed at detecting possible temporal variations of the ratio between solar flare and solar wind activity. He, Ne, Ar and solar flare tracks are measured on plagioclase separates of 12 surface soils and two Apollo 15 drill core samples, and track density histograms are compared with gas concentration distributions obtained from aliquot samples. Results show that solar wind Ar is probably well retained in all minerals. He, Ne, and Ar are not saturated macroscopically, and semi-microscopic or microscopic saturation is very rare for Ar, even in gas-rich plagioclase populations. All grains contain trapped noble gases, even in relatively gas-poor mineral populations, and for clean minerals in the size range of 150-200 microns, the time between the first and last surface exposure is in the order of 10 to the 7th to 10 to the 8th years

  20. Emerging trends in separation science and technology as practised by Indian Rare Earths Ltd

    International Nuclear Information System (INIS)

    Mukherjee, T.K.

    2004-01-01

    Although the core business of Indian Rare Earths Ltd. (IREL) is mining of Indian Beach Sand deposits and separation of associated six heavy minerals, the Company is also engaged in a strategic activity like recovery of the mineral monazite from the sand and its chemical processing to recover two important nuclear materials and the rare earths. Separation science and technology plays an important role in this particular activity of IREL to produce, in commercial scale, the mineral monazite in desired purity and its chemical processing to recover products like thorium oxalate concentrate, nuclear grade ammonium diuranate, tri sodium phosphate and host of rare earths salts both mixed and separated. This paper to start with, will deal with bulk separation of monazite itself, which has an important bearing on down stream chemical separation process to be discussed in the later half

  1. Density Fluctuations in Uniform Quantum Gases

    International Nuclear Information System (INIS)

    Bosse, J.; Pathak, K. N.; Singh, G. S.

    2011-01-01

    Analytical expressions are given for the static structure factor S(k) and the pair correlation function g(r) for uniform ideal Bose-Einstein and Fermi-Dirac gases for all temperatures. In the vicinity of Bose Einstein condensation (BEC) temperature, g(r) becomes long ranged and remains so in the condensed phase. In the dilute gas limit, g(r) of bosons and fermions do not coincide with Maxwell-Boltzmann gas but exhibit bunching and anti-bunching effect respectively. The width of these functions depends on the temperature and is scaled as √(inverse atomic mass). Our numerical results provide the precise quantitative values of suppression/increase (antibunching and bunching) of the density fluctuations at small distances in ideal quantum gases in qualitative agreement with the experimental observation for almost non-trapped dilute gases.

  2. Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions

    CERN Document Server

    Bellwied, R; Bernardo, V; Caines, H; Christie, W; Costa, S; Crawford, H J; Cronqvist, M; Debbe, R; Dinnwiddie, R; Engelage, J; Flores, I; Fuzesy, R Z; Greiner, L; Hallman, T; Hoffmann, G; Huang, H Z; Jensen, P; Judd, E G; Kainz, K; Kaplan, M; Kelly, S; Lindstrom, P J; Llope, W J; Lo Curto, G; Longacre, R; Milosevich, Z; Mitchell, J T; Mitchell, J W; Mogavero, E; Mutchler, G S; Paganis, S; Platner, E; Potenza, R; Rotondo, F; Russ, D; Sakrejda, I; Saulys, A; Schambach, J; Sheen, J; Smirnoff, N; Stokely, C L; Tang, J; Trattner, A L; Trentalange, S; Visser, G; Whitfield, J P; Witharm, F; Witharm, R; Wright, M

    2002-01-01

    This report describes a multi plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGS E896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 T magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10 sup 6 Au ions per second.

  3. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    Science.gov (United States)

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar

  4. New Physics searches in Heavy Flavor with ATLAS

    CERN Document Server

    Dearnaley, W; The ATLAS collaboration

    2013-01-01

    Precision determinations of the flavor sector allow the search for indirect new physics signatures. At the forefront of these studies are the determinations of interference of new physics with known Df=1 and Df=2 processes. The ATLAS collaboration explores this area with competitive results measuring the CP violating phase phi_s from Bs->J/Psi phi decays and investigating rare B decays with dileptons in the final state. The latest ATLAS results relevant for new physics searches in the heavy flavor sector will be discussed.

  5. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    Science.gov (United States)

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  6. Gases for an SSC muon detector

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Datskos, P.G.; Carter, J.G.; Tennessee Univ., Knoxville, TN

    1990-01-01

    Recent measurements of electron drift velocities as a function of the density-reduced electric field E/N are reported for a number of unitary gases and the mixtures CO 2 /CH 4 and NH 3 /CF 4 /Ar. Calculated values of the mean electron energy as a function of E/N are also reported for unitary gases and mixtures of CO 2 /CH 4 . 7 refs., 5 figs

  7. Maria Goeppert Mayer's Theoretical Work on Rare-Earth and Transuranic Elements

    OpenAIRE

    Wang, Frank Y.

    2008-01-01

    After the discovery of element 93 neptunium by Edwin McMillan and Philip H. Abelson in 1941, Maria Goeppert Mayer applied the Thomas-Fermi model to calculate the electronic configuration of heavy elements and predicted the occurrence of a second rare-earth series in the vicinity of elements 91 or 92 extending to the transuranic elements. Mayer was motivated by Enrico Fermi, who was at the time contemplating military uses of nuclear energy. Historical development of nuclear science research le...

  8. Method and apparatus for removing radioactive gases from a nuclear reactor

    International Nuclear Information System (INIS)

    Frumerman, R.; Brown, W.W.

    1975-01-01

    A description is given of a method for removing radioactive gases from a nuclear reactor including the steps of draining coolant from a nuclear reactor to a level just below the coolant inlet and outlet nozzles to form a vapor space and then charging the space with an inert gas, circulating coolant through the reactor to assist the release of radioactive gases from the coolant into the vapor space, withdrawing the radioactive gases from the vapor space by a vacuum pump which then condenses and separates water from gases carried forward by the vacuum pump, discharging the water to a storage tank and supplying the separated gases to a gas compressor which pumps the gases to gas decay tanks. After the gases in the decay tanks lose their radioactive characteristics, the gases may be discharged to the atmosphere or returned to the reactor for further use

  9. Potential application of oxygen containing gases to enhance gravity drainage in heavy oil bearing reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Bauer, K. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Lakatos-Szabo, J. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry

    1997-06-01

    In the frame of laboratory studies the effect of air/natural CO{sub 2} mixtures on chemical composition of crude oil and gas phase, the rheological and interfacial properties, the flow mechanism and the safety measures were analyzed. The tests were performed at reservoir conditions (200 bar and 109 C) using natural rock, oil and gas samples. The oxygen content of the gas phase and the gas/oil ratio varied within wide limits. Both crude and asphaltene-free oil were used to determine the consequences of the low temperature oxidation. On the basis of the experimental results it was found that the oxygen content of the cap gas had been completely consumed by the chemical reactions (oxidation, condensation and water formation) before the asphaltene content set in equilibrium. Nearly 9% excess asphaltene formation was observed in both the crude and the asphaltene-free oils. The substantial increase in asphaltene content and the presence of colloidal water results in a measurable change in rheological and interfacial properties. Despite these factors the flow and displacement mechanism is only slightly influenced if the reservoir is of fractured character. On the other hand the in-situ oxidation of this heavy crude oil improves the efficiency of bitumen production and the quality of product used mostly for road construction. As a final statement, it was concluded that replacing the CO{sub 2} with oxygen containing inert gas, the chemical reactions can be in-situ regulated without jeopardizing the recovery efficiency. Application of the artificial gas cap concept opens new perspectives in EOR technology of karstic and fractured reservoirs containing medium and heavy crude oils in those cases where CO{sub 2} or CH gas is not available. (orig./MSK)

  10. Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Gibbs Method and Statistical Physics of Electron Gases

    CERN Document Server

    Askerov, Bahram M

    2010-01-01

    This book deals with theoretical thermodynamics and the statistical physics of electron and particle gases. While treating the laws of thermodynamics from both classical and quantum theoretical viewpoints, it posits that the basis of the statistical theory of macroscopic properties of a system is the microcanonical distribution of isolated systems, from which all canonical distributions stem. To calculate the free energy, the Gibbs method is applied to ideal and non-ideal gases, and also to a crystalline solid. Considerable attention is paid to the Fermi-Dirac and Bose-Einstein quantum statistics and its application to different quantum gases, and electron gas in both metals and semiconductors is considered in a nonequilibrium state. A separate chapter treats the statistical theory of thermodynamic properties of an electron gas in a quantizing magnetic field.

  11. AC BREAKDOWN IN GASES

    Science.gov (United States)

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  12. Experimental investigation of the chemistry of excited states of rare gases. Annual technical progress report, October 15, 1976--October 14, 1977

    International Nuclear Information System (INIS)

    Setser, D.W.

    1978-01-01

    Tunable dye laser fluorescence has been combined with the flowing afterglow technique as a method for studying reactive intermediates present in the flowing afterglow. The radiative lifetimes and two-body quenching rate constants (with Ar carrier gas) for the Ar*(3p 5 ,4p) and Ar*(3p 5 ,5p) excited states were reported in the preceding year. During this year, we have measured the Ar* product states from the two-body quenching. More than 50% of the quenching leads directly to intermultiplet transfer to Ar(4s) states, rather than to intramultiplet cascade down the Ar(4p) manifold. Using this technique we also have studied the Xe(5p 5 ,6p') and Xe(5p 5 ,7p) excited states and radiative lifetimes, two-body quenching and the product states from quenching have been ascertained. These data should be of value for modeling energy flow pathways of rare gases excited by high energy electrons. A method has been developed for studying the quenching of the XeF(B) and KrF(B) by a variety of reagent molecules. A preliminary account of this work was published (number 5 in the publication list). Much additional experimental work has been done and a definitive study of the electronic quenching of XeF(B) and KrF(B) is in progress. Efforts to interpret (and publish) our comprehensive studies of the reactive quenching of the Kr( 3 P 2 ) and Xe( 3 P 2 ) by fluorine and chlorine-containing molecules has continued (see numbers 4, 6 and 8 in the publication listing). Two more manuscripts are in final stages of preparation. Of particular importance has been the development of methods for simulating and interpreting the bound-free emission spectra from the very high vibrational levels of the xenon and krypton fluorides and chlorides. Experiments have been done to measure the branching ratios for (i) ArF* formation from reactive quenching of Ar( 3 P 2 ) with fluorine-containing reagents and (ii) KrBr* and Br* formation for Kr( 3 P 2 ) reacting with some bromine-containing molecules

  13. Crystal fields in Sc, Y, and the heavy-rare-earth metals Tb, Dy, Ho, Er, Tm, and Lu

    International Nuclear Information System (INIS)

    Touborg, P.

    1977-01-01

    Experimental investigations of the magnetic poperties of dilute alloys of the rare-earth solutes Tb, Dy, Ho, Er, and Tm in the nonmagnetic hosts Lu, Y, and Sc have been performed. These measurements, which include and supplement earlier published results, have been analyzed and crystal-field parameters for all these 15 alloy systems deduced. The consistency of the parameters was confirmed by a variety of magnetic measurements, including neutron spectroscopy. Crystal-field parameters have also been derived for the ions in pure magnetic rare-earth metals and their alloys using the results for the dilute alloys supplemented with paramagnetic measurements up to high temperatures on the concentrated systems. Mean values and standard deviations of the higher-order crystal-field parameters for all Y and Lu alloys are B 40 /β = 6.8 +- 0.9 K, B 60 /γ = 13.6 +- 0.7 K, and B 66 /γ = (9.7 +- 1.1) B 60 /γ. These values: with the inaccuracies somewhat increased: are expected to be representative also for the magnetic rare-earth metals. For rare-earth ions in the Sc host the values B 40 /β = 9.9 +- 1.9 K, B 60 /γ = 19.8 +- 1.5 K, and B 66 /γ = (9.4 +- 0.9) B 60 /γ were deduced. B 20 /α is a host-sensitive parameter which has the average values of -102.7, -53.4, and 29.5 K for rare-earth ions in Y, Lu, and Sc, respectively. There is also evidence that this parameter varies with the solute. B 20 /α for ions in the pure magnetic rare-earth metals and their alloys shows a linear variation with c/a ratio characteristic of each ion. The results indicate a contribution from anisotropic exchange to the high-temperature paramagnetic anisotropy of approximately 20% for Tb, Dy, Ho, and Er, and approximately 10% for Tm

  14. Electronic Structure of Rare-Earth Metals. II. Positron Annihilation

    DEFF Research Database (Denmark)

    Williams, R. W.; Mackintosh, Allan

    1968-01-01

    of Loucks shows that the independent-particle model gives a good first approximation to the angular distribution, although correlation effects probably smear out some of the structure. The angular distributions from the heavy rare-earth metals are very similar to that from Y and can be understood....... In the spiral phase of Ho, the structure in the c-axis distribution is much reduced, indicating that the Fermi surface is substantially modified by the magnetic ordering, as expected. The photon distribution from the equiatomic Ho-Er alloy is very similar to those from the constituent metals, although...

  15. Kinetic theory of gases

    CERN Document Server

    Kauzmann, Walter

    2012-01-01

    Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.

  16. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  17. Rare cancers are not so rare: The rare cancer burden in Europe

    NARCIS (Netherlands)

    Gatta, Gemma; van der Zwan, Jan Maarten; Casali, Paolo G.; Siesling, Sabine; Dei Tos, Angelo Paolo; Kunkler, Ian; Otter, Renee; Licitra, Lisa

    2011-01-01

    Purpose: Epidemiologic information on rare cancers is scarce. The project Surveillance of Rare Cancers in Europe (RARECARE) provides estimates of the incidence, prevalence and survival of rare cancers in Europe based on a new and comprehensive list of these diseases. Materials and methods: RARECARE

  18. Process for the removal of acid forming gases from exhaust gases

    Science.gov (United States)

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  19. Rare earth elements in suspended and bottom sediments of the Mandovi estuary,central west coast of India: Influence of mining

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R.; Rao, V.P.; Kessarkar, P.M.; Rao, T.G.

    Rare earth elements (REEs) in the suspended particulate matter (SPM) of the Mandovi estuary indicated that the mean total-REEs and light REE to heavy REE ratios are lower than that of the average suspended sediment in World Rivers and Post...

  20. Noble gases, nitrogen, cosmic ray exposure history and mineralogy of Beni M'hira (L6) chondrite

    Science.gov (United States)

    Mahajan, Ramakant R.; Nejia, Laridhi Ouazaa; Ray, Dwijesh; Naik, Sekhar

    2018-03-01

    The concentrations and isotopic composition of noble gases helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon(Xe) and nitrogen were measured in the Beni M'hira L6 chondrite. The cosmic ray exposure age of Beni M'hira is estimated of 15.6 ± 3.7 (Ma). The radiogenic age, of around 485 ± 64 Ma, derived from 4He, and of around 504 ± 51 Ma from 40Ar, suggests an age resetting indicating the event impact. The heavy noble gases (Ar, Kr and Xe) concentrations imply that the gas is a mixture of trapped component Q and solar wind. The measured nitrogen abundance of 0.74 ppm and the isotopic signature of δ15N = 14.6‰ are within the range of ordinary chondrites. The homogeneous chemical composition of olivine (Fa:26 ± 0.25) and low-Ca pyroxene (Fs:22.4 ± 0.29) suggest that the Beni M'hira meteorite is an equilibrated chondrite. This is further corroborated by strong chondrule-matrix textural integration (lack of chondrules, except a few relict clast). Shock metamorphism generally corresponds to S5 (>45 GPa), however, locally disequilibrium melting (shock-melt veins) suggests, that the peak shock metamorphism was at ∼75 GPa, 950 °C.

  1. Process for separating radioactive gases

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1976-01-01

    Object: To efficiently and safely separate and recover raw gases such as krypton which requires radioactive attenuation by a long term storage. Structure: A mixture of krypton and xenon is separated by liquefaction from raw gases at a first distillation column, using latent heat of liquid nitrogen. The krypton and xenon mixture separated by liquefaction at the first distillation column is separated into krypton and xenon, by controlling operation pressure of a second distillation column at about 3 - 5 atm., using sensible heat of low temperature nitrogen gas discharged from a top of the first distillation column and a condenser. (Aizawa, K.)

  2. The ideal gases of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1984-01-01

    The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed

  3. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    Science.gov (United States)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  4. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    International Nuclear Information System (INIS)

    Bahauddin, Shah Mohammad; Faruk, Mir Mehedi

    2016-01-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas. (paper)

  5. Heavy density concrete for nuclear radiation shielding and power stations: [Part]2

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the second part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. In this part, some of the important properties of heavy density concrete are discussed. They include density, water retentivity, air content, permeability with special reference to concrete mixes used in India's nuclear power reactors. All these properties are affected to various extents by heating. Indian shield concrete is rarely subjected to temperatures above 60degC during its life, because of thermal shield protection. During placement, the maximum anticipated rise in temperature due to heat of hydration is restricted to around 45degC by chilling, if necessary to reduce shrinkage stresses and cracks. (M.G.B.)

  6. Cryogenic method for measuring nuclides and fission gases

    Science.gov (United States)

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  7. Which climate gases is it the most important to reduce?

    International Nuclear Information System (INIS)

    Godal, Odd; Fuglestvedt, Jan

    2002-01-01

    If the Kyoto Protocol had used another method for comparing the various climate gases, Norway might have had to implement more and more expensive measures. The selection of methods may be important for the making of new agreements after Kyoto. Calculations show the importance of the comparison methods for the various climate gases in negotiating new climate agreements. The Kyoto Protocol regulates the total emission of climate gases carbon dioxide (CO 2 ), methane (CH 4 ), laughing gas (N 2 O) and sulphur hexafluoride (SF 6 ), and halo fluoro carbons and perfluoro carbon. It is up to each country to choose which of these gases to concentrate on, and a tool is therefore needed to compare the effects of the various gases. In the Kyoto agreement, this is done by means of the global warming potential (GWP) of each gas over a period of 100 years. But different climate gases have different atmospheric residence times and it is not evident how the gases must be compared. Reducing the emission of methane has a strong and short-term effect while reducing the emission of carbon dioxide has a weaker but more lasting effect. Researchers have suggested other ways of comparison than the one used in the Kyoto Protocol. Among other things one may calculate the global warming potential for another time horizon than 100 years. Researchers at Cicero have investigated the consequences of two other ways of weighing climate gases: GWP(20) with time horizon of 20 years gives more weight to short-lived gases like methane, while GWP(500) with a time horizon of 500 years is more favourable to the long-lived gases. To see how much the selection of comparing method means in practice, the consequences for Norway using GWP(20) or GWP(500), have been calculated

  8. Dark lump excitations in superfluid Fermi gases

    Science.gov (United States)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  9. Dark lump excitations in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity

  10. Possibilities for Beam Stripping Solutions at a Rare Isotope Accelerator (RIA)

    International Nuclear Information System (INIS)

    Greife, Uwe

    2006-01-01

    As part of the DOE RIA R and D effort we investigated the possibilities and problems of beam strippers in the different heavy ion accelerator components of a possible Rare Isotope Accelerator (RIA) facility. We focused on two beam stripping positions in the RIA heavy ion driver where benchmark currents of up to 5 particle (micro)A 238-U were projected at energies of 10.5 MeV/u and 85 MeV/u respectively. In order to select feasible stripper materials, data from experiments with Uranium beams at Texas A and M and GSI were evaluated. Based on these results thermal estimates for a possible design were calculated and cooling simulations with commercially available software performed. Additionally, we performed simulations with the GEANT4 code on evaluating the radiation environment for our beam stripping solution at the 85 MeV/u position in the RIA driver

  11. Possibilities for beam stripping solutions at a rare isotope accelerator (RIA)

    International Nuclear Information System (INIS)

    Greife, Uwe; Simmons, Ellen; Erikson, Luke; Jewett, Cybele; Livesay, Jake; Chipps, Kelly

    2007-01-01

    We investigated the possibilities and problems of beam strippers in the different heavy ion accelerator components of a possible rare isotope accelerator (RIA) facility. We focused on two beam stripping positions in the RIA heavy ion driver where benchmark currents of up to 5 particle μA 238 U were projected at energies of 10.5 MeV/u and 85 MeV/u, respectively. In order to select feasible stripper materials, data from experiments with uranium beams at the Texas A and M cyclotron and the Gesellschaft fuer Schwerionenforschung (GSI) accelerator were evaluated. Based on these results thermal estimates for a possible design were calculated and cooling simulations with commercially available software performed. Additionally, we performed simulations with the GEANT4 code on evaluating the radiation environment for our beam stripping solution at the 85 MeV/u position in the RIA driver

  12. Hydrogen Peroxide Enhances Removal of NOx from Flue Gases

    Science.gov (United States)

    Collins, Michelle M.

    2005-01-01

    Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.

  13. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    Science.gov (United States)

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  14. Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    OpenAIRE

    Blas, H.; Pimentel, B. M.; Tomazelli, J. L.

    1999-01-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  15. Quantum gases finite temperature and non-equilibrium dynamics

    CERN Document Server

    Szymanska, Marzena; Davis, Matthew; Gardiner, Simon

    2013-01-01

    The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...

  16. Air pollution in Damascus city, radiation, gases, air particulates and heavy elements

    International Nuclear Information System (INIS)

    Othman, Ibrahim; Sabra, Shawki

    1991-02-01

    The purposes of the study were to have a general survey for pollutants in Damascus City, to define the polluted areas and to determine the relationship between the pollutants and its sources, in addition of determining the regretion coefficient for the following elements: K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, Pb and Br. Samples of leaves from different regions of Damascus city were analysed by using x-ray flourescence (XRF) for the mentioned elements. Stat graphics computerized and Surfur programmes were used in order to plot the map of Pb pollutant for Damascus city. Chemical detector tubes produced by Drager Company were used in the absorbtion of air samples for Co, NO 2 and ozon where its colours were changed according to the concentration of the interested gases. While, for the measurement of suspended particles, 1400 3 m of air samples were taken through fiber gass filter (Wahtman 8x10 in) to measure the concentration of suspended particles. leaves samples were a good indicator for the level of pollution. Results of analysing, a samples by using XRF to determine the concentration of the following elements: Ca, K, Cu, Mn, Fe, Zn, Pb, Rb, Br, and Sr, by using gamma spectroscopy system to difine the isotopes included in it, and to define the activity of 212 Pb show that dust and lead are the main pollutants in Damascus city, where the concentration of the suspended particles increased in the crowded transportation areas and reach to more than 700 mg/ 3 m in which it decreases in holidays and at hight, as well as the decrease of the concentration of carbon monoxide at night, which increase in the morning due to the high trafic motion. Rains make a good cleaning factor for the suspended particles in about 80% of it, where the ratio of particles having a diameter less than 10μ to the whole particles range from 30% - 80%. (author)., 25 figs., 35 tabs

  17. Effective collision frequency of electrons in noble gases

    International Nuclear Information System (INIS)

    Baille, P.; Chang, J.-S.; Claude, A.; Yau, A.W.; Hobson, R.M.; Ogram, G.L.

    1981-01-01

    The electron-neutral collision frequency in the noble gases has been calculated using recent numerical results for momentum transfer cross sections by assuming a Maxwellian distribution of electron velocities. In all these gases, except for argon, good agreement is obtained with most previously published experimental and theoretical data. Mean free path, mobilities and diffusion coefficients are also calculated from the resulting effective collision frequencies. The empirical formulae are presented for an electron temperature dependence of the electron-neutral collision frequency for all noble gases up to Tsub(e) < approximately 25.000 K. (author)

  18. Geodesics in thermodynamic state spaces of quantum gases

    International Nuclear Information System (INIS)

    Oshima, H.; Obata, T.; Hara, H.

    2002-01-01

    The geodesics for ideal quantum gases are numerically studied. We show that 30 ideal quantum state is connected to an ideal classical state by geodesics and that the bundle of geodesics for Bose gases have a tendency of convergence

  19. Heavy baryon transitions and the heavy quark effective theory

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    Heavy baryon decays are studied in the context of the Bethe-Salpeter approach to the heavy quark effective theory. A drastic reduction, in the number of independent form factors, is found. Results are presented both for heavy to heavy and heavy to light baryon decays. (orig.)

  20. Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos

    Institute of Scientific and Technical Information of China (English)

    Jun'an Cui; Zhiyong Zhang; Wei Bai; Ligang Zhang; Xiao He; Yuhui Ma; Yan Liu; Zhifang Chai

    2012-01-01

    In recent years,with the wide applications and mineral exploitation of rare earth elements,their potential environmental and health effects have caused increasing public concern.Effect of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos were studied.The embryos were exposed to La3+ or Yb3+ at 0,0.01,0.1,0.3,0.5 and 1.0 mmol/L,respectively.Early life stage parameters such as egg and embryo mortality,gastrula development,tail detachment,eyes,somite formation,circulatory system,pigmentation,malformations,hatching rate,length of larvae and mortality were investigated.The results showed La3+ and Yb3+ delayed zebrafish embryo and larval development,decreased survival and hatching rates,and caused tail malformation in a concentration-dependent way.Moreover,heavy rare-earth ytterbium led to more severe acute toxicity of zebrafish embryo than light rare-earth lanthanum.

  1. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-09-22

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This action amends the Final Mandatory Reporting of Greenhouse Gases Rule to require reporters... Numbers GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program HCFC hydrochlorofluorocarbon HFC...

  2. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  3. Intra-group separation of rare earths using new organic phosphorus ligands

    International Nuclear Information System (INIS)

    Hadic, Sanela

    2017-01-01

    Rare earth elements (REE) have unique magnetic, photophysical, and chemical properties and they are therefore used in numerous high-technology applications. However, to this day, the isolation of pure rare earths from primary and secondary raw materials is very challenging. In this work, the hydrometallurgical separation of neighboring rare earths (e.g., praseodymium/ neodymium) was optimized with novel selective extraction agents. The separation of rare earths (yttrium and all lanthanides except promethium) was investigated with fourteen new organophosphorus compounds. Oxygen-bearing phosphinic acids yielded good separation results for heavy rare earths (dysprosium to lutetium). For light rare earths (lanthanum to neodymium), particularly high separation factors were realized with synergistic systems containing an aromatic dithiophosphinic acid and a co-extractant, such as tris (2-ethylhexyl) phosphate (TEHP). Optimization studies of the latter extraction system revealed an extremely high separation factor (SF) of 4.21 between praseodymium and neodymium. Another focus of this work was to understand the extraction mechanism. With the aid of nuclear magnetic resonance spectroscopy ("1H-NMR) and time-resolved laser fluorescence spectroscopy (TRLFS), the complex stoichiometry of promising extraction systems was examined. Studies revealed a dependency between the selectivity for rare earths and the coordination number of the formed complexes. In addition, temperature-dependent extraction experiments were performed and thermodynamic data (ΔG, ΔH, and ΔS) determined. These data provided additional information about the origin of selectivity for neighboring rare earths. With regard to the industrial capability of the investigated extraction systems, the chemical durability of ligands was studied under process-relevant conditions. Qualitative and quantitative analytical methods (e.g., GC-MS) were used in long-term experiments to determine the ligand degradation. After

  4. Ultracold Dipolar Gases in Optical Lattices

    OpenAIRE

    Trefzger, C.; Menotti, C.; Capogrosso-Sansone, B.; Lewenstein, M.

    2011-01-01

    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type m...

  5. Reveal the response of enzyme activities to heavy metals through in situ zymography.

    Science.gov (United States)

    Duan, Chengjiao; Fang, Linchuan; Yang, Congli; Chen, Weibin; Cui, Yongxing; Li, Shiqing

    2018-07-30

    Enzymes in the soil are vital for assessing heavy metal soil pollution. Although the presence of heavy metals is thought to change the soil enzyme system, the distribution of enzyme activities in heavy metal polluted-soil is still unknown. For the first time, using soil zymography, we analyzed the distribution of enzyme activities of alfalfa rhizosphere and soil surface in the metal-contaminated soil. The results showed that the growth of alfalfa was significantly inhibited, and an impact that was most pronounced in seedling biomass and chlorophyll content. Catalase activity (CAT) in alfalfa decreased with increasing heavy metal concentrations, while malondialdehyde (MDA) content continually increased. The distribution of enzyme activities showed that both phosphatase and β-glucosidase activities were associated with the roots and were rarely distributed throughout the soil. In addition, the total hotspot areas of enzyme activities were the highest in extremely heavy pollution soil. The hotspot areas of phosphatase were 3.4%, 1.5% and 7.1% under none, moderate and extremely heavy pollution treatment, respectively, but increased from 0.1% to 0.9% for β-glucosidase with the increasing pollution levels. Compared with the traditional method of enzyme activities, zymography can directly and accurately reflect the distribution and extent of enzyme activity in heavy metals polluted soil. The results provide an efficient research method for exploring the interaction between enzyme activities and plant rhizosphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. High pressure {mu}SR studies: rare earths and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M., E-mail: kalvius@ph.tum.de; Schreier, E. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ekstroem, M.; Hartmann, O. [Uppsala University, Physics Department (Sweden); Henneberger, S., E-mail: kalvius@ph.tum.de; Kratzer, A. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Waeppling, R. [Uppsala University, Physics Department (Sweden); Martin, E., E-mail: kalvius@ph.tum.de; Burghart, F.J. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ballou, R.; Deportes, J. [CNRS, Laboratoire Louis Neel (France); Niedermayer, Ch. [University of Constance, Faculty of Physics (Germany)

    2000-11-15

    After a short introduction to {mu}SR with respect to the study of magnetic properties, followed by a brief outline of the principle of the high pressure-low temperature {mu}SR spectrometer installed at the Paul Scherrer Institute, we discuss some measurements on rare earth materials employing this instrument. They are concerned with: (1) The pressure dependence of the spin turning process in ferromagnetic Gd. (2) The volume dependence of the internal magnetic field in the heavy rare earth metals Gd, Dy, and Ho in their ordered magnetic states. (3) The response of the (first order) magnetic transition in the frustrated antiferromagnets of type RMn{sub 2} (R = Y,Gd) to pressure. (4) The variation of magnetic parameters with pressure in La{sub 2}CuO{sub 4} (powder sample), the antiferromagnetic parent compound of the high T{sub C} superconductors of type La{sub 2-x}(Sr, Ba){sub x}CuO{sub 4}. In conclusion a short outlook on further developments is given.

  7. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports

  8. Heavy leptons

    International Nuclear Information System (INIS)

    Smith, C.H.L.

    1977-01-01

    The possibility that a new lepton may exist is discussed under the headings; theoretical reasons for the introduction of heavy leptons, classification of heavy leptons (ortho and paraleptons), discrimination between different types of lepton, decays of charged heavy leptons, production of charged heavy leptons (in e + e - storage rings, neutrino production, photoproduction, and hadroproduction), neutral heavy leptons, and hadroleptons. (U.K.)

  9. Device for removing radioactive solids in wet gases

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Miyo, Hiroaki.

    1981-01-01

    Purpose: To enable removal and decontamination of radioactive solids in wet gases simply, easily and securely by removing radioactive solids in gases by filteration and applying microwaves to filters to evaporate condensed moistures. Constitution: Objects to be heated such as solutions, sludges and solids containing radioactive substances are placed in an evaporation vessel and a microwave generator is operated. Microwaves are applied to the objects in the evaporation vessel through a shielding plate and filters. The objects are evaporated and exhausted gases are passed through the filters and sent to an exhaust gas processing system by way of an exhaust gas pipe. Condensed moistures deposited on the filters which would otherwise cause cloggings are evaporated being heated by the microwaves to prevent cloggings. The number of stages for the filters may optionally be adjusted depending on the extent of the contamination in the exhaust gases. (Kawakami, Y.)

  10. Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis gases from Menilite Shales of the Polish Outer Carpathians

    Science.gov (United States)

    Kotarba, M.J.; Curtis, John B.; Lewan, M.D.

    2009-01-01

    This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 ??C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 ??C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. ??13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the ??13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than

  11. Heavy Flavour Production and Properties at CMS and ATLAS

    CERN Document Server

    Barton, Adam Edward; The ATLAS collaboration

    2018-01-01

    Measurements of heavy flavour properties and production are an important part of the physics program of the ATLAS and CMS experiments at LHC. They can potentially expose physics beyond the standard model, constrain supersymmetry and advance hadron spectroscopy and test QCD. In the past years, the two collaborations have published results in several different fields, such as rare decays, searches for new states, CP and P violation and quarkonia polarisation. In this note, some of the most recent results from ATLAS and CMS are summarised.

  12. Heavy Flavour Production and Properties at ATLAS and CMS

    CERN Document Server

    Barton, Adam Edward; The ATLAS collaboration

    2017-01-01

    Measurements of heavy flavour properties and production are an important part of the physics program of the ATLAS and CMS experiments at LHC. They can potentially expose physics beyond the standard model, constrain supersymmetry and advance hadron spectroscopy and test QCD. In the past years, the two collaborations have published results in several different fields, such as rare decays, searches for new states, CP and P violation and quarkonia polarization. In this note, some of the most recent results from ATLAS and CMS are summarized

  13. Toxicity of Exhaust Gases and Particles from IC-Engines -- International Activities Survey (EngToxIn)

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, J [University for Applied Sciences, Biel-Bienne (Switzerland)

    2011-09-15

    Exhaust gases from engines, as well as from other combustion -- and industrial processes contain different gaseous, semi volatile and solid compounds which are toxic. Some of these compounds are not regarded by the respective legislations; some new substances may appear, due to the progressing technical developments and new systems of exhaust gas aftertreatment. The toxical effects of exhaust gases as whole aerosols (i.e. all gaseous components together with particle matter and nanoparticles) can be investigated in a global way, by exposing the living cells, or cell cultures to the aerosol, which means a simultaneous superposition of all toxic effects from all active components. On several places researchers showed, that this method offers more objective results of validation of toxicity, than other methods used up to date. It also enables a relatively quick insight in the toxic effects with consideration of all superimposed influences of the aerosol. This new methodology can be applied for all kinds of emission sources. It bears potentials of giving new contributions to the present state of knowledge in this domain and can in some cases lead to a change of paradigma. The present report gives short information about the activities concerning the research on toxicity of exhaust gases from IC-engines in different countries. It also gives some ideas about research of information sources. It can be stated that there are worldwide a lot of activities concerning health effects. They have different objectives, different approaches and methodologies and rarely the results can be directly compared to each other. Nevertheless there also are some common lines and with appropriate efforts there are possible ways to establish the harmonised biological test procedures.

  14. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  15. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  16. Heavy rare earth elements affect early life stages in Paracentrotus lividus and Arbacia lixula sea urchins

    Energy Technology Data Exchange (ETDEWEB)

    Oral, Rahime [Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir (Turkey); Pagano, Giovanni, E-mail: gbpagano@tin.it [“Federico II” University of Naples, Department of Chemical Sciences, I-80126 Naples (Italy); Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Siciliano, Antonietta; Gravina, Maria [“Federico II” University of Naples, Department of Biology, I-80126 Naples (Italy); Palumbo, Anna; Castellano, Immacolata; Migliaccio, Oriana [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Thomas, Philippe J. [Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center – Carleton University, Ottawa, Ontario, Canada K1A 0H3 (Canada); Guida, Marco [“Federico II” University of Naples, Department of Biology, I-80126 Naples (Italy); Tommasi, Franca [University of Bari, Department of Biology, Bari (Italy); Trifuoggi, Marco [“Federico II” University of Naples, Department of Chemical Sciences, I-80126 Naples (Italy)

    2017-04-15

    Background: Heavy rare earth elements (HREEs) have been scarcely studied for their toxicity, in spite of their applications in several technologies. Thus HREEs require timely investigations for their adverse health effects. Methods: Paracentrotus lividus and Arbacia lixula embryos and sperm were exposed to trichloride salts of five HREEs (Dy, Ho, Er, Yb and Lu) and to Ce(III) as a light REE (LREE) reference to evaluate: 1) developmental defects (% DD) in HREE-exposed larvae or in the offspring of HREE-exposed sperm; 2) mitotic anomalies; 3) fertilization success; and 4) reactive oxygen species (ROS) formation, and nitric oxide (NO) and malondialdehyde (MDA) levels. Nominal HREE concentrations were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Results: HREEs induced concentration-related DD increases in P. lividus and A. lixula larvae, ranging from no significant DD increase at 10{sup −7} M HREEs up to ≅100% DD at 10{sup −5} M HREE. Larvae exposed to 10{sup −5} M Ce(III) resulted in less severe DD rates compared to HREEs. Decreased mitotic activity and increased aberration rates were found in HREE-exposed P. lividus embryos. Significant increases in ROS formation and NO levels were found both in HREE-exposed and in Ce(III) embryos, whereas only Ce(III), but not HREEs resulted in significant increase in MDA levels. Sperm exposure to HREEs (10{sup −5}–10{sup −4} M) resulted in a concentration-related decrease in fertilization success along with increase in offspring damage. These effects were significantly enhanced for Dy(III), Ho(III), Er(III) and Yb(III), compared to Lu(III) and to Ce(III). Conclusion: HREE-associated toxicity affected embryogenesis, fertilization, cytogenetic and redox endpoints showing different toxicities of tested HREEs. - Highlights: • Different toxicities were exerted by five tested HREEs on sea urchin early life stages. • Sea urchin embryos and sperm were sensitive to HREE levels ranging from 1 to 100

  17. THE OPERATION OF POWER EQUIPMENT DURING THE DISPOSAL OF COMBUSTIBLE GASES ASSOCIATED WITH GEOTHERMAL WATER

    Directory of Open Access Journals (Sweden)

    G. Ya. Akhmedov

    2017-01-01

    Full Text Available Objectives. The aim of the study is to assess the appropriateness of utilising combustible gases associated with geothermal water with  low gas factor and the possibility of its practical implementation with  the provision of power equipment operation of geothermal systems  with a nonscaling mode.Methods. The investigations were carried out by analysing the content of associated combustible gases in the underground  thermomineral waters of the Cis-Caucasian deposits on the basis of  an assessment of the feasibility of their utilisation for heating and  hot water supply.Results. A review of practically existing heat and power schemes  utilising geothermal water sources is carried out. Based on the  studies conducted, it is found that methane (70-90% is prevalent in the water under consideration; meanwhile, the content of heavy hydrocarbons does not exceed 10%. The concentration of carbon  dioxide is 3 ÷ 6%, nitrogen 1 ÷ 4%. Depending on the depth of the  aquifer, gas factors range from 1 to 5 m3/ m3. As a result of the  analysis of the operation of typical thermal distribution stations, it is  established that a violation of the carbon dioxide equilibrium in water leads to the formation of a solid phase of calcium carbonate on the  heat exchange surface. A technique for estimating the relationship between the partial pressure of methane and carbon dioxide with the total pressure in a solution of geothermal water is proposed. A  scheme for the efficient operation of thermal distribution stations  with the prevention of carbonate deposits formation by using the  combustion products of the used gas combined with the injection of waste water back into the aquifer is presented.Conclusion. As a result of the conducted studies, the possibility of  using associated combustible gases in geothermal wells is  established using differences in their solubility and that of carbon  dioxide. In this case, the protection of

  18. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-08-11

    ... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases...-AQ33 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION... Greenhouse Gas Reporting Rule Hotline at telephone number: (877) 444-1188; or e-mail: [email protected] . To...

  19. Heavy water handbook. Evaluation of presently available thermophysical properties of heavy water (D2O) liquid and vapour

    International Nuclear Information System (INIS)

    Bukovsky, J.; Haack, K.

    1994-08-01

    Many publication on the thermophysical properties of heavy water (D 2 O) have appeared since D 2 O became commercially available in the 1930's. Some for the data contradict one another and this has led to confusion when information is needed on D 2 O thermophysical data. Correct thermophysical data must be consistent, i.e. their mutual dependence must be consistent with fundamental thermophysical laws. The work behind this publication has focused on collecting all available D 2 O data and checking them against these fundamental thermophysical criteria. Depending on the various production methods for D 2 O, its oxygen content is enriched more or less by the heavier oxygen isotopes 17 O and 18 O. This, together with the amount of impurities and dissolved gases in the D 2 O samples of the various references, might - to some extent - explain the discrepancies found between the data. Only a few references contain information on these subjects. The D 2 O data sets found to be the most reliable are presented in Chapter 9, in tables as well as in diagrams, together with the corresponding H 2 O data for comparison. Comments on the reliability of the diagrams are given where necessary. Furthermore, short descriptions are given of heavy water sources, availability, production processes, economy, material and energy requirements for the production process. Finally a comprehensive list of references and an author index are included. (au)

  20. Time-dependent behavior of positrons in noble gases

    International Nuclear Information System (INIS)

    Wadehra, J.M.

    1990-01-01

    Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Z eff ) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs

  1. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  2. Diffusion coefficients gases, dissolved in fluid of NPPs circulation contours

    International Nuclear Information System (INIS)

    Piontkovskij, A.I.

    2000-01-01

    In article is brought analysis of diverse gases diffusion coefficients computation methods, dissolved in liquid. On the basis of this analysis and treatment of being equalizations for concrete gases and certain parameters offers universal diffusion coefficients determination dependence for diverse gases in wide range of parameters, circulation contours typical for work NPP

  3. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  4. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  5. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  6. Rare-earth element geochemistry in the Luanga Mafic-Ultramafic Complex, Para

    International Nuclear Information System (INIS)

    Suita, M.T.F.; Nilson, A.A.

    1989-01-01

    Six whole-rock samples (harzburgite, orthopyroxenic and norite) of the Luanga Mafic-Ultramafic Complex (Para) were analysed for rare-earth elements (REE) through plasma spectrometry. The Luanga Complex is a deformed and metamorphosed layered mafic-ultramafic body of Archaean age. The Complex underwent medium-grade metamorphism in three stages. The first stage (medium grade) involved local formation of tremolite and reduction of Ca content in plagioclase. The second stage (low grade) consisted of serpentinization of amphibole or ortopyroxene forming bastile and generation of albite + epidote + white mica + actinolite from plagioclase. The third stage involved renewed serpentinization and/or talcification of pre-existing minerals (including serpentine) along fracture and fault surfaces. The analysed rocks display light rare-earth element (LREE) enrichment up to sixty times the composition of the Leedly chondrite and La/Yb ratios from 6.2 to 20.0 they are low in medium rare-earth elements (MREE), displaying discrete to strong negative Eu anomaly even in plagioclase cumulates and are slightly enriched in heavy rare-earth elements (HREE), usually higher than chondrite values. The low MREE area related to the occurrence of orthopyroxene (bronzite) in a way similar to the pattern of alpine periodotites, while HREE enrichment is compatible with the presence of bronzite and Mg-olivine, probably an inherited igneous feature. (author) [pt

  7. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    International Nuclear Information System (INIS)

    Laul, J.C.; Lepel, E.A.

    1986-01-01

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10 -4 g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization

  8. New neutron-deficient isotopes of barium and rare-earth elements

    CERN Document Server

    Bogdanov, D D; Karnaukhov, V A; Petrov, L A; Plochocki, A; Subbotin, V G; Voboril, J

    1976-01-01

    The authors present an investigation of the short-lived neutron- deficient isotopes of barium and rare-earth elements. By using the BEMS-2 isotope separator on a heavy ion beam, 19 new isotopes were produced with mass numbers ranging from 117 to 138. Five of these (/sup 117/Ba, /sup 129,131/Nd and /sup 133,135/Sm) turned out to be delayed proton emitters. The beta -decay probabilities for the new isotopes have been analyzed in terms of the beta -strength function. An analysis of the proton spectrum shape has been performed using the statistical model for delayed proton emission.

  9. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  10. Synergistic extraction and separation of yttrium from heavy rare earths using mixture of sec-octylphenoxy acetic acid and bis(2,4,4-trimethylpentyl)phosphinic acid

    International Nuclear Information System (INIS)

    Sun Xiaobo; Zhao Junmei; Meng Shulan; Li Deqian

    2005-01-01

    Synergistic extraction and separation of yttrium (Y) from heavy rare earths (HRE) in chloride medium using mixture of sec-octylphenoxy acetic acid (CA-12, HA) and bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272, HL) in n-heptane has been investigated. The synergistic enhancement coefficients, R max , were obtained for Ho 3+ (5.12), Y 3+ (5.34), Er 3+ (7.04), Tm 3+ (7.50), Yb 3+ (13.12) and Lu 3+ (17.58). The separation factors (SF) between Y 3+ and HRE were obtained, and it was found that Er 3+ would form the new complex as ErH 6 A 4 L 5 in the mixture system. A cation exchange mechanism was proposed. The equilibrium constant, formation constant and thermodynamic parameters such as ΔG = -18.48 kJ/mol, ΔH = -1.36 kJ/mol and ΔS = 0.058 kJ/mol were determined. The CA-12 and Cyanex272 mixture system showed higher extraction efficiency, larger separation factors as well as excellent stripping behaviors. The application potential of the mixture system to separate Y from HRE has been discussed

  11. Rare earths, thorium, and other minor elements in sphene from some plutonic rocks in West-Central Alaska

    International Nuclear Information System (INIS)

    Staatz, M.H.; Conklin, N.M.; Brownfield, I.K.

    1977-01-01

    Sphene is an abundant accessory mineral in some abnormally radioactive plutonic rocks in west-central Alaska. Seven samples of sphene from four different areas in west-central Alaska contained from 20,350 to 39,180 parts per million total rare earths and 390 to 2000 ppM thorium. The lanthanide content in six of the seven sphenes is chiefly the light rare earths and is similar to that of crystal abundance; a seventh sphene from the Darby Mountains, however, contains above average amounts of the heavy rare earths. A comparison of the lanthanide distribution in sphene from several areas indicates that the structure of sphene will accommodate whatever lanthanides are available when the mineral crystallizes. The amount of thorium and rare earths in sphene is also affected by the presence of other accessory minerals. Sphene in rocks containing either allanite or zircon has a lower thorium content than in rocks that do not contain allanite or zircon. Sphene, because of its abundance, may contain the greater part of the rare earths and thorium in some of the plutonic rocks of west-central Alaska

  12. The present state and perspectives of low-energy heavy ion biology

    International Nuclear Information System (INIS)

    Yuan Chengling; Yu Zengliang

    2004-01-01

    The interaction between low-energy ions and matter has been concerned rarely comparing to that of high-energy ions. It is even more unusual to find studies of the interaction of low-energy ions and complicated organisms. However, the discovery of bioeffects induced by ion beam implantation has opened a new branch in the field of ion beam applications in the life science--Low-energy Heavy Ion Biology. The mutagenic effect of low energy heavy ions was firstly reported in 1986 in rice. Since then, a damage mechanism involved in energy absorption, mass deposition, and charge exchange has been proposed. Accumulating evidence has indicated that these three factors are key determinants in the bioeffects induced by low energy heavy ions, which has opened new opportunities for mutational breeding, gene transferring, cell modification, and cell fusion. In recent years, the ion beam implantation technique has been widely applied in many fields, and increasing research interest in the field has been seen. The authors summarize recent advances in research on the role of low-energy ions in terms of the mechanisms and applications

  13. Multiplicity dependence of matrix-induced frequency shifts for atomic transitions of the group 12 metals in rare gas solids

    International Nuclear Information System (INIS)

    Laursen, S.L.; Cartland, H.E.

    1991-01-01

    Atomic resonances of the group 12 metal atoms, Hg, Cd, and Zn, undergo frequency shifts from the gas phase atomic line when trapped in rare gas matrices of Ar, Kr, and Xe at 12 K. As expected, the shifts are approximately linear in polarizability of the rare gas, but the slope of this line depends on whether the transition in question is 1 P 1 left-arrow 1 S 0 or 3 P 1 left-arrow 1 S 0 . Thus the matrix-induced frequency shift is dependent on the singlet or triplet nature of the excited state as well as on the matrix material. This dependence on multiplicity is discussed in terms of interactions between the excited-state atomic orbitals and the matrix. The results are compared to matrix studies of other metals and to related gas-phase work on diatomic van der Waals complexes of group 12 metals with rare gases

  14. Radiation-induced transformations of isolated organic molecules in solid rare gas matrices

    International Nuclear Information System (INIS)

    Feldman, V.I.

    1998-01-01

    Complete text of publication follows. The studies of radiation-chemical behaviour of isolated organic molecules in rigid inert media are of considerable interest for radiation chemistry and general structural chemistry. Previous efforts were limited to the ESR studies of radicals resulting from some small hydrocarbon molecules in frozen rare gas solutions. Recently, we developed an approach to the radiation chemistry of isolated organic molecules using classic matrix isolation procedure for sample preparation and a combination of ESR and IR spectroscopy for characterization of paramagnetic and diamagnetic species resulting form electron irradiation or organic molecules in solid rare gas matrices at 10-15 K. The results obtained reveal high efficiency of energy transfer from rare gas matrix to organic molecules. The total radiation-chemical yields of degradation of organic molecules in argon and xenon matrices were measured directly by IR spectroscopy. The studies of the effect of electron scavengers on the radiolysis of organic molecules in solid rare gases show that the main primary process is positive hole transfer from matrix to additive molecule. ESR spectra of a number of radical cations (alkanes, ethers, arenes) were first characterized in a low-disturbing environment. It was found that the electronic characteristics (IP, polarizability) of the matrix used had crucial effect on trapping and degradation of primary organic radical cations. Using matrices with various IP provides an unique possibility to examine the chemical meaning of excess energy resulting from exothermic positive hole transfer, that is, to follow the fate of excited cations in condensed phase

  15. Recovery of rare earth minerals, with emphasis on flotation process

    International Nuclear Information System (INIS)

    Houot, R.; Cuif, J.P.; Mottot, Y.; Samama, J.C.

    1991-01-01

    Bastnasite and monazite are the two major minerals used commercially to supply most of the rare earths. Monazite is often a by-product of the concentration of heavy minerals of zirconium and titanium in beach sands. Thus, the methods of concentration are gravity (spirals, Reichert cones and shaking tables), ending with magnetism, electrostatic and in certain cases, flotation. The two main deposits of bastnasite are Mountain Pass (U.S.A.) and Bayan Obo (China). The rock bastnasite content is within 15% and the recovery of rare earth minerals is made through flotation. The flowsheets are complex enough because the existence of accompanying minerals such as quartz, iron components, barite, fluorite, calcite, etc. The conditioning is done by heating and the frequently employed collector is a fatty acid associated with selective agents, as sodium silicate or fluosilicate, lignin sulphonate, sodium carbonate, aluminium salts, etc. Recent studies tempt to introduce the use of phosphoric esters, dicarboxilic, sulphonic and/or sulphosuccinic acids. Concentrates with 60% REO are then treated with acidic solution to eliminate residual calcite. The possibility of obtaining products enriched with rare earths are also noted: these are ores of uranium (Elliot Lake), pyrochlore, apatite, and other complex ores with euxenite, fergusonite or loparite. (author) 10 figs., 6 tabs., 57 refs

  16. The properties of heavy oils and Orimulsion : another look

    International Nuclear Information System (INIS)

    Fingas, M.; Hollebone, B.; Wang, Z.; Smith, P.

    2003-01-01

    A comparison was made between the physical properties and behaviour indicators of several heavy oils, including Orimulsion. Most heavy oils are rich in resins, asphaltenes, heavy saturates and heavy aromatics and their behaviour may vary during spills due to their different densities. The authors examined the change in density with changes in weathering and temperature. The authors noted two phenomena associated with the behaviour of heavy oils in water, namely sinking and over-washing. Sinking was defined as the bulk sinking of oil to the bottom or an intermediate layer. Over-washing was described as the washing of a layer of water over dense oil at sea while the oil is still close to the surface. The problem with over-washing is that it is not always visible to observers from a ship. The authors briefly reviewed the literature on the topic of dense oil behaviour. To determine whether extensive weathering could render oils heavier than water, weathering experiments were performed on dense oils. Results showed that weathering is rarely a sole factor in the bulk sinking of oil. For the oil to sink after weathering, its density would have to be very close to that of water. Weathering studies have shown that little weathering occurs on sunken oil after it is submerged. The uptake of particulate matter is the most important process in increasing density. The authors also discussed sinking prediction equations and provided a mathematical description of the conditions required for oil to be covered by a layer of water. A summary of the dynamics of Orimulsion as measured in a test tank was also included. 21 refs., 3 tabs., 3 figs

  17. 49 CFR 229.43 - Exhaust and battery gases.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively. ...

  18. Fertiliser characterisation: Major, trace and rare earth elements

    International Nuclear Information System (INIS)

    Otero, N.; Vitoria, L.; Soler, A.; Canals, A.

    2005-01-01

    In recent years, there has been increasing concern regarding the chemical impact of agricultural activities on the environment so it is necessary to identify contaminants, and/or characterise the sources of contamination. In this study, a comprehensive chemical characterisation of 27 fertilisers of different types used in Spain has been conducted; major, minor and trace elements were determined, including rare earth elements. Results show that compound fertilisers used for fertigation or foliar application have low content of heavy metals, whereas fertilisers used for basal and top dressing have the highest content of both REE and other heavy metals. REE patterns of fertilisers have been determined in order for them to be used as tracers of fertilisers in future environmental studies. Furthermore in this work REE patterns of fertilisers are used as tracers of the source of phosphate in compound fertilisers, distinguishing between phosphorite and carbonatite derived fertilisers. Fertilisers from carbonatites have higher contents of REE, Sr, Ba and Th whereas fertilisers from phosphorites have higher contents of metals of environmental concern, such as Cd, U and As; and the sum of the heavy metals is higher. Some of the analysed fertilisers have Cd concentrations that exceed maximum values established in some countries and can be expected to produce long-term soil accumulation. Furthermore, other elements such as U, As and Cr are 10-50 times higher in concentration than those of Cd, but there is no legislation regarding them, therefore it is necessary to regulate fertiliser compositions in order to achieve environmental protection of soils and waters

  19. Influence of the structure of medium-sized aromatic precursors on the reactivity of their dications towards rare gases

    Czech Academy of Sciences Publication Activity Database

    Zins, Emilie-Laure; Schröder, Detlef

    2011-01-01

    Roč. 299, č. 1 (2011), s. 53-58 ISSN 1387-3806 R&D Projects: GA ČR GA203/09/1223 Grant - others:European Research Council(XE) AdG HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : dication * organo rare-gas dication * ion/molecule reaction * krypton * mass spectrometry * xenon Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.549, year: 2011

  20. Investigations into electrical discharges in gases

    CERN Document Server

    Klyarfel'D, B N

    2013-01-01

    Investigations into Electrical Discharges in Gases is a compilation of scientific articles that covers the advances in the investigation of the fundamental processes occurring in electrical discharges in gases and vapors. The book details the different aspects of the whole life cycle of an arc, which include the initiation of a discharge, its transition into an arc, the lateral spread of the arc column, and the recovery of electric strength after extinction of an arc. The text also discusses the methods for the dynamic measurement of vapor density in the vicinity of electrical discharges, alon

  1. Heavy-ion transfer to high-spin states

    International Nuclear Information System (INIS)

    Lauterbach, C.

    1985-01-01

    Transfer reactions between very heavy ions, in particular about systems in which one or both collision partners are well deformed, are studied. These systems are expected to give rise to new phenomena which are related to the fact that the deformed nucleus has been Coulomb excited to a rotational or vibrational state at the time when the collision partners come into contact. In this paper the authors present results of experiments in which nuclei from the rare earth and the actinide region have been bombarded by various projectiles ranging from 34 S to 208 Pb at incident energies close to the Coulomb barrier. (Auth.)

  2. Measurement of stopping powers of gases for heavy ions of 3 to 13 MeV by nucleon

    International Nuclear Information System (INIS)

    Orliange, I.

    1985-09-01

    The stopping powers of gases have been measured for incident 10 Ne, 18 Ar, 29 Cu, 36 Kr and 47 Ag ions of 3 to 13 MeV/u. These measurements have confirmed the existence of a gas-solid difference for the stopping powers (the stopping power of solids being larger than that of gazes). Such a difference was theoretically postulated by Bohr and Lindhard in 1954, and experimentally observed for the first time by Geissel in 1982. This effect can be qualitatively interpreted by a difference in the ion's effective charge in stopping power. However, the determination of charge state distribution for Ar and Fe ions in two particular cases (Ar + Nsub(2s)or Nsub(2g) and (Fe + Csub(s) or Csub(g)) from a theoric model and experimental cross sections for atomic collisions don't quantitatively account for observed differences [fr

  3. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  4. SF6-alternative gases for application in gas-insulated switchgear

    Science.gov (United States)

    Li, Xingwen; Zhao, Hu; Murphy, Anthony B.

    2018-04-01

    The environmental problems caused by greenhouse gases have received unprecedented attention. Sulfur hexafluoride (SF6), which is the preferred gas for use in gas-insulated switchgear (circuit breakers, disconnect switches, etc. for high-voltage electrical circuits), has a very high global warming potential, and there is a large international effort to find alternative gases. Recently, this effort has made important progress, with promising alternative gases being identified and tested. An overview, in particular the current state of the art, of the study of SF6-alternative gases is presented in the paper. The review focuses on the application of the SF6-alternative gases in gas-insulated switchgear, with detailed analysis of calculations and measurements of their basic physical properties, dielectric strengths, and arc-quenching capabilities. Finally, a discussion of and perspectives on current research and future research directions are presented.

  5. Radiological safety in extraction of rare earths in India: regulatory control

    International Nuclear Information System (INIS)

    Sinha, S.; Bhattacharya, R.

    2011-01-01

    The term 'rare earths' refers to a group of f-block elements in the periodic table including those with atomic numbers 57 (Lanthanum) to 71 (Lutetium), as well as the transition metals Yttrium (39) and Scandium (21). Economically extractable concentrations of rare earths are found in minerals such as monazite, bastnaesite, cerites, xenotime etc. Of these, monazite forms the main source for rare earths in India, which along with other heavy minerals is found abundantly in the coastal beach sands. However, in addition to rare earths, monazite also contains 0.35% U 3 O 8 and 8-9% ThO 2 . Hence, extraction of rare earths involves chemical separation of the rare earths from thorium and uranium which are radioactive. The processing and extraction of rare earths from monazite therefore invariably results in occupational radiation exposure to the workers involved in these operations. In addition, in the process of removal of radioactivity from rare earths, radioactive solid waste gets generated which has 2 2 8Ra concentration in the range 2000-5000 Bq/g. Unregulated disposal of such high active waste would not only result in contamination of the soil but the radionuclides would eventually enter the food chain and lead to internal exposure of the general public. Therefore such facilities involved in recovery of rare earths from monazite attract the provisions of radiological safety regulations. Atomic Energy Regulatory Board of India has been enforcing the provisions of The Atomic Energy (Radiation Protection) Rules, 2004 and The Atomic Energy (Safe Disposal of Radioactive Waste) Rules, 1987 in these facilities. This paper shall discuss the associated radiological hazard involved in recovery of rare earths from monazite. It shall also highlight the regulatory requirements for controlling the occupational exposure of workers during design stage such as requirements on lay out of the building, ventilation, containment of radioactivity, etc and also the during operational

  6. Thermodynamic properties of rotating trapped ideal Bose gases

    International Nuclear Information System (INIS)

    Li, Yushan; Gu, Qiang

    2014-01-01

    Ultracold atomic gases can be spined up either by confining them in rotating frame, or by introducing “synthetic” magnetic field. In this paper, thermodynamics of rotating ideal Bose gases are investigated within truncated-summation approach which keeps to take into account the discrete nature of energy levels, rather than to approximate the summation over single-particle energy levels by an integral as it does in semi-classical approximation. Our results show that Bose gases in rotating frame exhibit much stronger dependence on rotation frequency than those in “synthetic” magnetic field. Consequently, BEC can be more easily suppressed in rotating frame than in “synthetic” magnetic field.

  7. Heavy ion irradiation of astrophysical ice analogs

    International Nuclear Information System (INIS)

    Duarte, Eduardo Seperuelo; Domaracka, Alicja; Boduch, Philippe; Rothard, Hermann; Balanzat, Emmanuel; Dartois, Emmanuel; Pilling, Sergio; Farenzena, Lucio; Frota da Silveira, Enio

    2009-01-01

    Icy grain mantles consist of small molecules containing hydrogen, carbon, oxygen and nitrogen atoms (e.g. H 2 O, GO, CO 2 , NH 3 ). Such ices, present in different astrophysical environments (giant planets satellites, comets, dense clouds, and protoplanetary disks), are subjected to irradiation of different energetic particles: UV radiation, ion bombardment (solar and stellar wind as well as galactic cosmic rays), and secondary electrons due to cosmic ray ionization of H 2 . The interaction of these particles with astrophysical ice analogs has been the object of research over the last decades. However, there is a lack of information on the effects induced by the heavy ion component of cosmic rays in the electronic energy loss regime. The aim of the present work is to simulate of the astrophysical environment where ice mantles are exposed to the heavy ion cosmic ray irradiation. Sample ice films at 13 K were irradiated by nickel ions with energies in the 1-10 MeV/u range and analyzed by means of FTIR spectrometry. Nickel ions were used because their energy deposition is similar to that deposited by iron ions, which are particularly abundant cosmic rays amongst the heaviest ones. In this work the effects caused by nickel ions on condensed gases are studied (destruction and production of molecules as well as associated cross sections, sputtering yields) and compared with respective values for light ions and UV photons. (authors)

  8. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  9. Heavy baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.

    1994-06-01

    We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/m Q corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)

  10. Heavy quark effective theory and study of heavy hadron spectra

    International Nuclear Information System (INIS)

    Dong Yubing

    1995-01-01

    By employing the heavy quark effective theory, the spectra of heavy hadrons, such as heavy mesons (Q-barq), heavy baryons (QQq and Qqq) and heavy multiquark systems (Q-barQ-barqq) are studied systemically. The results are compared with the predictions for Q-barQ-barqq in potential model

  11. Heavy water handbook. Evaluation of available thermophysical properties of heavy water (D2O) liquid and vapour

    International Nuclear Information System (INIS)

    Bukovsky, J.; Haack, K.; Wiig, P.

    1993-01-01

    Numerous publications on the thermophysical data of heavy water (D 2 O) have been published since D 2 O became commercially available in the 1930's. Some of these data are in mutual disagreement. This has led to confusion among the scientifical and technical staffs who needed the information on the D 2 O thermophysical data. Correct thermophysical data must be consistent, i.e. their mutual relations must be in accordance to the fundamental thermophysical laws. The work behind this publication has been focussed at collecting all avalilable D 2 O data and checking the data mutually by means of these fundamental thermophysical criteria. Depending on the various production methods, the oxygen content of the D 2 O is enriched more or less in the heavier oxygen isotopes 17 O and 18 O. This, together with the amount of impurities and dissolved gases in the D 2 O samples of the various references, might - to some extent - explain the discrepancies between the data sources. Only a few references contain information on these subjects. The D 2 O data sets which were found to be the most reliable are presented in chapter 9, in tables as well as in diagrams, together with the corresponding H 2 O data for comparison. The diagrams are commented for reliability where it was found necessary. Furthermore, the publication contains short descriptions on the heavy water sources, availability, production processes, economy, material and energy demands for production. A comprehensive list of references is enclosed. (author)

  12. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  13. Essential Characteristics of Plasma Antennas Filled with He-Ar Penning Gases

    International Nuclear Information System (INIS)

    Sun Naifeng; Li Wenzhong; Wang Shiqing; Li Jian; Ci Jiaxiang

    2012-01-01

    Based on the essential theory of Penning gases, the discharge characteristics of He-Ar Penning gases in insulating tubes were analyzed qualitatively. The relation between the effective length of an antenna column filled with He-Ar Penning gases and the applied radio frequency (RF) power was investigated both theoretically and experimentally. The distribution of the plasma density along the antenna column in different conditions was studied. The receiving characteristics of local frequency modulated (FM) electromagnetic waves by the plasma antenna filled with He-Ar Penning gases were compared with those by an aluminum antenna with the same dimensions. Results show that it is feasible to take plasma antennas filled with He-Ar Penning gases as receiving antennas.

  14. A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Colin Barschel

    2015-01-01

    Full Text Available We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The target provides a high areal density at minimum gas input, which may be polarized 1H, 2H, or 3He gas or heavy inert gases in a wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 1033/cm2 s can be produced with existing techniques.

  15. Heavy baryons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Koerner, J.G.; Thompson, G.

    1991-10-01

    We give a mini-review of recent results on current-induced transitions between heavy baryons (and between heavy and light baryons) in the light of the new spin and flavour symmetries of the Heavy Quark Effective Theory (HQET). We discuss the structure of the 1/m corrections to the heavy mass limit and outline a diagrammatic proof that there are no 0(1/m) correction to the Voloshin-Shifman normalization condition at zero recoil. (orig.)

  16. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de, E-mail: wellingtonmarcos@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH{sub 3} and N{sub 2} gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  17. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de

    2016-01-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH 3 and N 2 gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  18. The neutron-proton pairing and the moments of inertia of the rare earth even-even nuclei

    International Nuclear Information System (INIS)

    Calik, A. E.; Deniz, C.; Gerceklioglu, M.

    2009-01-01

    In this study, the possible effect of the neutron-proton pairing interaction in the heavy nuclei has been investigated in the framework of the BCS model by making a simple approximation. This effect has been searched realistically by calculating the moments of inertia of deformed even-even nuclei. Calculations show that the moments of inertia of rare earth nuclei changed dramatically and approached the experimental values.

  19. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  20. Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases

    Directory of Open Access Journals (Sweden)

    Travis J. Schuyler

    2017-10-01

    Full Text Available The emission of greenhouse gases (GHGs has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes <100 m above ground level that can achieve spatiotemporal resolution on the order of meters and seconds. Unmanned aerial systems (UASs can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1 micro aerial vehicles (MAVs; (2 vertical take-off and landing (VTOL; and, (3 low-altitude short endurance (LASE systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL, which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change.

  1. Detection of high energy gamma radiations with liquid rare gases as scintillators; Detection des rayonnements Gamma de grande energie avec les gaz rares liquides comme scintillateurs

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Phan Xuan

    1965-11-25

    This research thesis reports the study of a sensor based on a liquid scintillator for the detection of high energy (10 to 30 MeV) gamma radiations. The scintillator is a liquefied argon or xenon rare gas. The author first studies the process of energy transfer from the particle to the sensing medium. He addresses the different involved elements and phenomena: electromagnetic radiations (Compton Effect, photoelectric effect, pair production, and total gamma absorption), charged particles (braking radiation, collisions) and application to gamma spectrometry. He describes and discusses the scintillation mechanisms (scintillation of organic and inorganic materials), the general characteristics of scintillators (impurities, converters), and then reports the practical realisation of the sensor. Results are presented and discussed [French] Dans ce travail, nous nous proposons d'etudier une technique. Il s'agit d'un detecteur a scintillateur liquide pour la detection des rayonnements gamma energiques (10 a 30 MeV). Le scintillateur utilise est un gaz rare liquefie argon ou xenon. Nous examinerons d'abord les processus de transfert de l'energie de la particule au milieu detecteur puis les mecanismes de scintillation en general pour pouvoir exploiter au mieux les phenomenes favorables. Nous presenterons ensuite la realisation pratique du detecteur. Ses qualites (et defauts) trouveront leur place dans la fin de ce memoire. Bien qu'a l'heure actuelle, par la methode de Kyropoulos, on puisse faire pousser des gros cristaux d'iodure de sodium, l'utilisation des 'gaz rares' liquefies comme scintillateurs est, grace a la brievete de la scintillation, tres utile lorsqu'on recherche un fort taux de comptage (jusqu'a 10 impulsions par seconde) ou lorsqu'on veut resoudre certains problemes de coincidence. Les cristaux NaI(Tl) de grandes dimensions sont d'un montage facile mais leur manipulation requiert beaucoup de precautions du fait qu'ils supportent tres mal les chocs thermiques

  2. Interaction of Se and GaSe with Si(111)

    International Nuclear Information System (INIS)

    Meng, Shuang; Schroeder, B. R.; Olmstead, Marjorie A.

    2000-01-01

    Deposition of Se and GaSe on Si(111)7x7 surfaces was studied with low-energy electron diffraction, x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction to probe initial nucleation and interface structure for GaSe/Si(111) heteroepitaxy. Room-temperature deposition of Se on Si(111)7x7 results in an amorphous film. Subsequent annealing leads to Se evaporation without ordering or interdiffusion. Se deposition at 450 degree sign C saturates at submonolayer coverage with no diffusion of Se into the substrate. There is no clear evidence of ordered sites for the Se. Growth of GaSe on Si(111)7x7 above 500 degree sign C results in a pseudomorphic bilayer, with Si-Ga-Se bonding. Additional GaSe does not stick to the bilayer above 525 degree sign C. The resulting Se lone pair at the surface leads to an ideally passivated surface similar to As/Si(111). This stable surface is similar to the layer termination in bulk GaSe. The single domain bilayer is oriented with the Ga-Se bond parallel to the substrate Si-Si bond. (c) 2000 The American Physical Society

  3. Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, J.M.

    1980-05-01

    This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

  4. General analysis of weak decay form factors in heavy to heavy and heavy to light baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.; Liu Dongsheng; Kraemer, M.; Koerner, J.G.; Tawfiq, S.

    1992-01-01

    We present a complete analysis of the heavy to heavy and heavy to light baryon semi-leptonic decays in the heavy quark effective theory within the framework of a Bethe-Salpeter (BS) approach and demonstrate the equivalence of this approach to other work in the field. We present in a compact form the baryon BS amplitudes which incorporate the symmetries manifest in the heavy quark limit and which also show clearly the light quark dynamics. A similar form of the BS amplitude is presented for light baryons. Using the BS amplitudes, the heavy to heavy and heavy to light semi-leptonic baryon decays are considered. As expected there is a dramatic reduction in the number of form factors. An advantage of our BS approach is demonstrated where the form factors are written as loop integrals which in principle can be calculated. (orig.)

  5. μ+ thermalization and muonium formation in noble gases

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Garner, D.M.; British Columbia Univ., Vancouver

    1981-01-01

    One energy loss mechanism in μ + thermalization (in gases) is that due to charge exchange, in which muonium is repeatedly formed and lost in a series of charge-exchange cycles μ + +e - reversible Mu, a process which depends on the ionization potential of the moderator gas but one in which no depolarization of the μ + is expected at approx. 1 atm. pressure. However, if the time between collisions in a given energy regime can be made sufficiently long then additional depolarization may occur, which can provide further information on the charge-exchange process itself. Extensive data showing this effect has been found in gases; results for the noble gases are presented. (orig.)

  6. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

    Science.gov (United States)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

    2015-06-01

    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest

  7. Electrical properties of carbon nanotubes modified GaSe glassy system

    Science.gov (United States)

    Khan, Hana; Khan, Zubair M. S. H.; Islam, Shama; Rahman, Raja Saifu; Husain, M.; Zulfequar, M.

    2018-05-01

    In this paper we report the investigation of the effect of Carbon Nanotubes (CNT) addition on the electrical properties of GaSe Glassy system. Dielectric constant and dielectric loss of GaSe glassy system are found to increase on CNT addition. The conductivity of GaSe glasy systems is also found to increase on CNT addition. This behavior is attributed to the excellent conduction properties of Carbon Nanotube.

  8. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  9. Little bang at big Accelerators Heavy ion physics from AGS to LHC

    CERN Document Server

    Schükraft, Jürgen

    1998-01-01

    Since the start of ultra-relativistic heavy ion experimentation, some10 years ago at the Brookhaven AGS and the CERN SPS, it has rarely been as gratifying to open a conference in this field as it is in Jaipur for this 3rd International Conference on Physics and Astrophysics of the Quark-Gluon-Plasma. The advent of a new generation of detectors, and most important, the availability of really heavy ion beams, has lead in the last three years to exciting new results which are of relevance to the most crucial questions this field has been addressing since 1986: do we see in ultra-relativistic heavy ion collisions signs for deconfinement, signs for chiral symmetry restoration, signs for equilibrated hadronic matter? The tantalizing answer today to each of these questions seems to be: yes! If the quest for the QGP is today in its most exciting and productive phase ever, the city of Jaipur is likewise a most pleasant and appropriate place to discuss the most recent progress. India has become a strong andrecognized p...

  10. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  11. Hazard report. Don't use industrial-grade gases for clinical applications.

    Science.gov (United States)

    2010-01-01

    The use of industrial-grade gases instead of medical-grade gases for clinical applications increases the risk of introducing undesirable and even toxic contaminants into the clinical environment. Hospitals should have policies in place to ensure that gases of the appropriate type and grade are used for the intended application.

  12. The gaseous emission of polymers under swift heavy ion irradiation: effect of the electronic stopping power

    International Nuclear Information System (INIS)

    Picq, V.

    2000-07-01

    This thesis contributes to a better understanding of the damaging processes, which occur in polymers under swift heavy ion irradiation. The present study is exclusively devoted to the influence of the electronic stopping power, (dE/dx)e, on the molecular emission under irradiation. The irradiated polymers are polyethylene, polypropylene and poly-butene. The (dE/dx)e of the projectiles used varies from 3.5*10 -3 MeV.mg -1 .cm 2 (electron) to 39 MeV.mg -1 .cm 2 ( 58 Ni). We used two different experimental approaches in order to identify the nature of the emitted gases: mass spectrometry and infrared spectroscopy. The first technique is non selective, therefore, we could detect the emission of H 2 and heavy molecules; it also gives information on the diffusion kinetics of the molecules formed. The use of infrared spectroscopy for this kind of analysis is new and the technique was developed at the laboratory. It enables us to identify, without any ambiguity, molecules with up to three carbon atoms. The experimental spectra are analysed by using reference spectra of pure gases, measured in our laboratory. We have quantified precisely each identified gas, and we have followed the evolution of the radiochemical yields with increasing (dE/dx)e. The results, obtained at different (dE/dx)e, inform us on the different mechanisms of gas molecules formation, for example the side group departure and, at high (dE/dx)e, the fragmentation of the main chain which is due to multiple ionisation of the macromolecule. (author)

  13. Quotation systems for greenhouse gases

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2000-01-01

    The article surveys recommendations from a Norwegian committee for implementing at a national level, the Kyoto protocol aims for reducing the total emissions of greenhouse gases from the industrial countries through quotation systems

  14. Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment

    Science.gov (United States)

    Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.

    2014-01-01

    This report provides a descriptive model of heavy-mineral sands, which are sedimentary deposits of dense minerals that accumulate with sand, silt, and clay in coastal environments, locally forming economic concentrations of the heavy minerals. This deposit type is the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, through recovery of the minerals ilmenite (Fe2+TiO3), rutile (TiO2), and leucoxene (an alteration product of ilmenite). Heavy-mineral sands are also the principal source of zircon (ZrSiO4) and its zirconium oxide; zircon is often recovered as a coproduct. Other heavy minerals produced as coproducts from some deposits are sillimanite/kyanite, staurolite, monazite, and garnet. Monazite [(Ce,La,Nd,Th)PO4] is a source of rare earth elements as well as thorium, which is used in thorium-based nuclear power under development in India and elsewhere.

  15. Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K.; Barlow, N. G.

    2018-01-01

    Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.

  16. Luminescence yield in irradiating gases by X-rays and alpha particles

    International Nuclear Information System (INIS)

    Combecher, D.

    1973-01-01

    In this paper, the measurable light emission in the irradiation of gases as modle substances has been quantitatively determined. The gases Ar, H 2 , N 2 , air, and C 3 H 8 were irradiated with X-rays and α-particles at a pressure of 730 torr. The emitted light was measured in the spectral range between the short-wave absorption edge of the gases and 6000 A (spectral resolution: 20 A). The spectral light yield was determined from the efficiency of the apparatus and from the total energy absorbed in the gases. (HK) [de

  17. Distribution of rare-earths in solid solution crandalita- goyazita of Sapucaia (Bonito-Para)

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de

    1987-01-01

    The Crandallite are predominant in the lateritic phosphates of Sapucaia, in the form of the solid solution Crandallite (Cn)- Goyazite (Gz)-Florencite (Fl). The Crandallite-Goyazite is predominant, where the maximum proportion of Florencite is Cn 60 Cz 34.8 Fl 5.2 - This proportion of Florencite is relatively high for laterites, and for this case having up to 1,374% weight of TR 2 O 3 in the total sample. The light rare elements are predominant over the heavy ores, and are illustrated in the distribution curve normalized for the chondrites. This curve is partially comparable with the curve for Apatite presents slight negative anomaly for the element Europium, and slight positive anomaly for The elements Thulium. The geochemical caracteristics for the rare earths in this group allow the prediction for the original rock for the laterites. (author) [pt

  18. Influence of the gray gases number in the weighted sum of gray gases model on the radiative heat exchange calculation inside pulverized coal-fired furnaces

    Directory of Open Access Journals (Sweden)

    Crnomarković Nenad Đ.

    2016-01-01

    Full Text Available The influence of the number of gray gases in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the number of gray gases. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in-house developed software tools

  19. Heavy Tail Behavior of Rainfall Extremes across Germany

    Science.gov (United States)

    Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.

    2017-12-01

    Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.

  20. Fabrication of nano porous with heavy ions in plastics for the oil industry

    International Nuclear Information System (INIS)

    Balcazar, M.; Tavera, L.; Mendoza, D.; Mut, A.

    2003-01-01

    The natural gas has undesirable concentrations of other gases like the nitrogen that reduces the heat capacity of the gas. It is required to develop separation technology to increase the caloric value of the gas. Among the technology in development for the separation of these gases there are the nano membranes; these are polymeric material that when synthesizing them form nano pores that allow the selective separation of the gas. Another form of creating these nano pores with uniform and controlled pore size, is irradiating a polymeric material with heavy ions. The energy loss of the heavy ion produces cylindrical damages around its trajectory in a diameter among 30 x 10 -10 m and 100 x 10 -10 m. This damage breaks the chains of the polymer making it susceptible to the corrosion of appropriate chemical agents that allow to create a pore of the size of some nanometers in the polymer. The basic mechanisms of the interaction of the ions with the polymer are important for the controlled creation, the observation and analysis of these nano pores. One of the more appropriate techniques for the visualization and analysis of the geometry of the produced damages, it is the scanning electron and of the atomic force microscopies. The present work has as objective to define the basic parameters of the interaction of the ion with the polymer that intervene in the fabrication of this nano pores. The conditions of the chemical corrosion process are presented for the creation of micro pores in two polymers CR39 and Makrofol produced by fission fragments and alpha particles. A characterization of the diameters and of the damages profile is make. The obtained results are related with the mechanisms of loss of energy of the ions in the matter and the particles identification in function of the damage geometry. (Author)

  1. Fast Heavy-Atom Tunneling in Trifluoroacetyl Nitrene.

    Science.gov (United States)

    Wu, Zhuang; Feng, Ruijuan; Li, Hongmin; Xu, Jian; Deng, Guohai; Abe, Manabu; Bégué, Didier; Liu, Kun; Zeng, Xiaoqing

    2017-12-04

    Chemical reactions involving quantum mechanical tunneling (QMT) increasingly attract the attention of scientists. In contrast to the hydrogen-tunneling as frequently observed in chemistry and biology, tunneling solely by heavy atoms is rare. Herein, we report heavy-atom tunneling in trifluoroacetyl nitrene, CF 3 C(O)N. The carbonyl nitrene CF 3 C(O)N in the triplet ground state was generated in cryogenic matrices by laser (193 or 266 nm) photolysis of CF 3 C(O)N 3 and characterized by IR and EPR spectroscopy. In contrast to the theoretically predicted activation barriers (>10 kcal mol -1 ), CF 3 C(O)N undergoes rapid rearrangement into CF 3 NCO with half-life times of less than 10 min and unprecedentedly large 14 N/ 15 N kinetic isotope effects (1.18-1.33) in solid Ar, Ne, and N 2 matrices even at 2.8 K. The tunneling disappearance of CF 3 C(O)N becomes much slower in the chemically active toluene and in 2-methyltetrahydrofuran at 5 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  3. Rare leptonic and semileptonic $b$-hadron decays and tests of lepton flavour universality at LHCb

    CERN Document Server

    AUTHOR|(CDS)2069512

    2016-01-01

    Rare decays of heavy-flavoured particles provide an ideal laboratory to look for deviations from the Standard Model, and explore energy regimes beyond the LHC reach. Decays proceeding via electroweak penguin diagrams are excellent probes to search for New Physics, and $b \\to s \\ell^+ \\ell^-$ processes are particularly interesting since they give access to many observables such as branching fractions, asymmetries and angular observables. Recent results from the LHCb experiment are reviewed.

  4. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  5. The biological effectiveness of heavy ion radiations in the environment

    International Nuclear Information System (INIS)

    Craven, P.A.

    1996-03-01

    Although heavy ions are rarely encountered in the majority of terrestrial environments, the exposure of humans to this fascinating class of ionizing radiation is becoming more frequent. Long-duration spaceflight, new radiotherapeutic procedures and enhanced levels of radon, and other naturally-occurring alpha particle emitters, have all increased concern and stimulated interest recently within the radiological protection and radiobiological communities. Significant data concerning the long-term effects of low levels of heavy ions on mammalian systems are correspondingly scarce, leading to increased emphasis on modelling all aspects of the radiation-organism interaction. Contemporary radiation protection procedures reflect the need for a more fundamental understanding of the mechanisms responsible for the biological actions of such radiations. Major deficiencies exist in the current recommendations for assessment of relative effectiveness, the enhanced severity of the biological consequences instigated by heavy ions, over conventional sparsely ionizing radiations. In an attempt to remedy some of the inadequate concepts and assumptions presently employed and, simultaneously, to gain insight into the fundamental mechanisms behind the notion of radiation quality, a series of algorithms have been developed and executed as computer code, to evaluate the biological effectiveness of heavy ion radiation ''tracks'' according to a number of criteria. These include consideration of the spatial characteristics of physical energy deposition in idealised cellular structures (finite particle range, radial extension of tracks via δ-ray emission) and the likelihood of induction and mis-repair of severe molecular lesions (double-strand breaks, multiply-damaged sites). (author)

  6. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  7. Teledetección de Gases mediante Sensores Infrarrojo (IR)

    OpenAIRE

    López Martínez, Fernando

    2008-01-01

    El LIR- UC3M, Laboratorio de Sensores IR de la Universidad Carlos III, ha desarrollado técnicas de análisis multi e hiperespectral IR para la teledetección de gases. Ofrece el diseño de sensores específicos para determinar la presencia de gases y su concentración. La práctica totalidad de los gases (CO2, CO, NO2, O3, HC o NH, etc.) implicados en la seguridad industrial, ambiental o militar pueden ser detectados. Se busca empresas o centros interesados en el uso de sensores de aplicación e...

  8. Yttrium separation of Xenotime waste in Pitinga (Brazil), in order to obtain rare earth elements

    International Nuclear Information System (INIS)

    Melo.

    1996-01-01

    The xenotime (YPO 4 and rare earth elements) found in the mine of Pitinga, Amazonas State, Brazil, has its origin in a primal depository ('eluvio' kind) of cassiterite, having considerable quantities of zirconite, ilmenite, topaz and niobates-tantalates. This xenotime has different characteristics in relation of the depositories that exist in other countries for presenting more concentration of rare earth heavy oxides. The mineralization of this cassiterite is problematic, because of the high level of radioactive elements. In the present work, we will process only the xenotime. The separation of rare earth elements is very difficult due to their great chemical similarity. For a more exactly determination, it is necessary to separate them at least of the macron constituents of the sample. As the Yttrium is considerate one of the rare earth elements, due to its chemical similarity, we can understand the difficulty of a chemical separation, mainly when this one is also a macro constituent of the sample, as in the case of xenotime. The process of separation will be based on the little difference that exists between the constants of complexation and the fluoride. (authors). 5 refs., 1 fig., 2 tabs

  9. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  10. Heavy-ion radiography and heavy-ion computed tomography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Holley, W.R.; McFarland, E.W.; Tobias, C.a.

    1982-02-01

    Heavy-ion projection and CT radiography is being developed into a safe, low-dose, noninvasive radiological procedure that can quantitate and image small density differences in human tissues. The applications to heavy-ion mammography and heavy-ion CT imaging of the brain in clinical patients suggest their potential value in cancer diagnosis

  11. Contribution to the study of rare earth separation by ion exchange, using ammonium lactate; Contribution a l'etude de la separation des terres rares par echange d'ions a l'aide de lactate d'ammonium

    Energy Technology Data Exchange (ETDEWEB)

    Gratot, I [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Using the technique of chromatography on a column of Dowex 50 resin, heated to 87 deg. C, we have studied the separation of rare earths (from holmium to praseodymium) which may be produced with the cyclotron by heavy ions, {alpha} or protons. From an ammonium lactate solution M at pH 5, separations are carried out by varying the dilution as a function of the quantity of the target rare earth and of its position during elution. When weighable quantities of the rare earth (more than 5 mg) appear towards the end of the elution, the separation is little affected this case approaches that of a tracer mixture of rare earths; if on the other hand weighable quantities of the rare earth are washed through at the beginning of the chromatogram, the dilution must be adjusted in order to obtain a good separation. (author) [French] Par chromatographie sur colonne de resine Dowex 50, chauffee a 87 deg. C, nous avons examine la separation des terres rares (de l'holmium au praseodyme) susceptibles d'etre produites au cyclotron par ions lourds, {alpha} ou protons. A partir d'une solution de lactate d'ammonium M a pH 5, nous effectuons les separations en agissant sur la dilution en fonction de la quantite de terre rare cible et de sa position au cours de l'elution. Lorsque la terre rare en quantite ponderale (superieure a 5 mg) passe en fin d'elution, la separation est peu affectee; nous sommes ramenes au cas d'un melange de terres rares traceur; par contre, si la terre rare en quantite ponderale s'elue en tete du chromatogramme, nous devons agir sur la dilution pour obtenir une bonne separation. (auteur)

  12. Mimicking the magnetic properties of rare earth elements using superatoms.

    Science.gov (United States)

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters.

  13. Proceedings of the Helmholtz international school physics of heavy quarks and hadrons (HQ2013)

    International Nuclear Information System (INIS)

    Ali, Ahmed; Bystritskiy, Yury; Ivanov, Mikhail

    2014-07-01

    The following topics were dealt with: Higgs boson production and couplings with the ATLAS detector, recent CMS results on heavy quarks and hadrons, mesons with open charm and beauty, new-physics searches in B→D (*) τν τ , spectroscopy and Regge trajectories of heavy quarkonia, weak decays of B s mesons, the possible role of scalar glueball-quarkonia mixing in the f 0 (1370,1500,17100) resonances produced in charmonia decays, effective weak Lagrangians in the Standard Model and B decays, heavy-quark physics in the covariant quark model, application of QCD sum rules to heavy-quark physics, top-quark production, helicity amplitudes and angular decay distributions, small-x behavior of deep-inelastic structure functions F 2 and F 2 cc , XYZ stated, recent Belle results, light and heavy hadrons in AdS/QCD, renorm dynamics, valence quarks and multiparticle production, prompt photons and associated b,c-tagged jet production within the k T factorization approach, heavy quarkonium production at the LHC in the framework of NRQCD and parton Reggeization approach, light-cone distribution amplitudes of bottom baryons, rare semileptonic B + → π + l + l - decay, bimodality phenomenon in finite and infinite systems within an exactly solvable statistical model, CP violation in D meson decays, the scalar mesons in multichannel ππ scattering and decays of the ψ and Υ families, the latest results of the ATLAS experiment on heavy-quark physics, relativistic corrections to pair charmonium production at the LHC, the rise and fall of the fourth quark-lepton generation. (HSI)

  14. Experimental study of energy exchanges between two coupled granular gases

    OpenAIRE

    Chastaing , J.-Y; Géminard , J.-C; Naert , A

    2016-01-01

    International audience; We report on the energy exchanges between two granular gases of different densities coupled electrome-chanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the ene...

  15. Magnetic Modes in Rare Earth Perovskites: A Magnetic-Field-Dependent Inelastic Light Scattering study.

    Science.gov (United States)

    Saha, Surajit; Cao, Bing-Chen; Motapothula, M; Cong, Chun-Xiao; Sarkar, Tarapada; Srivastava, Amar; Sarkar, Soumya; Patra, Abhijeet; Ghosh, Siddhartha; Ariando; Coey, J M D; Yu, Ting; Venkatesan, T

    2016-11-15

    Here, we report the presence of defect-related states with magnetic degrees of freedom in crystals of LaAlO 3 and several other rare-earth based perovskite oxides using inelastic light scattering (Raman spectroscopy) at low temperatures in applied magnetic fields of up to 9 T. Some of these states are at about 140 meV above the valence band maximum while others are mid-gap states at about 2.3 eV. No magnetic impurity could be detected in LaAlO 3 by Proton-Induced X-ray Emission Spectroscopy. We, therefore, attribute the angular momentum-like states in LaAlO 3 to cationic/anionic vacancies or anti-site defects. Comparison with the other rare earth perovskites leads to the empirical rule that the magnetic-field-sensitive transitions require planes of heavy elements (e.g. lanthanum) and oxygen without any other light cations in the same plane. These magnetic degrees of freedom in rare earth perovskites with useful dielectric properties may be tunable by appropriate defect engineering for magneto-optic applications.

  16. Molecular model for solubility of gases in flexible polymers

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole; Szabo, Peter

    1999-01-01

    We propose a model for a priori prediction of the solubility of gases in flexible polymers. The model is based on the concept of ideal solubility of gases in liquids. According to this concept, the mole fraction of gases in liquids is given by Raoult's law with the total pressure and the vapor...... pressure of the gas, where the latter may have to be extrapolated. However, instead of considering each polymer molecule as a rigid structure, we estimate the effective number of degrees of freedom from an equivalent freely jointed bead-rod model for the flexible polymer. In this model, we associate...... the length of the rods with the molecular weight corresponding to a Kuhn step. The model provides a tool for crude estimation of the gas solubility on the basis of only the monomer unit of the polymer and properties of the gas. A comparison with the solubility data for several gases in poly...

  17. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  18. Emissions of greenhouse gases in the United States, 1985--1990

    International Nuclear Information System (INIS)

    1993-01-01

    The Earth's capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ''greenhouse gases.'' Their warming capacity, called ''the greenhouse effect,'' is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth's absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available

  19. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  20. Development of fast-release solid catchers for rare isotopes

    Science.gov (United States)

    Nolen, Jerry; Greene, John; Elam, Jeffrey; Mane, Anil; Sampathkumaran, Uma; Winter, Raymond; Hess, David; Mushfiq, Mohammad; Stracener, Daniel; Wiendenhoever, Ingo

    2015-04-01

    Porous solid catchers of rare isotopes are being developed for use at high power heavy ion accelerator facilities such as RIKEN, FRIB, and RISP. Compact solid catchers are complementary to helium gas catchers for parasitic harvesting of rare isotopes in the in-flight separators. They are useful for short lived isotopes for basic nuclear physics research and longer-lived isotopes for off-line applications. Solid catchers can operate effectively with high intensity secondary beams, e.g. >> 1E10 atoms/s with release times as short as 10-100 milliseconds. A new method using a very sensitive and efficient RGA has been commissioned off-line at Argonne and is currently being shipped to Florida State University for in-beam measurements of the release curves using stable beams. The same porous solid catcher technology is also being evaluated for use in targets for the production of medical isotopes such as 211-At. Research supported by the U.S. DOE Office of Nuclear Physics under the SBIR Program and Contract # DE-AC02-06CH11357 and a University of Chicago Comprehensive Cancer Center/ANL Pilot Project.