WorldWideScience

Sample records for heavily fertilized soils

  1. Fertilizers and soil improvers

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    In greenhouse industry fertilizers as well as soil improvers are widely used. Fertilizers are mainly applied to optimize the physical-chemical conditions of the root environment and are used for growing in soils in situ as well as for growing in substrates. Soil improvers are materials solely added

  2. Dendrochemical response to soil fertilization

    Science.gov (United States)

    David R. DeWalle; Jeffrey S. Tepp; Bryan R. Swistock; Pamela J. Edwards; William E. Sharpe; Mary Beth Adams; James N. Kochenderfer

    2003-01-01

    Use of chemical element content of tree rings to detect soil acid or base changes was tested at 13 sites of former forest fertilization trials in the eastern United States and Canada. Ammonium sulfate or nitrogen fertilization was the typical acidification treatment, while lime added with or without other fertilizer was the typical base treatment. Molar ratios of...

  3. Mycorrhizas and tropical soil fertility

    NARCIS (Netherlands)

    Cardoso, I.M.; Kuyper, T.W.

    2006-01-01

    Major factors that constrain tropical soil fertility and sustainable agriculture are low nutrient capital, moisture stress, erosion, high P fixation, high acidity with aluminium toxicity, and low soil biodiversity. The fragility of many tropical soils limits food production in annual cropping

  4. Microbial leaching of toxic metals and arsenic from a heap consisting of heavily polluted soil

    Science.gov (United States)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Soil heavily polluted with toxic heavy metals (mainly Cu, Zn, Cd) and arsenic was subjected to microbial cleanup in a heap specially constructed for this purpose. The heap was located on an impermeable geomembrane, had the shape of a truncated pyramid and contained about 240 tons of soil collected mainly from the horizon A. The soil was highly acidic (with an initial pH of about 3.2) and was preliminarily crushed to minus 2.5 cm particle size. The pollutants were present mainly as the relevant sulphide minerals and the soil was inhabited by different microorganisms, including some acidophilic chemolithotrophic bacteria able to oxidize sulphides and to solubilize the relevant toxic elements. The heap possessed systems for irrigation and aeration and was surrounded by ditches to collect the drainage heap effluents containing the dissolved pollutants. The treatment of the soil was carried out by means of interrupted irrigation with leach solutions containing diluted sulphuric acid (to maintain pH in the heap within the range of about 2.5 - 2.8) and ammonium and phosphate ions to maintain the microbial growth. The treatment was carried out for a period of about two years during different climatic seasons. After the end of leaching the soil was subjected to some conventional melioration procedures such as liming, grassing, moulching, addition of fertilizers and animal manure and periodic ploughing and irrigation to increase its quality to levels suitable for agricultural utilization.

  5. Soil Fertility Status on Organic Paddy Experiment

    Directory of Open Access Journals (Sweden)

    Mujiyo

    2015-07-01

    Full Text Available The study aims to determine fertility status of the soil after organic paddy experiments using kinds and doses of organic fertilizers. Experiment was conducted at greenhouse laboratory in Faculty of Agriculture Sebelas Maret University Surakarta. Experimental design used completely randomized design with 9 kinds of treatment was replicated 3 times. Experiments were the use of cow manure, Azolla fertilizer, Azolla inoculum and its combinations that are based on fulfilling nutrient requirements of 120 kg N ha-1. Result shows that the use of cow manure, Azolla fertilizers and Azolla inoculum had no effect on changes of soil fertility status. Soil fertility status was not significantly correlated with cow manure (0,16ns, Azolla fertilizer (0,26ns and Azolla inoculum (0,16ns. Average of final soil fertility status included fertile category, which was similar as the initial soil fertility status. Average of final soil properties of treatment but nevertheless was relatively higher than in no treatment, indicating the use of cow manure, Azolla fertilizer, Azolla inoculum and its combinations had greater impact to soil properties. Cow manure despite increased available K2O and dry grain, but it did not significantly increase the soil fertility status from fertile to very fertile. This was presumably due to the relatively short experiment period, only one planting season had not given significant effect to soil properties. Implication of this study is the use of cow manure, Azolla fertilizer, Azolla inoculum and its combinations although did not increase the soil fertility status but could maintain soil fertility status as the initial conditions before planting.

  6. Fertile ground? : soil fertility management and the African smallholder

    NARCIS (Netherlands)

    Misiko, M.

    2007-01-01

    Keywords: smallholder farmers, soil fertility, experimentation, "inconvenience", realist.The focus in this thesis is to form a view of how well soil fertility research performs within the ever shifting smallholder contexts. This study examined application of agro-ecological

  7. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  8. "Lou soil", a fertile anthropogenic soil with thousands of years of cultivating history

    Science.gov (United States)

    Zhou, J.; Liang, B.; Yan, J.; Zhao, W.

    2012-12-01

    in a warming earth. Our micro-plot experiment with 15N-labeled fertilizer in the long-term fertilizer trial found that the use efficiency of N fertilizer (NUE) in MNPK soil was higher than the NPK soil and NF soil in both wheat-summer fallow and winter wheat and summer corn rotation system. However, the N fertilizer losses in MNPK soil was lower than the NPK soil and NF soil in the two systems. We concluded that the long-term combined application of manure and inorganic fertilizers improves N synchrony between the supply and crop demand, and reduces its loss. Since the 1980s, however, the application of manure to arable fields has declined in Guanzhong Plain, and in other parts of China, due to the increasing use of inorganic fertilizers, and labor costs to apply manure. The nutrient input of the arable fields are heavily dependent on inorganic fertilizers. It changes the biogeochemical cycling of the ecosystem, and results in a series of problems, including eutrophication, greenhouse gas emission, and nitrate leaching. Therefore, we need to find the alternatives to solve the problems, to conserve this old anthropogenic soil while producing enough food to feed the growing population.

  9. Soil compaction and fertilization in soybean productivity

    Directory of Open Access Journals (Sweden)

    Beutler Amauri Nelson

    2004-01-01

    Full Text Available Soil compaction and fertilization affect soybean development. This study evaluated the effects of soil compaction and fertilization on soybean (Glycine max cv. Embrapa 48 productivity in a Typic Haplustox under field conditions in Jaboticabal, SP, Brazil. A completely randomized design with a 5 x 2 factorial layout (compaction vs. fertilization, with four replications in each treatment, was employed. Each experimental unit (replicate consisted of a 3.6 m² useful area. After the soil was prepared by cultivation, an 11 Mg tractor passed over it a variable number of times to create five levels of compaction. Treatments were: T0= no compaction, T1= one tractor pass, T2= two, T4= four, and T6= six passes, and no fertilizer and fertilizer to give soybean yields of 2.5 to 2.9 Mg ha-1. Soil was sampled at depths of 0.02-0.05, 0.07-0.10, and 0.15-0.18 m to determine macro and microporosity, penetration resistance (PR, and bulk density (Db. After 120 days growing under these conditions, the plants were analyzed in terms of development (plant height, number of pods, shoot dry matter per plant and weight of 100 seeds and seed productivity per hectare. Soil compaction decreased soybean development and productivity, but this effect was decreased by soil fertilization, showing that such fertilization increased soybean tolerance to soil compaction.

  10. Effects of different mechanized soil fertilization methods on corn soil fertility under continuous cropping

    Science.gov (United States)

    Shi, Qingwen; Wang, Huixin; Bai, Chunming; Wu, Di; Song, Qiaobo; Gao, Depeng; Dong, Zengqi; Cheng, Xin; Dong, Qiping; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Experiments for mechanized soil fertilization for corns were conducted in Faku demonstration zone. On this basis, we studied effects on corn soil fertility under continuous cropping due to different mechanized soil fertilization methods. Our study would serve as a theoretical basis further for mechanized soil fertilization improvement and soil quality improvement in brown soil area. Based on the survey of soil physical characteristics during different corn growth periods, we collected soil samples from different corn growth periods to determine and make statistical analysis accordingly. Stalk returning to field with deep tillage proved to be the most effective on available nutrient improvement for arable soil in the demonstration zone. Different mechanized soil fertilization methods were remarkably effective on total phosphorus improvement for arable soil in the demonstration zone, while less effective on total nitrogen or total potassium, and not so effective on C/N ratio in soil. Stalk returning with deep tillage was more favorable to improve content of organic matter in soil, when compared with surface application, and organic granular fertilizer more favorable when compared with decomposed cow dung for such a purpose, too.

  11. Geostatistical and multivariate statistical analysis of heavily and manifoldly contaminated soil samples.

    Science.gov (United States)

    Schaefer, Kristin; Einax, Jürgen W; Simeonov, Vasil; Tsakovski, Stefan

    2010-04-01

    The surroundings of the former Kremikovtzi steel mill near Sofia (Bulgaria) are influenced by various emissions from the factory. In addition to steel and alloys, they produce different products based on inorganic compounds in different smelters. Soil in this region is multiply contaminated. We collected 65 soil samples and analyzed 15 elements by different methods of atomic spectroscopy for a survey of this field site. Here we present a novel hybrid approach for environmental risk assessment of polluted soil combining geostatistical methods and source apportionment modeling. We could distinguish areas with heavily and slightly polluted soils in the vicinity of the iron smelter by applying unsupervised pattern recognition methods. This result was supported by geostatistical methods such as semivariogram analysis and kriging. The modes of action of the metals examined differ significantly in such a way that iron and lead account for the main pollutants of the iron smelter, whereas, e.g., arsenic shows a haphazard distribution. The application of factor analysis and source-apportionment modeling on absolute principal component scores revealed novel information about the composition of the emissions from the different stacks. It is possible to estimate the impact of every element examined on the pollution due to their emission source. This investigation allows an objective assessment of the different spatial distributions of the elements examined in the soil of the Kremikovtzi region. The geostatistical analysis illustrates this distribution and is supported by multivariate statistical analysis revealing relations between the elements.

  12. Effects of fertilization regimes on tea yields, soil fertility, and soil microbial diversity

    Directory of Open Access Journals (Sweden)

    Shan-Lian Qiu

    2014-09-01

    Full Text Available Fertilization is an important agricultural practice for increasing crop yields and influencing soil properties. A field experiment was conducted in the period of 2006-2011 in southeastern China, to investigate the effects of fertilization regimes on tea (Camellia sinensis [L.] Kuntze yields, soil chemical properties, and soil bacterial and fungal communities. The field experiment included six treatments: (1 unfertilized control (CON; (2 chemical fertilizers (NPK; (3 half-chemical fertilizers plus half-organic manure (1/2NPKOM; (4 organic manure fertilizers (OM; (5 half-chemical fertilizers plus half-organic manure plus legume stover returned (1/2NPKOM+L, and (6 chemical fertilizers plus legume stover returned (NPKL. Results showed that, compared to the control, NPK treatment showed no significant effect on soil organic matter (SOM, total N (TN, total P (TP, total K (TK, available N (AN, available K (AK and tea yields, but showed the lowest bacterial Shannon index of 1.714 and the lowest value of 2.002 for fungal Shannon index. Organic manure treatment had the richest diversity of soil bacterial community with Shannon index of 2.542, and the highest levels of soil essential nutrients, including SOM (30.03%, TN (2.90 g kg-1, TP (1.35 g kg-1, AN (245.30 mg kg-1, AP (57.00 mg kg-1, and AK (271.80 mg kg-1, followed by 1/2NPKOM+L, which appeared the maximal tea yields of 6772 kg ha-1. Organic manure amendment was a key factor in determining soil properties and productivity. Base on soil quality and tea yields, both OM and 1/2NPKOM+L treatments were recommended as better choices of fertilization practices for tea soils in southeastern China. These findings provided a better understanding of the importance of fertilizations in promoting soil fertility, crop yields, and altering soil microbial diversity, leading to selection of scientific fertilization practices for sustainable development of agroecosystems.

  13. Annual legumes for improving soil fertility in the smallholder maize ...

    African Journals Online (AJOL)

    Annual legumes are widely grown by smallholder farmers in Zimbabwe. In addition to providing food, these crops are widely recognised to help maintain soil fertility. In this review we highlight their soil fertility benefits and shortcomings and suggest areas for future work. Most of our knowledge about the soil fertility benefits ...

  14. Soil fertility Status, Management, and Research in East Africa ...

    African Journals Online (AJOL)

    This study reviews and synthesizes the soil fertility status, management among smallholder farmers and research in the three countries of east Africa, namely Kenya, Tanzania and Uganda. We observe that many studies note the declining soil fertility, mainly due to soil fertility mining, putting crop production in an ...

  15. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  16. Effect of Rock Phosphate on Zn and Fe Bioavailability and Accumulation by Salix smithiana in Heavily Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Vondrackova S.

    2013-04-01

    Full Text Available High biomass production Salix smithiana was proved as the plant able to accumulate substantial amount of Cd and Zn in aboveground biomass. Nevertheless, in heavily contaminated soils (mainly by Zn willows can suffer from chlorosis because of Fe deficiency induced by excess of Zn amount. Method such as chemophytostabilization seems like very good measure for planting willows in such heavily contaminated soil. In our experiments we evaluated effect of rock phosphate on changes in Zn and Fe bioavailability and accumulation of these elements by willows together with the willows growth on heavily contaminated soil. Addition of rock phosphate reduced plant-available Zn concentrations in soils resulting in significant decrease of Zn content in leaves. In the case of Fe, however, its contents in the leaves significantly decreased as well, although the mobile portion of Fe in soil remained unchanged. Yield of aboveground biomass in rock phosphate treatment was not significantly different in comparison to the control. After the first vegetation period, we can conclude that reduction of Zn contents in willows after rock phosphate application did not lead to suppress of Fe deficiency and improvement of willow growth in heavily contaminated soil.

  17. Soil fertility in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Janssen, B.H.

    1970-01-01

    Soil fertility was studied in the Great Konya Basin, as part of the study carried out by the Department of Tropical Soil Science of the Agricultural University at Wageningen.

    The purpose was to find the agricultural value of the soils, to learn about the main factors governing soil fertility,

  18. Assessment of Fertility Status of Soils Supporting Coconut ( Cocus ...

    African Journals Online (AJOL)

    Coconut cultivation is mostly practiced in the Western and Central regions of Ghana. Information on the fertility status of the soils on which coconuts are grown and possible fertilizer recommendation is not common. Since coconut yield is generally related to the fertility status of the soil, a study was conducted to evaluate the ...

  19. Production efficiency and economic potential of different soil fertility ...

    African Journals Online (AJOL)

    This paper provides the economic evaluation of different soil fertility replenishing technologies (use of inorganic fertilizers, organic manure, and rhizobium inoculant) that were tested during field studies and recommended to groundnut farmers. Data on soil fertility technologies used by households, groundnut yields, and ...

  20. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations

    NARCIS (Netherlands)

    Jordan-Meille, L.; Rubaek, G.H.; Ehlert, P.A.I.; Genot, V.; Hofman, G.; Goulding, K.; Recknagel, J.; Provolo, G.; Barraclough, P.

    2012-01-01

    The procedure for applying phosphorus (P) fertilizer to soil can be divided into three consecutive steps: (i) Measurement of soil-P availability, (ii) calibration of the soil-P fertility level and (iii) estimation of the recommended P dose. Information on each of these steps was obtained for 18

  1. Practice makes perfect: participatory innovation in soil fertility management to improve rural livelihoods in East Africa

    NARCIS (Netherlands)

    Jager, de A.

    2007-01-01

    Keywords: soil nutrient balances, soil fertility degradation, East Africa , participatory innovation, experiential learning, farmer field schools, smallholder agriculture Maintaining and improving soil fertility is crucial for Africa to attain the Millennium Development Goals. Fertile soil and

  2. Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Southern China

    Science.gov (United States)

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0–20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (Pfertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (Pfertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region. PMID:23028550

  3. Influence of long-term fertilization on soil physicochemical properties in a brown soil

    Science.gov (United States)

    Li, Dongdong; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng

    2018-01-01

    This study aims to explore the influence on soil physicochemical properties under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen and phosphate fertilizer).The results showed thatthe long-term application of chemical fertilizers reduced soil pH value, while the application of organic fertilizers increased pH value. Fertilization significantly increased the content of AHN, TN and SOM. Compared with the CK treatment and chemical fertilizer treatments, organic fertilizer treatments significantly increased the content of AP and TP. The content of AK and TK were no significant difference in different treatment.

  4. Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations and yield

    OpenAIRE

    Herencia, Juan F.; Ruiz Porras, J. C.; Melero Sánchez, Sebastiana; Morillo González, Esmeralda; Maqueda Porras, Celia

    2007-01-01

    Interest in soil organic fertilization has grown appreciably in recent years; however, few studies have been performed in greenhouses. A comparative study of organic vs. mineral fertilization in a greenhouse has been conducted for 9 yr in a calcareous loamy soil classified as Xerofluvent in the Guadalquivir River Valley, Seville, Spain. The nutrient availability in the soil, macronutrient concentration in the edible part of the plants, and yield were examined. The organic fertilizer used was ...

  5. The Effect of Fertilizer Regime on Soil Fauna

    Directory of Open Access Journals (Sweden)

    Mignon Sandor

    2016-11-01

    Full Text Available Soil fauna activity in agricultural soil is a key factor to maintain soil fertility and to assure soil ecosystem services. It is now accepted that agricultural practices like tillage and pesticide use can harm soil organisms including earthworms and springtails. Other practices like the use of green manure or animal manure have been considered as being beneficial to these soil invertebrates. To deepen our knowledge on the effect of fertilizers (mineral and organic on earthworms (Aporrectodea caliginosa and Lumbricus terrestris and springtails  (Folsomia candida 56 microcosm experiments were made with two soil types and two hydric regimes. The microcosms were amended with four fertilizers: ammonium nitrate, mustard as green manure, cow manure and slurry. The results emphasize that mustard use had beneficial effect on Folsomia candida abundance and Aporrectodea caliginosa biomass, while mineral fertilizer had negative effects for all species used in the experiment.

  6. Managing Degrade Soils with Balanced Fertilization in Zimbabwe.

    NARCIS (Netherlands)

    Rusinamhodzi, Leonard; Corbeels, Marc; Zingore, S.; Nyamangara, J.; Giller, K.E.

    2014-01-01

    Results from a long-term study showed that maize yields on depleted soils were marginally increased with multi-nutrient fertilizer application, while N fertilizer application alone resulted in lower yields on both sandy and clay soils. However, largest maize yields after nine seasons were achieved

  7. Soil fertility management practices by smallholder farmers in ...

    African Journals Online (AJOL)

    production in Vhembe district, Limpopo province. A survey of 85 randomly sampled farmers was conducted using a standard questionnaire to identify (i) the practices that smallholder farmers use to maintain or improve soil fertility and (ii) the constraints associated with soil fertility management practices used by the farmers.

  8. Soil fertility assessment and mapping of spatial variability at ...

    African Journals Online (AJOL)

    Information on soil fertility assessment and mapping of arable land helps to design appropriate soil fertility management practices. Experiment was conducted at ... Exchangeable Ca and Mg ranged from 9.25 (LU 4) to 23.35 cmol (+) kg-1 (LU 2) and 2.76 (LU 5) to 8.50 cmol (+) kg-1 (LU 3), respectively. The highest (76.86%) ...

  9. The potential role of agroforestry in maintaining soil fertility on ...

    African Journals Online (AJOL)

    Despite legislation curtailing their use, they are being used for grazing, and crop and vegetable production. The soils in the cultivated dambos suffer from major phosphorus and sulphur deficiencies and have low nitrogen and organic matter content. Organic fertilizers play a significant role in maintaining soil fertility on these ...

  10. Effect of Soil Types and Phosphorus Fertilizer Interaction on the ...

    African Journals Online (AJOL)

    Effect of Soil Types and Phosphorus Fertilizer Interaction on the Growth and Yield of Maize ( Zea mays .L) ... This yield at varying phosphorus levels is an indication that soil types do have an effect on the yield of crops. Since all the soils are used in planting maize one soil type cannot be said to be better than the other, ...

  11. EFFECTS OF MINERAL AND ORGANIC-MINERAL PHOSPHATE FERTILIZERS ON SOIL FERTILITY PARAMETERS

    Directory of Open Access Journals (Sweden)

    Diego Henriques

    2013-06-01

    Full Text Available Organic sources can replace all or part of the mineral phosphorus used in fertilizer, providing significant changes in soil chemical properties. This research evaluated the effects of mineral and organic-mineral phosphorus on the soil fertility in maize tillage. The experiment was installed in a seedling nursery at Universidade do Oeste Paulista in Presidente Prudente-SP, in a complete randomized blocks design, with 9 treatments (different Biofós doses associated with different superphosphate doses and 4 replicates. As phosphorus fertilizer source was used the organic-mineral Biofós (3.8% P2O5 and simple superphosphate (18% P2O5. At 50 days after emergence of corn plants it was held soil sampling vessels for evaluation of phosphorus, organic matter, calcium, magnesium, base saturation and soil pH. The fertilizer organic-mineral showed the same efficiency of simple superphosphate in soil fertility. The organo-mineral fertilizer showed the same efficiency of superphosphate on soil fertility, both of which promoted the same changes in pH. Higher Biofós doses should have high levels of soil organic matter, which was not observed. Phosphorus, calcium, magnesium and base saturation level did not differ in all fertilizer sources and levels used.

  12. Soil Aggregates and Organic Carbon Distribution in Red Soils after Long-term Fertilization with Different Fertilizer Treatments

    Science.gov (United States)

    Tang, J.; Wang, Y.

    2013-12-01

    Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long-term fertilization. OC mainly existed in the macroaggregate (> 0.25 mm) of red soils after the long-term fertilization, and the

  13. [Construction effect of fertile cultivated layer in black soil].

    Science.gov (United States)

    Han, Xiao-zeng; Zou, Wen-xiu; Wang, Feng-xian; Wang, Feng-ju

    2009-12-01

    The clayey farmland soil in black soil region of Northeast China, due to the existence of thicker plough pan created by unreasonable tillage, is a main limiting factor for local agricultural production. In this paper, a field experiment was conducted to study the construction effect of fertile cultivated layer on crop yield, soil physical properties, soil moisture content, and soil microbial number. After the construction of fertile cultivated layer, the soil had a thicker cultivated layer, and the crop yield was increased. Comparing with traditional tillage, applying straw and organic manure into 20-35 cm soil layer decreased soil bulk density by 9.88% and 6.20%, increased soil porosity by 9.58% and 6.02%, and enhanced soil saturated hydraulic conductivity by 167.99 and 73.78%, respectively, indicating that the construction of fertile cultivated layer could improve soil aeration and water permeability, and enhance the infiltration of rainfall. The soil moisture content and water use efficiency under the application of straw and organic manure into plough pan were higher than those under traditional tillage, and a positive correlation was observed between the moisture content in 0-35 cm soil layer and the emergence of maize seedlings. Due to the increased organic carbon source and aeration in the constructed fertile cultivated layer, soil microbial number was also increased.

  14. [Effects of different fertilizer application on soil active organic carbon].

    Science.gov (United States)

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  15. EFFICIENCY OF FERTILIZATION AND SOIL CULTIVATION IN CROP ROTATION

    OpenAIRE

    Candráková, Eva; Richard POSPIŠIL; ONDREJČÍKOVÁ, Zora

    2009-01-01

    The experiment with the crop rotation: winter wheat, pea, corn, spring barley and cow-grass were founded in 2001- 2004. We examined the effect of the preceding crop, the soil cultivation and fertilization on yield of grain of the main product. The methods of soil cultivation: tillage to the depth of 0.25 m, to the depth of 0.15 m and cultivation where we used disk tools to the depth of 0.10 m. In the variants of fertilization had been used fertilization of the artificial fertilizer with the b...

  16. Biochar for soil fertility and natural carbon sequestration

    Science.gov (United States)

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  17. Long-Term Fertilization Impacts on Soil Fertility and Resources Use

    DEFF Research Database (Denmark)

    van der Bom, Frederik Johannes T

    nutrient inputs from synthetic fertilisers and animal manure, and variable soil fertility conditions, affect growth, productivity, and resilience of cereal crops, and examined the effects on soil phosphorus pools and soil microbial communities. The study included 20 year year of experimental field data...

  18. Degradation of soil fertility can cancel pollination benefits in sunflower.

    Science.gov (United States)

    Tamburini, Giovanni; Berti, Antonio; Morari, Francesco; Marini, Lorenzo

    2016-02-01

    Pollination and soil fertility are important ecosystem services to agriculture but their relative roles and potential interactions are poorly understood. We explored the combined effects of pollination and soil fertility in sunflower using soils from a trial characterized by different long-term input management in order to recreate plausible levels of soil fertility. Pollinator exclusion was used as a proxy for a highly eroded pollination service. Pollination benefits to yield depended on soil fertility, i.e., insect pollination enhanced seed set and yield only under higher soil fertility indicating that limited nutrient availability may constrain pollination benefits. Our study provides evidence for interactions between above- and belowground ecosystem services, highlighting the crucial role of soil fertility in supporting agricultural production not only directly, but also indirectly through pollination. Management strategies aimed at enhancing pollination services might fail in increasing yield in landscapes characterized by high soil service degradation. Comprehensive knowledge about service interactions is therefore essential for the correct management of ecosystem services in agricultural landscapes.

  19. Application of Integrated Soil Fertility Approach in the Improvement ...

    African Journals Online (AJOL)

    This ecological region, to buttress the facts of its inadequacy in soil fertility and crop production, and do to these results, the soil suffers from inherent soil or land degradation, overgrazing, lack of adequate use of modern facing technologies, continuous cultivation, annual bush burning, moistures stress, and related erosion ...

  20. Soil fertility and growth of Eucalyptus grandis in Brazil under ...

    African Journals Online (AJOL)

    Silvicultural operations such as soil preparation, logging residue management and application of fertilisers can influence soil fertility, and hence nutrient uptake and tree growth. This paper reports the effect of site management practices of minimum and intensive cultivation of the soil on the growth of a stand of Eucalyptus ...

  1. Soil fertility replenishment through agroforestry systems in two ...

    African Journals Online (AJOL)

    The main limiting nutrient in most communal areas of Zimbabwe is nitrogen (N). There is also deterioration of soil physical properties without continual addition of organic matter to the soil. Soil fertility replenishment through agroforestry technologies such as biomass transfer and improved fallows are discussed in terms of ...

  2. Spatial Analysis of Soil Fertility Using Geographical Information ...

    African Journals Online (AJOL)

    The research evaluated soil fertility condition of River Otamiri watershed in southeastern Nigeria in relation to topographic heterogeneity using GIS technique. GPS was used to determine the geodetic coordinate of the sampling points and site elevation. Soil samples were collected and analyzed using standard soil analysis ...

  3. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    Science.gov (United States)

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  4. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    NARCIS (Netherlands)

    Oyelami, A.O.; Okere, U.V.; Orwin, K.; Deyn, de G.B.; Jones, K.C.; Semple, K.T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing

  5. Scarification, fertilization and herbicide treatment effects on planted conifers and soil fertility

    National Research Council Canada - National Science Library

    Burgess, D.M; Baldock, J.A; Wetzel, S; Brand, D.G

    1995-01-01

    ...), fertilization and herbicide application on soil nutrient and organic carbon content and tree growth and foliar nutrient status were examined after seven years in a study located within the Great Lakes-St...

  6. Response of spring wheat to different soil and foliar fertilization

    National Research Council Canada - National Science Library

    Wacław JARECKI; Jan BUCZEK; Dorota BOBRECKA-JAMRO

    2017-01-01

    In the years 2013-2015 a field experiment was carried out, whose aim was to determine the response of spring wheat cultivar Arabella to different levels of soil fertilization with NPK and foliar feeding Plonvit Zboża...

  7. Exploring new pathways for innovative soil fertility management in Kenya

    OpenAIRE

    Onduru, D.D.; Jager, de, AG Bram; (KARI) Gachini, G.N.; Diop, J.M.

    2001-01-01

    This working paper discusses the impact of a multi-institutional research programme in low potential areas of Kenya. The programme elaborated nutrient balances, combined with economic analysis, to better understand causes and effects of soil fertility decline. Alongside, better soil fertility management practices were developed using a participatory technology approach. This paper assesses to what extent farmers changed their practices, if the program has influenced way of working with extens...

  8. Cadmium in fertilizers, soil, crops and foods - the Swedish situation

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, S.; Landner, L. [Swedish Environmental Research Group (MFG)

    1998-03-01

    The aim of this report is to review available information on the fluxes of cadmium (Cd) to agricultural soils and crops in Sweden from phosphorus fertilizers (P-fertilizer) and other sources, and to discuss how the content of Cd in soil, crops and human food may be influenced by the specific environmental conditions in Sweden, as well as by the agricultural practices used in the country 62 refs, 15 figs, 18 tabs. With 5 page summary in Swedish

  9. SEWAGE SLUDGE AS AN INGREDIENT IN FERTILIZERS AND SOIL SUBSTITUTES

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    2016-06-01

    Full Text Available In Poland, sludge management especially in medium and small sewage treatment plants is still a significant problem. According to data from the Central Statistical Office and the report on the implementation of the National Urban Wastewater Treatment Program (in polish KPOŚK land application of sewage sludge remains one of the main methods, although there has been considerable interest known: 'application for other purposes ", where the preparation of composts and fertilizers is included. The use of fertilizer produced from sewage sludge (compost, granules, organic and mineral fertilizers, is regulated by the Act on fertilizers and fertilization, and the relevant implementing rules. For example, they define the test procedure (concerning the quality of fertilizers to enable appropriate permissions to market this type of fertilizers. There is still only several technologies existing on the Polish market dedicated to production of fertilizers in advanced technologies of sewage sludge treatment. Usually the treatment plants are trying to obtain the necessary certificates for generated fertilizers (including composts, or soils substitutes. The advantages of these technologies should be no doubt: the loss of waste status, ability to store the fertilizer and unlimited transportation between areas, sanitization of the product (as a result of the use of calcium or sulfur compounds or temperature should be an alternative for drying technology. While the disadvantages are primarily the investment costs and time consuming certification procedures. However, these solutions enable to maintain the organic matter and phosphorus as well as greater control over possible pollution introduced into the soil.

  10. Soil phosphorus availability and soybean response to phosphorus starter fertilizer

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    2014-10-01

    Full Text Available Phosphorus fixation in tropical soils may decrease under no-till. In this case, P fertilizer could be surface-spread, which would improve farm operations by decreasing the time spend in reloading the planter with fertilizers. In the long term, less soluble P sources could be viable. In this experiment, the effect of surface-broadcast P fertilization with both soluble and reactive phosphates on soil P forms and availability to soybean was studied with or without fertilization with soluble P in the planting furrow in a long-term experiment in which soybean was grown in rotation with Ruzigrass (Brachiaria ruziziensis. No P or 80 kg ha-1 of P2O5 in the form of triple superphosphate or Arad reactive rock phosphate was applied on the surface of a soil with variable P fertilization history. Soil samples were taken to a depth of 60 cm and soil P was fractionated. Soybean was grown with 0, 30, and 60 kg ha-1 of P2O5 in the form of triple phosphate applied in the seed furrow. Both fertilizers applied increased available P in the uppermost soil layers and the moderately labile organic and inorganic forms of P in the soil profile, probably as result of root decay. Soybean responded to phosphates applied on the soil surface or in the seed furrow; however, application of soluble P in the seed furrow should not be discarded. In tropical soils with a history of P fertilization, soluble P sources may be substituted for natural reactive phosphates broadcast on the surface. The planting operation may be facilitated through reduction in the rate of P applied in the planting furrow in relation to the rates currently applied.

  11. Phosphorus content in long-term fertilized soils

    Science.gov (United States)

    Pizzeghello, D.; Morari, F.; Berti, A.; Nardi, S.; Giardini, L.

    2009-04-01

    Phosphorous (P) is often considered a limiting nutrient in crop production. However, particularly in intensive livestock and pig farming areas large surplus of P inputs associated with manure application to agricultural soils may result in an excessive P accumulation and a consequent gradual saturation of the soil P-sorption capacity. This event must be discouraged in order to contain possible eutrophication. In this study we investigated the impact of a long-term fertilization experiment on the accumulation in soil of different form of P. The experiment has been underway since 1964 on the University of Padova Experimental farm. The treatments derived from the factorial combination of 3 types of soil (clay, sandy and peaty) with 3 types of mineral, organic or mixed fertilization, organized in two randomized blocks. A total of 36 lysimeters (surface of 4 m2 and 80 cm deep) were cultivated. Fertilization rates were as follows: 0, no fertilization; F1 manure (20 t ha-1 y-1); M1, mineral fertilization (100 kg ha-1 y-1 N); F1M1, manure (20 t ha-1 y-1) + mineral fertilization (100 kg ha-1 y-1 N); F2 manure (40 t ha-1 y-1); M2, mineral fertilization (200 kg ha-1 y-1 N - 100 P2O5 - 280 K2O). Soil samples were taken using a 2-cm diameter auger from 0 to 100 cm depth, every 10 cm. P was analysed in term of total, organic and available (Olsen) phosphorus. Only treatments 0, M2 and F2 were subjected to soil sampling and chemical analyses. Results showed as the variables were affected by all the factors considered (treatment, soil and depth). Both farmyard manure and mineral fertilization increased the P content in function of soil types. In particular, as concerning the interaction between fertilization and depth, manure as well as mineral fertilization influenced the available P along soil profiles. The long-term fertilizer applications increased the P content at a level which resulted potentially hazardous for the environment.

  12. Unravelling changes in soil fertility of agricultural land in The Netherlands

    NARCIS (Netherlands)

    Reijneveld, J.A.

    2013-01-01

      Keywords: Soil fertility, soil test, phosphorus, soil organic matter, soil organic carbon, fertilization recommendation, data base, the Netherlands On fertile soils, high-yielding crop production systems can be built which are indispensable both for profitable farming and for feeding the

  13. Phytoextraction of Nitrogen and Phosphorus by Crops Grown in a Heavily Manured Dark Brown Chernozem under Contrasting Soil Moisture Conditions.

    Science.gov (United States)

    Agomoh, Ikechukwu; Hao, Xiying; Zvomuya, Francis

    2017-04-25

    Repeated uptake of excess nutrients by crops in soils with a long history of manure application may be a viable option for reducing the nutrient levels. In this greenhouse study, we examined the effectiveness of six 40-day cycles of barley, canola, corn, oat, pea, soybean, and triticale, all grown under two moisture regimes (100% and 50% soil field capacity, SFC), at extracting nitrogen (N) and phosphorus (P) from a Dark Brown Chernozem that had received 180 Mg ha(-1) (wet wt.) of beef cattle feedlot manure annually for 38 years. Repeated cropping resulted in an overall decrease in dry matter yield (DMY). The decrease in N and P uptake relative to Cycle 1 was fastest for the cereal grains and less pronounced for the two legumes. However, cumulative N and P uptake values were significantly greater for corn than the other crops under both moisture regimes. The reduction in soil N and P was greater under the 100% than the 50% SFC. These results indicate that repeated cropping can be a useful management practice for reducing N and P in a heavily manured soil. The extent of reduction will be greater for crops with high biomass production under adequate moisture supply.

  14. Long-term fate of nitrate fertilizer in agricultural soils.

    Science.gov (United States)

    Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André

    2013-11-05

    Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere-hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three-decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61-65% of the applied fertilizers N were taken up by plants, whereas 12-15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8-12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of (15)N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils.

  15. Fertility Capability Classification of Some Soils with Aquic Moisture ...

    African Journals Online (AJOL)

    The fertility capability classification system in which Types, Substrate Types and Modifers were used in classifying the soils based on the results of the physico- chemical properties evaluated. The results of the study showed that the texture of the soils ranged from clayey in the mangrove swamps to loamy and sandy loam in ...

  16. Effect of Phosphorus Fertilizer Application on Some Soil Chemical ...

    African Journals Online (AJOL)

    Research was conducted during the 2004, 2005 and 2006 cropping seasons to study the effect of phosphorus fertilizer on some soil chemical properties and nitrogen fixation of legumes at Bauchi, northeastern Nigeria. Composite soil samples were collected from sites before planting and after harvesting at the depths of ...

  17. Fertility Status of Fadama Soils in Gantsare Village, Wamakko Local ...

    African Journals Online (AJOL)

    A study was conducted in Gantsare village, Wamakko local government, Sokoto state to determine the effect of cement dust emitted from Sokoto cement factory on the fertility of fadama soils. Soil samples were collected in June, 2008 from the eastern, northeastern, and southeastern parts of the village and Girabshi; ...

  18. Fertility Status of Fadama Soils in Gantsare Village, Wamakko Local ...

    African Journals Online (AJOL)

    acer

    ABSTRACT: A study was conducted in Gantsare village, Wamakko local government, Sokoto state to determine the effect of cement dust emitted from Sokoto cement factory on the fertility of fadama soils. Soil samples were collected in June, 2008 from the eastern, northeastern, and southeastern parts of the village and ...

  19. Impact of tillage and fertility management options on selected soil ...

    African Journals Online (AJOL)

    This study was conducted in Nadion (south Sudan zone of Burkina Faso) to assess the impact of tillage practices (no-till, tied ridging; ripping and conventional tillage) combined with soil fertility management options (compost, NPK + Urea, crop residues, Compost+ NPK + Urea and a control) on soil moisture content and ...

  20. 511 Spatial Analysis of Soil Fertility Using Geographical Information ...

    African Journals Online (AJOL)

    User

    2011-07-21

    Jul 21, 2011 ... Abstract. The research evaluated soil fertility condition of River Otamiri watershed in southeastern Nigeria in relation to topographic heterogeneity using GIS technique. GPS was used to determine the geodetic coordinate of the sampling points and site elevation. Soil samples were collected and analyzed.

  1. Relationships between soil fertility indicators and toposequence in ...

    African Journals Online (AJOL)

    Relationships between soil fertility indicators and toposequence in the Sudano Sahelian watershed of Koutango in the southern peanut basin of Senegal. ... The same trend was observed at the deep horizon for OC and CEC between the different soil units. PCA showed a correlation of 60%, 64% and 63% for surface, ...

  2. IMPACT OF NATURAL FERTILIZATION USING PRP FIX ON SOME SOIL FERTILITY INDICATORS

    Directory of Open Access Journals (Sweden)

    Ewa Możdżer

    2017-07-01

    Contents of determined macronutrients in the soil were higher in objects where slurry was applied with addition of 8 kg or 12 kg of PRP FIX per 1 m3 as compared to those with exclusively mineral fertilization or slurry. The soil after test plants harvest contained more N, Corg., P, K, Mg, Ca, S, and available forms of P, K, Mg and SO3 in relation to levels before experiment establishment. In general, more soil fertility indicators were recorded in objects treated with the slurry along with PRP FIX preparation and additional PK nutrition (series II as compared to series I. Differences in macronutrients in the soil due to the fertilization system applied were diverse, however they not always were significant.

  3. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

    2005-01-01

    Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2)...

  4. Impact of soil management practices on soil fertility and disease suppressiveness

    OpenAIRE

    Tamm, Lucius; Bruns, Christian; Leifert, Carlo; Fuchs, Jacques G.; Thürig, Barbara; Specht, Nicole; Fliessbach, Andreas

    2006-01-01

    Soil management practices are targeted to provide adequate crop nutrition and to ensure durable soil fertility and to avoid negative environmental impacts. Soil management also aims to reduce pest and disease pressure on crops. Organic farming is believed to increase soil suppressiveness towards soil-borne diseases as well aerial diseases. In this paper we will discuss the potential of soil manage-ment as a tool to improve disease suppressiveness in practice.

  5. Influence of long-term fertilization on soil enzyme activities

    Directory of Open Access Journals (Sweden)

    Alina Dora SAMUEL

    2009-05-01

    Full Text Available Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase were determined in the 0–10, 10–20, and 20–30 cm layers of a brown luvic soil submitted to a complex fertilization experiment with different types of green manure. It was found that each activity decreased with increasing sampling depth. It should be emphasized that greenmanuring of maize led to a significant increase in each of the five enzymatic activities determined. The enzymatic indicators of soil quality calculated from the values of enzymatic activities showed the order: lupinus + rape + oat > lupinus > vetch + oat + ryegrass > lupinus + oat + vetch > unfertilized plot. This order means that by determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. There were significant correlations of soil enzyme activities with chemical properties.

  6. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  7. SOIL FERTILITY EVALUATION FOR FERTILISER RECOMMENDATION USING HYPERION DATA

    Directory of Open Access Journals (Sweden)

    Ranendu Ghosh

    2015-12-01

    Full Text Available Soil fertility characterised by nitrogen, phosphorus, potassium, calcium, magnesium and sulphur is traditionally measured from soil samples collected from the field. The process is very cumbersome and time intensive. Hyperspectral data available from Hyperion payload of EO 1 was used for facilitating preparation of soil fertility map of Udaipur district of Rajasthan state, India. Hyperion data was pre-processed for band and area sub setting, atmospheric correction and reflectance data preparation. Spectral analysis in the form of SFF and PPI were carried out for selecting the ground truth sites for soil sample collection. Soil samples collected from forty one sites were analysed for analysis of nutrient composition. Generation of correlogram followed by multiple regressions was done for identifying the most important bands and spectral parameters that can be used for nutrient map generation.

  8. Response of spring wheat to different soil and foliar fertilization

    Directory of Open Access Journals (Sweden)

    Wacław JARECKI

    2017-06-01

    Full Text Available In the years 2013-2015 a field experiment was carried out, whose aim was to determine the response of spring wheat cultivar Arabella to different levels of soil fertilization with NPK and foliar feeding Plonvit Zboża. Higher level of soil fertilization with NPK caused an increase in the LAI (Leaf Area Index, MTA (Mean Tip Angle and SPAD (Soil Plant Analysis Development indices in comparison to lower fertilization level. The applied soil fertilization and foliar application did not differentiate the number of plants after emergences and prior to the harvest. The higher dose of NPK caused an increase in the number of ears per 1 m2, TGW and grain yield in comparison to the lower dose. Two-time and three-time foliar application caused an increase in MTA and SPAD indices, while TGW and grain yield increased three times in comparison to the control. The higher level of NPK fertilization caused an increase in total protein, K, Cu and Mn contents in grain and a decrease in Fe content. Three-time foliar application caused an increase in ash and Mg contents in grain in comparison to the control. An increase in Cu and Zn contents, in comparison to single foliar application and the control, was also observed.

  9. EFFECT OF SOIL SULFUR FERTILIZER AND SOME FOLIAR FERTILIZERS ON GROWTH AND YIELD OF BROCCOLI IN SALINE SOIL

    Directory of Open Access Journals (Sweden)

    Ali Husain JASIM

    2015-12-01

    Full Text Available Factorial experiment was conducted in the open fields of Agricultural College, Al-Qasim Green University during the agricultural seasons of 2013/2014 and 2014/2015 to study the effect of adding two levels of agricultural sulfur (control and add 100 kg.ha-1 and four levels of nutrient spray (without spray, high-potash fertilizer, high-phosphorus fertilizer and humic acid on growth and yield of broccoli under drip irrigation and polyethylene soil mulching in saline soil (9.6 dS.m-1. Randomized complete block design with three replicates was used. The results showed that agricultural sulfur led to increase number of leaves, leaf area, leaves chlorophyll content, diameter and weight of flower head compared to control. Spraying foliar fertilizer and its interaction with sulfur fertilizer also led to increase all of parameters above (except leaves chlorophyll content significantly compared to control treatment.

  10. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils.

    Science.gov (United States)

    Zheng, Jiyong; Stewart, Catherine E; Cotrufo, M Francesca

    2012-01-01

    Biochar (BC) application to agricultural soils could potentially sequester recalcitrant C, increase N retention, increase water holding capacity, and decrease greenhouse gas (GHG) emissions. Biochar addition to soils can alter soil N cycling and in some cases decrease extractable mineral N (NO and NH) and NO emissions. These benefits are not uniformly observed across varying soil types, N fertilization, and BC properties. To determine the effects of BC addition on N retention and GHG flux, we added two sizes (>250 and soils (aridic Argiustoll and aquic Haplustoll) with and without N fertilizer and measured extractable NO and NH and GHG efflux (NO, CO, and CH) in a 123-d laboratory incubation. Biochar had no effect on NO, NH, or NO in the unfertilized treatments of either soil. Biochar decreased cumulative extractable NO in N fertilized treatments by 8% but had mixed effects on NH. Greenhouse gas efflux differed substantially between the two soils, but generally with N fertilizer BC addition decreased NO 3 to 60%, increased CO 10 to 21%, and increased CH emissions 5 to 72%. Soil pH and total treatment N (soil + fertilizer + BC) predicted soil NO flux well across these two different soils. Expressed as CO equivalents, BC significantly reduced GHG emissions only in the N-fertilized silt loam by decreasing NO flux. In unfertilized soils, CO was the dominant GHG component, and the direction of the flux was mediated by positive or negative BC effects on soil CO flux. On the basis of our data, the use of BC appears to be an effective management strategy to reduce N leaching and GHG emissions, particularly in neutral to acidic soils with high N content. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil.

    Science.gov (United States)

    Rinklebe, Jörg; Shaheen, Sabry M

    2015-09-01

    The problem of copper (Cu) pollution in riverine ecosystems is world-wide and has significant environmental, eco-toxicological, and agricultural relevance. We assessed the suitability and effectiveness of application rate of 1% of activated charcoal, bentonite, biochar, cement kiln dust, chitosan, coal fly ash, limestone, nano-hydroxyapatite, organo-clay, sugar beet factory lime, and zeolite as soil amendments together with rapeseed as bioenergy crop as a possible remediation option for a heavily Cu polluted floodplain soil (total Cu=3041.9mgkg(-1)) that has a very high proportion of sorbed/carbonate fraction (484.6mgkg(-1)) and potential mobile fraction of Cu (1611.9mgkg(-1)). Application changed distribution of Cu among geochemical fractions: alkaline materials lead to increased carbonate bounded fraction and the acid rhizosphere zone might cause release of this Cu. Thus, mobilization of Cu and uptake of Cu by rapeseed were increased compared to the control (except for organo-clay) under the prevailing conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Status of Soil Fertility in a Community Forest of Nepal

    Directory of Open Access Journals (Sweden)

    Anup KC

    2013-08-01

    Full Text Available Soil is a complex mixture of mineral nutrients, organic matter, water, air and living organisms. The primary nutrients for plant growth are organic matter, nitrogen, phosphorus and potassium. In order to find the status of pH, organic matter (C, total nitrogen (N, available phosphorus (P and available potassium (K in forest soil, the study was conducted in Ghwangkhola Sapaude Babiyabhir Community Forest in Putali Bazaar Municipality-8, Syangja, Nepal. Soil parameters are analyzed through different standard methods followed worldwide by many soil scientists. Soil pH of sample in all three strata was slightly acidic and varies from 5.7 to 7.18. The carbon percentage was high and varies from 0.65% to 2.39%. The total nitrogen in soil was medium and varies from 0.09% to 0.12%. The concentration of available phosphorus in soil was high and varies from 73.71 kg/ha-93.23 kg/ha. The concentration of available potassium on soil was quiet low and varies from 2.54 kg/ha-4.23 kg/ha. Higher organic matter in the forest land indicate low activities of nitrogen losing process, which is due to the closed nutrient cycling and minimal disturbance in the natural forest system. So, addition of fertilizer rich in potassium and increasing pH is recommended to maintain potassium fertility and neutral pH in the forest soil.

  13. Role of Arthropods in Maintaining Soil Fertility

    Directory of Open Access Journals (Sweden)

    Thomas W. Culliney

    2013-09-01

    Full Text Available In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites. The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. The burrowing by arthropods, particularly the subterranean network of tunnels and galleries that comprise termite and ant nests, improves soil porosity to provide adequate aeration and water-holding capacity below ground, facilitate root penetration, and prevent surface crusting and erosion of topsoil. Also, the movement of particles from lower horizons to the surface by ants and termites aids in mixing the organic and mineral fractions of the soil. The feces of arthropods are the basis for the formation of soil aggregates and humus, which physically stabilize the soil and increase its capacity to store nutrients.

  14. [Effects of long-term fertilization on soil enzyme activities and soil physicochemical properties of facility vegetable field].

    Science.gov (United States)

    Ma, Ning-ning; Li, Tian-lai; Wu, Chun-cheng; Zhang, En-ping

    2010-07-01

    An investigation was made on a long-term fertilization facility vegetable field at Shenyang Agricultural University to study the effects of long-term fertilization on the soil enzyme activities and soil physicochemical properties. Long term application of organic manure combined with or without nitrogen fertilizer increased the contents of soil organic matter, N, P, and K, and improved the soil physical properties and soil invertase, urease, and neutral phosphatase activities. However, long-term application of nitrogen fertilizer alone decreased soil pH and soil enzymes activities. Significant positive correlations were observed between soil invertase activity and soil organic matter and total P, between soil urease activity and soil organic matter, alkali-hydrolyzable N, total and available P, and available K, and between soil neutral phosphatase activity and soil organic matter, total P, and available K, but less correlation was found between soil dehydrogenase activity and soil nutrients.

  15. Soil Fertility Map for Food Legumes Production Areas in China.

    Science.gov (United States)

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-05-23

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser.

  16. Soil Fertility Map for Food Legumes Production Areas in China

    Science.gov (United States)

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-05-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser.

  17. Use of Plant Tonic Solution Fertilizers for Improving the Soil Fertility ...

    African Journals Online (AJOL)

    An investigation was carried out at Akure in rainforest zone of Nigeria to determine the effectiveness of liquid plant tonic or extract solution fertilizers on the soil and leaf chemical composition, growth and yield of pop corn (Zea mays everta L.) and melon (Cucumeropsis edulis L.) intercrop from 1997 to 1999. Six manurial ...

  18. [Effect of long-term fertilizing regime on soil microbial diversity and soil property].

    Science.gov (United States)

    Li, Chenhua; Zhang, Caixia; Tang, Lisong; Xiong, Zhengqin; Wang, Baozhan; Jia, Zhongjun; Li, Yan

    2014-03-04

    To evaluate the effect of long-term fertilization on soil microbial community and soil chemical and physical properties. Using a high-throughput pyrosequencing technique, we studied microbial community in the 0-300 cm soil samples covering a 20-year field-experiment with different fertilization applications including inorganic fertilizer alone (N 300 kg/hm2, P2O5 150 kg/hm2 and K2O 60 kg/hm2) and inorganic fertilizer combined with straw (same application rate of N and P fertilizer combined with 5.4 t straw). Actinobacteria and alpha-proteobacteria were the predominant groups in the topsoil (0-20 cm). As the soil depth increased, the relative abundance of actinobacteria decreased whereas that of proteobacteria, especially gamma-proteobacteria and beta-proteobacteria increased and gradually became the dominant groups in the subsoil (20-300 cm). Long-term fertilizing applications significantly affected soil microbial communities throughout the soil profile, and increased the relative abundance of ammonia-oxidizing archaea at 0-40 cm depth. In addition, agriculture management, e. g. irrigation may be an important driving factor for the distribution of ammonia-oxidizing bacteria in soil profile. Total nitrogen and organic carbon contents were the most influential factors on microbial community in the topsoil and in the subsoil, respectively. Long-term fertilizer applications altered soil nutrient availability within the soil profile, which was likely to result in the different microbial community structure between the fertilizer treatments, especially for the subsoil.

  19. Ipomea asarifolia (Desr), A Potential Cover Crop for Soil Fertility ...

    African Journals Online (AJOL)

    Ipomea asarifolia (Desr), A Potential Cover Crop for Soil Fertility Improvement in The Sudan Savanna Region, Nigeria. ... University main Campus; VC complex area, University stadium area, Behind new library area and opposite IBB centre area and four distances from the plant (control, plant base, 0.5 m and 1 m from the ...

  20. Soil organic amendments and mineral fertilizers: options for ...

    African Journals Online (AJOL)

    Soil organic amendments and mineral fertilizers: options for sustainable lowland rice production in the forest agro-ecology of Ghana Rectification organique des sols et engrais chimiques: options pour la production durable du riz dans les terrains bas dans l'agro-ecologie ... Agricultural and Food Science Journal of Ghana.

  1. Soil Fertility Management Strategies -- Philosophies, Crop Response and Costs

    Science.gov (United States)

    When it comes to soil fertility, farmers are likely to encounter different “paradigms” or philosophies that ask different questions. This project was designed to document the short- to medium-term outcomes that producers can expect from adopting the SLAN (sufficiency level of available nutrients) or...

  2. Determinants of the adoption of integrated soil fertility management ...

    African Journals Online (AJOL)

    The agro-climatic conditions in western Kenya present the region as a food surplus area yet people are still reliant on food imports, with the region registering high poverty levels. Depletion of soil fertility and the resulting decline in agricultural productivity in Mbale division has led to many attempts to develop and popularize ...

  3. Effect of Soil Types and Phosphorus Fertilizer Interaction on the ...

    African Journals Online (AJOL)

    A pot experiment was conducted to examine the effect of soil types and phosphorus fertilizer application on maize (variety DMR-L-SR) growth and yield in the rain forest zone of Nigeria. This was done at the Teaching and Research Farm, Ladoke Akintola University of Technology, Ogbomoso. The experimental treatments ...

  4. Comparative effects of organic compost and NPK fertilizer on soil ...

    African Journals Online (AJOL)

    The need for an increased production of vegetables to meet the dietary vitamin requirements of the people had necessitated a research in the use of manure in improving the soil fertility for an improved yield and quality of amaranth. The research was conducted in Obasoto Farm (latitude 7°10'N and longitude 5°37'E) in ...

  5. Sustainable soil fertility management in Benin: learning from farmers

    NARCIS (Netherlands)

    Saïdou, A.; Kuyper, T.W.; Kossou, D.K.; Tossou, R.; Richards, P.

    2004-01-01

    The perception of farmers from the Atacora and Savè regions of Benin was studied about the causes and consequences of land degradation and corrective actions for sustaining soil fertility. Research methods in this diagnostic study included group discussions, using non-standardized unstructured

  6. Inherent Soil Fertility as Affected by Rhizobium Inoculation and ...

    African Journals Online (AJOL)

    else

    (282.00) and NDW (0.8182 g) were observed at Haramaya and Hirna sites, respectively, where the inherent soil fertility, .... oC, the count of the Rhizobium strain was 1 x 109 g–1 carrier material. The population of rhizobia in the ..... application rates, which could also favor high symbiotic N2 fixation (Rys and. Bonish 1981).

  7. Diversity and Abundance of Soil Animals as Influenced by Long-Term Fertilization in Grey Desert Soil, China

    OpenAIRE

    Maibo Jiang; Xihe Wang; Yunhao Liusui; Xueqing Sun; Chengyi Zhao; Hua Liu

    2015-01-01

    The relationship between soil fauna and different fertilizer management practices is of growing concern. The aim of this research was to investigate the response of soil fauna to fertilization regimes, to explore the relationships among the community of soil animals, soil moisture and crop yields. The application of organic fertilizers (i.e., sheep manure or crop residues) increased crop yields and promoted the number of individuals and species of soil fauna owing to the exogenous organic mat...

  8. THE WORMS COMPOST - EFFECTIVE FERTILIZER FOR IMPROVING DEGRADED SOILS

    Directory of Open Access Journals (Sweden)

    Larisa CREMENEAC

    2013-01-01

    Full Text Available Management of organic waste is a difficult, complex and intractable in Moldova, according to international standards. Acute problem of organic matter from livestock sector waste is generated by storing them in unauthorized areas. Organic waste management strategies require different methods. One of them is organic waste bio conversion technology by worm’s cultivation. As the main natural wealth of the Republic of Moldova, soil requires a special care. Agriculture, in particular, should pay attention to the soil’s humus and nutrient status – and restore losses of humus and the nutrients used by crops. This requires measures to improve soil fertility. Land use provides, first of all return losses of humus and nutrients used by plants. Therefore measures required to improve soil fertility. The essence of the research was to highlight the role of worms compost improve the soil. To this end, in ETS "Maximovca" was organized an experiment that included three groups (two - experimental, to fund worms compost and one - control the natural background. Observations on soil fertility have been conducted over three years. The soil samples were collected by usual methods determined values of organic matter and humus. The results of the investigations, to determine the values of organic matter and humus samples collected from surface and depth 15 cm exceeded that of the sample control group to 29,7%; 11,4% and 34,3%; 37,1% in experimental group I and 9,3%; 11,6% and 45,5%; 45,5% in experimental group II. Therefore, worms compost embedded in a dose of 3-4 tons / ha during three years, has improved the fertility of the soil

  9. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must... nutrients and soil fertility through rotations, cover crops, and the application of plant and animal...

  10. Creating a soil data base in a reconnaissance soil fertility study of an ...

    African Journals Online (AJOL)

    use

    The reconnaissance soil fertility study of 10,000 ha partly encroached forest reserve located between latitude 11°47'N and 11°56'N and longitude 4°22'E and 4°32'E in Northern Nigeria was conducted in 2009 to generate a soil fertility data base of the reserve. The tracking of the forest reserve boundary was done using a ...

  11. Effect of native soil fertility and mineral fertilizer on growth of pine seedlings in Uganda

    Directory of Open Access Journals (Sweden)

    Samuel Lumu

    2013-11-01

    Full Text Available Commercial tree planting in Uganda is constrained by a lack ofgood quality seedlings due to poor soils used in nurseries. Two experiments were carried out; to evaluate the effects of different soils on the growth of the pine seedlings (experiment 1 and to compare the performance of seedlings provided with different NPK fertilizer formulations and amounts(experiment 2. Soils were collected from four forest reserves: Katugo (K, South Busoga (S, and Mbarara (M and from Mubende forest reserve. Treatments were: 0, 0.5 kg and 1.0 kg levels; NPK fertilizer formulations 25−5−5 (A, 17-17-17 (B and 18−4−14 +TE (C mixed in 1 m3 of soil.Composite soil samples were taken for laboratory analysis. Experimentswere laid out in a completely randomized block design, but with a factorialtreatment structure for experiment 2. Routine nursery management practices were carried out. Seedling heights and diameter were recorded. The results showed that SOM (site 1, total N (site 2 and available P, K, Ca and Mg were below the critical values. Low nutrient concentrations reduced growth, with seedling height highest in Katugo and girth highest in the Mbarara.Results of experiment two showed that there were no significant differences in mean heights for fertilizers A and C after a 1½ months application and B had a significant difference in the mean height and girth. However, fertilizer C girth results were significant with (Pvalue = 0.021, Pvalue = 0.001 at 1½ months and 3 months respectively. After 3 months, fertilizer B had the best mean height and mean girth at level 0.5 kg with (16.75 cm, 0.23 cm respectively, compared with fertilizer C and A with (13.42 cm, 0.175 cm and (12.44 cm, 0.174 cm respectively. From the results, a general NPK fertilizer formulation 171717 is recommended for use at a rate of 0.5 kg m3 of soil.

  12. Soil fertility controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations

    Science.gov (United States)

    Hassler, E.; Corre, M. D.; Tjoa, A.; Damris, M.; Utami, S. R.; Veldkamp, E.

    2015-10-01

    Expansion of palm oil and rubber production, for which global demand is increasing, causes rapid deforestation in Sumatra, Indonesia, and is expected to continue in the next decades. Our study aimed to (1) quantify changes in soil CO2 and CH4 fluxes with land-use change and (2) determine their controlling factors. In Jambi Province, Sumatra, we selected two landscapes on heavily weathered soils that differ mainly in texture: loam and clay Acrisol soils. In each landscape, we investigated the reference land-use types (forest and secondary forest with regenerating rubber) and the converted land-use types (rubber, 7-17 years old, and oil palm plantations, 9-16 years old). We measured soil CO2 and CH4 fluxes monthly from December 2012 to December 2013. Annual soil CO2 fluxes from the reference land-use types were correlated with soil fertility: low extractable phosphorus (P) coincided with high annual CO2 fluxes from the loam Acrisol soil that had lower fertility than the clay Acrisol soil (P organic carbon (C) and negatively correlated with 15N signatures, extractable P and base saturation. This suggests that the reduced soil CO2 fluxes from oil palm were the result of strongly decomposed soil organic matter and reduced soil C stocks due to reduced litter input as well as being due to a possible reduction in C allocation to roots due to improved soil fertility from liming and P fertilization in these plantations. Soil CH4 uptake in the reference land-use types was negatively correlated with net nitrogen (N) mineralization and soil mineral N, suggesting N limitation of CH4 uptake, and positively correlated with exchangeable aluminum (Al), indicating a decrease in methanotrophic activity at high Al saturation. Reduction in soil CH4 uptake in the converted land-use types (ranging from -3.0 to -14.9 μg C m-2 h-1) compared to the reference land-use types (ranging from -20.8 to -40.3 μg C m-2 h-1; P fertility control the soil-atmosphere exchange of CO2 and CH4 in a

  13. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P < 0.05) colonization of roots was found in variant with biochar from sewage sludge. The lower colonization was recognized in control variant and variant with addition of mineral fertilizer. Our results indicate positive effect of modified biochar application to soil on increase in level of arbuscular mycorrhizal colonization of roots.

  14. Recovery of organic fertility in degraded soil through fertilization and crop rotation

    Directory of Open Access Journals (Sweden)

    Wiqar Ahmad

    2014-06-01

    Full Text Available Maintenance and enhancement of the quality of degraded soil are, in essence, dependent upon the improvement of physical, chemical and biological properties of the soil. Improvement in microbial parameters of the degraded soil was studied in the present experiment through the effect of fertilizer sources and levels and cropping patterns in a factorial design in northern Pakistan. The experiment was designed in RCB with split plot arrangements. Cropping patterns i.e. maize–wheat–maize (C1, maize–lentil–maize (C2 and maize–wheat + lentil intercrop-maize (C3 were kept in main plots while fertilizer treatments; the control (T1, 50% NP (T2, 100% NPK or the recommended dose (T3 and 20 t ha−1 farmyard manure integrated with 50% mineral N and 100% P and K (T4 were tested in sub-plots during the study. Maximum and significant improvement in microbial parameters was recorded in T4 with 44, 24, 27 and 24.6% increase in total nitrogen (total N, mineralizable nitrogen (MN, microbial biomass nitrogen (MBN, and microbial biomass carbon (MBC after a 10 day incubation period over the T3, respectively, in the surface soil and 10%, 21%, 24% and 24.2% increase in the corresponding microbial parameters in the sub soil. The cropping patterns having cereal–legume rotation also improved organic soil fertility by 25%, 11.4%, 13% and 44% increase in total N, MN, MBN and MBC after a 10 day incubation period over the cereal-cereal rotation, respectively, in surface and 4%, 11%, 10% and 31% increase in the corresponding microbial parameters in the sub surface soil. The conclusion was that degraded alfisols require 50% N from the organic sources out of its total N requirements along with the inclusion of legumes in the traditional cereal–cereal crop rotation for the recovery of its microbial parameters.

  15. Biofortifcation of Wheat Grain with Copper Through Soil Fertilization

    Directory of Open Access Journals (Sweden)

    Korzeniowska Jolanta

    2014-12-01

    Full Text Available In recent years, in the literature, there have been frequent reports of insuffcient amounts of copper in the diet of various groups of the inhabitants of our country. This is disturbing as the adequate input of copper is signifcant from the point of view of prevention of cardiovascular diseases. At the same time, grain of wheat cultivated in Poland is characterized by low content of this element. Considering that the main source of Cu is bread and cereal preparations, the important issue is to increase the content of Cu in the grain of wheat. If the defciency in the diet is accompanied by the defciencies in the soil, biofortifcation through fertilization is a favourable solution. Pot experiments have shown the pos-sibility to signifcantly increase Cu content in the grain of wheat as a result of soil fertilization with copper. It was also found that a small difference between the defciency and surplus of Cu in the grain may lead to some copper excess content, especially on the soils with low organic matter content. For this reason, biofortifcation of wheat with copper requires a precise determination of soil fertilization doses under the conditions of feld experiments.

  16. Soil protists: a fertile frontier in soil biology research.

    Science.gov (United States)

    Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique

    2018-02-13

    Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Dynamics of maize carbon contribution to soil organic carbon in association with soil type and fertility level.

    Science.gov (United States)

    Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan

    2015-01-01

    Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition.

  18. Assessing soil fertility decline in the tropics using soil chemical data

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    Soil fertility decline is perceived to be widespread in the upland soils of the tropics, particularly in sub-Saharan Africa. Most studies have used nutrient balances to assess the degree and extent of nutrient depletion; these have created awareness but suffer methodological problems as several of

  19. The Balance of Organic and Inorganic Fertilizers to Limiting Factors Nutrient, Soil Fertility and Maize (Zea mays L Yield on Paddy Soil of C-Excavation

    Directory of Open Access Journals (Sweden)

    Slamet Minardi

    2014-07-01

    Full Text Available The activities for other purposes in the paddy soil will cause soil damage and reduce the values of soil productivity. The use of organic fertilizer is one of efforts to recover and rehabilitate the soil, because it is the key to improve its properties. The purposes of this research were to identify the characteristics of the soil (chemical as a component of soil fertility, nutrition limiting factors and knowing the balance of organic and inorganic fertilizers on the optimum cultivation of maize (Zea mays L to achieve maximum production. Research was conducted by using Randomized Complete Block Design (RCBD with single factor: consisting of six treatments, as follows consisted of control, treatment of inorganic fertilizer as recommended, organic fertilizer (manure, and the balance between organic and inorganic fertilizers. The results showed that the balance between organic and inorganic fertilizers can increase nutrition limiting factors (N and P and soil fertility in paddy soil of C-excavation. It has been proved by the increasing growth and yield of maize, such as plant height, fresh and dry weight of plant, weight and girth of cob. The highest yield of maize was shown in weight cobs per plant, i.e 190 g as shown in the treatment of the balance between organic and inorganic fertilizers (75: 25%. It is significantly different than the control treatment, however it showed no significant difference with other treatments.

  20. Evaluating the effectiveness of phosphate fertilizers in some Venezuelan soils

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, E. [Instituto de Edafologia, Facultad de Agronomia, Universidad Central de Venezuela, Maracay, Aragua (Venezuela)]. E-mail: casanova@pdvsa.com; Salas, A.M. [Instituto de Edafologia, Facultad de Agronomia, Universidad Central de Venezuela, Maracay, Aragua (Venezuela); Toro, M. [Instituto de Zoologia Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caraca (Venezuela)

    2002-05-15

    In Venezuela, 70% of the soils are acid with low natural fertility where phosphorus is the most limiting element together with nitrogen and potassium for plant growth. The efficiency of phosphate fertilization is low. Greenhouse and field experiments were conducted to evaluate the efficiency of natural and modified rock phosphate using conventional and isotopic techniques. An incubation experiment was done to measure changes in available P on application of different phosphate fertilizers at a constant rate of 100 mg P/kg in ten acid soils of agricultural importance in Venezuela. In the greenhouse, two experiments were conducted to relate P fixation to soil P availability and the response of an index plant (Agrostis sp.). A high variability in P fixing capacity of the soils (r1/Ro = 0.02-0.76) was observed with the same level of available P. This fixation index is defined as the proportion of the added radioactivity ({sup 32}P) remaining in the soil solution after 1 min of exchange and a low fixing capacity is indicated by the values close to 1. The proportion of the total soil P that can possibly enter the soil solution and therefore is potentially available for plant uptake was measured using the traditional method (Bray I) and the isotopic method (E value). The high variability was also apparent in available P extracted by Bray I showing a range of 10 to 88% of the total P removed by the extracting solution. The incubation studies showed that the effectiveness of the P source for available P in the soil solution was related to their reactivity and the soil P fixing properties. The increase in the fixing capacity of the soils used caused a significant reduction in the E value, independent of the source of P used. A high positive and significant correlation between Bray I extracted P and the E value (r = 0.95) obtained from the different treatments, showed the relationship of the extractant for some forms of available P in soils where rock phosphate was applied

  1. N fertilization reduces the losses of old soil organic carbon

    Science.gov (United States)

    Zang, H.; Blagodatskaya, E.; Wang, J.; Kuzyakov, Y.; Xu, X.

    2016-12-01

    Agricultural soils have experiencing large anthropogenic nitrogen (N) inputs, which directly and indirectly affect soil organic matter (SOM) stocks and CO2 emissions. However, current understanding of how these additional N inputs affect SOM pools of various ages and turnover remains incomplete. The δ13C values of SOM after wheat (C3) - maize (C4) vegetation change enable to calculate the contribution of C4-derived rhizodeposited C (rhizo-C) and C3-derived old SOM pools. Soil (Ap from Haplic Luvisol) sampled from maize rhizosphere was incubated over 56 days after increasing N fertilization (4 levels up to 300 kg N ha-1). N fertilization decreased soil CO2 emissions by 27-42% as compared to unfertilized control. This decrease was mainly caused by the retardation of old C mineralization. The relative availability of rhizo-C (released by maize roots within 4 weeks) for microorganisms was about 10 times higher than of old C (older than 4 weeks). Microbial biomass and dissolved organic C were unaffected by increasing N. N fertilization, however, increased relative contribution of rhizo-C to microbial biomass for 2 - 5 times and to CO2 for about 2 times. This clearly reflects acceleration of microbial biomass turnover by N addition. The decomposition rate of rhizo-C was 3.7 times higher than of old C, and it increased additionally by the factor of 6.5 under high N fertilization. Our study is the first estimated the turnover and incorporation of very recent rhizo-C (within 4 weeks). Compared with several-years old C4, the turnover of rhizo-C was about 2 times faster. Concluding, the contribution of rhizo-C to CO2 and microbial biomass was highly responsive to N fertilization. N fertilization facilitates C sequestration in agricultural soils by decreasing old SOM decomposition mainly through increase the turnover and C use efficiency of rhizo-C. Keywords: CO2 partitioning; C3-C4 vegetation; microbial biomass; SOM decomposition; Nutrient availability

  2. IMPACT OF NATURAL FERTILIZATION USING PRP FIX ON SOME SOIL FERTILITY INDICATORS

    OpenAIRE

    Ewa Możdżer; Justyna Chudeka

    2017-01-01

    The field experiment was carried out at The Experimental Station of Plant Varieties Protection in Szczecin Dąbie. The experiment aimed at evaluating the influence of slurry with and without increasing doses of PRP FIX preparation on some soil fertility indicators after test plants harvest. Contents of determined macronutrients in the soil were higher in objects where slurry was applied with addition of 8 kg or 12 kg of PRP FIX per 1 m3 as compared to those with exclusively mineral fertiliz...

  3. Nitrogenous fertilization of sugarcane in a soil with hydromorphy

    Directory of Open Access Journals (Sweden)

    Emma Pineda Ruiz

    2014-07-01

    Full Text Available The element that sugarcane responds to more frequently is nitrogen. A deficiency of this element may decrease the agricultural yields, when applied below the rates the crop needs; and an over-abundance of this element causes smaller sucrose content in sugarcane juice. It is necessary to apply nitrogen fertilizers appropriately at the right time and in the right place. In a long-term (18-year experiment on a Vertisol, where doses ranging from 0 until 250 kg of N.ha-1 were applied, the nitrogen fertilization revealed a positive effect on the agricultural yields of the 14 studied crops, during the first 3 cycles. And all the evaluated stumps responded constantly to the nitrogen fertilization. The rate of consumption was of 1.13 kg of N per ton of sugarcane produced, lower than the one accepted by the Cuban sugarcane growers (1.5 kg of N/t of sugarcane. The organic matter content benefitted where the element was applied, although its content increased in the soil over a long period of time. The objective of this research was to evaluate of the response of sugarcane when nitrogen fertilizers were applied to hydromorphic soils.

  4. Concentrated biogas slurry enhanced soil fertility and tomato quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang-Bo Yu; Xi-Ping Luo; Fang-Bo Yu; Xi-Ping Luo; Cheng-Fang Song; Miao-Xian Zhang; Sheng-Dao Shan (Dept. of Environmental Sciences, Inst. of Environmental Technology, Zhejiang Forestry University, Linan (China))

    2010-05-15

    Biogas slurry is a cheap source of plant nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its further development. In this paper, a one-growing-season field study was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of microflora in both nonrhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could bring significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, beta-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It was concluded that the application is a practicable means in tomato production and will better service the area of sustainable agriculture

  5. Nutrient and toxic element soil concentrations during repeated mineral and compost fertilization treatments in a Mediterranean agricultural soil.

    Science.gov (United States)

    Baldantoni, Daniela; Morra, Luigi; Saviello, Giovanni; Alfani, Anna

    2016-12-01

    Agricultural soils of semi-arid Mediterranean areas are often subjected to depletion of their chemical, physical, and biological properties. In this context, organic fertilization, in addition to providing nutrients for a longer time in respect to mineral fertilization, improves many other characteristics related to soil fertility. Moreover, the combined use of organic and mineral fertilizers may promote a more sustainable crop production. However, a concern on the long-term use of organic fertilizers arises in relation to the possible accumulation of toxic elements in soil and their transfer to human beings. For this reason, a long-term study on nutrient and toxic element total concentrations and availabilities during fertilization treatments was carried out. In particular, mineral NPK fertilized soils, soils amended with biowaste compost, soils amended with biowaste compost plus mineral nitrogen, and unfertilized soils were analyzed for 11 chemical elements. The results highlighted that temporal variations in total and bioavailable concentrations of both nutrients and toxic elements, occurring also in unfertilized soils, are wider than those related to fertilization treatments. Anyway, soil amendments with biowaste compost, alone or in combination with mineral fertilizers, reduce Cu bioavailability but improve K, Fe, Mn, and Zn availabilities, excluding at the same time a long-term accumulation in soil. Total and bioavailable toxic element concentrations (apart from available Cd) do not vary in relation to fertilization treatments.

  6. Characterization and Fertility Status of the Soils of Ayehu Research ...

    African Journals Online (AJOL)

    The soils were moderately acidic in reaction and silty clay to clay in texture. ... due to the decreasing level of organic carbon (OC) with depth from 2.6 to 0.6% in pedon 1 and from 2.8 to 1.1% in pedon 2. ... (kaolinitic) clay minerals. ... Application of increasing rates of P fertilizer increased both the Olsen and Bray II P ...

  7. Effect of sulfate fertilization on soil biota in grassland columns

    Science.gov (United States)

    Ikoyi, Israel; Donohue, John; Fowler, Andrew; Schmalenberger, Achim

    2017-04-01

    Sulfur (S) is an important macronutrient element in plant nutrition as a component of protein, enzymes, enzyme cofactors as well as being the major constituent of the amino acids cysteine and methionine. Organically bound S is the predominant form of S in the soil constituting up to 95% of S in agricultural soils. The most important form of S in terms of plant nutrition is inorganic sulfate which forms only about 5% of the total soil S content. Air pollution was the major source of S (as SO2) for plants, with up to 80% of the S obtained from this source. However, common effects of S limitation on crops such as chlorosis, yield reduction, and decrease in crop quality are becoming increasingly evident as atmospheric S supply has decreased in recent years. Recent research has shown that organically-bound S in soils is also plant-bioavailable, likely due to interconversion of organic S forms to inorganic sulfate by soil microbes. In this study, soil columns were setup in a greenhouse using moderate S (equivalent to Wisconsin S soil availability index of below 30) soils. The columns were planted with Lolium perenne and fertilized with 0 (control), 5 (low), 10 (medium) and 20 (high) kg/ha sulfate S alongside a full complement of other nutrients. Results after 14 weeks of management show a significant decrease (Pnutrition as is often the practice. Further analyses are underway to trace the fate of the applied S, nematode abundance, bacterial diversity and function. Studies like ours are important to feed data into mathematical models on biotic S cycling which serves as predictive tool for fertilizer use in agriculture.

  8. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review

    OpenAIRE

    Ludwig, B.; Geisseler, D.; Michel, K.; Joergensen, R. G.; Schulz, E; Merbach, I.; Raupp, J.; Rauber, R.; Hu, K.; Niu, L.; Liu, X.

    2011-01-01

    The study of sustainable land use is complex and long-term experiments are required for a better understanding of the processes of carbon stabilization. Objectives were (i) to describe for four long-term experiments the effects of fertilization and soil management on crop yields and the dynamics of soil organic carbon (SOC) and total N, and (ii) to discuss the usefulness of models for a better understanding of the underlying processes. Data of soil organic carbon and total N of four ...

  9. Effects of Fertilization on Tomato Growth and Soil Enzyme Activity

    Science.gov (United States)

    Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing

    2015-04-01

    To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum

  10. Effects of Long-term Fertilization on Potassium Fixation Capacity in Brown Soil

    Science.gov (United States)

    Li, Na; Guo, Chunlei; Wang, Yue; Gao, Tianyi; Yang, Jinfeng; Han, Xiaori

    2018-01-01

    This study concentrated on the research of features of fixation. The objective of this study was to provide theoretical foundation of rational application of potassium fertilizer along with improving fertilizer availability ratio. A 32 years long-term experiment was conducted to evaluate the effects of fertilizer application on potassium changes and the factors affecting K fixation on brown soil by simulation in laboratory. When the concentration of exogenous potassium was in range of 400∼4000 mg·kg-1, potassium fixation capacity increased along with the rise of concentration of exogenous potassium, whereas K fixation rate reduced; Compared with no-potassium fertilizer, application of potassium fertilizer and organic fertilizer reduced soil potassium fixation capacity. Potassium rate and fixation-release of potassium character in soil should be taken into comprehensive consideration for rational fertilization to maintain or improve soil fertility for increasing potassium fertilizers efficiency in agriculture.

  11. [Effects of long-term fertilization on soil organic nitrogen components in paddy soil derived from red earth].

    Science.gov (United States)

    Zong, Hai-ying; Wang, Kai-rong; Xie, Xiao-li

    2008-08-01

    A 16-year long-term fertilization experiment was conducted on paddy soil derived from red earth to investigate the effects of different fertilization patterns on the concentrations of soil organic nitrogen (N) components. When chemical fertilizers were applied only, the soil nitrogen content was slightly influenced. Organic fertilization, especially its combination with chemical fertilization, could significantly increase the contents of soil mineralizable N and organic nitrogen by 55.2% and 38.8%, respectively. In addition, organic fertilization could significantly improve the components of acid hydrolysable N, and lead to the increase of ammonium N (AN) , amino sugar N (ASN), and hydrolysable unidentified N (HUN) by 36.5%, 68.4%, and 73.9%, respectively. When the organic fertilization was combined with chemical fertilization, soil amino acid N content was increased by 71.1%, while HUN content was decreased by 34.5%. In all fertilization treatments, the cumulative amount of soil mineralized N increased with increasing incubation time. The content of soil mineralized N under organic fertilization and its combination with chemical fertilization was higher than that under chemical fertilization.

  12. Biochar amendment improves soil fertility and productivity of mulberry plant

    Directory of Open Access Journals (Sweden)

    Faruque Ahmed

    2017-07-01

    Full Text Available Biochar has the potential to improve soil fertility and crop productivity. A field experiment was carried out at the experimental field of Bangladesh Sericulture Research and Training Institute (BSRTI, Rajshahi, Bangladesh. The objective of this study was to examine the effect of biochar on soil properties, growth, yield and foliar disease incidence of mulberry plant. The study consisted of 6 treatments: control, basal dose of NPK, rice husk biochar, mineral enriched biochar, basal dose + rice husk biochar and basal dose + mineral enriched biochar. Growth parameters such as node/meter, total branch number/plant, total leaf yield/hectare/year were significantly increased in basal dose + mineral enriched biochar treated plot in second year compared with the other fertilizer treatments. In second year, the total leaf yield/hectare/year were also 142.1% and 115.9% higher in combined application of basal dose + mineral enriched biochar and basal dose + rice husk biochar, respectively, than the control treatment. The soil properties such as organic matter, phosphorus, sulphur and zinc percentage were significantly increased with both the (mineral enriched and rice husk biochar treated soil applied with or without recommended basal dose of NPK than the control and only the recommended basal dose of NPK, respectively. Further, the lowest incidences of tukra (6.4%, powdery mildew (10.4% and leaf spot (7.6% disease were observed in second year under mineral enriched biochar treated plot than the others. The findings revealed that utilization of biochar has positive effect on the improvement of soil fertility and productivity as well as disease suppression of mulberry plant.

  13. Soil water erosion under different cultivation systems and different fertilization rates and forms over 10 years

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2014-12-01

    Full Text Available The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa , soybean (Glycine max , common vetch (Vicia sativa , maize (Zea mays , fodder radish (Raphanus sativus , and black beans (Phaseolus vulgaris . The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.

  14. [Analysis of soil humus and components after 26 years' fertilization by infrared spectroscopy method].

    Science.gov (United States)

    Zhang, Yu-Lan; Sun, Cai-Xia; Chen, Zhen-Hua; Li, Dong-Po; Liu, Xing-Bin; Chen, Li-Jun; Wu, Zhi-Jie; Du, Jian-Xiong

    2010-05-01

    The infrared spectrum was used to discuss structure change of soil humus and components of chemical groups in soil humic acids (HA) and fulvic acids (FA) isolated from soils in different fertilization treatment after 26 year's fertilization. The result indicated that using the infrared spectroscopy method for the determination of humus, humus fractions (HA and FA) and their structure is feasible. Fertilization affected the structure and content of soil humus and aromatization degree. After 26 years' fertilization, the infrared spectrum shapes with different treatments are similar, but the characteristic peak intensity is obviously different, which reflects the effects of different fertilization treatments on the structure and amounts of soil humus or functional groups. Compared with no fertilization, little molecule saccharides decreased and aryl-groups increased under application of inorganic fertilizer or combined application of organic and chemical fertilizer. The effect was greater in Treatment NPK and M+NPK than in Treatment M1 N and M2 N. Organic and NPK fertilizer increased the development of soil and increased soil quality to a certain extent. Results showed that organic fertilization increased aromatization degree of soil humus and humus fractions distinctly. The authors could estimate soil humus evolvement of different fertilization with infrared spectroscopy.

  15. Maize growth responses to soil microbes and soil properties after fertilization with different green manures.

    Science.gov (United States)

    Tao, Jiemeng; Liu, Xueduan; Liang, Yili; Niu, Jiaojiao; Xiao, Yunhua; Gu, Yabing; Ma, Liyuan; Meng, Delong; Zhang, Yuguang; Huang, Wenkun; Peng, Deliang; Yin, Huaqun

    2017-02-01

    The use of green manures in agriculture can provide nutrients, affect soil microbial communities, and be a more sustainable management practice. The activities of soil microbes can effect crop growth, but the extent of this effect on yield remains unclear. We investigated soil bacterial communities and soil properties under four different green manure fertilization regimes (Vicia villosa, common vetch, milk vetch, and radish) and determined the effects of these regimes on maize growth. Milk vetch showed the greatest potential for improving crop productivity and increased maize yield by 31.3 %. This change might be related to changes in soil microbes and soil properties. The entire soil bacterial community and physicochemical properties differed significantly among treatments, and there were significant correlations between soil bacteria, soil properties, and maize yield. In particular, abundance of the phyla Acidobacteria and Verrucomicrobia was positively correlated with maize yield, while Proteobacteria and Chloroflexi were negatively correlated with yield. These data suggest that the variation of maize yield was related to differences in soil bacteria. The results also indicate that soil pH, alkali solution nitrogen, and available potassium were the key environmental factors shaping soil bacterial communities and determining maize yields. Both soil properties and soil microbes might be useful as indicators of soil quality and potential crop yield.

  16. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu

    2011-01-01

    Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer...... was selected for this study and was shown to contain a high amount of ammonium (6.2–178.8 mg kg−1). The anaerobic oxidation of ammonium (anammox) rates in this paddy soil ranged between 0.5 and 2.9 nmolN per gram of soil per hour in different depths of the soil core, and the specific cellular anammox activity...... observed in batch tests ranged from 2.9 to 21 fmol per cell per day. Anammox contributed 4–37% to soil N2 production, the remainder being due to denitrification. The 16S rRNA gene sequences of surface soil were closely related to the anammox bacteria ‘Kuenenia’, ‘Anammoxoglobus’ and ‘Jettenia’. Most...

  17. Soil acidification and liming in grassland production and grassland soil fertility in Slovenia

    Directory of Open Access Journals (Sweden)

    Jure ČOP

    2015-12-01

    Full Text Available This paper reviews the evidences on grassland soil acidity and liming in relation to soil processes and herbage production. There is also an outline of the present state of soil acidity and acidity-related traits – contents of organic matter (OM, phosphorus (P and potassium (K in Slovene grassland. In grassland, soil acidification is an ongoing process under humid climate conditions. It is mainly driven by leaching of nutrients, net loss of cations due to retention in livestock products, use of physiologically acid fertilizers, acid rain and N2 fixation. This process is reduced by strong pH buffering capacity of the soil and by physiologically basic fertilizers. Acid grassland soils in Slovenia are widely distributed in spite of the fact that 44% of the total land has developed from a carbonate parent material. Of the 1713 grassland soil samples analysed during 2005-2007 45% were regarded as acid ones (pH < 5.5; in KCl, 57% as soils with very low P status (˂ 6 mg P2O5/100 g soil and 22% as soils with very low K status (˂ 10 mg K2O/100 soil. Increased content of soil organic matter was identified for alpine pastures (˃ 10 % OM in 44% of samples, mainly as a result of low decomposition rate. Liming of acid grassland soils did not always reflect in a higher herbage yield. The cause for this inefficiency is plant composition of grassland. Thus, many grassland plants with relatively high production potential have adapted to acid soil conditions. To illustrate the inconsistent liming effect three researches are reviewed. In the first two researches liming along with fertilizer application did not increase the yield comparing to the fertilized control while in the third research the increase amounted 26 %. Liming improves considerably botanical composition of the acid grassland (e.g. sward where Common Bent – Agrostis tenuis Sibth. – prevails and thus indirectly affects palatability and nutritive value of herbage. Grassland liming has a weak

  18. Evaluation of Nano Structured Slow Release Fertilizer on the Soil Fertility, Yield and Nutritional Profile of Vigna radiata.

    Science.gov (United States)

    Mala, Rajendran; Selvaraj, Ruby Celsia Arul; Sundaram, Vidhya Barathi; Rajan, Raja Blessina Siva Shanmuga; Gurusamy, Uma Maheswari

    2017-01-01

    The excessive use of fertilizers and pesticides has distorted soil composition, fertility and integrity with non-desirable environmental and ecological consequences. A strategy was designed to prepare a nano structured slow release fertilizer system that delivers nutrients and plant growth promoting rhizobacteria simultaneously. Slow release nano phosphate and potash fertilizer was prepared by blending the nano emulsion of fertilizer with neem cake and PGPR. Slow release nano phosphate and potash fertilizer was prepared by blending the nano emulsion of fertilizer with neem cake and PGPR. Few patents relevant to the topic have been reviewed and cited. The influence of nano structured slow release fertilizer on the biochemical characteristics, soil and yield attributes of Vigna radiata was studied in the field by randomized block design. The treatments used to evaluate the effect of nano SRF were a control (without any fertilizer), neem cake, chemical fertilizer, PGPR and nano SRF. Germination, specific activity of enzymes, carbohydrates, protein, photosynthetic pigments, root nodule number and microbial population were assessed by standard methods. The size of the nano urea slow release fertilizer ranged from 52.41 nm to 69.86 nm, and the size of the phosphate and potash fertilizer ranged from 81.85 nm to 87 nm. The weights of 1000 grains were 31.8 g, 33.28 g, 33.39 g, 36.65 g and 44.90 g in the control, neem cake, chemical fertilizer, PGPR and nano SRF, respectively. The protein concentrations were 162 mg g-1 in the control, 231 mg g-1 in the neem cake, 192 mg g-1 in the chemical fertilizer, 285 mg g-1 in the PGPR and 336 mg g-1 in the nano SRF. Nano slow release fertilizer treatment has stimulated germination and biochemical characteristics in Vigna radiata that are positively reflected in the yield attributes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Use of near infrared reflectance spectroscopy (NIRS) for predicting soil fertility and historical management.

    NARCIS (Netherlands)

    Freschet, G.T.; Barthès, B.G.; Brunet, D.; Hien, E.; Masse, D.

    2011-01-01

    This study tests the potential of near infrared reflectance spectroscopy (NIRS) for predicting soil fertility and management history from topsoil (0-10 cm deep) spectra. Soil fertility was assessed by measuring the growth of a test plant, and soil management history was determined through inquiries

  20. Soil Fertility in Koka Nagawo Area of Lumme District in East Shoa ...

    African Journals Online (AJOL)

    For designing proper soil fertility management interventions, locally specific information on physical, chemical, and biological properties of soils is indispensable. Therefore, a study was conducted to assess the spatial variability in the fertility status of soil of Koka Nagawo area of Lumme District in East Shoa Zone of Oromia ...

  1. Degradation of ¹³C-labeled pyrene in soil-compost mixtures and fertilized soil.

    Science.gov (United States)

    Adam, Iris K U; Miltner, Anja; Kästner, Matthias

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAH) are toxic pollutants widely distributed in the environment due to natural and anthropogenic processes. In order to mitigate tar oil contaminations with PAH, research on improving bioremediation approaches, which are sometimes inefficient, is needed. However, the knowledge on the fate of PAH-derived carbon and the microbial degraders in particular in compost-supplemented soils is still limited. Here we show the PAH carbon turnover mass balance in microcosms with soil-compost mixtures or in farmyard fertilized soil using [(13)C6]-pyrene as a model PAH. Complete pyrene degradation of 100 mg/kg of soil was observed in all supplemented microcosms within 3 to 5 months, and the residual (13)C was mainly found as carbon converted to microbial biomass. Long-term fertilization of soil with farmyard manure resulted in pyrene removal efficiency similar to compost addition, although with a much longer lag phase, higher mineralization, and lower carbon incorporation into the biomass. Organic amendments either as long-term manure fertilization or as compost amendment thus play a key role in increasing the PAH-degrading potential of the soil microbial community. Phospholipid fatty acid stable isotope probing (PLFA-SIP) was used to trace the carbon within the microbial population and the amount of biomass formed from pyrene degradation. The results demonstrate that complex microbial degrader consortia rather than the expected single key players are responsible for PAH degradation in organic-amended soil.

  2. Use of different organic fertilizers on soil fertility improvement, growth and head yield parameters of cabbage (Brassica oleraceae L)

    National Research Council Canada - National Science Library

    Ibukunoluwa Moyin-Jesu, Emmanuel

    2015-01-01

    Field experiment was carried out in Akure in the rainforest zone of Nigeria to determine the effect of poultry manure, wood ash and rice bran on the soil fertility improvement, growth and head yield of cabbage...

  3. Influence of green manure fertilization on soil enzyme activities and other soil properties

    Directory of Open Access Journals (Sweden)

    Alina Dora SAMUEL

    2007-05-01

    Full Text Available Agricultural practices that improve agricultural sustainability are needed particularly for brown luvic soil. Soil enzyme activities can provide information on how soil management is affecting the processes in soil such as decomposition and nutrient cycling. Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase were determined in the 0–10, 10–20, and 20–30 cm layers of a brown luvic soil submitted to a complex fertilization experiment with different types of green manure. It was found that each activity decreased with increasing sampling depth. It should be emphasized that green-manuring of maize led to a significant increase in each of the five enzymatic activities determined. The enzymatic indicators of soil quality calculated from the values of enzymatic activities showed the order: lupinus + rape + oat > lupinus > vetch + oat + ryegrass > lupinus + oat + vetch > unfertilized plot. This order means that by determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. There were significant correlations of soil enzyme activities with physical properties.

  4. Diversity and Abundance of Soil Animals as Influenced by Long-Term Fertilization in Grey Desert Soil, China

    Directory of Open Access Journals (Sweden)

    Maibo Jiang

    2015-08-01

    Full Text Available The relationship between soil fauna and different fertilizer management practices is of growing concern. The aim of this research was to investigate the response of soil fauna to fertilization regimes, to explore the relationships among the community of soil animals, soil moisture and crop yields. The application of organic fertilizers (i.e., sheep manure or crop residues increased crop yields and promoted the number of individuals and species of soil fauna owing to the exogenous organic matter that fertilizers provided for the survival and development of soil fauna. Furthermore, the treatments that applied sheep manure (i.e., sheep manure only or nitrogen, phosphorus, potassium and sheep manure plus were significantly beneficial for increasing crop yields and diversity of soil fauna compared to treatments with crop residues returned (i.e., crop residues returned only or nitrogen, phosphorus, potassium and crop residues returned to the field (p < 0.05 due to the response of soil fauna to diverse exogenous nutrients and the effect of soil fertility. Therefore, the finding that soil fauna abundance is significantly positively correlated with soil moisture and crop yield may mean the effects of fertilizer applications on soil animals were partly masked by the soil moisture and crop yield.

  5. Evaluation of micronutrient in soil treated with organic fertilizer

    Directory of Open Access Journals (Sweden)

    Alexandre Antonio Pasqualini

    2012-12-01

    Full Text Available Taking advantage of organic fertilizer for use in agriculture, may have beneficial effects for supplying organic matter and nutrients to the soil. The tested organic fertilizer is produced in a system of thermophilic composting of sewage sludge, the process by which it is mixed with chopped pruning urban, the crushed sugar cane and eucalyptus bark, and the mixture is subjected to aeration process revolving mechanical and oxidation promoted by an intense activity of microorganisms. The same is also additived with gypsum (Ca2SO4 in order to reduce the losses of ammonia from the process, helping to prevent odors and also attraction of vectors, besides enriching the material with calcium and sulfur, two macronutrients in plants. On the other hand the application of such compounds should be carefully monitored in order to prevent environmental risks from its use. This work aimed to evaluate the effect of rates of organic fertilizer (OF, in the Instituto de Zootecnia (IZ, in a Typic Acrudox soil, pHCaCl2= 4.9, cultivated with Aries grass (Panicum maximum, Jacq., without liming and focused in soil micronutrients contents. Treatments involved four rates of OF application: 0, 1.5, 3.0 and 4.5 t ha-1, mixed with soil before sowing the grass. The experimental design was a randomized blocks, with five replications, in pots (3.34 dm3. Soil samples were collected prior to the experiment (original soil and after cultivation of the Aries grass. Were air dried and passed through sieves with mesh size of 2 mm and analyzed chemically. The micronutrients (B, Cu, Fe and Zn – mg dm-3 were determined by atomic absorption, after extraction with a solution of DTPA, pH 7.3 (RAIJ et al., 2001. Data were analyzed by the mixed procedure of SAS V. 9.2; average qualitative treatments were compared by Tukey test at 5% probability. The degrees of freedom related to N rates (quantitative treatment were decomposed into orthogonal polynomials; to obtain the best equation fits

  6. Soil and plant nitrogen dynamics of a tomato crop under different fertilization strategies

    DEFF Research Database (Denmark)

    Doltra, Jordi; Muñoz, P; Antón, A

    2010-01-01

    A field experiment was conducted in 2007 to investigate the effects of the N fertilizer source on the soil and plant N dynamics of a tomato crop grown in a sandy loam soil. The fertilization treatments were: mineral N-fertilization applied by fertigation (TM); organic N-fertilization (TO...... basis. Soil samples were taken before planting and at harvest from depths of up to 90 cm in order to determine moisture and N-NO3- levels. The estimated amounts of total N-NO3- available in the different treatments, including the initial content in the 0-90 cm soil layer, were 560 (TC), 570 (TO) and 610...

  7. Near infrared index to assess the effect of soil tillage and fertilizer on soil water content.

    Science.gov (United States)

    Soltani, Ines; Fouad, Youssef; Michot, Didier; Breger, Pascale; Dubois, Remy; Pichelin, Pascal; Cudennec, Christophe

    2017-04-01

    Characterization of soil hydraulic properties is important for assessing soil water regime in agricultural fields. In the laboratory, measurements of soil hydrodynamic properties are costly and time consuming. Numerous studies recently demonstrated that reflectance spectroscopy can give a rapid estimation of several soil properties including those related with soil water content. The main objective of this research study was to show that near infrared spectroscopy (NIRS) is a useful tool to study the combined effect of soil tillage and fertilizer input on soil hydrodynamic properties. The study was carried out on soil samples collected from an experimental station located in Brittany, France. In 2000, the field was designed in a split-plot combining three tillage practices and four sources of fertilizers (mineral and organic). Undisturbed soil blocks were sampled in 2012 from three different depths of topsoil (0-7 cm, 7-15 cm and 15-20 cm) at each treatment. From each soil block, four aggregates with 3-4 cm diameter by 5-6 cm height were collected. Soil aggregates were first saturated and were then drained through 10 matric potential, from saturation up to permanent wilting point (pF=4.2), by successively using a suction table and a pressure chamber. Once the desired water pressure head was reached, soil samples were scanned to acquire reflectance spectra between 400-2500 nm using a handheld spectroradiometer equipped with a contact probe. Each spectrum was transformed into continuum removal, and an index based on the full width at half maximum (FWHM) of the absorption feature around 1920 nm was calculated. This index showed a linear relationship (R2>0.9) with volumetric water content. Moreover our results showed that the slope of the line was well correlated with the range of treatment. Overall, our findings indicate that the absorption feature of continuum removal spectra around 1900 nm can be useful to study the effect, particularly, of tillage on hydrodynamic

  8. Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer.

    Science.gov (United States)

    van Gils, Stijn; Tamburini, Giovanni; Marini, Lorenzo; Biere, Arjen; van Agtmaal, Maaike; Tyc, Olaf; Kos, Martine; Kleijn, David; van der Putten, Wim H

    2017-01-01

    There is increasing evidence showing that microbes can influence plant-insect interactions. In addition, various studies have shown that aboveground pathogens can alter the interactions between plants and insects. However, little is known about the role of soil-borne pathogens in plant-insect interactions. It is also not known how environmental conditions, that steer the performance of soil-borne pathogens, might influence these microbe-plant-insect interactions. Here, we studied effects of the soil-borne pathogen Rhizoctonia solani on aphids (Sitobion avenae) using wheat (Triticum aestivum) as a host. In a greenhouse experiment, we tested how different levels of soil organic matter (SOM) and fertilizer addition influence the interactions between plants and aphids. To examine the influence of the existing soil microbiome on the pathogen effects, we used both unsterilized field soil and sterilized field soil. In unsterilized soil with low SOM content, R. solani addition had a negative effect on aphid biomass, whereas it enhanced aphid biomass in soil with high SOM content. In sterilized soil, however, aphid biomass was enhanced by R. solani addition and by high SOM content. Plant biomass was enhanced by fertilizer addition, but only when SOM content was low, or in the absence of R. solani. We conclude that belowground pathogens influence aphid performance and that the effect of soil pathogens on aphids can be more positive in the absence of a soil microbiome. This implies that experiments studying the effect of pathogens under sterile conditions might not represent realistic interactions. Moreover, pathogen-plant-aphid interactions can be more positive for aphids under high SOM conditions. We recommend that soil conditions should be taken into account in the study of microbe-plant-insect interactions.

  9. Soil fertility shapes belowground food webs across a regional climate gradient.

    Science.gov (United States)

    Laliberté, Etienne; Kardol, Paul; Didham, Raphael K; Teste, François P; Turner, Benjamin L; Wardle, David A

    2017-10-01

    Changes in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump-shaped responses to soil ageing, which were propagated to higher-order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate-aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Modelling long-term phophorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils

    NARCIS (Netherlands)

    Campillo, del M.C.; Zee, van der S.E.A.T.M.; Torrent, J.

    1999-01-01

    The sound management of agricultural soils that are heavily loaded with phosphorus (P) involves minimizing the losses of P responsible for eutrophication of surface waters, while ensuring enough P for crops. This paper describes a simple model to examine the compatibility of these two objectives in

  11. Efforts by Small-Scale Farmers to Maintain Soil Fertility and Their Impacts on Soil Properties, Luwero District, Uganda

    NARCIS (Netherlands)

    Nyombi, K.; Esser, K.B.; Zake, J.Y.K.

    2006-01-01

    Low soil fertility remains a major reason for rural poverty in sub-Saharan Africa. In light of the need to set priorities and formulate development policies, this study investigates efforts by farmers in central Uganda to maintain soil fertility, factors affecting their capacity to act and impacts

  12. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    Science.gov (United States)

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  13. Increasing Efficiency of Soil Fertility Map for Rice Cultivation Using Fuzzy Logic, AHP and GIS

    Directory of Open Access Journals (Sweden)

    javad seyedmohammadi

    2017-02-01

    Full Text Available Introduction: With regard to increasing population of country, need to high agricultural production is essential. The most suitable method for this issue is high production per area unit. Preparation much food and other environmental resources with conservation of biotic resources for futures will be possible only with optimum exploitation of soil. Among effective factors for the most production balanced addition of fertilizers increases production of crops higher than the others. With attention to this topic, determination of soil fertility degree is essential tobetter use of fertilizers and right exploitation of soils. Using fuzzy logic and Analytic Hierarchy Process (AHP could be useful in accurate determination of soil fertility degree. Materials and Methods: The study area (at the east of Rasht city is located between 49° 31' to 49° 45' E longitude and 37° 7' to 37° 27' N latitude in north of Guilan Province, northern Iran, in the southern coast of the Caspian sea. 117 soil samples were derived from0-30 cm depth in the study area. Air-dried soil samples were crushed and passed through a 2mm sieve. Available phosphorus, potassium and organic carbon were determined by sodium bicarbonate, normal ammonium acetate and corrected walkly-black method, respectively. In the first stage, the interpolation of data was done by kriging method in GIS context. Then S-shape membership function was defined for each parameter and prepared fuzzy map. After determination of membership function weight parameters maps were determined using AHP technique and finally soil fertility map was prepared with overlaying of weighted fuzzy maps. Relative variance and correlation coefficient criteria used tocontrol groups separation accuracy in fuzzy fertility map. Results and Discussion: With regard to minimum amounts of parameters looks some lands of study area had fertility difficulty. Therefore, soil fertility map of study area distinct these lands and present soil

  14. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil.

    Science.gov (United States)

    Zhang, Jiuming; Wang, Jingkuan; An, Tingting; Wei, Dan; Chi, Fengqin; Zhou, Baoku

    2017-01-01

    The composition and structure of humic acid (HA) can be affected by fertilization, but the short-term effects are difficult to detect using traditional analysis methods. Using a 35-year long-term experiment in Black Soil, the molecular structure of HA was analyzed with Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance spectroscopy (NMR), and fluorescence spectroscopy. Variation in HA was analyzed after long-term fertilization, including fertilization with manure (M), inorganic N, P and K fertilizer (NPK), manure combined with inorganic N, P, and K fertilizer (MNPK), and a no-fertilizer control (CK). The application of each fertilizer treatment increased crop yields compared with the CK treatment, and the MNPK treatment increased crop yield the most. The ratio of main IR absorption peak of HA at 2,920 cm-1 compared with the peak at 2,850 cm-1 (2920/2850) was higher in the NPK and MNPK treatments compared with the CK treatment. The application of manure (MNPK and M treatments) increased the ratio of hydrogen to carbon (H/C) in HA, and raised the ratio of the main IR absorption peak of HA at 2920 cm-1 to that at 1720 cm-1 (2920/1720). Manure treatments also raised the ratio of aliphatic carbon (C) to aromatic C, alkyl C to alkoxy C and hydrophobic C to hydrophilic C and the fluorescence index (f 450/500), but decreased the degree of aromatization of HA, when compared with the CK treatment. The ratio between each type of C in HA was similar among all the fertilizer treatments, but NPK had a lower ratio of H/C and a lower content of aliphatic C compared with the CK treatment. These results indicated that the molecular structure of HA in Black Soil tends to be aliphatic, simpler, and younger after the application of manure. While the application of inorganic fertilizers increased in the degree of condensation of HA and made HA structure complicated. The application of manure alone or combined with inorganic fertilizers may be an effective way

  15. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil.

    Directory of Open Access Journals (Sweden)

    Jiuming Zhang

    Full Text Available The composition and structure of humic acid (HA can be affected by fertilization, but the short-term effects are difficult to detect using traditional analysis methods. Using a 35-year long-term experiment in Black Soil, the molecular structure of HA was analyzed with Fourier transform infrared spectroscopy (FTIR, 13C nuclear magnetic resonance spectroscopy (NMR, and fluorescence spectroscopy. Variation in HA was analyzed after long-term fertilization, including fertilization with manure (M, inorganic N, P and K fertilizer (NPK, manure combined with inorganic N, P, and K fertilizer (MNPK, and a no-fertilizer control (CK. The application of each fertilizer treatment increased crop yields compared with the CK treatment, and the MNPK treatment increased crop yield the most. The ratio of main IR absorption peak of HA at 2,920 cm-1 compared with the peak at 2,850 cm-1 (2920/2850 was higher in the NPK and MNPK treatments compared with the CK treatment. The application of manure (MNPK and M treatments increased the ratio of hydrogen to carbon (H/C in HA, and raised the ratio of the main IR absorption peak of HA at 2920 cm-1 to that at 1720 cm-1 (2920/1720. Manure treatments also raised the ratio of aliphatic carbon (C to aromatic C, alkyl C to alkoxy C and hydrophobic C to hydrophilic C and the fluorescence index (f 450/500, but decreased the degree of aromatization of HA, when compared with the CK treatment. The ratio between each type of C in HA was similar among all the fertilizer treatments, but NPK had a lower ratio of H/C and a lower content of aliphatic C compared with the CK treatment. These results indicated that the molecular structure of HA in Black Soil tends to be aliphatic, simpler, and younger after the application of manure. While the application of inorganic fertilizers increased in the degree of condensation of HA and made HA structure complicated. The application of manure alone or combined with inorganic fertilizers may be an

  16. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil

    Science.gov (United States)

    Zhang, Jiuming; Wang, Jingkuan; An, Tingting; Wei, Dan; Chi, Fengqin; Zhou, Baoku

    2017-01-01

    The composition and structure of humic acid (HA) can be affected by fertilization, but the short-term effects are difficult to detect using traditional analysis methods. Using a 35-year long-term experiment in Black Soil, the molecular structure of HA was analyzed with Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance spectroscopy (NMR), and fluorescence spectroscopy. Variation in HA was analyzed after long-term fertilization, including fertilization with manure (M), inorganic N, P and K fertilizer (NPK), manure combined with inorganic N, P, and K fertilizer (MNPK), and a no-fertilizer control (CK). The application of each fertilizer treatment increased crop yields compared with the CK treatment, and the MNPK treatment increased crop yield the most. The ratio of main IR absorption peak of HA at 2,920 cm−1 compared with the peak at 2,850 cm−1 (2920/2850) was higher in the NPK and MNPK treatments compared with the CK treatment. The application of manure (MNPK and M treatments) increased the ratio of hydrogen to carbon (H/C) in HA, and raised the ratio of the main IR absorption peak of HA at 2920 cm−1 to that at 1720 cm−1 (2920/1720). Manure treatments also raised the ratio of aliphatic carbon (C) to aromatic C, alkyl C to alkoxy C and hydrophobic C to hydrophilic C and the fluorescence index (f 450/500), but decreased the degree of aromatization of HA, when compared with the CK treatment. The ratio between each type of C in HA was similar among all the fertilizer treatments, but NPK had a lower ratio of H/C and a lower content of aliphatic C compared with the CK treatment. These results indicated that the molecular structure of HA in Black Soil tends to be aliphatic, simpler, and younger after the application of manure. While the application of inorganic fertilizers increased in the degree of condensation of HA and made HA structure complicated. The application of manure alone or combined with inorganic fertilizers may be an

  17. [Effects of herb residue vermicompost on maize growth and soil fertility].

    Science.gov (United States)

    Li, Jing-Juan; Zhou, Bo; Zhang, Chi; Zhang, Jing; Xu, Huan; Yang, Xiao-Xue; Chen, Xu-Fei; Dai, Jun

    2013-09-01

    A pot experiment was conducted to evaluate the effects of herb residue vermicompost on maize growth and soil fertility. With the increasing application rate of vermicompost, the plant height, stem diameter, leaf area, and chlorophyll content of maize all increased significantly. After 60 days growth of maize, the soil bulk density in most vermicompost treatments decreased significantly. The soil pH in vermicompost treatments was significantly higher than that in CK and in chemical fertilization treatments. In addition, the soil total nitrogen and organic matter contents in vermicompost treatments were obviously higher than those in chemical fertilization treatments. It was suggested that herb residue vermicompost could be used as an efficient and high-quality organic fertilizer, and its appropriate application could improve soil physical structure, alleviate soil acidification, increase soil organic matter and nitrogen contents, and promote crop growth.

  18. Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis.

    Science.gov (United States)

    Corina Graciano; Juan F. Goya; Jorge L. Frangi; Juan J. Guiamet

    2006-01-01

    Nitrogen (N) and phosphorus (P) are the nutrients that most commonly limit tree growth. Interactions between fertilization and soil type are well known, and in soils with moderate or low N availability, N-fertilization is frequently recommended to improve tree nutrition. The aim of this paper was to analyze how different doses of P and N applied in three different...

  19. Influence of soil pH and fertilization on the dry matter production ...

    African Journals Online (AJOL)

    Reports the results of a study conducted to evaluate the influence of soil pH and fertilization on the dry matter production, chemical composition and organic matter digestibility of Panicum maximum; The influence of soil pH and fertilization (N, P and Zn) on the dry matter (DM) production, chemical composition (crude protein, ...

  20. [Spatial pattern of soil fertility in Bashan tea garden: a prediction based on environmental auxiliary variables].

    Science.gov (United States)

    Qin, Le-feng; Yang, Chao; Lin, Fen-fang; Yang, Ning; Zheng, Xin-yu; Xu, Hong-wei; Wang, Ke

    2010-12-01

    Taking topographic factors and NDVI as auxiliary variables, and by using regression-kriging method, the spatial variation pattern of soil fertility in Bashan tea garden in the hilly area of Fuyang City was explored. The spatial variability of the soil fertility was mainly attributed to the structural factors such as relative elevation and flat/vertical curvature. The lower the relative elevation, the worse the soil fertility was. The overall soil fertility level was relatively high, and the area with lower soil fertility only accounted for 5% of the total. By using regression-kriging method with relative elevation as auxiliary variable, the prediction accuracy of soil fertility was obviously higher than that by using ordinary kriging method, with the mean error and root mean square error being 0. 028 and 0. 108, respectively. It was suggested that the prediction method used in this paper could fully reflect the effects of environmental variables on soil fertility , improve the prediction accuracy about the spatial pattern of soil fertility, and provide scientific basis for the precise management of tea garden.

  1. Relationships between Nutrient-Related Plant Traits and Combinations of Soil N and P Fertility Measures

    NARCIS (Netherlands)

    Fujita, Y.; van Bodegom, P.M.; Witte, J.P.M.

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has

  2. Evaluation of the fertility status of selected soils in Mbaise, Imo State ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the fertility status of soils in Ahiazu Mbaise, Imo State under three land use types using nutrient index method and fertility rating. Soil samples were collected from five sampling points each from three land use types at the depth of 0 – 20 cm. Samples were prepared and analysed for ...

  3. Soil fertility and crop management research on cool-season food ...

    African Journals Online (AJOL)

    Land degradation and depletion of soil fertility is the critical challenge for sustainable crop production in the highlands of Ethiopia. This paper reviews advances in the major activities and achievements of soil fertility, crop and land management research on the highland pulses, which have been done for the last two ...

  4. Effects of Pig Manure Organic Fertilizer Application on Available Nutrient Content and Soil Aggregate Distribution in Fluvo-aquic Soil

    Directory of Open Access Journals (Sweden)

    SHI Wen-xuan

    2017-08-01

    Full Text Available This paper focuses on environmental risk caused by livestock manure disorderly discharged from integrated livestock and poultry industry. 2-year pot experiment was carried out to study the effects of pig manure organic fertilizer on fluvo-aquic soil organic carbon, available nutrient content and soil aggregate distribution, which designed in 5 levels of organic fertilizer application(0, 6.7, 13.3, 26.7, 40.0 g·kg-1 soil. The results showed that the organic carbon, alkali-hydrolyzable nitrogen, available P and available K contents in soil were enhanced with organic fertilizer application increasing, and the indicators of soil were increased significantly in second year, such as organic carbon content was 2.7%~54.0% higher than that of the first year, alkali-hydrolyzable nitrogen content was higher 6.7%~34.6%, available P content was higher 36.8%~159.5% and available K content was higher 20.3%~35.7%. There was a significant linear relationship between soil organic carbon content and external organic carbon input. Organic fertilizer application could significantly improve lettuce yield, and it had a significant effect. The soil micro-aggregate contents for 0.053~0.25 mm and 0.5 mm soil macro-aggregates were increased with organic fertilizer application increasing. Organic fertilizer application could promote soil macro-aggregates formation, when the pig manure organic fertilizer applied 40.0 g·kg-1 soil, the contents of >0.25 mm soil aggregates reached maximum, and also the mean weight diameter(MWD and geometric average diameter(GWD of soil aggregates were higher than that of other treatments, the soil agglomeration became more stronger and the soil structure became more stable.

  5. [Nitrate nitrogen leaching and residue of humic acid fertilizer in field soil].

    Science.gov (United States)

    Liu, Fang-chun; Xing, Shang-jun; Duan, Chun-hua; Du, Zhen-yu; Ma, Hai-lin; Ma, Bing-yao

    2010-07-01

    To elucidate the potential influence of humic acidfertilizer on groundwater and soil quality in clay soil (CS) and sandy soil (SS), nitrate nitrogen leaching and residue of different fertilizers in field soil were studied using a self-made leaching field device. Nitrate nitrogen concentration in leaching water of fertilizer treatments was 28.1%-222.2% higher than that of non-nitrogen treatment in different times, but humic acid fertilizer could prevent nitrate nitrogen leaching both in CS and SS, especially in CS. Nitrate nitrogen concentration of leaching water in CS was 41.2%-59.1% less than that in SS and the inhibiting effect in CS was greater than that in SS. Nitrate nitrogen could be accumulated in soil profile by fertilizer application. The residue of nitrate nitrogen retained in 0-40 cm soil layer of humic acid fertilizer treatment was 59.8% and 54.4% respectively, higher than that of urea and compound fertilizer treatments. Nitrate nitrogen amount of humic acid, urea and compound fertilizer treatments in SS was significantly less than that in CS, being 81.7%, 81.1% and 47.6% respectively. Compared with the conventional fertilizer, humic acid fertilizer treatment improved the contents of organic matter, available nitrogen, phosphorus, and potassium of upper layer soil as well as cation exchange capacity. Besides, total amount of water-soluble salts in humic acid fertilizer treatment was decreased by 24.8% and 22.5% in comparison to urea and compound fertilizer treatments in CS, respectively. In summary, the application of humic acid fertilizer could improve physical and chemical properties of upper layer soil and reduce the risk of potential pollution to groundwater.

  6. AMARANTHS (Amaranthus viridis) Dry matter and soil qualities: Organic Vs Inorganic Fertilizers

    OpenAIRE

    ADEOLUWA, OLUGBENGA O.; AKINYEMI, OLUWASEYI

    2014-01-01

    Continuous use of mineral fertilizer in soils is associated with reduced crop and soil quality.In this report, comparative effects of poultry manure and its extract, compost and mineral fertilizers was observed. The study was carried out on the field in two successive plantings (first planting and residual) at the Department of Agronomy, University of Ibadan, Ibadan, Nigeria. The treatments used were poultry manure, poultry manure extract, NPK(15-15-15), and control. Fertilizer treatments...

  7. Microbial activity of soil cultivated with corn in association with weeds under different fertility management systems

    Directory of Open Access Journals (Sweden)

    Christiane Melo

    2014-12-01

    Full Text Available Interactions between weeds and soil microorganisms can give them a competitive advantage over crops. This study assessed the biomass and microbial activity of soil cultivated with weeds and corn (Zea mays L. in monoculture and in competition under different fertility management systems. The experiment considered four soil fertility management systems (calcium and magnesium silicate + fertilization; limestone + fertilization; no correction source + fertilization; no correction source + no fertilization and 12 crops (five competition arrangements between corn and weeds Urochloa brizantha (Hochst. ex A. Rich. R.D. Webster, lpomoea grandifolia (Dammer O'Donell, Conyza canadensis (L. Cronquist, Hyptis suaveolens (L. Poit., and Bidens pilosa L. plus the six species in monoculture and bare soil. After 60 d coexisting in a greenhouse, soil samples were collected to determine microbial biomass, respiration rate, and metabolic quotient. Soils cultivated with B. pilosa and Z. mays+U. brizantha showed higher microbial biomass. Cultivation of B. pilosa and Z. mays+H. suaveolens provided greater energy efficiency to maintain microbial cells. Biomass and microbial activity were altered by plant species, coexistence, and soil fertility management. Calcium and magnesium silicate, as well as limestone similarly influenced biomass and respiration rate of soil cultivated with most species. For some crops, the Si source was better than limestone to promote lower specific activity of the edaphic microbiota. The change in the microbial activity of soil can be a strategy used by the species to minimize the effects of competition.

  8. Balanced Fertilization Decreases Environmental Filtering on Soil Bacterial Community Assemblage in North China

    Directory of Open Access Journals (Sweden)

    Youzhi Feng

    2017-12-01

    Full Text Available Although increasing evidences have emerged for responses of soil microorganisms to fertilizations, the knowledge regarding community assemblages that cause variations in composition is still lacking, as well as the possible feedback to soil fertility. Phylogenetic conservatism of species indicates their similar environmental preferences and/or function traits and phylogenetic signals further can infer community assemblages and influenced ecological processes. Here, we calculated the mean pairwise phylogenetic distance and nearest relative index, characterizing phylogenetic signal and the undergone ecological process to evaluate the community assembly of soil bacterial phylotypes in 20-year fertilized soils. The bacterial community assembly is structured by environmental filtering, regardless of fertilization regime. Soil phosphorous (P availability imposes selection on community assemblage and influences their community turnover among fertilizations. When P nutrient lacks, the effect of environmental filtering becomes stronger, hence bacterial functional traits become more coherent; this process results into increased intraspecific interactions characterized by co-occurrence network analysis. In contrast, when P nutrient becomes abundant, the environmental selection is mitigated; function traits are evened. This process reduces intraspecific interactions and increases carbon sequestration efficiency, which is finally of great favor to the increases in soil fertility. This study has made the first attempt, at the bacterial level, to understand how fertilization affects agroecosystems. When more phylogenetic information on how nutrient cycling-related microbes respond to fertilization becomes available, the systematic knowledge will eventually provide guidance to optimal fertilization strategies.

  9. Effect of fertilization on available cadmium level in soil and lettuce

    OpenAIRE

    Bošković-Rakočević Ljiljana; Pavlović R.; Bogdanović Darinka

    2014-01-01

    The objective of this study was to evaluate the effect of organic fertilizer (cattle manure) and monoammonium phosphate (Russian MAP-R and Serbian MAP-S) on available Cd levels in soil and Cd uptake by lettuce plants grown on vertisol and fluvisol. Fertilization treatments were as follows: control - without fertilization, mature cattle manure (20 g kg-1 soil), MAP-R (0.1 g kg-1 soil), MAP-S (0.1 g kg-1 soil). Prior to the experiment, available Cd level was higher in vertisol (0.06 mg kg-1) th...

  10. PENETRATION OF NITROGEN INTO WATER AS A RESULT OF FERTILIZATION OF LIGHT SOIL

    Directory of Open Access Journals (Sweden)

    Franciszek Czyżyk

    2014-10-01

    Full Text Available In this article there are present the results of six-year study of infiltration of nitrogen through the sand soil (loamy sand. Every year the soil was fertilized by compost (from sewage sludge and equivalent doses of nitrogen in mineral fertilizers. Two variants of compost fertilization (K1-10 and K2-15 g N·m-2 were used. Additionally two variants of NPK with equivalent doses of nitrogen as an ammonium nitrate supplemented with PK as a superphosphate and potassium salt were applied. Systematically there were investigated the volume of all leachates and their chemical composition. With increasing doses of fertilizers the concentrations of total nitrogen and nitrate nitrogen in the leachate were increased. The concentration of nitrogen in the leachate from the soil fertilized by nitrate was much greater than in compost with equivalent dose of nitrogen. Not only nitrates but also nitrogen from soluble organic compounds were rinsed from the soil. In the case of soil fertilized by compost the participation of nitrates in the total value of nitorgen in the leachate was 41-77%. However in the case of fertilization by ammonium sulphate this proportion was significantly higher and was in the range 60-95%. Over the years, a systematic soil fertilization by both ways increased the nitrogen concentrations in leachate. It shows that in the soil there is surplus of nitrogen, increasing during the time.

  11. Accumulation of macronutrients by weed and corn in coexistence in soil with different fertility managements

    Directory of Open Access Journals (Sweden)

    Christiane Augusta Diniz Melo

    2015-04-01

    Full Text Available The understanding of weed interference on crops is very important in agricultural systems. However, there is little known about the influence of soil fertility management in competitive relations between plants. The objective of this study was to evaluate the effects of mutual interference between weeds and corn on the content of macronutrients under different soil fertility managements. The experimental test was conducted in a greenhouse, considering four soil fertility managements (with calcium and magnesium silicate and fertilization; with limestone and fertilization; without correction of acidity, but with fertilization; without correction of acidity and without fertilization and eleven crops (five arrangements of competition between Zea mays and the weeds Urochloa brizantha, Ipomoea grandifolia, Conyza canadensis, Hyptis suaveolens and Bidens pilosa, plus the six species in monoculture. Corn had reductions exceeding 50% in the content of all macronutrients under interference of U. brizantha. Additionally, U. brizantha and B. pilosa in competition with corn has high ability to extract macronutrients in the four soil conditions. Calcium and magnesium silicate and limestone influenced variable on nutrient accumulation by weeds in monoculture or under interference. Corn grown in soil amended with silicate suffered greater competition with weeds compared to grown in soil amended with lime. U. brizantha was the specie most damaging to the crop. B. pilosa showed high potential for nutrient cycling in the four soil fertility management.

  12. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  13. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China

    OpenAIRE

    Shaojun Wang; Chen, Han Y. H.; Yan Tan; Huan Fan; Honghua Ruan

    2016-01-01

    Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and c...

  14. EFFECT OF ORGANIC AND CHEMICAL SOIL FERTILIZERS AND THEIR INTERACTIONS WITH FOLIAR FERTILIZER ON SOME VEGETATIVE GROWTH OF FENUGREEK

    Directory of Open Access Journals (Sweden)

    Ali H. JASIM

    2016-12-01

    Full Text Available The experiment was conducted on the extension experiments farm in Babylon during the growing season 2013 - 2014 to study the effect of 5 soil fertilization treatments [control, 200 kg.ha-1 of NPK (18-18-0 , 4 and 8 t.ha-1 of compost of poultry], and its interaction with 4 treatments of foliar fertilizers [control, spray urea 1 g / liter, spraying humic acid 2 ml.l-1 and spray polimet 2 ml.l-1] on growth and yield of fenugreek. Randomized complete block design (RCBD with three replications was used. Seeds are sown on lines (30 cm apart in 21.10.2013 and the experimental unit contained 6 lines. After a week of germination the seedlings were thinned to 10 cm apart. Soil fertilizers were added as side dressing and the foliar fertilizers were added twice in 15/1 and 01/02/2014. The results showed that chemical fertilizer was superior significantly compared to other treatment in plant height, number of leaves, leaf area and wet and dry weight, while poultry (8 t.ha-1 was superior compared to control in branches number and wet weight. Urea spray was superior in plant height, leaves no. and soft weight. Polimet spray was superior compared to control in branches.plant-1. The interaction between the soil and spraying fertilizers had a significant effect in increasing plant height, branches no., leaves no., leaf area and wet and dry weight.

  15. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    Science.gov (United States)

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights

  16. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    Science.gov (United States)

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  17. Soil fertility after 10 years of conservation tillage in organic farming

    OpenAIRE

    Peigne, Joséphine; Vian, Jean François; Payet, Vincent; Saby, Nicolas

    2018-01-01

    It has become commonplace to consider ploughing as an agricultural practice that destroys soil fertility. Organic farmers have traditionally used the plough to till their soil and control weeds. However, there is a growing interest in adopting tillage practices without ploughing to preserve long-term soil fertility and in the hope, subsequently, of increasing crop yields. The aim of this paper is to assess if conservation tillage treatments in organic farming did in fact improve long-term soi...

  18. Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe

    NARCIS (Netherlands)

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    There is a need for an improved understanding of nitrogen (N) dynamics in depleted sandy soils in southern Africa. A field experiment was conducted to evaluate the performance of different soil fertility improvement practices on a degraded granitic sandy soil in Zimbabwe. Legumes capable of

  19. Soil erosion, soil fertility and crop yield on slow-forming terraces in the highlands of Buberuka, Rwanda

    NARCIS (Netherlands)

    Kagabo, M.D.; Stroosnijder, L.; Visser, S.M.; Moore, D.

    2013-01-01

    Crop productivity in Rwanda is declining as a result of intensive farming on steep slopes, which leads to soil loss and declining soil fertility particularly in the northern highlands. Slow-forming terraces have been widely adopted in the northern highlands of Rwanda to control soil erosion however

  20. Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Powell, Jeff R; Hamonts, Kelly; Reith, Frank; Mele, Pauline; Brown, Mark V; Dennis, Paul G; Ferrari, Belinda C; Fitzgerald, Anna; Young, Andrew; Singh, Brajesh K; Bissett, Andrew

    2017-08-01

    The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: a neglected heavily polluted area.

    Science.gov (United States)

    Tang, Zhenwu; Huang, Qifei; Cheng, Jiali; Yang, Yufei; Yang, Jun; Guo, Wei; Nie, Zhiqiang; Zeng, Ning; Jin, Lu

    2014-01-01

    The release of pollutants during the recycling of contaminated plastics is a problem which has drawn worldwide attention; however, little information on the transfer of polybrominated diphenyl ethers (PBDEs) in these processes is available. We conducted a survey of PBDEs in soils, sediments, and human hair in a typical plastic waste recycling area in northern China. The total concentrations (ng/g) of 21 PBDEs were 1.25-5504 (average 600), 18.2-9889 (average 1619), and 1.50-861 (average 112) in soils, sediments, and hair, respectively. The PBDE concentrations were comparable to concentrations observed in e-waste recycling areas; however, the concentrations in soils and sediments were 1-3 orders of magnitude higher than in other areas, and the concentrations in hair were much higher than in other areas. This indicates that this area is highly polluted with PBDEs. BDE-209 was the dominant congener (representing 91.23%, 92.3%, and 91.5% of the total PBDEs observed in soils, sediments, and hair, respectively), indicating that the commercial deca-BDE product was dominant. The commercial penta- and octa-BDE products made small contributions to the total PBDE concentrations, unlike what has been found in some e-waste recycling areas. Our results show that crude plastic waste processing is a major contributor of PBDEs to the environment and humans, which should be of great concern.

  2. Effects of agricultural intensification in the tropics on soil carbon losses and soil fertility

    Science.gov (United States)

    Guillaume, Thomas; Buttler, Alexandre; Kuzyakov, Yakov

    2016-04-01

    Tropical forest conversion to agricultural land leads to strong decrease of soil organic carbon (SOC). Nonetheless, the impacts of SOC losses on soil fertility remain unclear. We quantified SOC losses in forest, oil palm plantations, extensive rubber plantations and rubber monocultures on Sumatra Island (Indonesia). Furthermore, we assessed the response of biological (basal respiration, microbial biomass, acid phosphatase) and chemical fertility indicators (light fraction of OM, DOC, total N, available P) to SOC losses. We used a new approach based on (non-)linear regressions between SOC losses and the indicators, normalized to natural ecosystem values, to assess the sensitivity or resistance of fertility indicators to SOC losses. Carbon contents in the Ah horizon under oil palm and intensive rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber (41%). The negative impact of land-use changes on all measured indicators increased in the following sequence: extensive rubber oil palm. Basal respiration, microbial biomass and nutrients were comparatively resistant to SOC losses, whereas the light fraction of OM was lost faster than the SOC. The resistance of the microbial activity to SOC losses is an indication that microbial-mediated soil functions sustain SOC losses. However, responses of basal respiration and microbial biomass to SOC losses were non-linear. Below 2.7% C content, the relationship was reversed. The basal respiration decreased faster than the SOC, resulting in a stronger drop of microbial activity under oil palm compared to rubber, despite small difference in C content. We conclude that the new approach allows a quantitative assessment of the sensitivity and threshold of various soil functions to land-use changes and consequently, can be used to assess their resistance to agricultural intensification. Therefore, this method is appropriate to evaluate the environmental impacts associated

  3. Effects of organic fertilizers and biochar/organic fertilizer combinations on fertility and organic matter dynamics of a sandy soil in north-west Germany

    Science.gov (United States)

    Greenberg, Isabel; Kaiser, Michael; Polifka, Steven; Wiedner, Katja; Glaser, Bruno; Ludwig, Bernard

    2017-04-01

    Biochar and biochar/organic fertilizer combinations have been recommended as soil amendments to improve plant productivity and soil properties, as well as to increase soil organic C (OC) storage. However, these claims have been largely unverified by field experiments lasting several years. To address these issues, a field experiment was established in 2012 to analyze the effects of organic fertilizers and biochar/organic fertilizer combinations (five field replicates, fully randomized block design) on the fertility and organic matter dynamics of a sandy Cambisol. In 2016, samples were taken from the 0-10 cm and 10-30 cm soil depths of the following treatments: mineral fertilizer and maize digestate that were applied both individually and in combination with 1 t/ha or 40 t/ha biochar. Further treatments were compost and 10 t/ha composted biochar. The treatments were analyzed for the plant yield and the bulk soil samples were analyzed for the pH, cation exchange capacity (CEC), OC content, microbial biomass C and the distribution of aggregate-size fractions (i.e. >2 mm, 2 mm - 250 µm, 250 - 53 µm, <53 µm). The latter were also analyzed for OC content and by FTIR. In 2012, the combination of 40 t/ha biochar+digestate accounted for about 42% higher maize (Zea mays) yields (7.9 t/ha) than the mineral fertilization treatment. For winter rye (Secale cereale) in 2013, we detected the highest yield (10.4 t/ha) for the 10 t/ha composted biochar treatment. In 2014, the highest yield for blue lupine (Lupinus angustifolius) (1.84 t/ha) was detected for the 40 t/ha biochar+digestate treatment. The first data for the soil samples indicate that the 10 t/ha composted biochar and the compost treatment are most effective in increasing the CEC, and the microbial biomass C content of the soil, while pH was not significantly affected by any of the treatments. The bulk soil OC content of the treatments receiving 40 t/ha biochar+fertilizer (digestate or mineral), 10 t/ha composted

  4. USE OF BIOENERGY RESIDUES AS AMENDMENTS: IMPLICATIONS ON SOIL FERTILITY AND SOIL CARBON SEQUESTRATION

    Directory of Open Access Journals (Sweden)

    Antonia Galvez

    2011-07-01

    Full Text Available The increasing use of renewable energy sources as substitutes to fossil fuels has provoked an increase in the production of bioenergy residues. These residues could be effectively used for the recovery and conservation of soil fertility. However, the effect of the organic residues on the soil ecosystem is different depending on their physico-chemical characteristics and, particularly, the knowledge of the impact of bioenergy residues on soil quality is still limited. The aim of this work is to study the effects of different bioenergy residues on C and N mineralization and soil microbial content and activity. A degraded soil (clay 49.7%, pH 7, OC 0.37% from Southern Spain was amended (0.5% w/w with four different bioenergy residues (anaerobic digestate, rapeseed meal from biodiesel production, bioethanol residue and biochar and three other organic residues commonly used as organic amendments (wastewater sludge and two composts. The amended soil was then incubated for 30 days at 20 ºC. During incubation soil CO2 evolution was measured every 4 hours by means of an automatic chromatographic system. After 2, 7 and 30 days of incubation the following parameters were also analysed: K2SO4-extractable C, N, NO3 -, NH4 + and P, microbial biomass C and some enzymatic activities involved in the cycle of the main nutritive elements (β-glucosidase, arylsulfatase, esterase, alkaline and acid phosphatase and leucine aminopeptidase. Soil addition of the different residues led to a general increase in C and N mineralization, in the availability of nutrients and in the microbial content and activity, but with remarkable different values and dynamics. The only exception was represented by biochar that did not cause any significant variations of the measured parameters with respect to the control. The obtained results demonstrate that bioenergy residues may represent an effective alternative to usual amendments for the recovery and conservation of soil quality

  5. Evolution of Soil Biochemical Parameters in Rainfed Crops: Effect of Organic and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Marta M. Moreno

    2012-01-01

    Full Text Available In organic farming, crop fertilization is largely based on the decomposition of organic matter and biological fixation of nutrients. It is therefore necessary to develop studies conducted to know and understand the soil biological processes for the natural nutrient supplies. The effect of three fertilizer managements (chemical with synthetic fertilizers, organic with 2500 kg compost ha−1, and no fertilizer in a rainfed crop rotation (durum wheat-fallow-barley-vetch as green manure on different soil biochemical parameters in semi-arid conditions was investigated. Soil organic matter, microbial biomass carbon, organic matter mineralization, CO2 production-to-ATP ratio, and NO3-N content were analysed. Fertilization was only applied to cereals. The results showed the scarce effect of the organic fertilization on soil quality, which resulted more dependent on weather conditions. Only soil organic matter and NO3-N were affected by fertilization (significantly higher in the inorganic treatment, 1.28 g 100 g−1 and 17.3 ppm, resp.. Soil organic matter was maintained throughout the study period by the inclusion of a legume in the cropping system and the burying of crop residues. In fallow, soil microbial biomass carbon increased considerably (816 ng g−1, and NO3-N at the end of this period was around 35 ppm, equivalent to 100 kg N ha−1.

  6. Fertilization of criollo corn with vermicompost and its rate of decomposition in the soil

    Directory of Open Access Journals (Sweden)

    Juan Ángel García Sañudo

    2013-05-01

    Full Text Available The agricultural lands of Sinaloa have been intensively cultivated for over 50 years with increasing use of chemical fertilizers and decreasing use of organic applications. This situation has led to an environmental problem which is gradually getting worse; this is this study chooses to focus on the study of the application of organic additives such as vermicompost and supermagro in the cultivation of criollo corn. The treatments studied were: T1= criollo corn organic fertilizers with mineral fertilization; T2= criollo corn with organic fertilizers and without mineral fertilization; T3= criollo corn without organic fertilizers and with mineral fertilization; T4= criollo corn without fertilization; T5= hybrid corn with mineral fertilization of N, P and K and T6= hybrid corn without fertilization. 3 t.ha- 1 of vermicompost in pre-seeding stage, 250 L.ha-1 of supermagro and mineral fertilization (350 N, 120 P, 0 K; the experimental design implemented randomized complete blocks, with four repetitions. The response variables were: CO2 release from soil, vermicompost decomposition rate in soil and corn grain yield. The accumulation of biomass in corn development stages was benefited by the stimulation of the CO2 concentration after obtaining an acceptable grain yield, with the application of vermicompost as an organic fertilizer, concluding that the application of organic additives of vermicompost and supermagro showed that criollo corn grain yield of Sinaloa is practicable in accordance with the experiment results.

  7. [Effects of Organic and Inorganic Slow-Release Compound Fertilizer on Different Soils Microbial Community Structure].

    Science.gov (United States)

    Wang, Fei; Yuan, Ting; Gu, Shou-kuan; Wang, Zheng-yin

    2015-04-01

    As a new style fertilizer, slow-control release fertilizer had been an important subject in recent years, but few researches were about soil microbial community structure diversity. Phospholipid fatty acid method was used to determined the microbial community structure diversity of acid soil and slight alkaline soil applied with slow-release compound fertilizer (SRF), chemical fertilizer (CF) and common compound fertilizer (CCF) at the 10th, 30th, 60th and 90th day under the constant temperature incubation condition. Results indicated that various bacteria (i. e 13:0, i14:0,14:0, i15:0, a15:0, i16:0, 16:12OH, 16:1w5c,16:0, i17:0, a17:0, cy17:0, 17:02OH, i18:0, 18:0 and cy19:0w8c), two actinomycetes (10Me17:0 and 10Me18:0) and only one fungus (18:1 w9c) were detected in two soils after applying slow-release compound fertilizer and other fertilizers during the whole incubation period. SRF could significantly increase the fungi PLFA content by 8.3% and 6.8% at the early stage (the 10th day and 30th day) compared with CF, as well as significantly increase by 22.7% and 17.1% at the late stage (the 60th day and 90th day) compared with CCF in acid soil. SRF significantly increased bacteria, fungi and gram positive bacteria compared with CF and CCF in incubation period (except at the 30th day) in slight alkaline soil. SRF could significantly improve the ratio of normal saturated fatty acid and monounsaturated fatty acid at the 30th day and 90th days in acid soil compared with no fertilizer (CK), CF and CCF, while as to slight alkaline soil, SRF was significantly greater than that of CK, CF and CCF only at the 60th day. SRF could significantly decrease the ratio of iso PLFA and anteiso PLFA in acid soil (in 30-90 days) and slight alkaline soil (in 10-60 days). For two soils PLFA varieties, contents and ratios of microbial community, slow-release compound fertilizer increased soil microbial PLFA varieties and contents, and decreased the influence to microbial survival

  8. Bioorganic fertilizer enhances soil suppressive capacity against bacterial wilt of tomato.

    Science.gov (United States)

    Liu, Lijuan; Sun, Chengliang; Liu, Shuangri; Chai, Rushan; Huang, Weiqing; Liu, Xingxing; Tang, Caixian; Zhang, Yongsong

    2015-01-01

    Tomato bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soil-borne diseases. Many strategies have been taken to improve soil suppressiveness against this destructive disease, but limited success has been achieved. In this study, a novel bioorganic fertilizer revealed a higher suppressive ability against bacterial wilt compared with several soil management methods in the field over four growing seasons from March 2011 to July 2013. The application of the bioorganic fertilizer significantly (Pfertilizer increased soil pH value, electric conductivity, organic carbon, NH4+-N, NO3--N and available K content, microbial activities and microbial biomass carbon content, which were positively related with soil suppressiveness. Bacterial and actinomycete populations assessed using classical plate counts were highest, whereas R. solanacearum and fungal populations were lowest in soil applied with the bioorganic fertilizer. Microbial community diversity and richness were assessed using denaturing gel gradient electrophoresis profile analysis. The soil treated with the bioorganic fertilizer exhibited higher bacterial community diversity but lower fungal community diversity. Redundancy analysis showed that bacterial community diversity and richness negatively related with bacterial wilt suppressiveness, while fungal community richness positively correlated with R. solanacearum population. We concluded that the alteration of soil physicochemical and biological properties in soil treated with the bioorganic fertilizer induced the soil suppressiveness against tomato bacterial wilt.

  9. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Organic Matters and P Fertilizer Application on Andisol

    Science.gov (United States)

    Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.

    2017-04-01

    Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).

  10. Impact of long-term application fertilizer on soil total sulphur and valid sulphur

    Science.gov (United States)

    Gao, Mengyu; Lu, Xiaoling; Huang, Yuqian; Liu, Ning; Yang, Jinfeng

    2017-06-01

    The object of this study was to investigate the effect of the long-term application fertilizer on soil total sulphur and valid sulphur. The results showed that applying fertilizer can improve total sulphur and valid sulphur. In comparison with the low level of nitrogen fertilization treatment, the high one total sulphur and valid sulphur were obviously increased by 29.41% and 19.0%, respectively. Compared with in application of different levels nitrogen and the low level of organic fertilizer, the high level treatment total sulphur and valid sulphur contents were significantly increased by 10.73% and 23.47% than the low one. In application of organic fertilization can also improve total sulphur and valid sulphur The total sulphur and valid sulphur content were higher than organic fertilization only treatment 34.14% and 455.89% in comparison with high levels of organic fertilization mix with nitrogen, phosphorous and potassium fertilization treatment.

  11. Discrimination of soils and assessment of some soil fertility parameters using an electronic tongue

    Science.gov (United States)

    Mimendia, Aitor; Gutiérrez, Juan Manuel; Alcañiz, Josep Maria; del Valle, Manel

    2011-09-01

    In this communication, a new strategy to perform soil classification and/or characterization is reported, which is the coupling of chemical sensors with a pattern recognition method, what is known as an electronic tongue. Following this approach, the system proposed in this paper uses a sensor array formed by potentiometric sensors with generic cross response against several cations and anions, plus a pattern recognition method based on Artificial Neural Networks (ANNs); the sensor-based system allows performing a simple laboratory procedure where the advanced data processing methodology permits to extract the meaningful information. In this way this work represents the first application and testing of an electronic tongue in soil analysis. Apart from the qualitative classification application, a quantitative analysis of certain chemical features related to soil fertility has also been attempted.

  12. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    Science.gov (United States)

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  13. Survivel, growth, and nutrition of tree seedlings fertilized at planting on Andisol soils in Iceland

    DEFF Research Database (Denmark)

    Oskarsson, Hreinn; Sigurgeirsson, Adalsteinn; Raulund-Rasmussen, Karsten

    2006-01-01

    A field trial was carried out in 1995 to study the effect of fertilization at planting on the survival, growth, and nutrition of tree seedlings planted on Andisol soils at two sites in South Iceland. Nine fertilizer treatments were tested on three tree species Betula pubescens Ehrh., Larix sibirica...... survival and growth. Larger amounts of N increased mortality during the first year. Fertilized trees were less subject to frost heaving than untreated trees. In the year following application of NPK fertilizer the effect was insignificant on the foliar concentration of macronutrients of the fertilized...

  14. Compaction and soil fertility after eucalyptus harvesting using Feller Buncher and Skidder

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Piedade Sodero Martins Pincelli

    2014-06-01

    Full Text Available This study analyzed, the impact of Feller Buncher and Skidder traffic in harvesting areas of eucalyptus in Mogi Guaçu, considering the compaction and fertilization effects in the range of soil next to the carrier during the cycle of forest growth. An increase in soil compaction, caused by machinery traffic in topsoil (0-10 cm, was observed in the area recently harvested. The soils of the study areas, with eucalyptus 1.4 and 6.0 years old, showed good fertility conditions, especially the older area, where decomposition of forest residues possibly contributed to such fertility.

  15. Applications of Fertilizer Cations Affect Cadmium and Zinc Concentrations in Soil Solutions and Uptake by Plants

    DEFF Research Database (Denmark)

    Lorenz, S. E.; Hamon, R. E.; McGrath, S. P.

    1994-01-01

    A pot experiment was conducted to study changes over time of Cd and Zn in soil solution and in plants. Radish was grown in a soil which had been contaminated with heavy metals prior to 1961. Constant amounts of a fertilizer solution (NH4N03, KN03) were added daily. Soil solution was obtained...

  16. Evaluation of the Fertility Status and Suitability of some Soils for ...

    African Journals Online (AJOL)

    The study evaluated the fertility status and suitability of some soils for arable cropping in the newly established Teaching and Research Farm of the Federal University of Technology, Minna. Nigeria. Four soil units designated as 1, 2, 3, and 4 were identified through a rapid reconnaissance soil survey. A profile pit was dug to ...

  17. Effects of Oil Spillage on Soil Fertility in Udu Local Government Area ...

    African Journals Online (AJOL)

    The study examines the effects of oil spillage on soil fertility in Udu Local Government Area of Delta State, with the aim of determining the effects of oil spillage on physical and chemical properties of the soils. Soil samples were collected from two experimental sites namely: oil polluted and non oil polluted plots in the study ...

  18. Intensive straw harvesting, fertilization, and fertilizer source affect nitrogen mineralization and soil labile carbon of a loblolly pine plantation

    Science.gov (United States)

    K. Ellum; H.O. Liechty; M.A. Blazier

    2013-01-01

    Straw harvesting can supplement traditional revenues generated by loblolly pine (Pinus taeda L.) plantation management. However, repeated raking may alter soil properties and nutrition. In northcentral Louisiana, a study was conducted to evaluate the long-term effects of intensive straw raking and fertilizer source (inorganic or organic) on nitrogen...

  19. Microbial communities in pyrene amended soil-compost mixture and fertilized soil.

    Science.gov (United States)

    Adam, Iris K U; Duarte, Márcia; Pathmanathan, Jananan; Miltner, Anja; Brüls, Thomas; Kästner, Matthias

    2017-12-01

    Polycyclic aromatic hydrocarbons are distributed ubiquitously in the environment and form metabolites toxic to most organisms. Organic amendment of PAH contaminated soil with compost and farmyard manure has proven to be efficient for PAH bioremediation mediated by native microorganisms, even though information on the identity of PAH degraders in organic-amended soil is still scarce. Here we provide molecular insight into the bacterial communities in soil amended with compost or farmyard manure for which the degradation mass balances of (13)C-labeled pyrene have been recently published and assess the relevant bacterial genera capable of degrading pyrene as a model PAH. We performed statistical analyses of bacterial genera abundance data based on total DNA and RNA (for comparison) extracted from the soil samples. The results revealed complex pyrene degrading communities with low abundance of individual degraders instead of a limited number of abundant key players. The bacterial degrader communities of the soil-compost mixture and soil fertilized with farmyard manure differed considerably in composition albeit showing similar degradation kinetics. Additional analyses were carried out on enrichment cultures and enabled the reconstruction of several nearly complete genomes, thus allowing to link microcosm and enrichment experiments. However, pyrene mineralizing bacteria enriched from the compost or unfertilized soil-compost samples did not dominate pyrene degradation in the soils. Based on the present findings, evaluations of PAH degrading microorganisms in complex soil mixtures with high organic matter content should not target abundant key degrading species, since the specific degraders may be highly diverse, of low abundance, and masked by high bacterial background.

  20. Microcosm experiments approach to quantify nitrogen leaching from mineral and organic fertilized soil

    Science.gov (United States)

    Severus Sandor, Mignon; Sandor, Valentina; Mihai Onica, Bogdan; Brad, Traian

    2017-04-01

    The use of nitrogen inputs to improve agricultural soils fertility is a common practice in arable lands. Depending of nitrogen forms only a part of introduced nitrogen will be effectively used by the crops while another part can be leached from soil with negative impact on the environment. In temperate climate these losses are greater during spring time when rains are frequent and crop plants are in the early growth stage. In a microcosm experiments we simulated this kind of conditions in order to assess nitrogen losses from two different soils (Chernozem, Luvisol) fertilized with mineral (ammonium nitrate) and organic (mustard as green manure, slurry manure and cattle manure) fertilizers. From each microcosms we obtained 100 ml of leachate which was filtered and analyzed from N-NO3 and N-NH4. The leachate was obtained by adding distillate water at the microcosm surface two times during the experiment at a ten days interval. Preliminary results showed that only small quantity of ammonium was leached from fertilized soils, mainly after 20 days of incubation. These amounts were higher in Chernozem soil than in Luvisol and registered the highest amount in cattle manure fertilized soils. In general, the nitrate was leached from soils in high quantities. The highest value was measured in Chernozem soil when cattle manure was used as fertilizer (1200 mg/l) and represents a cumulative amount. For most of the treatments the cumulative loss of nitrate nitrogen was double in Chernozem soil than in Luvisol. The highest quantity of leaching nitrate was measured for both soils in manure fertilized soil.

  1. Decreasing Nitrogen Fertilizer Input Had Little Effect on Microbial Communities in Three Types of Soils

    Science.gov (United States)

    Yu, Hailing; Gao, Qiang; Shao, Zeqiang; Ying, Anning; Sun, Yuyang; Liu, Jingwei; Mao, Wei; Zhang, Bin

    2016-01-01

    In this study, we examined the influence of different nitrogen (N) application rates (0, 168, 240, 270 and 312 kg N ha-1) on soil properties, maize (Zea mays L.) yields and microbial communities of three types of soils (clay, alluvial and sandy soils). Phospholipid fatty acid analysis was used to characterize soil microbial communities. Results indicated that N fertilization significantly decreased microbial biomass in both clay and sandy soils regardless of application rate. These decreases were more likely a result of soil pH decreases induced by N fertilization, especially in the sandy soils. This is supported by structural equation modeling and redundancy analysis results. Nitrogen fertilization also led to significant changes in soil microbial community composition. However, the change differences were gradually dismissed with increase in N application rate. We also observed that N fertilization increased maize yields to the same level regardless of application rate. This suggests that farmers could apply N fertilizers at a lower rate (i.e. 168 kg N ha-1), which could achieve high maize yield on one hand while maintain soil microbial functions on the other hand. PMID:26992097

  2. [Effect of long-term fertilization on microbial community functional diversity in black soil].

    Science.gov (United States)

    Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku

    2015-10-01

    In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer.

  3. Application of ionomics to plant and soil in fields under long-term fertilizer trials.

    Science.gov (United States)

    Watanabe, Toshihiro; Urayama, Masaru; Shinano, Takuro; Okada, Ryosuke; Osaki, Mitsuru

    2015-01-01

    Ionomics is the study of elemental accumulation in living organisms using high-throughput elemental profiling. In the present study, we examined the ionomic responses to nutrient deficiency in maize grown in the field in long-term fertilizer trials. Furthermore, the available elements in the field soils were analyzed to investigate their changes under long-term fertilizer treatment and the ionomic relationships between plant and soil. Maize was cultivated in a field with the following five long-term fertilizer treatments: complete fertilization, fertilization without nitrogen, without phosphorus, without potassium, and no fertilization. Concentrations of 22 elements in leaves at an early flowering stage and in soils after harvest were determined. The fertilizer treatments changed the availabilities of many elements in soils. For example, available cesium was decreased by 39 % and increased by 126 % by fertilizations without nitrogen and potassium, respectively. Effects of treatments on the ionome in leaves were evaluated using the translocation ratio (the concentration in leaves relative to the available concentration in soils) for each element. Nitrogen deficiency specifically increased the uptake ability of molybdenum, which might induce the enhancement of nitrogen assimilation and/or endophytic nitrogen fixation in plant. Potassium deficiency drastically enhanced the uptake ability of various cationic elements. These elements might act as alternatives to K in osmoregulation and counterion of organic/inorganic anions. Two major groups of elements were detected by multivariate analyses of plant ionome. Elements in the same group may be linked more or less in uptake and/or translocation systems. No significant correlation between plant and soil was found in concentrations of many elements, even though various soil extraction methods were applied, implying that the interactions between the target and other elements in soil must be considered when analyzing mineral

  4. Speciation and Distribution of Phosphorus in a Fertilized Soil: A Synchrotron-Based Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, E.; Scheckel, K.G.; Armstrong, R.D.; Forrester, S.; Cutler, J.N.; Paterson, D. (USEPA); (CSIRO/LW); (CLS); (DPI); (ANSTO)

    2008-06-09

    Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of southern Australia, to be more efficient for crop (wheat [Triticum aestivum L.]) P nutrition than granular products. To elucidate the mechanisms responsible for this differential response, an isotopic dilution technique (E value) coupled with a synchrotron-based spectroscopic investigation were used to assess the reaction products of a granular (monoammonium phosphate, MAP) and a fluid P (technical-grade monoammonium phosphate, TG-MAP) fertilizer in a highly calcareous soil. The isotopic exchangeability of P from the fluid fertilizer, measured with the E-value technique, was higher than that of the granular product. The spatially resolved spectroscopic investigation, performed using nano x-ray fluorescence and nano x-ray absorption near-edge structure (n-XANES), showed that P is heterogeneously distributed in soil and that, at least in this highly calcareous soil, it is invariably associated with Ca rather than Fe at the nanoscale. 'Bulk' XANES spectroscopy revealed that, in the soil surrounding fertilizer granules, P precipitation in the form of octacalcium phosphate and apatite-like compounds is the dominant mechanism responsible for decreases in P exchangeability. This process was less prominent when the fluid P fertilizer was applied to the soil.

  5. [Effects of mulching and fertilization on winter wheat field soil moisture in dry highland region of Loess Plateau].

    Science.gov (United States)

    Wang, Xiao-Feng; Tian, Xiao-Hong; Chen, Zi-Hui; Chen, Hui-Lin; Wang, Zhao-Hui

    2009-05-01

    A field experiment was conducted in a winter wheat field in Weibei dry highland region of Loess Plateau to study the effects of different mulching and fertilization treatments on soil moisture regime. The treatments were 1) no fertilization, 2) conventional fertilization, 3) recommended fertilization, 4) recommended fertilization + manure, 5) recommended fertilization + plastic mulch on soil ridges, 6) recommended fertilization + plastic mulch on soil ridges and straw mulch in furrows, and 7) recommended fertilization + straw mulch on entire plot. Soil moisture content was determined regularly with a neutron probe. Among the treatments, recommended fertilization plus plastic mulch on soil ridges and straw mulch in furrows in dry season (spring) resulted in the greatest increase of soil water storage and maintained the storage to the critical stage crops needed, followed by recommended fertilization plus plastic mulch on soil ridges. These two treatments could store more precipitation in field, and would benefit the development of rainfed agriculture in dry highland region of Loess Plateau. As for recommended fertilization plus manure, it had the least increase of soil water storage, with a difference of 48.2 mm to the recommended fertilization plus plastic mulch on soil ridges and straw mulch in furrows in dry season.

  6. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China.

    Science.gov (United States)

    Wang, Shaojun; Chen, Han Y H; Tan, Yan; Fan, Huan; Ruan, Honghua

    2016-02-09

    Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and composition differed among stand ages. Organic fertilizers increased the total abundance of soil fauna, whereas low level inorganic fertilizers imparted increases only in the 4- and 9-yr-old stands. The number of faunal groups did not change with fertilization, but Shannon's and Margalef diversity indices increased under low level organic fertilization, and decreased under inorganic fertilization in the 9- and 20-yr-old stands. Community composition of soil fauna differed strongly with fertilization and stand age. The changes in soil fauna were strongly associated with the changes in microbial biomass carbon, dissolved organic carbon and nitrogen, and available phosphorus and potassium. Our findings suggest that the responses of soil fauna to fertilization may be mediated through the fertilization effects on soil nutrient availability.

  7. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China

    Science.gov (United States)

    Wang, Shaojun; Chen, Han Y. H.; Tan, Yan; Fan, Huan; Ruan, Honghua

    2016-01-01

    Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and composition differed among stand ages. Organic fertilizers increased the total abundance of soil fauna, whereas low level inorganic fertilizers imparted increases only in the 4- and 9-yr-old stands. The number of faunal groups did not change with fertilization, but Shannon’s and Margalef diversity indices increased under low level organic fertilization, and decreased under inorganic fertilization in the 9- and 20-yr-old stands. Community composition of soil fauna differed strongly with fertilization and stand age. The changes in soil fauna were strongly associated with the changes in microbial biomass carbon, dissolved organic carbon and nitrogen, and available phosphorus and potassium. Our findings suggest that the responses of soil fauna to fertilization may be mediated through the fertilization effects on soil nutrient availability. PMID:26857390

  8. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  9. Phosphorus dynamics in Swedish agricultural soils as influenced by fertilization and mineralogical properties: Insights gained from batch experiments and XANES spectroscopy.

    Science.gov (United States)

    Eriksson, Ann Kristin; Hesterberg, Dean; Klysubun, Wantana; Gustafsson, Jon Petter

    2016-10-01

    The soil chemistry of phosphorus (P) is important for understanding the processes governing plant availability as well as the risk of environmental losses of P. The objective of this research was to investigate both the speciation and the pH-dependent solubility patterns of P in clayey agricultural soils in relation to soil mineralogy and fertilization history. The study focused on soil samples from six fields that were subjected to different P fertilization regimes for periods of 45 to 57years. Soil P speciation was analyzed by P K-edge XANES spectroscopy and chemical fractionation, sorption isotherms were constructed, and dissolved P was measured as a function of pH. The XANES fitting results showed that organic P and P adsorbed to Fe and Al (hydr)oxides were common P constituents in all soils. Calcium phosphates were identified in five of six soil samples. The XANES results also indicated an increase in P adsorbed to Al and to a lesser extent Fe (hydr)oxides as a result of fertilization. Moreover, the fluorescence intensity from the P K-edge XANES analysis was most strongly correlated with HCl-digestible P (r=0.81***). Consistent with the XANES analysis, laboratory sorption isotherm models showed that the Freundlich sorption coefficient (KF) was most closely related to oxalate-extractable Al. Greater proportions of Ca phosphate in two of the heavily fertilized soils in combination with enhanced PO4 solubilization upon sample acidification indicated neoformation of Ca-phosphate precipitates. The results for the unfertilized soil samples generally showed a minimum in dissolved PO4 between pH6.5 and 7.5, with increases particularly at lower pH. This behavior can be explained either by the dissolution of Al-hydroxide-type sorbents or Ca phosphates at lower pH. In fertilized soils, there was no consistent trend in pH-dependent solubilization of P, with a complex relationship to solid-phase speciation. To conclude, inorganic P species changed most dynamically in

  10. Converging strategies by farmers and scientists to improve soil fertility and enhance crop production in Benin

    NARCIS (Netherlands)

    Saidou, A.

    2006-01-01

    Keywords: Farmer perception, indigenous knowledge, extensive cassava, earthworm casts, arbuscular mycorrhiza, crop rotation, nutrient uptake, soil fertility, co-research, land tenure.Farmers in the transitional zone of Benin claim that extensive cassava cropping and prior cotton fertiliser enhance

  11. Bacterial biomass and DNA diversity in an alluvial meadow soil upon long-term fertilization

    NARCIS (Netherlands)

    Naumova, N.B.; Kuikman, P.J.

    2001-01-01

    The denaturing gradient gel-electrophoresis of bacterial DNA fragments and the assessment of bacterial biomass revealed changes in the diversity of the bacterial community in a meadow alluvial soil upon long-term fertilization.

  12. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    Science.gov (United States)

    Hodgson, J G; Montserrat-Martí, G; Charles, M; Jones, G; Wilson, P; Shipley, B; Sharafi, M; Cerabolini, B E L; Cornelissen, J H C; Band, S R; Bogard, A; Castro-Díez, P; Guerrero-Campo, J; Palmer, C; Pérez-Rontomé, M C; Carter, G; Hynd, A; Romo-Díez, A; de Torres Espuny, L; Royo Pla, F

    2011-11-01

    Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.

  13. Effect of different tillage practices and fertilizer on soil physical and ...

    African Journals Online (AJOL)

    The assessment of selected soil properties under different tillage practices and fertilizer in Imo State, Nigeria, was carried out at the Agro-Forestry centre, Umuokanne Ohaji-Egbema. The treatments consisted of fallow (control); zero tillage and manure (ZM); conventional tillage, fertilizer and manure (CFM); conventional ...

  14. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soil

    NARCIS (Netherlands)

    Mohanty, S.R.; Bodelier, P.L.E.; Floris, V.; Conrad, R.

    2006-01-01

    The impact of environmental perturbation (e.g., nitrogenous fertilizers) on the dynamics of methane fluxes from soils and wetland systems is poorly understood. Results of fertilizer studies are often contradictory, even within similar ecosystems. In the present study the hypothesis of whether these

  15. Organic and Nitrogen Fertilization of Soil under ‘Syrah’ Grapevine: Effects on Soil Chemical Properties and Nitrate Concentration

    Directory of Open Access Journals (Sweden)

    Davi José Silva

    2016-01-01

    Full Text Available ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf, a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1 and five N rates (0, 10, 20, 40, and 80 kg ha-1, in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.

  16. Effects of serpentinite fertilizer on the chemical properties and enzyme activity of young spruce soils

    Science.gov (United States)

    Błońska, Ewa; Januszek, Kazimierz; Małek, Stanisław; Wanic, Tomasz

    2016-10-01

    The experimental plots used in the study were located in the middle forest zone (elevation: 900-950 m a.s.l.) on two nappes of the flysch Carpathians in southern Poland. The aim of this study was to assess the effects of serpentinite in combination with nitrogen, phosphorus, and potassium fertilizers on selected chemical properties of the soil and activity of dehydrogenase and urease in the studied soils. All fertilizer treatments significantly enriched the tested soils in magnesium. The use of serpentinite as a fertilizer reduced the molar ratio of exchangeable calcium to magnesium, which facilitated the uptake of magnesium by tree roots due to competition between calcium and magnesium. After one year of fertilization on the Wisła experimental plot, the pH of the Ofh horizon increased, while the pH of the mineral horizons significantly decreased. Enrichment of serpentinite with nitrogen, phosphorus, and potassium fertilizers stimulated the dehydrogenase activity in the studied organic horizon. The lack of a negative effect of the serpentinite fertilizer on enzyme activity in the spruce stand soil showed that the concentrations of the heavy metals added to the soil were not high enough to be toxic and indicated the feasibility of using this fertilizer in forestry.

  17. Improving soil fertility through Azolla application in low land rice: A review

    Directory of Open Access Journals (Sweden)

    Purushottam Subedi

    2015-04-01

    Full Text Available The continuous usages of chemical fertilizers have harmful effects on soil organic matter reserves, soil health and environmental safety. The use of Bio-fertilizers like Azolla not only increases the rice productivity but also improves the long term soil fertility. Azolla is a fast growing aquatic pteridophyte which fixes atmospheric Nitrogen by forming a symbiotic association with the Blue-Green Algae, Anabaena azollae. Azolla is an efficient Nitrogen fixer. It is grown in lowland rice fields because flooded habitat is suitable for it. Under favorable field condition, it fixes atmospheric nitrogen at a rate exceeding that of the Legume-Rhizobium symbiotic relationship. It increases the rice yield equivalent to that produced by 30-60 kg N/ha. As green manure in water logged soil, it enhances the rapid mineralization of nitrogen. It reduces the NH3 volatilization losses through its influence on floodwater pH that leads to the conservation of urea-N in the system to improve the efficiency of N fertilizers. It significantly improves the physical and chemical properties of the soil including improvement in soil microbial activities. It helps in addition of Organic Matter and release of cations such as Magnesium, Calcium and Sodium. The total N, available P and exchangeable K in the soil and N-uptake by rice can be improved. Therefore, Azolla application is considered as a good practice for sustaining soil fertility and crop productivity irrespective of some limitations.

  18. Effects of biochar, waste water irrigation and fertilization on soil properties in West African urban agriculture.

    Science.gov (United States)

    Häring, Volker; Manka'abusi, Delphine; Akoto-Danso, Edmund K; Werner, Steffen; Atiah, Kofi; Steiner, Christoph; Lompo, Désiré J P; Adiku, Samuel; Buerkert, Andreas; Marschner, Bernd

    2017-09-06

    In large areas of sub-Saharan Africa crop production must cope with low soil fertility. To increase soil fertility, the application of biochar (charred biomass) has been suggested. In urban areas, untreated waste water is widely used for irrigation because it is a nutrient-rich year-round water source. Uncertainty exists regarding the interactions between soil properties, biochar, waste water and fertilization over time. The aims of this study were to determine these interactions in two typical sandy, soil organic carbon (SOC) and nutrient depleted soils under urban vegetable production in Tamale (Ghana) and Ouagadougou (Burkina Faso) over two years. The addition of biochar at 2 kg m-2 made from rice husks and corn cobs initially doubled SOC stocks but SOC losses of 35% occurred thereafter. Both biochar types had no effect on soil pH, phosphorous availability and effective cation exchange capacity (CEC) but rice husk biochar retained nitrogen (N). Irrigation with domestic waste water increased soil pH and exchangeable sodium over time. Inorganic fertilization alone acidified soils, increased available phosphorous and decreased base saturation. Organic fertilization increased SOC, N and CEC. The results from both locations demonstrate that the effects of biochar and waste water were less pronounced than reported elsewhere.

  19. Moving methodologies : learning about integrated soil fertility management in sub-Saharan Africa

    OpenAIRE

    Defoer, T.

    2000-01-01

    Soil fertility management in sub-Saharan Africa is complex, diverse and dynamic. Farmers' investments are determined by a wide variety of factors, including bio-physical characteristics of the environment, access to resources and the institutional, and socio-economic context of farming and livelihood making. Within this context, defining soil fertility problems in general terms is not meaningful and proposing a limited number of standard interventions, aimed at the 'average' farmer i...

  20. Application of ionomics to plant and soil in fields under long-term fertilizer trials

    OpenAIRE

    Watanabe, Toshihiro; Urayama, Masaru; SHINANO, Takuro; Okada, Ryosuke; Osaki, Mitsuru

    2015-01-01

    Ionomics is the study of elemental accumulation in living organisms using high-throughput elemental profiling. In the present study, we examined the ionomic responses to nutrient deficiency in maize grown in the field in long-term fertilizer trials. Furthermore, the available elements in the field soils were analyzed to investigate their changes under long-term fertilizer treatment and the ionomic relationships between plant and soil. Maize was cultivated in a field with the following five lo...

  1. Anaerobic digestate from biogas production as a resource for improving soil fertility: effects on crop yield and soil properties

    Science.gov (United States)

    Pastorelli, Roberta; Lagomarsino, Alessandra; Vignozzi, Nadia; Valboa, Giuseppe; Papini, Rossella; Fabiani, Arturo; Simoncini, Stefania; Mocali, Stefano; Piccolo, Raimondo

    2013-04-01

    Soil fertility is fundamental in determining crops productivity in all farming systems. Production of biogas through anaerobic digestion of energy crops generates residues that can represent a valuable resource to sustain and improve soil fertility and to increase soil organic matter content. Residues from anaerobic digestion contain organic fractions and available nutrients, that can thus be returned to the cultivation soil as fertilizer and soil conditioner. However, some unknown aspects of digested residues utilization remain to explore: i) the nutrient supply and the real potential for mineral fertilization substitution, ii) the impact on the structure and functioning of soil microbial communities, iii) the direct and indirect effects on soil structure, organic matter and C mineralization. The aim of the present research was to gain a better understanding of these aspects, evaluating the effects of anaerobic digestate application on soil properties and maize yield. With the main focus of comparing mineral fertilization (250 Kg N ha-1) with digested residues addition (at the dose of 25 % and 50 % of mineral fertilizer), a triplicate sets of plots were designed in a field experiment on a silty-clay loam soil in the southern Po Valley (Italy). The amount of applied residues was calculated according to its N content in order to fertilizer each plots with the same amount of total nitrogen. Residues from digestion showed a N content of 0.4 % (60 % as N-NH4) and a C/N ratio of 3. Changes in soil quality after residues application were studied with a holistic approach, involving microbiological, physical and chemical aspects of soil fertility. In particular, we determined: the abundance and diversity of bacterial and fungal soil communities; the soil organic matter content, its distribution within soil aggregates and the C mineralization potential; cation exchange capacity; the main macro and micro nutrients; bulk density; aggregate stability. No significant

  2. Reduced soil cultivation and organic fertilization on organic farms: effects on crop yield and soil physical traits

    Science.gov (United States)

    Surböck, Andreas; Gollner, Gabriele; Klik, Andreas; Freyer, Bernhard; Friedel, Jürgen K.

    2017-04-01

    A continuous investment in soil fertility is necessary to achieve sustainable yields in organic arable farming. Crucial factors here besides the crop rotation are organic fertilization and the soil tillage system. On this topic, an operational group (Project BIOBO*) was established in the frame of an European Innovation Partnership in 2016 consisting of organic farmers, consultants and scientists in the farming region of eastern Austria. The aim of this group is the development and testing of innovative, reduced soil cultivation, green manure and organic fertilization systems under on-farm and on-station conditions to facilitate the sharing and transfer of experience and knowledge within and outside the group. Possibilities for optimization of the farm-specific reduced soil tillage system in combination with green manuring are being studied in field trials on six organic farms. The aim is to determine, how these measures contribute to an increase in soil organic matter contents, yields and income, to an improved nitrogen and nutrient supply to the crops, as well as support soil fertility in general. Within a long-term monitoring project (MUBIL), the effects of different organic fertilization systems on plant and soil traits have been investigated since 2003, when the farm was converted to organic management. The examined organic fertilization systems, i.e. four treatments representing stockless and livestock keeping systems, differ in lucerne management and the supply of organic manure (communal compost, farmyard manure, digestate from a biogas plant). Previous results of this on-station experiment have shown an improvement of some soil properties, especially soil physical properties, since 2003 in all fertilization systems and without differences between them. The infiltration rate of rainwater has increased because of higher hydraulic conductivity. The aggregate stability has shown also positive trends, which reduces the susceptibility to soil erosion by wind and

  3. Sweet potato yield and physical and chemical properties of soil in function of organic and mineral fertilizers

    Directory of Open Access Journals (Sweden)

    Amarílis Beraldo Rós

    2014-02-01

    Full Text Available Sweet potato crop is usually cultivated with low fertilization investments, but the crop can present significant yield increase when correct fertilization is carried out in its cultivation. In this study aimed to evaluate the influence of the use of different fertilizer sources and doses on sweet potato yield and on physical and chemical properties of soil. The experimental design was a randomized block in 3x5 factorial scheme, with three replications. The treatments were composed of fertilizer sources (chicken manure, mineral fertilizer with chemical composition equivalent to the nutrients found in chicken manure and blend of chicken manure (50% with mineral fertilizer (50% equivalent to the sum of nutrients found in chicken manure and fertilizer doses (nutrients equivalent to 0, 8, 16 and 24 t ha-1 of chicken manure. As result of study, it was found that the crop responds to soil fertilization with increases in total and commercial yields with the use of chicken manure, mineral fertilizers and the combination of both until the doses of 5.8, 6.5 and 7.0 t ha-1, respectively. Fertilization with chicken manure, alone or in combination with chemical fertilizers, promotes highest yields. There is no difference in soil bulk density and in total soil porosity as a function of fertilizer sources or doses. The addition of fertilizer promotes increases in pH and organic matter, P, K, Ca and Mg levels in the soil in relation to soil without fertilizer.

  4. Content of phenolic compounds in soils originating from two long-term fertilization experiments

    Directory of Open Access Journals (Sweden)

    Sądej Wiera

    2016-12-01

    Full Text Available The objective of the study was to compare the impact of three systems of multiannual fertilization applied in two long-term field experiments on the content of phenolic compounds in the soil. In the study, both natural (manure, slurry and mineral (NPK fertilizers were used, along with combined, organic-and-mineral fertilization. Experiment I was established in 1972 on grey brown podzolic soil; experiment II, in 1973 on brown soil. In both experiments crops were cultivated in a 7-year rotation, with a 75% share of cereals. The experimental samples were taken from the top layer of soil after 36 (experiment I and 35 (experiment II years following the establishment of the experiments. It was demonstrated that the presence of phenolic compounds in the soils was significantly dependent on the contents of organic C and total N, type of soil and the type and dose of used fertilizers. In grey brown podzolic soil, the content of total phenolic compounds was at a lower level than the content found in brown soil. Multiannual fertilization contributed to an increase in the content of total phenolic compounds in relation to the values obtained in control objects, which was particularly reflected in the soil originating from objects fertilized with slurry applied at a dose being equivalent to manure in terms of the amount of introduced organic carbon. The percentage of water-soluble phenols in the total content of these compounds in grey brown podzolic soil was at the level of 18.4%, while in brown soil it amounted to 29.1%.

  5. Copper and zinc forms in soil fertilized with pig slurry in the bean crop

    Directory of Open Access Journals (Sweden)

    Marco A. Grohskopf

    Full Text Available ABSTRACT The application of pig slurry may have different influence on copper (Cu and zinc (Zn dynamics in the soil compared with mineral fertilization. The aim of this research was to determine the different forms of Cu and Zn in soil and their uptake by bean plants in response to the application of mineral fertilizer and pig slurry (PS. The treatments were: mineral fertilizer (Cu and Zn oxides and liquid pig slurry, at increasing rates (0/0, 1.7/6.0, 3.4/12.0 and 6.8/24.0 kg ha-1 Cu/Zn, respectively applied in a Rhodic Kandiudox. PS increased the Cu content in soil in the exchangeable form, Fe oxides and residual, while the mineral fertilizer increased Cu contents in the fraction associated with soil organic matter. Soil Zn contents in the fractions available, exchangeable and SOM were highest under mineral fertilization, while in the soluble fraction the contents were highest under PS. The fertilizers had not impact on Cu and Zn contents associated with Al oxides, and these elements were mostly associated with Fe oxides in the soil. PS promoted the highest biomass production in shoots and roots of the bean plants, reflecting in the highest accumulation of Cu and Zn.

  6. Impact of Organic Amendments with and Without Mineral Fertilizers on Soil Microbial Respiration

    Science.gov (United States)

    Gilani, S. S.; Bahmanyar, M. A.

    A field experiment was conducted to study the effects of Sewage Sludge (SS), Municipal Waste Compost (MWC) and Vermicompost (VC) with and without chemical fertilizer (Urea, 50 kg ha-1 + Potassium sulfate, 100 kg ha-1 + Triple super phosphate, 127.5 kg ha-1) on Soil Microbial Respiration (SMR) and Total Organic Carbon (TOC) in a soil cropped to soybean. Experiment was arranged in a complete block design with three replications. Organic amendments were added to soil at rate of 0 (control treatment), 20 and 40 Mg ha-1. Furthermore each level of organic fertilizers with ½ normal of chemical fertilizer was also enriched. Soil samples were taken after one year of fertilization. Results illustrated that application of organic amendments increased TOC and SMR and soybean yield compared to control and chemical fertilizer treatments. Sewage sludge amended soils showed higher SMR, TOC and soybean yield than that of other organic amendment treatments. An increasing trend was observed in all studied parameters, as rates of application increased. All parameters were greater in treatments receiving a combination of chemical fertilizers and organic amendments (enriched treatments) compared to soils receiving organic amendments alone. Results obtained by discriminate analysis indicated that rates of application were more effective to create discriminating among treatments. This study showed that TOC was significantly correlated with SMR. Significant correlation was also observed between SMR and soybean yield.

  7. Soil Fertility Evaluation and Land Management of Dryland Farming at Tegallalang Sub-District, Gianyar Regency, Bali, Indonesia

    Science.gov (United States)

    Sardiana, I. K.; Susila, D.; Supadma, A. A.; Saifulloh, M.

    2017-12-01

    The landuse of Tegallalang Subdistrict is dominated by dryland farming. The practice of cultivation on agricultural dryland that ignores the carrying capacity of the environment can lead to land degradation that makes the land vulnerable to the deterioration of soil fertility. Soil fertility evaluation and land management of dryland farming in Tegallalang Sub-district, Gianyar Regency were aimed at (1) identifying the soil fertility and it’s respective limiting factors, (2) mapping the soil fertility using Geographic Information Systems (GIS) and (3) developing land management for dryland farming in Tegallalang Sub-district. This research implementing explora-tory method which followed by laboratory analysis. Soil samples were taken on each homogene-ous land units which developed by overlay of slope, soil type, and land use maps. The following soil fertility were measured, such as CEC, base saturation, P2O5, K- Total and C-Organic. The values of soil fertility were mapping using QGIS 2.18.7 and refer to land management evaluation. The results showed that the soil fertility in the research area considered high, and low level. The High soil fertility presents on land units at the flat to undulating slope with different land management systems (fertilizer, without fertilizer, soil tillage and without soil tillage). The low soil fertility includes land units that present on steep slope, and without land managements. The limiting factors of soil fertility were texture, C-Organic, CEC, P2O5, and K- total. It was recommended to applying organic fertilizer, Phonska, and dolomite on the farming area.

  8. Parental material and cultivation determine soil bacterial community structure and fertility.

    Science.gov (United States)

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  9. Soil fertility and the role of soils for food security in developing countries

    Science.gov (United States)

    Tittonell, Pablo

    2015-04-01

    Addressing current and future food security is not just a matter of producing more food globally. Agricultural productivity must increase where food is most needed, and where both rural and urban populations are expected to increase the fastest in the near future. This is the situation in most of sub-Saharan Africa and in several other regions of Latin America, Asia and the Pacific. There are some common denominators to these regions. In the first place, the inability of the majority of farmers to access and/or to afford agricultural inputs. Second, the severity with which climate change impacts on some of these regions. Third, the extent of soil degradation, which is estimated at 25% of the arable land in the world. And finally, the fact that some of these regions are hosting valuable biodiversity and/or delivering ecosystem services of global or regional importance, which often leads to competing claims between the local and international communities. It has been repeatedly shown that the technologies of industrial agriculture as practiced in developed regions are ineffective at sustaining soil productivity in the context of smallholder family agriculture. Restoring soil productivity and ecosystem functions in these contexts requires new ways of managing soil fertility. These include: (i) innovative forms of 'precision' agriculture that consider the diversity, heterogeneity and dynamics of smallholder farming systems; (ii) a systems approach to nutrient acquisition and management; (iii) agroecological strategies for the restoration of degraded soils and the maintenance of soil physical properties; and (iv) to capitalize on the recent and growing understanding on soil trophic networks to increase nutrient and water use efficiency. I will provide examples on advances in these fronts, and discuss the challenges ahead their broad implementation by farmers in developing regions.

  10. EFFECT OF SOIL FERTILITY MANAGEMENT PRACTICES ON NEMATODE DESTROYING FUNGI IN TAITA, KENYA

    Directory of Open Access Journals (Sweden)

    Peter M Wachira

    2010-10-01

    Full Text Available The effect of soil fertility management practices on nematode destroying fungi was investigated for three seasons in Taita, Kenya. The study aimed at identifying soil fertility practice that promoted nematode destroying fungi in the soil. Field experiments were established in Taita district, the treatments comprised of Mavuno fertilizer, Triple super- phosphate and calcium ammonium nitrate (TSP+CAN, cow manure and a control where no amendments were applied. This experiment was replicated in ten farms and repeated in three planting seasons. Isolation of nematode destroying fungi carried out was using the soil sprinkle technique and the isolates were identified using the key described by Cooke and Godfrey (1964. There were significant difference (P= 1.705 x 10-06 in occurrence of the nematode destroying fungi between soil fertility treatments. The highest mean (1.6 occurrence of nematode destroying fungi was recorded in soils amended with cow manure and the least (0.7 was recorded in soils from the control plots. A mean of 0.78 was recorded in soils from both TSP+CAN and Mavuno fertilizers. Plots amended with cow manure presented the highest diversity of nematodes followed by the control, then TSP+CAN and least in Mavuno with shannon indices of 0.34, 0.15, 0.13 and 0.11 respectively. Sixty percent of all the isolated nematode destroying fungi genera were from plots treated with cow manure and only twenty percent were from plots amended with the inorganic fertilizer. The control plots recorded higher number of nematode destroying fungi compared to the soils that received inorganic fertilizers.

  11. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    Science.gov (United States)

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter

  12. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

    Science.gov (United States)

    Matson, Amanda L.; Corre, Marife D.; Langs, Kerstin; Veldkamp, Edzo

    2017-07-01

    Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO) or 2 (CO2, CH4, N2O) years (2010-2012) using vented dynamic (for NO only) or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, -2.0 to -0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and -0.82 to -0.03 kg NO-N ha-1 yr-1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic) and long-term (soil and site characteristics) factors in predicting soil trace gas fluxes.

  13. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

    Directory of Open Access Journals (Sweden)

    A. L. Matson

    2017-07-01

    Full Text Available Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO or 2 (CO2, CH4, N2O years (2010–2012 using vented dynamic (for NO only or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, −2.0 to −0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and −0.82 to −0.03 kg NO-N ha−1 yr−1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic and long-term (soil and site characteristics factors in predicting soil trace gas fluxes.

  14. Microbial fertilizer improving the soil nutrients and growth of reed in degraded wetland

    Science.gov (United States)

    Sun, W. L.; Zhao, Y. G.; Yang, M.

    2017-06-01

    Wetland degradation is frequently observed in some river estuaries of China due to the imbalance of soil nutrient. In order to improve the soil nutrient and promote the restoration of plant, the microbial fertilizer containing the phosphorus-dissolving strain Pseudomonas plecoglossicida and potassium-dissolving strain Bacillus aryabhattai was developed to stimulate the growth of plant and increase soil nutrient in this study. Results showed that microbial fertilizer was more effective in increasing the contents of total N, P and K in soil and the activities of soil sucrase and urease. Compared with the control, the height and dry weight of reeds were increased 53.13% and 59.31%; the activities of soil sucrase and urease were improved 41.25% and 39.57%. Illumina Miseq sequencing showed that Pseudomonas spp. were the most predominant in microbial fertilizer treated soil but other treatments were quite different. Hence, the microbial fertilizer significantly promoted the growth of reed, increased soil nutrient and enzyme activity. It consequently revealed a promising application in improving the wetland soil nutrients and ecological restoration.

  15. Phosphorus migration analysis using synchrotron radiation in soil treated with Brazilian granular fertilizers.

    Science.gov (United States)

    de Castro, Robson C; de Melo Benites, Vinícius; César Teixeira, Paulo; dos Anjos, Marcelino José; de Oliveira, Luis Fernando

    2015-11-01

    The aim of this study was to evaluate the phosphorus (P) mobility in a tropical Brazilian soil type red Oxisol treated with three different forms of granular fertilizer. Total Reflection X-Ray Fluorescence (TXRF) was applied to determine the concentration of P at different distances from granular fertilizer application point. The results showed that most of the P from fertilizers tends to concentrate in a region of up to 10mm around the place of the fertilizer deposition. Copyright © 2015. Published by Elsevier Ltd.

  16. Investigating the Effect of Soil Texture and Fertility on Evapotranspiration and Crop Coefficient of Maize Forage

    Directory of Open Access Journals (Sweden)

    M. Ghorbanian Kerdabadi

    2017-02-01

    Full Text Available Introduction: Crop coefficient varies in different environmental conditions, such as deficit irrigation, salinity and intercropping. The effect of soil fertility and texture of crop coefficient and evapotranspiration of maize was investigated in this study. Low soil fertility and food shortages as a stressful environment for plants that makes it different evapotranspiration rates of evapotranspiration calculation is based on the FAO publication 56. Razzaghi et al. (2012 investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (CV. Titicaca was grown in field lysimeters with sand, sandy loam and sandy clay loam soil. Zhang et al (2014 were investigated the Effect of adding different amounts of nitrogen during three years (from 2010 to 2012 on water use efficiency and crop evapotranspiration two varieties of winter wheat. The results of their study showed. The results indicated the following: (1 in this dry land farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. Materials and Methods: The study was a factorial experiment in a completely randomized design with three soil texture treatment, including silty clay loam, loam and sandy-loam soil and three fertility treatment, including without fertilizer, one and two percent fertilizer( It was conducted at the experimental farm in

  17. The Effects of Long Term Nitrogen Fertilization on Soil Respiration in Rocky Mountain National Park

    Science.gov (United States)

    Allen, J.; Denning, S.; Baron, J.

    2015-12-01

    Anthropogenic activities contribute to increased levels of nitrogen deposition and elevated CO2 concentrations in terrestrial ecosystems. The role that soils play in biogeochemical cycles is an important area of uncertainty in ecosystem ecology. One of the main reasons for this uncertainty is that we have limited understanding of belowground microbial activity and how this activity is linked to soil processes. In particular, elevated CO2 may influence soil nitrogen processes that regulate nitrogen availability to plants. Warming and nitrogen fertilization may both contribute to loss of stored carbon from mountain ecosystems, because they contribute to microbial decomposition of organic matter. To study the effects of long-term nitrogen fertilization on soil respiration, we analyzed results from a 25-year field experiment in Rocky Mountain National Park. Field treatments are in old growth Engelmann spruce forests. Soil respiration responses to the effects of nitrogen fertilization on soil carbon cycling, via respiration, were investigated during the 2013 growing season. Soil moisture, temperature, and respiration rates were measured in six 30 x 30 m plots, of the six plots three are fertilized with 25 kg N ha-1 yr-1 as ammonium nitrate (NH4NO3) pellets and three receives ambient atmospheric nitrogen deposition (1-6 kg N/ha/yr) in Rocky Mountain National Park. We found that respirations rates in the fertilized plots were not significantly higher than respiration rates in the unfertilized plots. We speculate that acclimation to long-term fertilization and relatively high levels of nitrogen deposition in the control plots both contribute to the insensitivity of soil respiration to fertilization at this site.

  18. Long-term Fertilization Structures Bacterial and Archaeal Communities along Soil Depth Gradient in a Paddy Soil.

    Science.gov (United States)

    Gu, Yunfu; Wang, Yingyan; Lu, Sheng'e; Xiang, Quanju; Yu, Xiumei; Zhao, Ke; Zou, Likou; Chen, Qiang; Tu, Shihua; Zhang, Xiaoping

    2017-01-01

    Soil microbes provide important ecosystem services. Though the effects of changes in nutrient availability due to fertilization on the soil microbial communities in the topsoil (tilled layer, 0-20 cm) have been extensively explored, the effects on communities and their associations with soil nutrients in the subsoil (below 20 cm) which is rarely impacted by tillage are still unclear. 16S rRNA gene amplicon sequencing was used to investigate bacterial and archaeal communities in a Pup-Calric-Entisol soil treated for 32 years with chemical fertilizer (CF) and CF combined with farmyard manure (CFM), and to reveal links between soil properties and specific bacterial and archaeal taxa in both the top- and subsoil. The results showed that both CF and CFM treatments increased soil organic carbon (SOC), soil moisture (MO) and total nitrogen (TN) while decreased the nitrate(_)N content through the profile. Fertilizer applications also increased Olsen phosphorus (OP) content in most soil layers. Microbial communities in the topsoil were significantly different from those in subsoil. Compared to the CF treatment, taxa such as Nitrososphaera, Nitrospira, and several members of Acidobacteria in topsoil and Subdivision 3 genera incertae sedis, Leptolinea, and Bellilinea in subsoil were substantially more abundant in CFM. A co-occurrence based network analysis demonstrated that SOC and OP were the most important soil parameters that positively correlated with specific bacterial and archaeal taxa in topsoil and subsoil, respectively. Hydrogenophaga was identified as the keystone genus in the topsoil, while genera Phenylobacterium and Steroidobacter were identified as the keystone taxa in subsoil. The taxa identified above are involved in the decomposition of complex organic compounds and soil carbon, nitrogen, and phosphorus transformations. This study revealed that the spatial variability of soil properties due to long-term fertilization strongly shapes the bacterial and archaeal

  19. Long-term Fertilization Structures Bacterial and Archaeal Communities along Soil Depth Gradient in a Paddy Soil

    Directory of Open Access Journals (Sweden)

    Yunfu Gu

    2017-08-01

    Full Text Available Soil microbes provide important ecosystem services. Though the effects of changes in nutrient availability due to fertilization on the soil microbial communities in the topsoil (tilled layer, 0–20 cm have been extensively explored, the effects on communities and their associations with soil nutrients in the subsoil (below 20 cm which is rarely impacted by tillage are still unclear. 16S rRNA gene amplicon sequencing was used to investigate bacterial and archaeal communities in a Pup-Calric-Entisol soil treated for 32 years with chemical fertilizer (CF and CF combined with farmyard manure (CFM, and to reveal links between soil properties and specific bacterial and archaeal taxa in both the top- and subsoil. The results showed that both CF and CFM treatments increased soil organic carbon (SOC, soil moisture (MO and total nitrogen (TN while decreased the nitrate_N content through the profile. Fertilizer applications also increased Olsen phosphorus (OP content in most soil layers. Microbial communities in the topsoil were significantly different from those in subsoil. Compared to the CF treatment, taxa such as Nitrososphaera, Nitrospira, and several members of Acidobacteria in topsoil and Subdivision 3 genera incertae sedis, Leptolinea, and Bellilinea in subsoil were substantially more abundant in CFM. A co-occurrence based network analysis demonstrated that SOC and OP were the most important soil parameters that positively correlated with specific bacterial and archaeal taxa in topsoil and subsoil, respectively. Hydrogenophaga was identified as the keystone genus in the topsoil, while genera Phenylobacterium and Steroidobacter were identified as the keystone taxa in subsoil. The taxa identified above are involved in the decomposition of complex organic compounds and soil carbon, nitrogen, and phosphorus transformations. This study revealed that the spatial variability of soil properties due to long-term fertilization strongly shapes the bacterial

  20. Soil management in rainfed olive orchards may result in conflicting effects on olive production and soil fertility

    Directory of Open Access Journals (Sweden)

    I. Q. Ferreira

    2013-03-01

    Full Text Available The adoption of a sustainable soil management system is essential for the steep slopes and low fertility soils still supporting rainfed olive orchards in the Mediterranean basin. The effect of the soil management on olive yield, tree nutritional status and soil fertility was studied in a rainfed olive orchard located in NE Portugal that had been managed since its earliest days as a sheep-walk. In 2001, three different soil management systems were established: Sheep-walk, in which the vegetation was managed with a flock of sheep; Tillage, where the vegetation was controlled by conventional tillage; and Glyphosate, where a glyphosate-based herbicide was applied. The soil management systems had a pronounced effect on olive yield. The accumulated olive yields between 2002 and 2011 were 187.2, 142.9 and 89.5 kg tree-1, respectively in the Glyphosate, Tillage and Sheep-walk treatments. However, the effect of soil management on tree nutritional status was not so clear. On the other hand, the pools of organic carbon and N in the soil, and also the soil available N and phosphorus (P, were found to be less in the Glyphosate and Tillage treatments in comparison with the Sheep-walk. In these soils, N appeared as a much more limiting factor for crop growth than P. In rainfed orchards, the tolerance to herbaceous vegetation appears to be a determining factor in sustainability, which regulates annual crop yields and soil fertility. The higher the tolerance to herbaceous species, the lower the olive yields, but the better are the soil fertility parameters.

  1. Changes in fungal communities along a boreal forest soil fertility gradient.

    Science.gov (United States)

    Sterkenburg, Erica; Bahr, Adam; Brandström Durling, Mikael; Clemmensen, Karina E; Lindahl, Björn D

    2015-09-01

    Boreal forests harbour diverse fungal communities with decisive roles in decomposition and plant nutrition. Although changes in boreal plant communities along gradients in soil acidity and nitrogen (N) availability are well described, less is known about how fungal taxonomic and functional groups respond to soil fertility factors. We analysed fungal communities in humus and litter from 25 Swedish old-growth forests, ranging from N-rich Picea abies stands to acidic and N-poor Pinus sylvestris stands. 454-pyrosequencing of ITS2 amplicons was used to analyse community composition, and biomass was estimated by ergosterol analysis. Fungal community composition was significantly related to soil fertility at the levels of species, genera/orders and functional groups. Ascomycetes dominated in less fertile forests, whereas basidiomycetes increased in abundance in more fertile forests, both in litter and humus. The relative abundance of mycorrhizal fungi in the humus layer remained high even in the most fertile soils. Tolerance to acidity and nitrogen deficiency seems to be of greater importance than plant carbon (C) allocation patterns in determining responses of fungal communities to soil fertility, in old-growth boreal forests. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Spatial and temporal variations of crop fertilization and soil fertility in the loess plateau in china from the 1970s to the 2000s.

    Directory of Open Access Journals (Sweden)

    Xiaoying Wang

    Full Text Available Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L. and maize (Zea mays L. on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole.

  3. Spatial and temporal variations of crop fertilization and soil fertility in the loess plateau in china from the 1970s to the 2000s.

    Science.gov (United States)

    Wang, Xiaoying; Tong, Yanan; Gao, Yimin; Gao, Pengcheng; Liu, Fen; Zhao, Zuoping; Pang, Yan

    2014-01-01

    Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole.

  4. SUSTAINABILITY EFFECTS OF Crotalaria juncea L. AND Crotalaria spectabilis ROTH ON SOIL FERTILITY AND SOIL CONSERVATION

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    Sustainable agriculture is defined as the successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of the environment and conserving natural resources. A sustained increase of agricultural production becomes a great possibility for international community. In this process a green manure crops application for example crotalaria get a new chance for improvement process on soil fertility and soil conservation. Field experiment was carried out on a calcareous chernozem soil (Experiment station Nagyhörcsök of RISSAC-HAS) in partly of experiment series (3 years) at Hungary in 1998. The soil with about 20% clay, 3% humus, 5% CaCO3 in its ploughed layer. To ensure a sufficient macro and micronutrient supply in the whole experiment, 100 kg N, 100 kg P2O5 and 100 kg K2O were given hectare. The Crotalaria juncea L. and Crotalaria spectabilis ROTH were applied with 2 replications. Each plot has an area of 45 m2 with 230-230 individual plants. In vegetation grown period were measured green and dry matter yield. The soil and plant samples were analysed for the macro and microelements contents. The main results achieved in 1998 are summarized as follows: 1. The green matter yield at before flowering reached 63.8 t ha-1 in case of Crotalaria juncea L. 2. Total dry matter yield at harvest (without roots) fluctuated between 9.6 and 17.0 t ha-1, depending on the crotalaria species. 3. The average of element concentration (including stems, leaves of Crotalaria juncea L. and Crotalaria spectabilis ROTH) before flowering reached to 3.2 % N, 2.3 % Ca, 1.3 % K, 0.39 % Mg, 0.22 % P and 0.24 % S. The content of Al and Fe total 14 - 25, while that of Sr, Mn, Na, B and Ba 2 - 6 ppm in dry matter. The Zn, Cu, Mo, Cr, Se, Ni, As, Pb, Cd and Co concentration did not reach here the value of 1 ppm. 4. The average of biological activated element uptake (including stems, leaves of Crotalaria juncea L. and Crotalaria spectabilis

  5. Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Tanja Strecker

    Full Text Available Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization.We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment. Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency.Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes.

  6. Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland.

    Science.gov (United States)

    Strecker, Tanja; Barnard, Romain L; Niklaus, Pascal A; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico

    2015-01-01

    Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes.

  7. Effect of tillage and fertilizer on soil chemical properties, leaf nutrient ...

    African Journals Online (AJOL)

    Effect of tillage and fertilizer on soil chemical properties, leaf nutrient content and yield of soyabean in the Guinea Savanna zone of Nigeria. A Ali, SA Ayuba, SO Ojeniyi. Abstract. No Abstract. Nigerian Journal of Soil Science Vol. 16 (1) 2006: pp. 126-130. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL ...

  8. A Behavioral Change Perspective of Maroon Soil Fertility Management in Traditional Shifting Cultivation in Suriname

    NARCIS (Netherlands)

    Fleskens, L.; Jorritsma, F.

    2010-01-01

    In Suriname, the Maroons have practiced shifting cultivation for generations, but now the increasing influence of modern society is causing a trend of decreasing fallow periods with potentially adverse effects for the vulnerable tropical soils. Adoption of appropriate soil fertility management (SFM)

  9. Growth of Planted Yellow-Poplar After Vertical Mulching and Fertilization on Eroded Soils

    Science.gov (United States)

    J.B. Baker; B.G. Blackmon

    1976-01-01

    Fertilization and vertical mulching improved height growth of yellow-poplars planted on eroded soils. A growing demand for hardwood timber accompanied by a diminishing land base has prompted land managers to consider planting hardwoods on marginal sites such as the eroded soils in the Silty Uplands of Arkansas, Louisiana, and Mississippi. Many of these areas were well...

  10. Remediation of Biological Organic Fertilizer and Biochar in Paddy Soil Contaminated by Cd and Pb

    Directory of Open Access Journals (Sweden)

    MA Tie-zheng

    2015-02-01

    Full Text Available The effect of application of biological organic fertilizer and biochar on the immobilized remediation of paddy soil contaminated by Cd and Pb was studied under the field experiment. The results showed that biological organic fertilizer and biochar increased the soil pH and soil nutrient contents, and reduced the soil available Cd and Pb concentrations significantly. The soil pH had significantly negative correla-tion with the soil available Cd and Pb contents. The application of biological organic fertilizer and biochar decreased Cd and Pb concentration in all parts of the rice plant, with Cd concentration in brown rice decrease by 22.00% and 18.34% and Pb decease in brown rice by 33.46% and 12.31%. The concentration of Cd and Pb in brown rice had significant positive correlation with the soil available Cd and Pb concentra-tions. It was observed that both biological organic fertilizer and biochar had a positive effect on the remediation of paddy soil contaminated by Cd and Pb.

  11. Small-scale farmers indigenous approach to soil fertility in some ...

    African Journals Online (AJOL)

    This study is an attempt to highlight the indigenous approach used by farmers to determine the level of fertility of a soil. It was found that soil colour, certain grasses, shrubs, trees, weeds and worm casts were dominant criteria used by majority (87%) of the respondents. Similarly without visiting a farm plot, farmers assess the ...

  12. Illustrated manual on composting for improved soil fertility and enhanced cocoa production

    Science.gov (United States)

    In West and Central Africa, most cocoa farms are old and the soils are highly depleted in major nutrients. Cocoa pod harvest continues to remove nutrients, and this loss of soil fertility is one of the major causes of low cocoa yields and subsequent economic losses. Plant pathogens, including nema...

  13. organic fertilization of olive tree based on soil analysis and foliar ...

    African Journals Online (AJOL)

    1 sept. 2015 ... ABSTRACT. The present study aims at developing an organic fertilization program of an olive orchard located in the North-west of Tunisia. Soil analyses showed an acceptable level of P2O5 and. K2O in the soil of the studied farm. Based on leaves and olive fruit analyses, the requirements in N, P and K ...

  14. Poor people and poor fields? : integrating legumes for smallholder soil fertility management in Chisepo, central Malawi

    NARCIS (Netherlands)

    Kamanga, B.

    2011-01-01

    Soil infertility undermines the agriculture-based livelihoods in Malawi, where it is blamed for poor crop yields and the creation of cycles of poverty. Although technologies and management strategies have been developed to reverse the decline in soil fertility, they are under-used by smallholder

  15. Effect of rain drop washes on soil fertility in cotton production zone of ...

    African Journals Online (AJOL)

    Crop production in the Sahel is limited by nutrients availability. The study aimed to estimate the contribution of avifauna, crop rotation and trees to soil fertility and crop production improvement. Pot experiment was carried out with soils sampled in Faidherbia albida parklands in cotton production zone of West Burkina Faso.

  16. Variation in soil fertility influences cycle dynamics and crop diversity in shifting cultivation systems

    NARCIS (Netherlands)

    Braga Junqueira, A.; Stomph, T.J.; Clement, C.R.; Struik, P.C.

    2016-01-01

    Smallholder farming in Amazonia is practised mostly through shifting cultivation, which under low population pressure is well adapted to the low-fertility soils that predominate in uplands and to the lack of external inputs. In this paper we investigate the effects of soil heterogeneity (in terms of

  17. Ideal and saturated soil fertility as bench marks in nutrient management; 1 outline of the framework

    NARCIS (Netherlands)

    Janssen, B.H.; Willigen, de P.

    2006-01-01

    This paper presents a framework for nutrient management that takes sustainable soil fertility, environmental protection and balanced plant nutrition as starting points, and integrates concepts from plant physiology, soil chemistry and agronomy. The framework is meant as a tool that can be applied

  18. Relationships between soil fertility indicators and toposequence in ...

    African Journals Online (AJOL)

    2016-09-25

    Sep 25, 2016 ... different soil properties and toposequence in a 173.3 km²-watershed. Stratified soil sampling strategy associated with principal component analysis (PCA) and Chi-square (÷2) test, have emphasized the variability of soil properties at the watershed scale. Soil physical and chemical properties analysis using.

  19. EFFECTS OF ORGANO-MINERAL FERTILIZERS ON SOIL QUALITY AND THEIR IMPACT ON SUGARCANE YIELD

    Directory of Open Access Journals (Sweden)

    Pedro Cairo Cairo

    2017-10-01

    Full Text Available This work was carried out in sugarcane fields with a vertisol pélico type composition in the north coast of Villa Clara province, in the municipality of Sagua La Grande, with the objective of evaluating the effects of organo-mineral fertilizers on the soil quality index and their impact on the sugar cane yield. Three experiments were carried out with organic fertilizers and natural minerals. The organic fertilizers used were compost and sugarcane sludge; and the natural minerals were zeolite and dolomitic limestone. The design used was blocks in fringes. In the experiments, data were used from a soil analysis carried out at depths of 0-20 cm. The following indicators were evaluated: organic matter, stable aggregates, structure factor, permeability, soil quality index, sugar cane yield. The statistical tool of correlations and economic evaluation matrix was used. Soil management with organic fertilizers and their combinations with natural minerals increase the additive soil quality index from 2.88 to 3.98. The results obtained demonstrate the close relationship between organo-mineral fertilizers, the soil quality index, the sugarcane yield and its economic impact.

  20. [Response of black soil organic carbon, nitrogen and its availability to longterm fertilization].

    Science.gov (United States)

    Luo, Kun; Hu, Rong-Gui; Zhang, Wen-Ju; Zhou, Bao-Ku; Xu, Ming-Gang; Zhang, Jing-Ye; Xia, Ping-Ping

    2013-02-01

    Based on the long-term fertilization experiments, effects of various fertilization practices on the soil organic carbon (SOC) and total nitrogen (TN) in the surface (0-20 cm) and subsurface (20-40 cm) black soil in northeast China were studied. Results showed that, compared with the CK, long-term application of organic manure, especially the combination of mineral fertilizers and organic manure significantly increased the organic SOC and TN in the surface soil. Application of mineral fertilizers plus organic manure with conventional (NPM) and high application (N2P2M2) rate increased SOC significantly by 24. 6% and 25.1% , and TN by 29.5% and 32.8%, respectively. However, there was no significant difference among the treatments for SOC and TN at the subsurface. Compared with the CK (CKh), mineral fertilizer plus organic manure (NPM and N2P2M2) did not only increase the soil microbial biomass carbon (SMBC) and nitrogen (SMBN) , dissolved organic carbon (DOC) and nitrogen (DN), but also significantly increased the ratio of SMBC and DOC to SOC, SMBN and TN to TN. Application of the NPM and N2P2M2 increased the value of SMBC/SOC by 0.36 to 0.59 and SMBN/TN by 1.21 to 1.95 percentage points, respectively. The value of DOC/SOC and DN/TN ranged from 0.53% to 0.72% and 1.41% to 1.78%, respectively. This result indicated that SMBC, SMBN, DOC, DN and SMBC/ SOC, SMBN/TN, DOC/SOC, DN/TN were more sensitive than SOC and TN to long-term fertilization in the soil profile, and were better indicators for the impact of long-term fertilization soil fertility. The concluded that the application of manure especially manure plus mineral fertilizers can increase soil nutrients activity in the surface and subsurface black soil, acting as a helpful practice to improve soil fertility and the ability of nutrient supply, while it may cause potential environment pollution on carbon and nitrogen loss in the agroecosystem.

  1. Changes in potassium pools in Paraná soils under successive cropping and potassium fertilization

    Directory of Open Access Journals (Sweden)

    Fabio Steiner

    2015-12-01

    Full Text Available The changes in soil potassium pools under intense cropping and fertilized with potash fertilizer are still little known to the soils of Paraná State. The effects of potassium fertilization and successive cropping on changes in K pools in different soils of Paraná, Brazil, were investigated in this study. Twelve soil samples, collected from the upper layer 0–0.20 m, were fertilized or not with K and subjected to six successive cropping (i.e., soybean, pearl millet, wheat, common beans, soybean and maize. All the crops were grown for 45 days, and at the end of the second, fourth and sixth cropping, the soil from each pot was sampled to determination of the total K, non-exchangeable K, exchangeable K and solution K. The result showed that the soil potassium pools varied widely. Total K concentration ranged from 547 to 15,563 mg kg–1 (4,714 mg kg–1, on average. On the average, structural K, non-exchangeable K, exchangeable K and solution K of the soils constituted 84.0, 11.3, 4.6 and 0.1% of the total K, respectively. Soils differ in the ability to supply potassium to the plants in the short to medium term, due to the wide range of parent material and the degree of soil weathering. When the soils were not fertilized with K, the successive cropping of plants resulted in a continuous process of depletion of non-exchangeable K and exchangeable K pools; however, this depletion was less pronounced in soils with higher potential buffer capacity of K. The concentrations of K non-exchangeable and exchangeable K were increased with the addition of potassium fertilizers, indicating the occurrence of K fixation in soil. After the second cropping, the soil exchangeable K levels remained constant with values of 141 and 36 mg kg–1, respectively, with and without the addition of K fertilizer, reflecting in establishing of a new dynamic equilibrium of K in the soil.

  2. SHADING AND NITROGEN FERTILIZATION ON SOIL ATTRIBUTES IN A PASTURE OF BRACHIARIA BRIZANTHA CV. MARANDU

    OpenAIRE

    Guilherme Lanna Reis; Ângela Maria Quintão Lana; Regina Maria Quintão Lana; Adriane Andrade Silva; Gustavo Henrique Ferreira Abreu Moreira; Frederico Miranda Pereira; Raíssa Macaron Longo; Rodrigo Matta Machado

    2011-01-01

    This study assessed the influence of nitrogen fertilization and artificial shade on the attributes of soil and forage in a pasture of Brachiaria brizantha cv Marandu (BBM). The experiment was conducted at Fazenda Águas Formosas in Caeté, Minas Gerais State, Brazil, 19º47’39’’S,43º36’77’’W, altitude 1000 m. The soil is a Red latosol by the Brazilian soil classification (Typic Acrustox - USDA classification). BBM was subjected to four levels of fertilization (0, 50, 70 and 100 kg N per hectare ...

  3. [Influencing mechanism of several shrubs and subshrubs on soil fertility in Keerqin sandy land].

    Science.gov (United States)

    Su, Yongzhong; Zhao, Halin; Zhang, Tonghui

    2002-07-01

    Keerqin sandy land is one of serious desertification areas in the semiarid zone of north China, and shrubs are the dominant plant life form and play an important role in the region. The effects of "fertile island" and rhizosphere of several shrubs and subshrubs were studied. The results showed that the concentrations of organic C, total N and total P, and values of electrical conductivity (EC) in the soils under the canopy of shrubs increased by 56%, 51%, 37%, and 51%, respectively, compared with those of the soils in open spaces, but there was no significant difference in pH value between the soils under shrub canopies and in open spaces. Shrub rhizosphere soils had significant higher contents of organic C, total N, and values of EC as well as lower pH value compared to the bulk soils, but there was no significant difference in total P between rhizosphere and bulk soils. There were close relationships between the properties in soils under shrub canopies and the rhizosphere soils, indicating that the development of "fertile island" were favorable to root growth and induced greater amount of rhizodeposition, and vice versa. Soils under Artemisia frigida and Caragada microphylla canopies and rhizospheres had significant higher organic C and total N contents than those of Artemisia halodendron and Salix gordejvii. This results suggested that shrubs were of vital importance for accumulation of nutrients and maintenance of soil fertility in Keerqin sandy land ecosystem.

  4. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    Science.gov (United States)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover

  5. Bacterial diversity in Greenlandic soils as affected by potato cropping and inorganic versus organic fertilization

    DEFF Research Database (Denmark)

    Michelsen, Charlotte Frydenlund; Pedas, Pai Rosager; Glaring, Mikkel Andreas

    2014-01-01

    research has been performed on the effects of these treatments on bacterial communities in Arctic and Subarctic agricultural soils. The major objective of this study was to investigate the short-term impact of conventional (NPK) and organic (sheep manure supplemented with nitrogen) fertilizer treatments...... with only limited pest management, despite the presence of plant pathogenic fungi. The microbial community composition in agricultural soils, which plays an important role for soil and plant health and for crop yield, may be affected by the use of different fertilizer treatments. Currently, only limited...... as a result of different fertilizer treatments, indicating a robust microbial community in these soils. In addition, differences in nutrient levels, crop yields and bacterial abundances were found between the two field sites and the two experimental growth seasons, which likely reflect differences in physical...

  6. MORTALITY, INITIAL GROWTH AND SOIL SOLUTION IN EUCALYPTS STANDS WITH SLOW RELEASE FERTILIZATION

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Muller da Silva

    2015-09-01

    Full Text Available Fertilization is one of the most effective ways to increase crop productivity, and the use of slow release fertilizers could be advantageous, allowing the assimilation of nutrients as the plants grow. The objective was evaluating the effect of slow release fertilizers in a Eucalyptus urophylla x E. grandis stand in order to reduce the number of fertilization applications. The experimental design was randomized blocks with four treatments. Treatments were applied with the same amounts of nutrients: T1-Convetional fertilizer with split application; T2-Conventional fertilizer in a single dose at 3 months; T3-Controlled-release fertilizer applied at planting; and T4-Controlled-release fertilizer applied 3 months after planting. We evaluated the mortality, initial growth, leaf nutrition and N and K in the soil solution. The experiment showed an average mortality of 4%, height of 8.5 m, DBH of 7.5 cm and volume of 24 m3.ha-1 at 18 months of age, with no difference among treatments for these characteristics. There were no differences in foliar concentrations of N, P, Ca, Mg and S, only the K differed among treatments, with the lowest concentration at conventional fertilizer split application treatment. The application of slow release fertilizer at 3 months showed the lowest concentrations of N and K in the soil solution. The split application of nutrients showed no improvement in eucalypt growth or nutritional benefits. The use of slow-release fertilizer is possible to reduce the number of fertilization application with no risk of nutrients leaching.

  7. ES1406 COST Action: Soil fauna: Key to Soil Organic Matter Dynamicsand Fertility. How far have we got?

    DEFF Research Database (Denmark)

    Jiménez, Juan; Filser, Juliane; Barot, Sébastien

    and temporal scales. Current models of SOM dynamics are defined in terms of plant residues input and microbial decomposition, overlooking the important contribution of soil fauna. The composition and activity of soil fauna greatly vary with respect to climate and land use. SOM modelling has thus far largely......Soil organic matter (SOM) is key to soil fertility, climate change mitigation, combatting land degradation, and the conservation of above- and below-ground biodiversity and associated ecosystem services like decomposition, nutrient cycling, carbon sequestration, detoxification and maintenance...... ignored soil fauna due to various reasons: i) hardly existing communication between [C flow centered] biogeochemistry and [organism-centered] soil ecology, ii) lack of [awareness of] data on soil animals (both in the field and from laboratory experiments) and, iii) two different visions by soil ecologists...

  8. Long-term effects of fertilizer on soil enzymatic activity of wheat field soil in Loess Plateau, China.

    Science.gov (United States)

    Hu, Weigang; Jiao, Zhifang; Wu, Fasi; Liu, Yongjun; Dong, Maoxing; Ma, Xiaojun; Fan, Tinglu; An, Lizhe; Feng, Huyuan

    2014-12-01

    The effects of long-term (29 years) fertilization on local agro-ecosystems in the Loess Plateau of northwest China, containing a single or combinations of inorganic (Nitrogen, N; Phosphate, P) and organic (Mature, M Straw, S) fertilizer, including N, NP, SNP, M, MNP, and a control. The soil enzymes, including dehydrogenase, urease, alkaline phosphatase, invertase and glomalin, were investigated in three physiological stages (Jointing, Dough, and Maturity) of wheat growth at three depths of the soil profile (0-15, 16-30, 31-45 cm). We found that the application of farmyard manure and straw produced the highest values of soil enzymatic activity, especially a balanced applied treatment of MNP. Enzymatic activity was lowest in the control. Values were generally highest at dough, followed by the jointing and maturity stages, and declined with soil profile depth. The activities of the enzymes investigated here are significantly correlated with each other and are correlated with soil nutrients, in particular with soil organic carbon. Our results suggest that a balanced application of fertilizer nutrients and organic manure (especially those containing P) has positive effects on multiple soil chemical parameters, which in turn enhances enzyme activity. We emphasize the role of organic manure in maintaining soil organic matter and promoting biological activity, as its application can result in a substantial increase in agricultural production and can be sustainable for many years.

  9. Increasing the amount of nitrogen fertilizer decreased the activity of soil enzyme in cv.Huangguogan

    Science.gov (United States)

    Liao, Ling; Feng, Zhongxue; Fu, Jialing; Liu, Xinya; Dong, Zixiang; Dong, Tiantian; Wang, Zhihui

    2017-10-01

    Study on the effect of different nitrogen treatment on cv.Huangguogan soil peroxidase, urease, phosphatase, sucrase activity. The amount of nitrogen was 3 treatments: conventional nitrogen application rate (N1), 125% conventional nitrogen application rate (N2) and 150% conventional nitrogen application rate (N3). The results showed that proper amount of nitrogen fertilizer was beneficial to improve soil enzyme activity, but the soil enzyme activity was decreased when the amount of nitrogen was increased or too much.

  10. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers.

    Science.gov (United States)

    Sharma, Manan; Reynnells, Russell

    2016-08-01

    Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.

  11. The effects of ant nests on soil fertility and plant performance: a meta-analysis.

    Science.gov (United States)

    Farji-Brener, Alejandro G; Werenkraut, Victoria

    2017-07-01

    Ants are recognized as one of the major sources of soil disturbance world-wide. However, this view is largely based on isolated studies and qualitative reviews. Here, for the first time, we quantitatively determined whether ant nests affect soil fertility and plant performance, and identified the possible sources of variation of these effects. Using Bayesian mixed-models meta-analysis, we tested the hypotheses that ant effects on soil fertility and plant performance depend on the substrate sampled, ant feeding type, latitude, habitat and the plant response variable measured. Ant nests showed higher nutrient and cation content than adjacent non-nest soil samples, but similar pH. Nutrient content was higher in ant refuse materials than in nest soils. The fertilizer effect of ant nests was also higher in dry habitats than in grasslands or savannas. Cation content was higher in nests of plant-feeding ants than in nests of omnivorous species, and lower in nests from agro-ecosystems than in nests from any other habitat. Plants showed higher green/root biomass and fitness on ant nests soils than in adjacent, non-nest sites; but plant density and diversity were unaffected by the presence of ant nests. Root growth was particularly higher in refuse materials than in ant nest soils, in leaf-cutting ant nests and in deserts habitats. Our results confirm the major role of ant nests in influencing soil fertility and vegetation patterns and provide information about the factors that mediate these effects. First, ant nests improve soil fertility mainly through the accumulation of refuse materials. Thus, different refuse dump locations (external or in underground nest chambers) could benefit different vegetation life-forms. Second, ant nests could increase plant diversity at larger spatial scales only if the identity of favoured plants changes along environmental gradients (i.e. enhancing β-diversity). Third, ant species that feed on plants play a relevant role fertilizing soils

  12. Spatial distribution of selected heavy metals and soil fertility status in south-eastern Serbia

    Science.gov (United States)

    Saljnikov, E.; Mrvic, V.; Cakmak, D.; Nikoloski, M.; Perovic, V.; Kostic, L.; Brebanovic, B.

    2009-04-01

    Environmental pollution by heavy metals is one of the most powerful factors destroying biosphere components that directly affecting agricultural production quality and therefore health of human and animals. Regional soil contamination by heavy metals occurs mainly in industrial areas and in big cities. However, pollutants can be air-and/or water-transferred to big distances and may accumulated far from industrial zone what makes difficult to distinguish original background concentrations of heavy metals in soil. Our study covers south-eastern part of Serbia and is a part of a big project studying soil fertility and heavy metal contamination all around Serbia. Diverse natural characteristics and heterogeneity of soil cover, as well as, human activity greatly influenced soil fertility parameters, while, diverse geological substrate and human activity determined the level of potential geochemical pollution. There are number of industrial factories functioning from the last century on the studied area. Also, close to studied area, there was a mining in the middle of the last century. About 600 soil samples from surface 0-30 cm were investigated for main soil fertility characteristics (pH, humus, available K and P) and concentrations of selected heavy metals (As, Cd, Cr, Ni and Pb). Soils graded as very acidic cover 46% of the area, which are mainly mountains with acidic parent materials. Content of humus in 41% of soil samples were below 3%. The most of the soils (71%) are weakly supplied available phosphorus. While available potassium in more than 70% is presented in the concentrations enough for good soil quality. So, about 75% of studied area is characterized with unfavorable soil fertility properties (extremly low soil pH, very low content of available P, about half of the area maintained low soil humus) that is located under forests, meadows and pastures. Content of heavy metals on studied area in 80% of sampled soils was below maximum allowed concentrations

  13. Introducing a sustainable soil fertility system for chickpea ( Cicer ...

    African Journals Online (AJOL)

    ): Trichoderma harzianum; (B3): Phosphate solubilizing bacteria + T. harzianum; and (B4): without biofertilizers were arranged in sub-sub plots. Results showed that green manure increased pod number and number of fertile pods per plant.

  14. Green manuring and nitrogen fertilization effects on soil chemical ...

    African Journals Online (AJOL)

    UNAAB), Nigeria to screen three green manure crops in the 1997 cropping season for biomass production. The most promising legume was selected, grown and incorporated insitu along with varying levels of inorganic nitrogen fertilizer.

  15. SOIL AGROCHEMICAL PROPERTIES IMPROVEMENT IN LONG TERM FIELD EXPERIMENT WITH FERTILIZERS

    Directory of Open Access Journals (Sweden)

    Mihaela Lungu

    2005-10-01

    Full Text Available Soil fertility is studied in long-term field experiments. Researches are carried out in several agricultural research stations, out of which the following have been chosen for the present paper: Albic Luvisol* at Albota; Haplic Phaeozem at Fundulea; Chromic Luvisol at Şimnic; Calcic Chernozem at Secuieni; and Haplic Chernozem at Podu Iloaiei. Long term fertilization with nitrogen and phosphorus generally improved the soil agrochemical properties. The evolution of organic matter, nitrogen, mobile phosphorus and potassium, and mobile microelements contents were studied, using the standardized method used in the ICPA laboratories. The organic matter and total nitrogen contents didn’t change significantly under the nitrogen and phosphorus long-term fertilization influence. The mobile phosphorus contents have the tendency to grow very significantly with the growth of phosphorus fertilizers. At the same time, slight depletions of these contents are registered as the high nitrogen doses from fertilizers stimulate plant growth and, obviously, nutritive elements absorption. Mobile potassium contents changes very little, with insignificant differences. Significant depletions are registered only with high fertilizers doses, due to the stimulation of the nutritive elements absorption in plants. Microelements contents don’t change almost at all. They are within the normal content limits and no excess or deficiency was registered, in any of the studied stations. For the agricultural practice, economical studies are recommended, about how high fertilizing expenses are covered by the yield growth. Not the least, production quality study in different variants of mineral fertilization could prove interesting.

  16. Fertilization with liquid digestate in organic farming - effects on humus balance, soil potassium contents and soil physical properties

    Science.gov (United States)

    Erhart, Eva; Siegl, Thomas; Bonell, Marion; Unterfrauner, Hans; Peticzka, Robert; Ableidinger, Christoph; Haas, Dieter; Hartl, Wilfried

    2014-05-01

    Biogas production and use of liquid digestate are subject of controversial discussion in organic farming. Using biomass from intercrops as feedstock for biogas production makes it possible to produce renewable energy without compromising food production. With liquid digestate, crops can be fertilized in a more targeted way than by incorporating intercrop biomass into the soil. For long-term sustainability in organic farming, however, this practice must not have adverse effects on soil fertility. In order to assess the effects of fertilization with liquid digestate on soil fertility, two randomised field experiments were conducted for two years on different soil types near Bruck/Leitha (Lower Austria). One experiment was set up on a calcareous chernozem with 4 % humus content, the other on a parachernozem with pH 5.9 and 2.1 % humus. Soil potassium content, both in the water-soluble fraction and in the exchangeable fraction, increased significantly at both sites. As fertilization with liquid digestate exceeded the potassium requirements of the crops by far, the proportion of potassium of the exchangeable cations increased rapidly. Soil physical properties were not influenced by digestate fertilization on the chernozem site. On the parachernozem, aggregate stability was increased by the organic matter applied via digestate. On this acidic site low in humus content, the supply of 4 t/ha organic matter, which featured a lignin content of 37 % and was relatively resistant to decomposition, had a clearly positive impact on soil physical properties. Humus balances were computed both with the 'Humuseinheiten'-method and with the site-adapted method STAND. They were calculated on the basis of equal amounts of intercrop biomass either left on the field as green manure or used for biogas production and the resulting amount of liquid digestate brought back to the field. The humus balances indicated that the humus-efficacy of the liquid digestate was equal to slightly higher

  17. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil.

    Science.gov (United States)

    Chen, G C; He, Z L; Stoffella, P J; Yang, X E; Yu, S; Calvert, D

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1,183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils.

  18. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    Science.gov (United States)

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01).

  19. Comparative effects of plant residues and NPK fertilizer on soil ...

    African Journals Online (AJOL)

    Field experiments were conducted at two locations in 2001 and 2002 on acidic Ultisol of Southeast Nigeria to assess the effects of amending soil with plant residues on soil physical and chemical properties. The soil amendment treatments compared were natural fallow, wood ash at 6 tha-1, peanut residue at 12 tha-1, ...

  20. Chemical and microbial properties of farmer's field soils fertilized ...

    African Journals Online (AJOL)

    The study investigated the chemical and microbial characteristic of soils receiving different quantity of waste for several years (20, 10 and 7 years). Soils were sampled around the city of Ouagadougou (Burkina Faso). Soil chemical (C, N, P and pH) and microbial (basal respiration, microbial biomass and microbial diversity) ...

  1. Experiences of soil fertility management through legume based ...

    African Journals Online (AJOL)

    Mo

    used the mother-baby trial approach in implementing the farmer and researcher managed trials. ... due to the escalating prices as a direct consequence of market .... the baby trials. These legume crops were grown on different soil types. 44.9 % grow the legumes in sandy soil, 38.2 % in sandy clay loam soils and 13.5% in ...

  2. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2016-11-01

    Full Text Available Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1 control without fertilization (CK; (2 chemical fertilizer application (CF; and (3 bioorganic fertilizer application (BOF. The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009-2015. The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0-20cm, 20-40cm, and 40-60cm, e.g., the relative abundance of bio-control bacteria (Xanthomonadales, Lysobacter, Pseudomonas and Bacillus, Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter and Ohtaekwangia. These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity.

  3. Effectiveness of Organic Wastes as Fertilizers and Amendments in Salt-Affected Soils

    Directory of Open Access Journals (Sweden)

    Mariangela Diacono

    2015-04-01

    Full Text Available Excessive salt rate can adversely influence the physical, chemical, and biological properties of soils, mainly in arid and semi-arid world regions. Therefore, salt-affected soils must be reclaimed to maintain satisfactory fertility levels for increasing food production. Different approaches have been suggested to solve these issues. This short review focuses on selected studies that have identified organic materials (e.g., farmyard manures, different agro-industrial by-products, and composts as effective tools to improve different soil properties (e.g., structural stability and permeability in salt-affected soils. Organic fertilization is highly sustainable when compared to other options to date when taken into consideration as a solution to the highlighted issues. However, further experimental investigations are needed to validate this approach in a wider range of both saline and sodic soils, also combining waste recycling with other sustainable agronomic practices (crop rotations, cover crops use, etc..

  4. Measuring Soil Fertility under Hagenia abyssinica (Bruce J. F. Gmel by the Biotest Method

    Directory of Open Access Journals (Sweden)

    Biruktayet Assefa

    2010-01-01

    Full Text Available The experiment was conducted at the Forestry Research Center, Ethiopia in 2008. Soil was sampled under the canopy of Hagenia abyssinica and from farmland area adjacent to the forest to measure fertility of soils by using the biotest with linseed (Linum usitatissimum L., barley (Hordeum vulgare L., and wheat (Triticum aestivum L. as indicators. The experimental design was a completely randomized design comprising of 20 seedlings per study site. Seeds were seeded into polythene plastic bags. Seedling emergence, germination, and survival rate were recorded. Plant height and root collar diameter were measured. Final weight of fresh biomass was measured, and each component was oven-dried at 70°C. Dry weight was recorded at constant weight. Significant differences (P<.05 were observed between soil treatments. Plants grown on Hagenia-influenced soils attained better performance, suggesting the beneficial role of Hagenia abyssinica in enhancing soil fertility status which in turn results in higher productivity.

  5. Fractionation of soil phosphorus in a long-term phosphate fertilization

    Directory of Open Access Journals (Sweden)

    Amaizah Nasser Ramdan

    2012-01-01

    Full Text Available The changes in inorganic and organic phosphorus (P fractions of soil resulting from long-term fertilization (40 years were investigated. In order to improve understanding of the sink and sources of phosphorus, P-fractions were extracted from soil samples of 0-30 and 30-60 cm depth with different amounts of monoammonium-phosphate (MAP and then determined. Stagnosol was the type of the studied soil. Phosphate fertilizer was applied in 26, 39 and 52 kgP/ha amounts during the period of 40 years. Samples were subjected to sequential extraction according to the modified Chang and Jackson method and BCR (Community Bureau of Reference sequential extraction procedure in order to extract different forms of phosphorus. The Certified Reference material CRM 684 (River Sediment Extractable Phosphorus was used to provide accuracy of the instrument and both used methods. Furthermore, the association of phosphorus with substrates was provided by comparison of the results of sequential methods of phosphorus species with the sequential extraction of metals (Fe, Al, Mn and Ca. Results of continuous fertilization during 40 years indicated the increase of all the phosphorus forms in the soil except of phosphorus bound to calcium and organic phosphorus. Application of higher amounts of P-fertilizer resulted in dominance of Al-P fraction in studied soil which indicated that this fraction was the most responsible for the migration of phosphorus along the soil profile.

  6. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    Science.gov (United States)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  7. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility

    Science.gov (United States)

    Chirima, George Johannes

    2016-01-01

    Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection. PMID:27774456

  8. Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil.

    Science.gov (United States)

    Fiorentino, N; Ventorino, V; Rocco, C; Cenvinzo, V; Agrelli, D; Gioia, L; Di Mola, I; Adamo, P; Pepe, O; Fagnano, M

    2017-01-01

    Phytoremediation is a cost-effective "green technology" that uses plants to improve the soil properties of polluted sites, preventing the dispersion of pollutants and reducing the mobility of potentially toxic elements (PTEs) through their adsorption and accumulation by roots or precipitation within the root zone. Being highly tolerant to pollutants and other abiotic stresses, giant reed (Arundo donax L.) is a suitable biomass crop for phytoremediation of contaminated soils. We report the results of a two-year open-air lysimeter study aimed at assessing the adaptability of giant reed to grow on industrial substrates polluted by Pb and Zn and at testing commercial humic acids from leonardite as improvers of plant performance. We evaluated giant reed potential for: 1) biomass production for energy or biomaterial recovery; 2) PTE phytoextraction and 3) soil fertility restoration. Chemical fertility was monitored by measuring soil C while soil biological fertility was estimated by quantifying the abundance of bacterial functional genes regulating nitrogen fixation (nifH) and nitrification (amoA). Giant reed above-ground growth on the polluted soils was slightly lower (-16%) than on a non-polluted soil, with a preferential storage of biomass in the rhizome acting as a survival strategy in limiting growing conditions. Humic acids improved plant stress tolerance and production levels. As aerial biomass (shoots) did not accumulate PTEs, the plant in question can be used for bioenergy or biopolymer production. In contrast, below-ground biomass (rhizomes) accumulated PTEs, and can thus be harvested and removed from soil to improve phytoremediation protocols and also used as industrial biofuel. Giant reed growth increased the abundance of N-cycling bacteria and soil C in the rhizospheric soil, as well as reduced soil Pb and Zn EDTA extractable fraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of different fertilization on the dissolved organic carbon, nitrogen and phosphorus accumulation in acid and limed soils

    Directory of Open Access Journals (Sweden)

    Ieva Jokubauskaite

    2015-04-01

    Full Text Available Soil quality has become an important issue in soil science. Dissolved organic carbon (DOC is believed to play an important role in soil processes and in the C, N and P balances, their supplies to plants in all types of soils. It is much more sensitive to soil management than is soil organic matter as a whole, and can be used as a key indicator of soil natural functions. This study aimed to assess the influence of different organic fertilizers on DOC and N, P accumulation. The study was carried out on a moraine loam soil at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry in 2012. Farmyard manure (FYM (60 t ha -1 and alternative organic fertilizers (wheat straw, rape residues, roots, stubble, perennial grasses were applied on two soil backgrounds - acid and limed. DOC was analysed using an ion chromatograph SKALAR. Application of organic amendments resulted in a significant increase of soil organic carbon (SOC content, which demonstrates a positive role of organic fertilizers in SOC conservation. The combination of different organic fertilizers and liming had a significant positive effect on DOC concentration in the soil. The highest DOC content (0.241 g kg-1 was established in the limed soil fertilized with farmyard manure. The most unfavourable status of DOC was determined in the unlimed, unfertilized soil. The limed and FYM-applied soil had the highest nitrogen (1.47 g kg-1 and phosphorus (0.84 g kg-1 content compared to the other treatments. Organic fertilizers gave a significant positive effect on SOC and DOC content increase in the topsoil. This immediate increase is generally attributed to the presence of soluble materials in the amendments. Application of organic fertilizers in acid and limed soil increased the nutrient stocks and ensured soil chemical indicators at the optimal level for plant growth and thus may provide a mechanism as well as prediction opportunities for soil fertility, conservation

  10. Role of Slow-Release Nanocomposite Fertilizers on Nitrogen and Phosphate Availability in Soil

    OpenAIRE

    Giroto, Amanda S.; Gelton G. F. Guimarães; Milene Foschini; Caue Ribeiro

    2017-01-01

    Developing efficient crop fertilization practices has become more and more important due to the ever-increasing global demand for food production. One approach to improving the efficiency of phosphate and urea fertilization is to improve their interaction through nanocomposites that are able to control the release of urea and P in the soil. Nanocomposites were produced from urea (Ur) or extruded thermoplastic starch/urea (TPSUr) blends as a matrix in which hydroxyapatite particles (Hap) were ...

  11. Persistence of Trace Organic Contaminants from a Commercial Biosolids-Based Fertilizer in Aerobic Soils

    OpenAIRE

    Banet, Travis A; Kim, Jihyun R.; Mashtare, Michael L

    2016-01-01

    Municipal biosolids are recycled as agricultural fertilizers. Recent studies have raised concerns due to the presence of emerging contaminants in municipal biosolids. Previous research suggests that these contaminants have the potential to reside in biosolids-based fertilizers that are commercially distributed. Use of these products in urban/suburban areas may provide a pathway for these contaminants to enter ecosystems and impact human and environmental health. Soils from Purdue University’s...

  12. Dairy manure and tillage effects on soil fertility and corn yields.

    Science.gov (United States)

    Khan, Anwar U H; Iqbal, M; Islam, K R

    2007-07-01

    Organic amendments have received renewed attention to improve soil fertility for crop production. A randomized complete block split plot experiment was conducted to evaluate the dairy manure (DM) amendments of soil for corn (Zea mays L. cv. Monsanto 919) production under different tillage systems. Main plot treatments were no-till (NT), conventional tillage (CT), and deep tillage (DT), and subplot treatments were chemical fertilization (DM(0)), and DM at 10Mgha(-1)yr(-1) (DM(10)) and 20Mgha(-1)yr(-1) (DM(20)) with supplemental chemical fertilization. Results show that tillage and DM had significantly reduced bulk density (rho(b)) with greater porosity (f(t)) and hydraulic conductivity (K(fs)) than soils under NT and DM(0). Manuring was effective to improve soil physical properties in all tillage treatments. While manure significantly increased C sequestration, the N concentration was influenced by both tillage and manure with significant interaction. The CT significantly increased P as did the addition of manure. However, with manure, K was significantly increased in all tillage treatments. While tilled soils produced taller plants with higher grain yields, and water-use efficiency than NT soils, manuring, in contrast, increased corn harvest index. Manure exerted significant quadratic effect on corn biomass N and K uptake. The variable effects of tillage and dairy manuring on soil properties and corn growth are most probably related to "transitional period" in which soil ecosystems may have adjusting to a new equilibrium.

  13. Effects of different regimes of fertilization on soil organic matter under conventional tillage

    Directory of Open Access Journals (Sweden)

    Zhibin Guo

    2014-07-01

    Full Text Available To explore the effects of different fertilization regimes on soil organic matter (SOM sequestration in a winter-soybean/corn rotation, a long-term field experiment was conducted in Anhui, China, from 1982 to 2011. There were six treatments, as follows: (1 no fertilizer input (CK; (2 mineral fertilizers input (NPK; (3 mineral fertilizers + 3,750 kg ha-1 wheat straw (WS/2-NPK; (4 mineral fertilizers + 7,500 kg ha-1 wheat straw (WS-NPK; (5 mineral fertilizers + 15,000 kg ha-1 composted farmyard manure (CNPK; and (6 mineral fertilizers + 30,000 kg ha-1 composted farmyard manure (DNPK. Mineral fertilizer applications combined with organic amendments improved soil physical properties. For the WS/2-NPK, WS-NPK, CNPK and DNPK treatments, the soil bulk density decreased more than 10%, while the air porosity and field water content increased more than 90% and 15%, compared with the values at the start of the experiment in 1982. Our results indicate that about two decades are needed for SOM to reach its saturation point in all treatments. The SOM sequestration rate was related to the fertilization regime. The average SOM sequestration rate in 1982-2005 was 0.27 g kg-1 yr-1 with NPK, 0.45 g kg-1 yr-1 with WS/2-NPK, 0.56 g kg-1 yr-1 with WS-NPK, 0.60 g kg-1 yr-1 with CNPK and 1.02 g kg-1 yr-1 with DNPK. Therefore, both the quantity and the quality of the organic amendment determine the SOM sequestration rate and SOM saturation level.

  14. Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2014-10-01

    Full Text Available The decline in soil fertility in agricultural land is a major problem that causes a decrease in the production of food crops. One of the causes of the decline in soil fertility is declining soil pH that caused the decline in the availability of nutrients in the soil. This study aimed to assess the influence of alternative liming materials derived from maize cob biochar and rice husk charcoal compared to conventional lime to improve soil pH, soil nutrient availability and maize production. The experiment used a factorial complete randomized design which consisting of two factors. The first factor is the type of soil amendment which consists of three levels (calcite lime, rice husk charcoal and cob maize biochar. The second factor is the application rates of the soil amendment consisted of three levels (3, 6 and 9 t/ha and one control treatment (without soil amendment. The results of this study showed that the application of various soil amendment increased soil pH, which the pH increase of the lime application was relatively more stable over time compared to biochar and husk charcoal. The average of the soil pH increased for each soil amendment by 23% (lime, 20% (rice husk charcoal and 23% (biochar as compared with control. The increase in soil pH can increase the availability of soil N, P and K. The greatest influence of soil pH on nutrient availability was shown by the relationship between soil pH and K nutrient availability with R2 = 0.712, while for the N by R2 = 0.462 and for the P by R2 = 0.245. The relationship between the availability of N and maize yield showed a linear equation. While the relationship between the availability of P and K with the maize yield showed a quadratic equation. The highest maize yield was found in the application of biochar and rice husk charcoal with a dose of 6-9 t/ha. The results of this study suggested that biochar and husk charcoal could be used as an alternative liming material in improving acid soil

  15. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  16. Year-round metagenomes reveal remarkably stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization

    Science.gov (United States)

    Insight to what underlies the seasonal dynamics of indigenous soil microbial communities in agricultural soils, especially after major activities such as nitrogen fertilization, remain elusive. More detailed understanding of population dynamics will have important implications for modeling efforts a...

  17. Soil Fertility Management a Century Ago in Farmers of Forty Centuries

    Directory of Open Access Journals (Sweden)

    Joseph R. Heckman

    2013-06-01

    Full Text Available Published just over a century ago, Farmers of Forty Centuries or Permanent Agriculture in China, Korea, and Japan, served to document the viability and productivity of traditional agricultural systems that relied on composting, and complete recycling of all types of natural waste materials, as a means of sustaining soil fertility. This cardinal rule of waste management and organic soil husbandry became known as “the law of return” to organic farming. With regards to nutrient management, organic farming methods uses restorative cultural practices that include the law of return principle which encourages the closure of nutrient cycles. In these respects, organic farming methods are arguably more firmly grounded in ecology and sustainability than the promotions of the chemical fertilizer industry which has largely displaced traditional soil fertility practices. Farmers of Forty Centuries is a classic with valuable lessons and experience to offer towards teaching modern concepts in sustainable agriculture.

  18. Emission factors for organic fertilizer-induced N2O emissions from Japanese agricultural soils

    Science.gov (United States)

    Sano, T.; Nishina, K.; Sudo, S.

    2013-12-01

    1. Introduction Agricultural fields are significant sources of nitrous oxide (N2O), which is one of the important greenhouse gases with a contribution of 7.9% to the anthropogenic global warming (IPCC, 2007). Direct fertilizer-induced N2O emission from agricultural soil is estimated using the emission factor (EF). National greenhouse gas inventory of Japan defines direct EF for N2O associated with the application of chemical and organic fertilizers as the same value (0.62%) in Japanese agricultural fields. However, it is necessary to estimate EF for organic fertilizers separately, because there are some differences in factors controlling N2O emissions (e.g. nutrient content) between chemical and organic fertilizers. The purpose of this study is to estimate N2O emissions and EF for applied organic fertilizers in Japanese agricultural fields. 2. Materials and Methods We conducted the experiments at 10 prefectural agricultural experimental stations in Japan (Yamagata, Fukushima, Niigata, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto, and Kagoshima) to consider the variations of cultivation and environmental conditions among regions. Field measurements had been conducted for 2-2.5 years during August 2010-April 2013. Each site set experimental plots with the applications of composted manure (cattle, swine, and poultry), chemical fertilizer, and non-nitrogen fertilizer as a control. The annual amount of applied nitrogen ranged from 16 g-N m-2 y-1 to 60 g-N m-2 y-1 depending on cropping system and cultivated crops (e.g. cabbage, potato) at each site. N2O fluxes were measured using a closed-chamber method. N2O concentrations of gas samples were measured with gas chromatography. The EF value of each fertilizer was calculated as the N2O emission from fertilizer plots minus the background N2O emission (emission from a control plot), and was expressed as a percentage of the applied nitrogen. The soil NH4+ and NO3-, soil temperature, precipitation, and WFPS (water

  19. Eucalyptus development in degraded soil fertilized with sewage sludge and mineral fertilizer

    Science.gov (United States)

    Rodrigues, R. A. F.; Santos, E. B.; Alves, M. C.; Arruda, O. G.

    2012-04-01

    The aim of this study was to compare the development of eucalyptus in a degraded Oxisol with mineral fertilizer and sewage sludge. The study was conducted in Selviria, Mato Grosso do Sul, Brasil. The culture of eucalyptus was planted in 2003 at 2.0 m x 1.5 m spacing, with application of 60 Mg ha-1 of sewage sludge (dry basis) and mineral fertilizer. After five years (2008) the area received biosolids and mineral fertilizer, and after five months, were evaluated for height and diameter at breast height of Eucalyptus. The experimental design was randomized blocks with four treatments: T1 - control (without addition of inputs), T2 - Mineral fertilization (30 kg ha-1 N, 90 kg ha-1 of P2O5 and 60 kg ha-1 K2O), T3 - Reapplication of 4.64 Mg ha-1 of sewage sludge, dry basis, T4 - Reapplication of 9.28 Mg ha-1 of sewage sludge, dry basis. Before reapplication the biosolids plant height was higher in the eucalyptus with treatment 9.28 Mg ha-1 of sewage sludge (8.03 m) compared to control (5.75 m) and mineral fertilizer (5.91 m) and that treatment 4.64 Mg ha-1 of sewage sludge (6.34 m) did not differ from the previous three. For the diameter at breast height was the highest value for treatment with 9.28 Mg ha-1 (7.78 cm) compared to control (5.23 cm) and 4.64 Mg ha-1 (5.03 cm), and that of mineral fertilizer (5.96 cm) did not differ from all treatments. After reapplication of sludge plant height was higher in the eucalyptus treatment with 9.28 Mg ha-1 of sewage sludge (11.21 m) compared with control (7.51 m), mineral fertilizer (7.77 m) and 4 64 Mg ha-1 (8.07 m), which did not differ. The diameter at breast height had the same behavior before the application of biosolids in the highest value observed being 9.28 Mg ha-1 (8.46 cm) compared with control (5.75 cm) and 4.64 Mg ha-1 (5.03 cm) and that of mineral fertilizer (6.34 cm) did not differ from the others. Reapplication of the dose of 9.28 Mg ha-1 of sewage sludge in degraded Oxisol provided greater height and diameter at

  20. Using organic matter to increase soil fertility in Burundi: potentials and limitations

    Science.gov (United States)

    Kaboneka, Salvator

    2015-04-01

    Agriculture production in Burundi is dominated by small scale farmers (0.5 ha/household) who have only very limited access to mineral inputs. In the past, farmers have relied on fallow practices combined with farm yard manures to maintain and improve soil fertility. However, due to the high population growth and high population density (370/km²), fallow practices are nowadays no longer feasible, animal manures cannot be produced in sufficient quantities to maintain soil productivity and food insecurity has become a quasi permanent reality. Most Burundian soils are characterized by 1:1 types of clay minerals (kaolinite) and are acidic in nature. Such soils are of very low cation exchange capacity (CEC). To compare the effect of % clays and % organic matter (% C), correlations tests have been conducted between the two parameters and the CEC. It was found that in high altitude kaolinitic and acidic soils, CEC was highly correlated to % C and less correlated to % clay, suggesting that organic matter could play an important role in improving fertility and productivity of these soils. Based on these findings, additional studies have been conducted to evaluate the fertilizer and soil amendment values of animal manures (cattle, goat, chicken), and leguminous (Calliandra calothyrsus, Gliricidia sepium, Senna simea, Senna spectabilis) and non-leguminous (Tithonia diversifolia) foliar biomass. It was observed that chicken manure significantly reduces Al3+ levels in acidic soils, while Tithonia diversifolia outperforms in nutrient releases compared to the commonly known leguminous agroforestry shrubs and trees indicated above. Although the above mentioned organic sources can contribute to the soil nutrients supply, the quantities potentially available on farm are generally small. The only solution is to supplement these organic sources with other organic sources (compost, organic household waste), chemical fertilizers and mineral amendments (lime) to achieve Integrated Soil

  1. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.

    Science.gov (United States)

    Wu, Wencheng; Wu, Jiahui; Liu, Xiaowen; Chen, Xianbin; Wu, Yingxin; Yu, Shixiao

    2017-09-01

    Recently, several studies have showed that both organic and inorganic fertilizers are effective in immobilizing heavy metals at low cost, in comparison to other remediation strategies for heavy metal-contaminated farmlands. A pot trial was conducted in this study to examine the effects of inorganic P fertilizer and organic fertilizer, in single application or in combination, on growth of maize, heavy metal availabilities, enzyme activities, and microbial community structure in metal-contaminated soils from an electronic waste recycling region. Results showed that biomass of maize shoot and root from the inorganic P fertilizer treatments were respectively 17.8 and 10.0 folds higher than the un-amended treatments (CK), while the biomass in the organic fertilizer treatments was only comparable to the CK. In addition, there were decreases of 85.0% in Cd, 74.3% in Pb, 66.3% in Cu, and 91.9% in Zn concentrations in the roots of maize grown in inorganic P fertilizer amended soil. Consistently, urease and catalase activities in the inorganic P fertilizer amended soil were 3.3 and 2.0 times higher than the CK, whereas no enhancement was observed in the organic fertilizer amended soil. Moreover, microbial community structure was improved by the application of inorganic P fertilizer, but not by organic fertilizer; the beneficial microbial groups such as Kaistobacter and Koribacter were most frequently detected in the inorganic P fertilizer amended soil. The negligible effect from the organic fertilizer might be ascribed to the decreased pH value in soils. The results suggest that the application of inorganic P fertilizer (or in combination with organic fertilizer) might be a promising strategy for the remediation of heavy metals contaminated soils in electronic waste recycling region. Copyright © 2017. Published by Elsevier Inc.

  2. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    Science.gov (United States)

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  3. The Changes of Nutrient Content in Soil in Long-term Fertilizer Experiments

    OpenAIRE

    Vigovskis, Janis; Jermuss, Aivars; Svarta, Agrita; Sarkanbarde, Daina

    2015-01-01

    The paper describes the influence of long term (more than 30 years) fertilizer application to the changes of soil properties and identifies the influence of different fertilization rates to phosphorus, potassium, calcium and magnesium accumulation in soil.The research has been carried out at the Research Institute of Agriculture of Latvian University of Agriculture in the long-term subsurface drainage field established in Skrīveri in 1981 under the guidance of professor J. Štikāns.  The long-...

  4. Influence of Long-Term Fertilization on Spore Density and Colonization of Arbuscular Mycorrhizal Fungi in a Brown Soil

    Science.gov (United States)

    Li, Dongdong; Luo, Peiyu; Yang, Jinfeng

    2017-12-01

    This study aims to explore changes of long-term fertilization on spore density and colonization of AMF (Arbuscular mycorrhizal fungi) under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm,20-40cm,40-60cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen andphosphate fertilizer).Spores were isolated from soils by wet sieving and sucrose density gradient centrifugation; mycorrhizal colonization levels were determined by the gridline intersect. The spore density was highest in the topsoils (0-20 cm), and was decreased with increasing of soil depth in each treatment. The spores density of M2N1P treatment was significantly higher than that of other treatments in each soil layer. Application of inorganic fertilizer (especially inorganic with organic fertilizer) can greatly improve the level of colonization. Our results suggested that long-term fertilization significantly affects spore density and colonization of AMF, however, spore density is not related to colonization rate.

  5. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil.

    Science.gov (United States)

    Ding, Weixin; Luo, Jiafa; Li, Jie; Yu, Hongyan; Fan, Jianling; Liu, Deyan

    2013-11-01

    The influence of inorganic fertilizer and compost on background nitrous oxide (N2O) and fertilizer-induced N2O emissions were examined over a maize-wheat rotation year from June 2008 to May 2009 in a fluvo-aquic soil in Henan Province of China where a field experiment had been established in 1989 to evaluate the long-term effects of manure and fertilizer on soil organic status. The study involved five treatments: compost (OM), fertilizer NPK (nitrogen-phosphorus-potassium, NPK), half compost N plus half fertilizer N (HOM), fertilizer NK (NK), and control without any fertilizer (CK). The natural logarithms of the background N2O fluxes were significantly (Pcompost alone and inorganic fertilizer not only significantly (Pcompost application, then partially increasing N supply to crops instead of adding inorganic N fertilizer, may be an effective measure to mitigate N2O emissions from arable soils in the North China plain. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Pig slurry and mineral fertilization strategies' effects on soil quality: macroaggregate stability and organic matter fractions.

    Science.gov (United States)

    Yagüe, María R; Bosch-Serra, Àngela D; Antúnez, Montserrat; Boixadera, Jaume

    2012-11-01

    Applying pig slurry to the land as fertilizer at appropriate agronomic rates is important to close nutrient cycles and optimize the value of organic matter. However a long-term discussion has taken place about its effects on soil quality. In the north-east of Spain, eight fertilization strategies were evaluated on the soil quality parameters' aggregate stability, soil organic matter (SOM) physical fractions and soil microbial biomass (SMB). Six strategies used different pig slurries (PS) which provided organic matter from 1.7 to 2.6 t ha(-1)yr(-1), the rest (mineral N fertilization and a control) did not. Pig slurries were applied at sowing and/or at cereal tillering, as sidedressing. Field experiments were maintained for an 8-year period, in a silty loam soil devoted to a rainfed winter cereal. Soil samples were taken once, before the last sidedressing in 2011. Aggregate stability was quantified using the standard water-stable aggregate method but including a modification which meant that pre-wetting was avoided (WSA(MOD)). When using the WSA(MOD) method, we found a tendency for the percentage of water-stable aggregates to increase due to PS application (differences of up to 74% in the increment) and it was more marked the nearer they were measured to the application time (3 months vs. 12 months). The strategies which include PS show a positive effect on the SOM amount, mainly in the 0.05-0.2 mm light fraction, which increased by up to 34% with every 10 t ha(-1) organic C applied, and on SMB (up to 53% increment). There is a positive and significant linear relationship (p aggregates soil content (%, WSA(MOD)). Thus, the introduction of PS in fertilization strategies improves soil quality parameters. However, the soil quality benefits need to be balanced with any other potential environmental impact. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Mineralization and efficiency index of nitrogen in cattle manure fertilizers on the soil

    Directory of Open Access Journals (Sweden)

    Daniel Pazzini Eckhardt

    2016-03-01

    Full Text Available ABSTRACT: This research aimed to evaluate the mineralization of nitrogen (N and to define the efficiency index (EI of N after the addition of organic fertilizers based on cattle manure on the soil under laboratory conditions. A completely randomized statistical design with four replicates was used. The treatments were set as follows: T1 Soil (control; T2 Soil + vermicompost of cattle manure (CMV; T3 Soil + cattle manure and straw compost (CMS; and T4 Soil + cattle manure (CM. Experimental units were constituted by acrylic flasks with 5 x 5cm (height x diameter. Each flask was added with 135g of wet soil and 2.20, 2.45 and 2.27g of CMV, CMS and CM, respectively. Treatments were incubated at 25°C and the amount of mineral N from the soil (N-NH4+ and N-NO2- + N-NO3- was determined at the beginning of the experiment and after 7, 14, 28, 56 and 112 days of incubation. The highest concentration of N-NO2- + N-NO3- in the soil were observed within the CMS treatment. The EI of N was of 27, 23 and 22% for CMS, CMV and CM, respectively. The mineralization of N from organic fertilizers based on cattle manure occurs on its vast majority within the first 28 days after its addition to the soil. The EI of N from the organic fertilizers based of cattle manure was higher for CMS>CMV>CM and achieved only 80% of what expected for organic fertilizers derived from cattle manure.

  8. Effect of fertilization on available cadmium level in soil and lettuce

    Directory of Open Access Journals (Sweden)

    Bošković-Rakočević Ljiljana

    2014-01-01

    Full Text Available The objective of this study was to evaluate the effect of organic fertilizer (cattle manure and monoammonium phosphate (Russian MAP-R and Serbian MAP-S on available Cd levels in soil and Cd uptake by lettuce plants grown on vertisol and fluvisol. Fertilization treatments were as follows: control - without fertilization, mature cattle manure (20 g kg-1 soil, MAP-R (0.1 g kg-1 soil, MAP-S (0.1 g kg-1 soil. Prior to the experiment, available Cd level was higher in vertisol (0.06 mg kg-1 than in fluvisol (0.04 mg kg-1. The manure application had no significant effect on increased DTPAextractable Cd content in both soils, as compared to control. Available Cd level was decreased by MAP-R (vertisol 0.0494 mg kg-1, fluvisol 0.0227 mg kg-1 and increased by MAP-S application (vertisol 0.0577 mg kg-1, fluvisol 0.0288 mg kg-1 in both soil types as compared to control. The use of manure and MAP increased Cd concentration in lettuce, in all treatments except in manure treatment on vertisol. Lettuce head weight was highest in manure treatment on both soil types.

  9. Agroforestry and the Improvement of Soil Fertility: A View from Amazonia

    Directory of Open Access Journals (Sweden)

    Rachel C. Pinho

    2012-01-01

    Full Text Available This paper discusses the effects of trees on soil fertility, with a focus on agricultural systems in Amazonia. Relevant literature concerning the effects of trees on soil physical and chemical properties in tropical, subtropical, and temperate regions is reviewed, covering both natural ecosystems and agroecosystems. Soil carbon, in the form of organic matter, is considered as an indicator of biological activity as well as in relation to policy issues such as carbon sequestration and climate change. In the case of tropical soils and Amazonia, information on the effects of trees on soils is discussed in the context of traditional agriculture systems, as well as in regard to the development of more sustainable agricultural alternatives for the region. Lastly, attention is given to a case study in the savanna region of Roraima, northern Brazil, where a chronosequence of indigenous homegarden agroforestry systems showed clear effects of management practices involving trees on soil fertility. The use of diverse tree species and other practices employed in agroforestry systems can represent alternative forms of increasing soil fertility and maintaining agricultural production, with important practical applications for the sustainability of tropical agriculture.

  10. Yield And Rate Of Returns From Soil Fertility Management Practices ...

    African Journals Online (AJOL)

    Mean number of bunches per palm and number of nuts produced per hectare were not significantly increased by fertilizer treatment. However, there were increases due to crop combination, with combinations that include cowpea giving higher yields(2875 nuts) than those without (2118 nuts). Food crop yields were ...

  11. HOW DOES BIOCHAR AND BIOCHAR WITH NITROGEN FERTILIZATION INFLUENCE SOIL REACTION?

    Directory of Open Access Journals (Sweden)

    Vladimír Šimanský

    2017-09-01

    Full Text Available Biochar usually has a neutralizing effect therefore it is recommended for application to acid soils due to its potential to increase a soil pH. The aims of this study were (1. to quantify the role of different rates of biochar and biochar in combination with N fertilization on change of soil pH, and (2. to evaluate the dynamic changes of soil pH in relation with doses of biochar and biochar with N fertilization. A field experiment was conducted with different biochar application rates: B0 control (0 t ha-1, B10 (10 t ha-1 and B20 (20 t ha-1 and 0, 40 and 80 kg N ha–1 of nitrogen fertilizer (N0, N40, N80 on silt loam Haplic Luvisol at the locality of Dolná Malanta (Slovakia in 2014. Their effects were investigated after vegetation season of spring barley and spring wheat (once a month: from April to July in 2014 and 2016, respectively. Experimental results indicate that the soil pHH2O in B0N0, B10N0, B20N0, B10N40, B20N40, B10N80 and B20N80 were 6.23, 6.45, 6.60, 6.77, 6.48, 6.36 and 6.60, respectively. The results of LSD test showed statistically significant differences between soil pH in control treatment and treatments with biochar and biochar with N fertilization. The most significant effect on increase of soil pH was observed in B10N40. During whole period, after application of biochar and biochar with N fertilization the values of pHKCl were gradually decreased in all treatments.

  12. Soil nematode responses to fertilization with ammonium nitrate after six years of unfertilized apple orchard

    Directory of Open Access Journals (Sweden)

    Claudia V. Azpilicueta

    2014-03-01

    Full Text Available A nematode community was used as a bioindicator of changes in agroecosystems caused by fertilization. The effect of applying nitrogen (N fertilizer on a soil nematode community structure was studied in a soil which had not been fertilized for six years in the Rio Negro Valley, Argentina. Treatments were: i 100 kg N ha-1 (N100; ii 200 kg N ha-1 (N200; in each case 50% of the dosage was applied at the time of petal fall and 50% at fruit harvest in 2004/2005, 2005/2006, 2006/2007 growing seasons; and iii control with no fertilizer (N0. Soil samples were collected in the 0 to 30 cm soil layer in October, November, April and July in each growing season. The number of bacterivores increased in N200 compared to N0. Cephalobidae were present in greater numbers in N200 than in N100 and N0. Predator abundance was lower under N200, after the first N application in each growing season. The ratio of fungivores to bacterivores (F/B was 0.21, 0.3 and 0.41 in N200, N100 and N0, respectively. N200 resulted in a community with a lower maturity index (MI than N0. Structure index (SI was lower in N200 than N100 and N0. The enrichment index (EI was less sensitive at detecting fertilizer effects. In November and April, soil nitrate concentrations were higher in N200 than in N100 and N0. Soil nitrate concentration was positively correlated with EI and negatively with MI, SI and F/B. N200 affected the trophic structure of the nematode community consistent with a less stable soil system.

  13. Denitrification in the top soil of managed grasslands in The Netherlands in relation to soil type and fertilizer level

    NARCIS (Netherlands)

    Klein, M.C.A.; Van Logtestijn, R. S P

    During the growing season of 1989 and 1990 denitrification measurements were carried out in grazed perennial rye-grass swards on sand, loam and peat soils, each receiving two rates of nitrogen fertilizer. Denitrification was measured monthly, using a coring system with acetylene inhibition.

  14. Impact of Long-Term Fertilization Practice on Soil Structure Evolution

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Vogel, Hans-Jörg

    2014-01-01

    The study characterized soil structure development and evolution in six plots that were amended with varying amounts of animal manure (AM) and NPK fertilizer over a period of 106 years in a long-term fertilization experiment in Bad Lauchstädt, Germany. Two intact soil cores (10-cm diameter and 8-cm...... of AM and NPK had a major impact on soil organic carbon content which increased from 0.015 kg kg− 1 (unfertilized plot) to 0.024 kg kg− 1 (well fertilized plot, 30 T ha− 1 2y− 1 AM with NPK). Total porosity linearly followed the organic carbon gradient, increasing from 0.36 to 0.43 m3 m− 3. The water...... holding capacity of the soil was considerably increased with the increase of AM and NPK applications. Gas diffusivity and air permeability measurements clearly indicated that the level of soil aeration improved with increasing AM and NPK fertilizer amount. The three-dimensional X-ray CT visualizations...

  15. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    Science.gov (United States)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  16. Ipomea asarifolia (Desr), A Potential Cover Crop for Soil Fertility ...

    African Journals Online (AJOL)

    *1A.A. Abdullahi, 2S.A. Ibrahim, 1S. Yusuf, 1M. Audu, 3N. Abdu, 1S.S. Noma and 4H. Shuaibu. 1Department of Soil Science and Agricultural Engineering, Usmanu Danfodiyo University, Sokoto, Nigeria. 2Crop Production Programme, Abubakar Tafawa Balewa University, Bauchi, Nigeria. 3Soil Sceince Department, Ahmadu ...

  17. Soils, Crops and Fertilizer Use. A What, How and Why Guide. Appropriate Technologies for Development. Reprint R-8.

    Science.gov (United States)

    Leonard, David

    This manual, prepared for use by Peace Corps volunteers in developing countries, has been designed as an on-the-job reference for soil management and fertilizer use at the small farmer level. It provides information on yield-boosting techniques, especially in the areas of soil conservation, organic and chemical fertilizer use, and the safe and…

  18. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  19. EFFECT OF FLUCTUATION OF WETTING AND DRYING PHENOMENA ON SOIL FERTILITY STATUS UNDER RICE CULTIVATION IN WETLAND SOIL IN RWANDA

    Directory of Open Access Journals (Sweden)

    Hamudu Rukangantambara

    2014-01-01

    Full Text Available Since 1980, wetland s in Rwanda have been considered as important areas for agriculture intensification through improving food security and incomes to the farmers. However, changes in the soil nutrient status due to repeatedly wetting and drying phenomena may considerably affect soil fertility status thus leading to low crop productivity of the wetlands. This has consequently created fear to the wetland users especially the local farmers, extension workers and agronomists. The comparative study was conducted to assess the effect of drained and irrigated phenomena at Mamba, Rwasave and Rugeramigozi marshlands on soil fertility change under rice growing. 24 samples were taken with 12 samples under drained and 12 under irrigated areas. The samples were collected randomly from top soil ( 0- 20 cm. The following parameters were quantified; soil pH( H 2O in soil water suspension with ratio 1:2.5; Al exchangeable( 1N Kcl, organic carbon( walkely and black method in Sumner method modified (1984, Total nitrogen kjeldahl (TNK in Bremner modified method, available phosphorus ( bray 1. Bases exchangeable with 1 N ammonium acetate following AAS and CEC and available Fe, Zn, Cu and Mn (DTDA diethylenetriaminepentaacetic acid. Data analyses were processed with GEN STAT version 3. The results showed that the fluctuation of wet and dry water have significantly affected soil fertility status at p= 0,05. The phosphorus and potassium are in the low levels of deficiency 2.32 ppm and 47.72 ppm in irrigated area while crop requirement nutrients are 20 ppm and 200 ppm respectively. And Al is in toxic level conditions, 27.5% in drained area while rice tolerance is 20%. Fe was 641.51 ppm in irrigated area while requirement narrowed to 300 ppm. As conclusion, the soil fertility is low and toxic which constitutes a limitation. The wetland soil in Rwanda should offer opportunities for paddy growing ( rice, etc, if soil fertility factors would be amended by lime for its

  20. The self-reinforcing feedback between low soil fertility and chronic poverty

    Science.gov (United States)

    Barrett, Christopher B.; Bevis, Leah E. M.

    2015-12-01

    Most of the world's extreme poor, surviving on US$1.25 or less per day, live in rural areas and farm for a living. Many suffer chronic poverty that lasts for years or generations, rather than the transitory poverty that dominates developed, urban economies. Such chronic, structural poverty arises when an individual's productive assets -- such as their ability to work or their soils -- and the technologies and markets that transform their assets into food and income are insufficient to attain satisfactory living standards. Research reveals strong links between economic status and soil quality, and these can be self-reinforcing. For example, poor soil constrains agricultural production and household capital, and low household capital constrains investments in improving soils. Price, availability and access to credit can limit farmers' applications of nutrients, which are often the primary constraint on agricultural productivity. Soil micronutrient deficiencies can lead to dietary mineral deficiencies and negative health outcomes that further constrain productivity and household asset accumulation. Soils may also be important for smallholder resilience to stressors and shocks. For example, high-quality soil can reduce vulnerability to drought, and insurance against risk may promote investment in soils. Interventions such as fertilizer subsidies, micronutrient-fortified fertilizer and improved access to information, insurance and credit may all help break the soil-poverty cycle.

  1. Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms

    NARCIS (Netherlands)

    Zingore, S.; Delve, R.J.; Nyamangara, J.; Giller, K.E.

    2008-01-01

    Manure is a key nutrient resource on smallholder farms in the tropics, especially on poorly buffered sandy soils, due to its multiple benefits for soil fertility. Farmers preferentially apply manure to fields closest to homesteads (homefields), which are more fertile than fields further away

  2. Analyzing the mobility in granular forms of P fertilizer in Brazilians soils under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Robson C. de; Oliveira, Davi Ferreira de; Oliveira, Luis Fernando de; Anjos, Marcelino Jose dos, E-mail: prof.robinho@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica Armando Dias Tavares; Teixeira, Paulo Cesar; Benites, Vinicius Melo, E-mail: paulo.c.teixeira@embrapa.br [Embrapa Solos, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Phosphorus is an essential nutrient for plant growth. Million of tones of P are applied to the soils annually. However, only a small fraction of the P applied with fertilizers is taken up by crops in the year of application, and the effectiveness of any residual P fertilizer declines with time. To improve our understanding of the mechanisms underlying this response to P in the field, we have studied the mobility of P from 3 different fertilizes: monoammonium phosphate (MAP), polymer coated monoammonium phosphate (MAPp) and Organomineral phosphate (OMP) applied on high weathered soil samples in a Petri dish experiment. Total Reflection X-Ray Fluorescence (TXRF) was used to determine the P diffusive flux at different distances (0 - 7.5, 7.5 – 13.5, 13.5 – 25.5 and 25.5 – 43 mm) from granular fertilizer. TXRF analyses were performed at the X-Ray Fluorescence Beamline D09B at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, Sao Paulo, using a polychromatic beam with maximum energy of 20 keV for the excitation and an Ultra-LEGe detector with resolution of 148 eV at 5.9 keV. Besides that, the detections were performed in a high vacuum chamber (2.5 x 10-5 mbar) to avoid air absorption. After a period of five weeks, the total P concentration increased in the soil sampled 7.5 to 13.5 mm from the fertilizer showing a diffusive flux of P. About 20% (considering MAP and MAPp) of the total P applied diffused out of the central soil ring. Different sources showed differences in diffusive flux of P. Soil pH also influenced diffusive flux of P showing higher flux on lower pH soils. (author)

  3. Effect of organic fertilizer and its residual on cowpea and soybean in acid soils

    Directory of Open Access Journals (Sweden)

    Henny Kuntyastuty

    2017-10-01

    Full Text Available The expansion of planting areas on acid soils is one of the strategies to achieve Indonesian self-sufficiency program on food. Acidic soil has low pH that causes contents of Al, Fe, and Mn are high. In addition, acidic soil also only has low microbial population. These conditions make soybean growth is not optimal. This research consisted of two phases i.e., the first and second planting. The first planting was aimed to study the effectiveness of fertilizer treatment, with three replications, using cowpea commodity. The second planting was done without additional fertilizer that consisted of three replicates (continued from the first planting using soybean. This research that was carried out at Iletri’s greenhouse Malang in 2014 was arranged in a randomized block design consisting of eight treatments, namely: (a control/without fertilizer; (B 300 kg/ha (15% N, 15% P2O5, 15% K2O, 10% S; (C 1500 kg/ha cow manure; (D 3000 kg/ha cow manure; (E 5000 kg/ha cow manure; (F 1500 kg/ha fermented chicken + cow manures; (G 3000 kg/ha fermented chicken + cow manures; and (H 5000 kg/ha fermented chicken + cow manures. The results showed that organic fertilizer (cow manure 5000 kg/ha had higher yields both in the first planting and second planting compared to inorganic fertilizer 300 kg/ha (15% N, 15% P2O5, 15% K2O, 10% S

  4. Connections Between Soil Fertility Declines, Land Use, Ethnicity, Education, and Wealth In Uganda

    Science.gov (United States)

    Tiemann, L. K.; Hartter, J.; Grandy, S.

    2016-12-01

    Food security issues are particularly acute in Uganda, where the world's 8th highest population growth rate will lead to cultivation of all land available for agriculture by 2022. Agricultural intensification in Uganda, which includes continuous cropping, mono-cropping and expansion of agriculture into marginal areas, has put unprecedented pressure on soils. In western Uganda, we surveyed 474 households, collecting demographic data, information on land use practices and perceptions of risk to crop yields and food security. We also sampled soils from maize fields associated with each surveyed household and measured total organic C and nutrients such as nitrogen (N) and phosphorus (P). Using these data, we sought to determine how risk perceptions, ethnicity, household wealth and education combine to determine land use decisions and ultimately, declines in soil organic matter and soil nutrients. We conducted our study within 5 km of an un-cultivated native tropical forest reserve, Kibale National Park (KNP), which serves as a reference point for potential soil fertility. Of 470 respondents, only 29 answered `no' when asked if they noticed year to year declines in crop yields. Across all maize fields we found soil C has been reduced by 30% and soil N by 45% relative to KNP soils and declines were more pronounced when survey respondents were Bakiga rather than Batooro. Households that indicated they were "very much" dependent upon profits from maize had a 31% increase in soil C:N while those indicating no dependence on maize profits had a significantly lower increase in soil C:N of 21%. Ethnicity and education influenced land use decisions; the Batooro and people with a lower level of education were more likely to burn their fields or crop residues. Additionally, the Bakiga were more likely to use rock P in their fields and in consequence had 108% while Batooro soils had 65% of the P found in KNP soils. Across all respondents, the top two ranked risks to crop yields and

  5. Spectroscopic quantification of soil phosphorus forms by {sup 31}P-NMR after nine years of organic or mineral fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Gatiboni, Luciano Colpo, E-mail: gatiboni@cav.udesc.br [Universidade Estadual de Santa Catarina (UDESC), Lages, SC (Brazil); Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz, E-mail: danilo.rheinheimer@pq.cnpq.br, E-mail: joao.kaminski@gmail.com, E-mail: acflores@quimica.ufsm.br, E-mail: masl32003@gmail.com, E-mail: girottosolos@gmail.com, E-mail: andrecopetti@yahoo.com.br [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Pandolfo, Carla Maria; Veiga, Milton, E-mail: pandolfo@epagri.sc.gov.br, E-mail: milveiga@epagri.sc.gov.br [Empresa de Pesquisa Agropecuaria e Extensao Rural de Santa Catarina (EPAGRI), Campos Novos, SC (Brazil)

    2013-05-15

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha{sup -1} year{sup -1} of moist poultry litter; 4) 60 m{sup 3} ha{sup -1} year{sup -1} of liquid cattle manure and 5) 40 m{sup 3} ha{sup -1} year{sup -1} of liquid swine manure. The {sup 31}P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  6. Spectroscopic quantification of soil phosphorus forms by 31p-nmr after nine years of organic or mineral fertilization

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2013-06-01

    Full Text Available Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1 control without fertilizer; 2 mineral fertilizer at recommended rates for local conditions; 3 5 t ha-1 year-1 of moist poultry litter; 4 60 m³ ha-1 year-1 of liquid cattle manure and 5 40 m³ ha-1 year-1 of liquid swine manure. The 31P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization.

  7. Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation

    Science.gov (United States)

    Vanlauwe, B.; Descheemaeker, K.; Giller, K. E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S.

    2014-12-01

    Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated Soil Fertility Management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognised within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE and targeted application of limited agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micro-nutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g., the application of SMNs where these are limiting), for others, more complex interactions with fertilizer AE can be identified (e.g., water harvesting under varying rainfall conditions). At farm scale

  8. Effects of silicate application on soil fertility and wheat yield

    Directory of Open Access Journals (Sweden)

    Marcos Vinícius Mansano Sarto

    2015-12-01

    Full Text Available An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1, Rhodic Hapludox (Ox2 and Arenic Hapludult (Ult] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate, with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (Triticum aestivum L. growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+ and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat. 

  9. Changes of soil functional diversity induced by the use of different fertilizers

    Science.gov (United States)

    Onica, Bogdan-Mihai; Sandor, Valentina; Brad, Traian; Vidican, Roxana; Sandor, Mignon

    2017-04-01

    Agricultural practices like fertilization can change the structure and function of soil microbial community. Monitoring and assessing the soil microbiota and its dynamic related to different factors can be a powerful tool for understanding basic and applied ecological contexts. An important tool to assess changes of community level physiological profile is MicroResp, a colorimetric method that uses a 96-well microtitre plate, 16 carbon sources and a detection plate to quantify the respiratory activity of the soil microbial community. The main objective of this work is to assess the changes of the community level physiological profile when different fertilizers were used. In order to achieve this goal, a microcosm experiment was designed and performed under controlled temperature and humidity, and the soil samples were analyzed using the MicroResp technique. The experiment was designed with two types of soil (chernozem and luvisol), four types of fertilizers (mineral fertilizer, mustard as green manure, slurry manure and cattle manure) with three replicates for each and a control. Soil samples analyzed with MicroResp technique were prepared and loaded into the deep-well plates and incubated for six hours at 25 oC with the 15 carbon sources which were used at the concentration of 30 mg g-1 soil H2O, one in each well and water as control. The detection plates were read with a spectrophotometer before and after six hours incubation at a wavelength of 570 nm. Highest respiratory activity between the two types of soil used in experiment was given by the luvisol compared with chernozem. Regarding to the differences between the types of fertilizers, we observed that the highest microbial metabolic activity was given by green manure followed in order by cattle manure, slurry manure, control and mineral fertilizer with the lowest respiratory values. This pattern was same for both soils. However, highest respiratory activity was given by α-ketoglutaric acid, malic acid

  10. Effect of Se-enriched Organic Fertilizers on Selenium Accumulation in Corn and Soil

    Directory of Open Access Journals (Sweden)

    LI Sheng-nan

    2015-12-01

    Full Text Available The effect of two Se-enriched organic fertilizers (cow dung and rice straw biochar on selenium accumulation of corn growing in selenium deficient soil was studied with pot experiment. The results showed that corn accumulated more selenium and the selenium was much easier to convert from root to shoot in the corn plant with the application of Se-enriched cow dung than Se-enriched rice straw biochar. With the application of more organic fertilizer such as 25 t·hm-2 Se-enriched cow dung or 40 t·hm-2 Se-enriched rice straw biochar, the accumulation of selenium and growth status of corn were getting better than the other treatments. At the same time, as the application amount of Se-enriched organic fertilizers (cow dung and rice straw biochar increased, the total selenium content in the soil also increased, which positively correlated with each other.

  11. Moving methodologies : learning about integrated soil fertility management in sub-Saharan Africa

    NARCIS (Netherlands)

    Defoer, T.

    2000-01-01

    Soil fertility management in sub-Saharan Africa is complex, diverse and dynamic. Farmers' investments are determined by a wide variety of factors, including bio-physical characteristics of the environment, access to resources and the institutional, and socio-economic context of farming and

  12. Exploring the Nutrient Release Potential of Organic Materials as Integrated Soil Fertility Management Components Using SAFERNAC

    NARCIS (Netherlands)

    Maro, G.P.; Mrema, J.P.; Msanya, B.M.; Janssen, B.H.; Teri, J.M.

    2014-01-01

    The aim of this study was to establish the nutrient release potential of different organic materials and assess their role in integrated soil fertility management for coffee using the new coffee yield model SAFERNAC. It involved an incubation experiment conducted at TaCRI Lyamungu Screenhouse for

  13. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum

    Science.gov (United States)

    Cover crop and N fertilization may maintain soil C and N levels under sweet sorghum (Sorghum bicolor [L.] Moench) biomass harvested for bioenergy production. The effect of cover crops (hairy vetch [Vicia villosa Roth], rye [Secaele cereale L.], hairy vetch/rye mixture, and the control [no cover crop...

  14. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    NARCIS (Netherlands)

    Hodgson, J.G.; Montserrat-Marti, G.; Charles, M.; Jones, G.; Wilson, P.; Shipley, B.; Sharafi, M.; Cerabolini, B.E.L.; Cornelissen, J.H.C.; Band, S.R.; Bogard, A.; Castro-Diez, P.; Guerrere-Campo, J.; Palmer, C.; Peréz-Rontomé, M.C.; Carter, G.; Hynd, A.; Romo-Diez, A.; De Torres Espuny, L.; Royo Pla, F.

    2011-01-01

    Background and Aims: Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and

  15. Developing a Coffee Yield Prediction and Integrated Soil Fertility Management Recommendation Model for Northern Tanzania

    NARCIS (Netherlands)

    Maro, G.P.; Mrema, J.P.; Msanya, B.M.; Janssen, B.H.; Teri, J.M.

    2014-01-01

    The aim of this study was to develop a simple and quantitative system for coffee yield estimation and nutrient input advice, so as to address the problem of declining annual coffee production in Tanzania (particularly in its Northern coffee zone), which is related to declining soil fertility. The

  16. Soil fertility and upland rice yield after biochar application in the Cerrado

    NARCIS (Netherlands)

    Petter, F.A.; Madari, B.E.; Silva, da M.A.S.; Carneiro, M.A.C.; Melo Carvalho, de M.T.; Marimon, B.; Pacheco, L.P.

    2012-01-01

    The objective of this work was to evaluate the effect of biochar made from Eucalyptus on soil fertility, and on the yield and development of upland rice. The experiment was performed during two years in a randomized block design with four replicates, in a sandy loam Dystric Plinthosol. Four doses of

  17. Soil fertility and upland rice yield after biochar application in the Cerrado

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    2012-05-01

    Full Text Available The objective of this work was to evaluate the effect of biochar made from Eucalyptus on soil fertility, and on the yield and development of upland rice. The experiment was performed during two years in a randomized block design with four replicates, in a sandy loam Dystric Plinthosol. Four doses of NPK 05-25-15, annually distributed in stripes (0, 100, 200 and 300 kg ha-1, and four doses of biochar (0, 8, 16 and 32 Mg ha-1, applied once in the first year - alone or with NPK - were evaluated. In the first year, biochar positively affected soil fertility [total organic carbon (TOC, Ca, P, Al, H+Al, and pH], at 0-10 cm soil depth, and it was the only factor with significant effect on yield. In the second year, the effect of biochar diminished or was overcome by the fertilizer. TOC moved down in the soil profile to the 0-20 cm depth, influencing K availability in this layer. In the second year, there was a significant interaction between biochar and the fertilizer on plant growth and biomass dry matter accumulation.

  18. Effect of fertilization on soil phosphorus in a long-term field experiment in southern Finland

    Directory of Open Access Journals (Sweden)

    A. JAAKKOLA

    2008-12-01

    Full Text Available A field experiment was established in 1978 on a loam soil (pH in CaCl 2 7.1 to monitor gradual changes in the soil P status as response to different P fertilization regimes. For 18 years, cereals or grass were cultivated without P fertilization (P 0 or with annual P application of 35 kg ha -1 (P 1 or 70- 79 kg P ha -1 and 71-83 kg K ha -1 (P 2 K. The effects of the treatments on the crop yield varied yearly. The Chang and Jackson fractionation analysis revealed that fertilizer P not taken up by the plant crops was mostly in the NH 4 F extract and to a lesser extent in the NaOH extract. The NH 4 F-extractable P proved also to be the main P source for plants. However, the changes in the reserves of inorganic and organic P did not agree very well with the calculated P balance in soil (applied P minus plant P uptake. This disproportion was partly explained by the soil movement from plots to the neighbouring ones during the experiment. Phosphorus extractable in acid ammonium acetate or water decreased gradually when no P was applied and increased with increasing P accumulation. The changes in the inorganic P reserves due to different P fertilization history were reflected a little more sensitively in the water extraction test than in the acid acetate test.;

  19. Effects of compost on soil fertility in irrigated rice growing at Kou ...

    African Journals Online (AJOL)

    Effects of compost on soil fertility in irrigated rice growing at Kou Valley (Burkina Faso) : Amélioration de la fertilité du sol par utilisation du compost en riziculture irriguée dans la Vallée du Kou au Burkina Faso.

  20. Rural people's response to soil fertility decline : the Adja case (Benin)

    NARCIS (Netherlands)

    Brouwers, J.H.A.M.

    1993-01-01

    This study examines rural people's knowledge in changing conditions such as decreasing soil fertility and increasing population. It explores how farmers, who depend on rainfed agriculture and are confronted with an ever increasing population, react. The study presents the case of an ethnic

  1. Impact of Soil Fertility Management Practices on a Major Insect Pest ...

    African Journals Online (AJOL)

    The common bean is an important food and cash crop in Eastern, Central and Southern Africa. It provides food for more than 100 million people and is a critical source of income for rural households. Common bean yields, however, have declined in the last ten years. This decline is the result of poor soil fertility and nutrient ...

  2. Influence of soil type and fertilizer rate on the yield and yield stability ...

    African Journals Online (AJOL)

    In a study to determine the effects of soil type and fertilizer application on maize performance and yiel d stability under rain-fed conditions, split-split-plot design was carried out using three selected locations (Nsukka, Awgu and Abakaliki) as the main plots, two cultivars of maize (Oba Super . 2 and local variety) as the ...

  3. Revisiting land reform: land rights, access, and soil fertility management on the Adja Plateau in Benin

    NARCIS (Netherlands)

    Yemadje, H.R.M.; Crane, T.; Mongbo, R.L.; Saidou, A.; Azontond, H.A.; Kossou, D.K.; Kuyper, T.W.

    2014-01-01

    In the oil palm-based cropping system on the Adja Plateau, land titling plays an important role. Landowners argue that oil palm fallow (dekan) restores soil fertility, but in the long-term it is also an instrument in the struggle for control over land. A land-titling programme in the study area

  4. Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation

    NARCIS (Netherlands)

    Vanlauwe, B.; Descheemaeker, K.K.E.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S.

    2014-01-01

    Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated Soil Fertility Management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus

  5. Magnetic mapping of distribution of wood ash used for fertilization of forest soil

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Remeš, J.; Kapička, Aleš; Podrázský, V.; Grison, Hana; Borůvka, L.

    2018-01-01

    Roč. 626, June (2018), s. 228-234 ISSN 0048-9697 Institutional support: RVO:67985530 Keywords : forest soil * wood ash * fertilizing * tree plants * iron oxides * rock magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.900, year: 2016

  6. Tillage Frequency, Soil Compaction and N-Fertilizer Rate Effects on ...

    African Journals Online (AJOL)

    In Ethiopia, teff is grown for its grain and straw. There is a dearth of information with respect to plowing, compaction and fertilization on vertisols in central zone of Tigray. Therefore, this study was conducted to determine the effects of plowing frequency, soil compaction and N on teff yields. The experimental design was a ...

  7. Tillage Frequency, Soil Compaction and N-Fertilizer Rate Effects on ...

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. In Ethiopia, teff is grown for its grain and straw. There is a dearth of information with respect to plowing, compaction and fertilization on vertisols in central zone of Tigray. Therefore, this study was conducted to determine the effects of plowing frequency, soil compaction and N on teff yields. The experimental ...

  8. Soil fertility management in pasture small-plot trials: potential pitfalls ...

    African Journals Online (AJOL)

    Small-plot cutting trials are of particular importance in research relating to intensive pastures. Undetected changes in soil fertility during the course of experimentation may detract from the validity of results in trials of this kind. Information from field trials conducted in KwaZulu-Natal during the past two decades are used to ...

  9. Pasture soils contaminated with fertilizer-derived cadmium and fluorine: livestock effects.

    Science.gov (United States)

    Loganathan, Paripurnanda; Hedley, Mike J; Grace, Neville D

    2008-01-01

    Fertilizers are indispensable for ensuring sustainability of agricultural production, thereby achieving food and fiber security. Nitrogen, sulfur, and potassium fertilizers are relatively free of impurities, but phosphorus (P) fertilizers, the main fertilizer input for the economic production of legume-based pastures, contain several contaminants, of which F and Cd are considered to be of most concern because they have potentially harmful effects on soil quality, livestock health, and food safety. Incidences of fluorosis in grazing livestock, and accumulation of Cd in the edible offal products of livestock, above the maximum permissible concentration set by food authorities have been reported in many countries. The majority of Cd and F applied to pastures in many countries continues to accumulate in the biologically active topsoil due to strong adsorption to soil constituents. However, the rate of Cd accumulation in the last decade has slowed as a result of selective use of low-Cd fertilizers. Cd and F adsorption in soils increase with increased contents of iron and aluminium oxides, layer silicates and allophane in soils, and increased soil pH. Cadmium adsorption also increases with increased Mn oxides and organic matter in soil. However, some Cd will be released during decomposition of plant and animal remains and organic matter. In most pastoral soils the majority of Cd and F added in fertilizers remains in the topsoil and little moves below 20-30 cm, and therefore these are unlikely to contaminate groundwater. However, F may pose a risk to shallow groundwater in very acidic low-P-fixing soils, and Cd may pose a risk in very acidic soils containing low organic matter and clay contents, or in soils with high chloride concentrations. Research is required both to test whether groundwater beneath farms with long histories of P fertilizer use is contaminated by these elements and also to examine their mechanisms of movement. Cd intake by grazing livestock occurs

  10. Effects of fertilizer on inorganic soil N in East Africa maize systems: vertical distributions and temporal dynamics.

    Science.gov (United States)

    Tully, Katherine L; Hickman, Jonathan; McKenna, Madeline; Neill, Christopher; Palm, Cheryl A

    2016-09-01

    Fertilizer applications are poised to increase across sub-Saharan Africa (SSA), but the fate of added nitrogen (N) is largely unknown. We measured vertical distributions and temporal variations of soil inorganic N following fertilizer application in two maize (Zea mays L.)-growing regions of contrasting soil type. Fertilizer trials were established on a clayey soil in Yala, Kenya, and on a sandy soil in Tumbi, Tanzania, with application rates of 0-200 kg N/ha/yr. Soil profiles were collected (0-400 cm) annually (for three years in Yala and two years in Tumbi) to examine changes in inorganic N pools. Topsoils (0-15 cm) were collected every 3-6 weeks to determine how precipitation and fertilizer management influenced plant-available soil N. Fertilizer management altered soil inorganic N, and there were large differences between sites that were consistent with differences in soil texture. Initial soil N pools were larger in Yala than Tumbi (240 vs. 79 kg/ha). Inorganic N pools did not change in Yala (277 kg/ha), but increased fourfold after cultivation and fertilization in Tumbi (371 kg/ha). Intra-annual variability in NO - 3 -N concentrations (3-33 μg/g) in Tumbi topsoils strongly suggested that the sandier soils were prone to high leaching losses. Information on soil inorganic N pools and movement through soil profiles can h vulnerability of SSA croplands to N losses and determine best fertilizer management practices as N application rates increase. A better understanding of the vertical and temporal patterns of soil N pools improves our ability to predict the potential environmental effects of a dramatic increase in fertilizer application rates that will accompany the intensification of African croplands. © 2016 by the Ecological Society of America.

  11. Combined Effects of Biochar and Fertilizer on Cadmium Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    WANG Qi-kai

    2015-12-01

    Full Text Available The field experiment was employed to study on the combined effects of biochar and chicken manure and N, P and K compound chemical fertilizer on cadmium contaminated soil remediation, and the immobilization mechanism was elucidated through fractionation of cadmium in the tested soil. Results showed that the addition of these ammendments could significantly reduce the edible Cd accumulation in Lactuca sativa L., decreased from 32.6% to 54.8% compared with the control. The application of these additives could also significantly decrease extractable Cd concentration by 7.04%~21.85%. Biochar could significantly improve soil pH value, promote the inactivation of Cd contaminated soil, while the application of chicken manure significantly decreased soil pH value, which showed the effect of activating Cd in soil. Soil pH value had significant positive correlation with root Cd concentration of tested cultivars, but did not reach the significant effect level with the shoot Cd concentration. The research can provide a theoretical basis for the application of biochar combined with chicken manure and N, P and K compound chemical fertilizer on remediation of sewage irrigated Cd contaminated soil.

  12. Effect of Fertilization on Yield and Quality of Oil Sunflower in Salted Soil of Ningxia, China

    Directory of Open Access Journals (Sweden)

    QIAN Yin

    2015-12-01

    Full Text Available Combining field trial with test analysis, a nitrogen(N, phosphorus(P2O5 and potassium(K2O fertilizer experiment of oil sunflowers was set to explore the influence of different ratio of N, P, K fertilizer on dry matter accumulation of oil sunflowers, nutrient absorption and accumulation, the yield and quality, etc in salted soil of the northern Ningxia, in order to provide scientific evidence for regulating and controlling of fertilization in the salted soil and enhancing the yields and quality of oil sunflowers. The results showed that: in the salted soil, the plant which had been disposed by N, P, K fertilizer had more advantages, the 1 000-grain weight, fruit quantity of each oil sunflower and yield per plant and hectare all increased significantly. Treatment of adding the organic fertilizer on the basis of N, P, K fertilizer could also increase the amount of N, P, K absorption significantly. At the same time, the application of N, P, K fertilizer would increase the fat content and reduce the protein, increase the oleic acid and stearic acid, reduce the content of linoleic acid and palmitic acid. The needs of nitrogen (N, phosphorus(P2O5 and potassium(K2O absorption of oil sunflower seeds were averagely 6.1~9.6, 3.2~3.8 kg and 12.3~13.7 kg, about 1:0.40~0.55:1.43~2.09 in ratio, 1:0.49:1.79 averagely in ratio.

  13. Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil

    Directory of Open Access Journals (Sweden)

    M. Saiful Alam

    2012-07-01

    Full Text Available Nitrogenous fertilizers are generally thought to have an important role in regulating methane oxidation. In this study, the effect of ammonium on methane oxidation activity was investigated in a paddy soil using urea at concentrations of 0, 50, 100, 200 and 400 μg N per gram dry weight soil (N/g.d.w.s and ammonium sulfate at concentrations of 0, 50 and 200 μg N/g.d.w.s. The results of this study demonstrate that urea concentrations of 200 μg N/g.d.w.s. and above significantly inhibit methane oxidation activity, whereas no statistically significant difference was observed in methane oxidation activity among soil microcosms with urea concentrations of less than 200 μg N/g.d.w.s after incubation for 27 days. Similar results were obtained in a sense that methane oxidation activity was inhibited only when the ammonium sulfate concentration was 200 μg N/g.d.w.s in soil microcosms in this study. Phylogenetic analysis of pmoA genes showed that nitrogen fertilization resulted in apparent changes in the community composition of methane-oxidizing bacteria (MOB. Type I MOB displayed an increased abundance in soil microcosms amended with nitrogenous fertilizers, whereas type II MOB dominated the native soil. Furthermore, although no statistically significant relationship was observed between pmoA gene and amoA gene abundances, methane oxidation activity was significantly negatively correlated with nitrification activity in the presence of urea or ammonium sulfate. Our results indicate that the methane oxidation activity in paddy soils might be inhibited when the concentration of ammonium fertilizers is high and that the interactions between ammonia and methane oxidizers need to be further investigated.

  14. Effects of Nitrogen Fertilizer and Harvesting Frequency on Soil Organic Matter Pools Under Switchgrass Agriculture

    Science.gov (United States)

    Valdez, Z. P.; Hockaday, W. C.; Gallagher, M. E.; Masiello, C. A.; Gao, X.

    2013-12-01

    Intensive agriculture has the potential to reduce soil carbon stocks in the years following initial cultivation, although the magnitude and direction of the effect can vary with ecosystem and management factors. The cropping of switchgrass (Panicum virgatum) for biomass shows potential for high yields in marginal lands with low fertilizer inputs, while the extensive root system can act to improve soil quality and sequester atmospheric carbon dioxide in the soil carbon pool. We are investigating the impact of nitrogen fertilizer inputs and harvesting frequency on soil organic matter quantity and quality in a biofuels cropping trial in Michigan. Here we test the hypothesis that harvest and fertilization rate can affect the partitioning of organic matter into different storage pools within the 0-60 cm of soil: roots, particulate organic matter (POM) (density 1.8 g/cm3). Additionally, we use 13C Nuclear Magnetic Resonance (NMR) spectroscopy to study the bulk chemistry (carbohydrate, lignin, lipid, and protein) of the roots and POM. The NMR data also allow us to estimate the relative decomposition of the soil organic matter using a standard decomposition index (alkyl/O-alkyl peak ratio). We use the data to infer the influence of crop management on the mechanisms of soil C storage and mechanisms of stabilization in switchgrass agriculture. Initial results have shown a significant change in carbon stocks at depths between 15-60 cm for the high and low fertilization rates, 196 kg/m3 and 0kg/m3 respectively, although the harvesting time and frequency did not create a substantial difference on carbon stocks. The root bulk chemistry has not shown consistent results among management practices

  15. Plant Identity Exerts Stronger Effect than Fertilization on Soil Arbuscular Mycorrhizal Fungi in a Sown Pasture.

    Science.gov (United States)

    Zheng, Yong; Chen, Liang; Luo, Cai-Yun; Zhang, Zhen-Hua; Wang, Shi-Ping; Guo, Liang-Dong

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi play key roles in plant nutrition and plant productivity. AM fungal responses to either plant identity or fertilization have been investigated. However, the interactive effects of different plant species and fertilizer types on these symbiotic fungi remain poorly understood. We evaluated the effects of the factorial combinations of plant identity (grasses Avena sativa and Elymus nutans and legume Vicia sativa) and fertilization (urea and sheep manure) on AM fungi following 2-year monocultures in a sown pasture field study. AM fungal extraradical hyphal density was significantly higher in E. nutans than that in A. sativa and V. sativa in the unfertilized control and was significantly increased by urea and manure in A. sativa and by manure only in E. nutans, but not by either fertilizers in V. sativa. AM fungal spore density was not significantly affected by plant identity or fertilization. Forty-eight operational taxonomic units (OTUs) of AM fungi were obtained through 454 pyrosequencing of 18S rDNA. The OTU richness and Shannon diversity index of AM fungi were significantly higher in E. nutans than those in V. sativa and/or A. sativa, but not significantly affected by any fertilizer in all of the three plant species. AM fungal community composition was significantly structured directly by plant identity only and indirectly by both urea addition and plant identity through soil total nitrogen content. Our findings highlight that plant identity has stronger influence than fertilization on belowground AM fungal community in this converted pastureland from an alpine meadow.

  16. Effects of Stubble Management on Soil Fertility and Crop Yield of Rainfed Area in Western Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    G. B. Huang

    2012-01-01

    Full Text Available The combination of continuous cereal cropping, tillage and stubble removal reduces soil fertility and increases soil erosion on sloping land. The objective of the present study was to assessment soil fertility changes under stubble removal and stubble retention in the Loess Plateau where soil is prone to severe erosion. It was indicated that soil N increased a lot for and two stubble retention treatments had the higher N balance at the end of two rotations. Soil K balance performed that soil K was in deficient for all treatments and two stubble retention treatments had lower deficit K. The treatments with stubble retention produced higher grain yields than the stubble removal treatments. It was concluded that stubble retention should be conducted to increase crops productivity, improve soil fertility as well as agriculture sustainability in the Loess plateau, China.

  17. Evaluation of soil fertility status of Regional Agricultural Research Station, Tarahara, Sunsari, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-10-01

    Full Text Available Soil fertility evaluation of an area or region is most basic decision making tool for the sustainable soil nutrient management. In order to evaluate the soil fertility status of the Regional Agricultural Research Station (RARS, Tarahara, Susari, Nepal. Using soil sampling auger 81 soil samples (0-20 cm were collected based on the variability of land. The collected samples were analyzed for their texture, structure, colour, pH, OM, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn status. The Arc-GIS 10.1 software was used for the preparation of soil fertility maps. The soil structure was granular to sub-angular blocky and varied between brown- dark grayish brown and dark gray in colour. The sand, silt and clay content were 30.32±1.4%, 48.92±0.89% and 20.76±0.92%, respectively and categorized as loam, clay loam, sandy loam, silt loam and silty clay loam in texture. The soil was moderately acidic in pH (5.98±0.08. The available sulphur (2.15±0.21 ppm, available boron (0.08±0.01 ppm and available zinc (0.35±0.03 ppm status were very low, whereas extractable magnesium (44.33±6.03 ppm showed low status. Similarly, organic matter (2.80±0.07%, total nitrogen (0.09±0.004 %, extractable calcium (1827.90±45.80 ppm and available copper (1.15±0.04 ppm were medium in content. The available phosphorus (39.77±5.27 ppm, extractable potassium (134.12±4.91 ppm, and available manganese (18.15±1.15 ppm exhibits high status, while available iron (244.7±19.70 ppm was very high. The fertilizer recommendation can be done based on determined soil fertility status to economize crop production. Furthermore, research farm should develop future research strategy accordance with the prepared soil data base.

  18. Soil biota response to amendment with biochar as P and K fertilizer

    Science.gov (United States)

    Winding, Anne; Imparato, Valentina; Santos, Susana; Hansen, Veronika; Haugaard-Nielsen, Henrik; Browne, Patrick; Hestbjerg Hansen, Lars; Henning Krogh, Paul; Johansen, Anders

    2017-04-01

    Thermal gasification converts biomass into a combustible gas at oxygen-poor conditions, the bi-product being biochar which can be used as soil amendment to increase pH, sequester carbon to mitigate climate change, and supply phosphate and potassium to crops; replacing chemical or other alternative organic fertilizers. Amending soil with biochar can support three soil functions: production of food, carbon sequestration, and biodiversity. This was tested in a field experiment with reduced-tillage agricultural management, where the effect of biochar amendment on soil ecosystem services, especially biodiversity and carbon sequestration were studied. The effects on soil microorganisms and fauna (protists and earthworms) were assessed with activity based assays and Next Generation Sequencing (NGS). Crops were alternating oil seed rape and winter wheat, and biochar was added annually for 3 years. The soil was a sandy loam soil with SOM content of ca. 5%. Earthworms and soil were sampled from field plots either left untreated, amended with straw or annually amended with either 6-8 t ha-1 or ca. 1 t ha-1 biochar. Soil was sampled from bulk soil and earthworm drilosphere. Earthworms had a priming effect on protist abundance and basal soil respiration. However, in biochar amended soil the protist abundance decreased in the drilosphere. Culturable bacteria and extracellular enzymatic activities were not significantly affected by earthworms. The abundance of only one earthworm species increased at high compared to low application levels of biochar, while still not differing from controls without biochar. Thus, no harmful effects were detected for earthworms. At the lower biochar amendment, significant changes were observed for the activity of a few selected enzymes related to biochar and also a relative increase in abundance of low abundant microorganisms was seen. At the high doses of biochar the abundance of protists increased compared to control. NGS analysis was more

  19. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils.

    Science.gov (United States)

    Bai, Yanchao; Zang, Caiyun; Gu, Minjing; Gu, Chuanhui; Shao, Hongbo; Guan, Yongxiang; Wang, Xukui; Zhou, Xiaojian; Shan, Yuhua; Feng, Ke

    2017-02-01

    Sewage sludge is by-product in the process of centralized wastewater treatment. Land application of sewage sludge is one of the important disposal alternatives. Mudflats in the interaction zone between land and sea can be important alternative sources for arable lands if amended by large amount of organic fertilizers. Rich in organic matter and other nutrients, sewage sludge has been considered as the economic choice for an initial fertility driver. However, sewage sludge amendment has been greatly hampered due to availability of potential toxic metals. Using sewage sludge in compliance with the national standards for agricultural usage could avoid the accumulation of heavy metals. Nevertheless, it is not clear whether massive input of sewage sludge would increase heavy metals concentration in crops. The objective of this study was to investigate impact of sewage sludge amendment (SSA) as an initial fertility driver by one-time input, with the rates of 0, 30, 75, 150, and 300tha -1 , on biomass of green manures, soil chemical properties, and growth and heavy metals uptake of maize (Zea mays L.) grown in mudflat soil. Results showed that one-time sewage sludge amendment promoted an initial fertility for infertile mudflat soil, supported growth of ryegrass as the first season green manure. By tilled ryegrass, it modified the chemical properties of mudflat soil by increasing soil organic carbon, total and available N and P, and decreasing soil salinity and pH, which promoted subsequent growth of two green manures for sesbania and ryegrass. The sewage sludge as an initial fertility driver combined with planting and tilling green manures, increased dry matter of the aerial part and grain yield of maize grown in mudflat soil. Cd and Ni concentrations in grain of maize were positively correlated with sewage sludge amendment rates. Importantly, heavy metal concentrations in grain of maize at all SSA rates did not exceed the safety standard for food in China (GB 2762

  20. Long-term Tillage and Nitrogen Fertilization Effects on Soil Properties and Crop Yields

    OpenAIRE

    Muhajir Utomo; Irwan Sukri Banuwa; Henrie Buchari; Yunita Anggraini; Berthiria

    2013-01-01

    The impact of agricultural intensification on soil degradation now is occurring in tropical countries. The objective of this study was to determine the effect of long-term tillage and N fertilization on soil properties and crop yields in corn-soybean rotation. This long-term study which initiated since 1987 was carried out on a Typic Fragiudult soil at Politeknik Negeri Lampung, Sumatra (105o13’45.5"-105o13’48.0"E, 05o21’19.6"-05o21’19.7"S) in 2010 and 2011. A factoria...

  1. Assessment of soil fertility status of Agriculture Research Station, Belachapi, Dhanusha, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2016-12-01

    Full Text Available Soil test-based fertility management is important for sustainable soil management. This study was carried out to determine the soil fertility status of the Agriculture Research Station, Belachapi, Dhanusha, Nepal. Using soil sampling auger 25 soil samples were collected randomly from a depth of 0-20 cm. Soil sampling points were identified using GPS device. Following standard methods adopted by Soil Science Division laboratory, Khumaltar, the collected soil samples were analyzed to find out their texture, pH, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu, Mn and organic matter status. The soil fertility status maps were made using Arc-GIS 10.1 software. The observed data revealed that soil was grayish brown in colour and sub-angular blocky in structure. The sand, silt and clay content were 36.03±3.66%, 50.32±2.52% and 25.42±2.25%, respectively and categorized as eight different classes of texture. The soil was acidic in pH (5.61±0.14. The available sulphur (0.73±0.09 ppm status was very low, whereas organic matter (1.34±0.07%, available boron (0.56±0.10 ppm, available zinc (0.54±0.22 ppm and available copper (0.30±0.01 ppm were low in status. The extractable potassium (95.52±13.37 ppm and extractable calcium (1264.8±92.80ppm exhibited medium in status. In addition, available phosphorus (33.25±6.97 ppm, available magnesium (223.20±23.65 ppm and available manganese (20.50±2.43 ppm were high in status. Furthermore, available iron (55.80±8.89 ppm status was very high. To improve the potentiality of crops (maize, rice, wheat etc. for studied area, future research strategy should be made based on its soil fertility status.

  2. Effect of Nitrogen Fertilizer on Combined Forms and Transformation of Fluorine in Tea Garden Soil

    OpenAIRE

    ZHANG Yong-li; LIAO Wan-you; WANG Ye-jun; SU You-jian; LUO Yi; SONG Li; SUN Li

    2015-01-01

    In order to investigate the effect of nitrogen fertilizer on combined forms and transformation of fluorine in tea garden soil, soil pot experiment was carried out. The research object was red-yellow soil in Shizipu tea plantation in the south of Anhui Province. Five treatments were N0P0K0 (CK), N0P1K1 (N0), N1P1K1 (N1), N2P1K1 (N2), N3P1K1 (N3). Water-soluble fluorine content, exchangeable fluorine content, Fe/Mn oxide-bound fluorine content, organic matter-bound fluorine content, ammonium ni...

  3. Production of Biomass Crops Using Biowastes on Low-Fertility Soil: 1. Influence of Biowastes on Plant and Soil Quality.

    Science.gov (United States)

    Esperschuetz, J; Anderson, C; Bulman, S; Lense, O; Horswell, J; Dickinson, N; Hofmann, R; Robinson, B H

    2016-11-01

    Land application of biosolids to low-fertility soil can improve soil quality by increasing concentrations of macronutrients and trace elements. Mixing biosolids with sawdust could reduce the risks of contaminant accumulation posed by rebuilding soils using biosolids alone. We aimed to determine the effects of biosolids and biosolids-sawdust on the plant quality and chemical composition of sorghum, rapeseed, and ryegrass. Plants were grown in a greenhouse over a 5-mo period in a low-fertility soil amended with biosolids (1250 kg N ha), biosolids-sawdust (0.5:1), or urea (200 kg N ha). Biosolids application increased the biomass of sorghum, rapeseed, and ryegrass up to 14.0, 11.9, and 4.1 t ha eq, respectively. Mixing sawdust with biosolids resulted in a growth response similar to biosolids treatments in rapeseed but nullified the effect of biosolids in sorghum. Urea fertilization provided insufficient nutrients to promote rapeseed growth and seed production, whereas seed yields after biosolids application were 2.5 t ha. Biosolids and biosolids-sawdust application enhanced plant quality by increasing element concentrations, especially Zn, and potentially toxic elements (Cd, Cr, Ni) did not exceed food safety standards. An application of 50 t ha of biosolids, equivalent to 1250 kg N ha, did not exceed current soil limits of Cu, Zn, and Cd and hence was effective in rebuilding soil without accumulating contaminants. The effect of mixing sawdust with biosolids varies with plant species but can further enhance plant nutrient quality in biomass and seeds, especially P, Cu, Zn, Mn, Fe, S, and Na. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Effects of Potash Fertilizer on Cabbage' s Quality in CadmiumPolluted Soils

    Directory of Open Access Journals (Sweden)

    WANG Xiao-jing

    2015-02-01

    Full Text Available In order to further explain how potassium affect the quality of cabbage growing in cadmium contaminated soils, a pot experiment was carried out to study the effect of different dosages of potash fertilizer on the cabbage yield, physiological characteristics(the concentration of chlorophyll and the activity of antioxidative enzymeand heavy metal concentration in two cadmium contaminated soils. The result showed that cabbage' s fresh weight above ground and underground decreased 2.6% and 19.8% respectively in low cadmium stress, while decreased 7.1%and 45.5%in high cadmiumstress. After increasing the dosage of potash fertilizer in low concentration cadmium polluted soil, cabbage' s fresh weight above ground increased by 0.3%~34.0%and the underground part decreased by 1.2%~7.4%. At the same time, after application of potash fertilizer in high concentration stress, cabbage' s fresh weight above ground had no significant change while the underground part significantly increased by 41.8%~87.3%. The concentration of chlorophyll a and chlorophyll b in cabbage leaves increased slightly in low cadmium stress, after application of potash fertilizer, the concentration of chlorophyll a increased greatly but chlorophyll b had no obvious change. The concentration of chlorophyll a and chlorophyll b in cabbage leaves decreased greatly in high cadmiumstress and it had no tremen-dous change after application of potash fertilizer. The activity of antioxidative enzymes(CAT, SOD and PODin cabbage leaves were strength-ened in low cadmium stress while the activity of kinds of antioxidative enzymes in cabbage leaves were weakened in high cadmium stress. Af-ter application of potash fertilizer in two cadmium polluted soils, all kinds of enzyme activity had a trend to increase. Applying potash fertiliz-er into the cadmium contaminated soils could effectively increase the concentration of vitamin C, reducing sugar and promote the free amino acids transforming into crude

  5. Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation

    Science.gov (United States)

    Vanlauwe, B.; Descheemaeker, K.; Giller, K. E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S.

    2015-06-01

    Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated soil fertility management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognized within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE, and targeted application of agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micronutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g. the application of SMNs where these are limiting), for others, more complex processes influence AE (e.g. water harvesting under varying rainfall conditions). At farm scale, adjusting fertilizer applications to

  6. Soil properties and trace elements contents following 40 years of phosphate fertilization.

    Science.gov (United States)

    Cakmak, Dragan; Saljnikov, Elmira; Mrvic, Vesna; Jakovljevic, Miodrag; Marjanovic, Zaklina; Sikiric, Biljana; Maksimovic, Srboljub

    2010-01-01

    Long-term application of P fertilizers may eventually result in excess and/or toxic accumulations of trace elements and microelements in soil. The effect of monoammonium-phosphate (MAP) on basic soil properties (pH, CEC, texture), the total content of C, N, and F, hot acid-extractable Cu, Zn, Ni, Cr, Pb, Cd, Co, As, Hg, and F, and the content of extractable macro- and trace elements (P, K, Ca, Mg, Al, Fe, Zn, Cu, Ni, Pb, Cd, F) were studied on a Stagnosol soil. Phosphate fertilizer had been applied (26, 39, and 52 kg P ha(-1)) over a 40-yr period. Phosphorus fertilization significantly decreased pH and increased clay content of the soil. Increases were detected in available P, exchangeable Al, Ca, cation exchange capacity (CEC), and clay content. The content of hot acid-extractable Pb increased, whereas the content of diethylenetriaminepentaacetic acid-extractable Pb decreased in accordance with applied rates of MAP. The status of some hot acid-extractable trace elements (Cu, Zn, Ni, and Co) did not change after 40 yr of MAP application, whereas Hg and Cd increased. However, despite the statistically significant increases in the amounts of some potentially toxic elements, they did not accumulate to concentrations considered toxic as overall concentrations are far below the maximum allowed concentrations for natural unpolluted soils.

  7. SHADING AND NITROGEN FERTILIZATION ON SOIL ATTRIBUTES IN A PASTURE OF BRACHIARIA BRIZANTHA CV. MARANDU

    Directory of Open Access Journals (Sweden)

    Guilherme Lanna Reis

    2011-12-01

    Full Text Available This study assessed the influence of nitrogen fertilization and artificial shade on the attributes of soil and forage in a pasture of Brachiaria brizantha cv Marandu (BBM. The experiment was conducted at Fazenda Águas Formosas in Caeté, Minas Gerais State, Brazil, 19º47’39’’S,43º36’77’’W, altitude 1000 m. The soil is a Red latosol by the Brazilian soil classification (Typic Acrustox - USDA classification. BBM was subjected to four levels of fertilization (0, 50, 70 and 100 kg N per hectare per application and four levels of shading (0, 47, 53 and 66% through a nylon mesh. Shading reduced the mineralization of organic matter, affecting the lower availability of complexed nutrients. N application favored the exportation of most nutrients assessed. Nutrient content tended to decrease with depth.

  8. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization.

    Science.gov (United States)

    Wang, Yanan; Ke, Xiubin; Wu, Liqin; Lu, Yahai

    2009-02-01

    Little information is available on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in flooded rice soils. Consequently, a microcosm experiment was conducted to determine the effect of nitrogen fertilizer on the composition of AOB and AOA communities in rice soil by using molecular analyses of ammonia monooxygenase gene (amoA) fragments. Experimental treatments included three levels of N (urea) fertilizer, i.e. 50, 100 and 150 mgNkg(-1) soil. Soil samples were operationally divided into four fractions: surface soil, bulk soil deep layer, rhizosphere and washed root material. NH(4)(+)-N was the dominant form of N in soil porewater and increased with N fertilization. Cloning and sequencing of amoA gene fragments showed that the AOB community in the rice soil consisted of three major groups, i.e. Nitrosomonas communis cluster, Nitrosospira cluster 3a and cluster 3b. The sequences related to Nitrosomonas were predominant. There was a clear effect of N fertilizer and soil depth on AOB community composition based on terminal restriction fragment length polymorphism fingerprinting. Nitrosomonas appeared to be more abundant in the potentially oxic or micro-oxic fractions, including surface soil, rhizosphere and washed root material, than the deep layer of anoxic bulk soil. Furthermore, Nitrosomonas increased relatively in the partially oxic fractions and that of Nitrosospira decreased with the increasing application of N fertilizer. However, AOA community composition remained unchanged according to the denaturing gradient gel electrophoresis analyses.

  9. Organic greenhouse soil media + supplemental fertilizer = better organic tomato transplants

    Science.gov (United States)

    Consumer perceptions that organic food tastes better and is healthier are two major factors driving the increasing demand for organically produced crops in the U.S. All components entering into the organic crop production system must be approved for organic use, including seed, soil media, and fert...

  10. Green manuring and nitrogen fertilization effects on soil chemical ...

    African Journals Online (AJOL)

    The effects of these treatments on agronomic trait and yield of upland rice and soil chemical properties were then investigated at UNAAB and Olowo-Papa village (OP). In the first experiment three green manure crops, namely, Mucuna utilis, Canavalia ensiformis and Lablab purpureus were screened for biomass production ...

  11. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  12. Soil Fertility Status under Different Tree Cropping System in a Southwestern Zone of Nigeria

    Directory of Open Access Journals (Sweden)

    Clement O. OGUNKUNLE

    2011-05-01

    Full Text Available Tree cropping has been known to bring about changes in edaphic component among other components of the ecosystem through their interactions with the soil and soil faunas. Premised on this, this study assessed the effects of sole cropping of teak and intercropping of cocoa and kola on the soil fertility status. The study was carried out using stratified-randomed sampling technique for the study plots in all the sampling sites. Three sampling sites consisting of four (4-4oo m2 sampling plots each were established in which vegetation and some soil parameters were assessed. Results analysis showed that the synergistic interaction of leaves decomposition of cocoa and kola improved the organic matter content of the soil under the cocoa/kola site. Considerable improvement in soil fertility was enjoyed in the cocoa/kola site due to the large girth sizes and basal area of trees present in the cocoa/kola site while soil under the sole cropping of teak was impoverished. The degradation effects was due to the high rate of nutrient uptake of the teak, organic matter content was high in the forest site (9.12% and cocoa/kola site (7.34 while the least was in the teak site (3.04%. A very strong correlation existed between organic matter content and some vegetation parameters.

  13. Implications of inorganic fertilization of irrigated corn on soil properties: lessons learned after 50 years.

    Science.gov (United States)

    Blanco-Canqui, Humberto; Schlegel, Alan J

    2013-01-01

    Inorganic fertilizers are widely used for crop production, but their long-term impacts on soil organic carbon (SOC) pools and soil physical attributes are not fully understood. We studied how half a century of N application at 0, 45, 90, 134, 179, and 224 kg ha and P application at 0, 20, and 40 kg ha (since 1992) affected SOC pools and soil structural and hydraulic parameters in irrigated continuous corn ( L.) under conventional till on an Aridic Haplustoll in the central Great Plains. Application of 45, 90, 134, 179, and 224 kg N ha increased the SOC pool by 4.6, 6.8, 7.6, 7.9, and 9.7 Mg ha, respectively, relative to nonfertilized plots in the 0- to 45-cm depth. Application of 20 kg P ha increased the SOC pool by 2.9 Mg ha in the 0- to 30-cm depth. The highest N rate increased the SOC pool by 195 kg ha yr. The C gains may be, however, offset by the C hidden costs of N fertilization. Application of >45 kg N ha reduced the proportion of soil macroaggregates (>0.25 mm) in the 7.5- to 30-cm depth. Fertilization did not affect hydraulic properties, but application of ≥90 kg N ha slightly increased aggregate water repellency. An increase in SOC concentration did not increase the mean weight diameter of wet aggregates ( = 0.1; > 0.10), but it slightly increased aggregate water repellency ( = 0.5; 0.005). Overall, long-term inorganic fertilization to irrigated corn can increase SOC pool, but it may reduce soil structural stability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Variability of soil fertility properties in areas planted to sugarcane in the State of Goias, Brazil

    Directory of Open Access Journals (Sweden)

    José Avelino Cardoso

    2014-04-01

    Full Text Available Soil sampling should provide an accurate representation of a given area so that recommendations for amendments of soil acidity, fertilization and soil conservation may be drafted to increase yield and improve the use of inputs. The aim of this study was to evaluate the variability of soil fertility properties of Oxisols in areas planted to sugarcane in the State of Goias, Brazil. Two areas of approximately 8,100 m² each were selected, representing two fields of the Goiasa sugarcane mill in Goiatuba. The sugarcane crop had a row spacing of 1.5 m and subsamples were taken from 49 points in the row and 49 between the row with a Dutch auger at depths of 0.0-0.2 and 0.2-0.4 m, for a total of 196 subsamples for each area. The samples were individually subjected to chemical analyses of soil fertility (pH in CaCl2, potential acidity, organic matter, P, K, Ca and Mg and particle size analysis. The number of subsamples required to compose a sample within the acceptable ranges of error of 5, 10, 20 and 40 % of each property were computed from the coefficients of variation and the Student t-value for 95 % confidence. The soil properties under analysis exhibited different variabilities: high (P and K, medium (potential acidity, Ca and Mg and low (pH, organic matter and clay content. Most of the properties analyzed showed an error of less than 20 % for a group of 20 subsamples, except for P and K, which were capable of showing an error greater than 40 % around the mean. The extreme variability in phosphorus, particularly at the depth of 0.2-0.4 m, attributed to banded application of high rates of P fertilizers at planting, places limitations on assessment of its availability due to the high number of subsamples required for a composite sample.

  15. Growth response of Grevillea robusta A. Cunn. seedlings to phosphorus fertilization in acid soils from Kenya

    Directory of Open Access Journals (Sweden)

    Karanja N.K.

    1999-01-01

    Full Text Available Three experiments were conducted to assess the response of Grevillea robusta to phosphorus fertilization using acid soils showing low P levels from Eastern (Gituamba-Andosols and Western (Kakamega-Acrisols Kenya. In the first experiment P was applied as Minjingu phosphate rock (MPR- 13/P at 0, 52 and 77 kg P per ha into 5 kg of soil. In the second experiment 2 g vesicular arbuscular mycorrhizae (VAM soil + root inoculum per 5 kg soil was included in addition to the same MPR rates using Kakamega soil only. In the third experiment, MPR and triple superphosphate (TSP were added to 5 kg Kakamega soil at a rate of 25.8 mg P per kg soil, and 32P isotope dilution techniques were used to assess P uptake in the shoot harvested at 3 and 6 MAT (months after transplanting. Application of MPR to the Andosol reduced height and root collar diameter of G. robusta significantly (p < .05 as compared to the control. Significant increases (p < .05 in height and root collar diameter where P was added compared to control were recorded with the Acrisol. Soil interaction with P fertilizer rates was highly significant (p < .001 for both height and root collar diameter growth. The roots were not infected with VAM upon harvesting at 12 months. At 3 MAT the percentage P derived from the MPR and TSP was 3/ and 6/ respectively. P uptake decreased significantly (p < .05 between 3 and 6 months. The results indicated that addition of P fertilizer in the Acrisols was probably required at the early stages of G. robusta growth but further research and particularly root studies are required to ascertain the above observations.

  16. The Challenge of Improving Soil Fertility in Yam Cropping Systems of West Africa

    Science.gov (United States)

    Frossard, Emmanuel; Aighewi, Beatrice A.; Aké, Sévérin; Barjolle, Dominique; Baumann, Philipp; Bernet, Thomas; Dao, Daouda; Diby, Lucien N.; Floquet, Anne; Hgaza, Valérie K.; Ilboudo, Léa J.; Kiba, Delwende I.; Mongbo, Roch L.; Nacro, Hassan B.; Nicolay, Gian L.; Oka, Esther; Ouattara, Yabile F.; Pouya, Nestor; Senanayake, Ravinda L.; Six, Johan; Traoré, Orokya I.

    2017-01-01

    Yam (Dioscorea spp.) is a tuber crop grown for food security, income generation, and traditional medicine. This crop has a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha−1. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are being more and more degraded. The aims of this review were to show the importance of soil fertility for yam, discuss barriers that might limit the adoption of integrated soil fertility management (ISFM) in yam-based systems in West Africa, present the concept of innovation platforms (IPs) as a tool to foster collaboration between actors for designing innovations in yam-based systems and provide recommendations for future research. This review shows that the development of sustainable, feasible, and acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from the problem definition, to the co-design of soil management innovations, the evaluation of research results, their communication and their implementation. Finally, this research should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts. PMID:29209341

  17. The Challenge of Improving Soil Fertility in Yam Cropping Systems of West Africa

    Directory of Open Access Journals (Sweden)

    Emmanuel Frossard

    2017-11-01

    Full Text Available Yam (Dioscorea spp. is a tuber crop grown for food security, income generation, and traditional medicine. This crop has a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha−1. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are being more and more degraded. The aims of this review were to show the importance of soil fertility for yam, discuss barriers that might limit the adoption of integrated soil fertility management (ISFM in yam-based systems in West Africa, present the concept of innovation platforms (IPs as a tool to foster collaboration between actors for designing innovations in yam-based systems and provide recommendations for future research. This review shows that the development of sustainable, feasible, and acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from the problem definition, to the co-design of soil management innovations, the evaluation of research results, their communication and their implementation. Finally, this research should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts.

  18. Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    Full Text Available ABSTRACT Studies on the survival of pathogenic microorganisms in the soil after use of wastewater for fertilization of agricultural crops report the effects of moisture, pH, organic matter, and soil temperature on microorganisms. There are few studies that assess the survival of these microorganisms in the rhizosphere of plants fertilized with wastewater. Thus, the aim of this study was to quantify the number of fecal coliforms and rhizobacteria (fluorescent Pseudomonas spp., Bacillus spp, in the rhizosphere of winter and summer crops fertilized with wastewater. In the experiment, we used 20 plots, and each plot occupied an area of 200 m2. The treatments used in the winter crop consisted of uncultivated plots and single crops of wheat, triticale, black bean, and intercropped black bean/wheat. In the summer season, we used uncultivated plots and single crops of corn, sunflower, bean, and intercropped bean/corn. The experiment was conducted in a randomized block design with five treatments and four replications. Soil samples from the rhizosphere for microbiological analyses were collected at the flowering stage of the crops at a depth of 0.00-0.20 m. Plants stimulated fluorescent Pseudomonas spp. and Bacillus spp. in the rhizosphere, with average scores of 7.9 and 6.9 log CFU g-1 of dry soil, respectively, whereas in bare soil, these scores were 6.7 and 5.8 log CFU g-1 of dry soil for these rhizobacteria groups. However, this stimulating effect was not seen for fecal coliforms, which had an average score of 31.7 × 103 MPN g-1 of dry soil in the uncultivated area and 20.0 × 103 MPN g-1 of dry soil in crop areas. Overall, the numbers of rhizobacteria colonies in the rhizosphere soil under intercropping were higher than those observed in the rhizosphere soils of single winter and summer crops. Therefore, the presence of plants enhances the development of rhizobacteria and changes the balance among the species of microorganisms in the soil microbial

  19. EFFECT OF LONG-TERM FERTILIZATION ON THE AVAILABLE TOXIC ELEMENT CONTENT OF DIFFERENT SOILS

    Directory of Open Access Journals (Sweden)

    Éva LEHOCZKY

    2005-04-01

    Full Text Available The National Long-Term Fertilization Trials were set up more than 30 years ago and in that time soil and water protection and environmental relations of fertilization had not been the direct aim of research. From the agricultural load the use of phosphate fertilizers gets outstanding attention because of the accumulation of toxic heavy metals. The aim of our research was to study the infl uence of long-term, intensive fertilization on the available toxic element content and accumulation in different soils. Samples were collected from 8 experimental sites with equal treatments from the depth of 0-20 cm. The so-called available, 0,1M KCl + 0,05M EDTA extractable element content was determined. In the paper the results of Cd, Pb, Cr, are discussed in details. The experimental results of toxic elements show that the 28-year old constant fertilization treatments did not result higher values than the accepted concentration level, even they did not approach it.

  20. the use of integrated soil fertility approach in the improvement of soil

    African Journals Online (AJOL)

    Sammy

    improvement of soil texture and structure, thus boosters food production in the ecological region. Key Words: ... the semi-arid areas being characterized by declining per capital food production. Causes of loss of soil .... conservation of soil from agents of soil erosion and enhances recycling of soil mineral nutrients. It requires ...

  1. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils.

    Science.gov (United States)

    Liu, Peng; Jia, Shuyu; He, Xiwei; Zhang, Xuxiang; Ye, Lin

    2017-12-01

    Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Soil seed-bank germination patterns in natural pastures under different mineral fertilizer treatments

    Directory of Open Access Journals (Sweden)

    Anna Iannucci

    2014-11-01

    Full Text Available Degraded native grasslands in Mediterranean areas can be improved by encouraging seedling regeneration from soil seed banks using chemical fertilization. The effect of mineral fertilizers on soil seed banks was studied in natural pastures at two locations in southern Italy: Carpino and Rignano Garganico. The aim was to determine if nitrogen (N, phosphorus (P and combined nitrogen and phosphorus (NP fertilization can promote increased soil seed density. The seed-bank size and composition were analysed over two growth cycles (2004-2006 at two periods of the year: at the early summer and at the early autumn. The plant species were classified into three functional groups: grasses, legumes and other species (all other dicots. A two-pool model (ephemeral and base pools derived from the germination patterns was developed to quantify the dynamics of the germinated seed populations. The mean total seed number in the seed bank ranged from 2,915 to 4,782 seed m-2 with higher values in early summer than in early autumn. Mineral fertilizer applications increased the seed-bank size (by 27%, 23% and 46%, for N, P and NP, respectively and modified the composition in both localities. The three plant functional groups showed different potentials for ephemeral and persistent seed-bank production; however, within each plant group, the proportion between the ephemeral and base pool fractions did not change with fertilizer application. These data show that mineral fertilization can have positive effects on the seed-bank size of ungrazed natural pastures, and can be used to improve degraded Mediterranean pastures.

  3. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment

    Science.gov (United States)

    Nabel, Moritz; Bueno Piaz Barbosa, Daniela; Horsch, David; Jablonowski, Nicolai David

    2014-05-01

    The global demand for energy security and the mitigation of climate change are the main drivers pushing energy-plant production in Germany. However, the cultivation of these plants can cause land use conflicts since agricultural soil is mostly used for plant production. A sustainable alternative to the conventional cultivation of food-based energy-crops is the cultivation of special adopted energy-plants on marginal lands. To further increase the sustainability of energy-plant cultivation systems the dependency on synthetic fertilizers needs to be reduced via closed nutrient loops. In the presented study the energy-plant Sida hermaphrodita (Malvaceae) will be used to evaluate the potential to grow this high potential energy-crop on a marginal sandy soil in combination with fertilization via digestate from biogas production. With this dose-response experiment we will further identify an optimum dose, which will be compared to equivalent doses of NPK-fertilizer. Further, lethal doses and deficiency doses will be observed. Two weeks old Sida seedlings were transplanted to 1L pots and fertilized with six doses of digestate (equivalent to a field application of 5, 10, 20, 40, 80, 160t/ha) and three equivalent doses of NPK-fertilizer. Control plants were left untreated. Sida plants will grow for 45 days under greenhouse conditions. We hypothesize that the nutrient status of the marginal soil can be increased and maintained by defined digestate applications, compared to control plants suffering of nutrient deficiency due to the low nutrient status in the marginal substrate. The dose of 40t/ha is expected to give a maximum biomass yield without causing toxicity symptoms. Results shall be used as basis for further experiments on the field scale in a field trial that was set up to investigate sustainable production systems for energy crop production under marginal soil conditions.

  4. Effect of Nitrogen Fertilizer on Combined Forms and Transformation of Fluorine in Tea Garden Soil

    Directory of Open Access Journals (Sweden)

    ZHANG Yong-li

    2015-10-01

    Full Text Available In order to investigate the effect of nitrogen fertilizer on combined forms and transformation of fluorine in tea garden soil, soil pot experiment was carried out. The research object was red-yellow soil in Shizipu tea plantation in the south of Anhui Province. Five treatments were N0P0K0 (CK, N0P1K1 (N0, N1P1K1 (N1, N2P1K1 (N2, N3P1K1 (N3. Water-soluble fluorine content, exchangeable fluorine content, Fe/Mn oxide-bound fluorine content, organic matter-bound fluorine content, ammonium nitrogen content and soil pH value in 0~15 cm soil layer were analyzed in 10, 20, 30, 50, 70, 90 days after fertilization. The results showed that compared with CK, in the short term (10 or 20 days after applying NPK, the content of water-soluble fluorine in 0~15 cm soil layer was decreased and the content of exchangeable fluorine, Fe/Mn oxide-bound fluorine and organic matter-bound fluorine were increased. After 20 days, the content of soil water-soluble fluorine was increased and the content of soil exchangeable fluorine, Fe/Mn oxide-bound fluorine and organic matter-bound fluorine were reduced. The effect on water-soluble fluorine and exchangeable fluorine increased with time and the application rate of nitrogen. The content of water-soluble fluorine in tea garden soil had a moderately positive correlation with the application rate of nitrogen while the content of exchangeable fluorine had a moderately or highly negative correlation with the application rate of nitrogen. The content of water-soluble fluorine had a quite highly negative correlation with the soil pH (P<0.01, but the content of exchangeable fluorine had a moderately or highly negative correlation with the soil pH (P<0.01. Therefore, nitrogen fertilizer changed the soil pH during its form transformation and thus affected the transformation and the availability of fluorine in soil.

  5. Almond tree and organic fertilization for soil quality improvement in southern Italy.

    Science.gov (United States)

    Macci, Cristina; Doni, Serena; Peruzzi, Eleonora; Masciandaro, Grazia; Mennone, Carmelo; Ceccanti, Brunello

    2012-03-01

    The semi-arid Mediterranean region, characterized by long dry periods followed by heavy bursts of rainfall, is particularly prone to soil erosion. The main goal of this study is to evaluate the soil quality under different practices of bio-physical amelioration which involve the soil-plant system (almond trees) and microorganism-manure. This study, carried out in the South of Italy (Basilicata Region- Pantanello farm), considered two types of fertilization (mineral and organic) and three slope gradients (0, 2 and 6%), in order to evaluate the effects of management practices in resisting soil erosion. Chemical (organic carbon and nitrogen), physical (soil shrinkage and bulk density) and biochemical (dehydrogenase activity and hydrolytic enzyme activities) parameters were selected as markers to follow agro-ecological changes with time. The organic treatment affected soil microbiological and physico-chemical properties by increasing soil nutrient availability, microbial activity, and improving soil structure. The consistently higher values of the hydrolytic enzyme activities (β-glucosidase, phosphatase, urease and protease) often observed in the presence of plants and on the 0 and 2% slopes, suggested the stimulation of nutrient cycles by tree roots, which improve the conditions for soil microorganisms in carrying out their metabolic activity. In the 6% slope and, in particular, in the mineral fertilizer treatment, soil metabolism was lower as suggested by the dehydrogenase activity which was 50% lower than that found in the 0 and 2% slopes, this seemed to be related to a slowdown in the nutrient cycling and organic carbon metabolism. However, on this slope, in both mineral and organic treatments, a significant stimulation of hydrolytic enzyme activities and an improvement of soil structure (reduction of bulk density of about 10% and increase in total shrinkage from 20 to 60%) were observed with plants compared to the control soil. The combination of organic

  6. The dynamics of nitrogen derived from a chemical nitrogen fertilizer with treated swine slurry in paddy soil-plant systems.

    Science.gov (United States)

    Lee, Joonhee; Choi, Hong L

    2017-01-01

    A well-managed chemical nitrogen (N) fertilization practice combined with treated swine slurry (TSS) is necessary to improve sustainability and N use efficiency in rice farming. However, little is known about the fate of N derived from chemical N fertilizer with and without TSS in paddy soil-plant systems. The objectives of this study were (1) to estimate the contribution of applied N fertilizer to N turnover in rice paddy soil with different N fertilization practices that were manipulated by the quantity of treated swine slurry and chemical N fertilizer (i.e., HTSS+LAS, a high amount of TSS with a low amount of ammonium sulfate; LTSS+HAS, a low amount of TSS with a high amount of ammonium sulfate; AS, ammonium sulfate with phosphorus and potassium; C, the control) and (2) to compare the rice response to applied N derived from each N fertilization practice. Rice biomass yield, 15N recovery in both rice grain and stems, soil total N (TN), soil inorganic N, and soil 15N recovery were analyzed. Similar amounts of 15N uptake by rice in the TSS+AS plots were obtained, indicating that the effects of the different quantities of TSS on chemical fertilizer N recovery in rice during the experimental period were not significant. The soil 15N recoveries of HTSS+LAS, LTSS+HAS, and AS in each soil layer were not significantly different. For the HTSS+LAS, LTSS+HAS and AS applications, total 15N recoveries were 42%, 43% and 54%, respectively. Because the effects of reducing the use of chemical N fertilizer were attributed to enhancing soil quality and cost-effectiveness, HTSS+LAS could be an appropriate N fertilization practice for improving the long-term sustainability of paddy soil-plant systems. However, N losses, especially through the coupled nitrification-denitrification process, can diminish the benefits that HTSS+LAS offers.

  7. [Fluorescence spectroscopic characteristics of fulvic acid from the long-term located fertilization in black soil].

    Science.gov (United States)

    Li, Yan-Ping; Wei, Dan; Zhou, Bao-Ku; Zhao, Yue; Zhang, Xi-Lin; Wei, Zi-Min; Li, Shu-Ling

    2011-10-01

    In order to investigate the effect of long-term located fertilization on soil fulvic acid (FA), in this study, four soil samples were taken from black soil with long-term located fertilization (about 30 year) in Harbin, Heilongjiang province. The fertilization treatments included control (CK), N, P and K fertilization (NPK), horse manure (OM), combination of organic manure and chemical fertilizations (MNPK). Soil FA was extracted from the samples and purified. The excitation, emission, synchronous, and three-dimensional-excitation emission matrix fluorescence spectroscopy (3DEEM) characteristics of the FA were determined. The excitation, emission and synchronous scan spectra all indicated that the main peaks of FA in the NPK treatment exhibited a significantly blue shift compared with CK, while those of MNPK, OM treatment caused a red shift to some extent. 3DEEM spectra of FA in all treatments exhibited four peaks (peak a, peak b, peak c, and peak d), compared with FA in CK, the wavelengths shift tendency of peak a, peak b, and peak c of FA 3DEEM in NPK, MNPK and OM treatments were similar to that of traditional spectra in FA. In order to provide quantitative information of FA humification degree in different treatments, we investigated the fluorescence index f450/500 (FI), area integration (A370-600 nm, A1 370-412 nm, A4 538-600 nm). Compared with CK, the f450/500, ratio of A1/A in NPK and A4/A in MNPK treatment increased by 4.62%, 6.12%, 7.22%, respectively. However, the f450/500, the ratio of A1/A in MNPK and A4/A in NPK treatment decreased by 3.86%, 15.31%, and 7.22% respectively. This indicated that NPK application gave a lower degree of FA humification, and combination of organic manure and chemical fertilizations would lead to a greater degree of FA aromatization in black soil with long-term located fertilization than CK.

  8. [Change characteristics of rice yield and soil organic matter and nitrogen contents under various long-term fertilization regimes].

    Science.gov (United States)

    Huang, Jing; Gao, Ju-Sheng; Zhang, Yang-Zhu; Qin, Dao-Zhu; Xu, Ming-Gang

    2013-07-01

    A long-term (1982-2010) field experiment was conducted in the Red Soil Experiment Station of Chinese Academy of Agricultural Sciences in Qiyang County of Hunan Province, South-central China to investigate the dynamic changes of rice yield and soil organic matter (OM) and nitrogen contents under different fertilization treatments. The treatments included NPK, NPKM (M: manure), NPM, NKM, PKM, M, and CK. Fertilization increased the soil OM, total N, and alkaline-hydrolysable N contents and the rice yield. In treatment NPKM, the rice yield across the 28 years maintained at the highest level; while in treatment NPK, the yield showed a decreasing trend, being lower than that in other fertilization treatments. In the treatments applied with manure only or in combining with chemical fertilizers, the soil OM content increased rapidly in the first 16 years, and then fluctuated around a constant level (29.42-39.32 g x kg(-1)). In the treatments of chemical fertilization, the soil OM content only had a quicker increase in the first 8 years, and then fluctuated within a relatively stable range. Fertilization with manure increased the soil OM significantly, as compared to fertilization with chemical fertilizers only. The soil total N content in all fertilization treatments showed a rapid increase in the first 8 years, and the increment was the highest in treatment NPKM. The soil alkaline-hydrolysable N content in all fertilization treatments had a slower increase in the first 12 years, with an average annual increment of 0.66-2.25 mg x kg(-1) x a(-1). In 1994-1998, the soil alkaline-hydrolysable N content in fertilization treatments had a quicker increase, with an average annual increment of 6.45-32.45 mg x kg(-1) x a(-1); but after 1998, the soil alkaline-hydrolysable N content had a slight decrease. It was concluded that organic fertilization was the key measure to stably improve the physical and chemical properties and the productivity of red paddy soils by increasing their

  9. Biowaste compost effects on productive and qualitative characteristics of some field crops and on soil fertility

    Directory of Open Access Journals (Sweden)

    Giovanni Fecondo

    2015-06-01

    Full Text Available Biowaste compost exploitation is a way of recovering agricultural soil fertility that in these last decades decreased up to a desertification limit. In order to test compost efficacy on crop yield and soil fertility, in the period 2011-2013 at COTIR experimental farm, a trial comparing different amounts of compost on two crop rotations was carried out. Crop rotations tested were durum wheat-sunflower-durum wheat and tomato-durum wheat-pepper. Results showed that the use of 40 t ha–1 of compost increased wheat grain yield and protein content if compared to control and mineral fertilised treatment. Compost application at 40 t ha–1 increased also yield of pepper in the first two harvest times, while during the third harvest, which included green and red berries, (the yield was statistically different only if compared to control treatment. Moreover, compost improved soil fertility both in terms of organic matter and main nutritional elements, while a negative aspect of its use was the increase of soil electric conductivity, although no negative effect on crops yield were observed.

  10. Priming Effect Induced by the Use of Different Fertilizers on Soil Functional Diversity

    Directory of Open Access Journals (Sweden)

    Bogdan Mihai ONICA

    2017-11-01

    Full Text Available Agricultural practices, such as the use of fertilizers, can change the structure and function of soil microbial community. Monitoring and assessing the soil microbiota and its dynamics related to different factors can be a powerful tool for understanding basic and applied ecological contexts. The main objective of this paper was to assess the changes of carbon turnover rate and the microbial metabolic activity, when different types of fertilizers were used, process called priming effect. A microcosm experiment was designed and performed under controlled temperature and humidity and the soil samples were analyzed using the MicroResp technique. Results show that the integration in soil of different carbon sources, such as green manure, can lead to a positive priming effect and integration of mineral fertilizers can lead to negative priming effect. The carbon sources with the highest respiratory activity were α-ketoglutaric acid, malic acid, oxalic acid, citric acid, while the lowest respiratory activity was obtained in case of arginine.

  11. Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils.

    Science.gov (United States)

    Wang, Ning; Ding, Long-Jun; Xu, Hui-Juan; Li, Hong-Bo; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-03-01

    Fertilization affects bacterial communities and element biogeochemical cycling in flooded paddy soils and the effect might differ among soil types. In this study, five paddy soils from Southern China were subjected to urea addition to explore impacts of fertilization on nitrogen oxide (N2O) emission and bacterial community composition under the flooding condition. 16S rRNA gene-based illumina sequencing showed no obvious shifts in bacterial community composition of five soils after urea addition. However, some genera were affected by fertilization addition and the influenced genera varied among soils. During the late period (day 8-19) of flooding incubation without urea addition, N2O emission rates were elevated for all soils. However, urea effects on N2O emission were different among flooded soils. For soils where nirS and nirK gene abundances increased with urea addition, N2O emission was significantly increased compared to control treatment. Redundancy analysis showed that dissolved organic carbon, ammonium (NH4 (+)), ferrous iron (Fe(2+)) and nitrate (NO3 (-)) in pore water explained 33.4% of the variation in soil bacterial community composition, implying that urea regimes influenced the relative abundance of some bacterial populations possibly by regulating soil characteristics and then influencing N2O emission. These results provided insights into soil type-dependent effect of fertilization on the overall bacterial communities and nitrogen oxide emission in flooded paddy soils. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. INFLUENCE OF REDUCED SOIL TILLAGE AND NITROGEN FERTILIZATION AT WINTER WHEAT AND SOYBEAN GRAIN YIELDS AT BARANYA HIPOGLEY SOIL TYPE

    Directory of Open Access Journals (Sweden)

    Miro Stošić

    2012-12-01

    Full Text Available During the three years (2006/2007-2008/2009 stationary research of reduced soil tillage had been conducted for winter wheat and soybean, at marsh gley (hipogley hydromeliorated soil type of Baranya. The research has been conducted with eight soil tillage treatments and three nitrogen fertilization treatments set up in split-plot design in four repetitions. Soil tillage treatments consisted of four continued soil tillage systems for both crops: OR-conventional soil tillage, TR-multiple diskharrowing, RT-chiseling and diskharrowing, NT-no-tillage and four discontinued soil tillage systems: OsTp-OR for soybean TR for w. wheat in the forthcoming season: OpTs-OR for w.wheat TR for soybean in the forthcoming season, NpOs-NT for w. wheat OR for soybean in forthcoming season: NsOp-NT for soybean OR for w. wheat in forthcoming season. Nitrogen fertilization treatment had three levels of applied nitrogen: for w.wheat G-1=120, G-2=150, G-3=180 kg N ha -1 and for soybean G-1=35, G-2=70, G-3=110 kg N ha-1. Weather conditions had significant aberrations during 2006/2007 and 2008/2009 (extremely drought seasons, whereas 2007/2008 season was moderately humid. The high and stabile average winter wheat grain yields had been achieved, with statistical difference among years of the research, whereas yield decreased by applied soil tillage systems in the order as follows: RT (7.78 > NsOp (7.75 > OR (7.74 > OpTs (7.62 > TR (7.63 > OsTp (7.58 > NpOs (6.95 > NT (6.92 t ha-1, with NpOs and NT treatments recorded significantly lower yields in comparison with OR treatment. According to three year averages, normal and relatively stabile soybean grain yield has been achieved, with significant difference among years, whereas soil tillage systems showed the following decrease order: NpOs (2.62 > OR (2.58 > OsTp (2.56 > NsOp (2.49 > TR (2.46 = RT (2.46 > NT (2.42 > OpTs (2.35 t ha-1. In comparison with OR treatment, only OpTs had significantly lower soybean grain yield. The

  13. Long-term fertilization modifies the structures of soil fulvic acids and their binding capability with Al.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    Full Text Available The binding characteristics of organic ligands and minerals in fulvic acids (FAs with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year fertilization experiment: chemical (NPK fertilization and swine manure (SM fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling.

  14. Long-term fertilization modifies the structures of soil fulvic acids and their binding capability with Al.

    Science.gov (United States)

    Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui

    2014-01-01

    The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling.

  15. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    Science.gov (United States)

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition.

  16. Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil

    Directory of Open Access Journals (Sweden)

    Yu Fang

    2015-12-01

    Full Text Available Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV is a major green manure of rice (Oryza sativa L. fields in southern China, which is recommended as an important agronomic practice to improve soil fertility. Soil chemical properties, abundance and community structures of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in a MV-rice rotation field under different fertilization regimes were investigated. The field experiment included six treatments: control, without MV and chemical fertilizer (CK; 100% chemical fertilizer (NPK; 18 000 kg MV ha-1 plus 100% chemical fertilizer (NPKM1; 18 000 kg MV ha-1 plus 40% chemical fertilizer (NPKM2; 18 000 kg MV ha-1 alone (MV; and 18 000 kg MV ha-1 plus 40% chemical fertilizer plus straw (NPKMS. Results showed that NPKMS treatment could improve the soil fertility greatly although the application of 60% chemical fertilizer. The abundance of AOB only in the MV treatment had significant difference with the control; AOA were more abundant than AOB in all corresponding treatments. The NPKMS treatment had the highest AOA abundance (1.19 x 10(8 amoA gene copies g-1 and the lowest abundance was recorded in the CK treatment (3.21 x 10(7 amoA gene copies g-1. The abundance of AOA was significantly positively related to total N, available N, NH4+-N, and NO3--N. The community structure of AOA exhibited little variation among different fertilization regimes, whereas the community structure of AOB was highly responsive. Phylogenetic analysis showed that all AOB sequences were affiliated with Nitrosospira or Nitrosomonas and all AOA denaturing gradient gel electrophoresis (DGGE bands belonged to the soil and sediment lineage. These findings could be fundamental to improve our understanding of AOB and AOA in the N cycle in the paddy soil.

  17. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    Directory of Open Access Journals (Sweden)

    Qingxiang Yang

    2016-06-01

    Full Text Available Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1 non-treated; (2 chicken manure-treated and (3 organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB in soil and multiple antibiotic-resistant endophytic bacteria (MAREB in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  18. Phosphorus Accumulation and Sorption in Calcareous Soil under Long-Term Fertilization.

    Directory of Open Access Journals (Sweden)

    Rui Wang

    Full Text Available Application of phosphorus (P fertilizers to P-deficient soils can also result in P accumulation. In this study, soil P status and P uptake by apple trees were investigated in 5-, 10-, and 15-year-old orchards in the semi-arid Loess Plateau, China, and subset soils with different soil P statuses (14-90 Olsen-P mg kg(-1 were selected to evaluate the characteristic P adsorption. Due to the low P-use efficiency (4-6%, total soil P increased from 540 mg kg(-1 to 904 mg kg(-1, Olsen-P ranged from 3.4 mg kg(-1 to 30.7 mg kg(-1, and CaCl2-P increased from less than 0.1 mg kg(-1 to 0.66 mg kg(-1 under continuous P fertilization. The P sorption isotherms for each apple orchard were found to fit the Langmuir isotherm model (R2 = 0.91-0.98. K (binding energy and Qm (P sorption maximum decreased, whereas DPS (degree of phosphorus sorption increased with increasing P concentration. CaCl2-P increased significantly with the increase of Olsen-P, especially above the change point of 46.1 mg kg(-1. Application of surplus P could result in P enrichment in P-deficient soil which has high P fixation capacity, thus posing a significant environmental risk.

  19. Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity

    Directory of Open Access Journals (Sweden)

    Johan Habig

    2015-07-01

    Full Text Available Soil microbial communities perform critical functions in ecosystem processes. These functions can be used to assess the impact of agricultural practices on sustainable crop production. In this five-year study, the effect of various agricultural practices on soil microbial diversity and activity was investigated in a summer rainfall area under South African dryland conditions. Microbial diversity and activity were measured in the 0–15 cm layer of a field trial consisting of two fertilizer levels, three cropping systems, and two tillage systems. Using the Shannon–Weaver and Evenness diversity indices, soil microbial species richness and abundance were measured. Microbial enzymatic activities: β-glucosidase, phosphatase and urease, were used to evaluate ecosystem functioning. Cluster analysis revealed a shift in soil microbial community diversity and activity over time. Microbial diversity and activity were higher under no-till than conventional tillage. Fertilizer levels seemed to play a minor role in determining microbial diversity and activity, whereas the cropping systems played a more important role in determining the activity of soil microbial communities. Conservation agriculture yielded the highest soil microbial diversity and activity in diversified cropping systems under no-till.

  20. Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT The composition of organic waste (OW and its effect on soil processes may change soil fertility and electrical conductivity (EC. The side effects of waste use in crop fertilization are poorly understood for Brazilian soils. This study examined the effect of the addition of 15 different organic wastes to Oxisols and a Neosol on pH, base saturation, EC, cation exchange capacity (CEC at pH 7, and the availability of Al, macro (P, K, Ca2+, Mg2+ and S and micronutrients (B, Fe2+, Mn2+, Cu2+ and Zn2+. Soil samples (150 g were treated with chicken, pig, horse, cattle, and quail manures, sewage sludge 1 and 2, eucalyptus sawdust, plant substrate, coconut fiber, pine bark, coffee husk, peat, limed compost, and biochar. Wastes were added considering a fixed amount of C (2 g kg-1, which resulted in waste rates ranging from 2.5 to 25.6 Mg ha-1. The soil-waste mixtures were incubated for 330 days in laboratory conditions. The waste liming or acidification values were soil-dependent. The use of some manures and compost increased the pH to levels above of those considered adequate for plant growth. The soil EC was slightly increased in the Neosol and in the medium textured Oxisol, but it was sharply changed (from 195 to 394 µS cm-1 by the addition of organic wastes in the clayey Oxisol, although the EC values were below the range considered safe for plant growth. Changes in the soil availability of P, K+, Ca2+ and Zn2+ were highly related to the inputs of these nutrients by the wastes, and other factors in soil changed due to waste use. Organic waste use simultaneously affects different soil fertility attributes; thus, in addition to the target nutrient added to the soil, the soil acidity buffering capacity and the waste liming and agronomic value must be taken into account in the waste rate definition.

  1. Characterization of soil fertility and soil biodiversity with dsDNA as a covariate in a regression estimator for mean microbial biomass C

    NARCIS (Netherlands)

    Bragato, G.; Fornasier, F.; Brus, D.J.

    2016-01-01

    The analytical determination of microbial biomass carbon is time-consuming, which limits its use as a reference biochemical property for characterizing soil fertility and soil biodiversity of soil mapping units (SMUs). This paper explores whether the efficiency of sampling strategies for

  2. Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste.

    Science.gov (United States)

    Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús

    2016-06-01

    Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources.

  3. Natural Fertility and Metals Contents in Soils of Rio Grande do Sul (Brazil

    Directory of Open Access Journals (Sweden)

    Daiana Althaus

    2018-02-01

    Full Text Available ABSTRACT: The parent geological materials and formation factors influence the chemical, physical, and mineralogical properties and composition of the soil. Therefore, the aims of this study were to determine the chemical and some physical and mineralogical properties of the soil useful for agricultural practice; to determine the natural contents of the semitotal metals in soils of the state of Rio Grande do Sul (Brazil; and to suggest use of the quality reference values (QRVs in accordance with Resolution 420/2009 of the National Commission for the Environment (Conama. To determine some soil properties useful for agricultural, 254 surface soil samples from areas without known human influence (native grasslands or forests were analyzed according to the methodology used by the soil testing laboratories of the state of Rio Grande do Sul. In addition, the semitotal heavy metal (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn contents of the soil were determined by the Usepa 3050B method and Hg was determined through an adaptation of the Usepa 7471 method. The results were studied in five soil groups from the state of Rio Grande do Sul according to soil parent materials: (1 basalt (volcanic rocks of the Plateau region, (2 crystalline rocks (granite, schists, etc. of the Southern Shield, (3 pelitic rocks (siltstones, mudstones, etc. of the Peripheral Depression, (4 sandstones (sedimentary of the Central Plains, and (5 sediments (unconsolidated of the Coastal Plains. The properties for agricultural use of these soils were compared using the criteria adopted by the current fertilizer recommendations for the state. Multivariate analysis was used to study metals contents. Average values of available P contents were low in all soil groups; however, average values were high in several soil groups for available K. Averages of total acidity and cation exchange capacity were higher in Group 1 soils. The average values of extractable Zn, Cu, and S were high in all soils

  4. New methods to quantify NH3 volatilization from fertilized surface soil with urea

    Directory of Open Access Journals (Sweden)

    Ana Carolina Alves

    2011-02-01

    Full Text Available Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1 Polyurethane foam (density 20 kg m-3 with phosphoric acid solution absorber (foam absorber, installed 1, 5, 10 and 20 cm above the soil surface; (2 Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface; (3 Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface; (4 Semi-open static collector; (5 15N balance (control. The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.

  5. A study on the impact of phosphate fertilizers on the radioactivity profile of cultivated soils in Srirangam (Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    P. Shahul Hameed

    2014-10-01

    Full Text Available Phosphate fertilizers are enriched with 238U during its production from phosphate rocks. Since, application of phosphate fertilizers in modern agriculture is ever on the increase, the present study investigated the impact of phosphate fertilizers on the radioactivity profile of cultivated (fertilized soils as against virgin soils. Thirty soil samples each from cultivated fields and virgin fields were collected from Srirangam taluk and analyzed for the activity concentrations of 238U, 232Th and 40K employing gamma ray spectrometry. Similar analysis was also undertaken in commonly used phosphate fertilizers. Among the phosphate fertilizers analyzed single super phosphate (396.3 Bq/kg and triple super phosphate (284.2 Bq/kg registered higher level of 238U. The mean activity level of 238U in cultivated soil (8.4 Bq/kg was 25% higher than that of virgin soil (6.8 Bq/kg, while the mean 232Th and 40K activities in cultivated soil (98.4 Bq/kg & 436 Bq/kg were elevated by 12.4% and 4% respectively as compared to virgin soil (87.5 Bq/kg & 419 Bq/kg. The mean radium equivalent (Raeq value for virgin and cultivated soil samples was found to be 164.5 Bq/kg and 181.7 Bq/kg respectively. It is evident that the application of phosphate fertilizers elevated 238U level of the soil. However, the mean Raeq value for soil samples is well below the permissible limit of 370 Bq/kg and hence cultivated soils do not pose any radiological risk.

  6. Human interactions in soil and geomorphic processes in Nepal: the role of soil fertility in degradation and rehabilitation processes

    Science.gov (United States)

    Schreier, Hans; Brown, Sandra; Shah, Pravakar B.; Shrestha, Bhuban; Nakarmi, Gopal; Allen, Richard

    A GIS approach was used in the determination of soil fertility status in the Jhikhu Khola watershed. The watershed was stratified by topography, climate, soil type and land use using GIS overlay techniques. A (2 × 2 × 2 × 4) factorial approach served as the sampling framework to produce single and combined nutrient deficiency GIS maps. Soil acidity, phosphorus availability and lack of base cations were identified as the key soil fertility issues, with forests having the poorest overall soil nutrient status, followed by rangeland, rainfed agriculture and irrigated agriculture. Nutrient budget calculations revealed significant annual deficits in phosphorus for maizerotations but only minor deficits for rice rotations. The effect of inherited biophysical conditions on nutrient deficits were analyzed statistically and displayed using the GIS overlay method. Poor fertility and annual deficits were linked to erosion and sedimentation by documenting annual erosion losses from rainfed agriculture and degraded areas. Over a 7 year period, typical erosion from maize rotations in rainfed agriculture averaged 19 t/ha annually, while erosion from degraded sites were 75-100 percent higher. Significantly different sediment rating curves were obtained from two micro-watersheds, one with 14 percent and the other 25 percent degraded areas. Annual sediment contributions to the micro-watersheds confirmed that degraded sites increase the suspended sediment load, particularly under lower stream flow conditions. The discharge-sediment regression line was significantly higher during the pre-monsoon period than during the monsoon season. GIS tools were found to be useful in all parts of the analysis.

  7. External costs of cadmium emissions to soil: a drawback of phosphorus fertilizers

    DEFF Research Database (Denmark)

    Pizzol, Massimo; C.R. Smart, James; Thomsen, Marianne

    2014-01-01

    ammonium phosphate) and mineral fertilizer produced the lowest external health costs, followed by the fertilizer products wastewater sludge and pig manure. The external cost estimates produced in this study could be used to design economic policy instruments to encourage use of cleaner fertilizer products....... concentration to be calculated for each scenario. Human exposure was determined based on soil-crop bioconcentration factors for cadmium and dietary intake rates of Danish food crops. Updated dose-response functions linking lifetime cadmium intake to the probability of developing cadmium-induced renal disease...... and osteoporosis were applied. These impacts were converted into monetary values by using the EU standard value of a life-year adjusted for quality of life experience. Annualized cost per unit of phosphorus and cadmium are presented, discounted and undiscounted, for comparison. Application of struvite (magnesium...

  8. Carbon mineralization and soil fertility at high altitude grasslands in the Bolivian Andean

    Science.gov (United States)

    Zornoza, R.; Muñoz, M. A.; Faz, A.

    2012-04-01

    The high grasslands of Apolobamba provide a natural habitat for a high number of wild and domestic camelids such as vicuna (Vicugna vicugna) and alpaca (Lama pacos) in Bolivia. Because of the importance of the camelid raising for the Apolobambás inhabitant economy, it is fundamental to determine the natural resources condition and their availability for the camelid support. The soil organic matter plays a crucial role in the maintenance of the soil fertility at high grasslands. On the other hand, soil respiration is the primary pathway for CO2 fixed by plants returning to the atmosphere and its study is essential to evaluate the soil organic matter mineralization and the global C cycle. Based on this, the objectives of this research were to: (i) evaluate the soil fertility and (ii) determine soil organic matter mineralization on the basis of CO2 releases in Apolobamba. Regarding the lastly vicuna censuses carried out in the studied area, eight representative zones with dissimilar vicuna densities were selected. Other characteristics were also considered to select the study zones: (1) alpaca densities, (2) vegetation communities (3) plant cover and (4) landscape and geo-morphological description. Soil samples from different samplings were collected. Soil respiration was determined at two temperatures: 15 °C (based on the highest atmosphere temperature that was registered in the area) and 25 °C, in order to monitor the increase in soil respiration (Q10). The physico-chemical soil results pointed out the good soil fertility. However, erosive processes could be taken place likely caused by the alpaca grazing. High total organic carbon contents were observed corresponding to the highest soil respiration at 15 °C. This observation was supported by the relationship found between the total organic carbon and the soil respiration. A noticeable increase of the soil respiration when the temperature increased 10 °C was reported (from 1083 ± 47 g C m-2 yr-1 at 15 °C to

  9. Effects of nitrogen fertilizer sources and temperature on soil CO2 efflux in Italian ryegrass crop under Mediterranean conditions

    Directory of Open Access Journals (Sweden)

    Roberto Lai

    2012-06-01

    Full Text Available We report the results of a study that aimed to assess the dynamics of total and heterotrophic soil respiration and its relationships with soil temperature or soil moisture of an Italian ryegrass haycrop managed with different nitrogen (N fertilizer sources. The field experiment was carried out in the Nitrate Vulnerable Zone of the dairy district of Arborea, a reclaimed wetland in central-western Sardinia, Italy. This is an area characterized by sandy soils, shallow water table and intensive dairy cattle farming systems. Italian ryegrass is grown for hay production in the context of a double cropping rotation with silage maize. We analyzed the effects of N fertilizer treatments on soil carbon dioxide (CO2 efflux, soil water content and soil temperature: i farmyard manure; ii cattle slurry; iii mineral fertilizer; iv 70 kg ha-1 from slurry and 60 kg ha-1 from mineral fertilizer that corresponds to the prescriptions of the vulnerable zone management plan. During the monitoring period, soil water content never fell below 8.6% vol., corresponding to approximately -33 kPa matric potential. Total and heterotrophic soil respiration dynamics were both influenced by soil temperature over winter and early spring, reaching a maximum in the first ten days of April in manure and slurry treatments. In the last 30 days of the Italian ryegrass crop cycle, total soil respiration decreased and seemed not to be affected by temperature. The analysis of covariance with soil temperature as covariate showed that average respiration rates were significantly higher under the manure treatment and lower with mineral fertilizer than the slurry and slurry+mineral treatments, but with similar rates of respiration per unit increase of soil temperature for all treatments. The average soil respiration rates were significantly and positively related to the soil carbon (C inputs derived from fertilizers and preceding crop residuals. We concluded that: i the fertilizer source

  10. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    Science.gov (United States)

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Behavior phosphorous fertility throughout the years in a sugarcane cultivation region on a vertisol soil

    Directory of Open Access Journals (Sweden)

    Emma Pineda Ruiz

    2014-07-01

    Full Text Available The sugarcane phosphorus fertilization enhances the growth of the roots, the thickness of the stalks and stimulates sprouting. The data of 14 successive sugarcane harvests are introduced in this paper. The sugarcane was grown on a Vertisol soil, with high levels of phosphorus, located in northern Villa Clara, where phosphorus doses are studied, ranging from 0 up to 250 P2O5 kg ha-1. There was no response to phosphorus fertilization in none of the evaluated stools. In the plots that phosphorus fertilization was not applied during that period, the content value of phosphorus was reduced, which remained in the category of High (3.6-13.0 mg P2O5 100 g-1. While, in those fertilized stools, with doses up to 150 kg P2O5 ha-1, the phosphorus levels did not decrease so abruptly and with greater doses the content increases in relation to the initial value. The balance of the element in the soil is positive in all the treatments.

  12. [Ammonia volatilization of slow release compound fertilizer in different soils water conditions].

    Science.gov (United States)

    Hu, Xiao-feng; Wang, Zheng-yin; You, Yuan; Li, Jing-chao

    2010-08-01

    By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency.

  13. [Effects of rotations and different green manure utilizations on crop yield and soil fertility].

    Science.gov (United States)

    Yao, Zhi-yuan; Wang, Zheng; Li, Jing; Yu, Chang-wei; Cao, Qun-hu; Cao, Wei-dong; Gao, Ya-jun

    2015-08-01

    A 4-year field experiment was conducted to investigate the influence of three rotation systems and three corresponding leguminous green manure (LGM) application methods on wheat yield and soil properties. The rotation patterns were summer fallow--winter wheat (SW), LGM-- winter wheat (LW) and LGM--spring maize--winter wheat (LMW). The three LGM application methods of LW included: early mulch, early incorporation and late incorporation while the three LGM application methods of LMW were: stalk mulch, stalk incorporation and stalk move-away. The results indicated that for LW, LGM consumed more soil water, thus the wheat yield was not stable. The nitrate storage in 0-200 cm soil after wheat harvest was significantly higher than that of the others, indicating an increasing risk of nitrate leaching. Early mulch under LW had the highest soil organic carbon (SOC) content and storage of SOC (SSOC) in 0-20 cm soil. For LMW, wheat yield was comparatively stable among years, because of higher water storage before wheat seeding, and the nitrate storage in 0-200 cm soil after wheat harvest was significantly lower than LW, which decreased the risk of nitrate leaching. Stalk mulch had higher SOC content in 0-20 cm soil after wheat harvest compared with move-away. In addition, compared with the soil when the experiment started, stalk much also increased SSOC in 0-20 cm soil. In conclusion, LMW with stalk mulch could increase soil water storage, stabilize crop yield, improve soil fertility and decrease 0-200 cm soil nitrate storage. This system could be treated as a good alternative for areas with similar climate.

  14. Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility

    Science.gov (United States)

    Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna

    2017-04-01

    Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks

  15. Effects of Applying Humic Acids and Bio-fertilizer on the Qualities and Yields of Strawberry and Soil Agrochemical Characters

    OpenAIRE

    LIU Ji-pei; LIU Wei-yi; ZHOU Jie; LI Tong; ZHAO Yue; ZHANG Meng

    2015-01-01

    A greenhouse experiment was conducted to study the effect of humic acids and bio-fertilizer on the qualities, yields of strawberry and soil agrochemical characters. Humic acids and bio-fertilizer were applied based on the requirement of the normal growth of strawberry. Four treatments were plotted: control(conventional treatment), dressing humic acid, topdressing bio-fertilizer, dressing humic acid+bio-fer-tilizer. Each treatment was repeated three times and randomly arranged. Results showed ...

  16. Sweet potato yield and physical and chemical properties of soil in function of organic and mineral fertilizers

    OpenAIRE

    Amarílis Beraldo Rós; Nobuyoshi Narita; Andréia Cristina Silva Hirata

    2014-01-01

    Sweet potato crop is usually cultivated with low fertilization investments, but the crop can present significant yield increase when correct fertilization is carried out in its cultivation. In this study aimed to evaluate the influence of the use of different fertilizer sources and doses on sweet potato yield and on physical and chemical properties of soil. The experimental design was a randomized block in 3x5 factorial scheme, with three replications. The treatments were composed of fertiliz...

  17. Heavy metals availability and soil fertility after land application of sewage sludge on dystroferric Red Latosol

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Moreira

    2013-12-01

    Full Text Available Sewage sludge is the solid residue obtained from urban sewage treatment plants. It is possible to use the sludge in a sustainable way as fertilizer and as soil conditioner due to its high levels of organic matter and nutrients. Besides pathogens and volatile organic compounds, the residue may also contain heavy metals which may accumulate and contaminate crops and the food chain. The aim of this study was evaluates the changes in the fertility of dystrophic Red Latosol and in the availability of heavy metals following application of sewage sludge. It was assessed whether organic matter supplied to the soil as large amounts of sewage sludge would decrease availability of heavy metals in the soil due to of insoluble compounds formation. From this, an experiment was carried out in polyethylene pots using lettuce plant for test. Sewage sludge were applied to the soil in concentrations equivalent to 60, 120 and 180 t ha-1, and a control without sludge, in four replicates, in a completely randomized design. The results show that sewage sludge led to an increase of organic matter contents, of the cation exchange capacity (CEC and of nutrients found in the soil. It also improved plant growth up to a concentration of 120 t ha-1. Availability of heavy metals, however, was reduced in sludge concentrations starting with 120 t ha-1.

  18. Effects of variety, soil type and nitrogen fertilizer supply on the nutritive value of barley for growing-finishing pigs

    National Research Council Canada - National Science Library

    J. VALAJA; K. SUOMI; T. ALAVIUHKOLA

    2008-01-01

    The effects of variety, soil type and nitrogen (N) fertilizer supply on the nutritive value of barley were studied with chemical analysis, in vitro digestibility and a growth experiment on 240 growing/finishing pigs...

  19. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity

    National Research Council Canada - National Science Library

    Brackin, Richard; Näsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Schmidt, Susanne; Inselsbacher, Erich

    2015-01-01

    ... these with N uptake capacities of sugarcane roots. We show that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude...

  20. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    Directory of Open Access Journals (Sweden)

    Narges Milani

    Full Text Available Zinc oxide (ZnO nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP and urea using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF mapping and absorption fine structure spectroscopy (μ-XAFS. Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO42.2H2O and zinc ammonium phosphate (Zn(NH4PO4 species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be

  1. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    Science.gov (United States)

    Milani, Narges; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G; Stacey, Samuel P; McLaughlin, Mike J

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF) mapping and absorption fine structure spectroscopy (μ-XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same

  2. Nitrogen dynamics in arctic tundra soils of varying age: differential responses to fertilization and warming.

    Science.gov (United States)

    Yano, Yuriko; Shaver, Gaius R; Rastetter, Edward B; Giblin, Anne E; Laundre, James A

    2013-12-01

    In the foothills of the Brooks Range, Alaska, different glaciation histories have created landscapes with varying soil age. Productivity of most of these landscapes is generally N limited, but varies widely, as do plant species composition and soil properties (e.g., pH). We hypothesized that the projected changes in productivity and vegetation composition under a warmer climate might be mediated through differential changes in N availability across soil age. We compared readily available [water-soluble NH4 (+), NO3 (-), and amino acids (AA)], moderately available (soluble proteins), hydrolyzable, and total N pools across three tussock-tundra landscapes with soil ages ranging from 11.5k to 300k years. The effects of fertilization and warming on these N pools were also compared for the two younger sites. Readily available N was highest at the oldest site, and AA accounted for 80-89 % of this N. At the youngest site, inorganic N constituted the majority (80-97 %) of total readily available N. This variation reflected the large differences in plant functional group composition and soil chemical properties. Long-term (8-16 years) fertilization increased the soluble inorganic N by 20- to 100-fold at the intermediate-age site, but only by twofold to threefold at the youngest site. Warming caused small and inconsistent changes in the soil C:N ratio and AA, but only in soils beneath Eriophorum vaginatum, the dominant tussock-forming sedge. These differential responses suggest that the ecological consequences of warmer climates on these tundra ecosystems are more complex than simply elevated N-mineralization rates, and that the responses of landscapes might be impacted by soil age, or time since deglaciation.

  3. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China

    Science.gov (United States)

    Zhang, W. J.; Wang, X. J.; Xu, M. G.; Huang, S. M.; Liu, H.; Peng, C.

    2010-02-01

    Soil carbon sequestration is a complex process influenced by agricultural practices, climate and soil conditions. This paper reports a study of long-term fertilization impacts on soil organic carbon (SOC) dynamic from six long-term experiments. The experiment sites are located from warm-temperate zone with a double-cropping system of corn (Zea mays L.) - wheat (Triticum Aestivium L.) rotation, to mild-temperate zones with mono-cropping systems of continuous corn, or a three-year rotation of corn-wheat-wheat. Mineral fertilizer applications result in an increasing trend in SOC except in the arid and semi-arid areas with the mono-cropping systems. Additional manure application is important to maintain SOC level in the arid and semi-arid areas. Carbon conversion rate is significant lower in the warm-temperate zone with double cropping system (6.8%-7.7%) than that in the mild-temperate areas with mono-cropping systems (15.8%-31.0%). The conversion rate is significantly correlated with annual precipitation and active accumulative temperature, i.e., higher conversion rate under lower precipitation and/or temperature conditions. Moreover, soil high in clay content has higher conversion rate than soils low in clay content. Soil carbon sequestration rate ranges from 0.07 to 1.461 t ha-1 year-1 in the upland of northern China. There is significantly linear correlation between soil carbon sequestration and carbon input at most sites, indicating that these soils are not carbon-saturated thus have potential to migrate more CO2 from atmosphere.

  4. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China

    Directory of Open Access Journals (Sweden)

    W. J. Zhang

    2010-02-01

    Full Text Available Soil carbon sequestration is a complex process influenced by agricultural practices, climate and soil conditions. This paper reports a study of long-term fertilization impacts on soil organic carbon (SOC dynamic from six long-term experiments. The experiment sites are located from warm-temperate zone with a double-cropping system of corn (Zea mays L. – wheat (Triticum Aestivium L. rotation, to mild-temperate zones with mono-cropping systems of continuous corn, or a three-year rotation of corn-wheat-wheat. Mineral fertilizer applications result in an increasing trend in SOC except in the arid and semi-arid areas with the mono-cropping systems. Additional manure application is important to maintain SOC level in the arid and semi-arid areas. Carbon conversion rate is significant lower in the warm-temperate zone with double cropping system (6.8%–7.7% than that in the mild-temperate areas with mono-cropping systems (15.8%–31.0%. The conversion rate is significantly correlated with annual precipitation and active accumulative temperature, i.e., higher conversion rate under lower precipitation and/or temperature conditions. Moreover, soil high in clay content has higher conversion rate than soils low in clay content. Soil carbon sequestration rate ranges from 0.07 to 1.461 t ha−1 year−1 in the upland of northern China. There is significantly linear correlation between soil carbon sequestration and carbon input at most sites, indicating that these soils are not carbon-saturated thus have potential to migrate more CO2 from atmosphere.

  5. The Effect of Soil Fertilizers on Yield and Growth Traits of Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    R Kamaei

    2016-07-01

    Full Text Available Introduction Since the use of chemical fertilizers causes environmental pollution and ecological damage, so application of biological fertilizers and selection the effective and compatible species in an special area, could be beneficial for sustainability of agroecosystems there. Nowadays, attention to the interrelation of plant-organism tended to interrelations between plant-organism-organism. Such nutritional relations, have ecological importance and important application in agriculture. The aim of this experiment was to evaluate the effect of chemical, organic and bio fertilizers on sorghum performance. Materials and Methods A field experiment was conducted in a randomized complete block design with three replications. The experimental treatments include three kinds of biofertilizers and their integrations and vermicompost and chemical fertilizer as follow: 1- mycorhhiza arbuscular (G.mosseae + vermicompost 2- mycorhhiza+ Nitroxine® (included bacteria Azospirillum sp. and Azotobacter sp. 3- mycorhhiza arbuscular+ Rhizobium (Rhizobium sp. 4-mycorhhiza arbuscular + Chemical fertilizer NPK 5- mycorhhiza arbuscular 6-control. Mycorhhiza and chemical fertilizer were mixed with soil at the depth of 30 cm before planting. Seeds were inoculated with bio fertilizers and dried at shadow. First irrigation applied immediately after planting. In order to improve seedling emergence second irrigation was performed after 4 days and other irrigation was applied at regular intervals of 10 days. Studied traits were: height and percentage of root colonization, specific root length, seed yield, number of seeds in panicle, thousands seeds weight. To determine the specific root length (root length in a certain volume of soil at the end of the growing season, plants in each plot were sampled. Then the length of root of each sample was determined. Results and Discussion The results showed that although the treatments did not affect the height of stem significantly

  6. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  7. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    NARCIS (Netherlands)

    Soares, Johnny R.; Cassman, N.; Kielak, A.M.; Pijl, A.S.; do Carmo, J.B.; Lourenço, Késia S.; Laanbroek, H.J.; Cantarella, H.; Kuramae, E.E.

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O

  8. Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil

    DEFF Research Database (Denmark)

    Guo, Wei; Andersen, Mathias Neumann; Qi, Xue-bin

    2017-01-01

    The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention. Soil microbial activity and nitrogen (N) levels are important indicators of the effect of reclaimed water irrigation on environment. This study evaluated soil...... physicochemical properties and microbial community structure in soils irrigated with reclaimed water and receiving varied amounts of N fertilizer. The results indicated that the reclaimed water irrigation increased soil electrical conductivity (EC) and soil water content (SWC). The N treatment has highly...... significant effect on the ACE, Chao, Shannon (H) and Coverage indices. Based on a 16S ribosomal RNA (16S rRNA) sequence analysis, the Proteobacteria, Gemmatimonadetes and Bacteroidetes were more abundant in soil irrigated with reclaimed water than in soil irrigated with clean water. Stronger clustering...

  9. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    Science.gov (United States)

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  10. Role of Slow-Release Nanocomposite Fertilizers on Nitrogen and Phosphate Availability in Soil

    Science.gov (United States)

    Giroto, Amanda S.; Guimarães, Gelton G. F.; Foschini, Milene; Ribeiro, Caue

    2017-04-01

    Developing efficient crop fertilization practices has become more and more important due to the ever-increasing global demand for food production. One approach to improving the efficiency of phosphate and urea fertilization is to improve their interaction through nanocomposites that are able to control the release of urea and P in the soil. Nanocomposites were produced from urea (Ur) or extruded thermoplastic starch/urea (TPSUr) blends as a matrix in which hydroxyapatite particles (Hap) were dispersed at ratios 50% and 20% Hap. Release tests and two incubation experiments were conducted in order to evaluate the role played by nanocomposites in controlling the availability of nitrogen and phosphate in the soil. Tests revealed an interaction between the fertilizer components and the morphological changes in the nanocomposites. TPSUr nanocomposites provided a controlled release of urea and increased the release of phosphorus from Hap in citric acid solution. The TPSUr nanocomposites also had lower NH3 volatilization compared to a control. The interaction resulting from dispersion of Hap within a urea matrix reduced the phosphorus adsorption and provided higher sustained P availability after 4 weeks of incubation in the soil.

  11. Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

    Directory of Open Access Journals (Sweden)

    Geraldo R. Zuba Junio

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L., variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca and magnesium (Mg silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1 and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis. Soil organic matter (OM, pH, sum of bases (SB, effective cation exchange capacity (CEC(t, total cation exchange capacity (CEC(T, base saturation (V% and potential acidity (H + Al were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

  12. [Weed biodiversity in winter wheat field of loess soil under different fertilization regimes].

    Science.gov (United States)

    Gu, Qiao-zhen; Yang, Xue-yun; Sun, Ben-hua; Zhang, Shu-lan; Tong, Yan-an

    2007-05-01

    Employing an inverted 'W' investigation procedure with 9 sampling locations and adopting a biodiversity analysis approach integrated with typical statistic method, this paper studied the effects of different long-term stationary fertilization regimes on the weed biodiversity in winter wheat fields on loess soil. The results showed that in the experimental plots, there were 16 weed species belonging to 10 family and 16 genera, occupying about 34% of the total number of weed species in winter wheat fields in Shaanxi Province. The weed biodiversity was decreased with the improvement of soil nutrient status. There were 3-5 weed populations in treatments NPK and NPK plus organic materials, and 6-8 populations in treatments CK, N, NK and NP. The relative abundance of weeds ranged from 0 to 73%, and the ranges of Shannon's diversity index, Shannon's evenness index and Margalef' s species richness index were 0.2-1.08, 0.05-0.26 and 0.26-1.26, respectively. All of these 3 parameters were higher in unbalanced than in balanced fertilization treatments, and the differences between unbalanced and balanced fertilization treatments were significant in most case, which was probably due to the different status of available soil nutrients and might have different effects on the growth of weeds.

  13. Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants

    Energy Technology Data Exchange (ETDEWEB)

    Hentati, Olfa, E-mail: olfa_hentati@yahoo.fr [High Institute of Biotechnology of Sfax, University of Sfax, Route de Soukra Km 4.5 P.O. Box 1175, 3038 Sfax (Tunisia); Abrantes, Nelson [Departamento de Ambiente da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); CESAM - Centro de Estudos do Ambiente e do Mar, Campus de Santiago, 3810-193 Aveiro (Portugal); Caetano, Ana Luísa [Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); CESAM - Centro de Estudos do Ambiente e do Mar, Campus de Santiago, 3810-193 Aveiro (Portugal); Bouguerra, Sirine [High Institute of Biotechnology of Sfax, University of Sfax, Route de Soukra Km 4.5 P.O. Box 1175, 3038 Sfax (Tunisia); Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Gonçalves, Fernando [Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); CESAM - Centro de Estudos do Ambiente e do Mar, Campus de Santiago, 3810-193 Aveiro (Portugal); Römbke, Jörg [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, D-65439 Flörsheim am Main (Germany); Pereira, Ruth [Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal)

    2015-08-30

    Highlights: • Assessment of the impact of Tunisian phosphogypsum on soil biota was performed. • A battery of terrestrial and aquatic species was tested. • E. andrei and D. magna were the most sensitive species in amended soil and elutriate. • The high levels of Ca in PG, suggest that it was responsible for the ecotoxicity. • Serious efforts should be made to set clear limits for PG application in soils. - Abstract: Phosphogypsum (PG) is a metal and radionuclide rich-waste produced by the phosphate ore industry, which has been used as soil fertilizer in many parts of the world for several decades. The positive effects of PG in ameliorating some soil properties and increasing crop yields are well documented. More recently concerns are emerging related with the increase of metal/radionuclide residues on soils and crops. However, few studies have focused on the impact of PG applications on soil biota, as well as the contribution to soils with elements in mobile fractions of PG which may affect freshwater species as well. In this context the main aim of this study was to assess the ecotoxicity of soils amended with different percentages of Tunisian phosphogypsum (0.0, 4.9, 7.4, 11.1, 16.6 and 25%) and of elutriates obtained from PG – amended soil (0.0, 6.25, 12.5 and 25% of PG) to a battery of terrestrial (Eisenia andrei, Enchytraeus crypticus, Folsomia candida, Hypoaspis aculeifer, Zea mays, Lactuca sativa) and aquatic species (Vibrio fischeri, Daphnia magna, Raphidocelis subcapitata, Lemna minor). Both for amended soils and elutriates, invertebrates (especially D. magna and E. andrei) were the most sensitive species, displaying acute (immobilization) and chronic (reproduction inhibition) effects, respectively. Despite the presence of some concerning metals in PG and elutriates (e.g., zinc and cadmium), the extremely high levels of calcium found in both test mediums, suggest that this element was the mainly responsible for the ecotoxicological effects

  14. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    OpenAIRE

    Nivelle, Elodie; Verzeaux, Julien; Chabot, Am?lie; Roger, David; Spicher, Fabien; Lacoux, J?r?me; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; T?tu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did n...

  15. The response of soil biota to phosphate fertilization in grassland columns

    Science.gov (United States)

    Ikoyi, Israel; Winstanley, Henry; Fowler, Andrew; Schmalenberger, Achim

    2017-04-01

    The United Nations has predicted that food production is expected to rise by 50% in the year 2020 to feed the increasing world population. Grasslands play significant roles in food production and occupy about 70% of the world's agricultural land. However, intensive use of inorganic fertilizers often associated with increased food production can lead to poor soil quality and environmental pollution. For instance, excessive phosphorus (P) application can lead to eutrophication in surface waters. Although P plays vital roles in many metabolic processes in plants, its primary source rock phosphate is finite. Consequently, the development of more P efficient agricultural systems is paramount. P cycling within the microbial biomass is essential to the P cycle within the soil with its key pathways for P mobilization and mineralization from various soil pools into plant available forms. In this study, soil columns were setup in a greenhouse using a P deficient Irish soil (P index 1). The columns were planted with Lolium perenne and fertilized with 0, 5, 10 and 20 kg/ha inorganic P representing control, low, medium and high rates respectively alongside a full complement of other nutrients. Each treatment was replicated six times and managed for 14 weeks. Results after 14 weeks showed that the weekly measurements of phosphate at different soil depths identified only traces of P in soil solution for the duration of 14 weeks, even after P application. There was a significant increase in alkaline and acid phosphatase activities with the high P compared to the control but no significant effect on plant shoot and root biomass, abundances of cultivable calcium phosphate-, phytate- and phosphonate-utilizing bacteria upon P fertilization. L. perenne rhizosphere of the highest P treatment had significantly lower abundance of bacterial phoD genes, mycorrhizal hyphal and arbuscular colonization rates compared to the control. Likewise, the abundance of bacterial- and fungal

  16. Unexpected results in Chernozem soil respiration while measuring the effect of a bio-fertilizer on soil microbial activity [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gabriela Bautista

    2017-12-01

    Full Text Available The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content.

  17. EFFECT OF INTEGRATED SOIL FERTILITY MANAGEMENT INTERVENTIONS ON THE ABUNDANCE AND DIVERSITY OF SOIL COLLEMBOLA IN EMBU AND TAITA DISTRICTS, KENYA

    Directory of Open Access Journals (Sweden)

    Jamleck Muturi

    2010-10-01

    Full Text Available The study aimed at identifying soil fertility management practices that promote the Collembola population, diversity and survival in the soil. Soil samples were randomly collected from on farm plots amended with: 1-Mavuno ((Ma-is a compound fertilizer containing 26% Potassium, 10% Nitrogen, 10% Calcium, 4% Sulphur, 4% Magnesium and trace elements like Zinc, Copper, Boron, Molybdenum and Manganese, 2-Manure (Mn, 3-Trichoderna (Tr inoculant (is a soil and compost-borne antagonistic fungus used as biological control agent against plant fungal diseases, 4-Farmers practice ((FP where Tripple Super Phosphate (T.S.P. and Calcium Ammonium Nitrate (C.A.N. fertilizers are applied in the soil in mixed form, 5-Tripple Super Phosphate (T.S.P., 6-Calcium Ammonium Nitrate (C.A.N.. These treatments were compared with 7-Control (Co (where soil fertility management interventions where not applied. Soil Collembola were extracted using dynamic behavioural modified Berlese funnel and identified to the genus level. Occurrence of Collembola was significantly affected by soil fertility amendments in both Taita and Embu study sites (P

  18. Impact of nitrogen fertilization on soil-Atmosphere greenhouse gas exchanges in eucalypt plantations with different soil characteristics in southern China.

    Science.gov (United States)

    Zhang, Kai; Zheng, Hua; Chen, Falin; Li, Ruida; Yang, Miao; Ouyang, Zhiyun; Lan, Jun; Xiang, Xuewu

    2017-01-01

    Nitrogen (N) fertilization is necessary to sustain productivity in eucalypt plantations, but it can increase the risk of greenhouse gas emissions. However, the response of soil greenhouse gas emissions to N fertilization might be influenced by soil characteristics, which is of great significance for accurately assessing greenhouse gas budgets and scientific fertilization in plantations. We conducted a two-year N fertilization experiment (control [CK], low N [LN], middle N [MN] and high N [HN] fertilization) in two eucalypt plantations with different soil characteristics (higher and lower soil organic carbon sites [HSOC and LSOC]) in Guangxi, China, and assessed soil-atmosphere greenhouse gas exchanges. The annual mean fluxes of soil CO2, CH4, and N2O were separately 153-266 mg m-2 h-1, -55 --40 μg m-2 h-1, and 11-95 μg m-2 h-1, with CO2 and N2O emissions showing significant seasonal variations. N fertilization significantly increased soil CO2 and N2O emissions and decreased CH4 uptake at both sites. There were significant interactions of N fertilization and SOC level on soil CO2 and N2O emissions. At the LSOC site, the annual mean flux of soil CO2 emission was only significantly higher than the CK treatment in the HN treatment, but, at the HSOC site, the annual mean flux of soil CO2 emission was significantly higher for both the LN (or MN) and HN treatments in comparison to the CK treatment. Under the CK and LN treatments, the annual mean flux of N2O emission was not significantly different between HSOC and LSOC sites, but under the HN treatment, it was significantly higher in the HSOC site than in the LSOC site. Correlation analysis showed that changes in soil CO2 and N2O emissions were significantly related to soil dissolved organic carbon, ammonia, nitrate and pH. Our results suggested significant interactions of N fertilization and soil characteristics existed in soil-atmosphere greenhouse gas exchanges, which should be considered in assessing greenhouse gas

  19. Lime and Soil Moisture Effects on Nitrogen gas Loss Following Fertilizer Application

    Science.gov (United States)

    Gu, C.; Maggi, F.; Riley, W.; Oldenburg, C.

    2007-12-01

    The loss of nitrogen from fertilizer application through ammonia volatilization and nitrous oxide emissions are of major environmental concern. Liming has been regarded as a mitigation option for lowering soil nitrogen gas emissions following the addition of fertilizers. A mechanistic nitrogen-cycle model (TOUGHREACT-N) has been developed to simulate the interaction of water saturation variation with biogeochemical processes, and the balance between liming and soil buffering capacity. The model was tested with data from a laboratory soil incubation following the addition of synthetic urine (500 kg N ha-1). Simulation results agreed well with measured N2O emissions and soil inorganic-N concentrations. The study indicated that liming significantly increase NH3 volatilization, while the reduction in cumulative N2O emissions depended strongly on water regime. The cumulative N2O emissions under relatively dry conditions were reduced by up to 243% with liming. However, the cumulative N2O and N2 emissions were predicted to increase by up to 346% following liming because the resulting NO3--N pools (from enhanced nitrification) were susceptible to enhanced N2O and N2 losses during subsequent water application. Consequently, short-term (i.e., days ¡§C weeks) gains made in reducing soil N2O emissions by liming can be offset, and potentially reversed, by emissions later in the growing season. We describe an approach using the modeling framework to optimize N gas reductions using liming under various edaphic, crop type, fertilizer and irrigation application rates, and climate conditions.

  20. Yield mapping, soil fertility and tree gaps in an orange orchard

    Directory of Open Access Journals (Sweden)

    José Paulo Molin

    2012-12-01

    Full Text Available The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.

  1. Phosphorus levels in soil and lettuce production due to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2014-09-01

    Full Text Available The leafy vegetables are considered nutrient-demanding, but are scarce in the literature works about phosphorus fertilization. This study aimed to evaluate the effect of phosphate on the production of lettuce, content and amount of P accumulated in leaf plants, and to relate levels of P in the clayey soil with plant production. The experiment was conducted in a greenhouse in pots in a randomized block design with ten treatments and four replications. The treatments were made up of P, corresponding to 0, 50, 100, 150, 200, 300, 400, 500, 600 and 700 mg dm-3, as triple superphosphate powder. Portions of 6 dm3 of the clay soil (420 g kg-1 clay received lime, aimed at raising the V % soil to 70 %, equivalent to 20 t ha-1 of cattle manure, and the phosphate fertilizer according to the treatments, remaining incubated for about 30 days. At the end of incubation, each pot received a change of lettuce cultivar Verônica. The plant harvesting was performed 39 days after transplanting the seedlings. O P gave large increases in growth and production of lettuce, and culture responded positively to the application of high doses of the nutrient. A dose of 350 mg dm-3, equivalent to 800 kg ha-1 P2O5, was the most suitable for growing lettuce in the clay soil. In this work conditions, the phosphorus fertilizations it was necessary when the P-Mehlich contents in the clay soil were less than 75 mg dm-3.

  2. Floristic composition and soil fertility in gold mining of Lavrinha, Pontes and Lacerda, MT, Brazil

    Directory of Open Access Journals (Sweden)

    Tatiani Botini Pires

    2011-12-01

    Full Text Available The mining activities cause intense environmental degradation, especially to the soil and vegetation. This study evaluated attributes of floristic composition and soil fertility in areas of open gold mining areas. One hundred plots of 10 × 10 m were distributed in the area effectively mined and in its surroundings. Stem circunference measures (AGC of all identified woody individuals with greater than or equal to 9 cm were taken at 0.3 m height above the ground. In all plots soil samples at 0-20 cm depth were collected for analysis of fertility attributes that are routinely evaluated. In total we observed the occurrence of 92 species and 43 families. The most abundant families were Myrtaceae, Fabaceae and Dilleniaceae; and families that had the greatest numbers of species were Fabaceae (10, Malpighiaceae (7 and Vochysiaceae (5. In the area effectively mined the species with higher importance value index (IVI were Curatella americana (89.1 Cecropia hololeuca (40.9, Roupala montana (12.5 and Pouteria ramiflora (10.2 while in surrounding of the mined area the species with the highest IVI were Myrcia multiflora (25.6, Caryocar brasiliense (15.7, Magonia pubescens (14.8 and Vatareia macrocarpa (14.4. In both areas, the soil had low pH, low availability of P, K+, Ca2+ and Mg2+ and high Al3+ saturation. In spite of the low soil fertility of the studied area, it was able to maintain an overall density of vegetation with AGC > 9 cm of 430 individuals per hectare in the effectively mined area and of 2,220 individuals per hectare in their surroundings.

  3. The distribution of a non-native (Rosa multiflora) and native (Kalmia latifolia) shrub in mature closed-canopy forests across soil fertility gradients

    Science.gov (United States)

    Cynthia D. Huebner; Jim Steinman; Todd F. Hutchinson; Todd E. Ristau; Alejandro A. Royo

    2014-01-01

    Background and aims. A soil fertility gradient, ranging from infertile to highly fertile soils, may define whether or not a plant will establish and spread at a site. We evaluated whether or not such a fertility gradient exists for Rosa multiflora Thunb., a nonnative invasive shrub, and Kalmia latifolia L., a...

  4. Influence of conventional biochar and ageing biochar application to arable soil on soil fertility and plant yield

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    Biochar represents very controversial material which is product of pyrolysis. According to many studies biochar has positive effect on physical and chemical properties such as pH, conductivity, aggregates stability etc. Unfortunately biochar is product of combustion, so it can content toxic substance as are aromatic compound. These substances may have a negative effect on yield and microbial activities in soil. Our aim was eliminated concentration of toxic compound but preserved positive effect of biochar on soil properties. We was ageing/ activating of biochar in water environment and for soil inoculum we used native soil from landscape. Moreover two types of biochar was tested by pot experiment with seven variants, where conventional biochar from residual biomass and ageing biochar were applied in different doses: 10 t/ha, 20t/ha and 50 t/ha. Pots were placed in green house for 90 days and after the end of experiment the following parameters of soil fertility, health and quality were evaluated: content of soil organic matter, arbuscular mycorrhizal colonisation of Lactuca sativa L. roots, leaching of mineral nitrogen, changes in plant available nutrient content, EC and pH. Above all the total yield of indicator plant was observed. The significant (P Lactuca sativa L. roots was observed.

  5. Effects of CO{sub 2} and nitrogen fertilization on soils planted with ponderosa pine

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.W.

    1996-12-01

    The effects of elevated CO{sub 2} (ambient, 525, and 700 {micro}l l{sup -1})and N fertilization (0, 10, and 20 g N m{sup 2} yr{sup -1}) on soil pCO{sub 2}, CO{sub 2} efflux, soil solution chemistry, and soil C and nutrients in an open-top chamber study with Pinus ponderosa are described. Soil pCO{sub 2} and CO{sub 2} efflux were significantly greater with elevated CO{sub 2}, at first (second growing season) in the 525 {micro}l l{sup -1} and later (fourth and fifth growing seasons) in the 700 {micro}l l{sup -1} CO{sub 2} treatments. Soil solution HCO{sub 3}{sup -} concentrations were temporarily elevated in the 525 {micro}l l{sup -1} CO{sub 2} treatment during the second growing season, consistent with the elevated pCO{sub 2}. Nitrogen fertilization had no consistent effect on soil pCO{sub 2} or CO{sub 2} efflux, but did have the expected negative effect on exchangeable Ca{sup 2+}, K{sup +}, and Mg{sup 2+}, presumed to be caused by increased nitrate leaching. Elevated CO{sub 2} had no consistent effects on exchangeable Ca{sup 2+}, K{sup +}, and Mg{sup 2+}, but did cause temporary reductions in soil NO{sup 3{sup -}} (second growing season). Statistically significant negative effects of elevated CO{sub 2} on soil extractable P were noted in the third and sixth growing seasons. However, these patterns in extractable P reflected pre-treatment differences, which, while not statistically significant, followed the same pattern. Statistically significant effects of elevated CO{sub 2} on total C and N in soils were noted in the third and sixth growing seasons, but these effects were inconsistent among N treatments and years. The clearest effect of elevated CO{sub 2} was in the case of C/N ratio in year 6, where there was a consistent, positive effect. The increases in C/N ratio with elevated CO{sub 2} in year six were largely a result of reductions in soil N rather than increases in soil C. Future papers will assess whether this apparent reduction in soil N could have been

  6. Effects of Nitrogen Fixing Pre-Crops and Fertilizers on Physical and Chemical Properties Down the Soil Profile

    Science.gov (United States)

    Hobley, E.; Honermeier, B.; Don, A.; Gocke, M. I.; Amelung, W.; Kogel-Knabner, I.

    2016-12-01

    We investigated the effects of pre-crops with and without biological nitrogen fixation capacity (fava beans, clover mulch, fodder maize) and fertilization (no fertilizer, NPK fertilizer, PK fertilizer) on soil physico-chemical properties (bulk density, electrical conductivity, soil organic carbon (SOC) concentration and stocks, N concentration and stocks) and their depth distribution (down to 1 m) at a long-term field experiment set up in 1982 in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the entire soil profile. The soil was physically and chemically affected by the type of pre-crop. Plots with fava beans and maize had lower bulk densities in the subsoil than those with clover. Pre-crop type also significantly affected the depth distribution of both N and SOC. Specifically, clover pre-cropping led to an enrichment of N at the surface compared with fava beans and maize. SOC enrichment at the surface was also observed under clover, with the effect most pronounced under PK fertilization. Combined with the bulk density effects, this shift in N distribution resulted in significantly higher N stocks under clover than under fava beans. However, the total stocks of SOC were not affected by pre-crop or fertilizer regime. Our results indicate that humans influence C and N cycling and distribution in soils through the selection of pre-crops and that the influence of crop type is greater than that of fertilization regimes. Pre-cropping with clover, which is used as a mulch, leads to N enrichment in the topsoil, reducing the need for N fertilizer for the subsequent cereal crop. In contrast, the use of fava beans as a pre-crop does not lead to N enrichment. We believe this is due to the greater rooting depth of

  7. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization.

    Directory of Open Access Journals (Sweden)

    Aylan K Meneghine

    Full Text Available Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance and Bacillus (~10% in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38% of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem.

  8. Effect of phosphate fertilization on the bioavailability of iron in calcareous soils

    Science.gov (United States)

    Sánchez-Rodríguez, A. R.; del Campillo, M. C.; Barrón, V.; Torrent, J.

    2012-04-01

    Iron (Fe) chlorosis is the most important nutritional problem in sensitive plant species cultivated in calcareous soils, its main symptoms being interveinal yellowing in the younger leaves due to lack of chlorophyll and reduced growth. Fe chlorosis has been related to the content of poorly crystalline Fe oxides in soil. The effect of other nutrients, especially phosphorus (P), is, however, a matter of debate. In this work we examined whether fertilization with P alters the availability of Fe to sensitive plants growing in two different Fe chlorosis-inducing calcareous soils. Phosphate at rates of 0 (control), 25, 50, 100 and 200 mg P kg-1 soil was applied to pots where six-months-old olive trees cv. Arbequina were grown. The experiment lasted three years and took place in a shaded house. Chlorophyll concentration in the young leaves was estimated with the SPAD value (using a Minolta apparatus) three-four times per year. Furthermore, shoot length, dry weight of annual pruning and mineral element concentration were measured at the end of each year. In one of the soils, SPAD and leaf Fe concentration decreased with increasing P dose. However in the other soil, SPAD was not correlated with the rate of applied P. In both soils, potassium and zinc concentrations in plants fertilized with P were lower than those in the control plants. This work was funded by the Spanish Ministry of Science and Innovation, Projects: AGL 2005-06691-C02-01 and AGL 2008-05053-C02-02, and the European Regional Development Funds. ARSR acknowledges the finnancial support from the Spanish Ministry of Education as a fellow of the program "Training of University Teachers" (Formación del Profesorado Universitario, AP2008-04716)

  9. Improvement of Faba Bean Yield Using Rhizobium/Agrobacterium Inoculant in Low-Fertility Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sameh H. Youseif

    2017-01-01

    Full Text Available Soil fertility is one of the major limiting factors for crop’s productivity in Egypt and the world in general. Biological nitrogen fixation (BNF has a great importance as a non-polluting and a cost-effective way to improve soil fertility through supplying N to different agricultural systems. Faba bean (Vicia faba L. is one of the most efficient nitrogen-fixing legumes that can meet all of their N needs through BNF. Therefore, understanding the impact of rhizobial inoculation and contrasting soil rhizobia on nodulation and N2 fixation in faba bean is crucial to optimize the crop yield, particularly under low fertility soil conditions. This study investigated the symbiotic effectiveness of 17 Rhizobium/Agrobacterium strains previously isolated from different Egyptian governorates in improving the nodulation and N2 fixation in faba bean cv. Giza 843 under controlled greenhouse conditions. Five strains that had a high nitrogen-fixing capacity under greenhouse conditions were subsequently tested in field trials as faba bean inoculants at Ismaillia Governorate in northeast Egypt in comparison with the chemical N-fertilization treatment (96 kg N·ha−1. A starter N-dose (48 kg N·ha−1 was applied in combination with different Rhizobium inoculants. The field experiments were established at sites without a background of inoculation under low fertility sandy soil conditions over two successive winter growing seasons, 2012/2013 and 2013/2014. Under greenhouse conditions, inoculated plants produced significantly higher nodules dry weight, plant biomass, and shoot N-uptake than non-inoculated ones. In the first season (2012/2013, inoculation of field-grown faba bean showed significant improvements in seed yield (3.73–4.36 ton·ha−1 and seed N-yield (138–153 Kg N·ha−1, which were higher than the uninoculated control (48 kg N·ha−1 that produced 2.97 Kg·ha−1 and 95 kg N·ha−1, respectively. Similarly, in the second season (2013

  10. Management of sewage sludge and mineral nitrogen in soil fertility over time

    Directory of Open Access Journals (Sweden)

    Thomaz Figueiredo Lobo

    2013-12-01

    Full Text Available The use of sewage sludge is a practice highly promising for the development of sustainable agricultural systems. The objective of this study was to assess the improvement in soil fertility management strategies on different sewage sludge and mineral nitrogen after seven application of this residue. The experiment was carried at the São Manuel Experimental Farm belonging to the faculty of Agronomic Sciences of UNESP, Botucatu, located in the county of São Manuel. It was adopted the experimental design in a randomized blocks consisting of six treatments and five repetitions defined as follows: T0 – without nitrogen fertilizer, T1 – mineral fertilizer nitrogen according to the crop needs, T2 – 50% nitrogen from sewage sludge and 50% in the form of chemical fertilizer, T3 – 100% of nitrogen recommended by the culture, from sewage sludge, T4 - 150% of nitrogen recommended by the culture, from sewage sludge and T5 – 200% of the nitrogen from the sewage sludge. It has done seven application of sewage sludge in crop (year 1 – sunflower, year 2 sunflower, year 3 – oats and bean, year 4 – triticale and sunflower, year 5 – wheat and the first three applications were treated with sewage sludge and the other applications were composted sludge. In the depth 0-20 cm, the sewage sludge promoted an increase in levels of organic matter, P, S, H+Al, CEC and decreased in soil pH. In the depth of 20 to 40 cm the sewage sludge promoted a decrease in pH and increase in soil organic matter, P, H+Al, K, Ca, SB, CEC and S. Mineral N influence the increase in the depth S of 20-40 cm.

  11. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils.

    Directory of Open Access Journals (Sweden)

    Yin Yan

    Full Text Available A laboratory investigation was conducted to evaluate the efficiency of four phosphate fertilizers, including diammonium phosphate (DAP, potassium phosphate monobasic (MPP, calcium superphosphateon (SSP, and calcium phosphate tribasic (TCP, in terms of the toxicity and bioavailability of Cd in contaminated soils. The efficiency of immobilization was evaluated on the basis of two criteria: (a the reduction of extractable Cd concentration below the TCLP regulatory level and (b the Cd changes associated with specific operational soil fractions on the basis of sequential extraction data. Results showed that after 50 d immobilization, the extractable concentrations of Cd in DAP, MPP, SSP, and TCP treated soils decreased from 42.64 mg/kg (in the control to 23.86, 21.86, 33.89, and 35.59 mg/kg, respectively, with immobilization efficiency in the order of MPP > DAP > SSP > TCP. Results from the assessment of Cd speciation via the sequential extraction procedure revealed that the soluble exchangeable fraction of Cd in soils treated with phosphate fertilizers, especially TCP, was considerably reduced. In addition, the reduction was correspondingly related to the increase in the more stable forms of Cd, that is, the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (according to the molar ratio of PO4/Cd increased. Immobilization was the most effective under the molar ratio of PO4/Cd at 4:1.

  12. Phosphorus fertilization of 'Fuyutoyo' cabbages in phosphorus-rich Eutrustox soil

    Directory of Open Access Journals (Sweden)

    Arthur Bernardes Cecílio Filho

    2013-09-01

    Full Text Available Crop fertilization with P is a practice that constantly needs to be improved because of its high cost, natural reserve constraints, and environmental impact caused by the excessive use of nutrients. Phosphorus rates (0, 120, 240, 360, 480, 600, and 720 kg P2O5 ha-1 in the cultivation of 'Fuyutoyo' cabbage (Brassica oleracea L. var. capitata in a P-rich Eutrustox soil (93 mg P dm-3 in Jaboticabal (21°15'22'' S, 48°15'58" W; 575 m a.s.l., São Paulo, Brazil, were evaluated in an experiment with a randomized complete block design with three replicates. Phosphorus rates influenced plant characteristics and soil P content. Maximum leaf and soil P content was obtained with 720 kg P2O5 ha-1, but maximum values of leaf area, leaf dry mass, cabbage head mass, and productivity were obtained with 420, 310, 430, and 437.5 kg ha-1 P2O5, respectively. Results indicate that even crops grown in a P-rich soil benefit from applying P fertilizer, which has a positive effect on the growth and productivity of the 'Fuyutoyo' cabbage.

  13. Zeolite and Hucalcia as Coating Material for Improving Quality of NPK Fertilizer in Costal Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sulakhudin

    2011-05-01

    Full Text Available he growth and yield of plants are mainly a function of the quantity of fertilizer and water. In coastal sandy soil, nutrient losses and dry soils are seriously problems. The objective of the research was to study effect of zeolite and hucalci concentrations as NPK coating materials on NPK qualities i.e. water adsorption and release of N, P and K. The research used a coastal sandy soil as media. It was conducted in a laboratory of Soil Science Department, Gadjah Mada University from July to August 2009. Experimental design used was a factorial in a completely randomized design. The first factor was hucalci concentration, consisted of 10% (H1, 20% (H2, and 30% (H3. The second factor was zeolite concentration, consisted of 25% (Z1, 50% (Z2, 75% (Z3, and 100% (Z4. NPK fertilizer (without coating used as a control. The results showed that hucalci and zeolite had a capability to increase water adsorption and to retard the release of N, P, K. The coated NPK with hucalci 30% and zeolite 100% had the highest quality in water absorption, water retention and release of nutrients.

  14. Model-Based Analysis of the Long-Term Effects of Fertilization Management on Cropland Soil Acidification.

    Science.gov (United States)

    Zeng, Mufan; de Vries, Wim; Bonten, Luc T C; Zhu, Qichao; Hao, Tianxiang; Liu, Xuejun; Xu, Minggang; Shi, Xiaojun; Zhang, Fusuo; Shen, Jianbo

    2017-04-04

    Agricultural soil acidification in China is known to be caused by the over-application of nitrogen (N) fertilizers, but the long-term impacts of different fertilization practices on intensive cropland soil acidification are largely unknown. Here, we further developed the soil acidification model VSD+ for intensive agricultural systems and validated it against observed data from three long-term fertilization experiments in China. The model simulated well the changes in soil pH and base saturation over the last 20 years. The validated model was adopted to quantify the contribution of N and base cation (BC) fluxes to soil acidification. The net NO3(-) leaching and NO4(+)input accounted for 80% of the proton production under N application, whereas one-third of acid was produced by BC uptake when N was not applied. The simulated long-term (1990-2050) effects of different fertilizations on soil acidification showed that balanced N application combined with manure application avoids reduction of both soil pH and base saturation, while application of calcium nitrate and liming increases these two soil properties. Reducing NH4(+) input and NO3(-) leaching by optimizing N management and increasing BC inputs by manure application thus already seem to be effective approaches to mitigating soil acidification in intensive cropland systems.

  15. Effect of fertilizer formulation and bioaugmentation on biodegradation and leaching of crude oils and refined products in soils.

    Science.gov (United States)

    Coulon, F; Brassington, K J; Bazin, R; Linnet, P E; Thomas, K A; Mitchell, T R; Lethbridge, G; Smith, J W N; Pollarda, S J T

    2012-09-01

    The effects of soil characteristics and oil types as well as the efficacy of two fertilizer formulations and three bioaugmentation packages in improving the bioremediation of oil-contaminated soils were assessed as a means of ex situ treatment selection and optimization through seven laboratory microcosm studies. The influence of bioremediation on leaching of oil from the soil was also investigated. The studies demonstrated the benefits ofbiostimulation to overcome nutrient limitation, as most of the soils were nutrient depleted. The application of both liquid and pelleted slow-release N and P fertilizers increased both the hydrocarbon biodegradation rates (by a factor of 1.4 to 2.9) and the percentage of hydrocarbon mass degraded (by > 30% after 12 weeks and 80% after 37 weeks), when compared with the unamended soils. Slow-release fertilizers can be particularly useful when multiple liquid applications are not practical or cost-effective. Bioaugmentation products containing inoculum plus fertilizer also increased biodegradation by 20% to 37% compared with unamended biotic controls; however, there was no clear evidence of additional benefits due to the inocula, compared with fertilizer alone. Therefore biostimulation is seen as the most cost-effective bioremediation strategy for contaminated soils with the levels of crude oil and refined products used in this study. However, site-specific considerations remain essential for establishing the treatability of oil-contaminated soils.

  16. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    Directory of Open Access Journals (Sweden)

    Franz Walter Rieger Hippler

    Full Text Available The zinc (Zn supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  17. Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)

    Gholamreza Heidari

    2016-11-01

    Full Text Available Tillage operation and fertilizer type play important roles in soil properties as far as soil microbial condition is concerned. Information regarding the simultaneous evaluation of the effect of long-term tillage and fertilization on the soil microbial traits of soybean farms is not available. Accordingly, it was hypothesized that, the microbial biomass and enzyme activity, more often than not, respond quickly to changes in soil tillage and fertilization. Therefore, the experiments were aimed at analyzing the responses of soil microbial traits to tillage and fertilization in a soybean field in Kurdistan University, Iran. The field soil is categorized into coarse Loamy, mixed, superactive, calcareous, and mesic Typic Xerorthents. The experiments were arranged in split plot, based on randomized complete block design with three replications. Main plots consisted of long-term (since 2002 tillage systems including conventional tillage (CT, minimum tillage (MT and no-tillage (NT. Eight fertilization methods were employed in the sub-plots, including (F1: farmyard manure (FYM; (F2: compost; (F3: chemical fertilizers; (F4: FYM + compost; (F5: FYM + chemical fertilizers; (F6: compost + chemical fertilizers; (F7: FYM + compost + chemical fertilizers and (F8: Control (without fertilizer. The highest microbial biomass carbon (385.1 μg was observed in NT-F4 treatment. The NT treatment comparatively recorded higher values of acid phosphatase (189.1 μg PNP g-1 h-1, alkaline phosphatase (2879.6 μg PNP g-1 h-1 and dehydrogenase activity (68.1 μg PNP g-1 h-1. The soil treated with a mixture of compost and FYM inputs had the maximum urease activity of all tillage treatments. Organically manured treatment (F4 showed more activity in dehydrogenase (85.7 μg PNP g-1 h-1, acid phosphatase (199.1 µg PNP g-1 h-1 and alkaline phosphatase (3183.6 µg PNP g-1 h-1 compared to those treated with chemical fertilizers. In NT-F4 treatment, using on-farm inputs is most

  18. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China

    NARCIS (Netherlands)

    Dong, J.; Hengsdijk, H.; Dai, T.; Boer, de W.; Qi, J.; Cao, W.

    2006-01-01

    Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the

  19. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  20. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella sativa L.

    Science.gov (United States)

    Salehi, Aliyeh; Fallah, Seyfollah; Sourki, Ali Abasi

    2017-01-01

    Cattle manure has a high carbon/nitrogen ratio and may not decompose; therefore, full-dose application of urea fertilizer might improve biological properties by increasing manure decomposition. This study aimed to investigate the effect of combining cattle manure and urea fertilizer on soil CO2 flux, microbial biomass carbon, and dry matter accumulation during Nigella sativa L. (black cumin) growth under field conditions. The treatments were control, cattle manure, urea, different levels of split and full-dose integrated fertilizer. The results showed that integrated application of cattle manure and chemical fertilizer significantly increased microbial biomass carbon by 10%, soil organic carbon by 2.45%, total N by 3.27%, mineral N at the flowering stage by 7.57%, and CO2 flux by 9% over solitary urea application. Integrated application increased microbial biomass carbon by 10% over the solitary application and the full-dose application by 5% over the split application. The soil properties and growth parameters of N. sativa L. benefited more from the full-dose application than the split application of urea. Cattle manure combined with chemical fertilizer and the full-dose application of urea increased fertilizer efficiency and improved biological soil parameters and plant growth. This method decreased the cost of top dressing urea fertilizer and proved beneficial for the environment and medicinal plant health.

  1. [Effect of soil preparation and fertilization on foliage and shoot growth of Ginkgo biloba and its medicine content].

    Science.gov (United States)

    He, Binghui; Zhong, Zhangcheng

    2004-06-01

    The study showed that the efficiency of various treatments in improving the height growth of Ginkgo biloba was organic fertilizer plus intercropping > soil preparation by blasting plus intercropping > organic fertilizer > soil preparation by blasting > intercropping, and the height growth increased by 14.5%, 8.6%, 5.7%, 3.2% and 0, respectively. The efficiency of the treatments in improving new shoot growth was organic fertilizer plus intercropping > soil preparation by blasting plus intercropping > intercropping > organic fertilizer > soil preparation by blasting, and the new shoot growth increased by 58.1%, 36.6%, 33.1%, 30.2% and 14.0%, respectively. Soil preparation, organic fertilization and intercropping had no different effect on the number of long shoots, but their effect on the numbers of short shoots and leaves was significantly different. The most efficient treatment in improving the medicine content was organic fertilization plus intercropping. Compared with control, the content of quercetin and rutin in Ginkgo biloba leaves increased by 420% and 220%, respectively.

  2. Modelling crop yield, soil organic C and P under variable long-term fertilizer management in China

    Science.gov (United States)

    Zhang, Jie; Xu, Guang; Xu, Minggang; Balkovič, Juraj; Azevedo, Ligia B.; Skalský, Rastislav; Wang, Jinzhou; Yu, Chaoqing

    2016-04-01

    Phosphorus (P) is a major limiting nutrient for plant growth. P, as a nonrenewable resource and the controlling factor of aquatic entrophication, is critical for food security and human future, and concerns sustainable resource use and environmental impacts. It is thus essential to find an integrated and effective approach to optimize phosphorus fertilizer application in the agro-ecosystem while maintaining crop yield and minimizing environmental risk. Crop P models have been used to simulate plant-soil interactions but are rarely validated with scattered long-term fertilizer control field experiments. We employed a process-based model named Environmental Policy Integrated Climate model (EPIC) to simulate grain yield, soil organic carbon (SOC) and soil available P based upon 8 field experiments in China with 11 years dataset, representing the typical Chinese soil types and agro-ecosystems of different regions. 4 treatments, including N, P, and K fertilizer (NPK), no fertilizer (CK), N and K fertilizer (NK) and N, P, K and manure (NPKM) were measured and modelled. A series of sensitivity tests were conducted to analyze the sensitivity of grain yields and soil available P to sequential fertilizer rates in typical humid, normal and drought years. Our results indicated that the EPIC model showed a significant agreement for simulating grain yields with R2=0.72, index of agreement (d)=0.87, modeling efficiency (EF)=0.68, pmanagement practices.

  3. Effects of Inorganic-organic Incorporation on Productivity and Soil Fertility of Rice Cropping System in Red Soil Area of China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei-jun; WANG Kai-rong; ZHANG Guan-yuan; XIE Xiao-li

    2002-01-01

    Results from ten-year (1990- 1999) field experiments indicated that the productivity and the soil fertility of rice cropping system were significantly influenced by the fertilization system adopted in red soil area of China. Contrasting with no-fertilizer treatment (CK), yield-increase rate of organic matter cycling,chemical NPK and inorganic-organic fertilizer incorporation treatments were 56.5%, 62.5% and 80.7%, respectively. In the case of optimum fertilization system, the largest contribution of inorganic fertilizer to the yield was 38.5% while that of inorganic-organic fertilizer incorporation was 44.7 %. The content of soil organic matter changed in tendency from decrease to equilibrium with heightened the extent of N, P and K incorporation while that of inorganic-organic fertilizer incorporation could be enhanced further. After N, P and K entered into the rice cropping system and maintained organic matter cycling in the system, the pools of total N, P and K could be strengthened.

  4. Caespitosa and decumbens Poaceae fertilized with NPK: effects on soil aggregation

    Directory of Open Access Journals (Sweden)

    Dácio Jerônimo de Almeida

    2014-03-01

    Full Text Available The disintegration of soil particles affects its productive capacity, resulting in compression, erosion and nutrient losses. This study aimed at evaluating the aggregates quality and stability of a Yellow Latosol, in a randomized blocks design represented by Urochloa decumbens and Urochloa brizantha, with and without mineral fertilization, and two sampling forms (rows and between rows, in three sampling depths. The undeformed soil samples collected were shattered and passed through a 9.52 mm sieve and, after drying, through a 2.00 mm, 1.00 mm, 0.50 mm and 0.25 mm sieves, according to the following diameters classes: 9.52-2.00 mm, 2.00-1.00 mm, 1.00-0.50 mm and 0.50-0.25 mm, by using dry sieving. These aggregates were also separated by wet sieving and the dispersed clay and root dry matter were determined. Aggregates larger than 2.00 mm showed high stability, in the 0.00-0.05 m layer, when compared to the aggregates from smaller classes, with no effect of sampling and fertilization site on the aggregates size and stability. There was no difference for the two species analyzed, sampling method and fertilization on the aggregates formation and stability.

  5. Production and morphological components of sunflower on soil fertilized with cassava wastewater

    Directory of Open Access Journals (Sweden)

    Mara Suyane Marques Dantas

    Full Text Available ABSTRACT Agroindustrial residues, such as cassava wastewater, have been used as soil fertilizers, reducing environmental pollution and recovering nutrients. The objective of this work was to evaluate production and morphological components and oil yield of sunflower (Helianthus annuus, hybrid Helio-250, fertilized with cassava wastewater. The experiment was conducted at the Experimental Station of the Instituto Agronomico de Pernambuco, Vitória de Santo Antão, State of Pernambuco, Brazil. A randomized block experimental design was used, with six cassava wastewater rates (0, 8.5, 17.0, 34.0, 68.0 and 136 m3 ha-1 and four replications. The variables evaluated were shoot fresh and dry weight, capitulum fresh and dry weight, capitulum diameter, seed yield, oil yield and seed oil content. The use cassava wastewater as soil fertilizer improved the production and morphological variables evaluated, except the seed oil content, which decreased with application of cassava wastewater rates above 25 m3 ha-1.

  6. Integrated effects of reduction dose of nitrogen fertilizer and mode of biofertilizer application on soil health under mung bean cropping system

    National Research Council Canada - National Science Library

    Naba Kumar Mondal; Jayanta Kumar Datta; Arnab Banerjee

    2014-01-01

    To study the integrated effects of reduced dose of chemical fertilizer with different methods and times of application of Rhizobium biofertilizer on soil health and fertility under mung bean (Vigna radiata...

  7. Effect of inorganic nitrogenous fertilizer on productivity of recently reclaimed saline sodic soils with and without biofertilizer.

    Science.gov (United States)

    Mehdi, S M; Sarfraz, M; Shabbir, G; Abbas, G

    2007-07-15

    Saline sodic soils after reclamation become infertile due to leaching of most of the nutrients along with salts from the rooting medium. Microbes can play a vital role in the productivity improvement of such soils. In this study a saline sodic field having EC, 6.5 dS m(-1), pH, 9.1 and gypsum requirement (GR) 3.5 tons acre(-1) was reclaimed by applying gypsum at the rate of 100% GR. Rice and wheat crops were transplanted/sown for three consecutive years. Inorganic nitrogenous fertilizer was used with and without biofertilizers i.e., Biopower (Azospirillum) for rice and diazotroph inoculums for wheat. Nitrogen was applied at the rate of 0, 75% of recommended dose (RD), RD, 125% of RD and 150% of RD. Recommended dose of P without K was applied to all the plots. Biopower significantly improved Paddy and straw yield of rice over inorganic nitrogenous fertilizer. In case of wheat diazotroph inoculum improved grain and straw yield significantly over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for rice and wheat production in recently reclaimed soils. Nitrogen concentration and its uptake by paddy, grain and straw were also increased by biopower and diazotroph inoculum over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for nitrogen concentration and its uptake by paddy, grain and straw. Total soil N, available P and extractable K were increased while salinity/sodicity parameters were decreased with the passage of time. The productivity of the soil was improved more by biofertilizers over inorganic N fertilizers.

  8. Reducing soil phosphorus fertility brings potential long-term environmental gains: A UK analysis

    Science.gov (United States)

    Withers, Paul J. A.; Hodgkinson, Robin A.; Rollett, Alison; Dyer, Chris; Dils, Rachael; Collins, Adrian L.; Bilsborrow, Paul E.; Bailey, Geoff; Sylvester-Bradley, Roger

    2017-05-01

    Soil phosphorus (P) fertility arising from historic P inputs is a major driver of P mobilisation in agricultural runoff and increases the risk of aquatic eutrophication. To determine the environmental benefit of lowering soil P fertility, a meta-analysis of the relationship between soil test P (measured as Olsen-P) and P concentrations in agricultural drainflow and surface runoff in mostly UK soils was undertaken in relation to current eutrophication control targets (30-35 µg P L-1). At agronomic-optimum Olsen P (16-25 mg kg-1), concentrations of soluble reactive P (SRP), total dissolved P (TDP), total P (TP) and sediment-P (SS-P) in runoff were predicted by linear regression analysis to vary between 24 and 183 µg L-1, 38 and 315 µg L-1, 0.2 and 9.6 mg L-1, and 0.31 and 3.2 g kg-1, respectively. Concentrations of SRP and TDP in runoff were much more sensitive to changes in Olsen-P than were TP and SS-P concentrations, which confirms that separate strategies are required for mitigating the mobilisation of dissolved and particulate P forms. As the main driver of eutrophication, SRP concentrations in runoff were reduced on average by 60 µg L-1 (71%) by lowering soil Olsen-P from optimum (25 mg kg-1) to 10 mg kg-1. At Olsen-P concentrations below 12 mg kg-1, dissolved hydrolysable P (largely organic) became the dominant form of soluble P transported. We concluded that maintaining agronomic-optimum Olsen-P could still pose a eutrophication risk, and that a greater research focus on reducing critical soil test P through innovative agro-engineering of soils, crops and fertilisers would give long-term benefits in reducing the endemic eutrophication risk arising from legacy soil P. Soil P testing should become compulsory in priority catchments suffering, or sensitive to, eutrophication to ensure soil P reserves are fully accounted for as part of good fertiliser and manure management.

  9. Do soil fertilization and forest canopy foliage affect the growth and photosynthesis of Amazonian saplings?

    Directory of Open Access Journals (Sweden)

    Nilvanda dos Santos Magalhães

    2014-02-01

    Full Text Available Most Amazonian soils are highly weathered and poor in nutrients. Therefore, photosynthesis and plant growth should positively respond to the addition of mineral nutrients. Surprisingly, no study has been carried out in situ in the central Amazon to address this issue for juvenile trees. The objective of this study was to determine how photosynthetic rates and growth of tree saplings respond to the addition of mineral nutrients, to the variation in leaf area index of the forest canopy, and to changes in soil water content associated with rainfall seasonality. We assessed the effect of adding a slow-release fertilizer. We determined plant growth from 2010 to 2012 and gas exchange in the wet and dry season of 2012. Rainfall seasonality led to variations in soil water content, but it did not affect sapling growth or leaf gas exchange parameters. Although soil amendment increased phosphorus content by 60 %, neither plant growth nor the photosynthetic parameters were influenced by the addition of mineral nutrients. However, photosynthetic rates and growth of saplings decreased as the forest canopy became denser. Even when Amazonian soils are poor in nutrients, photosynthesis and sapling growth are more responsive to slight variations in light availability in the forest understory than to the availability of nutrients. Therefore, the response of saplings to future increases in atmospheric [CO2] will not be limited by the availability of mineral nutrients in the soil.

  10. Chrysanthemum Growth Gains from Beneficial Microbial Interactions and Fertility Improvements in Soil Under Protected Cultivation

    Directory of Open Access Journals (Sweden)

    Radha Prasanna

    2016-07-01

    Full Text Available An investigation was undertaken to analyse the influence of microbial inoculants on growth and enzyme activities elicited, and soil microbiome of two varieties of Chrysanthemum morifolium Ramat, which were grown under protected mode of cultivation. Rhizosphere soil sampling at 45 and 90 DAT (days after transplanting of cuttings revealed up to four- to five-fold enhancement in the activity of defence-, and pathogenesis-related, and antioxidant enzymes, relative to the uninoculated control. Plant growth and soil microbial parameters, especially soil microbial biomass carbon and potential nitrification exhibited significant increases over control. Available soil nitrogen concentrations showed 40%–44% increment in inoculated treatments. Scanning electron microscopy of the root tissues revealed biofilm-like aggregates and individual short bits of cyanobacterial filaments. Analyses of DGGE profiles of archaeal and bacterial communities did not show temporal variations (between 45 and 90 DAT. However, distinct influences on the number and abundance of phylotypes due to microbial inoculants were recorded. The inoculants — Cyanobacterial consortium (BF1- 4 and Anabaena sp.–Trichoderma sp. biofilm (An-Tr were particularly promising in terms of the plant and soil related parameters, and remained distinct in the DGGE profiles generated. The effect of Trichoderma viride–Azotobacter biofilm on soil bacterial and archaeal communities was unique and distinct as a separate cluster. This study highlights that microbial inoculants exert positive effects, which are specific even to the rhizosphere soil microbiome of chrysanthemum varieties tested. Such inoculants can serve as soil fertility enhancing options in protected floriculture.

  11. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations.

    Science.gov (United States)

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community.

  12. Exploring diversity in soil fertility management of smallholder farms in western Kenya I. Heterogeneity at region and farm scale

    NARCIS (Netherlands)

    Tittonell, P.A.; Vanlauwe, B.; Leffelaar, P.A.; Rowe, E.C.; Giller, K.E.

    2005-01-01

    The processes of nutrient depletion and soil degradation that limit productivity of smallholder African farms are spatially heterogeneous. Causes of variability in soil fertility management at different scales of analysis are both biophysical and socio-economic. Such heterogeneity is categorised in

  13. Nitrous oxide fluxes from grassland in the Netherlands. 2. Effects of soil type, nitrogen fertilizer application and grazing

    NARCIS (Netherlands)

    Velthof, G.L.; Oenema, O.

    1995-01-01

    Intensively managed grasslands are potentially a large source of nitrous oxide (N2O) in the Netherlands because of the large nitrogen (N) input and the fairly wet soil conditions. To quantify the effects of soil type, N-fertilizer application and gra

  14. Smallholders' soil fertility management in the Central Highlands of Ethiopia: implications for nutrient stocks, balances and sustainability of agroecosystems

    NARCIS (Netherlands)

    Haileslassie, A.; Priess, J.A.; Veldkamp, E.; Lesschen, J.P.

    2006-01-01

    Low agricultural productivity caused by soil degradation is a serious problem in the Ethiopian Highlands. Here, we report how differences in soil fertility management between farming systems, based either on enset (Ensete ventricosum) or on teff (Eragrostis tef) as the major crops, affect the extent

  15. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome

    NARCIS (Netherlands)

    Wu, Xiong|info:eu-repo/dai/nl/41357668X; Guo, Sai; Jousset, Alexandre|info:eu-repo/dai/nl/370632656; Zhao, Qingyun; Wu, Huasong; Li, Rong; Kowalchuk, George A.|info:eu-repo/dai/nl/23956006X; Shen, Qirong

    2017-01-01

    Fusarium wilt disease is a growing problem in agriculture systems. Application of bio-fertilizers containing beneficial microbes represents a promising disease control strategy. However, the mechanisms underlying disease suppression remain elusive. Here, in order to assess the importance of direct

  16. Utilization of organic fertilizer to increase paddy growth and productivity using System of Rice Intensification (SRI method in saline soil

    Directory of Open Access Journals (Sweden)

    V . O . Subardja

    2016-01-01

    Full Text Available Soil salinity has negative effect on soil biodiversity as well as microbial activities. Hence, rice growth also effected by salinity. Application of organic fertilizer and adoption of System of Rice Intensification (SRI cultivation might improve the (biological soil properties and increase rice yield. The aim of this study was to evaluate the effect of two different rice cultivation methods namely conventional rice cultivation method and System of Rice Intensification (SRI rice cultivation method and two kinds organic fertilizer on improvement of soil biological properties and rice yield. In this study, a split plot experimental design was applied where rice cultivation method (conventional and SRI was the main plot and two kinds of organic fertilizer (market waste and rice straw was the sub plot. The treatments had four replicates. The results showed that SRI cultivation with market waste organic fertilizer could increase soil biological properties (population of microbe, fungi and soil respiration. The same treatment also increased rice growth and production. Combination of SRI and market waste organic fertilizer yielded the highest rice production (7.21 t/ha.

  17. Long-term fertilization of organic manure led to the succession of Bacillus community in an alluvial-aquic soil

    Science.gov (United States)

    Chen, Ruirui; Lin, Xiangui; Feng, Youzhi; Hu, Junli; Wang, Ruirui

    2014-05-01

    Long-term fertilization inevitably influences soil physic-chemical and biological properties. Our previous studies with a long-term fertilization experiment on an alluvial-aquic have revealed that specific Bacillus spp. was observed in organic manure-fertilized soils. The current study investigated the effects of long-term fertilization on the succession of Bacillus community in soils and their functions. The experiment included three fertilizer treatments: organic manure (OM), mineral fertilizers (NPK) and the control (without fertilizers). The results showed that long-term application of chemical fertilizers didn't increase the quantity of soil microbial population as much as organic fertilizers did, but it played an important role in maintaining the diversity and community structure of indigenous Bacilli. Correspondingly, long-term application of organic manure significantly increased the quantity while significantly decreased the diversity of Bacilli community. The ratio of Bacilli/bacteria was more constant in OM treatment than NPK indicating the stability of the response to long-term organic fertilizers. PCR-DGGE and clone library revealed the succession of Bacillus community after long-term application of organic manure and the dominant Bacillus spp occurred in the treatmen OM was Bacillus asahii. Our results also proved that Bacillus asahii was not derived from exogenous organic manure, but one of indigenous bacteria in the soil. Bacillus asahii was induced by the substrate after the application of organic manure, and gradually evolved into dominant Bacillus after 4 to 5 years. With an enzyme assay test of pure species and a soil incubation experiment, we came to a preliminary judgment, that the dominant Bacillus asahii didn't significantly influence the decomposition rate of cellulose and protein in the soil, but it promoted the decomposition of lipids, and could also improve the transformation process from fresh organic matter to humus. Applied organic

  18. Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties.

    Science.gov (United States)

    Cicatelli, Angela; Baldantoni, Daniela; Iovieno, Paola; Carotenuto, Maurizio; Alfani, Anna; De Feis, Italia; Castiglione, Stefano

    2014-09-15

    The use of compost for soil amendment is a promising agricultural practice environmentally and economically viable. In the framework of a wide research project designed to evaluate the effects of soil amendment with municipal solid waste compost in comparison with traditional mineral fertilization practices, 54 different cultivars (Cvs) of potatoes were AFLP (amplified fragment length polymorphism) molecularly fingerprinted. The seven most genetically biodiverse potato Cvs were used to establish an experimental field in southern Italy. The field area was divided into two portions fertilized with compost (20 Mg ha(-1)) or with ammonium sulphate (200 kg ha(-1)). No significant differences in productivity, organoleptic characteristics and element concentrations were observed between the potato tubers obtained with both kinds of soil fertilization, while the tubers grown on compost amended soil showed, on average, higher K concentrations with respect to those grown on mineral fertilised soil. cDNA-AFLP (complementary DNA-AFLP) and MSAP (methylation sensitive amplified polymorphism) analyses were carried out on both leaves and tubers of one selected Cv to estimate if any transcriptome alterations or epigenetic modifications were induced by the two kinds of fertilization, however no variations were detected. Chemical and biological soil qualities (i.e., microbial respiration, FDA hydrolysis, alkaline and acid phosphatase) were assessed on soil samples at the start of the experiment and at the end of potato crop cycle. No significant differences in soil pH and limited ones, in the available fraction of some trace elements, were observed; while conductivity was much higher for the compost amended portion of the experimental field. Microbial respiration, FDA hydrolysis and acid phosphatase activities were significantly increased by compost amendment, in comparison with mineral fertilization. Finally, a sensory panel of potato Cvs detected no significant differences among

  19. Creating a soil data base in a reconnaissance soil fertility study of an ...

    African Journals Online (AJOL)

    The soils were sandy clay loam and the pH indicated a moderate to strong acid status with low content of organic matter, percentage nitrogen, available phosphorus, potassium, calcium and magnesium. A reforestation programme with the planting of acacia for soil rehabilitation was recommended for the reserve as the tree ...

  20. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios

    Science.gov (United States)

    Jiang, Guiying; Xu, Minggang; He, Xinhua; Zhang, Wenju; Huang, Shaomin; Yang, Xueyun; Liu, Hua; Peng, Chang; Shirato, Yasuhito; Iizumi, Toshichika; Wang, Jinzhou; Murphy, Daniel V.

    2014-03-01

    We determined the historical change in soil organic carbon (SOC) stocks from long-term field trials that represent major soil types and climatic conditions of northern China. Soil carbon and general circulation models were validated using these field trial data sets. We then applied these models to predict future change in SOC stocks to 2100 using two net primary production (NPP) scenarios (i.e., current NPP or 1% year-1 NPP increase). The conversion rate of plant residues to SOC was higher in single-cropping sites than in double-cropping sites. The prediction of future SOC sequestration potential indicated that these soils will be a net source of carbon dioxide (CO2) under no fertilizer inputs. Even when inorganic nutrients were applied, the additional carbon input from increased plant residues could not meet the depletion of SOC in parts of northern China. Manure or straw application could however improve the SOC sequestration potential at all sites. The SOC sequestration potential in northern China was estimated to be -4.3 to 18.2 t C ha-1 by 2100. The effect of projected climate change on the annual rate of SOC change did not differ significantly between climate scenarios. The average annual rate of SOC change under current and increased NPP scenarios (at 850 ppm CO2) was approximately 0.136 t C ha-1 yr-1 in northern China. These findings highlight the need to maintain, and where possible increase, organic carbon inputs into these farming systems which are rapidly becoming inorganic fertilizer intensive.

  1. Juvenile Southern Pine Response to Fertilization Is Influenced by Soil Drainage and Texture

    Directory of Open Access Journals (Sweden)

    Timothy J. Albaugh

    2015-08-01

    here were limited by nitrogen and phosphorus, and applications of these elements to young stands effectively ameliorated these limitations. However, there were differences in the response magnitude that were related to soil texture and drainage. Juvenile fertilizer applications resulted in high stocking levels early in the rotation; this condition should be considered when undertaking juvenile fertilization programs.

  2. Silicon fertilization and soil water tensions on rice development and yield

    Directory of Open Access Journals (Sweden)

    Jakeline R. de Oliveira

    2016-02-01

    Full Text Available ABSTRACT The cultivation of upland rice (Oryza sativa in Brazil occurs mainly in the Cerrado, a region with adverse weather conditions. The use of silicon in its cultivation becomes important, since this nutrient provides higher rigidity, lower transpiration and higher resistance to dry spells in rice plants. The objective of the present study was to evaluate the effect of silicon fertilization and soil water tensions on upland rice development and yield in a Cerrado Oxisol. A 5 x 5 fractionated factorial with five soil water tensions (0, 15, 30, 45 and 60 kPa and five silicon doses (0, 120, 240, 480 and 960 mg dm-3 was used, which were distributed in a randomized block design, with four replicates. Plant height, number of tillers, number of panicles, number of grains per panicle, numbers of full and empty grains and percentage of empty grains were evaluated. Silicon fertilization promotes increased tillering in rice plants at the dose of 960 mg dm-3. The numbers of tillers and panicles decreased with the application of silicon up to the doses of 460 and 490 mg dm-3, respectively. The increase in soil water tensions reduced plant height and the number of full grains, and increased the percentage of empty grains of upland rice.

  3. Management of Lignite Fly Ash for Improving Soil Fertility and Crop Productivity

    Science.gov (United States)

    Ram, Lal C.; Srivastava, Nishant K.; Jha, Sangeet K.; Sinha, Awadhesh K.; Masto, Reginald E.; Selvi, Vetrivel A.

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer<