WorldWideScience

Sample records for heavy high-temperature liquid-metal

  1. Pumping liquid metal at high temperatures up to 1,673 kelvin

    Science.gov (United States)

    Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.

    2017-10-01

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  2. Direct high-temperature ohmic heating of metals as liquid pipes.

    Science.gov (United States)

    Grosse, A V; Cahill, J A; Liddell, W L; Murphy, W J; Stokes, C S

    1968-05-03

    When a sufficiently high electric current is passed through a liquid metal, the electromagnetic pressure pinches off the liquid metal and interrupts the flow of current. For the first time the pinch effect has been overcome by use of centrifugal acceleration. By rotation of a pipe of liquid metal, tin or bismuth or their alloys, at sufficiently high speed, it can be heated electrically without intermission of the electric current. One may now heat liquid metallic substances, by resistive (ohmic) heating, to 5000 degrees K and perhaps higher temperatures.

  3. High-power spallation target using a heavy liquid metal free surface flow

    International Nuclear Information System (INIS)

    Litfin, K.; Fetzer, J.R.; Batta, A.; Class, A.G.; Wetzel, Th.

    2015-01-01

    A prototype of a heavy liquid metal free surface target as proposed for the multi-purpose hybrid research reactor for high-tech applications in Mol, Belgium, has been set up and experimentally investigated at the Karlsruhe Liquid Metal Laboratory. A stable operation was demonstrated in a wide range of operating conditions and the surface shape was detected and compared with numerical pre-calculations employing Star-CD. Results show a very good agreement of experiment and numerical predictions which is an essential input for other windowless target designs like the META:LIC target for the European Spallation Source. (author)

  4. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  5. Experimental research and development of main circulation pump bearings in reactor plants using heavy liquid-metal coolants

    International Nuclear Information System (INIS)

    Zudin, A.; Beznosov, A.; Chernysh, A.; Prikazchikov, G.

    2015-01-01

    At the present time, specialists in Russia are engaged in designing the BREST-OD-300 fast neutron lead-coolant reactor plant. There is currently no experience in designing and operating axial pumps of lead-coolant reactor plants, including one of their major units – bearing unit. Selection and substantiation of operating and structural parameters of plain friction bearings used in main circulation pumps of reactor plants running on heavy liquid-metal coolants are important tasks that are solved at the NNSTU. Development of a feasible procedure for designing bearings and its components operating within the structure of the main circulation pump of a reactor plant running on a heavy liquid-metal coolant as well as guidelines for an optimized structural scheme of such bearings set a goal of performing a range of theoretically-calculated and experimental works. The report contains testing data of a hydrostatic bearing with reciprocal fricative choking tested on the NNSTU FT-4 bench running on a lead coolant within the range of 420-500degC. There have been presented a scheme of a bench for testing a contact friction bearing on a high-temperature coolant and the results of investigation tests of bearings of such type at T = 450 ÷ 500degC. Material of the bearing sleeve is steel 08X18H10T, and a possibility is provided with regard to installation of the bearing sleeves and shaft made of non-metal materials (ceramic materials, silicified graphite, etc.). The presented testing data of plain friction bearings operating in a high-temperature heavy liquid-metal coolant will serve as a ground for making an alternative choice of a plain friction bearing for the main circulation pump of a reactor plant running on a heavy liquid-metal coolant. (author)

  6. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  7. Influence of temperature and salinity on heavy metal uptake by submersed plants

    International Nuclear Information System (INIS)

    Fritioff, A.; Kautsky, L.; Greger, M.

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants

  8. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    C. Lievens; J. Yperman; J. Vangronsveld; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-08-15

    Presently, little or no information of implementing fast pyrolysis for looking into the potential valorisation of heavy metal contaminated biomass is available. Fast pyrolysis of heavy metal contaminated biomass (birch and sunflower), containing high amounts of Cd, Cu, Pb and Zn, resulting from phytoremediation, is investigated. The effect of the pyrolysis temperature (623, 673, 773 and 873 K) and the type of solid heat carrier (sand and fumed silica) on the distribution of the heavy metals in birch and sunflower pyrolysis fractions are studied. The goal of the set-up is 'concentrating' heavy metals in the ash/char fraction after thermal treatment, preventing them to be released in the condensable and/or volatile fractions. The knowledge of the behaviour of heavy metals affects directly future applications and valorisation of the pyrolysis products and thus contaminated biomass. They are indispensable for making and selecting the proper thermal conditions for their maximum recovery. In view of the future valorisation of these biomasses, the amounts of the pyrolysis fractions and the calorific values of the obtained liquid pyrolysis products, as a function of the pyrolysis temperature, are determined. 46 refs., 8 figs., 4 tabs.

  9. Oxygen sensors for Heavy Liquid Metal coolants: Calibration and assessment of the minimum reading temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bassini, S., E-mail: serena.bassini@enea.it; Antonelli, A.; Di Piazza, I.; Tarantino, M.

    2017-04-01

    Oxygen sensors for Heavy Liquid Metals (HLMs) such as lead and LBE (lead-bismuth eutectic) will be essential devices in future Lead Fast Reactor (LFR) and Accelerator Driven System (ADS). Potentiometric sensors based on solid electrolytes were developed in recent years to this purpose. Internal reference electrodes such as Pt-air and Bi/Bi{sub 2}O{sub 3} liquid metal/metal-oxide are among the most used but they both have a weak point: Pt-air sensor has a high minimum reading temperature around 400 °C whereas Bi/Bi{sub 2}O{sub 3} suffers from internal stresses induced by Bi volume variations with temperature, which may lead to the sensor failure in the long-term. The present work describes the performance of standard Pt-air and Bi/Bi{sub 2}O{sub 3} sensors and compares them with recent Cu/Cu{sub 2}O sensor. Sensors with Yttria Partially Stabilized Zirconia (YPSZ) electrolyte were calibrated in oxygen-saturated HLM between 160 and 550 °C and the electric potential compared to the theoretical one to define the accuracy and the minimum reading temperature. Standard Pt-air sensor were also tested using Yttria Totally Stabilized Zirconia (YTSZ) to assess the effect of a different electrolyte on the minimum reading temperature. The performance of Pt-air and Cu/Cu{sub 2}O sensors with YPSZ electrolyte were then tested together in low-oxygen HLM between 200 and 450 °C. The results showed that Pt-air, Bi/Bi{sub 2}O{sub 3} and Cu/Cu{sub 2}O sensors with YPSZ measured oxygen in HLMs down to 400 °C, 290 °C and 200 °C respectively. When the YTSZ electrolyte was used in place of the YPSZ, the Pt-air sensor measured correctly down to at least 350 °C thanks to the superior ionic conductivity of the YTSZ. When Cu/Cu{sub 2}O and Pt-air sensors were tested together in the same low-oxygen HLM between 200 and 450 °C, Cu/Cu{sub 2}O sensor worked predictably in the whole temperature range whereas Pt-air sensor exhibited a correct output only above 400 °C. - Highlights:

  10. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Engineering: Liquid metal pumped at a record temperature

    Science.gov (United States)

    Lambrinou, Konstantina

    2017-10-01

    Although liquid metals are effective fluids for heat transfer, pumping them at high temperatures is limited by their corrosiveness to solid metals. A clever pump design addresses this challenge using only ceramics. See Article p.199

  12. Temperature-dependent liquid metal flowrate control device

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced

  13. Compatibility of materials with liquid metal targets for SNS

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-01-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, ΔT, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to ∼550 degrees C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to ∼650 degrees C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above ∼600 degrees C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150 degrees C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material

  14. Novel thiosalicylate-based ionic liquids for heavy metal extractions

    Energy Technology Data Exchange (ETDEWEB)

    Leyma, Raphlin; Platzer, Sonja [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg (South Africa); Kandioller, Wolfgang, E-mail: wolfgang.kandioller@univie.ac.at [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Krachler, Regina; Keppler, Bernhard K. [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria)

    2016-08-15

    Highlights: • Six thiosalicylate-based ammonium and phosphonium ionic liquids (ILs) were newly synthesized. • ILs showed good extraction of cadmium, copper, and zinc. • Phosphonium ILs showed better extraction efficiencies than their ammonium counterparts. - Abstract: This study aims to develop novel ammonium and phosphonium ionic liquids (ILs) with thiosalicylate (TS) derivatives as anions and evaluate their extracting efficiencies towards heavy metals in aqueous solutions. Six ILs were synthesized, characterized, and investigated for their extracting efficacies for cadmium, copper, and zinc. Liquid-liquid extractions of Cu, Zn, or Cd with ILs after 1–24 h using model solutions (pH 7; 0.1 M CaCl{sub 2}) were assessed using flame atomic absorption spectroscopy (F-AAS). Phosphonium-based ILs trihexyltetradecylphosphonium 2-(propylthio)benzoate [P{sub 66614}][PTB] and 2-(benzylthio)benzoate [P{sub 66614}][BTB] showed best extraction efficiency for copper and cadmium, respectively and zinc was extracted to a high degree by [P{sub 66614}][BTB] exclusively.

  15. Lime treatment of liquid waste containing heavy metals, radionuclides and organics

    International Nuclear Information System (INIS)

    DuPont, A.

    1990-01-01

    This paper reports on lime treatment of liquid waste containing heavy metals, radio nuclides and organics. Lime is wellknown for its use in softening drinking water the treatment of municipal wastewaters. It is becoming important in the treatment of industrial wastewater and liquid inorganic hazardous waste; however, there are many questions regarding the use of lime for the treatment of liquid hazardous waste

  16. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  17. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    International Nuclear Information System (INIS)

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R ampersand D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R ampersand D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R ampersand D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and

  18. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, B.R.; Bauer, G.S. [comp.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  20. Irradiation of Liquid Fungi Isolated Media from Contaminated Sources with Heavy Metals Additive

    International Nuclear Information System (INIS)

    Tawfiq, E.; Mohamed, A.A.; El-Kabbany, H.M.

    2012-01-01

    Occupational lead exposure is an important health issue in Egyptian workers, employees of paint factories, workers of copying centres, drivers, and tile making factories are in higher risk of lead toxicity. Wastewater, particularly from electroplating, paint, leather, metal and tanning industries, contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and bio sorption at low cost and in eco-friendly way. Low level lead exposure can significantly induce motor dis functions and cognitive impairment in children. Seventy six fungal isolates tolerant to heavy metals like Pb, Cd, Cr and Ni were isolated from sewage, sludge and industrial effluents containing heavy metals. Four fungi (Phanerochaete chrysosporium, Aspergillus awamori, Aspergillus flavus, Trichoderma viride) were included in this study. The majority of the fungal isolates were able to tolerate up to 400 ppm concentration of Pb, Cd, Cr and Ni. The most heavy metal tolerant fungi were studied for removal of heavy metals from liquid media at 50 ppm concentration. Results indicated removal of substantial amount of heavy metals by some of the fungi with respect to Pb, Cd, Cr and Ni with maximum uptake of 59.67, 16.25, 0.55 and 0.55 mg/g by fungi Pb 3 (Aspergillus terreus), Trichoderma viride, C r 8 (Trichoderma longibrachiatum), and isolate Ni 27 (A. niger), respectively. This indicated the potential of these fungi as bio sorbent for removal of heavy metals from wastewater and industrial effluents containing higher concentration of heavy metals. The F-ratio was 0.55 and gives non-significant as irradiated

  1. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  2. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  3. High temperature equation of state of metallic hydrogen

    International Nuclear Information System (INIS)

    Shvets, V. T.

    2007-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm 3 , which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen

  4. Influence of various chlorine additives on the partitioning of heavy metals during low-temperature two-stage fluidized bed incineration.

    Science.gov (United States)

    Peng, Tzu-Huan; Lin, Chiou-Liang

    2014-12-15

    In this study, a pilot-scale low-temperature two-stage fluidized bed incinerator was evaluated for the control of heavy metal emissions using various chlorine (Cl) additives. Artificial waste containing heavy metals was selected to simulate municipal solid waste (MSW). Operating parameters considered included the first-stage combustion temperature, gas velocity, and different kinds of Cl additives. Results showed that the low-temperature two-stage fluidized bed reactor can be an effective system for the treatment of MSW because of its low NO(x), CO, HCl, and heavy metal emissions. The NO(x) and HCl emissions could be decreased by 42% and 70%, respectively. Further, the results showed that heavy metal emissions were reduced by bed material adsorption and filtration in the second stage. Regarding the Cl addition, although the Cl addition would reduce the metal capture in the first-stage sand bed, but those emitted metals could be effectively captured by the filtration of second stage. No matter choose what kind of additive, metal emissions in the low-temperature two-stage system are still lower than in a traditional high-temperature one-stage system. The results also showed that metal emissions depend not only on the combustion temperature but also on the physicochemical properties of the different metal species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High-temperature reactors for underground liquid-fuels production with direct carbon sequestration

    International Nuclear Information System (INIS)

    Forsberg, C. W.

    2008-01-01

    The world faces two major challenges: (1) reducing dependence on oil from unstable parts of the world and (2) minimizing greenhouse gas emissions. Oil provides 39% of the energy needs of the United States, and oil refineries consume over 7% of the total energy. The world is running out of light crude oil and is increasingly using heavier fossil feedstocks such as heavy oils, tar sands, oil shale, and coal for the production of liquid fuels (gasoline, diesel, and jet fuel). With heavier feedstocks, more energy is needed to convert the feedstocks into liquid fuels. In the extreme case of coal liquefaction, the energy consumed in the liquefaction process is almost twice the energy value of the liquid fuel. This trend implies large increases in carbon dioxide releases per liter of liquid transport fuel that is produced. It is proposed that high-temperature nuclear heat be used to refine hydrocarbon feedstocks (heavy oil, tar sands, oil shale, and coal) 'in situ ', i.e., underground. Using these resources for liquid fuel production would potentially enable the United States to become an exporter of oil while sequestering carbon from the refining process underground as carbon. This option has become potentially viable because of three technical developments: precision drilling, underground isolation of geological formations with freeze walls, and the understanding that the slow heating of heavy hydrocarbons (versus fast heating) increases the yield of light oils while producing a high-carbon solid residue. Required peak reactor temperatures are near 700 deg. C-temperatures within the current capabilities of high-temperature reactors. (authors)

  6. Gallium-Based Room-Temperature Liquid Metals: Actuation and Manipulation of Droplets and Flows

    Directory of Open Access Journals (Sweden)

    Leily Majidi

    2017-08-01

    Full Text Available Gallium-based room-temperature liquid metals possess extremely valuable properties, such as low toxicity, low vapor pressure, and high thermal and electrical conductivity enabling them to become suitable substitutes for mercury and beyond in wide range of applications. When exposed to air, a native oxide layer forms on the surface of gallium-based liquid metals which mechanically stabilizes the liquid. By removing or reconstructing the oxide skin, shape and state of liquid metal droplets and flows can be manipulated/actuated desirably. This can occur manually or in the presence/absence of a magnetic/electric field. These methods lead to numerous useful applications such as soft electronics, reconfigurable devices, and soft robots. In this mini-review, we summarize the most recent progresses achieved on liquid metal droplet generation and actuation of gallium-based liquid metals with/without an external force.

  7. LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid sample. A new approach was presented to improve the detection limit and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions, respectively. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to obtained LOD of 0.07 ppm for Cr element in solutions. (author)

  8. LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions

  9. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  10. Development of a low-temperature two-stage fluidized bed incinerator for controlling heavy-metal emission in flue gases

    International Nuclear Information System (INIS)

    Peng, Tzu-Huan; Lin, Chiou-Liang; Wey, Ming-Yen

    2014-01-01

    This study develops a low-temperature two-stage fluidized bed system for treating municipal solid waste. This new system can decrease the emission of heavy metals, has low construction costs, and can save energy owing to its lower operating temperature. To confirm the treatment efficiency of this system, the combustion efficiency and heavy-metal emission were determined. An artificial waste containing heavy metals (chromium, lead, and cadmium) was used in this study. The tested parameters included first-stage temperature and system gas velocity. Results obtained using a thermogravimetric analyzer with a differential scanning calorimeter indicated that the first-stage temperature should be controlled to at least 400 °C. Although, a large amount of carbon monoxide was emitted after the first stage, it was efficiently consumed in the second. Loss of the ignition values of ash residues were between 0.005% and 0.166%, and they exhibited a negative correlation with temperature and gas velocity. Furthermore, the emission concentration of heavy metals in the two-stage system was lower than that of the traditional one-stage fluidized bed system. The heavy-metal emissions can be decreased by between 16% and 82% using the low-temperature operating process, silica sand adsorption, and the filtration of the secondary stage. -- Graphical abstract: Heavy-metal emission concentrations in flue gases under different temperatures and gas velocities (dashed line: average of the heavy-metal emission in flue gases in the one-stage fluidized-bed incinerator). Highlights: • Low temperature two-stage system is developed to control heavy metal. • The different first-stage temperatures affect the combustion efficiency. • Surplus CO was destroyed efficiently by the secondary fluidized bed combustor. • Metal emission in two-stage system is lower than in the traditional system. • Temperature, bed adsorption, and filtration are the main control mechanisms

  11. The effects of fire temperatures on water soluble heavy metals.

    Science.gov (United States)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem, because at long term can increase soil acidity. After all base cations have being leached, pH values decrease, and

  12. Turbulent heavy liquid metal heat transfer along a heated rod in an annular cavity

    International Nuclear Information System (INIS)

    Lefhalm, C.-H.; Tak, N.-I.; Piecha, H.; Stieglitz, R.

    2004-01-01

    Heavy liquid metals (HLM) are considered as coolant and spallation material in accelerator driven systems (ADS), because of their good molecular heat conductivity. This property leads to a separation of the spatial extension of thermal and viscous boundary layers. Commercially available computational fluid dynamic codes (CFD) assume an analogy of momentum and energy transfer, which is problematic for liquid metals flow. Therefore, benchmark experiments are required, in order to validate codes or modify existing models used therein. Within this article an experimental and numerical study of a thermally developing turbulent lead bismuth (PbBi) flow along a uniformly heated rod in a circular tube is presented. Local temperatures and velocity distributions are measured using thermocouples and Pitot tubes. The data are compared to simulation results computed with the CFX code package. The measured velocity profiles coincide nearly perfect with the simulation results. However, discrepancies up to 7% between the measured and computed temperatures appear. A minor part of the deviations can be explained by the imperfect experimental set-up. But, the measured shape of the thermal boundary is different to the calculated one, indicating the inadequateness of the presently used models describing the turbulent heat transport within the thermal boundary layer

  13. Coupling fiber optics to a permeation liquid membrane for heavy metal sensor development.

    Science.gov (United States)

    Ueberfeld, Jörn; Parthasarathy, Nalini; Zbinden, Hugo; Gisin, Nicolas; Buffle, Jacques

    2002-02-01

    We present the first sensing system for metal ions based on the combination of separation/preconcentration by a permeation liquid membrane (PLM) and fluorescence detection with an optical fiber. As a model, a system for the detection of Cu(II) ions was developed. The wall of a polypropylene hollow fiber serves as support for the permeable liquid membrane. The lumen of the fiber contains the strip solution in which Cu(II) is accumulated. Calcein, a fluorochromic dye, acts as stripping agent and at the same time as metal indicator. The quenching of the calcein fluorescence upon metal accumulation in the strip phase is detected with a multimode optical fiber, which is incorporated into the lumen. Fluorescence is excited with a blue LED and detected with a photon counter. Taking advantage of the high selectivity and sensitivity of PLM preconcentration, a detection limit for Cu(II) of approximately 50 nM was achieved. Among five tested heavy metal ions, Pb(II) was the only major interfering species. The incorporation of small silica optical fibers into the polypropylene capillary allows for real-time monitoring of the Cu(II) accumulation process.

  14. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    Science.gov (United States)

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright

  15. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  16. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid

    International Nuclear Information System (INIS)

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-01-01

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5 M sulfuric acid in 2 h.

  17. Hydrocolloid liquid-core capsules for the removal of heavy-metal cations from water

    Energy Technology Data Exchange (ETDEWEB)

    Nussinovitch, A., E-mail: amos.nussi@mail.huji.ac.il; Dagan, O.

    2015-12-15

    Highlights: • Novel liquid-core capsules with a non-crosslinked alginate core were produced. • Capsules demonstrated highest efficiency adsorption of ∼300 mg Pb{sup 2+}/g alginate. • Regeneration was carried out by suspending capsules in 1 M HNO{sub 3} for 24 h. • Adsorption capacities of the capsules followed the order: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. - Abstract: Liquid-core capsules with a non-crosslinked alginate fluidic core surrounded by a gellan membrane were produced in a single step to investigate their ability to adsorb heavy metal cations. The liquid-core gellan–alginate capsules, produced by dropping alginate solution with magnesium cations into gellan solution, were extremely efficient at adsorbing lead cations (267 mg Pb{sup 2+}/g dry alginate) at 25 °C and pH 5.5. However, these capsules were very weak and brittle, and an external strengthening capsule was added by using magnesium cations. The membrane was then thinned with the surfactant lecithin, producing capsules with better adsorption attributes (316 mg Pb{sup +2}/g dry alginate vs. 267 mg Pb{sup +2}/g dry alginate without lecithin), most likely due to the thinner membrane and enhanced mass transfer. The capsules’ ability to adsorb other heavy-metal cations – copper (Cu{sup 2+}), cadmium (Cd{sup 2+}) and nickel (Ni{sup 2+}) – was tested. Adsorption efficiencies were 219, 197 and 65 mg/g, respectively, and were correlated with the cation’s affinity to alginate. Capsules with the sorbed heavy metals were regenerated by placing in a 1 M nitric acid suspension for 24 h. Capsules could undergo three regeneration cycles before becoming damaged.

  18. Quasiparticles and order parameter near quantum phase transition in heavy fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina 188300 (Russian Federation) and CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States)]. E-mail: vrshag@thd.pnpi.spb.ru; Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2005-05-02

    It is shown that the Landau paradigm based upon both the quasiparticle concept and the notion of the order parameter is valid and can be used to explain the anomalous behavior of the heavy fermion metals near quantum critical points. The understanding of this phenomenon has been problematic largely because of the absence of theoretical guidance. Exploiting this paradigm and the fermion condensation quantum phase transition, we investigate the anomalous behavior of the heavy electron liquid near its critical point at different temperatures and applied magnetic fields. We show that this anomalous behavior is universal and can be used to capture the essential aspects of recent experiments on heavy-fermion metals at low temperatures.

  19. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  20. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    Smither, R.K.

    1993-01-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi. No liquid metal pump with these capabilities was available commercially when this project was started, so it was necessary to develop a suitable pump in house

  1. Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application

    International Nuclear Information System (INIS)

    Woller, N.

    1994-06-01

    This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26 R and LIX84 R to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR 2 , where Me denotes Hg 2+ , Cd 2+ , Zn 2+ , Cu 2+ , and Ni 2+ , and R denotes LIX84 R . This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84 R for the various metal ions is evident in the succession Cu 2+ , Ni 2+ >> Zn 2+ > Hg 2+ > Cd 2+ . These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m 2 ), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m 2 ). Organic solvents solvate the complexer so well, that it is even removed from the air side of the phase boundary. The differing accumulation of the complexer at the water/oil phase boundary explains the differing increase of phase separation time for polar and unpolar solvents. (orig.) [de

  2. Hydrodynamics of heavy liquid metal coolant processes and filtering apparatus

    International Nuclear Information System (INIS)

    Albert K Papovyants; Yuri I Orlov; Pyotr N Martynov; Yuri D Boltoev

    2005-01-01

    to S ≤ 0,2 d p . It is demonstrated that the filtration efficiency can be significantly influenced by the properties of the capillary-porous structure of the filter material: the fiber diameter, type of braiding providing the availability of stagnant zones, porosity and wetting angle. With some simplifying prerequisites, the evaluation of the dynamics of the sedimentation growth on the porous partition has been performed as a function of time. Analysis of the conditions of the hydrodynamic separation of filter entrained particles (d p ≅ 2 μm) by the coolant flow revealed that to realize this process, it is necessary that the wall flow velocity be about V = 0,2 m/s. The object of investigations was a broad class of filter materials, including metallo-ceramics, metallic grids, carbon cloth, glass-fibers, needle-pierced cloth made of metallic fibers, grainy materials (made of aluminium oxides). By the complex of technical characteristics, with the thermal stability, cleaning efficiency (fineness), impurity retention capacity and hydraulic resistance considered, the multi-layer siliceous textured cloth (SiO 2 >95%, t 400 deg. C) and needle-pierced cloth made of 40 μm-d. metallic fibers (X18H10T steel, t ≤ 400-550 deg. C) are recommended for HLMC cleaning. The routine monitoring of the filter operation is implemented based on its resistance and the reduction of the flow rate through the filter, induced by its clogging by impurities, the clogging being dependent on the concentration of suspensions in coolant. The investigations as conducted made it possible to construct high temperature filter specimens, including those for an output capacity of 900 m 3 /h, in reference to operation and maintenance conditions of heavy liquid metal cooled nuclear power installations. (authors)

  3. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  4. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    Science.gov (United States)

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  5. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    International Nuclear Information System (INIS)

    Hölzel, Christina S.; Müller, Christa; Harms, Katrin S.; Mikolajewski, Sabine; Schäfer, Stefanie; Schwaiger, Karin; Bauer, Johann

    2012-01-01

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08–5.30 mg cadmium, 1.1–32.0 mg chrome, 22.4–3387.6 mg copper, <2.0–26.7 mg lead, <0.01–0.11 mg mercury, 3.1–97.3 mg nickel and 93.0–8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  6. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  7. Electromagnetic-acoustic coupling in ferromagnetic metals at liquid-helium temperatures

    DEFF Research Database (Denmark)

    Gordon, R A

    1981-01-01

    Electromagnetic-acoustic coupling at the surface and in the bulk of ferromagnetic metals at liquid-helium temperatures has been studied using electromagnetically excited acoustic standing-wave resonances at MHz frequencies in a number of ferromagnetic metals and alloys of commercial interest...

  8. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-01-01

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  9. Temperature-dependent thermo-elastic properties of s-, p- and d-block liquid metals

    International Nuclear Information System (INIS)

    Singh, R.N.; Arafin, S.; George, A.K.

    2007-01-01

    Thermodynamic relations involving experimentally known physical quantities are used to determine the ratio of specific heats, γ, for s-block (Na, K, Rb, Cs, Mg), d-block (Fe, Co, Ni, Cu, Ag, Au, Zn, Cd, Hg,) and p-block (Al, Ga, In, Tl, Sn, Pb, Sb, Bi, Se, Te) liquid metals. γ is further utilized to determine reliable values for the isothermal compressibility (κ T ) and the specific heat at constant volume (C V ) for these liquid metals near and above the melting temperatures. These data are of considerable significance for various thermo-physical analysis of liquid metals. We have also evaluated the Grueneisen function and its temperature dependence to establish the correlation between the thermal expansion and the elastic response to thermally induced stress. The values of acoustic impedance for liquid metals are evaluated and its physical significance is discussed for the transmission of elastic waves across metallic interfaces

  10. Bioleaching of heavy metal polluted sediment: influence of temperature and oxygen. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebensmittel- und Bioverfahrenstechnik, Bergstrasse 120, 01062 Dresden (Germany); Zehnsdorf, A. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Umwelt- und Biotechnologisches Zentrum, Permoserstrasse 15, 04318 Leipzig (Germany); Goersch, K.; Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, 04318 Leipzig (Germany)

    2006-08-15

    A remediation process for heavy metal polluted sediment has previously been developed in which the heavy metals are removed from the sediment by solid-bed bioleaching using elemental sulfur (S{sup 0}): the added S{sup 0} is oxidized by the indigenous microbes to sulfuric acid that dissolves the heavy metals which are finally extracted by percolating water. In this process, the temperature is a factor crucially affecting the rate of S{sup 0} oxidation and metal solubilization. Here, the effect of temperature on the kinetics of S{sup 0} oxidation has been studied: oxidized Weisse Elster River sediment (dredged near Leipzig, Germany) was mixed with 2 % S{sup 0}, suspended in water and then leached at various temperatures. The higher the temperature was, the faster the S{sup 0} oxidized, and the more rapid the pH decreased. But temperatures above 35 C slowed down S{sup 0} oxidation, and temperatures above 45 C let the process - after a short period of acidification to pH 4.5 - stagnate. The latter may be explained by the presence of both neutrophilic to less acidophilic thermotolerant bacteria and acidophilic thermosensitive bacteria. Within 42 days, nearly complete S{sup 0} oxidation and maximum heavy metal solubilization only occurred at 30 to 45 C. The measured pH(t) courses were used to model the rate of S{sup 0} oxidation depending on the temperature using an extended Arrhenius equation. Since molecular oxygen is another factor highly influencing the activity of S{sup 0}-oxidizing bacteria, the effect of dissolved O{sub 2} (controlled by the O{sub 2} content in the gas supplied) on S{sup 0} oxidation was studied in suspension: the indigenous S{sup 0}-oxidizing bacteria reacted quite tolerant to low O{sub 2} concentrations; the rate of S{sup 0} oxidation - measured as the specific O{sub 2} consumption - was not affected until the O{sub 2} content of the suspension was below 0.05 mg/L, i.e., the S{sup 0}-oxidizing bacteria showed a high affinity to O{sub 2} with a

  11. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  12. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  13. Transformation of heavy metals in lignite during supercritical water gasification

    International Nuclear Information System (INIS)

    Chen, Guifang; Yang, Xinfei; Chen, Shouyan; Dong, Yong; Cui, Lin; Zhang, Yong; Wang, Peng; Zhao, Xiqiang; Ma, Chunyuan

    2017-01-01

    Highlights: • The transformations of heavy metals during lignite SCWG were investigated. • The risks of heavy metals in lignite and residues after SCWG were evaluated. • The effects of experimental conditions on corrosion during SCWG were studied. - Abstract: Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

  14. Supercritical fluid chromatography and high temperature liquid chromatography for the group-type separation of diesel fuels and heavy gas oils

    Energy Technology Data Exchange (ETDEWEB)

    Paproski, R.E.

    2008-07-01

    This thesis investigated the use of unconventional extraction columns for separating diesel fuels by supercritical fluid chromatography (SFC) and for separating heavy gas oils by high temperature normal phase high performance liquid chromatography (HPLC). The purpose was to improve group-type resolution of the fuels, although these methods are also commonly used to determine the proportion of saturates, mono-, di-, tri-, and polyaromatic hydrocarbons. Higher mobile phase flow rates and unconventional column dimensions were also studied to obtain faster analysis times with both SFC and HPLC. The highest group-type resolutions with SFC were obtained by serially coupling bare titania and bare silica columns. Short packed columns and monolithic silica columns were compared at high carbon dioxide flow rates for reducing SFC analysis time, with shortpacked columns achieving 7-fold lower separation times while maintaining significant resolution. Three diesel samples had better resolution and analysis time. A thermally stable bare zircoma column for normal phase HPLC was studied at temperatures up to 200 degrees C. An increase in temperature resulted in lower retention of twenty five aromatic model compounds. Considerable improvements in peak shape, efficiency, group-type selectivity, and column re-equilibration times were obtained at elevated temperatures. At temperatures over 100 degrees C, indole and carbazole thermally decomposed in a hexane/dichloromethane mobile phase. The first order decomposition of carbazole was studied in further detail. A high resolution method was developed using titania and silica columns with valve-switching and dual gradients to separate 3 heavy gas oils. Separation was achieved in only 3 minutes using a fast analysis time method in a titania column at high flow rates.

  15. Thermal management of Li-ion battery with liquid metal

    International Nuclear Information System (INIS)

    Yang, Xiao-Hu; Tan, Si-Cong; Liu, Jing

    2016-01-01

    Highlights: • Liquid metal is used for power battery pack thermal management. • Better cooling performance and more uniform module temperature is obtained. • Less power consumption is needed. • The proposed liquid metal cooling system is robust and can cope with stressful conditions. - Abstract: Thermal management especially cooling of electric vehicles (EVs) battery pack is of great significance for guaranteeing the performance of the cells as well as safety and high-efficiency working of the EVs. Liquid cooling is a powerful way to keep the battery temperature in a proper range. However, the efficiency of conventional liquid cooling is still limited due to the inherently low thermal conductivity of the coolant which is usually water or aqueous ethanol. In this paper, a new kind of coolant, liquid metal, is proposed to be used for the thermal management of the battery pack. Mathematical analysis and numerical simulations are conducted to evaluate the cooling capability, pump power consumption and module temperature uniformity of the liquid metal cooling system, in comparison with that of water cooling. The results show that under the same flow conditions, a lower and more uniform module temperature can be obtained and less pump power consumption are needed in the liquid metal cooling system. In addition, liquid metal has an excellent cooling capability coping with stressful conditions, such as high power draw, defects in cells, and high ambient temperature. This makes it a promising coolant for the thermal management of high driving force EVs and quick charge batteries.

  16. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Science.gov (United States)

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  17. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    Science.gov (United States)

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  18. Theoretical and experimental studies of heavy liquid metal thermal hydraulics. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2006-10-01

    Through the Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR), the IAEA provides a forum for exchange of information on national programmes, collaborative assessments, knowledge preservation, and cooperative research in areas agreed by the Member States with fast reactor and partitioning and transmutation development programmes (e.g. accelerator driven systems (ADS)). Trends in advanced fast reactor and ADS designs and technology development are periodically summarized in status reports, symposia, and seminar proceedings prepared by the IAEA to provide all interested IAEA Member States with balanced and objective information. The use of heavy liquid metals (HLM) is rapidly diffusing in different research and industrial fields. The detailed knowledge of the basic thermal hydraulics phenomena associated with their use is a necessary step for the development of the numerical codes to be used in the engineering design of HLM components. This is particularly true in the case of lead or lead-bismuth eutectic alloy cooled fast reactors, high power particle beam targets and in the case of the cooling of accelerator driven sub-critical cores where the use of computational fluid dynamic (CFD) design codes is mandatory. Periodic information exchange within the frame of the TWG-FR has lead to the conclusion that the experience in HLM thermal fluid dynamics with regard to both the theoretical/numerical and experimental fields was limited and somehow dispersed. This is the case, e.g. when considering turbulent exchange phenomena, free-surface problems, and two-phase flows. Consequently, Member States representatives participating in the 35th Annual Meeting of the TWG-FR (Karlsruhe, Germany, 22-26 April 2002) recommended holding a technical meeting (TM) on Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics. Following this recommendation, the IAEA has convened the Technical Meeting on Theoretical and Experimental Studies of

  19. Direct writing of flexible electronics through room temperature liquid metal ink.

    Science.gov (United States)

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2012-01-01

    Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn(10)-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. The electrical resistivity of the fluid like GaIn(10)-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn(10)-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even

  20. Direct writing of flexible electronics through room temperature liquid metal ink.

    Directory of Open Access Journals (Sweden)

    Yunxia Gao

    Full Text Available BACKGROUND: Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn(10-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. METHODS: The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. RESULTS: The electrical resistivity of the fluid like GaIn(10-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. CONCLUSIONS: The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn(10-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized

  1. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  2. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  3. Sewage sludge pyrolysis - the distribution of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, R.; Widmer, F.; Brunner, P.

    1986-01-01

    The paper informs about the heavy metal contents of sewage sludges and discusses the origin of household, industry and surface sewerage of the respective heavy metals. The study aimed at assessing whether and in how far heavy metal volatility may be checked by reducing the temperature during sewage sludge pyrolysis. The testing equipment used was made of glass/silica glass. Instead of in particles heavy metals were precipitated in the gaseous state. Except from mercury heavy metals are retained by the ashes up to temperatures from 450 to 555/sup 0/C. Due to the persistence of mercury care should be taken to keep the sewerage clear of it from the very beginning. Emissions caused by reactor materials can be avoided by choosing appropriate pyrolysis reactors.

  4. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  5. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  6. Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

    OpenAIRE

    Ahmed, Ejaz

    2011-01-01

    Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 i...

  7. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jieyang; Zheng, Yaxin; Luo, Longbo; Feng, Yan [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhang, Chaoliang [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Xu, E-mail: wx19861027@163.com [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu, Xiangyang, E-mail: lxy6912@sina.com [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-05

    Highlights: • High-performance polyimide was used as heavy metal adsorbents. • The contradiction between hydrophilicity and high performance of PI was solved. • Adsorption amount for Cu{sup 2+} of PI/silica was 77 times higher than that of PI. • The adsorption ability remained steady for more than 50 recycling processes. - Abstract: To obtain high-performance adsorbents that combine excellent adsorption ability, thermal stability, service life and recycling ability, polyimide (PI)/silica powders were prepared via a facile one-pot coprecipitation process. A benzimidazole unit was introduced into the PI backbone as the adsorption site. The benzimidazole unit induced more hydroxyls onto the silica, which provided hydrophilic sites for access by heavy metal ions. By comprehensively analyzing the effect of hydrophilcity, agglomeration, silica polycondensation, specific surface area and PI crystallinity, 10% was demonstrated to be the most proper feed silica content. The equilibrium adsorption amount (Q{sub e}) for Cu{sup 2+} of PI/silica adsorbents was 77 times higher than that of pure PI. Hydrogen chloride (HCl) was used as a desorbent for heavy metal ions and could be decomplexed with benzimidazole unit at around 300 °C, which was lower than the glass transition temperature of PI. The complexation and decomplexation process of HCl made PI/silica adsorbents recyclable, and the adsorption ability remained steady for more than 50 recycling processes. As PI/silica adsorbents possess excellent thermal stability, chemical resistance and radiation resistance and hydrophilicity, they have potential as superior recyclable adsorbents for collecting heavy metal ions from waste water in extreme environments.

  8. Accumulation of Long-lived activity in heavy metal liquid targets

    International Nuclear Information System (INIS)

    Shubin, Y. N.; Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.

    1997-01-01

    The calculations and analysis of the accumulation of radioactive nuclei and long-lived activity in heavy metal liquid targets were performed. The dominating contributions to the total radioactivity of radionuclides resulting from fission, spallation reactions and radiative capture by target nuclei for various irradiation and cooling times were calculated and analyzed. The most important parts of neutron and proton spectra were determined that give the dominant contributions to the total and partial activity of the targets. The contributions of fission products to the target activity and partial activities of main long-lived fission products were evaluated. The results of the calculations are compared with the data on Energy Amplifier Project. (Author) 12 refs

  9. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  10. Intermetallic and electrical insulator coatings on high-temperature alloys in liquid-lithium environments

    International Nuclear Information System (INIS)

    Park, J.H.

    1994-06-01

    In the design of liquid-metal cooling systems for fusion-reactor blanket, applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural wall, and Be-V intermetallic coatings for first-wall components that face the plasma. Vanadium and V-base alloys are leading candidate materials for structural applications in a fusion reactor. Various intermetallic films were produced on V-alloys and on Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 2 at temperatures of 500--1030 degree C. CaO electrical insulator coatings were produced by reaction of the oxygen-rich layer with <5 at. % Ca dissolved in liquid Li at 400--700 degree C. The reaction converted the oxygen-rich layer to an electrically insulating film. This coating method is applicable to reactor components because the liquid metal can be used over and over; only the solute within the liquid metal is consumed. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid Li at high temperatures

  11. Molecular Dynamics Simulations of Liquid Phosphorus at High Temperature and Pressure

    International Nuclear Information System (INIS)

    Wu Yanning; Zhao Gang; Liu Changsong; Zhu Zhengang

    2008-01-01

    By performing ab initio molecular dynamics simulations, we have investigated the microstructure, dynamical and electronic properties of liquid phosphorus (P) under high temperature and pressure. In our simulations, the calculated coordination number (CN) changes discontinuously with density, and seems to increase rapidly after liquid P is compressed to 2.5 g/cm 3 . Under compression, liquid P shows the first-order liquid-liquid phase transition from the molecular liquid composed of the tetrahedral P 4 molecules to complex polymeric form with three-dimensional network structure, accompanied by the nonmetal to metal transition of the electronic structure. The order parameters Q 6 and Q 4 are sensitive to the microstructural change of liquid P. By calculating diffusion coefficients, we show the dynamical anomaly of liquid P by compression. At lower temperatures, a maximum exists at the diffusion coefficients as a function of density; at higher temperatures, the anomalous behavior is weakened. The excess entropy shows the same phenomena as the diffusion coefficients. By analysis of the angle distribution functions and angular limited triplet correlation functions, we can clearly find that the Peierls distortion in polymeric form of liquid P is reduced by further compression

  12. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  13. Novel 3-Hydroxy-2-Naphthoate-Based Task-Specific Ionic Liquids for an Efficient Extraction of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Philip Pirkwieser

    2018-05-01

    Full Text Available Ionic liquids (ILs are per definition salts with melting points below 100°C and might be green alternatives for the extraction of heavy metals from aqueous solutions due to their favorable environmental and physico-chemical properties. Partial solution during extraction, so-called leaching, however, limits their applicability. The present study synthesizes three novel ammonium and phosphonium ILs based on 3-hydroxy-2-naphthoic acid—trihexyltetradecylphosphonium—([P66614], methyltrioctylphosphonium—([P1888], and methyltrioctylammonium 3-hydroxy-2-naphthoate ([N1888][HNA]—by a deprotonation-metathesis route. The aims were to improve stability during extraction while still achieving high selectivity toward heavy metal ions, as well as to study the impact of different alkyl chains and the central atom of the cation on physico-chemical properties, extraction efficacy, and leaching. Extraction capabilities for the seven heavy metals Ag, Cd, Co, Cu, Mn, Ni, and Pb were studied in pure water at pH 8.0. Further experiments were conducted in water containing 30 g L−1 NaCl to simulate a seawater matrix and/or 30 mg L−1 humic acids, as well as metal-spiked natural water samples. All three ILs showed extraction efficacies ≥90% for Cu and Pb after 24 h. Overall, extraction efficacies for Ag, Cd, Cu, and Pb were highest for drinking water samples. Ag and Cd extraction was increased by up to 41% in (hyper- saline samples using IL [P66614][HNA] compared with pure water samples. Leaching values were reduced down to 0.07% loss of the applied IL, which can be attributed to the hydrophobic character of 3-hydroxy-2-naphthoate. Our results represent a positive development toward a greener extraction of heavy metals from natural waters.

  14. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...

  15. THE BEHAVIOR OF SOLUBLE METALS ELUTED FROM Ni/Fe-BASED ALLOY REACTORS AFTER HIGH-TEMPERATURE AND HIGH-PRESSURE WATER PROCESS

    Directory of Open Access Journals (Sweden)

    M. Faisal

    2012-05-01

    Full Text Available The behavior of heavy metals eluted from the wall of Ni/Fe-based alloy reactors after high-temperature and high-pressure water reaction were studied at temperatures ranging from 250 to 400oC. For this purpose, water and cysteic acid were heated in two reactor materials which are SUS 316 and Inconel 625. Under the tested conditions, the erratic behaviors of soluble metals eluted from the wall of Ni/Fe-based alloy in high temperature water were observed. Results showed that metals could be eluted even at a short contact time. The presence of air also promotes elution at sub-critical conditions. At sub-critical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. It was observed that eluted metals tend to increased under acidic conditions and most of those metals were over the limit of WHO guideline for drinking water. The results are significant both on the viewpoint of environmental regulation on disposal of wastes containing heavy metals, toxicity of resulting product and catalytic effect on a particular reaction.

  16. Chemistry of liquid metal coolants and sensors

    International Nuclear Information System (INIS)

    Gnanasekaran, T.

    2015-01-01

    Liquid sodium is the coolant of choice for the current generation fast breeder reactors. When sodium contains low levels of dissolved non-metallic impurities, it is highly compatible with structural steels. When the dissolved oxygen level is high, corrosion and mass transfer in sodium-steel circuits are enhanced and this involves formation of NaxMyOz type of species (M = alloying components in steels). Experience has shown that this enhancement of corrosion in a sodium circuit with all austenitic steel structural materials would not be encountered if oxygen level in sodium is below ~ 5ppm. For understanding this observation, a complete knowledge on the phase diagrams of Na-M-O systems and the thermochemical data of all relevant NaxMyOz compounds is essential. This presentation would highlight the work carried out at IGCAR on the chemistry of liquid sodium and heavy liquid metal coolants. Work carried out on various sensors for their use in these liquid metal circuits would be described and their current status would be discussed

  17. Isolation of Metals from Liquid Wastes: Reactive in Turbulent Thermal Reactors

    International Nuclear Information System (INIS)

    Wendt, Jost O.L.

    2001-01-01

    A Generic Technology for treatment of DOE Metal-Bearing Liquid Waste The DOE metal-bearing liquid waste inventory is large and diverse, both with respect to the metals (heavy metals, transuranics, radionuclides) themselves, and the nature of the other species (annions, organics, etc.) present. Separation and concentration of metals is of interest from the standpoint of reducing the volume of waste that will require special treatment or isolation, as well as, potentially, from the standpoint of returning some materials to commerce by recycling. The variety of metal-bearing liquid waste in the DOE complex is so great that it is unlikely that any one process (or class of processes) will be suitable for all material. However, processes capable of dealing with a wide variety of wastes will have major advantages in terms of process development, capital, and operating costs, as well as in environmental and safety permitting. Moreover, to the extent that a process operates well with a variety of metal-bearing liquid feedwastes, its performance is likely to be relatively robust with respect to the inevitable composition variations in each waste feed. One such class of processes involves high-temperature treatment of atomized liquid waste to promote reactive capture of volatile metallic species on collectible particulate substrates injected downstream of a flame zone. Compared to low-temperature processes that remove metals from the original liquid phase by extraction, precipitation, ion exchange, etc., some of the attractive features of high-temperature reactive scavenging are: The organic constituents of some metal-bearing liquid wastes (in particular, some low-level mixed wastes) must be treated thermally in order to meet the requirements of the Resource Conservation and Recovery Act (RCRA) and Toxic Substances Control Act (TSCA), and the laws of various states. No species need be added to an already complex liquid system. This is especially important in light of the fact

  18. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP).

    Science.gov (United States)

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-09-15

    To investigate the leaching and recovery of heavy metals from low-grade automobile shredder residue (ASR), the effects of nitric acid (HNO3) and hydrogen peroxide (H2O2) concentrations, liquid/solid (L/S) ratio, leaching temperature and ASR particle size fractions on the heavy metal leaching rate were determined. The heavy metals were recovered by fractional precipitation and advanced Fenton process (AFP) at different pHs. The toxicity characteristic leaching procedure (TCLP) test was also performed in the residue remaining after heavy metal leaching to evaluate the potential toxicity of ASR. The heavy metal leaching efficiency was increased with increasing HNO3 and H2O2 concentrations, L/S ratio and temperature. The heavy metal leaching efficiencies were maximized in the lowest ASR size fraction at 303 K and L/S ratio of 100 mL/g. The kinetic study showed that the metal leaching was best represented by a second-order reaction model, with a value of R(2) > 0.99 for all selected heavy metals. The determined activation energy (kJ/mol) was 21.61, 17.10, 12.15, 34.50, 13.07 and 11.45 for Zn, Fe, Ni, Pb, Cd and Cr, respectively. In the final residue, the concentrations of Cd, Cr and Pb were under their threshold limits in all ASR size fractions. Hydrometallurgical metal recovery was greatly increased by AFP up to 99.96% for Zn, 99.97% for Fe, 95.62% for Ni, 99.62% for Pb, 94.11% for Cd and 96.79% for Cr. AFP is highly recommended for the recovery of leached metals from solution even at low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Heavy metals adsorption on rolling mill scale; Adsorcion de metales pesados sobre cascarill de laminacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F. A.; Martin, M. I.; Perez, C.; Lopez-Delgado, A.; Alguacil, E. J.

    2003-07-01

    A great quantity of industries are responsible for contaminating the environment with the heavy metals which are containing in their wastewaters. The recovery of these metals is both from an environmental and economical points of view of the upmost interest. A study is made of the use of mill scale-originating in the hot rolling of steel-as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Zn''2+, Cd''2+ y Pb''2+ on the rolling mill scale was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on mill scale adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Langmuir and Freundlich. Desorption process of metals from loaded mill scales was also studied using several doser bent at different experimental conditions. It has been proved that the mill scale is an effective adsorbent for the cations studies in aqueous solutions within the range of the working concentrations. (Author) 32 refs.

  20. Evaluation of physical, chemical and heavy metal concentration of food waste composting

    Directory of Open Access Journals (Sweden)

    Abdul Kadir Aeslina

    2017-01-01

    Full Text Available In this study, food waste composting with rice husk and coconut fibre as compost medium were carried out. Two types of different fermentation liquids were prepared which were fermented liquid (banana peel and fermented liquid from fermented soybeans. During the composting process, a compost samples for a twenty week duration at an interval time of two weeks. Among the physico-chemical parameters that were tested were temperature, moisture content, pH value, Total Nitrogen, Total Phosphorous, Potassium and Total Organic Carbon and Carbon Nitrogen ratio. Heavy metals such as copper, cadmium, lead, nickel and arsenic were observed and analysed. From this study, it was found that, the temperature increased during the thermophilic phase while there was gradually increase of Total Nitrogen, Total Phosphorous and Potassium from the beginning till the end of the composting process. It was also found that the total organic carbon (TOC and the carbon nitrogen ratio decreased significantly during the decomposition process. Traces amounts of heavy metals were also detected and remains below the standard Malaysian Environmental regulations. It was concluded that, the composting process was faster with processed food waste followed by combination of processed food waste and raw. Raw food waste were demonstrated the lowest degradation rate.

  1. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry.

    Science.gov (United States)

    Kamilari, Eleni; Farsalinos, Konstantinos; Poulas, Konstantinos; Kontoyannis, Christos G; Orkoula, Malvina G

    2018-06-01

    Electronic cigarettes are considered healthier alternatives to conventional cigarettes containing tobacco. They produce vapor through heating of the refill liquids (e-liquids) which consist of propylene glycol, vegetable glycerin, nicotine (in various concentrations), water and flavoring agents. Heavy metals may enter the refill liquid during the production, posing a risk for consumer's health due to their toxicity. The objective of the present study was the development of a methodology for the detection and quantitative analysis of cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), arsenic (As) and chromium (Cr), employing Total Reflection X-Ray Fluorescence Spectroscopy (TXRF) as an alternative technique to ICP-MS or ICP-OES commonly used for this type of analysis. TXRF was chosen due to its advantages, which include short analysis time, promptness, simultaneous multi-element analysis capability and minimum sample preparation, low purchase and operational cost. The proposed methodology was applied to a large number of electronic cigarette liquids commercially available, as well as their constituents, in order to evaluate their safety. TXRF may be a valuable tool for probing heavy metals in electronic cigarette refill liquids to serve for the protection of human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Task-specific thioglycolate ionic liquids for heavy metal extraction: Synthesis, extraction efficacies and recycling properties

    Energy Technology Data Exchange (ETDEWEB)

    Platzer, Sonja [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Kar, Mega [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Leyma, Raphlin; Chib, Sonia; Roller, Alexander [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg (South Africa); Krachler, Regina [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); MacFarlane, Douglas R. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Kandioller, Wolfgang, E-mail: wolfgang.kandioller@univie.ac.at [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Keppler, Bernhard K. [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria)

    2017-02-15

    Highlights: • Thioglycolate-based ionic liquids have been synthesized and their physicochemical properties have been examined. • The developed ionic liquids can efficiently remove Cu(II) and Cd(II). • Loaded ionic liquids can be recycled by application of different stripping protocols. - Abstract: Eight novel task-specific ionic liquids (TSILs) based on the thioglycolate anion designed for heavy metal extraction have been prepared and characterized by {sup 1}H and {sup 13}C NMR, UV-Vis, infrared, ESI-MS, conductivity, viscosity, density and thermal properties. Evaluation of their time-resolved extraction abilities towards cadmium(II) and copper(II) in aqueous solutions have been investigated where distribution ratios up to 1200 were observed. For elucidation of the IL extraction mode, crystals were grown where Cd(II) was converted with an excess of S-butyl thioglycolate. It was found by X-ray diffraction analysis that cadmium is coordinated by five oxygen and one sulfur donor atoms provided by two thioglycolate molecules and one water molecule. Leaching behavior of the hydrophobic ionic liquids into aqueous systems was studied by TOC (total dissolved organic carbon) measurements. Additionally, the immobilization on polypropylene was elucidated and revealed slower metal extraction rates and similar leaching behavior. Finally, recovery processes for cadmium and copper after extraction were performed and recyclability was successfully proven for both metals.

  3. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  4. Metal coordination in the high-temperature leaching of roasted NdFeB magnets with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide

    OpenAIRE

    Orefice, Martina; Binnemans, Koen; Vander Hoogerstraete, Tom

    2018-01-01

    Ionic liquids are largely used to leach metals from primary (ores) and secondary sources (end-of-life products). However, dry ionic liquids with a carboxylic function on the cation have not yet been used to leach metals at temperature above 100 °C and under atmospheric pressure. The ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N], was used in the dry state to recover neodymium, dysprosium and cobalt from NdFeB magnets and NdFeB production scrap. The magnets and the scra...

  5. Levitation apparatus for neutron diffraction investigations on high temperature liquids

    International Nuclear Information System (INIS)

    Hennet, Louis; Pozdnyakova, Irina; Bytchkov, Aleksei; Cristiglio, Viviana; Palleau, Pierre; Fischer, Henry E.; Cuello, Gabriel J.; Johnson, Mark; Melin, Philippe; Zanghi, Didier; Brassamin, Severine; Brun, Jean-Francois; Price, David L.; Saboungi, Marie-Louise

    2006-01-01

    We describe a new high temperature environment based on aerodynamic levitation and laser heating designed for neutron scattering experiments up to 3000 deg. C. The sample is heated to the desired temperature with three CO 2 lasers from different directions in order to obtain a homogeneous temperature distribution. The apparent temperature of the sample is measured with an optical pyrometer, and two video cameras are employed to monitor the sample behavior during heating. The levitation setup is enclosed in a vacuum-tight chamber, enabling a high degree of gas purity and a reproducible sample environment for structural investigations on both oxide and metallic melts. High-quality neutron diffraction data have been obtained on liquid Y 3 Al 5 O 12 and ZrNi alloy for relatively short counting times (1.5 h)

  6. Measurement of the differential pressure of liquid metals

    International Nuclear Information System (INIS)

    Metz, H.J.

    1975-01-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed

  7. Measurement of the differential pressure of liquid metals

    Science.gov (United States)

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  8. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan; Qi, Genggeng; Wang, Peng; Giannelis, Emmanuel P.

    2012-01-01

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan

    2012-02-29

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nonreactive spreading at high temperature: molten metals and oxides on molybdenum.

    Science.gov (United States)

    Saiz, E; Tomsia, A P; Rauch, N; Scheu, C; Ruehle, M; Benhassine, M; Seveno, D; de Coninck, J; Lopez-Esteban, S

    2007-10-01

    The spontaneous spreading of small liquid metal (Cu, Ag, Au) and oxide drops on Mo substrates has been studied using a drop transfer setup combined with high-speed video. Under the experimental conditions used in this work, spreading occurs in the absence of interfacial reactions or ridging. The analysis of the spreading data indicates that dissipation at the triple junction (that can be described in terms of a triple-line friction) is playing a dominant role in the movement of the liquid front. This is due, in part, to the much stronger atomic interactions in high-temperature systems when compared to organic liquids. As a result of this analysis, a comprehensive view of spreading emerges in which the strength of the atomic interactions (solid-liquid, liquid-liquid) determines the relative roles of viscous impedance and dissipation at the triple junction in spreading kinetics.

  11. Fabrication of Metallic Fuel Slugs for Irradiation Experiments in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    Advantages of Metallic fuels for future FBR: → High heavy metal atom density; → Higher thermal conductivity at room temperature that increases with temperature; → Metal fuels can be relatively easily fabricated with close dimensional tolerances; → They have excellent compatibility with liquid metal coolants

  12. Magnetic field-induced Landau Fermi liquid in high-T{sub c} metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R

    2003-08-25

    We consider the behavior of strongly correlated electron liquid in high-temperature superconductors within the framework of the fermion condensation model. We show that at low temperatures the normal state recovered by the application of a magnetic field larger than the critical field can be viewed as the Landau Fermi liquid induced by the magnetic field. In this state, the Wiedemann-Franz law and the Korringa law are held and the elementary excitations are the Landau Fermi liquid quasiparticles. Contrary to what might be expected from the Landau theory, the effective mass of quasiparticles depends on the magnetic field. The recent experimental verifications of the Wiedemann-Franz law in heavily hole-overdoped, overdoped and optimally doped cuprates and the verification of the Korringa law in the electron-doped copper oxide superconductor strongly support the existence of fermion condensate in high-T{sub c} metals.

  13. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  14. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  15. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  16. Performance and stability of a liquid anode high-temperature metal-air battery

    Science.gov (United States)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  17. Clad buffer rod sensors for liquid metals

    International Nuclear Information System (INIS)

    Jen, C.-K.; Ihara, I.

    1999-01-01

    Clad buffer rods, consisting of a core and a cladding, have been developed for ultrasonic monitoring of liquid metal processing. The cores of these rods are made of low ultrasonic-loss materials and the claddings are fabricated by thermal spray techniques. The clad geometry ensures proper ultrasonic guidance. The lengths of these rods ranges from tens of centimeters to 1m. On-line ultrasonic level measurements in liquid metals such as magnesium at 700 deg C and aluminum at 960 deg C are presented to demonstrate their operation at high temperature and their high ultrasonic performance. A spherical concave lens is machined at the rod end for improving the spatial resolution. High quality ultrasonic images have been obtained in the liquid zinc at 600 deg C. High spatial resolution is needed for the detection of inclusions in liquid metals during processing. We also show that the elastic properties such as density, longitudinal and shear wave velocities of liquid metals can be measured using a transducer which generates and receives both longitudinal and shear waves and is mounted at the end of a clad buffer rod. (author)

  18. Scaling behavior of heavy fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a, Chernova str. Syktyvkar, 167982 (Russian Federation)

    2010-07-15

    Strongly correlated Fermi systems are fundamental systems in physics that are best studied experimentally, which until very recently have lacked theoretical explanations. This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as heavy-fermion (HF) metals and two-dimensional (2D) Fermi systems. It is shown that the basic properties and the scaling behavior of HF metals can be described within the framework of a fermion condensation quantum phase transition (FCQPT) and an extended quasiparticle paradigm that allow us to explain the non-Fermi liquid behavior observed in strongly correlated Fermi systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Having analyzed the collected facts on strongly correlated Fermi systems with quite a different microscopic nature, we find these to exhibit the same non-Fermi liquid behavior at FCQPT. We show both analytically and using arguments based entirely on the experimental grounds that the data collected on very different strongly correlated Fermi systems have a universal scaling behavior, and materials with strongly correlated fermions can unexpectedly be uniform in their diversity. Our analysis of strongly correlated systems such as HF metals and 2D Fermi systems is in the context of salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales and thermodynamic, relaxation and transport properties are in good agreement with experimental facts.

  19. Effects of temperature on the acute toxicity of heavy metals (Cr, Cd, and Hg) to the freshwater crayfish, Procambarus clarkii (Girard)

    Energy Technology Data Exchange (ETDEWEB)

    Del Ramo, J.; Diaz-Mayans, J.; Torreblanca, A.; Nunez, A.

    1987-05-01

    Chromium, an essential trace element for humans and animals is involved in normal carbohydrate metabolism; however, it is toxic at high concentrations. There is no evidence that cadmium and mercury are biologically essential but their toxicity for organisms is well known. Both cause toxic effects at low concentrations to most organisms, especially in combination with other environmental variables such as temperature. Lake Albufera and the surrounding rice field waters are subjected to very heavy loads of sewage and toxic industrial residues (including heavy metals) from the many urban and waste waters in this area. In 1978, the American red crayfish Procambarus clarkii appeared in lake Albufera and in the surrounding rice fields. Without adequate sanitary control, the crayfish is presently being fished commercially for human consumption. The purpose of the present study is to evaluate the degree of toxicity of various heavy metals (chromium, cadmium and mercury) to freshwater crayfish Procambarus clarkii at various temperatures.

  20. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, N. A., E-mail: namauro@noctrl.edu [Department of Physics, North Central College, Naperville, Illinois 60540 (United States); Vogt, A. J. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Derendorf, K. S. [Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130 (United States); Johnson, M. L.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130 (United States); Rustan, G. E.; Quirinale, D. G.; Goldman, A. I. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Kreyssig, A. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Lokshin, K. A. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Neuefeind, J. C.; An, Ke [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Xun-Li [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Ave., Kowloon (Hong Kong); Egami, T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Physics and Astronomy, Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  1. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  2. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  3. Upgrading of heavy crude oil with supported and unsupported transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Nares, H.R.; Schacht-Hernandez, P.; Cabrera-Reyes, M.C.; Ramirez-Garnica, M.; Cazarez-Candia, O. [Instituto Mexicano del Petroleo, Atepehuacan (Mexico)

    2006-07-01

    Heavy crude oil presents many problems such as difficulty in transportation, low processing capacity in refineries, and low mobility through the reservoir due to high viscosity which affects the index of productivity of the wells. Because of these challenges, it is necessary to enhance heavy crude oil, both aboveground and underground. The effects of several metallic oxides used to upgrade heavy crude oil properties were examined in order to increase the mobility of reservoir oil by reducing viscosity and improving the quality of the oil. This can be accomplished by reducing the asphaltene and sulfur contents and increasing the American Petroleum Institute (API) gravity using transition metal supported in alumina and unsupported from transition metals derived from either acetylacetonate or alkylhexanoate in liquid phase homogeneously mixed with heavy crude oil as well as metal transition supported in alumina. KU-H heavy crude oil from the Golf of Mexico was studied. The results were obtained by Simulated Distillation and True Boiling Point (TBP). It was concluded that the use of crude oil thermal hydrocracking allowed the API gravity to increase and considerably reduce the viscosity. As a result, the productivity index in wells was increased. However there is a high formation of coke that could damage the conductivity of the rock and then reduce the potential of oil recovery. 27 refs., 3 tabs., 5 figs.

  4. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  5. Determination of Optimal Temperature for Biosorption of Heavy Metal Mixture from Aqueous Solution by Pretreated Biomass of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Javad Yousefi

    2012-01-01

    Full Text Available Biosorption is a novel technology that uses dead and inactive biomass for removal of heavy metals from aqueous solution. Some parameters such as temperature, contact time, solution pH, initial metal concentration, biosorbent dose and also agitating speed of solution and biosorbent mixing can affect the amount of metal sorption by biosorbent. The aim of this study was to investigate the effects of different treatments of temperatures (25, 35, 45 and 55oC on biosorption of metals mixture in order to determine optimal temperature for more metals removal from aqueous solution. This study uses dead and pretreated biomass of Aspergillus niger with 0.5N NaOH for removal of Zn(II, Co(II and Cd(II. In all temperature treatments and in the case of all of heavy metals, maximum amount of metal sorption and concentration decrease was occurred in first 5 minutes and achieved to equilibrium after 20 minute. The percent of metals sorption show growth trend with temperature increase. Between 4 experimental treatments, 55oC treatment was shown maximum sorption and 25oC was shown minimum sorption amount. The percent of Cr(II sorption was increase from 28.5% in 25oC to 44.7% in 55oC. Also, this increase was from 40% to 58% for Cd(II and from 37.7% to 65.6% for Zn(II. About 60% of increase in sorption by A. niger was due to increase in temperature. Therefore the amount of metals sorption can be increase, only with temperature increase and without any biomass addition.

  6. Heavy metals and soil microbes

    NARCIS (Netherlands)

    Giller, K.E.; Witter, E.; McGrath, S.

    2009-01-01

    The discovery in the early 1980s that soil microorganisms, and in particular the symbiotic bacteria Rhizobium, were highly sensitive to heavy metals initiated a new line of research. This has given us important insights into a range of topics: ecotoxicology, bioavailability of heavy metals, the role

  7. Specific heat characteristics of Ce70Ga8.5Cu18.5Ni3 metallic glass at low temperatures

    Science.gov (United States)

    Liu, Rentao; Zhong, Langxiang; Zhang, Bo

    2018-03-01

    Specific heat behaviors have been studied in Ce70Ga8.5Cu18.5Ni3 bulk metallic glass (BMG) from 2 K to 50 K. The low-temperature specific heat of the Ce-based metallic glass is a combined action of the Fermi liquids term, Debye oscillator term, and Einstein oscillator term as well as excess term. We also observed an intense boson peak around 15 K and attributed it to a harmonic localized Einstein mode influenced by the dense-packed atomic cluster structure. It is also demonstrated that Ce70Ga8.5Cu18.5Ni3 BMG belongs to the strongly correlated heavy-fermion system with a great electron specific heat coefficient and a high Wilson ratio. It exhibits a typical Fermi-Liquid feature when the temperature is above 10 K, while it exhibits a Non-Fermi-Liquid feature when the temperature is below 3.5 K.

  8. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  9. Temperature and emissivity determination of liquid steel S235

    Science.gov (United States)

    Schöpp, H.; Sperl, A.; Kozakov, R.; Gött, G.; Uhrlandt, D.; Wilhelm, G.

    2012-06-01

    Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm.

  10. Temperature and emissivity determination of liquid steel S235

    International Nuclear Information System (INIS)

    Schöpp, H; Kozakov, R; Gött, G; Uhrlandt, D; Sperl, A; Wilhelm, G

    2012-01-01

    Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm. (paper)

  11. 3-D printing of liquid metals for stretchable and flexible conductors

    Science.gov (United States)

    Trlica, Chris; Parekh, Dishit Paresh; Panich, Lazar; Ladd, Collin; Dickey, Michael D.

    2014-06-01

    3-D printing is an emerging technology that has been used primarily on small scales for rapid prototyping, but which could also herald a wider movement towards decentralized, highly customizable manufacturing. Polymers are the most common materials to be 3-D printed today, but there is great demand for a way to easily print metals. Existing techniques for 3-D printing metals tend to be expensive and energy-intensive, and usually require high temperatures or pressures, making them incompatible with polymers, organics, soft materials, and biological materials. Here, we describe room temperature liquid metals as complements to polymers for 3-D printing applications. These metals enable the fabrication of soft, flexible, and stretchable devices. We survey potential room temperature liquid metal candidates and describe the benefits of gallium and its alloys for these purposes. We demonstrate the direct printing of a liquid gallium alloy in both 2-D and 3-D and highlight the structures and shapes that can be fabricated using these processes.

  12. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  13. Temperature-dependent structure evolution in liquid gallium

    International Nuclear Information System (INIS)

    Xiong, L.H.; Wang, X.D.; Yu, Q.; Zhang, H.; Zhang, F.; Sun, Y.; Cao, Q.P.; Xie, H.L.; Xiao, T.Q.; Zhang, D.X.; Wang, C.Z.; Ho, K.M.

    2017-01-01

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for self-diffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q_6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studies on the liquid-to-liquid crossover in metallic melts. - Graphical abstract: Atomistic structure evolution of liquid gallium has been investigated by using in situ high energy X-ray diffraction and ab initio molecular dynamics simulations, which both demonstrate the existence of a liquid structural change together with reported density, viscosity, electric resistivity and absolute thermoelectric power data.

  14. Some Issues in Liquid Metals Research

    Directory of Open Access Journals (Sweden)

    Maria José Caturla

    2015-11-01

    Full Text Available The ten articles [1–10] included in this Special Issue on “Liquid Metals” do not intend to comprehensively cover this extensive field, but, rather, to highlight recent discoveries that have greatly broadened the scope of technological applications of these materials. Improvements in understanding the physics of liquid metals are, to a large extent, due to the powerful theoretical tools in the hands of scientists, either semi-empirical [1,5,6] or ab initio (molecular dynamics, see [7]. Surface tension and wetting at metal/ceramic interfaces is an everlasting field of fundamental research with important technological implications. The review of [2] is broad enough, as the work carried out at Grenoble covers almost all interesting matters in the field. Some issues of interest in geophysics and astrophysics are discussed in [3]. The recently discovered liquid–liquid transition in several metals is dealt with in [4]. The fifth contribution [5] discusses the role of icosahedral superclusters in crystallization. In [6], thermodynamic calculations are carried out to identify the regions of the ternary phase diagram of Al-Cu-Y, where the formation of amorphous alloys is most probable. Experimental data and ab initio calculations are presented in [7] to show that an optimal microstructure is obtained if Mg is added to the Al-Si melt before than the modifier AlP alloy. Shock-induced melting of metals by means of laser driven compression is discussed in [8]. With respect to recent discoveries, one of the most outstanding developments is that of gallium alloys that are liquid at room temperature [9], and that, due to the oxide layer that readily cover their surface, maintain some “stiffness”. This has opened the possibility of 3D printing with liquid metals. The last article in this Special Issue [10] describes nano-liquid metals, a suspension of liquid metal and its alloy containing nanometer-sized particles. A room-temperature nano-liquid metal

  15. Calculation of aerodynamics of aerosol filter designs for cleaning of heavy liquid metal cooler reactor gas loops

    International Nuclear Information System (INIS)

    Valery P Melnikov; Pyotr N Martynov; Albert K Papovyants; Ivan V Yagodkin

    2005-01-01

    preliminary and fine cleaning sections lengths. Within this domain the reduction of the fine cleaning section resistance due to the growth of the filtration surface is compensated by equivalent increase in the preliminary cleaning section resistance at the corresponding reduction of the filtration surface of this section. In this connection, to purify gas-air media having different characteristics by concentrations (∼50 mg/m 3 ), the disperse composition of aerosols (0,2-5,0 μm and more) within the range of the minimum values of aerodynamic resistances, recommendations have been given on constructing the preliminary and fine cleaning sections of aerosol filters. The developed computer program for the aerodynamics of gas filters allows one to determine the optimal designs under different conditions of their operation in the heavy liquid metal cooled reactor gas loops (filtration rate, temperature) and characteristics of the medium to be cleaned (concentration, the disperse composition of aerosols). (authors)

  16. The attenuation of temperature oscillations in passing through liquid metal boundary layers

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1975-08-01

    One aspect of predicting the endurance of components subject to thermal fatigue in liquid metal cooled reactors is the extent to which oscillations in fluid temperature are transmitted to metal surfaces, such as the above-core structure. The first geometry considered is that of a solid plate in contact with a layer of stagnant fluid, in which temperature oscillations are imposed at a given distance from the plate. Transmission through a laminar boundary layer developing over the plate surface is then considered. An approximate calculation based on the slug-flow analysis of Sucec (1975) is developed. (U.K.)

  17. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  18. Diagnostics of atmospheric-pressure pulsed-dc discharge with metal and liquid anodes by multiple laser-aided methods

    Science.gov (United States)

    Urabe, Keiichiro; Shirai, Naoki; Tomita, Kentaro; Akiyama, Tsuyoshi; Murakami, Tomoyuki

    2016-08-01

    The density and temperature of electrons and key heavy particles were measured in an atmospheric-pressure pulsed-dc helium discharge plasma with a nitrogen molecular impurity generated using system with a liquid or metal anode and a metal cathode. To obtain these parameters, we conducted experiments using several laser-aided methods: Thomson scattering spectroscopy to obtain the spatial profiles of electron density and temperature, Raman scattering spectroscopy to obtain the neutral molecular nitrogen rotational temperature, phase-modulated dispersion interferometry to determine the temporal variation of the electron density, and time-resolved laser absorption spectroscopy to analyze the temporal variation of the helium metastable atom density. The electron density and temperature measured by Thomson scattering varied from 2.4  ×  1014 cm-3 and 1.8 eV at the center of the discharge to 0.8  ×  1014 cm-3 and 1.5 eV near the outer edge of the plasma in the case of the metal anode, respectively. The electron density obtained with the liquid anode was approximately 20% smaller than that obtained with the metal anode, while the electron temperature was not significantly affected by the anode material. The molecular nitrogen rotational temperatures were 1200 K with the metal anode and 1650 K with the liquid anode at the outer edge of the plasma column. The density of helium metastable atoms decreased by a factor of two when using the liquid anode.

  19. Fundamental study on cavitation erosion in liquid metal. Effect of liquid parameter on cavitation erosion in liquid metals (Joint research)

    International Nuclear Information System (INIS)

    Hattori, Shuji; Kurachi, Hiroaki; Inoue, Fumitaka; Watashi, Katsumi; Tsukimori, Kazuyuki; Yada, Hiroki; Hashimoto, Takashi

    2009-02-01

    Cavitation erosion, which possibly occurs on the surfaces of fluid machineries and components contacting flowing liquid and causes sponge-like damage on the material surface, is important problem, since it may become the cause of performance deduction, life shortening, noise, vibration of mechanical components and moreover failure of machine. Research on cavitation erosion in liquid metal is very important to confirm the safety of fast breeder reactor using sodium coolant and to avoid serious damage of the target vessel of spallation neutron source containing liquid-mercury. But the research on cavitation erosion in liquid metal has been hardly performed because of its specially in comparison with that in water. In this study, a cavitation erosion test apparatus was developed to carry out the erosion tests in low-temperature liquid metals. Cavitation erosion tests were carried out in liquid lead-bismuth alloy and in deionized water. We discuss the effect of liquid parameters and temperature effects on the erosion rate. We reach to the following conclusions. The erosion rate was evaluated in terms of a relative temperature which was defind as the percentage between freezing and boiling points. At 14degC relative temperature, the erosion rate is 10 times in lead-bismuth alloy, and 2 to 5 times in sodium, compared with that in deionized water. At 14degC relative temperature, the erosion rate can be evaluated in terms of the following parameter. 1 / (1/ρ L /C L +1/ρ S C S )√ρ L . Where ρ is the material density and c is the velocity of sound, L and S denote liquid and solid. In the relative temperature between 14 and 30degC, the temperature dependence on the erosion rate is due to the increase in vapor pressure. (author)

  20. Factors affecting heavy metal uptake in plant selection for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A.; Mathe-Gaspar, G. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The heavy metal uptake of ten plant species was studied under different soil and climatic conditions. Effects of soil pH, temperature, plant species and phenophase on the heavy metal content of stems and leaves were determined in pot experiments. Plants and soil samples were collected from a lead/zinc mine ore (Gyoengyoesoroszi, Hungary) and characterised by high contents of Pb, Zn, As, Cd, Cu. The possibility of an adapted phytoremediation technology was indicated by different bioconcentration factors (BCF). The BCF depended markedly (10- to 100-fold) on plant species and environmental conditions. Based on our results a ''season-adapted'' phytoextraction technology with different plant species (utilising their different temperature requirements and/or harvest time) is suggested. (orig.)

  1. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  2. Phytomining of heavy metals from soil by Hibiscus radiatus using phytoremediationtechnology (Part-2)

    Science.gov (United States)

    Panchal, K. J.; Subramanian, R. B.; Gohil, T. P.

    2017-12-01

    Metal ions are not only valuable intermediates in metal extraction, but also important raw materials fortechnical applications. They possess some unique but, identical physical and chemical properties, whichmake them useful probes of low temperature geochemical reactions. Heavy metals are natural constituentsof the earth's crust, but indiscriminate human activities have drastically altered their geochemical cyclesand biochemical balance. Metal concentration in soil typically ranges from less than one to as high as100,000 mg/kg. Heavy metal contaminations of land resources continue to be the focus of numerousenvironmental studies and attract a great deal of attention worldwide. This is attributed to nobiodegradabilityand persistence of heavy metals in soils. Prolonged exposure to heavy metals such ascadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Complexation,separation, and removal of metal ions have become increasingly attractive areas of research and have ledto new technical developments like phytoremediation that has numerous biotechnological implications ofunderstanding of plant metal accumulation. Hibiscus radiatus is newly identified as a potential heavymetal hypreaccumulator. In this study Hibiscus radiatus was subjected for in vitro heavy metalaccumulation, to explore the accumulation pattern of four heavy metals viz Cadmium, Lead, Nickel andZinc in various parts of Hibiscus radiatus plant parts. Translocation of metals in Hibiscus radiatus plant parts from soil makes this plant an eligible candidate to remove heavy metals from soil.

  3. Application of insoluble tannin to recovery of uranium, TRU and heavy metals elements form radioactive liquid waste

    International Nuclear Information System (INIS)

    Hamaguchi, Kazuhiko; Shirato, Wataru; Nakamura, Yasuo; Matsumura, Tatsuro; Takeshita, Kenji; Nakano, Yoshio

    1999-01-01

    Mitsubishi Nuclear Fuel Co., Ltd. (MNF) has developed a new adsorbent, TANNIX (tread mark), for the recovery of uranium, TRU and heavy metal elements in the liquid waste, in which TANNIX derived from a natural tannin polymer. TANNIX has same advantages that handling is easier than that of standard IX-resin, and that the volume of secondary waste is reduced by burning the used TANNIX. We have replaced its radioactive liquid waste treatment system from the conventional co-precipitation process to adsorption process by using TANNIX. TANNIX was founded to be more effective for the recovery of Pu, TRU, and hexavalent chromium Cr-(VI) as well as Uranium. (author)

  4. Thermal treatment of soil co-contaminated with lube oil and heavy metals in a low-temperature two-stage fluidized bed incinerator

    International Nuclear Information System (INIS)

    Samaksaman, Ukrit; Peng, Tzu-Huan; Kuo, Jia-Hong; Lu, Chien-Hsing; Wey, Ming-Yen

    2016-01-01

    Highlights: • Low-temperature two-stage fluidized bed incineration was applied for soil remediation. • Co-firing of polyethylene with co-contaminated soil was studied. • Co-firing of polyethylene in soil remediation can promote residue quality. • The leachability of heavy metals passed the regulatory threshold values. - Abstract: This study presents the application of a low-temperature two-stage fluidized bed incinerator to remediate contaminants in the soil. The system was designed to control emissions of both gaseous pollutants and heavy metals during combustion. Soil co-contaminated with lube oil and heavy metals such as cadmium, chromium, copper, and lead was examined. Experiments were conducted by estimating various parameters such as operating temperature in the first-stage reactor (500–700 °C), ratio of sand bed height/diameter in the second-stage reactor (H/D: 3, 4, 6), and gas velocity (0.21–0.29 m/s). Heavy metal and gaseous pollutant emissions were also investigated during contaminated soil co-firing with polyethylene. The experimental results indicated that the destruction and removal efficiency of lube oil in treated soil products ranged from 98.27 to 99.93%. On the other hand, leaching tests of bottom ashes illustrated that heavy metals such as chromium, copper, and lead in leachates were complied with the regulations. For gaseous emissions, carbon monoxide concentrations decreased apparently with increasing ratio of sand bed height/diameter in the second-stage reactor. The increase of gas velocity had significant potential to generate the lowest carbon monoxide and particulate matter emissions. Nevertheless, during co-firing with polyethylene, emissions of organic pollutants such as benzene, toluene, ethylbenzene, and xylene and polycyclic aromatic hydrocarbons decrease by using the low-temperature two-stage fluidized bed incineration system.

  5. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  6. Heavy Metal Pollution Potential of Zinc Leach Residues Discarded in çinkur Plant

    OpenAIRE

    ALTUNDOĞAN, H. Soner; ERDEM, Mehmet; ORHAN, Ramazan

    1998-01-01

    In this paper, results of the study on heavy metals solubility behaviour of filter cakes from leaching of clinkerized Waelz oxide and flue dust collected during clinkerization in çinkur plant are given. The release of heavy metals into water was investigated by subjecting the cakes to solubility tests systematically. The effect of contact time, pH, liquid/solid ratio and successive extractions on the releasing of heavy metals (Cd, Pb, Mn and Zn) into water was examined and their conc...

  7. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    Directory of Open Access Journals (Sweden)

    Muhammad Muneeb Ur Rahman Khattak

    2017-01-01

    Full Text Available Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn from water. The adsorption parameters were determined for heavy metals adsorption using Freundlich and Langmuir isotherms. The adsorption kinetics and effect of time, pH, and temperature on heavy metal ions were also determined. The best fits were obtained for Freundlich isotherm. The percent adsorption showed a decline at high pH. Best fit was obtained with second-order kinetics model for the kinetics experiments. The values of ΔH° and ΔG° were negative while that of ΔS° was positive. The prepared adsorbent has high adsorption capacities and can be efficiently used for the removal of heavy metals from water.

  8. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  9. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  10. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.

    Science.gov (United States)

    Liu, Tingting; Liu, Zhengang; Zheng, Qingfu; Lang, Qianqian; Xia, Yu; Peng, Nana; Gai, Chao

    2018-01-01

    The heavy metals distribution during hydrothermal carbonization (HTC) of sewage sludge, and pyrolysis of the resultant hydrochar was investigated and compared with raw sludge pyrolysis. The results showed that HTC reduced exchangeable/acid-soluble and reducible fraction of heavy metals and lowered the potential risk of heavy metals in sewage sludge. The pyrolysis favored the transformation of extracted/mobile fraction of heavy metals to residual form especially at high temperature, immobilizing heavy metals in the chars. Compared to the chars from raw sludge pyrolysis, the chars derived from hydrochar pyrolysis was more alkaline and had lower risk and less leachable heavy metals, indicating that pyrolysis imposed more positive effect on immobilization of heavy metals for the hydrochar than for sewage sludge. The present study demonstrated that HTC is a promising pretreatment prior to pyrolysis from the perspective of immobilization of heavy metals in sewage sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin

    International Nuclear Information System (INIS)

    Lee, I.H.; Kuan, Y.-C.; Chern, J.-M.

    2006-01-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

  12. A system for traceable measurement of the microwave complex permittivity of liquids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Dimitrakis, G A; Robinson, J; Kingman, S; Lester, E; George, M; Poliakoff, M; Harrison, I; Gregory, A P; Lees, K

    2009-01-01

    A system has been developed for direct traceable dielectric measurements on liquids at high pressures and temperatures. The system consists of a coaxial reflectometric sensor terminated by a metallic cylindrical cell to contain the liquid. It has been designed for measurements on supercritical liquids, but as a first step measurements on dielectric reference liquids were performed. This paper reports on a full evaluation of the system up to 2.5 GHz using methanol, ethanol and n-propanol at pressures up to 9 MPa and temperatures up to 273 °C. A comprehensive approach to the evaluation of uncertainties using Monte Carlo modelling is used

  13. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-01-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling

  14. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Hu, Li-Fang [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Dong-Sheng, E-mail: shends@zju.edu.cn [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China)

    2014-05-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling.

  15. Heating treatment schemes for enhancing chelant-assisted phytoextraction of heavy metals from contaminated soils.

    Science.gov (United States)

    Chen, Yahua; Wang, Chunchun; Wang, Guiping; Luo, Chunling; Mao, Ying; Shen, Zhenguo; Li, Xiangdong

    2008-04-01

    Recent research has shown that chelant-assisted phytoextraction approaches often require a high dosage of chelant applied to soil. The present study focused on optimization of phytoremediation processes to increase the phytoextraction efficiency of metals at reduced chelant applications. Pot experiments were carried out to investigate the effects of increased soil temperature on shoot uptake of heavy metals by corn (Zea mays L.) and mung bean (Vigna radiat L. Wilczek) from heavy metal-contaminated soils. After the application of S,S-ethylenediaminedisuccinic acid or ethylenediaminetetra-acetic acid, soils were exposed to high temperatures (50 or 80 degrees C) for 3 h, which significantly increased the concentration of heavy metals in shoots. The heating treatment 2 d after the chelant addition resulted in higher concentrations of metals compared with those treatments 2 d before or simultaneously with the chelant application. Irrigation with 100 degrees C water 2 d after the chelant addition, or irrigation with 100 degrees C chelant solutions directly, also resulted in significantly higher phytoextraction of metals in the two crops compared with 25 degrees C chelant solutions. In addition, a novel application method to increase soil temperature using underground polyvinyl chloride tubes would increase the chelant-assisted extraction efficiency of Cu approximately 10- to 14-fold in corn and fivefold in mung bean compared with those nonheating treatments. In a field experiment, increasing soil temperature 2 d after chelant addition also increased the shoot Cu uptake approximately fivefold compared with those nonheating treatments. This new technique may represent a potential, engineering-oriented approach for phytoremediation of metal-polluted soils.

  16. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  17. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  18. Additives for high-temperature liquid lubricants

    Science.gov (United States)

    Lawton, Emil A.; Yavrouian, Andre H.; Repar, John

    1988-01-01

    A preliminary research program was conducted to demonstrate a new concept for additives to liquid lubricants. It was demonstrated that suspensions of o-phthalonitrile and a substituted 1,2-maleonitrile in mineral oil and dilute solutions of o-phthalonitrile and tetrafluoro-o-phthalonitrile extended the lifetime of bearings under boundary lubricating conditions. The solutions exhibited coefficients of friction under high loads of 0.02-0.03. These results were consistent with the hypothesis that these compounds react with the hot metal surface to form a planar lubricating film by means of a metal or metal oxide template reaction. Also, the adherence was very strong due to the chelating action of the planar macrocycles postulated to form under the experimental conditions.

  19. Normal spectral emissivity of selected liquid metals and improved thermophysical properties

    International Nuclear Information System (INIS)

    Pottlacher, G.; Seifter, A.

    2001-01-01

    Full Text: Emissivity measurements on several liquid metals up to temperatures of 6000 K have been successfully established by linking a laser polarimetry technique to our well-known method for performing high speed measurements of thermophysical properties on liquid metal samples during microsecond pulse-heating experiments. Thermophysical properties measured with our experimental setup include temperature dependencies of heat capacity, enthalpy, electrical resistivity, density, thermal diffusivity and thermal conductivity up to the end of the stable liquid phase. During grant P12775-PHY additionally to the above listened properties the measurement of the change of the polarization of laser light reflected from the surface during pulse heating was enabled and thus now the temperature dependence of spectral emissivity at 684.5 nm by methods of ellipsometry is derived also. Several liquid metals and alloys have been investigated within this grant and a review of the data obtained will be given here. (author)

  20. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.

    2013-11-28

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  1. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.; Ghazy, Mohamed A.; Sayed, Ahmed; Ouf, Amged; El-Dorry, Hamza; Siam, Rania

    2013-01-01

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  2. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Lan, S.; Ma, J. L.; Fan, J. [Department of Physics and Material Science, City University of Hong Kong 83 Tat Chee Ave., Kowloon (Hong Kong); Blodgett, M.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University One Brookings Drive, St. Louis, Missouri 63130-4899 (United States); Wang, X.-L., E-mail: xlwang@cityu.edu.hk [Department of Physics and Material Science, City University of Hong Kong 83 Tat Chee Ave., Kowloon (Hong Kong); City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (China)

    2016-05-23

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ∼1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  3. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  4. [Biosorption of heavy metals in fluoritum decoction by fungal mycelium].

    Science.gov (United States)

    Cui, Pei-wu; Hu, Wei; Hu, Ya-qiang; Tan, Zhao-yang

    2014-09-01

    To explore the biosorption technology of heavy metals in Fluoritum decoction by fungal mycelium. Four factors including fungal mycelium amount, adsorption time, pH value and temperature were employed to estimate the fungal biomass adsorption conditions for removing the heavy metals in Fluoritum decoction. Then an orthogonal experimental design was taken to optimize the biosorption process, and the removal efficiency was also evaluated. Under the optimized conditions of 1.0 g/50 mL Fluoritum decoction, 3 hours adsorption time, pH 5.0 and 40 degrees C, a result of 70.12% heavy metals removal rate was accomplished with 35.99% calcium ion loss. The study indicates that removing of heavy metals in Fluoritum decoction through fungal mycelium is feasible, and the experiment results can also provide a basis for further research on biosorption of heavy metals in traditional Chinese medicine

  5. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue; Ge, Qingchun; Liu, Xiangyang; Chung, Neal Tai-Shung

    2014-01-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  6. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  7. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  8. Heavy metals behavior during thermal plasma vitrification of incineration residues

    International Nuclear Information System (INIS)

    Cerqueira, N.; Vandensteendam, C.; Baronnet, J.M.

    2005-01-01

    In the developed world, incineration of wastes is widely and increasingly practiced. Worldwide, a total of approximately 100 millions of tons of municipal solid waste (MSW) material is incinerated annually. Incineration of one ton of MSW leads to the formation of 30 to 50 kg of fly ash, depending on the type of incinerator. The waste disposal of these dusts already causes great problems today; they are of low bulk density, they contain high concentrations of hazardous water-soluble heavy metal compounds, organohalogen compounds (dioxines, furanes), sulfur, and chlorinated compounds. Thermal processes, based mainly on electrical arc processes, show great promise: the residues are melted at high temperature and converted in a relatively inert glass. A few tens of plants, essentially in Japan and Taiwan, have been in industrial operation for a few years. To be authorized to be dumped in a common landfill, the glassy product has to satisfy the leaching test procedure to ensure long-term durability. But to satisfy the regulation to be reused, for example as a nonhazardous standard material in road building, the glassy product would probably include contents in some heavy metals lower than critical limits. So today, there are two alternatives: the first one is to improve the heavy toxic metals evaporation to get a 'light' glassy product and to recycle separately the said separated metals; the second is on the contrary to improve the incorporation of a maximum of heavy metals into the vitreous silicate matrix. Whatever, it is highly required to control, in situ and in real time, volatility of these metals during ash melting under electrical arc. The objective of this work was to reach basic data about metals volatility under the plasma column of an electrical arc transferred on the melt: an experiment has been designed to examine the effects of processing conditions, such as melt temperature, melt composition, and furnace atmosphere, upon volatilization and glassy slag

  9. Liquid metals: fundamentals and applications in chemistry.

    Science.gov (United States)

    Daeneke, T; Khoshmanesh, K; Mahmood, N; de Castro, I A; Esrafilzadeh, D; Barrow, S J; Dickey, M D; Kalantar-Zadeh, K

    2018-04-03

    Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.

  10. Development of a Hemispherical Metal Diaphragm for Single-Cycle Liquid-Metal Positive Expulsion Systems

    National Research Council Canada - National Science Library

    Gorland, Sol

    1965-01-01

    This report presents experimental results pertaining to the design and development of a metallic expulsion diaphragm for single-cycle positive expulsion of high-temperature liquid in an agravity condition...

  11. Materials requirements for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Bennett, J.W.; Horton, K.E.

    1978-01-01

    Materials requirements for Liquid Metal Fast Breeder Reactors (LMFBRs) are quite varied with requisite applications ranging from ex-reactor components such as piping, pumps, steam generators and heat exchangers to in-reactor components such as heavy section reactor vessels, core structurals, fuel pin cladding and subassembly flow ducts. Requirements for ex-reactor component materials include: good high temperature tensile, creep and fatigue properties; compatibility with high temperature flowing sodium; resistance to wear, stress corrosion cracking, and crack propagation; and good weldability. Requirements for in-reactor components include most of those cited above for ex-reactor components as supplemented by the following: resistance to radiation embrittlement, swelling and radiation enhanced creep; good neutronics; compatibility with fuel and fission product materials; and resistance to mass transfer via flowing sodium. Extensive programs are currently in place in a number of national laboratories and industrial contractors to address the materials requirements for LMFBRs. These programs are focused on meeting the near term requirements of early LMFBRs such as the Fast Flux Test Facility and the Clinch River Breeder Reactor as well as the longer term requirements of larger near-commercial and fully-commercial reactors

  12. A reactor/receiver-concept for liquid-phase high-temperature processes

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Traub, H.; Hahm, T. [Dortmund Univ. (Germany). Dept. of Chemical Engineering

    1997-12-31

    Besides the conversion of solar light to electricity solar energy can be used directly in photo- and thermochemistry. In the temperature range from 1000 to 2000 K there is a high demand for industrial process heat offering a variety of possibilities for solar thermal applications. Especially in the field of liquid-phase high-temperature processes there are hardly no solar thermal applications which exceed the stage of laboratory experiments. It was therefore the aim of two projects financed by the AG Solar of North Rhine-Westphalia, Germany, to develop concepts for commercial scale solar thermal plants and to judge them economically and ecologically. Some general problems have to be overcome to realize a commercial scale solar thermal plant for liquid-phase processes. The concept developed consists of a heliostat field, a tower reflector and an open receiver with a closed reaction chamber. The feasibility of a solar thermal plant for high-temperature liquid-phase processes has been shown in principle. The projected plant consists of a 4400 m{sup 2} heliostat field, a tower plus reflecting mirrors with a total area of 220 m{sup 2} and an open receiver with a closed annular reaction zone. For temperatures below 1700 K the overall efficiency is high enough to yield energetic amortization times of less than 1 year. For a further improvement and a verification of the calculation a closer look at the reactor/receiver and its heat transfer processes is necessary. This is done by using a mixed strategy of experiments and simulation. First experiments were carried out with a semitransparent salt and an opaque metal. The first stage of the experiments will end during the next weeks and their results have to be compared with the simulation. The simulation will then be extended to transparent melts. The second stage of the experiments which include the reaction chamber will start in 1997. An improvement of the reactor might be achieved using nonimaging concentrators to further

  13. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    Science.gov (United States)

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  14. Heavy metals in our foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The special group ''chemistry of food and forensic chemistry'' of the Association of German Analytical Chemists in Munich in 1983 issued a statement on that subject. The publication points out how heavy metals (examples: lead, cadmium and mercury) make their way into the foodstuffs, how many heavy metals are contained in our foodstuffs, which heavy metals are indispensable minerals and which aren't, and which heavy metals are ingested with food. It concludes by discussing how heavy metal contamination of our food can be prevented.

  15. Atmospheric heavy metal deposition in the Copenhagen area

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Hovmand, M F; Johnsen, I

    1978-10-01

    Transport of heavy metals from the atmosphere to the soil and vegetation takes place by dust fall, bulk precipitation, and gas/aerosol adsorption processes. Atmospheric dry and wet deposition of the heavy metals lead, zinc, nickel, vanadium, iron, and copper over the Copenhagen area was measured by sampling in plastic funnels from 17 stations throughout the area for 12 months. Epigeic bryophytes, epiphytic lichen, and topsoil samples were analyzed. A linear correlation between bulk precipitation and heavy metal concentration in lichens and bryophytes was found. An exponential correlation between bulk precipitation and heavy metal concentration in soil was noted. Regional variation of the heavy metal levels in the Copenhagen area was described, and three sub-areas with high metal burdens were distinguished. (10 diagrams, 8 graphs, 13 references, 2 tables)

  16. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    Science.gov (United States)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    Science.gov (United States)

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  18. Thermal expansion of metals over the entire liquid range

    International Nuclear Information System (INIS)

    Shaner, J.W.

    1977-01-01

    This paper reviews the current state of the art for measuring liquid metal densities. Conventional high precision techniques for use below 2000K as well as new techniques for more extreme temperatures are addressed. Pertinent data, which have appeared since the last critical reviews, for elemental metals are discussed

  19. Concept of the new generation high safety liquid metal reactor (LMFR)

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Zverkov, Y.A.; Morozov, A.G.; Orlov, V.V.; Ponomarev-Stepnoi, N.N.; Proshkin, A.A.; Slesarev, I.S.; Subbotin, S.A.

    1988-01-01

    The comparative analysis of the inner stability of the liquid metal reactors to severe accidents was made using the asymptotic reactivity balance. The group of the BN-reactors, Superphenix, IFR, LMFR were considered. This paper lists the characteristics of the reactors, used in the self-protectiveness analysis. The authors present the maximum coolant temperatures in post-accident asymptotic state for IFRs as on of the possible designs of a high safety fast reactor with metal fuel, U-Pu-Zr and LMFR. As is known, these values are very important for assessment of the ATWS accidence consequences. The authors consider the following situations and their combinations: loss of reactor coolant flow-LOFWS, loss of heat sink-LOHSWS, uncontrolled reactor sodium overcooling (down to the freezing point)-OVCWS, uncontrolled excess reactivity insertion-TOPWS. The calculation results demonstrate a high stability of the IFR and LMFR reactors to the most severe accidence sequences

  20. Turbulent temperature fluctuations in liquid metals

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1977-01-01

    Examination of experimental data for the spectral distribution of velocity (u and v) and temperature (theta) fluctuations in the fully turbulent region of heated pipe-flow has suggested a schematic representation which incorporates the essential features. Evidence is cited to suggest that the -vtheta correlation coefficient maintains higher values that the uv coefficient at wave-numbers in the inertial subrange. The theory of Batchelor, Howells and Townsend, and limited evidence from experiments in mercury, then suggests the form of the theta 2 spectra and -vtheta cross-spectra in liquid metals. From this information, a limiting Peclet number is deduced, above which the correlation coefficient of v and theta should be a fairly weak function of Pe alone. An attempt to check this inference from published data for the RMS level of temperature fluctuations, and for the turbulent Prandtl number, proves inconclusive, because many of the correlation coefficients so estimated have values greater than unity. It is concluded that all these results for theta tilde must therefore be in error. However, since there is no evidence of very low correlation coefficients, they almost certainly lie in the range 0.5 multiply/divide 2 over a large proportion of the radius. Thus theta tilde can be estimated for any fluid in which the fluctuations are induced by uniform heating, at least to within a factor of 2, using the analysis presented. (author)

  1. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.

    Science.gov (United States)

    Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko

    2007-11-01

    This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line

  3. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  4. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Wilde, E.W.; Benemann, J.R.

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  5. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Application of SEM/EDS to environmental geochemistry of heavy metals

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2009-06-01

    originate from combustion of solid and liquid fuels, iron and steel melting processes and road traffic emissions.SEM/EDS proved to be a very useful analytical method for the study of heavy metal-bearing phases and characterisation according to their sources and genesis.

  7. Actively convected liquid metal divertor

    International Nuclear Information System (INIS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-01-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem. (letter)

  8. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Supitcha Rungrodnimitchai

    2014-01-01

    Full Text Available This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g and shorter reaction time (1.5–5.0 min than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L. The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax. As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin took 90 min for the same removal efficiency.

  9. Removal of heavy metals and radionuclides by seeded magnetic filtration

    International Nuclear Information System (INIS)

    Bibler, J.P.; Norrell, G.; Hemmings, R.L.; Bradbury, D.; Dunn, M.J.; Kalinauskas, G.L.

    1991-01-01

    Removal of traces of heavy metal or radionuclide contamination from solution at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration can cause significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes the use of such selective magnetic particles made up of inorganic particles coupled with organic polymers

  10. Investigation of heavy metal pollutants at various depths in the Gulf of Izmit

    International Nuclear Information System (INIS)

    Ergül, Halim Aytekin; Varol, Tolga; Ay, Ümit

    2013-01-01

    Highlights: • Monitoring seasonal variations in heavy metal pollution. • Heavy metal levels according to depth in seawater from the Gulf of Izmit. • Industrial activity and biological life co-exist in Izmit Bay. -- Abstract: In this study, we report results concerning the accumulation of heavy metals in seawater from Izmit Bay. The bay was divided into the three parts: the eastern, the central and the western basins. The goal of this study was to determine levels of heavy metals at various depths in the bay between April 2008 and May 2010. Liquid–liquid extractions were performed on seawater samples. An atomic absorption spectrophotometer was used to measure levels of six metals: lead, cadmium, chromium, iron, manganese and zinc. We applied our results to evaluate the status of pollution in the Gulf of Izmit. Significant seasonal differences in metal concentrations and higher concentrations of many metals in water near the shore are evidence for uncontrolled release of pollutants in the water

  11. Liquid metal targets for high-power applications : pulsed heating and shock hydrodynamics

    International Nuclear Information System (INIS)

    Hassanein, A.

    2000-01-01

    Significant interest has recently focused on the use of liquid-metal targets flowing with high velocities for various high-power nuclear and high-energy physics applications such as fusion reactor first-walls, the Spallation Neutron Source, Isotope Separation On Line, and Muon Collider projects. This is because the heat generated in solid targets due to beam or plasma bombardment cannot be removed easily and the resulting thermal shock damage could be a serious lifetime problem for long-term operation. More recently, the use of free or open flying-liquid jets has been proposed for higher-power-density applications. The behavior of a free-moving liquid mercury or gallium jet subjected to proton beam deposition in a strong magnetic field has been modeled and analyzed for the Muon Collider project. Free-liquid-metal jets can offer significant advantages over conventional solid targets, particularly for the more demanding and challenging high-power applications. However, the use of free-moving liquid-metal targets raises a number of new and challenging problems such as instabilities of the jet in a strong magnetic field, induced eddy-current effects on jet shape, thermal-shock formation, and possible jet fragmentation. Problems associated with shock heating of liquid jets in a strong magnetic field are analyzed in this study

  12. Kinetic properties of solid yttrium at high temperatures

    International Nuclear Information System (INIS)

    Ivliev, A.D.

    1993-01-01

    Analysis of results of experimental investigation into temperature-diffusivity, specific electroresistance and heat conductivity of yttrium is carried out. Peculiarities of variation of its kinetic characteristics under high temperatures are shown to result from two-band character of energy spectrum of collectivized electrons. In particular, growth of heat conductivity results from reduction of density of heavy electron states under heating. The suggested model describes kinetic characteristics of lutetium, as well. Usage of this model for the rest heavy rare-earth metals enables to make conclusion about reduction of magnetic scattering effcieincy in the rare-earth metals in proportion to approximation to melting temperature

  13. High pressure gas driven liquid metal MHD homopolar generator

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1988-01-01

    A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)

  14. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  15. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  16. Liquid metal pump for nuclear reactors

    International Nuclear Information System (INIS)

    Allen, H.G.; Maloney, J.R.

    1975-01-01

    A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank

  17. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Xiaomin [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Hu, Yuyan; Feng, Yuheng [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Dai, Xiaohu [National Engineering Research Centre for Urban Pollution Control, Tongji University, Shanghai 200092 (China); College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-01-05

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  18. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    International Nuclear Information System (INIS)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-01

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  19. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  20. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  1. Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Accumulation of heavy metals (Cd, Pb, Hg, Cr) in water and plankton of Sarıyar Dam Lake (SDR) was seasonally ... human impacts in protected areas with the aim of .... (1999), heavy metals toxicity is affected by temperature,.

  2. Experimental study of liquid-metal target designs of accelerating-controlled systems

    International Nuclear Information System (INIS)

    Iarmonov, Mikhail; Makhov, Kirill; Novozhilova, Olga; Meluzov, A.G.; Beznosov, A.V.

    2011-01-01

    Models of a liquid-metal target of an accelerator-controlled system have been experimentally studied at the Nizhny Novgorod State Technical University to develop an optimal design of the flow part of the target. The main explored variants of liquid-metal targets are: Design with a diaphragm (firm-and-impervious plug) mounted on the pipe tap of particle transport from the accelerator cavity to the working cavity of the liquid-metal target. Design without a diaphragm on the pipe tab of particle transport from the accelerator. The study was carried out in a high-temperature liquid-metal test bench under the conditions close to full-scale ones: the temperature of the eutectic lead-bismuth alloy was 260degC - 400degC, the coolant mass flow was 5-80 t/h, and the rarefaction in the gas cavity was 10 5 Pa, the coefficient of geometric similarity equal to 1. The experimental studies of hydrodynamic characteristics of flow parts in the designs of targets under full-scale conditions indicated high efficiency of a target in triggering, operating, and deactivating modes. Research and technology instructions for designs of the flow part of the liquid-metal target, the target design as a whole, and the target circuit of accelerator-controlled systems were formulated as a result of the studies. (author)

  3. Eutectic Gallium-Indium (EGaIn) : A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature

    NARCIS (Netherlands)

    Dickey, Michael D.; Chiechi, Ryan C.; Larsen, Ryan J.; Weiss, Emily A.; Weitz, David A.; Whitesides, George M.

    2008-01-01

    This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGaIn) as it is injected into microfluidic channels to form stable microstructures of liquid metal. EGaIn is well-suited for this application because of its rheological properties at room temperature: it

  4. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  5. Effect of heavy metals on nitrification performance in different activated sludge processes

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Tsai, Yung-Pin; Huang, Ru-Yi

    2009-01-01

    To understand the toxic effect of heavy metals on the nitrification mechanisms of activated sludge, this study identified the specific ammonia utilization rate (SAUR) inhibited by Pb, Ni and/or Cd shock loadings. Seven different heavy metal combinations (Pb, Ni, Cd, Pb + Ni, Ni + Cd, Pb + Cd, and Pb + Ni + Cd) with seven different heavy metal concentrations (0, 2, 5, 10, 15, 25, and 40 ppm, respectively) were examined by batch experiments, where the activated sludge was taken from either sequencing batch reactor (SBR) or anaerobic-anoxic-oxic (A 2 O) processes. The experimental results showed the SAUR inhibition rate was Ni > Cd > Pb. No significant inhibition in the nitrification reaction of the activated sludge was observed even when as much as 40 ppm Pb was added. In addition, no synergistic effect was found when different heavy metals were simultaneously added in different concentrations, and the overall inhibition effect depended on the heavy metal with the highest toxicity. Further, first order kinetic reaction could model the behavior of SAUR inhibition on activated sludge when adding heavy metals, and the SAUR inhibition formula was derived as SAUR=(SAUR max -SAUR min )xe -r i c +SAUR min . On the other hand, the heavy metal adsorption ability in both the activated sludge system was Pb = Cd > Ni. The specific adsorption capacity of activated sludge on heavy metal increased as the heavy metal concentration increased or the mixed liquid volatile suspended solid (MLVSS) decreased. The batch experiments also showed the heavy metal adsorption capacity of the SBR sludge was larger than the A 2 O sludge. Finally, the most predominant bacteria in the phylogenetic trees of SBR and A 2 O activated sludges were proteobacteria, which contributed to 42.1% and 42.8% of the total clones.

  6. High-temperature superconductors learn from heavy fermions

    International Nuclear Information System (INIS)

    Varma, C.

    1998-01-01

    Physicists have been intrigued by the nature of high-temperature superconductors since they were discovered 12 years ago. Superconducting materials lose their electrical resistance below a transition temperature, T c , and certain copper-oxide compounds remain superconducting at temperatures up to 160 K. Research into these materials has been driven by fundamental, yet intractable, questions about the basic concepts of condensed-matter physics and the mechanisms of superconductivity. A key question is how the electrons come together to form the Cooper pairs responsible for superconductivity. Physicists at Cambridge University have now studied two heavy-fermion compounds experimentally, and have found that the electron pairing is caused by magnetic effects (N Mathur et al. 1998 Nature 394 39). In this article the author describes their research. (UK)

  7. Leaching of heavy metals from timah langat amang

    International Nuclear Information System (INIS)

    Shukri bin Othman

    1990-01-01

    Accelerated leaching studies of amang from Timah Langat for heavy metals showed that the material was rather stable. From almost 24 types of heavy metals contained in the material, the metal that leached out most was Al, followed by Pb, U, Cu, Mn, Fe, Mg, Y and La but at smaller quantities. The studies also showed that amang was very porous. The high seepage rate resulted in the solubilities of the metals not reaching equilibrium. In that situation, the leaching of heavy metals from amang was dependent on the seepage rate of water, the height of the material, the volume of water that seeped through and the solubility of the metals

  8. Consequences of metallic fuel-cladding liquid phase attack during over-temperature transient on fuel element lifetime

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Seidel, B.R.

    1990-01-01

    Metallic fuel elements irradiated in EBR-II at temperatures significantly higher than design, causing liquid phase attack of the cladding, were subsequently irradiated at normal operating temperatures to first breach. The fuel element lifetime was compared to that for elements not subjected to the over-temperature transient and found to be equivalent. 1 ref., 3 figs

  9. Thermodynamic properties of heavy ion heated refractory metals; Thermodynamische Eigenschaften von schwerionengeheizten hochschmelzenden Metallen

    Energy Technology Data Exchange (ETDEWEB)

    Hug, Alexander

    2011-05-04

    Knowledge of basic physical properties of matter in high-energy-density (HED) states such as the equation-of-state (EOS) is of fundamental importance for various branches of basic and applied physics. However, such matter under extreme conditions of temperature and pressure - also called ''warm dense matter'' (WDM) - can only be generated in dynamic experiments employing the most powerful drivers. At the high temperature experimental area HHT of the GSI Helmholtzzentrum fuer Schwerionenforschung (Darmstadt, Germany), intense beams of energetic heavy ions are used for this purpose. The aim of this work is to study thermophysical properties of refractory metals in hot solid and liquid states by precise temperature measurements. In order to identify the melting plateau and to limit the maximum target temperature to the region of interest, relatively long (one microsecond) bunches of uranium and xenon ions have been used to heat initially solid samples. The intense ion beams were focused on a millimetre spot at the target in order to achieve uniform conditions. The temperature on the target surface was determined by analysing thermal radiation emitted from a 0.03 mm{sup 2} area at five different wavelengths. In order to obtain the physical temperature, one has to measure not only the thermal radiation but also the emissivity, ε(T,λ) of the target surface which is not known ab initio. For this purpose, a set-up for direct target reflection measurement was designed and embedded into the fast multichannel pyrometer system. The reflection signal provides the necessary information about modifications of the target surface properties during the interaction with the ion beam. Beside the pyrometric and reflection measurement set-ups, various hardware and software components of the data acquisition system for the heavy-ion beam driven experiments were substantially enhanced. The emissivity was also obtained by identifying the melting plateau and using the

  10. 620 ASSESSMENT OF HEAVY METALS, pH AND EC IN EFFLUENT ...

    African Journals Online (AJOL)

    Osondu

    evaluated metals were Cu, Fe, Ni, Mn, Cr, Zn, Cd, Co, and Ag. The pH, EC, TDS, DO ... heavy metals, but the high heavy metal concentrations in the soil could seriously ... Key words: Heavy metals, AAS, contamination, floriculture and effluents.

  11. Heavy metal decontamination of sludges and soils. Pt. 2

    International Nuclear Information System (INIS)

    Niemann, J.

    1993-06-01

    This research project deals with decontamination technology for contaminated soil and sediments. A pilot plant for the decontamination of soil contaminated with heavy metals has been erected and is operated. The process is arranged in two steps: - heavy metal contaminated solid is decontaminted with acidic extraction. - the heavy metals are separated in a recyclable formation from the process solution you gain in the first process step. Heavy metal contaminated soil, heavy metal contaminated sediments (habour sediments) as well as residue from a soil regeneration plant have been successfully decontaminated in the pilot plan. An adaption of the process is necessary for various materials. High rates of mobilisation of heavy metals (e.g. lead, cadmium, chromium, copper, nickel, zinc) were obtained, especially with soil which contains less organic matter. (orig.). 54 figs., 30 tabs., 45 refs [de

  12. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts

    Science.gov (United States)

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J.

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg-1 ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a ΔHf˜75 kJ mol-1), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.

  13. ASSESSMENT OF HEAVY METALS AND CRUDE PROTEIN ...

    African Journals Online (AJOL)

    UNICORN

    to quantify heavy metals (Cu, Zn, Pb and Cd) and crude protein content of these species that are sold in ... in protein, omega 3 and low fat content. Furthermore ... high levels of cadmium can cause kidney and liver damage in man [6]. Motivation .... analysis. Determination of heavy metals in the edible tissues of the organisms.

  14. Heavy metal pollution in coastal areas of South China: A review

    International Nuclear Information System (INIS)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-01-01

    Highlights: • Heavy metal contamination in coastal areas of South China has been reviewed. • Heavy metal levels were closely related to economic development in past decades. • Heavy metal levels from Hong Kong continually decreased from the early 1990s. • Higher concentrations of heavy metals were found in mollusk. • Levels of heavy metals in part of seafood exceeded the safety limit. -- Abstract: Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit

  15. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  16. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  17. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Evans, P J; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1997-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  18. Sediment, water pollution indicators for heavy metals

    International Nuclear Information System (INIS)

    Cabaleiro, S.; Horn, A.

    2010-01-01

    The complexity of an aquatic system requires consideration of its dynamics: spatial and temporal variations of physical, chemical and biological. Heavy metals have peculiar behavior in the aquatic system and may not be available in the waters, but on sediments.The sub-basin of the Sarandi stream is responsible for the contamination of Pampulha Lake. The Instituto Mineiro das Águas – IGAM - uses tool for monitoring the quality of surface water for developing strategies for conservation, restoration and rational use of water resources. So through the indices: IQA ( Indice de qualidade de águas) Index of water quality, and TC- toxic contamination, reduces conflicts, implements the disciplining of the environmental economy.This study determined the monitoring of sediment and water of Sarandi Stream, so in the samples collected during dry and rainy seasons (2007- 2008) were analyzed heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb) and physical-chemical factors (conductivity, solids dissolved, temperature, turbidity). This allowed the determination of Hackanson factors of contamination and Muller Index geoaccumulation, indicating very high contamination in sediments regarding the elements Cr, Cu, and Cd, and high contamination for Pb, Zn, and Mn. The comparison with the indices of water quality- IQA (IGAM - 2006, 2007 and 2008), combined with exploratory data analysis and graphs of correlation between the variables indicated favorable conditions for metals contamination on water and sediment for these metals, besides allowing the identification of its source

  19. Heavy metals and related trace elements

    International Nuclear Information System (INIS)

    Leland, H.V.; Luoma, S.N.; Wilkes, D.J.

    1977-01-01

    A review is given of heavy metals and related trace elements in the aquatic environment. Other reviews and bibliographies are cited, dealing with the metabolism and transport of metal ions and with the toxic effects of stable and radioactive trace metals on aquatic organisms. The sources of trace elements in natural waters are discussed. It is suggested that atmospheric inputs of several trace metals comprise sizable fractions of total inputs to the Great Lakes and continental shelf waters. Information on stack emissions of trace elements from a coal-fired steam plant was used to estimate the likely range of air concentrations and inputs to a forested watershed in Tennessee. Some basic concepts of cycling of elements through aquatic communities were examined, such as the Pb, Mn and Zn concentrations in sediment and estuarine plants and animals colonizing dredge-spoil disposal areas. The use of plants as biological indicators of trace element contamination was outlined, as well as bioaccumulation in aquatic fauna. The effects of environmental factors on the kinetics of element exchange were noted, for example the influx rates of Cs 137 in tubificid worms, and Co 60 and Zn 65 in shrimp were shown to be temperature dependent. The toxicity of heavy metals on aquatic fauna was discussed, such as the histopathological lesions in the kidney and liver of fishes caused by heavy metals, and the effects of Hg and Cu on the olfactory response of rainbow trout

  20. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  1. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests

    Energy Technology Data Exchange (ETDEWEB)

    Ersoy, Feyzan, E-mail: fersoy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium); Gavrilov, Serguei [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Verbeken, Kim [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium)

    2016-04-15

    Heavy liquid metals such as lead bismuth eutectic (LBE) are chosen as the coolant to innovative Generation IV (Gen IV) reactors where ferritic/martensitic T91 steel is a candidate material for high temperature applications. It is known that LBE has a degrading effect on the mechanical properties of this steel. This degrading effect, which is known as liquid metal embrittlement (LME), has been screened by several tests such as tensile and small punch tests, and was most severe in the temperature range from 300 °C to 425 °C. To meet the design needs, mechanical properties such as fracture toughness should be addressed by corresponding tests. For this reason liquid-metal embrittlement of T91 steel was investigated by fracture toughness tests at 350 °C. Tests were conducted in Ar-5%H{sub 2} and LBE under the same experimental conditions Tests in Ar-5%H{sub 2} were used as reference. The basic procedure in the ASTM E 1820 standard was followed to perform tests and the normalization data reduction (NDR) method was used for the analysis. Comparison of the tests demonstrated that the elastic–plastic fracture toughness (J{sub 1C}) of the material was reduced by a factor in LBE and the fracture mode changed from ductile to quasi-cleavage. It was also shown that the pre-cracking environment played an important role in observing LME of the material since it impacts the contact conditions between LBE and steel at the crack tip. It was demonstrated that when specimens were pre-cracked in air and tested in LBE, wetting of the crack surface by LBE could not be achieved. When specimens were pre-cracked in LBE though, they showed a significant reduction in fracture toughness.

  2. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  3. Geochemical cartography as a tool for assessing the degree of soil contamination with heavy metals in Poland

    Science.gov (United States)

    Szymon Borkowski, Andrzej; Kwiatkowska-Malina, Jolanta

    2016-04-01

    Spatial disposition of chemical elements including heavy metals in the soil environment is a very important information during preparation of the thematic maps for the environmental protection and/or spatial planning. This knowledge is also essential for the earth's surface and soil's monitoring, designation of areas requiring improvement including remediation. The main source of anthropogenic pollution of soil with heavy metals are industry related to the mining coal and liquid fuels, mining and metallurgy, chemical industry, energy production, waste management, agriculture and transport. The geochemical maps as a kind of specific thematic maps made on the basis of datasets obtained from the Polish Geological Institute's resources allow to get to know the spatial distribution of different chemical elements including heavy metals in soil. The results of the research carried out by the Polish Geological Institute showed strong contamination in some regions in Poland mainly with arsenic, cadmium, lead and nickel. For this reason it was the point to prepare geochemical maps showing contamination of soil with heavy metals, and determine main sources of contamination and zones where heavy metals concentration was higher than acceptable contents. It was also presented a summary map of soil contamination with heavy metals. Additionally, location of highly contaminated zones was compiled with predominant in those areas types of arable soils and then results were thoroughly analyzed. This information can provide a base for further detailed studies on the soil contamination with heavy metals.

  4. Energy dispersive X-ray fluorescence detection of heavy metals in Bangladesh cows’ milk

    Directory of Open Access Journals (Sweden)

    Y.N. Jolly

    2017-09-01

    Full Text Available It is considered that cow's milk is almost complete food for human as it provides most of the micronutrients and macronutrients. The cow's milks are essential for the growth and development especially for children. The main compositions of cow's milk are protein, fat, carbohydrates, vitamins and minerals which are well defined. Presently, the study of micronutrients and toxic elements in cow's milk has been widely carried out particularly in the industrialized and polluted regions because of its possibility of contamination, and thereby health risk of the consumers. The elemental composition in local cow's milk samples in Bangladesh is not well studied yet. The present study was therefore aimed to determine the level of heavy metals (Cr, Ni, As, Cd, Hg, Pb, Mn, Cu, Zn and Fe in cow's milk using EDXRF technique. Subsequently, the experimental data was used to calculate the human health risk through the intake of both powder and liquid cows’ milk available in Bangladesh. The results showed that powder milk contains significantly higher concentration of heavy metals than liquid milk samples. The HRI (health risk index and HI (hazard index values for most of the elements in all milk samples were within the safe limit (1. MPI (metal pollution index value for powder milk samples are very high compared to other type of milk samples analyzed in this study. Therefore, it has been suggested that heavy metal contamination through local powder milk samples might have significant negative impact (threat on human health.

  5. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment

    International Nuclear Information System (INIS)

    Nowak, B.; Pessl, A.; Aschenbrenner, P.; Szentannai, P.; Mattenberger, H.; Rechberger, H.; Hermann, L.; Winter, F.

    2010-01-01

    Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000deg. C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwaerme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments.

  6. Soil quality changes in response to their pollution by heavy metals, Georgia.

    Science.gov (United States)

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  7. THE INFLUENCE OF SELECTED FACTORS ON THE LEACHING OF HEAVY METALS FROM SMELTER WASTE

    OpenAIRE

    Kamila Mizerna; Anna Król

    2015-01-01

    The paper presents the results of leaching research of selected heavy metals (Pb, Cu, Zn, Ni, Cd, Cr) from industrial waste. The impact of waste fragmentation on the level of heavy metals leaching was analyzed. The decrease of copper and zinc release and the increase of nickel leaching were observed with increasing grain size fraction of waste. Furthermore, release of contaminants in different ratio of liquid to solid (L/S = 10 dm3/kg and 2 dm3/kg) was studied. Higher concentrations of heavy ...

  8. Heavy metal pollution in coastal areas of South China: a review.

    Science.gov (United States)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  10. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  11. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  12. A volatile fluid assisted thermo-pneumatic liquid metal energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jianbo, E-mail: zhouyuan@mail.ipc.ac.cn, E-mail: jianbotang@mail.ipc.ac.cn [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Junjie; Liu, Jing; Zhou, Yuan, E-mail: zhouyuan@mail.ipc.ac.cn, E-mail: jianbotang@mail.ipc.ac.cn [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-01-11

    A close-cycle self-driving thermal energy harvester using liquid metal as energy carrier fluid has been proposed. The driving force that pushes the liquid metal against flow resistance and gravity is provided by a resistively heated volatile fluid based on thermo-pneumatic principle. The tested harvester prototype demonstrated its capability to extract thermal energy between small temperature gradient, at a scale of 10 °C. During a 5-h operation, it further demonstrated robust liquid metal recirculating performance at a time-average volume flow rate of 14 ml/min with a 12.25 W heating load. The prototype also managed to self-adjust to variable working conditions which indicated the reliability of this method. Advantages of this method include simple-structural design, rigid-motion free operation, and low-temperature actuation. These advantages make it uniquely suited for solar energy and low-grade heat harvesting, high heat flux electronics cooling, as well as autonomous machines actuating.

  13. Highly sensitive heavy metal ion detection using AlQ3 microwire functionalized QCM

    Science.gov (United States)

    Can, Nursel; Aǧar, Meltem; Altındal, Ahmet

    2016-03-01

    Tris(8-hydroxyquinoline) aluminum (Alq3) microwires was successfully synthesized for the fabrication of Alq3 microwires-coated QCM sensors to detect the heavy metal ions in aqueous solution. AT-cut quartz crystal microbalance (QCM) of 10 MHz fundamental resonance frequency having gold electrodes were used as transducers. Typical measuring cycle consisted of repeated flow of target measurands through the flow cell and subsequent washing to return the baseline. The QCM results indicated that the Alq3 microwires exhibit excellent sensitivity, stability and short response-recovery time, which are much attractive for the development of portable and highly sensitive heavy metal ion sensors in water samples.

  14. An overview of IPPE research on liquid metal fast reactor thermohydraulics

    International Nuclear Information System (INIS)

    Sorokin, A. P.; Efanov, A. D.; Zhukov, A. V.; Bogoslovskaia, G. P.

    2003-01-01

    The paper presents brief information on the most significant researches in the fields of liquid metal hydrodynamics and heat transfer performed in the State Scientific Center of Russian Federation 'Institute for Physics and Power Engineering' named after A.I.Leypunski applied to sodium-cooled fast reactors. Experimental methods for studying liquid metal thermohydraulics and applied measurement techniques are overviewed briefly in the paper. Some results of fundamental thermohydraulic investigations, such as quasi-universal character of velocity and temperature profile in liquid metals, if considered normally to the channel wall etc. are presented. Specific features of heat transfer in liquid metal cooled fuel subassembly are mentioned, among them there are: high level of coolant temperature; significant influence of an interchannel exchange on velocity and temperature distribution; an availability of contact thermal resistance; large azimuthal non-uniformity of velocity and temperature; 'conjugate' problem of heat transfer in combined geometry of fuel pin; an absence of stabilization of heat transfer in non-standard channels; an influence of non-uniform heat generation. Special attention is given to the temperature fields in fuel subassembly subjected to deformation because of radioactive swelling and creeping, as well as in case of blockage of a part of subassembly cross section. Some results of thermohydraulic investigation are demonstrated for intermediate heat exchangers, pressurized head collectors. Also the developed methods and codes of thermohydraulic calculations applied to fast reactor core are considered: subchannel approach, porous body model

  15. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    Science.gov (United States)

    Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  16. Adsorption of heavy metals by road deposited solids.

    Science.gov (United States)

    Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna

    2013-01-01

    The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

  17. Liquid metal current collector applications and material compatibility

    International Nuclear Information System (INIS)

    Carr, S.L.; Stevens, H.O.

    1978-01-01

    The objective of this paper has been to summarize briefly the material considerations involved in the development of liquid metal current collectors for homopolar machinery applications. A significant amount of data in this regard has been obtained over the last several years by individual researchers for NaK exposure conditions. However, NaK material compatibility data over the entire time and temperature range of interest is highly desirable. At DTNSRDC, a 300 kW superconducting homopolar motor and generator are under test, both utilizing free surface tongue-and-groove current collectors with NaK as the working fluid. In addition to demonstrating the feasibility of other aspects of machine design, the intention is to use these machines as vehicles for testing of the several liquid metal current collector concepts which are considered worthwhile candidates for incorporation in future full-scale machines. It is likely that the optimal collector approach for a large low speed motor may be quite different from that for a smaller high speed generator, possibly involving the use of different liquid metals

  18. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    Science.gov (United States)

    Jaworski, M. A.; Khodak, A.; Kaita, R.

    2013-12-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.

  19. [Leaching characteristics of heavy metals and utilization of filter media in BAF].

    Science.gov (United States)

    Zou, Jin-long; Dai, Ying

    2007-10-01

    A series of leaching tests were conducted to study the solidification of heavy metals in biological filter media made with dried sludge as an additive. The maximum leaching contents of Cd, Cr, Cu and Pb are obtained when pH is 1; leaching contents of heavy metals have an obvious decrease as pH is greater than or equal to 3; and it can be concluded from the results that pH has a significant influence on the leaching characteristic of heavy metals at leaching time of either 24 h or 30 d. X-ray diffraction analysis performed on filter media reveal the main compounds of the 4 heavy metals are Pb2O(CrO4), CdSiO3 and CuO, and the heavy metals are solidified in the mesh structure of Si--O. Heavy metals (such as Cd, Cr, Cu and Pb) can be solidified in filter media through a series of crystalline phase changes and chemical reaction after high temperature sintering. The new filter media (obtained in test) were used in biological aerated filter (BAF) to treat wastewater (C/N about 11.5 and 25.5) in a simultaneous nitrification and denitrification (SND) system. Based on the mechanism of SND, the average removal efficienciesof NH4(+)-N and TN filled with the new filter media (obtained in test) are about 85.5%, 90.3%, 46.6% and 49.6%, respectively, and it is higher than those of other 3 medias (Jiangxi ceramsite, Guangzhou ceramsite and Shanxi activated carbon). The results provide a better understanding of factors that may affect the immobilization and leaching characteristics of heavy metals in ceramsite, which promotes the extensive use of filter media in BAF.

  20. Structural disorder in metallic glass-forming liquids.

    Science.gov (United States)

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  1. Volatility of coal liquids at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G M; Johnston, R H; Hwang, S C; Tsonopoulos, C

    1981-01-01

    The volatility of coal liquids has been experimentally determined at 700-880 F and about 2000 psia. These measurements were made in a flow apparatus to minimize thermal decomposition effects at high temperatures. Three coal liquids in mixture with Hat2, methane, and Hat2S were investigated. Measurements were also made up to 900 F on the vapor pressure of pure compounds found in coal liquids and on the equilibrium pressure of narrow coal liquid cuts. These data were used to develop a new method for the prediction of the critical point and the superatmospheric vapour pressures of aromatic fractions that is superior to the Maxwell-Bonnell correlation. The VLE data on coal liquids and some recent high-temperature VLE data on binaries of aromatics with Hat2 or methane were analyzed with a modified Chao-Seader correlation and a modified Redlich-Kwong equation of state. Both VLE correlations are shown to be equivalent in the prediction of the volatility of coal liquids, when the new vapour pressure procedure is used.

  2. Interfacial transport phenomena and stability in liquid-metal/water systems: scaling considerations

    International Nuclear Information System (INIS)

    Abdulla, S.; Liu, X.; Anderson, M.; Bonazza, R.; Corradini, M.; Cho, D.

    2001-01-01

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area give rise to very high heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In this paper we describe current results from the first year of this research that studies the transport phenomena involved with the injection of water into molten metals (e.g., lead alloys). In particular, this work discusses scaling considerations related to direct contact heat exchange, our experimental plans for investigation and a test plan for the important experimental parameters; i.e., the water and liquid metal mass flow rates, the liquid metal pool temperature and the ambient pressure of the direct contact heat exchanger. Past experimental work and initial scaling results suggest that our experiments can directly represent the proper liquid metal pool temperature and the water subcooling. The experimental variation in water and liquid metal flow rates and system pressure (1-10 bar), although smaller than the current conceptual system designs, is sufficient to verify the expected scale effects to demonstrate the phenomena. (authors)

  3. Monitoring of heavy metal levels in the major rivers and in residents' blood in Zhenjiang City, China, and assessment of heavy metal elimination via urine and sweat in humans.

    Science.gov (United States)

    Sheng, Jianguo; Qiu, Wenhui; Xu, Bentuo; Xu, Hui; Tang, Chong

    2016-06-01

    The coastal areas of China face great challenges, owing to heavy metal contamination caused by rapid industrialization and urbanization. To our knowledge, this study is the first report of the levels of heavy metals in the major rivers of Zhenjiang, one of the most important cities of the Yangtze River Delta in China. In addition, we measured heavy metal levels in the blood of 76 residents of Zhenjiang. The results suggest that the presence of heavy metals in the blood may threaten human health and the distribution appeared to correspond to most highly populated areas and/or areas with high traffic. We also found that the concentration of heavy metals in human blood showed an accumulation effect with increase in age. Moreover, the levels of most heavy metals were lower in participants who regularly exercised than in those who did not. We studied heavy metal levels in the urine and sweat of another 17 volunteers to monitor the elimination of bioaccumulated heavy metal. Heavy metals were found in the urine and sweat of all the 17 participants and were more concentrated in sweat. Induced micturition and sweating appear to be potential methods for the elimination of heavy metals from the human body.

  4. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Full Text Available Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female reproductive system and description of the possible associations with emission and exposure of heavy metals and impairments of female reproductive system according to current knowledge. Results. The potential health disorders caused by chronic or acute heavy metals toxicity include immunodeficiency, osteoporosis, neurodegeneration and organ failures. Potential linkages of heavy metals concentration found in different human organs and blood with oestrogen-dependent diseases such as breast cancer, endometrial cancer, endometriosis and spontaneous abortions, as well as pre-term deliveries, stillbirths and hypotrophy, have also been reported. Conclusions. Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  5. Sodium immersible high temperature microphone design description

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  6. Electronic and structural ground state of heavy alkali metals at high pressure

    Science.gov (United States)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  7. Comparison of heavy metals and uranium removal using adsorbent in soil

    Science.gov (United States)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  8. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis

    International Nuclear Information System (INIS)

    Tao, Hu-Chun; Lei, Tao; Shi, Gang; Sun, Xiao-Nan; Wei, Xue-Yan; Zhang, Li-Juan; Wu, Wei-Min

    2014-01-01

    Highlights: • Heavy metals removal from MSWI fly ash with BES and electrolysis was confirmed. • 98.5% of Cu(II), 95.4% of Zn(II) and 98.1% of Pb(II) removal were achieved in reactors. • BESs can remove some heavy metals in fly ash with energy saving. -- Abstract: Based on environmental and energetic analysis, a novel combined approach using bioelectrochemical systems (BES) followed by electrolysis reactors (ER) was tested for heavy metals removal from fly ash leachate, which contained high detectable levels of Zn, Pb and Cu according to X-ray diffraction analysis. Acetic acid was used as the fly ash leaching agent and tested under various leaching conditions. A favorable condition for the leaching process was identified to be liquid/solid ratio of 14:1 (w/w) and leaching duration 10 h at initial pH 1.0. It was confirmed that the removal of heavy metals from fly ash leachate with the combination of BESs and ER is feasible. The metal removal efficiency was achieved at 98.5%, 95.4% and 98.1% for Cu(II), Zn(II), and Pb(II), respectively. Results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) indicated that Cu(II) was reduced and recovered mainly as metal Cu on cathodes related to power production, while Zn(II) and Pb(II) were not spontaneously reduced in BESs without applied voltage and basically electrolyzed in the electrolysis reactors

  9. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan

    Science.gov (United States)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Garbe-Schönberg, Dieter; Lebrato, Mario; Li, Xiaohu; Zhang, Hai-Yan; Zhang, Ping-Ping; Chen, Chen-Tung Arthur; Ye, Ying

    2018-04-01

    Shallow water hydrothermal vents are a source of heavy metals leading to their accumulation in marine organisms that manage to live under extreme environmental conditions. This is the case at Kueishantao (KST) shallow-sea vents system offshore northeast Taiwan, where the heavy metal distribution in vent fluids and ambient seawater is poorly understood. This shallow vent is an excellent natural laboratory to understand how heavy and volatile metals behave in the nearby water column and ecosystem. Here, we investigated the submarine venting of heavy metals from KST field and its impact on ambient surface seawater. The total heavy metal concentrations in the vent fluids and vertical plumes were 1-3 orders of magnitude higher than the overlying seawater values. When compared with deep-sea hydrothermal systems, the estimated KST end-member fluids exhibited much lower concentrations of transition metals (e.g., Fe and Mn) but comparable concentrations of toxic metals such as Pb and As. This may be attributed to the lower temperature of the KST reaction zone and transporting fluids. Most of the heavy metals (Fe, Mn, As, Y, and Ba) in the plumes and seawater mainly originated from hydrothermal venting, while Cd and Pb were largely contributed by external sources such as contaminated waters (anthropogenic origin). The spatial distribution of heavy metals in the surface seawater indicated that seafloor venting impacts ambient seawater. The measurable influence of KST hydrothermal activity, however, was quite localized and limited to an area of heavy metals emanating from the yellow KST hydrothermal vent were: 430-2600 kg Fe, 24-145 kg Mn, 5-32 kg Ba, 10-60 kg As, 0.3-1.9 kg Cd, and 2-10 kg Pb. This study provides important data on heavy metals from a shallow-sea hydrothermal field, and it helps to better understand the environmental impact of submarine shallow hydrothermal venting.

  10. Potential use of algae for heavy metal bioremediation, a critical review.

    Science.gov (United States)

    Zeraatkar, Amin Keyvan; Ahmadzadeh, Hossein; Talebi, Ahmad Farhad; Moheimani, Navid R; McHenry, Mark P

    2016-10-01

    Algae have several industrial applications that can lower the cost of biofuel co-production. Among these co-production applications, environmental and wastewater bioremediation are increasingly important. Heavy metal pollution and its implications for public health and the environment have led to increased interest in developing environmental biotechnology approaches. We review the potential for algal biosorption and/or neutralization of the toxic effects of heavy metal ions, primarily focusing on their cellular structure, pretreatment, modification, as well as potential application of genetic engineering in biosorption performance. We evaluate pretreatment, immobilization, and factors affecting biosorption capacity, such as initial metal ion concentration, biomass concentration, initial pH, time, temperature, and interference of multi metal ions and introduce molecular tools to develop engineered algal strains with higher biosorption capacity and selectivity. We conclude that consideration of these parameters can lead to the development of low-cost micro and macroalgae cultivation with high bioremediation potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    Science.gov (United States)

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  13. Characterization of landfill leachates and studies on heavy metal removal.

    Science.gov (United States)

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  14. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  15. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-04-01

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Research on heavy metal pollution of river Ganga: A review

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2017-06-01

    Full Text Available River Ganga is considered sacred by people of India for providing life sustenance to environment and ecology. Anthropogenic activities have generated important transformations in aquatic environments during the last few decades. Advancement of human civilization has put serious questions to the safe use of river water for drinking and other purposes. The river water pollution due to heavy metals is one of the major concerns in most of the metropolitan cities of developing countries. These toxic heavy metals entering the environment may lead to bioaccumulation and biomagnifications. These heavy metals are not readily degradable in nature and accumulate in the animal as well as human bodies to a very high toxic amount leading to undesirable effects beyond a certain limit. Heavy metals in riverine environment represent an abiding threat to human health. Exposure to heavy metals has been linked to developmental retardation, kidney damage, various cancers, and even death in instances of very high exposure. The following review article presents the findings of the work carried out by the various researchers in the past on the heavy metal pollution of river Ganga.

  17. Heavy metal uptake of Geosiphon pyriforme

    Energy Technology Data Exchange (ETDEWEB)

    Scheloske, Stefan E-mail: stefan.scheloske@mpi-hd.mpg.de; Maetz, Mischa; Schuessler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  18. Mitigation of heavy metals in different vegetables through biological washing techniques

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Sattar

    2015-12-01

    Full Text Available Availability of nutritious and healthy food is the foremost challenging issue in all over the word. Vegetables are essential part in human diet and considered as natural reserves of nutrients gifted by Almighty Allah to human beings. Heavy metals are among the most toxic food pollutants and their intake through diet leads to several disorders. The sources of heavy metal contamination include waste water irrigation, industrial emissions, transportation and application of metal-based pesticides. In Pakistan this situation is more alarming as vegetables grown in peri-urban areas have shown high incidence of heavy metals accumulation. In this study effort was made to mitigate different heavy metals (Ar, Cd, Cr and Pb in cauliflower, spinach, okra and brinjal collected from peri-urban areas through washing with different biological solutions. Heavy metals contents were determined by using Atomic Absorption Spectrophotometry (AAS. Vegetable showed high load of heavy metals in unwashed form that reduced significantly by washing with different biological solutions. Among the different biological solutions, washing of vegetables with 8% ginger solution was found to be more effective.

  19. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  1. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    Science.gov (United States)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  2. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    Science.gov (United States)

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  4. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    The most dominant A. candidus on the isolation plates exhibited the highest activity for biosorption of heavy metals. The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. Keywords: Fungi, industrial wastewater, biosorption, heavy metals. African Journal of Biotechnology Vol.

  5. Evaluation of liquid metal protection of a limiter/divertor in fusion reactors

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Smith, D.L.

    1988-01-01

    The liquid metal protection concept is proposed mainly to prolong the lifetime of a divertor or a limiter in a fusion reactor. This attractive idea for protection requires studying a wide range of problems associated with the use of liquid-metals in fusion reactors. In this work the protection by liquid-metals has concentrated on predictions of the loss rate of the film to the plasma, the operating surface temperatures required for the film, and the potential tritium inventory requirement. The effect of plasma disruptions on the liquid metal film is also evaluated. Other problems such as liquid metal compatibility with structural materials, magnetic field effects, and the effect of liquid metal contamination on plasma performance are discussed. Three candidate liquid-metals are evaluated, i.e., lithium, gallium, and tin. A wide range of reactor operating conditions valid for both near term machines (INTOR and ITER) and for the next generation commercial reactors (TPSS) are considered. This study has indicated that the evaporation rate for candidate liquid metals can be kept below the sputtering range for reasonable operating temperatures and plasma edge conditions. At higher temperatures, evaporation dominates the losses. Impurity transport calculations indicate that impurities from the plate should not reach the main plasma. One or two millimeters of liquid films can protect the structure from severe plasma disruptions. Depending on the design of the liquid metal protection system, the tritium inventory in the liquid film is predicted to be on the order of a few grams. 16 refs., 5 figs

  6. Biotechnological recovery of heavy metals from secondary sources-An overview

    International Nuclear Information System (INIS)

    Hoque, Md E.; Philip, Obbard J.

    2011-01-01

    The demand for heavy metals is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high-grade ores are diminishing. However, there exist large stockpiles of low and lean grade ores that are yet to be exploited. In addition, heavy metals that are present in a spectrum of waste streams including mine drainage, industrial effluents, river sediments, electronic scraps and ashes are also available for recovery and utilization. Heavy metal recovery from low and lean grade ores using conventional techniques such as pyrometallurgy, etc. chemical metallurgy encompass several inherent constraints like, high energy and capital inputs, and high risk of secondary environmental pollution. As environmental regulations become ever more stringent, particularly regarding the disposal of toxic wastes, the costs for ensuring environmental protection will continue to rise. Therefore, there is a need to utilize more efficient technologies to recover heavy metals from secondary sources in order to minimize capital outlay, environmental impact and to respond to increased demand. Biohydrometallurgy, which exploits microbiological processes to recover heavy metal ions, is regarded as one of the most promising and revolutionary biotechnologies. The products of such processes are deposited in aqueous solution thereby rendering them to be more amenable to containment, treatment and recovery. On top of this, biohydrometallurgy can be conducted under mild conditions, usually without the use of any toxic chemicals. Consequently, the application of biohydrometallurgy in recovery of heavy metals from lean grade ores, and wastes, has made it an eco-friendly biotechnology for enhanced heavy metal production.

  7. Biotechnological recovery of heavy metals from secondary sources-An overview

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md E., E-mail: enamul.hoque@nottingham.edu.my [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia); Philip, Obbard J., E-mail: esejpo@nus.edu.sg [Division of Environmental Science and Engineering, National University of Singapore, 119260 (Singapore)

    2011-03-12

    The demand for heavy metals is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high-grade ores are diminishing. However, there exist large stockpiles of low and lean grade ores that are yet to be exploited. In addition, heavy metals that are present in a spectrum of waste streams including mine drainage, industrial effluents, river sediments, electronic scraps and ashes are also available for recovery and utilization. Heavy metal recovery from low and lean grade ores using conventional techniques such as pyrometallurgy, etc. chemical metallurgy encompass several inherent constraints like, high energy and capital inputs, and high risk of secondary environmental pollution. As environmental regulations become ever more stringent, particularly regarding the disposal of toxic wastes, the costs for ensuring environmental protection will continue to rise. Therefore, there is a need to utilize more efficient technologies to recover heavy metals from secondary sources in order to minimize capital outlay, environmental impact and to respond to increased demand. Biohydrometallurgy, which exploits microbiological processes to recover heavy metal ions, is regarded as one of the most promising and revolutionary biotechnologies. The products of such processes are deposited in aqueous solution thereby rendering them to be more amenable to containment, treatment and recovery. On top of this, biohydrometallurgy can be conducted under mild conditions, usually without the use of any toxic chemicals. Consequently, the application of biohydrometallurgy in recovery of heavy metals from lean grade ores, and wastes, has made it an eco-friendly biotechnology for enhanced heavy metal production.

  8. Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors (LMFBRS)

    International Nuclear Information System (INIS)

    Fischer, J.J.

    1978-01-01

    A dispersion-strengthened ferritic alloy is provided which has high-temperature strength and is readily fabricable at ambient temperatures, and which is useful as structural elements of liquid-metal fast breeder reactors. 4 tables

  9. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  10. Refractiry metal monocrystals in high temperature thermometry

    International Nuclear Information System (INIS)

    Kuritnyk, I.P.

    1988-01-01

    The regularities of changes in thermoelectric properties of refractory metals in a wide temperature range (300-2300 K) depending on their structural state and impurities, are generalized. It is found that the main reasons for changes in thermo-e.m.f. of refractory metals during their operation in various media are diffusion processes and local microvoltages appearing in nonhomogeneous thermoelectrodes. It is shown that microstructure formation and control of impurities in thermometric materials permit to improve considerably the metrologic parameters of thermal transformers. Tungsten and molybdenum with monocrystalline structure with their high stability of properties, easy to manufacture and opening new possibilities in high-temperature contact measurement are used in thermometry for the first time

  11. Fuel research for subcritical and critical GEN-IV systems cooled by heavy liquid metal

    International Nuclear Information System (INIS)

    Sobolev, V.; Verwerft, M.

    2009-01-01

    The participation of the Belgian Nuclear Research Centre SCK-CEN in the worldwide GEN-IV research can be considered as an opportunity. Today's GEN-IV research at SCK-CEN is mainly driven by the interests of the project MYRRHA (Multipurpose hYbrid Research Reactor for High-tech Applications). The main goal of this project is to build at SCK-CEN in Mol a new generation fast spectrum, subcritical, research and materials testing reactor MYRRHA driven by a high-energy proton accelerator. This GEN-IV MTR is cooled by heavy liquid metal (Pb-Bi) and will be used for the ADS concept demonstration, testing and qualification of new fuels, transmutation targets and innovative materials. On the European scale, MYRRHA is integrated in the Euratom FP6 Integrated Project (IP) EUROTRANS (EUROpean research programme for TRANSmutation of high level nuclear waste in an accelerator driven system), as the small-scale experimental machine for transmutation demonstration called XT-ADS. Last but not least, this experimental facility will also demonstrate the technological feasibility of the LFR (Lead-cooled Fast Reactor) GEN-IV concept; in EU the LFR design studies are performed in the framework of the Euratom FP6 ELSY (European Lead-cooled SYstem) project, where SCK-CEN is a partner. Among the research needed to ensure a safe and reliable operation of the MYRRHA/XT ADS reactor, the development and qualification of fuel and cladding materials have been recognized as one of the main key issues to be addressed

  12. Stability analysis of high temperature superconducting coil in liquid hydrogen

    International Nuclear Information System (INIS)

    Nakayama, T.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2007-01-01

    Recently, it is expected that hydrogen plays an important role in energy source including electric power in near future. Liquid hydrogen has high potential for cooling down superconducting coil wound with high temperature superconductors (HTS), such as BSCCO, YBCO. In this paper, we study stabilities of the coils wound with BSCCO tapes, which are immersed in the liquid hydrogen, and compare stability results with those cooled by liquid helium. We treat a minimum propagation zone (MPZ) theory to evaluate the coil stability considering boiling heat flux of the liquid hydrogen, and specific heat, heat conduction and resistivity of HTS materials as a function of temperature. It is found that the coil cooled by the liquid hydrogen has higher stability margin than that cooled by the liquid helium. We compare the stability margins of both coils wound with Bi-2223/Ag tape and Bi-2212/Ag tape in liquid hydrogen. As a result, it is found that the stability of Bi-2212 coil is equivalent to that of Bi-2223 coil in low and high magnetic field, while the maximum current of Bi-2212 coil exceeds a little bit that of Bi-2223 coil in both magnetic fields

  13. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Jaworski, M A; Khodak, A; Kaita, R

    2013-01-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m −2 , no macroscopic ejection events were observed. The stability can be understood from a Rayleigh–Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments. (paper)

  14. Analysis of heavy metals in road-deposited sediments.

    Science.gov (United States)

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  15. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  16. Sorption of radiostrontium from liquid metallic rubidium

    International Nuclear Information System (INIS)

    Zhujkov, B.L.; Kokhnyuk, V.M.; Vincent, J.S.

    2008-01-01

    One studied the radiostrontium (in particular, 82 Sr) sorption from the liquid metallic Rb in various inorganic sorbents (both metals and oxides). One studied the temperature dependence and the dynamics of the adsorption and put forward an interpretation of the observed mechanisms. The elaborated approach enables to extract 82 Sr efficiently from the Rb targets upon their irradiation by the accelerated protons. One studies various procedures and the applicability of the process to ensure elaboration of a new highly efficient process to produce 82 Sr, in particular, with the targets of the circulating Rb [ru

  17. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  18. Electrodialytic removal of heavy metals from MSWI fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, A.J.; Ottosen, L.M.; Villumsen, A. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    In this work a method called electrodialytic remediation, which is a combination of electrokinetic remediation and electrodialysis, is used for the extraction of heavy metals from MSWI fly ashes. It is shown that the use of electric current enhances the metal desorption significantly compared to traditional, chemical extraction. The metals of concern are Cd, Pb, Zn, Cu and Cr. Addition of ammonium citrate to the ash before and during remediation enhances the desorption and removal rate of all the examined heavy metals (Cd, Pb, Zn, Cu and Cr) compared to experiments only added distilled water. By introducing continuous stirring of the ash slurry during electrodialytic remediation, it is shown that the remediation rate is improved significantly compared to 'traditional' electrodialytic remediation experiments. The development of the acidic front is avoided due to better pH-control, and a better contact between the ash particles and the liquid is achieved. Up to 62% of the initial Cd, 8.3% Pb, 73% Zn, 59% Cu, and 20% Cr has been removed from two different fly ashes in electrodialytic remediation experiments. (orig.)

  19. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  20. Adsorption of heavy metal ions on activated carbon, (5)

    International Nuclear Information System (INIS)

    Yoshida, Hisayoshi; Kamegawa, Katsumi; Arita, Seiji

    1978-01-01

    The adsorption effect of heavy metal ions Cd 2+ , Zn 2+ and Hg 2+ on activated carbon by adding EDTA is reported, utilizing the experimental data. The activated carbons used for the experiment are mostly D, and B, C and F partly. As for the experimental procedure, the solutions of 100 ml which are composed of activated carbon, pH adjusting liquid, EDTA solution and solutions of heavy metals Cd, Zn and Hg, are shaken for 24 hours at 20 deg C, and after the activated carbon is centrifuged and separated for 15 minutes at 3000 rpm, the remaining heavy metal concentrations and pH in the supernatant are measured. The experimental results showed the useful effect on the adsorption of heavy metal ions of Cd, Zn and Hg by adding about 1 mol ratio of (EDTA/heavy metals). The individual experimental results are presented in detail. Concerning the adsorption quantity, 83% of Cd ions remained in the supernatant without addition of EDTA, but less than 1% with addition of about 1 to 5 mol ratio of (EDTA/Cd), and this adsorption effect was almost similar to Zn and Hg, i.e. 100% to 1% in Zn and 70% to 2 or 3% in Hg, under the condition written above. As for the influence of pH on Cd adsorption, the remaining Cd ratio is less than 10%, when pH is 7 to 10.5 at the mol ratio of 1 and 5.5 to 9 at the mol ratio of 10. The adsorption effect was different according to the kinds of activated carbon. The influencing factors for adsorption effect are the concentration of coexisting cations in the solution and the mixing time, etc. The effects of pH on Zn and Hg adsorption were almost similar to Cd. (Nakai, Y.)

  1. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  2. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  3. Reduction of heavy metal from soil in Bakri Landfill, Muar, Johor by using Electrokinetic method

    Science.gov (United States)

    Azhar, ATS; Muhammad, E.; Zaidi, E.; Ezree, AM; Aziman, M.; Hazreek, ZAM; Nizam, ZM; Norshuhaila, MS

    2017-08-01

    The present study focuses on the contamination levels and distribution of heavy metals in soil samples located at Bakri Landfill area, Muar, Johor, Malaysia. The aim of this study is to determine the type of heavy metal elements that contribute towards soil contamination and to reduce them based on the comparison of elemental analysis between pre and post Electrokinetic (EK) processes. The ppm level concentration of elements in this landfill soil is measured by using X-ray Fluorescence analysis. ICP-MS testing was carried out for liquid samples analysis. There were two set of EK experiments conducted. In first phase, voltage was maintained at 3 Vcm-1 and prolonged for 3 hours, while second phase was operated at 1 Vcm-1 for 48 hours. In this work, distilled water was used as an electrolyte for the process and two identical copper foil were used as electrodes due to high electrical conductivity. The application of EK remediation revealed that successful removal of Rb and Ba elements in the soil were observed by 2-3%, however other heavy metals have not changed.

  4. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.

    Science.gov (United States)

    Mishra, Geetesh Kumar

    2017-01-01

    Heavy metal pollution in the environmental samples like soil, water and runoff water is a worldwide problem. Such contamination of environmental matrices by the heavy metals accumulates due to various activities involving human driven sources and industries, although agriculture and sewage disposal are the largest source for the heavy metal contamination. Disposal of heavy metals or waste products containing heavy metals in the environment postures a trivial threat to public safety and health. Heavy metals are persistence and they can also cause biomagnifications and accumulate in food chain. Microbial bioremediation of heavy metal is emerging as an effective technique. Microbial bioremediation is a highly efficient environmental friendly procedure which also reduces the cost of cleanup process associated with heavy metal contamination. New methods for removal of heavy metals from the environmental samples are under development and most recent advancements have been made in exploring the knowledge of metal-microbes interactions and its use for heavy metal remediation. This review paper will focus on the microbial bioremediation process and highlight some of the newly developed patented methods for microbial bioremediation of the heavy metals from the environmental samples using microbial populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Determination of the interchangeable heavy-metal fraction in soils by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Gaebler, H.E.; Bahr, A.; Mieke, B.

    1999-01-01

    An isotope dilution technique using enriched stable isotopes is applied to determine the interchangeable heavy-metal fraction in soils. Metals in two soil samples are extracted at constant pH, with water, NH 4 NO 3 , and EDTA. A spike of enriched stable isotopes is added to the suspension of sample and eluant at the beginning of the extraction. The heavy-metal fraction which exchanges with the added spike during the extraction is called the interchangeable fraction. The extractable heavy-metal fractions are obtained from the heavy-metal concentrations in the eluates. Isotope ratios and concentrations are determined by HR-ICP-MS. The isotope dilution technique described enables both the extractable and the interchangeable heavy-metal fractions to be determined in the same experiment. The combination of both results gives additional information on elemental availability under different conditions that cannot be obtained by analyzing the extractable heavy-metal fractions alone. It is demonstrated that in some cases different eluants just shift the distribution of the interchangeable fraction of an element between the solid and liquid phases (e.g., Pb and Cd in a topsoil sample) while the amount of the interchangeable fraction itself remains constant. For other elements, as Ni, Zn, and Cr, the use of different eluants (different pH, complexing agents) sometimes enlarges the interchangeable fraction. (orig.)

  7. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    Spectrophotometer (AAS) 2ID using their respective lamp and wavelengths. Calculation ... (Table 2). Concentration of heavy metals in the cassava. Lead and chromium were not significantly ..... Market basket survey for some heavy metals in ...

  8. Compensation of equipment housing elements of reactor units with heavy liquid metal coolant vessel temperature deformations

    International Nuclear Information System (INIS)

    Lebedevich, V.; Ahmetshin, M.; Mendes, D.; Kaveshnikov, S.; Vinogradov, A.

    2015-01-01

    In Russia a lot of different versions of fast reactors (FRs) are investigated and one of these is FR cooled by liquid lead and liquid lead-bismuth alloy. In this poster we are interested by FR with concrete vessel; its components are placed in cavities inside the vessel, and connected by a channel system. During the installation the equipment components are placed in several equipment housings. Between these housings there are cavities with coolant. The alignment of the housings should be provided. It can be broken by irregular concrete vessel heating during FR starting or other transition regimes. Our goal is to suggest a list of designing steps to compensate temperature deformations of equipment housing elements. A simplified model of equipment housing was suggested. It consists of two cylinders - tunnels in the concrete vessel, separated by a cavity filled by coolant and inert gas. The bottom part was considered as heated to 420 C. degrees while in the top part temperature decreased to 45 C. degrees (on the concrete surface). According to this data, results show that temperature gradient leads to a concrete layer dislocation of about 12.5 mm, which can lead to damage and breaking alignment. We propose the following solution to compensate for temperature deformation: -) to chisel out part of the upper top of the insulating concrete; -) to install an adequate misalignment of equipment housing elements preliminary; and -) to use a torsion system like a piston-type device for providing additional strength in order to compensate deformation and vibrations

  9. Diel cycle of iron, aluminum and other heavy metals in a volcano watershed in northern Taiwan

    Science.gov (United States)

    Kao, S.

    2013-12-01

    It is well known that heavy metals in surface water show diel (24-hr) changes in concentrations due to diel biogeochemical cycle. Accordingly, it is important to have a better sampling policy for monitoring the environmental impact of heavy metals of surface water, especially volcanic and mining areas. This study investigated Tatun Volcano watershed in northern Taiwan with a 24-h sampling operation to explore the diel cycle of arsenic concentrations and discuss on the corresponding biogeochemical processes. According to the previous studies, solar energy is the main factor of diel cycles, which could have strong effects on temperature, pH, dissolved oxygen, and many other water qualities. These changes produce a series of chain reactions and finally result in the change of heavy metal concentrations. In general, diel cycle of dissolved oxygen is dominated by metabolism of aquatic plants and sunlight photoreduction in acidic stream water; therefore, the Fe and Al contents would be accordingly changed. In addition, the concentrations of heavy metals will be simultaneously modified due to the high adsorption capacity of Fe and Al hydroxides. In this study, the results of hydro chemical analysis show that creek water is characterized by higher temperature, low pH value (3.0-4.5) and high SO4content(60-400 ppm) due to the mixing of hot spring. That the pH dramatically drops in the noon demonstrates that pH is highly dependent on photoreduction. This can be confirmed by the opposite trend of Fe concentration. The high Fe content in the noon also demonstrates that the precipitation of Fe hydroxides is not dominant in the day time and Fe is mainly in dissolved and/or colloid forms. Under the situation, heavy metals are supposed to have a similar trend with Fe. However, arsenic, aluminum and rare earth elements show a quite different diel cycle from Fe and other heavy metals. It concludes that arsenic and rare earth elements may be adsorbed by Al hydroxides instead of Fe

  10. Evaluation of toxic heavy metals in ayurvedic syrups sold in local markets of hazara, pakistan

    International Nuclear Information System (INIS)

    Hajra, B.; Orakzai, S.; Hussain, F.; Farya, U.

    2015-01-01

    Herbal and Ayurvedic preparations, widely used in Pakistan and the developing world, present serious risk of heavy metal toxicity related to their medicinal content and prolonged use by patients. The objective of this study was to find out the concentration of heavy metals in Herbal and Ayurvedic liquid preparations commonly used for treatment of different diseases, from local markets of Hazara. Methods: The cross sectional survey of traditional herbal and Ayurvedic medicine shops included ten liquid preparations selected from local shops of Mansehra and Abbottabad after interviewing the shopkeepers; so as to select the most commonly sold preparations along with their indications. All samples were analysed on standard Atomic Absorption Spectroscopy for qualitative and quantitative study of toxic heavy metals (Mercury, Iron, Zinc, Lead, Manganese and Arsenic). Results: Toxic levels of Mercury were present in seven syrups, i.e., (Kashneeze, Akseer e Pachas, Tankar, Sharbat e folad, Urosinal, Akseer e Jigar and Amrat dhara) while Arsenic was present only in Urosinal. Iron, Zinc, Manganese and Lead were present in permissible limits in all syrups. Conclusion: Mercury and Arsenic are present in local Herbal and Ayurvedic liquid preparations far beyond the permissible limits as proposed by the International Regulatory Authorities for health drugs while the rest of metals, i.e., Zinc, Manganese, and Iron are within the therapeutic limits. (author)

  11. Refractory thermowell for continuous high temperature measurement of molten metal

    International Nuclear Information System (INIS)

    Thiesen, T.J.

    1992-01-01

    This patent describes a vessel for handling molten metal having an interior refractory lining, apparatus for continuous high temperature measurement of the molten metal. It comprises a thermowell; the thermowell containing a multiplicity of thermocouples; leads being coupled to a means for continuously indicating the temperature of the molten metal in the vessel

  12. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    Science.gov (United States)

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. The Influence of Industrial Waste on Pesticide and Heavy Metal Conetnts in Cipinang-Sunter River Water Jakarta

    International Nuclear Information System (INIS)

    Ulfa, T S; Mellawati, J; Sofni, M C

    1996-01-01

    The measurement of pesticide and heavy metal contents of river water in upperstream (around some factories), and downstream (housing area), along Cipinang-Sunter river Jakarta, on February-June 1996 had been done. The aim of the measurement was to get information about the influence of factories waste on pesticide and heavy metal contents in the Cipinang river water. Gas and liquid chromatographis were used to measure the pesticide content and X-ray fluorecence spectrometry was used to measure the heavy metals content. Result of the measurements showed that Cipinang river water has contained some organochlorin pesticides, i.e., BHC, a and b endosulfan, dieldrin, pp-DDE, and heavy metals, i.e., Ti, V, Cr, Fe, Ni, Cu, Zn, and Pb

  14. Oil Spill Related Heavy Metal: A Review

    International Nuclear Information System (INIS)

    Ahmad Dasuki Mustafa; Hafizan Juahir; Kamaruzzaman Yunus; Mohammad Azizi Amran; Che Noraini Che Hasnam; Fazureen Azaman; Ismail Zainal Abidin; Syahril Hirman Azmee; Nur Hishaam Sulaiman

    2015-01-01

    Oil spill occurs every day worldwide and oil contamination is a significant contributor for the higher levels of heavy metals in the environment. This study is purposely to summarize the heavy metals which significant to major oil spill incidents around the world and effects of toxic metals to human health. The study performed a comprehensive review of relevant scientific journal articles and government documents concerning heavy metals contamination and oil spills. Overall, the heavy metals most frequently been detected in oil spill related study where Pb>Ni>V>Zn>Cd and caused many effects to human health especially cancer. In conclusion, the comparison of heavy metal level between the post - spill and baseline levels must be done, and implementation of continuous monitoring of heavy metal. In addition, the result based on the strategies must be transparent to public in order to maintaining human health. (author)

  15. Performance of HT9 clad metallic fuel at high temperature

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching ∼660 degree C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area

  16. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    Directory of Open Access Journals (Sweden)

    Marek Slávik,Tomáš Tóth

    2014-02-01

    Full Text Available In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86 times. For relatively safety is growing of Pisum sativum L., where there was no exceed any limits values. The root vegetables are dangerous, where the sample of Raphanus sativus L. exceed 6.71978 times the limit values for Pb although the content of lead in the soil was under hygienic limits. Transfer of heavy metals into consume parts of vegetables was no limited by high content of humus into soil. Transfer of heavy metals into consume parts of vegetables was no limited by weakly alkaline soil reaction. These factors are considered for factors limited mobility and input heavy metals into plants. We determined heavy metals by AAS method on a Varian 240 FS and method AMA 254.

  17. Removal of heavy metals using a microbial active, continuously operated sand filter

    International Nuclear Information System (INIS)

    Ebner, C.

    2001-01-01

    Heavy metals play an important role within the spectrum of the various pollutants, emitted into the environment via human activities. In contrast to most organic pollutants, heavy metal can not be degraded. Many soils, lakes and rivers show a high contamination with heavy metals due to the enrichment of these pollutants. In addition to existing chemical-physical and biological technologies for the treatment of heavy metal containing waste waters a demand for new, efficient and low-cost cleaning technologies exists, particularly for high volumes of weakly contaminated waters. Such a technology was developed within the framework of a scientific project of the European Union. The approach makes use of a continuously operated, moving-bed Astrasand filter, which has been operated as a continuous biofilm reactor. By inoculation of the reactor with bacteria providing different, defined mechanisms of metal immobilization, and by continuous supply of suitable nutrients, a metal-immobilizing biofilm is built up and regenerated continuously. Metal-enriched biomass is removed continuously from the system, and the contained metals can be recycled by pyrometallurgical treatment of the biomass. The subjects of the present work were the optimization of the nutrient supply for the process of metal removal, the investigation of the toxicity of different waste waters, the optimization of inoculation and biofilm formation, set-up and operation of a lab scale sand filter and the operation of a pilot scale sand filter treating rinsing water of a chemical nickel plating plant. First, basic parameters like toxicity of heavy metal-containing waste waters and the influence of the nutrition of bacteria on biosorption and total metal removal were examined, using freely suspended bacteria in batch culture. Concerning toxicity great differences could be found within the spectrum of heavy metal-containing waste waters tested. Some waters completely inhibited growth, while others did not

  18. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  19. Heavy metals-bioremediation by highly radioresistant Deinococcus radiodurans biofilm prospective use in nuclear reactor decontamination

    International Nuclear Information System (INIS)

    Shukla, Sudhir K.; Subba Rao, T.

    2015-01-01

    Over the past few decades, rapid growth of chemical industries have enhanced the heavy metal contamination in water, thereby raising environmental concerns. In the nuclear power industry, decontamination procedure also generates radioactive heavy metal containing wastes. Radio-resistant Deinococcus radiodurans R1 is reported to be a potential candidate for the treatment of low active waste material. To use any bacterium for bioremediation purpose, knowledge about its biofilm production characteristics is a prerequisite. This is because biofilm-mediated bioremediation processes are more efficient as compared to processes mediated by their planktonic counterparts. However, so far there are no reports on the biofilm producing capability of D. radiodurans. We observed that tagging of D. radiodurans by a plasmid harbouring gfp and kan R conferred significant biofilm producing property to the bacterium. Chemical analysis of biofilm matrix components produced by D. radiodurans showed that the matrix consists primarily of proteins and carbohydrates with small amount of extracellular DNA (eDNA). Further, we studied the effect of Ca 2+ on D. radiodurans biofilm formation and it was observed that D. radiodurans biofilm formation was enhanced at higher concentrations of Ca 2+ . We investigated the capability of D. radiodurans biofilm to remove the heavy metals Co and Ni from synthetic waste streams. Results showed that Ca 2+ enhanced the bioremediation of both heavy metals (Co, Ni) by D. radiodurans biofilms in a highly significant manner. In the presence of 50 mM Ca 2+ 35% Co removal and 25% Ni removal was observed, when compared to biofilm grown in the absence of Ca 2+ , which showed mere 7% Co and 3% Ni removal, respectively. The results showed that the presence of Ca 2+ significantly enhanced exopolysaccharide and eDNA (both negatively charged) production in the biofilm matrix. This indicated adsorption could be the major mechanism behind enhanced biofilm mediated removal

  20. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    International Nuclear Information System (INIS)

    Benemann, J.R.; Wilde, E.W.

    1991-02-01

    Bioaccumulation of metals by microbes -- '' bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R ampersand D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes

  1. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States)); Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1991-02-01

    Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  2. Source of atmospheric heavy metals in winter in Foshan, China.

    Science.gov (United States)

    Tan, Ji-Hua; Duan, Jing-Chun; Ma, Yong-Liang; Yang, Fu-Mo; Cheng, Yuan; He, Ke-Bin; Yu, Yong-Chang; Wang, Jie-Wen

    2014-09-15

    Foshan is a ceramics manufacturing center in the world and the most polluted city in the Pearl River Delta (PRD) in southern China measured by the levels of atmospheric heavy metals. PM2.5 samples were collected in Foshan in winter 2008. Among the 22 elements and ions analyzed, 7 heavy metals (Zn, V, Mn, Cu, As, Cd and Pb) were studied in depth for their levels, spatiotemporal variations and sources. The ambient concentrations of the heavy metals were much higher than the reported average concentrations in China. The levels of Pb (675.7 ± 378.5 ng/m(3)), As (76.6 ± 49.1 ng/m(3)) and Cd (42.6 ± 45.2 ng/m(3)) exceeded the reference values of NAAQS (GB3095-2012) and the health guidelines of the World Health Organization. Generally, the levels of atmospheric heavy metals showed spatial distribution as: downtown site (CC, Chancheng District)>urban sites (NH and SD, Nanhai and Shunde Districts)>rural site (SS, Shanshui District). Two sources of heavy metals, the ceramic and aluminum industries, were identified during the sampling period. The large number of ceramic manufactures was responsible for the high levels of atmospheric Zn, Pb and As in Chancheng District. Transport from an aluminum industry park under light north-west winds contributed high levels of Cd to the SS site (Shanshui District). The average concentration of Cd under north-west wind was 220 ng/m(3), 20.5 times higher than those under other wind directions. The high daily maximum enrichment factors (EFs) of Cd, Pb, Zn, As and Cu at all four sites indicated extremely high contamination by local emissions. Back trajectory analysis showed that the heavy metals were also closely associated with the pathway of air mass. A positive matrix factorization (PMF) method was applied to determine the source apportionment of these heavy metals. Five factors (industry including the ceramic industry and coal combustion, vehicle emissions, dust, transportation and sea salt) were identified and industry was the most

  3. Liquid metal actuation by electrical control of interfacial tension

    Energy Technology Data Exchange (ETDEWEB)

    Eaker, Collin B.; Dickey, Michael D., E-mail: michael-dickey@ncsu.edu [Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm length scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.

  4. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.

    Science.gov (United States)

    Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto

    2017-04-01

    Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.

  5. Modeling of heavy metal salt solubility using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Iliuta, Maria Cornelia; Thomsen, Kaj; Rasmussen, Peter

    2002-01-01

    Solid-liquid equilibria in complex aqueous systems involving a heavy metal cation (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) and one or more ions for which Extended UNIQUAC parameters have been published previously are modeled using the Extended UNIQUAC model. Model parameters are determined...

  6. Continuous process for selective metal extraction with an ionic liquid

    NARCIS (Netherlands)

    Parmentier, D.; Paradis, S.; Metz, S.J.; Wiedmer, S.K.; Kroon, M.C.

    2016-01-01

    This work describes for the first time a continuous process for selective metal extraction with an ionic liquid (IL) at room temperature. The hydrophobic fatty acid based IL tetraoctylphosphonium oleate ([P8888][oleate]) was specifically chosen for its low viscosity and high selectivity towards

  7. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  8. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    Science.gov (United States)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fixing of heavy metals by some inflated Tunisian clays

    International Nuclear Information System (INIS)

    Gharsalli, Jamel

    2009-01-01

    At the time of discharge of the water polluted in a natural environment and thanks to the properties of retention, adsorption and exchange of ions, clays constitute a natural barrier which will be able to limit the toxicity and the propagation of the pollutants. To contribute to the development of clays layers of Tunisia in the field of water treatments, we undertook with a mineralogical and physicochemical characterization of some inflating clays. The characteristics of these clays will be exploited for the study of the retention by adsorption of some heavy metals. The isotherms of adsorption, of heavy metals in aqueous solution by these natural clays before and after acid activation, are studied. The influence of several parameters on the fixing of heavy metals on clay such as the factors relating to the medium of adsorption (agitation, pH, time of contact, temperature. etc) and those relating to the adsorbent (mass, granulometry, impurities. etc) was studied in order to optimize the operating conditions of adsorptions.

  10. Monitoring of Lawsone, p-phenylenediamine and heavy metals in commercial temporary black henna tattoos sold in Turkey.

    Science.gov (United States)

    Aktas Sukuroglu, Ayca; Battal, Dilek; Burgaz, Sema

    2017-02-01

    Henna has a very low allergic potential, and severe allergenic contact dermatitis is mainly caused by p-phenylenediamine (PPD), which is added to temporary black 'henna tattoos', and potentially also by some heavy metals. To determine the presence of, and quantify, Lawsone, PPD and heavy metal contaminants (cobalt, nickel, lead, and chromium) in commercial temporary black henna tattoo mixtures (n = 25) sold in Turkey. Lawsone and PPD concentrations were analysed with high-performance liquid chromatography, and heavy metal quantification was performed with inductively coupled plasma mass spectrometry. PPD was found in all 25 black henna tattoo samples purchased from tattoo shops; levels varied between 3.37% and 51.6%. Lawsone was detected (0.002-88.2%) in 21 of the 25 temporary black henna tattoo samples analysed. Heavy metal contaminant levels were 0.44-3.11 ppm for Co, 1.13-2.20 ppm for Ni, 1.59-17.7 ppm for Pb, and 35.0-76.9 ppm for Cr. Our results suggest that commercial temporary black henna mixtures containing PPD levels up to 51.6% pose a risk of contact sensitization and severe allergic contact dermatitis among users. It is important to identify both the additives and metallic contaminants of black henna tattoo products; the significance of metal contaminants has still to be assessed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2016-01-01

    Full Text Available ABSTRACT Bioavailability of heavy metals at contaminated sites is largely controlled by the physicochemical properties of the environmental media such as dissolved organic matter, hydroxides and clay colloids, pH, soil cation exchange capacity and oxidation-reduction potential. The aim of this study was to investigate soil pH and heavy metal solubility effect by levels of humic and fulvic acids applied in soil samples with different levels of contamination by heavy metals. The soil samples used in this study were collected in a known metal-contaminated site. Humic acid (HA and fulvic acid (FA were purchased as a commercially available liquid material extracted from Leonardite. The experiment was carried out in a factorial scheme of 4 × (4 + 1, with four contaminated soil samples and four treatments, comprised of two levels of HA, two levels of FA and a control. The HA treatments increased the solubility of Cu, Zn, Ni, Cr, Cd, Pb, As and Ba from soils, while FA treatments decreased, thus raising or not their availability and mobility in soil. Humic acid concentration did not influence soil pH and FA decreased soil pH until 0.7 units. The initial heavy metal concentration in soil affects the magnitude of the processes involving humic substances. The lower releases of heavy metals by FA verified the importance of the complexation properties of organic compounds. These results appear to encourage the use of HA for increased plant-availability of heavy metals in remediation projects and the use of FA for decreased plant-availability of heavy metals at contaminated sites with a risk of introducing metals into the food chain.

  12. Heavy-metal removal from petroleum oily sludge using lemon- scented geraniums[General Conference

    Energy Technology Data Exchange (ETDEWEB)

    Badawieh, A.; Elektorowicz, M. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2006-07-01

    Finding an acceptable method to manage oily sludge generated during petroleum processes is one of the challenges currently facing the petroleum industry. This study investigated the response of plants to heavy-metal removal from oily sludge to determine the feasibility of using phytoremediation technologies as a treatment method for oily sludge. In particular, scented geraniums (Pelargonium sp. Frensham) have shown a strong capability to survive harsh conditions such as poor soil, high/low temperatures, high heavy-metal concentrations and low water content. In response to this observation, this feasibility study placed scented geraniums in a series of pots containing oily sludge where heavy-metal concentrations were artificially increased up to 2000 ppm. Plants were grown in two systems over a period of 50 days. The first system included oily sludge and soil while the second system included oily sludge, soil and compost. The study revealed that the scented geraniums accumulated up to 1600 mg, 1000 mg, and 1200 mg, of cadmium, nickel and vanadium respectively per 1 kg of the plant's dry weight. The results suggest that phytoremediation technology may be a potential method for successfully treating or pretreating oily sludge in the field.

  13. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Sorvari, Jouni; Rantala, Liisa M.; Rantala, Markus J.; Hakkarainen, Harri; Eeva, Tapio

    2007-01-01

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  14. A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater.

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Garrido, Eduardo; Vázquez-Suñé, Enric; Lázaro, Jesús Mateo; Sánchez Navarro, José Ángel; Huggenberger, P; Calvo, Miguel Ángel Marazuela

    2016-12-01

    As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand

    International Nuclear Information System (INIS)

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey

    2013-01-01

    Highlights: • Mesoporous organoclay for immobilization of heavy metal cations was obtained. • The material has a porous structure with high contents of surface adsorption sites. • Leaching of heavy metals from soil reduced in the presence of this adsorbent. • The adsorbent demonstrated high effectiveness in neutral and acidic media. -- Abstract: The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N 2 , dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites

  16. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    Science.gov (United States)

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Detection of gas entrainment into liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, T., E-mail: t.vogt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Boden, S. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Andruszkiewicz, A. [Faculty of Mechanical and Power Engineering, Wroclaw University of Technology (Poland); Eckert, K. [Technische Universität Dresden, Institute of Fluid Mechanics, 01062 Dresden (Germany); Eckert, S.; Gerbeth, G. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany)

    2015-12-01

    Highlights: • We present liquid metal experiments dedicated to gas entrainment on the free surface. • Ultrasonic and X-ray attenuation techniques have been used to study the mechanisms of gas entrainment. • A comparison between bubbly flow in water and GaInSn showed substantial differences. • Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation. - Abstract: Entrainment of cover gas into the liquid metal coolant is one of the principal safety issues in the design of innovative liquid metal-cooled fast reactors. We present generic experimental studies of this phenomenon in low-melting metals. Ultrasonic and X-ray diagnostic tools were considered for a visualization of gas entrainment at the free surface of the melt. Laboratory experiments were conducted using the eutectic alloy GaInSn, which is liquid at room temperature. Vortex-activated entrainment of air at the free surface of a rotating flow was revealed by ultrasonic techniques. X-ray radioscopy was used to visualize the behavior of argon bubbles inside a slit geometry. The measurements reveal distinct differences between water and GaInSn, especially with respect to the process of bubble formation and the coalescence and breakup of bubbles. Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation.

  18. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  19. THE INFLUENCE OF SELECTED FACTORS ON THE LEACHING OF HEAVY METALS FROM SMELTER WASTE

    Directory of Open Access Journals (Sweden)

    Kamila Mizerna

    2015-07-01

    Full Text Available The paper presents the results of leaching research of selected heavy metals (Pb, Cu, Zn, Ni, Cd, Cr from industrial waste. The impact of waste fragmentation on the level of heavy metals leaching was analyzed. The decrease of copper and zinc release and the increase of nickel leaching were observed with increasing grain size fraction of waste. Furthermore, release of contaminants in different ratio of liquid to solid (L/S = 10 dm3/kg and 2 dm3/kg was studied. Higher concentrations of heavy metals were determined in ratio of L/S = 10 dm3/kg. In order to determine the risk of tested waste to the environment, the results were compared with the current law. This allowed the classification of the waste to hazardous waste.

  20. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    Science.gov (United States)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  1. Liquid metal mist cooling and MHD Ericsson cycle for fusion energy conversion

    International Nuclear Information System (INIS)

    Greenspan, E.

    1989-01-01

    The combination of liquid metal mist coolant and a liquid metal MHD (LMMHD) energy conversion system (ECS) based on the Ericsson cycle is being proposed for high temperature fusion reactors. It is shown that the two technologies are highly matchable, both thermodynamically and physically. Thermodynamically, the author enables delivering the fusion energy to the cycle with probably the highest practical average temperature commensurate with a given maximum reactor design constraint. Physically, the mist cooling and LMMHD ECSs can be coupled directly, thus eliminating the need for primary heat exchangers and reheaters. The net result is expected to be a high efficiency, simple and reliable heat transport and ECS. It is concluded that the proposed match could increase the economic viability of fusion reactors, so that a thorough study of the two complementary technologies is recommended. 11 refs., 3 figs

  2. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.

    Science.gov (United States)

    Keeran, Nisha S; Ganesan, G; Parida, Ajay K

    2017-04-01

    Heavy metal pollution of agricultural soils is one of the most severe ecological problems in the world. Prosopis juliflora, a phreatophytic tree species, grows well in heavy metal laden industrial sites and is known to accumulate heavy metals. Heavy Metal ATPases (HMAs) are ATP driven heavy metal pumps that translocate heavy metals across biological membranes thus helping the plant in heavy metal tolerance and phytoremediation. In the present study we have isolated and characterized a novel 28.9 kDa heavy metal ATPase peptide (PjHMT) from P. juliflora which shows high similarity to the C-terminal region of P 1B ATPase HMA1. It also shows the absence of the invariant signature sequence DKTGT, and the metal binding CPX motif but the presence of conserved regions like MVGEGINDAPAL (ATP binding consensus sequence), HEGGTLLVCLNS (metal binding domain) and MLTGD, GEGIND and HEGG motifs which play important roles in metal transport or ATP binding. PjHMT, was found to be upregulated under cadmium and zinc stress. Heterologous expression of PjHMT in yeast showed a higher accumulation and tolerance of heavy metals in yeast. Further, transgenic tobacco plants constitutively expressing PjHMT also showed increased accumulation and tolerance to cadmium. Thus, this study suggests that the transport peptide from P. juliflora may have an important role in Cd uptake and thus in phytoremediation.

  3. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.

    Science.gov (United States)

    Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min

    2017-01-01

    In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  5. Liquid phase micro-extraction: Towards the green methodology for ultratrace metals determination in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    López-López J. A.

    2013-04-01

    Full Text Available Heavy metals are normally found, in natural waters, in very low concentrations. Some of them are essential for life in low level; however, in higher level they are toxic. Therefore, analyzing their bio-available fraction is of main interest. Standard methodology is based in the collection of a number of samples from a water body. Collected samples must be stored, pre-treated and then analyzed. Pre-treatment usually involves pre-concentrating the metal, with the corresponding risk of contamination or loss of analyte. This way, punctual information is obtained from every sampling campaign. As an alternative, passive sampling techniques allow the continuous and coupled sampling-pre-treatment for heavy metals analysis, giving a better approach in the characterization of the studied water body. Liquid phase micro-extraction (LPME is a green analytical alternative for liquid-liquid extraction that promotes a reduction of sample volume, solvent needed and waste generation. Using these systems, polypropylene hollow fibers (HF with pores in their walls can be used. A few micro-liters of organic solvent are supported in the pores. The sample is placed in the outer part of the fiber and a receiving phase is placed in its inner part, allowing continuous liquid extraction of the metal from the sample. Several fibers with different physical features have been employed to analyzed total concentration and bio-availability of some heavy metals (Ag, Ni, Cu in natural water samples. Thanks to fibers configuration, devices for passive sampling based in HF-LPME could be designed. Advantages of this methodology over existing ones are supported because the receiving phase is liquid. As a consequence, retained metals do not need to be eluted from the acceptor prior to instrumental analysis.

  6. Liquid metals. Coexistence line, critical parameters, compressibility

    International Nuclear Information System (INIS)

    Filippov, L.P.

    1986-01-01

    Formulae to calculate four characteristic parameters of liquid metals (density, compressibility, critical temperature and individual parameter) according to four initial data are obtained: two values of vapor density and two values of vapor pressure. Comparison between experimental and calculation results are presented for liquid Cs, Na, Li, K, Rb

  7. Quantum critical point in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole 45-052 (Poland)], E-mail: stef@math.uni.opole.pl

    2009-02-02

    Recently, in high-T{sub c} superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau-Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D {sup 3}He, the physical properties of these three classes of substances are similar to each other.

  8. Recent UK research and the development of high temperature design methods

    International Nuclear Information System (INIS)

    Rose, R.T.; Tomkins, B.; Townley, C.H.A.

    1987-01-01

    The paper outlines recent research and development activities on high temperature design methods and criteria for high temperature components as utilized by liquid metal cooled fast breeder reactors. (orig.)

  9. Monitoring of heavy metal concentrations in home outdoor air using moss bags

    International Nuclear Information System (INIS)

    Rivera, Marcela; Zechmeister, Harald; Medina-Ramon, Mercedes; Basagana, Xavier; Foraster, Maria; Bouso, Laura; Moreno, Teresa; Solanas, Pascual; Ramos, Rafael; Koellensperger, Gunda; Deltell, Alexandre; Vizcaya, David

    2011-01-01

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO 2 was monitored for comparison. Metals were not highly correlated with NO 2 and showed higher spatial variation than NO 2 . Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO 2 variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO 2 given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. - Research highlights: → Moss bags can be used to measure the metal's long-term spatial distribution within cities. → Heavy metals in mosses are not highly correlated with ambient NO 2 concentrations. → Heavy metals show higher spatial variation and association with traffic than NO 2 . → Bus lines in the nearest street explain 75-85% of Mo, Cr, Sb, Sn and Cu variability. → Moss bags are useful for long-term at home exposure assessment in epidemiological studies. - The long-term spatial distribution of heavy metals, measured with moss bags, is mainly determined by proximity to bus lines.

  10. Liquid metal reactor core material HT9

    International Nuclear Information System (INIS)

    Kim, S. H.; Kuk, I. H.; Ryu, W. S. and others

    1998-03-01

    A state-of-the art is surveyed on the liquid metal reactor core materials HT9. The purpose of this report is to give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is planned for the year of 2010. In-core stability of cladding materials is important to the extension of fuel burnup. Austenitic stainless steel (AISI 316) has been used as core material in the early LMR due to the good mechanical properties at high temperatures, but it has been found to show a poor swelling resistance. So many efforts have been made to solve this problem that HT9 have been developed. HT9 is 12Cr-1MoVW steel. The microstructure of HT9 consisted of tempered martensite with dispersed carbide. HT9 has superior irradiation swelling resistance as other BCC metals, and good sodium compatibility. HT9 has also a good irradiation creep properties below 500 dg C, but irradiation creep properties are degraded above 500 dg C. Researches are currently in progress to modify the HT9 in order to improve the irradiation creep properties above 500 dg C. New design studies for decreasing the core temperature below 500 dg C are needed to use HT9 as a core material. On the contrary, decrease of the thermal efficiency may occur due to lower-down of the operation temperature. (author). 51 refs., 6 tabs., 19 figs

  11. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  12. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  13. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  14. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh

    Directory of Open Access Journals (Sweden)

    A.K.M. Atique Ullah

    Full Text Available Concentrations of five heavy metals (Pb, Cd, Cr, As and Hg in eight highly consumed cultured fish species (Labeo rohita, Clarias gariepinus, Hypophthalmichthys molitrix, Cyprinus capio, Puntius sarana, Oreochromis mossambicus, Pangasius pangasius and Anabas testudineus collected from four wholesale markets of Dhaka city, Bangladesh (Karwan Bazar, Mohammadpur Town Hall, Newmarket and Mirpur-1 were measured using atomic absorption spectrometry (AAS in order to evaluate the potential human health risks from the consumption of fish. The estimated daily intake (EDI of all the studied heavy metals calculated on the basis of mean fish consumption of 49.5 g person−1 d−1 by Bangladeshi households indicated that no risk to people’s health with respect to the EDI of investigated heavy metals through the consumption of the fish samples. From the human health point of view, the estimation of non-carcinogenic risk indicated that intake of individual heavy metal through the consumption of fish was safe for human health, whereas, consumption of combined heavy metals suggested potential health risk to highly exposed consumers. However, the estimation of carcinogenic risk of arsenic due to the consumption of fish indicated that consumers remain at risk of cancer. Keywords: Heavy metals, Fish, Estimated daily intake, Carcinogenic and non-carcinogenic risk, Human health risks

  15. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.; Rastogi, S.C.

    1977-08-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analyzed for cadmium, chromium, copper, manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chromium and nickel levels were significantly higher (P < 0.01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P < 0.1). Nineteen percent of autoworkers were found to have an abnormally high blood level of carboxyhemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed.

  16. The Kubo-Greenwood calculation of conductivity of the simple and non-simple liquid metals in a wide temperature range

    International Nuclear Information System (INIS)

    Sobolev, A N; Mirzoev, A A

    2008-01-01

    We calculated the temperature dependences of electroconductivity for the different metals, such as alkalis (caesium), transition metals (iron), and mercury by Kubo-Greenwood formula. Atomic models of 1000-4000 atoms were obtained by Shommers method using the data of diffractional experiments for the wide temperature range. The electronic structure and interaction parameters for supercells of 30-50 atoms were got by LMTO method. The recursion method was used for the calculation of DOS and diffusivity quotients. The lowering of the DOS at the Fermi level was carefully examined. The results obtained are in good agreement with other authors' in views on the nature of the metal-nonmetal transition in different liquid metals. The calculated DOS and conductivity for all metals match the experimental data well

  17. Elimination of heavy metals from leachates by membrane electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R. [Technische Universitaet Dresden, Institut fuer Siedlungs- und Industriewasserwirtschaft, Mommsenstrasse 13, 01062 Dresden (Germany); Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, D-04318 Leipzig (Germany); Rahner, D. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Eektrochemie, Mommsenstrasse 13, D-01062 Dresden (Germany); Morgenstern, P. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Analytik, Permoserstrasse 15, D-04318 Leipzig (Germany); Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebensmittel- und Bioverfahrenstechnik, Bergstrasse 120, D-01062 Dresden (Germany)

    2004-10-01

    The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5-20 mA/cm{sup 2} using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density-potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition-dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high-grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high-grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10-40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co-precipitated by adsorption onto the insoluble MnO{sub 2}. High-grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material.The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a

  18. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  19. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  20. Investigation of heavy metal removal from motorway stormwater using inorganic ion exchange

    International Nuclear Information System (INIS)

    Pitcher, Sarah

    2002-01-01

    Stormwater runoff from motorway surfaces contains toxic heavy metals that are not sufficiently removed by current treatment systems. This research has investigated the potential use of inorganic ion exchange materials to further reduce the levels of dissolved heavy metals. Candidate materials (synthetic/natural zeolites, clay/modified clay, hydrotalcite, lignite) were tested by a shaking procedure (mixed 5 mg dm -3 of each heavy metals, shaken for 10 min) and analysed by atomic absorption spectrometry. The synthetic zeolites MAP and Y showed 100% heavy metal removal and were investigated further by a series of batch experiments. The zeolites exhibited a selectivity sequence Pb > Cu > Cd ∼ Zn. Zeolite MAP has a high capacity for heavy metal uptake (4.5 meq g -1 ), but is not practical for use in a treatment facility owing to its low particle size (3 μm). However, large zeolite pellets (∼ 2 mm) were found to have a low heavy metal uptake (∼ 44 %) due to diffusion limitations. Selected materials (zeolites MAP, Y, mordenite, and carbon-based lignite) were tested in actual and spiked motorway stormwater. The synthetic zeolites effectively remove heavy metals (∼ 100 %) but change the environmental chemistry of the stormwater by releasing high concentrations of sodium, removing calcium ions and increasing the solution pH. The presence of other dissolved contaminants in motorway stormwater inhibited the uptake of heavy metals by the natural zeolite mordenite (34 % less removal). Alkali/alkaline-earth metals (Na, Ca) in solution compete for exchange sites in lignite and mordenite, reducing the heavy metal uptake. Chloride in solution forms complexes with cadmium, severely reducing its uptake by zeolite Y. The presence of dissolved road salt is a potentially serious concern as it causes previously exchanged heavy metals to be re-eluted, especially zinc and cadmium. Zeolite MAP as an exchanger is relatively unaffected by road salt. There is potential for the use of

  1. Perspective on Structural Evolution and Relations with Thermophysical Properties of Metallic Liquids.

    Science.gov (United States)

    Wang, Xiao-Dong; Jiang, Jian-Zhong

    2017-11-01

    The relationship between the structural evolution and properties of metallic liquids is a long-standing hot issue in condensed-matter physics and materials science. Here, recent progress is reviewed in several fundamental aspects of metallic liquids, including the methods to study their atomic structures, liquid-liquid transition, physical properties, fragility, and their correlations with local structures, together with potential applications of liquid metals at room temperature. Involved with more experimentally and theoretically advanced techniques, these studies provide more in-depth understanding of the structure-property relationship of metallic liquids and promote the design of new metallic materials with superior properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Directory of Open Access Journals (Sweden)

    Keiko Yamaji

    Full Text Available Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  3. Assessing the Variability of Heavy Metal Concentrations in Liquid-Solid Two-Phase and Related Environmental Risks in the Weihe River of Shaanxi Province, China

    Science.gov (United States)

    Song, Jinxi; Yang, Xiaogang; Zhang, Junlong; Long, Yongqing; Zhang, Yan; Zhang, Taifan

    2015-01-01

    Accurate estimation of the variability of heavy metals in river water and the hyporheic zone is crucial for pollution control and environmental management. The biotoxicities and potential ecological risks of heavy metals (Cu, Zn, Pb, Cd) in a solid-liquid two-phase system were estimated using the Geo-accumulation Index, Potential Ecological Risk Assessment and Quality Standard Index methods in the Weihe River of Shaanxi Province, China. Water and sediment samples were collected from five study sites during spring, summer and winter, 2013. The dominant species in the streambed sediments were chironomids and flutter earthworm, whose bioturbation mainly ranged from 0 to 20 cm. The concentrations of heavy metals in surface water and pore water varied obviously in spring and summer. The degrees of concentration of Cu and Cd in spring and summer were higher than the U.S. water quality Criteria Maximum Concentrations. Furthermore, the biotoxicities of Pb and Zn demonstrated season-spatial variations. The concentrations of Cu, Zn, Pb and Cd in spring and winter were significantly higher than those in summer, and the pollution levels also varied obviously in different layers of the sediments. Moreover, the pollution level of Cd was the most serious, as estimated by all three assessment methods. PMID:26193293

  4. The Extraction of Heavy Metals by Means of a New Electrolytic Method

    International Nuclear Information System (INIS)

    Guiragossian, Z. G.; Martoyan, G. A.; Injeyan, S. G.; Tonikyan, S. G.; Nalbandyan, G. G.

    2003-01-01

    The extraction of metals in known metallurgical methods is pursued on the basis of separating as much as possible the desired metal's content from the ore concentrate, in the most economical manner. When these principles are also applied to the extraction of heavy metals, the related environmental factors do not readily meet with requirements. Today, an acceptable extraction technology for metals must satisfy the need to produce the deep separation of metals from their source in both economical and environmentally safe manner. This pertains to the direction of our ongoing research and development, among others in the field of environmental remediation. Earlier, we successfully addressed in an environmentally safe manner the selective extraction of radioactive isotopes from liquid radioactive wastes, produced at Armenia's Metzamor Nuclear Power Plant and implemented a functioning LRW station at the NPP. Currently, we extended our new electrodialysis-based electrolytic method in a laboratory scale, for the extraction and deep separation of different metals, including the heavy metals. Our new method, its efficiency, economy and full compliance with environmental issues will be presented

  5. Investigation of heavy metals content in medicinal plant, eclipta alba L

    International Nuclear Information System (INIS)

    Hussain, I.; Khan, H.

    2010-01-01

    Heavy metal such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd were investigated in a= medicinally important plant, Eclipta alba L. as well as in the soil it was grown using atomic absorption spectrophotometer. The plant samples were collected from their natural habitat at three different locations of Peshawar Pakistan. The whole plant materials (roots, stems and leaves) were found to contain all heavy metals except Cd, which corresponds to their concentration in the soil it was grown. Among all the heavy metals, Fe was found to be at the highest level (8.95 to 27.7 mg/kg) followed by Mn (0.44 to 14.0 mg/kg) and Zn (1.04 to 4.50 mg/kg), while the rest of metals were at low concentration. The present study showed that E. alba L. is suitable for the control of environmental pollutants such as heavy metals, however, for medicinal purposes; it should be collected from those areas which are not contaminated with heavy metals. The purpose of the current study was to standardize various indigenous medicinal plants for heavy metals contamination and to make awareness among the public regarding its safer use and collection areas, containing high level of heavy metals and their adverse health affects. (author)

  6. Behaviour of heavy metals during the thermal conversion of sawdust in an entrained flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klensch, S.; Reimert, R. [Engler-Bunte-Inst., Bereich Gas, Erdoel und Kohle, Univ. Karlsruhe, Karlsruhe (Germany)

    1999-07-01

    Since its utilization is nearly CO{sub 2}-neutral, biomass represents a major alternative energy carrier in comparison with fossil fuels in CO{sub 2} reduction scenarios frequently discussed. Decentral generation of power and heat in medium sized plants could develop as a preferred application in future. During thermal conversion (gasification and combustion) of biomass the inorganic matter including the heavy metals will be found in the solid residues, i. e. slags and ashes, and in very low concentrations in the product gas (fuel or flue gas). The ashes should be returned to the forests and the agricultural areas respectively to avoid the use of industrial fertilizers. However, for this purpose the heavy metal concentrations of ashes may not exceed specific limit values, otherwise the returned ashes can lead to harmful effects on the ecological system. In awareness of this problem, in Austria some limit values for the concentrations of Cd, Cr, Cu, Ni, Pb and Zn in returned ashes are valid since 1997. No danger for the environment can be expected by slags containing heavy metals. The heavy metals are fixed environmentally neutral in the glass matrix as has been proven for coal and for residue gasification many times. Dividing the total of the residues into such two streams (returned ash and slag) avoids the disposal of the ashes. The heavy metal behaviour during the thermal conversion of sawdust was investigated in a bench scale plant. In essence, the plant consists of an entrained flow reactor (length of reaction zone: 2,500 mm; inner diameter: 70 mm) and a candle barrier filter with 6 rigid ceramic filter elements (DIA-Schumalith 10-20). The biomass flow rate is as high as 6 kg/h and the operating pressure is about 0.12 MPa. Experimental results show the influences of the conversion temperature (1100 - 1300 C), of the dedusting temperature (350 - 800 C), and of the gas atmosphere (reducing, oxidising) on the heavy metal concentrations of the slag and of the fly

  7. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  8. High-temperature vitrification of Hanford residual-liquid waste in a continuous melter

    International Nuclear Information System (INIS)

    Barnes, S.M.

    1980-04-01

    Over 270 kg of high-temperature borosilicate glass have been produced in a series of three short-term tests in the High-Temperature Ceramic Melter vitrification system at PNL. The glass produced was formulated to vitrify simulated Hanford residual-liquid waste. The tests were designed to (1) demonstrate the feasibility of utilizing high-temperature, continuous-vitrification technology for the immobilization of the residual-liquid waste, (2) test the airlift draining technique utilized by the high-temperature melter, (3) compare glass produced in this process to residual-liquid glass produced under laboratory conditions, (4) investigate cesium volatility from the melter during waste processing, and (5) determine the maximum residual-liquid glass production rate in the high-temperature melter. The three tests with the residual-liquid composition confirmed the viability of the continuous-melting vitrification technique for the immobilization of this waste. The airlift draining technique was demonstrated in these tests and the glass produced from the melter was shown to be less porous than the laboratory-produced glass. The final glass produced from the second test was compared to a glass of the same composition produced under laboratory conditions. The comparative tests found the glasses to be indistinguishable, as the small differences in the test results fell within the precision range of the characterization testing equipment. The cesium volatility was examined in the final test. This examination showed that 0.44 wt % of the cesium (assumed to be cesium oxide) was volatilized, which translates to a volatilization rate of 115 mg/cm 2 -h

  9. Potential of multi-purpose liquid metallic fuelled fast reactor (MPFR) as a hydrogen production system

    International Nuclear Information System (INIS)

    Endo, H.; Ninokata, H.; Netchaev, A.; Sawada, T.

    2001-01-01

    Nuclear energy is the only effective alternative energy source to fossil fuels in the next century. Therefore future nuclear power plants should satisfy the following three requirements: i) multiple energy conversion capability with high temperature not only for electricity generation but also for hydrogen production, ii) extended siting capability so as to eliminate on-site refuelling, and iii) passive safety features. An aim of this paper is to describe the basic concept of the multi-purpose liquid metallic fuelled fast reactor system (MPFR). The MPFR introduces the U-Pu-X (X: Mn, Fe, Co) liquid metallic alloy with Ta and Ta/TaC structural materials, and satisfies all of the conditions listed above based on the following characteristics of the liquid metallic fuel: high temperature operation between 650 deg C (sodium-cooled system) and 1 200 deg C (lead-cooled system), a core lifetime of 15-30 years without radiation damage of fuel materials, and enhanced passive safety by the thermal expansion of liquid fuel and the avoidance of re-criticality due to local core fuel dispersion at fuel failure events. (authors)

  10. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery

    Science.gov (United States)

    Dai, Tao; Zhao, Yue; Ning, Xiao-Hui; Lakshmi Narayan, R.; Li, Ju; Shan, Zhi-wei

    2018-03-01

    Li-Bi based liquid metal batteries (LMBs) have attracted interest due to their potential for solving grid scale energy storage problems. In this study, the feasibility of replacing the bismuth cathode with a bismuth-antimony alloy cathode in lithium based LMBs is investigated. The influence of the Bi:Sb ratio on voltage characteristics is evaluated via the constant current discharge method and electrochemical titration. On observing the cross section of the electrode at various stages of discharge, it is determined that both Sb and Bi form solid intermetallics with Li on the cathode. Additionally, the addition of Bi not only reduces the melting temperature of the Bi:Sb intermetallic but also actively contributes to the electrode capacity. Thereafter, a Li|LiCl-LiF|Sb-Bi liquid metal battery with 3 A h nameplate capacity, assembled and cycled at 1 C rate, is found to possess a stable capacity for over 160 cycles. The overall performance of this battery is discussed in the context of cost effectiveness, energy and coulombic efficiencies.

  11. Amperometric Ion-Selective Electrode for Alkali Metal Cations Based on a Room-Temperature Ionic Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Trojánek, Antonín; Samec, Zdeněk

    2009-01-01

    Roč. 21, 17-18 (2009), s. 1977-1983 ISSN 1040-0397 R&D Projects: GA MŠk ME08098; GA AV ČR IAA400400704 Institutional research plan: CEZ:AV0Z40400503 Keywords : room-temperature ionic liquid * alkali metals * Crown ether * cyclic voltammetry * amperometric ion-selective elkectrode Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  12. Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit

    Science.gov (United States)

    Abdulrazak, Sani; Hussaini, K.; Sani, H. M.

    2017-10-01

    This study details the removal of heavy metals; Cadmium, Copper, Nickel, and Lead from wastewater effluent using an activated carbon produced from African palm fruit. The effluent was obtained from Old Panteka market; a metal scrap Market located in Kaduna State, Nigeria, which has several components that constitute high level of pollution in the environment. The effect of temperature and contact time on the removal of these heavy metals using the activated carbon produced was investigated. The activated carbon showed a significant ability in removing heavy metals; Cadmium, Copper, Nickel, and Lead from the wastewater. Higher percentage removal was observed at a temperature of 80 °C (93.23 ± 0.035, 96.71 ± 0.097, 92.01 ± 0.018, and 95.42 ± 0.067 % for Cadmium, Copper, Nickel, and Lead, respectively) and at an optimum contact time of 60 min (99.235 ± 0.148, 96.711 ± 0.083, 95.34 ± 0.015, and 97.750 ± 0.166 % for Cadmium, Copper, Nickel, and Lead, respectively) after which the percentage removal decreases. This work, therefore, suggests that African palm fruit can be successfully applied to solve this environmental pollution.

  13. Monitoring of heavy metal concentrations in home outdoor air using moss bags

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, Marcela, E-mail: arivera@creal.ca [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Zechmeister, Harald [University of Vienna, Faculty of Life Sciences, Vienna (Austria); Medina-Ramon, Mercedes; Basagana, Xavier [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Foraster, Maria [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Bouso, Laura [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Moreno, Teresa [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona (Spain); Solanas, Pascual; Ramos, Rafael [Research Unit, Family Medicine, Girona, Jordi Gol Institute for Primary Care Research (IDIAP Jordi Gol), Catalan Institute of Health, Catalunya (Spain); Department of Medical Sciences, School of Medicine, University of Girona (Spain); Koellensperger, Gunda [University of Natural Resources and Applied Life Sciences, Vienna (Austria); Deltell, Alexandre [Polytechnic School, GREFEMA, University of Girona (Spain); Vizcaya, David [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain)

    2011-04-15

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO{sub 2} was monitored for comparison. Metals were not highly correlated with NO{sub 2} and showed higher spatial variation than NO{sub 2}. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO{sub 2} variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO{sub 2} given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. - Research highlights: > Moss bags can be used to measure the metal's long-term spatial distribution within cities. > Heavy metals in mosses are not highly correlated with ambient NO{sub 2} concentrations. > Heavy metals show higher spatial variation and association with traffic than NO{sub 2}. > Bus lines in the nearest street explain 75-85% of Mo, Cr, Sb, Sn and Cu variability. > Moss bags are useful for long-term at home exposure assessment in epidemiological studies. - The long-term spatial distribution of heavy metals, measured with moss bags, is mainly determined by proximity to bus lines.

  14. Application of Electrochemical Process in Removal of Heavy Metals from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Mostafaii Gh.1 PhD,

    2016-08-01

    Full Text Available Aims Municipal landfill leachate contains high concentrations of heavy metals, organics, ammonia. The efficeincy of electrochemically removal of heavy metals from landfill leachate was studied. Materials & Methods The leachate was obtained from Kahrizak landfill in south of Tehran. The experiments were carried out by batch process. The 2liter batch reactor was made of glass. There were eight anodes and cathodes electrodes. The electrodes were placed vertically parallel to each other and they were connected to a digital DC power supply. The pH and conductivity were adjusted to a desirable value using NaOH or H2SO4, and NaCl. All the runs were performed at constant temperature of 25°C. In each run, 1.5liter of the leachate was placed into the electrolytic cell. Samples were extracted every 10min and then filtered through a mixed cellulose acetate membrane (0.42μm. The amount of Lead, Zinc and Nickel removal was measured at pH=7 and in current density of 0.5, 0.75, and 1A. Findings When current density and time reaction increased, removal efficiency of heavy metals such as Lead, Zinc and Nickel increased. At initial pH=7, density 1A and reaction time= 60min, Lead, Nickel and Zinc were removed up to 86, 93 and 95%, respectively. Conclusion Electrochemical process can be proposed as a suitable technique to remove heavy metal from landfill leachate.

  15. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    Science.gov (United States)

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  16. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  18. Heavy liquid metal cooled FBR. Results 2001

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2003-08-01

    In the feasibility studies of commercialization of an FBR fuel cycle system, the targets are economical competitiveness to future LWRs, efficient utilization of resources, reduction of environmental burden and enhancement of nuclear non-proliferation, besides ensuring safety. Both medium size pool-type lead-bismuth cooled reactor with primary pumps system and without primary pumps system are studied to pursue their improvement in heavy metal coolant considering design requirements form plant structures. The design of plant systems are reformed, and the conceptual design is made and the commodities are analyzed. (1) Conceptual design of lead-bismuth cooled reactor with pumping system: Electrical output 750 MWe and 4-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (2) Structural analysis of main components. (3) Conceptual design of natural circulation type lead-bismuth cooled reactor: Electrical output 550 MWe and 6-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (4) Study of R and D program. (author)

  19. Mobilization of arsenic and heavy metals from polluted soils by humic acid

    Science.gov (United States)

    Reyes, Arturo; Fuentes, Bárbara; Letelier, María Victoria; Cuevas, Jacqueline

    2017-04-01

    The existence of soils contaminated with harmful elements by mining activities is a global environmental concern. The northern part of Chile has several heavy metal contaminated sites due to former copper and gold artisanal mining activities. Therefore, a complete characterization of abandoned sites and the implementation of remediation technologies are of interest for regulators, the industry, and the population. The objective of the study was to test the use of humic acid as a washing treatment to reduce the heavy metal concentration of soil samples impacted by mine waste material. A stratified random sampling was conducted on the target site to determine the physical and chemical composition of mine waste and soil material. The sampling consisted of taking 37 samples at 0-20 cm depths in a 10,000 square-meter area. The samples were dried and sieved at 2 mm. The batch washing experiments were conducted in triplicate at pH 7.0. A 1:10 solid to liquid ratio and three humic acid dose (0, 50, and 100 mg/l) were used. After shaking (24 h, room temperature) and subsequently filtration (0.22 μm), the supernatants were analyzed for heavy metals, redox potential and pH. The heavy metals mobility was assessed using extraction methods before and after treatments. The soils had alkaline pH values, conductivity ranged between 8 and 35 mS/cm, with low organic matter. Total concentrations of Vanadium (V) (10.80 to 175.00 mg/kg), Lead (Pb) (7.31 to 90.10 mg/kg), Antimonium (Sb) (0.83 to 101.00 mg/kg), and Arsenic (As) (9.53 to 2691.00 mg/kg) exceeded several times the EPA`s recommended values for soils. At 100 mg/L HA the removal efficiencies for V, Pb, Sb, and As were 32, 68, 77, and 82% respectively. According to the extraction procedure V, Pb, Sb, and As species are mainly as oxidizable and residual fractions. According to the results, the target mine site is contaminated with harmful elements. It can be concluded that the use of humic acid is a good alternative as a

  20. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  1. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  2. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  3. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals.

    Science.gov (United States)

    Lyubenova, Lyudmila; Nehnevajova, Erika; Herzig, Rolf; Schröder, Peter

    2009-07-01

    Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N(2). Studies were concentrated on the antioxidative enzymes of the Halliwell-Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the

  4. [Characteristics of heavy metals enrichment in algae ano its application prospects].

    Science.gov (United States)

    Lu, Kaixing; Tang, Jian-jun; Jiang, De'an

    2006-01-01

    Using algae to bio-remedy heavy metals-contaminated waters has become an available and practical approach for environmental restoration. Because of its special cell wall structure, high capacity of heavy metal-enrichment, and easy to desorption, algae has been considered as an ideal biological adsorbent. This paper briefly introduced the structural and metabolic characteristics adapted for heavy metals enrichment of algae, including functional groups on cell wall, extracellular products, and intracellular heavy metals-chelating proteins, discussed the enrichment capability of living, dead and immobilized algae as well as the simple and convenient ways for desorption, and analyzed the advantages and disadvantages of using algae for bioremediation of polluted water, and its application prospects.

  5. Acoustical study of electro- and thermal conductivity of liquid metals

    International Nuclear Information System (INIS)

    Tekuchev, V.V.; Rygalov, L.N.; Ivanova, I.V.; Barashkov, B.I.

    2003-01-01

    One established a link between electrical, elastic and structural properties of electronic smelts. One calculated polyterms of resistance and thermal conductivity of liquid metals (Be, Cd, U, V, Mo, Cr, rare-earth metals) on the basis of data covering both melting and boiling points. For some metals the values were obtained for the first time. To analyze kinetic properties of metals under high temperatures one should apply complex many-particles model representations and efficient computing equipment. It is pointed out that essential problems blocking efforts to tackle the mentioned task result in necessity to find simple though approximate models describing satisfactorily properties of metals [ru

  6. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Najiah

    2011-10-01

    Full Text Available Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+. Results revealed that bacteria were resistant against lincomycin (92%, oleandomycin (72.7% and furazolidone (71.4% while being susceptible to chloramphenicol and florfenicol at 97.4%. The multiple antibiotic resistance (MAR index for C. freundii, E. coli and M. morganii was high with the value up to 0.71. Bacterial strains were found to exhibit 100 % resistance to chromium and mercury. High correlation of resistance against both antibiotics and heavy metals was found (71.4 to 100% between bullfrog bacteria isolates, except bacteria that were resistant to kanamycin showed only 25% resistance against Cu2+. Based on the results in this study, bacterial pathogens of bullfrog culture in Johore, Malaysia, were highly resistant to both antibiotics and heavy metals.

  7. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia.

    Science.gov (United States)

    Tee, L W; Najiah, M

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg(2+), Cr(6+), Cd(2+), Cu(2+)). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) and furazolidone (71.4%) while being susceptible to chloramphenicol and florfenicol at 97.4%. The multiple antibiotic resistance (MAR) index for C. freundii, E. coli and M. morganii was high with the value up to 0.71. Bacterial strains were found to exhibit 100 % resistance to chromium and mercury. High correlation of resistance against both antibiotics and heavy metals was found (71.4 to 100%) between bullfrog bacteria isolates, except bacteria that were resistant to kanamycin showed only 25% resistance against Cu(2+). Based on the results in this study, bacterial pathogens of bullfrog culture in Johore, Malaysia, were highly resistant to both antibiotics and heavy metals.

  8. Quantitative and Qualitative Aspects of Gas-Metal-Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy

    Science.gov (United States)

    Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.

    2018-05-01

    During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.

  9. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  11. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dr. R. G. Reddy

    2007-09-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation

  12. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  13. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2000-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. For example, the high cycle efficiency can be expected because of the similarity of the present cycle to the Ericsson cycle. Sodium-Water Interaction problem can be excluded by proper combination of the working fluids. As the economical feature, the present system is so simple that the liquid-metal main circular pump, the steam turbine generator, and even the steam generator can be excluded if the thermodynamic working fluid is injected directly into the high temperature liquid metal MHD working fluid. In addition, the present system has the potential to be applied to various heat sources including solar energy because of the high flexibility of the operation temperature. In the present paper, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It is found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It is, however, found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. As the conclusions, it is recommended to perform experimental study to obtain the fundamental data, such as the gas-liquid slip ratio in the high-density liquid-metal two-phase natural circulation. (author)

  14. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  15. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance.

    Science.gov (United States)

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-10-26

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.

  16. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enhanced metal recovery through oxidation in liquid and/or supercritical carbon dioxide

    KAUST Repository

    Blanco, Mario

    2017-08-24

    Process for enhanced metal recovery from, for example, metal-containing feedstock using liquid and/or supercritical fluid carbon dioxide and a source of oxidation. The oxidation agent can be free of complexing agent. The metal-containing feedstock can be a mineral such as a refractory mineral. The mineral can be an ore with high sulfide content or an ore rich in carbonaceous material. Waste can also be used as the metal-containing feedstock. The metal-containing feedstock can be used which is not subjected to ultrafine grinding. Relatively low temperatures and pressures can be used. The metal-containing feedstock can be fed into the reactor at a temperature below the critical temperature of the carbon dioxide, and an exotherm from the oxidation reaction can provide the supercritical temperature. The oxidant can be added to the reactor at a rate to maintain isothermal conditions in the reactor. Minimal amounts of water can be used as an extractive medium.

  18. Toxicity of heavy metals to fish: an important consideration for sucessful aquaculture

    OpenAIRE

    Nnaji, J.C.; Okoye, F.C.

    2007-01-01

    Heavy metals are toxic to man, animals and plants once safe limits are exceeded. Then ability to bio accumulate in plant and animal tissues makes them particularly hazardous. Heavy metals are toxic to all aquatic biota and cause high mortality of fish larva, fry, fingerling and adult fish. They accumulate in the gills, heart, liver, kidneys, brain, bones and muscles of fish. The physico-chemical forms of heavy metals determine their mobility, availability and toxicity to fish. These metals en...

  19. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  20. Thermal bonding of light water reactor fuel using nonalkaline liquid-metal alloy

    International Nuclear Information System (INIS)

    Wright, R.F.; Tulenko, J.S.; Schoessow, G.J.; Connell, R.G. Jr.; Dubecky, M.A.; Adams, T.

    1996-01-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. A technique is explored that extends fuel performance by thermally bonding LWR fuel with a nonalkaline liquid-metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Because of the low thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high-conductivity liquid metal thermally bonds the fuel to the cladding and eliminates the large temperature change across the gap while preserving the expansion and pellet-loading capabilities. The application of liquid-bonding techniques to LWR fuel is explored to increase LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) is developed to analyze the in-reactor performance of the liquid-metal-bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of liquid-bonded LWR fuel. The results show that liquid-bonded boiling water reactor peak fuel temperatures are 400 F lower at beginning of life and 200 F lower at end of life compared with conventional fuel

  1. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  2. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    Science.gov (United States)

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  3. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    Science.gov (United States)

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright

  4. Heavy metal content of combustible municipal solid waste in Denmark.

    Science.gov (United States)

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  5. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  6. Linking structure to fragility in bulk metallic glass-forming liquids

    International Nuclear Information System (INIS)

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-01-01

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T g . The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure

  7. Linking structure to fragility in bulk metallic glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shuai, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Stolpe, Moritz, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Evenson, Zach [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Bednarcik, Jozef [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Kruzic, Jamie J. [Material Science, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  8. Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors.

    Science.gov (United States)

    Andrews, Joseph B; Mondal, Kunal; Neumann, Taylor V; Cardenas, Jorge A; Wang, Justin; Parekh, Dishit P; Lin, Yiliang; Ballentine, Peter; Dickey, Michael D; Franklin, Aaron D

    2018-05-14

    Flexible and stretchable electronics are poised to enable many applications that cannot be realized with traditional, rigid devices. One of the most promising options for low-cost stretchable transistors are printed carbon nanotubes (CNTs). However, a major limiting factor in stretchable CNT devices is the lack of a stable and versatile contact material that forms both the interconnects and contact electrodes. In this work, we introduce the use of eutectic gallium-indium (EGaIn) liquid metal for electrical contacts to printed CNT channels. We analyze thin-film transistors (TFTs) fabricated using two different liquid metal deposition techniques-vacuum-filling polydimethylsiloxane (PDMS) microchannel structures and direct-writing liquid metals on the CNTs. The highest performing CNT-TFT was realized using vacuum-filled microchannel deposition with an in situ annealing temperature of 150 °C. This device exhibited an on/off ratio of more than 10 4 and on-currents as high as 150 μA/mm-metrics that are on par with other printed CNT-TFTs. Additionally, we observed that at room temperature the contact resistances of the vacuum-filled microchannel structures were 50% lower than those of the direct-write structures, likely due to the poor adhesion between the materials observed during the direct-writing process. The insights gained in this study show that stretchable electronics can be realized using low-cost and solely solution processing techniques. Furthermore, we demonstrate methods that can be used to electrically characterize semiconducting materials as transistors without requiring elevated temperatures or cleanroom processes.

  9. Ultrafast quenching of metals to liquid-helium temperatures - investigation of the low-temperature mobility of hydrogen in niobium

    International Nuclear Information System (INIS)

    Blanz, M.; Blocher, R.; Carstanjen, H.D.; Messer, R.; Plachke, D.; Seeger, A.

    1989-01-01

    A novel technique for ultrafast quenching from 300 K to 4.2 K has been developed. It employs a fast jet of liquid helium with a speed of about 10 2 m/s and allows us to quench metal samples in about 6 ms. This corresponds to a quenching rate of about 4.5x10 4 K/s, which exceeds that achievable by conventional quenching in liquid helium by more than one order of magnitude. The technique has been used for a resistometric study of the behaviour of hydrogen in niobium quenched-in from the α-phase by means of isochronal and isothermal annealing. Even in the low-temperature region below 20 K a considerable recovery of the resistivity has been found, which cannot be seen in conventional quenching experiments. (orig.)

  10. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    Science.gov (United States)

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High Efficient Nanocomposite for Removal of Heavy Metals (Hg2+ and Pb2+ from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Ebadi

    2016-01-01

    Full Text Available In current work, CdS/black carbon nanocomposites were successfully synthesized with the aid of chestnut and cadmium nitrate as the starting reagents. Besides, the effects of preparation parameters such as reaction time, and precursor concentration on the morphology of products and removal of heavy metals (Hg+2, Pb+2 were studied by scanning electron microscopy images and batch adsorption mode. CdS/black carbon nanocomposite introduced as new and high efficient system for removal of heavy metal ions. The as-synthesized products were characterized by powder X-ray diffraction, scanning electron microscopy, and spectra energy dispersive analysis of X-ray.

  12. Evaluation of geochemical mobility of heavy metals in the dump mine rocks Western Donbass

    Directory of Open Access Journals (Sweden)

    Yatsechko N.Y.

    2014-12-01

    Full Text Available Typification of turn mine rocks of Western Donbas is conducted after a size acid-lye the index of water-soluble complex. It is set that exactly rocks with the low value of it an index characterized the most sizes of middle content of water-soluble forms of heavy metals. It is well-proven that exactly mine dumps are the generating source of contamination of objects of environment of this region by heavy metals. The significant impact on the environment inflicted not only directly in the process of coal mining, but for many years after its completion. The source of contamination of environmental objects are dumps that occupy large areas of fertile land. Every year in the dumps is stored about 40 million. m3 moldboard mine rock. Most of the waste coal industry have potential toxic and mutagenic properties as containing a significant amount of heavy metals, which are practically not biodegradable in the environment and is therefore especially dangerous for living organisms paramount importance score geochemical mobility of heavy metals, ie their property to move from solid to liquid phase, migrate to the natural landscape and absorbed by vegetation. This applies particularly to water-soluble forms of metals, as in warehousing surface mine dump piles of rocks, the priority factor that regulates the processes of migration of heavy metals are leaching precipitation of solid phase wastes. It is the existence and content of heavy metals in water-soluble complex characterized by their solubility and migration activity and can be used to assess the real extent of possible contamination of the hydrosphere.

  13. Literature review on the use of bioaccumulation for heavy metal removal and recovery. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States); Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-02-01

    Bioaccumulation of metals by microbes -- `` bioremoval`` -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R&D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  14. Some new fatigue tests in high temperature water and liquid sodium environment

    International Nuclear Information System (INIS)

    Hattori, Takahiro; Yamauchi, Takayoshi; Kanasaki, Hiroshi; Kondo, Yoshiyuki; Endo, Tadayoshi.

    1987-01-01

    To evaluate the fatigue strength of structural materials for PWR or FBR plants, fatigue test data must be obtained in an environment of simulated primary and secondary water for PWR or of high temperature liquid sodium for FBR. Generally, such tests make it necessary to prepare expensive facilities, so when large amount of fatigue data are required, it is necessary to rationalize and simplify the fatigue tests while maintaining high accuracy. At the Takasago Research Development Center, efforts to rationalize facilities and maintain accuracy in fatigue tests have been made by developing new test methods and improving conventional techniques. This paper introduces a new method of low cycle fatigue test in high temperature water, techniques for automatic measurement of crack initiation and propagation in high temperature water environment and a multiple type fatigue testing machine for high temperature liquid sodium. (author)

  15. Release of gases from uranium metal at high temperatures

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Shankaran, P.S.; Chhapru, G.C.; Ramakumar, K.L.; Venugopal, V.

    2008-01-01

    Depending on the ambient environmental conditions, different gaseous species could get entrapped in uranium metal ingots or pellets. On heating, melting or vapourising uranium metal, these get released and depending on the composition, may cause detrimental effects either within the metal matrix itself or on the surrounding materials/environment. For instance, these gases may affect the performance of the uranium metal, which is used as fuel in the heavy water moderated research reactors, CIRUS and DHRUVA. Hence, detailed investigations have been carried out on the release of gases over a temperature range 875-1500 K employing hot vacuum extraction technique, in specimen uranium pellets made from uranium rods/ingots. Employing an on-line quadrupole mass spectrometer, the analysis of released gases was carried out. The isobaric interference between carbon monoxide and nitrogen at m/e = 28 in the mass spectrometric analysis has been resolved by considering their fragmentation patterns. Since no standards are available to evaluate the results, only the reproducibility is tested. The precision (relative standard deviation at 3σ level) of the method is ±5%. The minimum detectable gas content employing the method is 5.00 x 10 -09 m 3 . About 4 x 10 -04 m 3 /kg of gas is released from uranium pellets, with hydrogen as the main constituent. The gas content increases with storage in air

  16. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  17. Evaluation of plant growth promoting activity and heavy metal tolerance of psychrotrophic bacteria associated with maca (Lepidium meyenii Walp. rhizosphere

    Directory of Open Access Journals (Sweden)

    Paola Ortiz-Ojeda

    2017-05-01

    Full Text Available The high Andean plateau of Peru is known to suffer harsh environmental conditions. Acidic soils containing high amount of heavy metals due to mining activities and withstanding very low temperatures affect agricultural activities by diminishing crop quality and yield. In this context, plant growth promoting rhizobacteria (PGPR adapted to low temperatures and tolerant to heavy metals can be considered as an environment-friendly biological alternative for andean crop management. The aim of this work was to select and characterize psychrotrophic PGPR isolated from the rhizosphere of maca (Lepidium meyenii Walp. a traditional andean food crop. A total of 44 psychrotrophic strains isolated from 3 areas located in the Bombon plateu of Junin-Peru were tested for their PGPR characteristics like indole acetic acid (IAA production, phosphate solubilization and for their ability to improve seed germination. In addition, their capacity to grow in the presence of heavy metals like cadmium (Cd, lead (Pb, cobalt (Co and mercury (Hg was tested. Of the total number of strains tested, 12 were positive for IAA production at 22 °C, 8 at 12 °C and 16 at 6 °C. Phosphate solubilization activities were higher at 12 °C and 6 °C than at 22 °C. Red clover plant assays showed that 16 strains were capable to improve seed germination at 22 °C and 4 at 12 °C. Moreover, 11 strains showed tolerance to Cd and Pb at varying concentrations. This study highlight the importance of obtaining PGPRs to be used in high andean plateu crops that are exposed to low temperatures and presence of heavy metals on soil.

  18. Use of complexones solutions in liquid carbon dioxide for cleaning of materials contaminated with heavy and radioactive metals

    International Nuclear Information System (INIS)

    Shadrin, A.Yu.; Kamachev, V.A.; Kiseleva, R.N.; Murzin, A.A.; Shafikov, D.N.; Bondin, V.V.; Efremov, I.V.; Kovalev, D.N.; Podoinitsyn, S.V.

    2003-01-01

    I n this paper liquid carbon dioxide (pressure 50-70 atm) was used for decontamination. The performed experiments on removal of cobalt, nickel, uranium and americium nitrates and carbonates by different solutions have shown that the solutions of such complexing agents as hexafluoroacetylacetone (HFA), tributylphosphate (TBP), di-2-ethylhexylphosphoric acid (D2EHPA) in liquid CO 2 can be used for purification of pulps, metals, paper and fabrics. Liquid CO 2 is high viscosity of the medium and hence low diffusion coefficients and long duration of the processes. It is known that 20 minutes are sufficient to attain equilibrium in supercritical CO 2 medium on metal removal by HFA solutions. During the experiments it was established that with the use of liquid CO 2 the keeping time should be increased to 40 min, which is acceptable from the standpoint of technical feasibility of decontamination processes in these solutions. Experiments on really contaminated samples of pulps, metals and fabrics have confirmed that the decontamination coefficients of 30-100 can be easily obtained by 2-3 fold material treatment operations. The secondary waste volume therewith is less by a factor of 20-200 than that of traditional techniques. (authors)

  19. On the self-diffusion process in liquid metals and alloys by the radioactive tracer method

    International Nuclear Information System (INIS)

    Ganovici, L.

    1978-01-01

    A theoretical and experimental study of self-diffusion process in liquid metals and alloys is presented. There are only a few pure metals for which diffusion coefficients in a liquid state are known. The thesis aims at increasing the number of liquid metals for which diffusion coefficients are available, by determining these values for liquids: Cd, Tl, Sb and Te. The self-diffusion coefficients of Te in some tellurium based liquid alloys such as Tl 2 Te, PbTe and Bi 90 Te 10 were also determined. Self-diffusion coefficients have been measured using two radioactive tracer methods: a) the capillary-reservoir method; b) the semi-infinite capillary method. The self-diffusion coefficients were derived from the measured radioactive concentration profile, using the solutions of Fick's second law for appropriate initial and limit conditions. The temperature dependence study of self-diffusion coefficients in liquids Cd, Tl, Sb and Te, was used to check some theoretical models on the diffusion mechanism in metallic melts. The experimental diffusion data interpreted in terms of the Arrhenius type temperature dependence, was used to propose two simple empiric relations for determining self diffusion coefficients of group I liquid metals and for liquid semi-metals. It was established a marked decrease of self-diffusion coefficients of liquid Te close to the solidification temperature. The diffusivity of Te in liquid Tl 2 Te points to an important decrease close to the solidification temperature. A simplified model was proposed for the diffusion structural unit in this alloy and the hard sphere model for liquid metals was checked by comparing the theoretical and experimental self-diffusion coefficients. (author)

  20. Liquid metal blanket module testing and design for ITER/TIBER II

    International Nuclear Information System (INIS)

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs

  1. Phase transformation induced by swift heavy ion irradiation of pure metals

    International Nuclear Information System (INIS)

    Dammak, H.; Dunlop, A.; Lesueur, D.

    1996-01-01

    It is now unambiguously established that high electronic energy deposition (HEED), obtained by swift heavy ion irradiation, plays an important role in the damage processes of pure metallic targets: (i) annealing of the defects created by elastic collisions in Fe, Nb, Ni and Pt, and (ii) creation of additional defects in Co, Fe, Ti and Zr. For Ti, we have recently evidenced by transmission electron microscopy observations that the damage creation by HEED is very important and leads to a phase transformation. Titanium evolves from the equilibrium hcp alpha-phase to the high pressure omega-phase. We studied the influence of three parameters on this phase transformation: ion fluence, electronic stopping power and irradiation temperature. The study of Ti and the results concerning other metals (Fe, Zr, etc.) and the semi-metal Bi allow us to propose criteria to predict in which metals HEED could induce damage: those which undergo a phase transformation under high pressure. As a matter of fact, beryllium is strongly damaged when submitted to HEED and seems to behave very similarly to titanium. The fact that such phase changes from a crystalline form to another form were only observed in those metals in which high pressure phases exist in the pressure-temperature diagram, strongly supports the Coulomb explosion model in which the generation of (i) a shock wave and (ii) collective atomic movements are invoked to account for the observed damage creation. (orig.)

  2. Heavy metals in the volcanic environment and thyroid cancer.

    Science.gov (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  3. Basic thermo-fluid dynamic problems in high temperature heat exchangers

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1986-01-01

    The authors consider high temperature heat exchangers to be ones where the heat transfer coefficients cannot be predicted confidently by classical analyses for pure forced convection with constant fluid properties. Alternatively, one could consider heat exchangers operating above some arbitrary temperature, say 1000F or 600C perhaps, to be at high temperature conditions. In that case, most common working fluids will be superheated vapors or gases. While some liquid metal heat exchangers are designed to operate in this range, the heat transfer coefficients of liquid metals are usually sufficiently high that the dominant thermal resistance would be due to the second fluid. This paper concentrates on convective heat transfer with gases. Typical applications include modular gas cooled nuclear reactors, proposed nuclear propulsion systems and space power plants, and superheaters in Rankine steam cycles

  4. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  5. Assessment Of Heavy Metal Contamination Of Arable Soils In Central Bekaa Plain, Lebanon

    International Nuclear Information System (INIS)

    Darwish, T.; Jomaa, I.; Khawlie, M.; Mýýuller, H. W.; Moller, A.

    2004-01-01

    The study area is located in the Bekaa plain of Lebanon totaling about 12753 ha. It lies between the eastern foothills of Mount Lebanon chain and expands across the Litani River towards the foothills of the eastern Anti-Lebanon Mountains. Its characteristics, i.e. natural terrain, climate and socio-economy, make it vulnerable especially due to soil pollution. This paper tries to identify the nature and level of soil pollution by heavy metals. Valley slopes represent a complex landform and lithology that contributed to the formation of different soil. Agriculture in the plain is being practiced mainly with cash, field crops and vegetables. Throughout the central part of the plain, groundwater table is abundant and relatively high (<1.0 m. locally) that multiplies the vulnerability of the soil-groundwater system. There are different sources of pollution, such as industrial (tanneries, batteries, leather manufacturing), solid and liquid wastes, and agricultural due to uncontrolled application of fertilizers, pesticides and insecticides. Meanwhile, no local criteria for land contamination with heavy metals are adapted yet. A total of 131 soil samples from 41 soil profiles were collected from sites representing different soil types and cropping systems. Additionally, five water samples were collected to get tentative idea about the extent of water contamination from surface and groundwater bodies. Soil samples were analyzed for physical and chemical properties and wet digested in aqua regia for the determination of the heavy metal content on the atomic absorption. Results of the total heavy metal content in the soils of the Central Bekaa showed normal values for main metals except Cr and Ni, which showed a relatively high level reaching, according to Eckamn Kloke, 1993-2000 criteria the tolerance level II. This is hazardous in an area of intensive vegetable production designed for fresh consumption. Point sources of pollution are equally found for Pb and Cd. The level

  6. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  7. Prevalence of exposure of heavy metals and their impact on health consequences.

    Science.gov (United States)

    Rehman, Kanwal; Fatima, Fiza; Waheed, Iqra; Akash, Muhammad Sajid Hamid

    2018-01-01

    Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. © 2017 Wiley Periodicals, Inc.

  8. Liquid-metal-gas heat exchanger for HTGR type reactors

    International Nuclear Information System (INIS)

    Werth, G.

    1980-01-01

    The aim of this study is to investigate the heat transfer characteristics of a liquid metal heat exchanger (HE) for a helium-cooled high temperature reactor. A tube-type heat exchanger is considered as well as two direct exchangers: a bubble-type heat exchanger and a heat exchanger according to the spray principle. Experiments are made in order to determine the gas content of bubble-type heat exchangers, the dependence of the droplet diameter on the nozzle diameter, the falling speed of the droplets, the velocity of the liquid jet, and the temperature variation of liquid jets. The computer codes developed for HE calculation are structured so that they may be used for gas/liquid HE, too. Each type of HE that is dealt with is designed by accousting for a technical and an economic assessment. The liquid-lead jet spray is preferred to all other types because of its small space occupied and its simple design. It shall be used in near future in the HTR by the name of lead/helium HE. (GL) [de

  9. Heavy metals in the finest size fractions of road-deposited sediments.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2018-08-01

    The concentration of heavy metals in urban road-deposited sediments (RDS) can be used as an indicator for environmental pollution. Thus, their occurrence has been studied in whole road dust samples as well as in size fractions obtained by sieving. Because of the limitations of size separation by sieving little information is available about heavy metal concentrations in the road dust size fractions heavy metals concentrations and size distribution. According to the Geoaccumulation Index the pollution of the road dust samples deceased in the following order: Sb » As > Cu ≈ Zn > Cr > Cd ≈ Pb ≈ Mn > Ni > Co ≈ V. For all heavy metals the concentration was higher in the fine size fractions compared to the coarse size fractions, while the concentration of Sr was size-independent. The enrichment of the heavy metals in the finest size fraction compared to the whole RDS  Sb > (Cu) ≈ Zn ≈ Pb > As ≈ V » Mn. The approximation of the size dependence of the concentration as a function of the particle size by power functions worked very well. The correlation between particle size and concentration was high for all heavy metals. The increased heavy metals concentrations in the finest size fractions should be considered in the evaluation of the contribution of road dust re-suspension to the heavy metal contamination of atmospheric dust. Thereby, power functions can be used to describe the size dependence of the concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  11. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    Sathiyamoorthy, P.; Golan-Goldhrish, A.

    2005-01-01

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides ( 137 Cs, 90 Sr, 238 Pu, 226 Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  12. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  13. Metallic substrates for high temperature superconductors

    Science.gov (United States)

    Truchan, Thomas G.; Miller, Dean J.; Goretta, Kenneth C.; Balachandran, Uthamalingam; Foley, Robert

    2002-01-01

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  14. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida.

    Science.gov (United States)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-15

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI)>Pb>Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters.

  15. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-01

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI) > Pb > Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters

  16. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  17. Determination of heavy metals in soil and different parts of Diplazium esculentum (medicinal fern)

    Science.gov (United States)

    Jasim, Hind S.; Idris, Mushrifah; Abdullah, Aminah; Kadhum, A. A. H.

    2014-09-01

    Diplazium esculentum is a widely used medicinal fern in Malaysia and other regions worldwide. Heavy metals in plants should be determined because prolonged human intake of toxic trace elements, even at low doses, results in organ malfunction and causes chronic toxicity. Hence, substantial information should be obtained from plants that grow on soils containing high concentrations of heavy metals. This study aimed to determine the physicochemical characteristics of soil and heavy metal concentrations (Pb, Cr, Mn, Cu, and Zn) in different parts of D. esculentum and soil, which were collected from the fern garden of Universiti Kebangsaan Malaysia. Results showed that heavy metals were highly accumulated in D. esculentum roots.

  18. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing

    Directory of Open Access Journals (Sweden)

    Idelma A. A. Terra

    2017-12-01

    Full Text Available The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.

  19. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Do medium heavy fragments give evidence for a liquid-gas phase transition

    International Nuclear Information System (INIS)

    Trockel, R.; Hildenbrand, K.D.; Lynen, U.; Mueller, W.F.J.; Rabe, H.J.; Sann, H.; Stelzer, H.; Wada, R.; Brummund, N.; Glasow, R.; Kampert, K.H.; Santo, R.; Pelte, D.; Pochodzalla, J.; Eckert, E.

    1985-09-01

    Light and medium heavy fragments have been measured in light ion induced reactions at intermediate energies. The energy spectra have been parametrized with moving source fits. The resulting temperatures and yields do not confirm the expectations of a liquid-gas phase transition. (orig.)

  1. Treatment of heavy metals and radionuclides in groundwater and wastewater by magnetic separation

    International Nuclear Information System (INIS)

    Bradbury, D.; Elder, G.R.; Tucker, P.M.; Dunn, M.J.

    1992-01-01

    Removal of trace quantities of heavy metal or radionuclide contamination from solutions at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration demand significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes recent progress with this technique including performance tests of composite materials produced to selectively remove specific contaminants such as cesium, uranium, lead, cadmium, and mercury from solution

  2. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    Science.gov (United States)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  3. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies

    Directory of Open Access Journals (Sweden)

    Pratima Gupta

    2017-03-01

    Full Text Available Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms – mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.

  4. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies.

    Science.gov (United States)

    Gupta, Pratima; Diwan, Batul

    2017-03-01

    Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic) biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS) released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms - mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.

  5. Liquid metal purification device

    International Nuclear Information System (INIS)

    Sakai, Takao; Shimoyashiki, Shigehiro.

    1992-01-01

    The device of the present invention concerns a liquid metal purification device for removing and purifying impuries in liquid metal sodium used as coolants of an FBR type reactor. A vessel having a group of pipes made of hydrogen permeable metal at the inside thereof is disposed to the inlet pipeline of a cold trap. The group of hydrogen permeable metal pipes is connected to an exhaust pipe and a vacuum pump, so that the inside of the pipes is exhausted. Liquid metal sodium branched from the main pipeline of a coolant system passes through the outer side of the group of the hydrogen permeable metal pipes. In this cae, hydrogen contained as impurities in the liquid metal sodium diffuses and permeates the hydrogen permeation metal pipes and enters into the pipe group and is discharged out of the system by the vacuum pump. This can mitigate the hydrogen removing burden of the cold trap, to extend the device life time. (I.N.)

  6. Behaviour of heavy metals in soils

    NARCIS (Netherlands)

    Harmsen, K.

    1977-01-01

    Fractions of Zn, Cd, Cu, Pb, Fe and Mn extractable with water, a salt solution and dilute acid, and residual fractions were determined in soils with raised contents of heavy metals, near zinc smelters, along a river formerly discharging heavy metals, and in a sewage farm. Special attention

  7. Modeling of Heavy Metal Transformation in Soil Ecosystem

    Science.gov (United States)

    Kalinichenko, Kira; Nikovskaya, Galina N.

    2017-04-01

    The intensification of industrial activity leads to an increase in heavy metals pollution of soils. In our opinion, sludge from biological treatment of municipal waste water, stabilized under aerobic-anaerobic conditions (commonly known as biosolid), may be considered as concentrate of natural soil. In their chemical, physical and chemical and biological properties these systems are similar gel-like nanocomposites. These contain microorganisms, humic substances, clay, clusters of nanoparticles of heavy metal compounds, and so on involved into heteropolysaccharides matrix. It is known that microorganisms play an important role in the transformation of different nature substances in soil and its health maintenance. The regularities of transformation of heavy metal compounds in soil ecosystem were studied at the model of biosolid. At biosolid swelling its structure changing (gel-sol transition, weakening of coagulation contacts between metal containing nanoparticles, microbial cells and metabolites, loosening and even destroying of the nanocomposite structure) can occur [1, 2]. The promotion of the sludge heterotrophic microbial activities leads to solubilization of heavy metal compounds in the system. The microbiological process can be realized in alcaligeneous or acidogeneous regimes in dependence on the type of carbon source and followed by the synthesis of metabolites with the properties of flocculants and heavy metals extragents [3]. In this case the heavy metals solubilization (bioleaching) in the form of nanoparticles of hydroxycarbonate complexes or water soluble complexes with oxycarbonic acids is observed. Under the action of biosolid microorganisms the heavy metals-oxycarbonic acids complexes can be transformed (catabolised) into nano-sizing heavy metals- hydroxycarbonates complexes. These ecologically friendly complexes and microbial heteropolysaccharides are able to interact with soil colloids, stay in the top soil profile, and improve soil structure due

  8. THE SLOWING DOWN OF THE CORROSION OF ELEMENTS OF THE EQUIPMENT OF HEAVY MET-ALS AT ELEVATED TEMPERATURES

    OpenAIRE

    Носачова, Юлія Вікторівна; Ярошенко, М. М.; Корзун, А. О.; КОРОВЧЕНКО, К. С.

    2017-01-01

    In this article examined the heavy metals ions and their ability to slow down the corrosion process also the impact of ambient temperature on their effectiveness. Solving the problem of corrosion will reduce the impact of large industrial enterprises on the environment and minimize the economic costs. To do this, plants should create a system without a discharge of waste water that is closed recycling systems, which result is a significant reduction in intake of fresh water from natural sourc...

  9. A perturbed Lennard-Jones chain equation of state for liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Mousazadeh, M H; Marageh, M Ghanadi [AEOI, JIH Research Laboratory, 11365/8486, Tehran (Iran, Islamic Republic of)

    2006-05-24

    The perturbed Lennard-Jones chain (PLJC) equation of state is formulated based on first-order variational perturbation theory. The model uses two parameters for a monatomic system, segment size, {sigma}, and segment energy, {epsilon}/k. In this work, we employed the PLJC equation to calculate the liquid density of 26 metals, including alkali and alkali earth metals, iron, cobalt, nickel, copper, silver, gold, zinc, cadmium, mercury, aluminium, gallium, indium, thallium, tin, lead, antimony, and bismuth, for which accurate experimental data exist in the literature. The calculations cover a broad range of temperatures ranging from the melting point to close to the critical point and pressures ranging from the vapour-pressure curve up to pressures as high as 2000 bar. The average absolute deviation in the liquid density predicted by the PLJC equation of state in the saturation line compared with experimental data is 1.26%. Also, using the normal melting temperature and liquid density at melting point (T{sub m}, {rho}{sub m}) as input data for the estimation of the equation of state parameters provides a good correlation of liquid density at saturated and compressed pressures.

  10. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  11. Assessment of heavy metals leaching from (biochar obtained from industrial sewage sludge

    Directory of Open Access Journals (Sweden)

    Julija Pečkytė

    2015-10-01

    Full Text Available Biochar can be produced from many various feedstock including biomass residues such as straw, branches, sawdust and other agricultural and forestry waste. One of the alternatives is to obtain biochar from industrial sewage sludge, however, the use of such a product could be limited due to high quantities of heavy metals in the biochar as a product. Total concentration of heavy metals provides only limited information on the behavior of heavy metals, therefore, batch leaching and up-flow percolation leaching tests were applied to study the leaching of heavy metals (Cd, Pb, Cr, Ni, Zn, Cu from (biochar produced from two types of sewage sludge: from paper mill and leather industries.

  12. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.

  13. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944

  14. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  15. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Mingfeng; Gao, Yunxia [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Jing, E-mail: jliu@mail.ipc.ac.cn [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-03-15

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10–30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet. - Graphical abstract: High speed videos for the impact of striking GaIn{sub 24.5} based magnetic liquid metal droplets on a magnet plate. - Highlights: • A feasible way to fabricate magnetic nano liquid metal fluid was presented. • Ni nanoparticles sharply increased freezing temperature and latent heat of magnetic nanofluid. • A hysteresis loop phenomenon was observed for the magnetic nanofluid. • Temperature dependent magnetization spanning from 10 K to 400 K was measured. • Impact phenomena of striking magnetic droplets on magnet were disclosed.

  16. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids

    Science.gov (United States)

    Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.

    1995-03-01

    We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.

  17. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  18. [Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].

    Science.gov (United States)

    Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao

    2015-12-01

    China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.

  19. Sorption of Heavy Metals from Mine Wastewater by Activated ...

    African Journals Online (AJOL)

    A study on sorption of heavy metal ions: Lead (Pb2+), Copper (Cu2+) and Cadmium (Cd2+) from mine wastewater by activated carbons prepared from coconut husk was conducted. The activated carbons were prepared by carbonisation of the husk at 900 ºC pyrolysis temperature, followed by steam activation of the ...

  20. Heavy Metal Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/heavymetalbloodtest.html Heavy Metal Blood Test To use the sharing features ... this page, please enable JavaScript. What is a Heavy Metal Blood Test? A heavy metal blood test ...

  1. Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poddubnyi, I. I., E-mail: poddubnyyii@nikiet.ru [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V. [Russian Academy of Science, Joint Institute of High Temperatures (Russian Federation); Leshukov, A. Yu. [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Aleskovskiy, K. V. [National Research University Moscow Power Engineering Institute (MPEI) (Russian Federation); Obukhov, D. M. [Joint Stock Company Efremov Institute of Electrophysical Apparatus (Russian Federation)

    2016-12-15

    The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational

  2. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  3. Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M.A., E-mail: mjaworsk@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Brooks, A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Lopes-Cardozo, N. [TU/Eindhoven, Eindhoven (Netherlands); Menard, J.; Ono, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Rindt, P. [TU/Eindhoven, Eindhoven (Netherlands); Tresemer, K. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2016-11-15

    Highlights: • An upgrade path for the NSTX-U tokamak is proposed that maintains scientific productivity while enabling exploration of novel, liquid metal PFC. • Pre-filled liquid metal divertor targets are proposed as an intermediate step that mitigates technical and scientific risks associated with liquid metal PFC. • Analysis of leading edge features show a strong link between engineering design considerations and expected performance as a PFC. • A method for optimizing porous liquid metal targets restrained by capillary forces is provided indicating pore-sizes well within current technical capabilities. - Abstract: Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physics and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. Two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.

  4. Surface studies of liquid metals and alloys

    International Nuclear Information System (INIS)

    Bastasz, Robert

    2003-01-01

    Liquid metals and alloys have been proposed for use in nuclear fusion reactors to serve as replaceable plasma-facing surfaces that remove particles and heat from reacting plasmas. Several materials are being considered for this purpose including lithium, gallium, and tin as well as some of the alloys made from these elements. In order to better understand the properties of liquid surfaces, the technique of low-energy ion scattering was used to examine the surface composition of several of these materials in vacuum as a function of temperature. Oxygen is found to rapidly segregate to the surface of several metallic liquids. The segregation process can be interpreted using a simple thermodynamic model based on Gibbs theory. In the case of an alloy of Sn and Li, Li also segregates to the liquid surface. This provides a means to produce a surface enriched in Li, which is more plasma compatible than Sn, without the need to handle large quantities of liquid Li. (author)

  5. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    International Nuclear Information System (INIS)

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  6. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2016-01-01

    Full Text Available With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1 Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS damage. (2 Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3 Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4 Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8 and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  7. Microbial treatment of heavy metal leachates

    International Nuclear Information System (INIS)

    Alvarez Aliaga, M. T.

    2009-01-01

    Ore-mining metallurgy and other industrial activities represent the source of heavy metal and radionuclide contamination in terrestrial and aquatic environments. Physico-chemical processes are employed for heavy metal removal from industrial wastewaters. However, limitations due to the cost-effectiveness and use of contaminating reagents make these processes not environmentally friendly. (Author)

  8. Concentrations of heavy metals (lead, manganese, cadmium) in blood and urine of former uranium workers

    International Nuclear Information System (INIS)

    Apostolova, D.; Pavlova, S.; Paskalev, Z.

    1999-01-01

    Uranium ores contain heavy metals and other stable chemical elements as oxides, hydro-carbonates, sulphates, etc. During chemical processing of ore they could be transformed into compounds soluble in biologic liquids. The purpose of this study was to determine the combined intoxication of uranium miners and millers by heavy metals and radiation. Heavy metal (lead, manganese and cadmium) concentrations in blood and urine od 149 former uranium miners and millers were determined by AAS method. Data of significantly increased lead and manganese concentration in blood (p<0.05) of two groups were established in comparison with a control group. There is no statistical significant differences in the cadmium concentrations. The lead and manganese blood levels at the uranium millers were significant higher than those of the uranium miner group (p<0.05). Tendency towards increased blood lead concentrations of uranium millers depending on the length of service was established

  9. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    . Montmorillonite was usually pre-interacted with organics to increase the interlayer space, and then exfoliated to single or several layers by using ultrasonic. Among the nano-sheets, the surfaces are strongly charged negatively, while the edges are positively charged. This characteristic allows the adsorption of cations or anions, as well as the substances with negative or positive charges. Graphite can be oxidized and exfoliated into graphene oxide (GO, which has a huge specific surface area and plentiful of functional groups such as carboxyl, epoxy, carbonyl and hydroxyl, leading to high adsorption capacity to heavy metals in water. Nano-sheet molybdenite is a novel two-dimensional material with single or several layers of MoS2 sheets. The most common method to prepare nano-sheet molybdenite is exfoliated from bulk molybdenite through chemical method based on ion intercalation process. A large quantity of functional groups and S atom on the sheets are the active sites for adsorbing heavy metals in water. Nano-sheet minerals are used as adsorbents in the form of three-dimension hydrogels. They are featured by the huge specific surface area and high adsorption efficiency. In addition, the clean and smooth surfaces allow heavy metals to adsorb directly by film dispersion. Without any barrier of mesopores and micropores, the adsorption rate could be well improved. These characteristics would lead to the extremely large adsorption capacity and high adsorption rate. Currently, nano-sheet minerals as adsorbent is a very hot research topic in the field of heavy metal removal. It is expected that nanosheet minerals will be promising adsorbents in the removal of heavy metals from water.

  10. Directions of development of research methods in the assessment of leaching of heavy metals from mineral waste

    Directory of Open Access Journals (Sweden)

    Król Anna

    2016-01-01

    Full Text Available There are many test methods to assess the level of the release of heavy metals into the environment from mineral waste materials. Leaching methods can be different depending on the leaching time periods, leaching dynamics, sample preparation method or the pH of the elution medium. In Poland, little attention is paid to the research on the relationship between the leaching of particular heavy metals from mineral wastes and changes in environmental conditions, including the pH of the environment. Tests being carried out abroad have started to pay great attention to the pH-dependent impact of the environment and the liquid being in contact with the material on the degree of leaching contaminants from wastes. The solubility of all metals depends on the value of the pH. Authors of the paper will try to prove that Polish methods of waste characterization is incomplete and inconsistent with opinions prevailing in the global literature. The procedure described in the Polish standards are insufficient to determine the actual level of leaching of heavy metals having regard to the impact of multiple external conditions on the level of leaching of heavy metals. Paper will present a directions of development of research methods in the assessment of leaching of heavy metals from mineral waste.

  11. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  12. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  13. Twin solution calorimeter determines heats of formation of alloys at high temperatures

    Science.gov (United States)

    Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.

    1968-01-01

    Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.

  14. Magnetic properties of high temperature superconductors and their interaction with high energy permanent magnets

    International Nuclear Information System (INIS)

    Agarwala, A.K.

    1990-01-01

    Magnetic properties of sintered samples of YBCO ceramic superconductors at various temperatures were measured using a vibrating sample magnetometer (VSM). Also, measurements of forces experienced by a well characterized rare earth-transition metal (RE-TM) permanent magnet (PM) interacting with the superconducting YBCO sample cooled in liquid nitrogen, were performed. Based upon the observed hysteretic magnetization properties of these high temperature superconductors (HTS), the HTS-PM interaction force at liquid nitrogen temperature was calculated from first principle, and finally correlated to the force measurement results. With this analysis, magnetic forces between the same HTS and PM system including the levitation as well as suspension effects at liquid-helium temperature are predicted

  15. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  17. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  18. PLANT CONTAMINATION AND PHYTOTOXICITY DUE TO HEAVY METALS FROM SOIL AND WATER

    Directory of Open Access Journals (Sweden)

    Judith Prieto Mendez

    2008-12-01

    Full Text Available High levels of heavy metals, such as: lead, nickel, cadmium and manganese, which are present in soil and wastewater used for agricultural irrigation, are due to the fact that these metals can be accumulated into these systems, of main importance for agriculture. Because of its non-biodegradability features, toxicity effects onto several crops and consequences on their bio-availability, this may result hazardous. This literature survey highlights and remarks relative sensitivity of some plants before heavy metals presence and crops trend to accumulate them, emphasizing aspects related to some soil physicochemical characteristics and heavy metals phyto-toxicity.

  19. Microalgae - A promising tool for heavy metal remediation.

    Science.gov (United States)

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  1. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963)

    International Nuclear Information System (INIS)

    Langlois, G.

    1963-01-01

    The corrosion of the following metals or alloys by UF 6 : nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [fr

  2. A Review: Advances on Absorption of Heavy Metals in the Waste Water by Biochar

    Science.gov (United States)

    Chen, Hao; Xie, Anbin; You, Shaohong

    2018-01-01

    Biochar as a new type of adsorbent, its physical and chemical characteristics and adsorption of heavy metal has been widely studied. Based on the current studies, the article reviewed the main characteristics of biochar, its influencing factors (preparation temperature, feed stocks, functional group et.) on adsorption of heavy metals in water and its mechanism of adsorption (ion exchange adsorption, complexation, precipitation sedimentation et.). Briefly summarize unresolved issues for potential applications of biochar in the future.

  3. Normal concentrations of heavy metals in autistic spectrum disorders.

    Science.gov (United States)

    Albizzati, A; Morè, L; Di Candia, D; Saccani, M; Lenti, C

    2012-02-01

    Autism is a neurological-psychiatric disease. In the last 20 years we witnessed a strong increase of autism diagnoses. To explain this increase, some scientists put forward the hypothesis that heavy metal intoxication may be one of the causes of autism. The origin of such an intoxication was hypothesised to be vaccines containing thimerosal as antimicrobic preservative. This preservative is mainly made up of mercury. The aim of our research was to investigate the correlation between autism and high biological concentrations of heavy metals. Seventeen autistic patients, between 6 and 16 years old (average: 11.52 DS: 3.20) (15 males and 2 females), were investigated, as well as 20 non autistic subjects from neuropsychiatric service between 6 and 16 years (average: 10.41 DS: 3.20) (15 males and 2 females). In both groups blood, urine and hair samples were analysed trough means of a semiquantitative analysis of heavy metal dosing. The metals analysed were Lead, mercury, cadmium and aluminium, since their build-up may give both neurological and psychiatric symptoms. The comparison of the mean values of the concentrations between the groups, performed with ANOVA test, has shown no statistically relevant differences. There wasn't correlation between autism and heavy metal concentration.

  4. Compact, Lightweight Electromagnetic Pump for Liquid Metal

    Science.gov (United States)

    Godfroy, Thomas; Palzin, Kurt

    2010-01-01

    A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.

  5. Size distribution, characteristics and sources of heavy metals in haze episode in Beijing.

    Science.gov (United States)

    Duan, Jingchun; Tan, Jihua; Hao, Jiming; Chai, Fahe

    2014-01-01

    Size segragated samples were collected during high polluted winter haze days in 2006 in Beijing, China. Twenty nine elements and 9 water soluble ions were determined. Heavy metals of Zn, Pb, Mn, Cu, As, Cr, Ni, V and Cd were deeply studied considering their toxic effect on human being. Among these heavy metals, the levels of Mn, As and Cd exceeded the reference values of National Ambient Air Quality Standard (GB3095-2012) and guidelines of World Health Organization. By estimation, high percentage of atmospheric heavy metals in PM2.5 indicates it is an effective way to control atmospheric heavy metals by PM2.5 controlling. Pb, Cd, and Zn show mostly in accumulation mode, V, Mn and Cu exist mostly in both coarse and accumulation modes, and Ni and Cr exist in all of the three modes. Considering the health effect, the breakthrough rates of atmospheric heavy metals into pulmonary alveoli are: Pb (62.1%) > As (58.1%) > Cd (57.9%) > Zn (57.7%) > Cu (55.8%) > Ni (53.5%) > Cr (52.2%) > Mn (49.2%) > V (43.5%). Positive matrix factorization method was applied for source apportionment of studied heavy metals combined with some marker elements and ions such as K, As, SO4(2-) etc., and four factors (dust, vehicle, aged and transportation, unknown) are identified and the size distribution contribution of them to atmospheric heavy metals are discussed.

  6. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    International Nuclear Information System (INIS)

    Liu, An; Liu, Liang; Li, Dunzhu; Guan, Yuntao

    2015-01-01

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse

  7. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    Energy Technology Data Exchange (ETDEWEB)

    Liu, An [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Cooperative Research and Education Centre for Environmental Technology, Kyoto University–Tsinghua University, 518055 Shenzhen (China); Liu, Liang; Li, Dunzhu [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Guan, Yuntao, E-mail: guanyt@tsinghua.edu.cn [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-05-15

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse.

  8. Assessment of Heavy Metals in the Water of Sahastradhara Hill Stream at Dehradun, India

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Bharti

    2014-09-01

    Full Text Available A study on heavy metals assessment in the water of Sahastradhara hill-stream was conducted with different five sites at significant differences. The present paper deals with the water quality status of Sahastradhara stream by the assessment of heavy metals. Heavy Metals were found in fluctuated trend from first upstream to last downstream. The values of almost all Heavy Metals were found in increasing manner especially after the fourth sampling site. After the third sampling station, a solid waste dumping site was found. So, there may be a relation between heavy metals in stream water and solid waste dumping site. Concentrations of all Heavy Metals at fourth and fifth sampling site were found very high. DOI: http://dx.doi.org/10.3126/ije.v3i3.11076 International Journal of Environment Vol.3(3 2014: 164-172

  9. [Distribution characteristics of heavy metals along an elevation gradient of montane forest].

    Science.gov (United States)

    Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan

    2011-12-01

    In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

  10. High levels of heavy metal accumulation in dental calculus of smokers: a pilot inductively coupled plasma mass spectrometry study.

    Science.gov (United States)

    Yaprak, E; Yolcubal, I; Sinanoğlu, A; Doğrul-Demiray, A; Guzeldemir-Akcakanat, E; Marakoğlu, I

    2017-02-01

    Various trace elements, including toxic heavy metals, may exist in dental calculus. However, the effect of environmental factors on heavy metal composition of dental calculus is unknown. Smoking is a major environmental source for chronic toxic heavy metal exposition. The aim of this study is to compare toxic heavy metal accumulation levels in supragingival dental calculus of smokers and non-smokers. A total of 29 supragingival dental calculus samples were obtained from non-smoker (n = 14) and smoker (n = 15) individuals. Subjects with a probability of occupational exposure were excluded from the study. Samples were analyzed by inductively coupled plasma mass spectrometry in terms of 26 metals and metalloids, including toxic heavy metals. Toxic heavy metals, arsenic (p 0.05). Within the limitations of this study, it can be concluded that the elementary composition of dental calculus may be affected by environmental factors such as tobacco smoke. Therefore, dental calculus may be utilized as a non-invasive diagnostic biological material for monitoring chronic oral heavy metal exposition. However, further studies are required to evaluate its diagnostic potential. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  12. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil

    International Nuclear Information System (INIS)

    Brunner, Ivano; Luster, Joerg; Guenthardt-Goerg, Madeleine S.; Frey, Beat

    2008-01-01

    Root systems of Norway spruce (Picea abies) and poplar (Populus tremula) were long-term exposed to metal-contaminated soils in open-top chambers to investigate the accumulation of the heavy metals in the fine roots and to assess the plants suitability for phytostabilisation. The heavy metals from the contaminated soil accumulated in the fine roots about 10-20 times more than in the controls. The capacity to bind heavy metals already reached its maximum after the first vegetation period. Fine roots of spruce tend to accumulate more heavy metals than poplar. Copper and Zinc were mainly detected in the cell walls with larger values in the epidermis than in the cortex. The heavy metals accumulated in the fine roots made up 0.03-0.2% of the total amount in the soils. We conclude that tree fine roots adapt well to conditions with heavy metal contamination, but their phytostabilisation capabilities seem to be very low. - Long-term exposed fine roots of trees are well adapted to soils with high heavy metal contents, but their phytostabilisation capabilities are rather low

  13. Distribution of heavy metals from flue gas in algal bioreactor

    Science.gov (United States)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  14. Rapid response sensor to monitor the temperature and flow of liquid metals

    International Nuclear Information System (INIS)

    McCann, J.D.

    1980-01-01

    Two forms of a sensor capable of simultaneously monitoring the temperature and flow of liquid metal coolants within a reactor are described. They operate by measuring the coupling impedances between the sensor and the surrounding electrically conductive coolant. Since the system utilises electrical rather than thermal properties, the response to perturbations is rapid, typically displaying the changed conditions within a few milliseconds. The first form of the sensor was designed to operate whilst protected by a thick walled service tube positioned in the reactor coolant. Providing bends in the tube had a radius greater than 70 cm, the sensor could be removed for inspection and maintenance if necessary. The second sensor was fitted inside a streamlined NaK proof capsule. This was inserted directly into the coolant outlet stream of a fuel pin assembly in the Dounreay Fast Reactor. In this form the sensor successfully monitored flow, entrained gas and temperature excursions during the final operating cycle of D.F.R. (author)

  15. Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff

    DEFF Research Database (Denmark)

    Ko, Dongah; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2018-01-01

    The emerging concern of heavy metal pollution derived from stormwater runoff has triggered a demand for effective heavy metal sorbents. To be an effective sorbent, high affinity along with rapid sorption kinetics for environmental relevant concentrations of heavy metals is important. Herein, we...... have introduced a new composite suitable for trace metal concentration removal, which consists of cheap and common granular activated carbon covered with polymers containing soft bases, thiols, through acyl chlorination (DiS-AC). Material characterization demonstrated that the polymer was successfully...

  16. Method of determining the partial cross sections in a heavy liquid. Application to the production of strange particles by high energy π"-

    International Nuclear Information System (INIS)

    Lloret, Antonio

    1964-01-01

    This research thesis reports the study if the measurement of cross sections on proton, and more particularly the development of a method of determination of cross sections which takes problems raised by a heavy liquid into account. This method is applied with sufficiently high energies for the Fermi momentum to have no influence on cross sections. The author first presents the general method of determination of partial cross sections in a heavy liquid: case of a hydrogen chamber, ideal case of a heavy liquid chamber without possibility of secondary interactions nor evaporations, search for a formula removing secondary interactions, correction due to the fact that the number of neutrons is not equal to the number of protons in the mixture nuclei, application to cross sections of production of high energy strange particles, calculation of the number of produced high energy particles. The experiment is then presented with its chamber, its measurement and calculation techniques. The author then reports and discusses cross section calculations and compares results with those of previous experiments. The last part addresses the study of secondary interactions in nuclei

  17. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  18. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    International Nuclear Information System (INIS)

    Bayat, Belgin; Sari, Bulent

    2010-01-01

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  19. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  20. Liquid metal-organic frameworks

    Science.gov (United States)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  1. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-01-01

    Highlights: • A novel method based on a sequence of AC pulses is presented. • Liquid nitrogen temperature is used as criterion to judge whether the sample has recovered. • Recovery time of some tape doesn't increase with the amplitude of fault current. • This phenomenon is caused by boiling heat transfer process of liquid nitrogen. • This phenomenon can be used in optimizing both the limiting rate and reclosing system. - Abstract: The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  2. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  3. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  4. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.

    Science.gov (United States)

    Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie

    2017-10-01

    The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.

  5. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition

    International Nuclear Information System (INIS)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2017-01-01

    A novel process for separation of heavy metals from liquid wastes and/or industrial effluents has been developed as described in this paper wherein the technique of supported liquid membrane based extraction and stripping of heavy metals has been augmented with electroplating inside the stripping chamber of SLM. Wastewater, infested with cadmium and lead, has been subject of research in this work. The said process is employed in transporting the heavy metals from the polluted source phase (wastewater) to the sink (or strip) phase while simultaneously depositing the heavy metals in-situ on the electrode placed inside the strip phase, and thereby the strip phase is remained ever-unsaturated. This arrangement yields high gradient of chemical potential across the liquid membrane and thereby facilitates enhanced and faster recovery of said heavy metals and also yields value added component, viz. electroplated items, for suitable end use.

  6. Molecular dynamics simulation of self-diffusion coefficients for liquid metals

    International Nuclear Information System (INIS)

    Ju Yuan-Yuan; Zhang Qing-Ming; Gong Zi-Zheng; Ji Guang-Fu

    2013-01-01

    The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics methods based on the embedded-atom-method (EAM) potential function. The simulated results show that a good inverse linear relation exists between the natural logarithm of self-diffusion coefficients and temperature, though the results in the literature vary somewhat, due to the employment of different potential functions. The estimated activation energy of liquid metals obtained by fitting the Arrhenius formula is close to the experimental data. The temperature-dependent shear-viscosities obtained from the Stokes—Einstein relation in conjunction with the results of molecular dynamics simulation are generally consistent with other values in the literature. (atomic and molecular physics)

  7. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  8. Distribution of heavy metals in Tamshui mangrove forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C Y; Chou, C H

    1990-06-01

    Tamsui estuary area is one of the few places in Taiwan where mangrove is still growing. Heavy metals, carried by the water of the Tamsui river, are accumulated in the estuary soil. Most heavy metals in soil, however, are immobile under reducing conditions and are fixed in the large amount of organic matter present. Heavy metals are distributed at different concentrations in various tissues of Kandelia candel as well as grasses of Phragmites communis, Imperata cylindrica, and Cyperus malaccensis growing in the swamp area. The concentration of heavy metals was significantly higher root than in stems and leaves. The absorption of heavy metals by the plants was less in soil that was frequently submerged. Kandelia candel seems to have no special tolerance to copper and zinc. The soil environment which favors reduced availability of heavy metals may help Kandelia candel adapt to growth in the polluted estuary.

  9. A Study of Physicochemical Parameters and Nine Heavy Metals in the Euphrates River, Iraq

    Directory of Open Access Journals (Sweden)

    Fikrat M. Hassan

    2010-01-01

    Full Text Available This study was conducted to reveal possible environmental effects on the Euphrates River from the Al-Hindiya barrage to the downstream end of Al-Kufa city in the middle of Iraq. Seven sites were selected along the study area and sampled during March 2004 to February 2005. We measured physical and chemical properties (air and water temperature, pH, electrical conductivity, TDS, TSS and dissolved oxygen as well as, concentration and distribution of some heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in both dissolved and particulate phases, in the water and sediments (exchangeable and residual phases. The studied area was slightly alkaline, with very hard water and high BOD5. The nutrients showed clear seasonal fluctuations in their concentrations. It was shown that the concentrations of metals in the particulate phase were higher than those in dissolved phase in water. In sediments, the mean concentrations of heavy metals as exchangeable phase were less than in the residual phase.

  10. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  11. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  12. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil.

    Science.gov (United States)

    Zhang, Guixiang; Guo, Xiaofang; Zhao, Zhihua; He, Qiusheng; Wang, Shuifeng; Zhu, Yuen; Yan, Yulong; Liu, Xitao; Sun, Ke; Zhao, Ye; Qian, Tianwei

    2016-11-01

    A pot experiment was conducted to investigate the effects of biochars on the availability of heavy metals (Cd, Cu, Mn, Ni, Pb, and Zn) to ryegrass in an alkaline contaminated soil. Biochars only slightly decreased or even increased the availability of heavy metals assesses by chemical extractant (a mixture of 0.05 mol L -1 ethylenediaminetetraacetic acid disodium, 0.01 mol L -1 CaCl 2 , and 0.1 mol L -1 triethanolamine). The significantly positive correlation between most chemical-extractable heavy metals and the ash content in biochars indicated the positive role of ash in this extraction. Biochars significantly reduced the plant uptake of heavy metals, excluding Mn. The absence of a positive correlation between the chemical-extractable heavy metals and the plant uptake counterparts (except for Mn) indicates that chemical extractability is probably not a reliable indicator to predict the phytoavailability of most heavy metals in alkaline soils treated with biochars. The obviously negative correlation between the plant uptake of heavy metals (except for Mn) and the (O + N)/C and H/C indicates that biochars with more polar groups, which were produced at lower temperatures, had higher efficiency for reducing the phytoavailability of heavy metals. The significantly negative correlations between the plant uptake of Mn and ryegrass biomass indicated the "dilution effect" caused by the improvement of biomass. These observations will be helpful for designing biochars as soil amendments to reduce the availability of heavy metals to plants in soils, especially in alkaline soils. Copyright © 2016. Published by Elsevier Ltd.

  13. Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor. Comparisons of the decay heat removal characteristics on lead, lead-bismuth and sodium cooled reactors

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Ohshima, Hiroyuki; Yamaguchi, Akira

    2000-04-01

    The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. In this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube failure accidents in a steam generator. In this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in Equivalent plant' with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. In conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to confirm the heat transfer reduction by the oxidized film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance. (author)

  14. Liquid metal MHD research and development in Israel

    International Nuclear Information System (INIS)

    Branover, H.

    1993-01-01

    The study of liquid metal MHD in Israel commenced in 1973. Initially it was concentrated mainly on laminar flows influenced by external magnetic fields. In 1978 a liquid metal MHD energy conversion program was started. This program was developed at the Center for MHD Studies at Ben-Gurion University in Beer-Sheva, with the participation of specialists from the Technion, the Hebrew University of Jerusalem, Israel Atomic Energy Commission, and others. The program was sponsored initially by the Israel Ministry of Energy and Infrastructure, and later by the Ministry of Industry and Trade. Since 1980, Solmecs, a private commercial company has become a major factor in the development of liquid metal MHD in Israel. From the very beginning the program was based on broad international cooperation. A number of overseas institutions and individuals became participants in the program. Through extensive research and evaluation of a number of concepts of liquid metal MHD power generation systems, It was established that the most promising concept, demanding a relatively short period of development, is the gravitational system using heavy metals (lead, lead alloys) as the magneto-hydrodynamic fluid and steam or gases as thermodynamic fluids. This concept was chosen for further development and industrial application, and the program related to such systems was named the Etgar Program. The main directions of research and development activities have been defined as follows: investigations of physical phenomena, development of universal numerical code for parametric studies, optimization and design of the system, material studies, development of engineering components, building and testing of integrated small-scale Etgar type systems, economic evaluation of the system and comparison with conventional technologies, development of moderate scale industrial demonstration plant. At this time 6 items have been fully implemented and activities on the last item were started. (author)

  15. Performance investigations of liquid-metal heat pipes for space and terrestrial applications

    International Nuclear Information System (INIS)

    Kemme, J.E.; Keddy, E.S.; Phillips, J.R.

    1978-01-01

    The high heat transfer capacity of liquid-metal heat pipes is demonstrated in performance tests with mercury, potassium, sodium, and lithium working fluids and wick structures which serve to minimize liquid pressure losses and vapor/liquid interactions. Appropriate wicks for horizontal and vertical operation are described. It is shown that heat-transfer with these wicks is limited by vapor flow effects. Examples are given of particular effects associated with a long adiabatic section between evaporator and condenser and with a heat source of uniform temperature as opposed to a source of uniform power

  16. Heavy metals contamination of soils in response to wastewater irrigation in Rawalpindi region

    International Nuclear Information System (INIS)

    Mushtaq, N.; Khan, K.S.

    2010-01-01

    The study was conducted to evaluate the quality of effluents/ waste water samples from Rawalpindi region for irrigation purpose and to elucidate effects of their application on heavy metal contents in soils of area. Results indicated that the EC, SAR, RSC and TDS of most effluent/ waste water samples were above the critical limits. Cadmium and Cr were above the critical limits in almost all the effluent samples, whereas Ni was high in 14, Pb was high in 10, Cu was high in 5 and the Fe was high in 3 effluent samples as compared to critical limits. Regarding heavy metals contents of soils irrigated by these effluents/ waste water, total Fe, total Cd and total Ni were higher in almost all the sampled sites, whereas total Cr was high at 7 sampled sites. AB-DTPA extractable Fe and Zn were higher at all the sampled sites, while the extractable Cd was higher at 2 sampled sites. Overall, the effluent samples collected from Adiala showed high concentrations of heavy metals, whereas soils of Wah factory and Islamabad area had higher heavy metal contents (total and AB-DTPA extractable). On the basis of results it is concluded that quality of effluents/ waste water samples collected from different locations of Rawalpindi is not good for irrigation and the long term use of these effluents for crop production caused accumulation of some toxic metals in soils above critical limits which is harmful for soil health and may lead to elevated levels of heavy metals in crop plants. (author)

  17. High dose, heavy ion implantation into metals: the use of sacrificial surface layers to enhance retention

    International Nuclear Information System (INIS)

    Clapham, L.

    1994-01-01

    While of considerable interest for the production of metallic alloys, high dose, heavy ion implantation is highly problematical, since the process is limited by sputtering effects. Sputtering is less significant, however, for light target materials, such as C and Al. This paper summarizes studies involving the use of light materials (such as C and Al) which act as slowly sputtering ''sacrificial layers'' when deposited on metallic targets prior to heavy ion implantation. The use of C and Al sacrificial coatings has enabled implanted ion retentions of 100% to be obtained in a number of ion-metal target systems, where the retentions in uncoated samples were as low as 20%. Ion implantation invariably leads to mixing at the sacrificial layer-metal target interface. This mixing may be detrimental in certain systems, so it is useful to be able to minimize or remove this mixed region. To achieve this, a number of techniques have been investigated: (1) removal of the mixed region in the latter stages of the implant; (2) using a barrier layer or chemical effects to minimize mixing at the sacrificial layer-metal interface; (3) choosing a sacrificial layer material which forms a mixed region which has desirable properties. The results of these investigations, for a number of different ion-target systems, are outlined in this paper. (orig.)

  18. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Martim P. S. R.; Correia, António Alberto S., E-mail: aalberto@dec.uc.pt [University of Coimbra, Department of Civil Engineering, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre (Portugal); Rasteiro, Maria G. [University of Coimbra, Department of Chemical Engineering, CIEPQPF (Portugal)

    2017-04-15

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb{sup 2+}), copper (Cu{sup 2+}), nickel (Ni{sup 2+}), and zinc (Zn{sup 2+}), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  19. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    International Nuclear Information System (INIS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-01-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb"2"+), copper (Cu"2"+), nickel (Ni"2"+), and zinc (Zn"2"+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  20. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Science.gov (United States)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  1. Observation on Heavy Metals in Sediment of Jakarta Bay Waters

    Directory of Open Access Journals (Sweden)

    Abdul Rozak

    2007-04-01

    Full Text Available Observation on heavy metals in Jakarta Bay, from June and September 2003. Heavy metals Pb in sediment at the West have been conductet of Jakarta Bay Waters varied between Pb = 8,49-31,22 ppm, Cd = <0,001-0,47 ppm, Cu = 13,81-193,75 ppm, Zn = 82,18-533,59 ppm and Ni = 0,99-35,38 ppm,while those at the Center of Jakarta Bay, varied between Pb = 2,21-69,22 ppm, Cd = <0,001-0,28 ppm, Cu = 3,36-50,65 ppm, Zn = 71,13-230,54 ppm and Ni = 0,42-15,58 ppm and at the East of Jakarta Bay, Pb content varied between 0,25-77,42 ppm, Cd = <0,001-0,42 ppm, Cu = 0,79-44,94 ppm, Zn = 93,21-289,00 ppm and Ni = 0,42-128,47 ppm. Hevy metals content in sediment the West of Jakarta Bay was high of equivalent the Center and East of Jakarta Bay. At than those composition sediment at the west was black, that indicated high heavy metals content.

  2. Volatilization of heavy metals and radionuclides from soil heated in an induction ''cold'' crucible melter

    International Nuclear Information System (INIS)

    Aloy, A.S.; Belov, V.Z.; Trofimenko, A.S.; Dmitriev, S.A.; Stefanovsky, S.V.; Gombert, D.; Knecht, D.A.

    1997-01-01

    The behavior of heavy metals and radionuclides during high-temperature treatment is very important for the design and operational capabilities of the off-gas treatment system, as well as for a better understanding of the nature and forms of the secondary waste. In Russia, a process for high-temperature melting in an induction heated cold crucible system is being studied for vitrification of Low Level Waste (LLW) flyash and SYNROC production with simulated high level waste (HLW). This work was done as part of a Department of Energy (DOE) funded research project for thermal treatment of mixed low level waste (LLW). Soil spiked with heavy metals (Cd, Pb) and radionuclides (Cs-137, U-239, Pu-239) was used as a waste surrogate. The soil was melted in an experimental lab-scale system that consisted of a high-frequency generator (1.76 MHz, 60 kW), a cold crucible melter (300 mm high and 90 mm in diameter), a shield box, and an off-gas system. The process temperature was 1,350--1,400 C. Graphite and silicon carbide were used as sacrificial conductive materials to start heating and initial melting of the soil batch. The off-gas system was designed in such a manner that after each experiment, it can be disconnected to collect and analyze all deposits to determine the mass balance. The off-gases were also sampled during an experiment to analyze for hydrogen, NO x , carbon dioxide, carbon monoxide and chlorine formation. This paper describes distribution and mass balance of metals and radionuclides in various parts of the off-gas system. The leach rate of the solidified blocks identified by the PCT method is also reported

  3. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China

    DEFF Research Database (Denmark)

    Hu, Wenyou; Huang, Biao; Tian, Kang

    2017-01-01

    Recently, greenhouse vegetable production (GVP) has grown rapidly and counts a large proportion of vegetable production in China. In this study, the accumulation, health risk and threshold values of selected heavy metals were evaluated systematically. A total of 120 paired soil and vegetable...... relatively high concentrations and transfer factors of heavy metals. The accumulation of heavy metals in soils was affected by soil pH and soil organic matter. The calculated hazard quotients (HQ) of the heavy metals by vegetable consumption decreased in the order of leafy > rootstalk > fruit vegetables...... with hazard index (HI) values of 0.61, 0.33 and 0.26, respectively. The HI values were all below 1, which indicates that there is a low risk of greenhouse vegetable consumption. Soil threshold values (STVs) of heavy metals in GVP system were established according to the health risk assessment. The relatively...

  4. Production of intense beams of highly charged heavy ions from RIKEN 18 GHz ECRIS and liquid He free SC-ECRIS

    International Nuclear Information System (INIS)

    Nakagawa, T.; Kidera, M.; Kageyama, T.; Kase, M.; Yano, Y.; Higurashi, Y.; Kurita, T.; Imanaka, M.

    2001-01-01

    We have constructed the high performance ECRISs for RIKEN RI Beam factory project and successfully produced intense beams of highly charged heavy ions. RIKEN 18 GHz ECRIS can especially produce intense beams of medium charge states of heavy ions (1.3 mA of Ar 8+ , 200 eμA of Xe 20+ ) by applying the various techniques, e.g., Al cylinder method, biased electrode method, optimization of the plasma electrode position. Very recently, we successfully produced intense beams of highly charged heavy ions (10 eμA of Xe 30+ , 1 eμA of Xe 36+ ) from the Liquid He free SC-ECRIS with operational frequency of 14 GHz

  5. Assessment of heavy metals in loose deposits in drinking water distribution system.

    Science.gov (United States)

    Liu, Quanli; Han, Weiqiang; Han, Bingjun; Shu, Min; Shi, Baoyou

    2018-06-09

    Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.

  6. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate.

    Science.gov (United States)

    Chien, Chih-Ching; Huang, Chia-Hsuan; Lin, Yi-Wei

    2013-03-01

    Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium's heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene's effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.

  7. Biomonitoring of heavy metals pollution in Lake Burullus, Northern ...

    African Journals Online (AJOL)

    aghomotsegin

    and they probably reduced the effect of high concentrations of these metals on the lake ... 31° 07' E. It's a shallow brackish lake connected with the sea by a ... The concentration of heavy metals in water (µg/l) at 15 stations at Lake Burullus.

  8. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  9. A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor

    Directory of Open Access Journals (Sweden)

    José Francisco Algorri

    2014-04-01

    Full Text Available A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage’s sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption.

  10. [Investigation and analysis of heavy metal pollution related to soil-Panax notoginseng system].

    Science.gov (United States)

    Chen, Lu; Mi, Yan-Hua; Lin, Xin; Liu, Da-Hui; Zeng, Min; Chen, Xiao-Yan

    2014-07-01

    soil was significantly correlated, and no significant correlation between the other indicators. Through the analysis of transportation transfer coefficient showed: Pb, As and Cr are not easy to transport aboveground part from the underground, but Cd and Hg are relatively easy to transport stems from rhizome, the migration of five heavy metals in the aerial part is relatively strong, and heavy metal of stems is easily transported to the leaves. P. notoginseng does not belong to the enrichment of heavy metals in crops, especially for Hg in soil with strong patience. In survey area, the content of heavy metals of P. notoginseng's planting soil is relatively high, and the heavy metals As, Pb, Cr, Cd of P. notoginseng also exist heavy metals exceeded problems. Due to the presence of heavy metals in crops internal absorption and translocation of special laws, accumulation of heavy metals varied significantly in different parts of P. notoginseng. The overall, the performance for the heavy metal content of the underground parts is more than aboveground, it explain heavy metals of P. notoginseng plants is still the main source of the soiL Therefore, the key to control of planting area soil environmental quality and reduce exogenous harmful substances secondary pollution of soil in the cultivation process are to study and solve the heavy metals pollution problem of P. notoginseng.

  11. Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain

    Science.gov (United States)

    Nelson, C.H.; Lamothe, P.J.

    1993-01-01

    The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (??g g-1): As 3,000 to TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21-0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate. ?? 1993 Estuarine Research Federation.

  12. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  13. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  14. Five-fold local symmetry in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Li M Z; Li F X; Zhang H P; Peng H L; Hu Y C; Wang W H

    2017-01-01

    The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure–property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure–property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure–property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry. (paper)

  15. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  16. Heavy metal dynamics in the soil-leaf-fruit system under intensive apple cultivation

    Directory of Open Access Journals (Sweden)

    Murtić Senad

    2014-01-01

    Full Text Available One of the major problems confronting agricultural production is heavy metal contamination of agricultural soils, which imposes considerable limitations on productivity and leads to great consumer health and safety concerns about the products obtained on these soils. The objective of this study was to evaluate heavy metal dynamics in the soil-leaf-fruit system in an intensive apple cv. 'Idared' planting located in the Municipality of Goražde. Heavy metal contents in the soil samples and plant material were determined by atomic absorption spectrophotometry using a Shimadzu 7000 AA device, according to the instructions specified in the ISO 11047 method. The dynamics of the heavy metals analyzed, excepting zinc, in the soil-leaf-fruit system was characterized by relatively high total levels of heavy metals in the soil and a very low degree of their accumulation in the leaves and in particular the fruits. No fruit sample was found to have toxic levels of any of the heavy metals analyzed. In terms of soil contamination, this suggests the suitability of the study location for safe apple fruit production.

  17. Liquid metals replace water steam

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V

    1976-12-01

    The techniques are described of power generation with regard to their effectiveness which depends on the efficiency of the conversion of thermal energy into electric energy. The magnetohydrodynamic conversion of energy is based on the use of induced electromotive force which results from the movement of the conductor in the magnetic field. The use of liquid metal as the working medium makes it possible to increase the initial temperature of the magnetohydrodynamic cycle to the limit of the highest technically attainable temperatures. The total efficiency of energy conversion in magnetohydrodynamic converters is 2 to 6%.

  18. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  19. Detection of heavy metals in water in Negeri Sembilan, Malaysia: From source to consumption

    Science.gov (United States)

    Khalaf, Baydaa; Abdullah, Md. Pauzi; Tahrim, Nurfaizah Abu

    2018-04-01

    Drinking water should be free from harmful levels of impurities, such as heavy metals. The aim of this study is to investigate the heavy metals concentrations in a water reticulation system of Negeri Sembilan. 25 stations were selected along Sungai Linggi (upstream of intake point) and through there reticulation system of Sungai Linggi Water Treatment Plant encompassing raw water through to the last point of use. Sampling activities were carried out in June and July 2016. The samples taken were analysed for heavymetals using an Inductively Coupled Plasma - Optical Emission Spectrometer (ICP-OES). In addition other water quality parameters were measured in situ (pH, water temperature, conductivity and dissolved oxygen) and analysed in the laboratory (BOD, COD, TSS, NH3-N, TOC and residual chlorine). The results showed a high level of Ca in the distribution system, while in the treatment plant it was normal, as well as Fe is decreased. Meanwhile Mn is decreased after treatment processes. The concentrations of DO and temperature in the tap water exceeded the standard concentrations.

  20. The chemistry of the liquid alkali metals

    International Nuclear Information System (INIS)

    Addison, C.C.

    1984-01-01

    A study of liquid alkali metals. It encourages comparison with molecular solvents in chapter covering the nature and reactivity of dissolved species, solvation, solubility and electrical conductivity of solutions. It demonstrates lab techniques unique to liquid alkali metals. It discusses large-scale applications from storage batteries to sodium-cooled reactors and future fusion reactors, and associated technological problems. Contents: Some Basic Physical and Chemical Properties; Manipulation of the Liquids; The Chemistry of Purification Methods; Species Formed by Dissolved Elements; Solubilities and Analytical Methods; Alkali Metal Mixtures; Solvation in Liquid Metal; Reactions Between Liquid Alkali Metals and Water; Reactions of Nitrogen with Lithium and the Group II Metals in Liquid Sodium; The Formation, Dissociation and Stability of Heteronuclear Polyatomic Anions; Reactions of the Liquid Alkali Metals and Their Alloys with Simple Alipatic Hydrocarbons; Reactions of the Liquid Alkali Metals with Some Halogen Compounds; Hydrogen, Oxygen and Carbon Meters; Surface Chemistry and Wetting; Corrosion of Transition Metals by the Liquid Alkali Metals; Modern Applications of the Liquid Alkali Metals