WorldWideScience

Sample records for heating energy measures

  1. Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system

    International Nuclear Information System (INIS)

    Lundström, Lukas; Wallin, Fredrik

    2016-01-01

    Highlights: • Energy savings impact on an low CO 2 emitting district heating system. • Heat profiles of eight building energy conservation measures. • Exhaust air heat pump, heat recovery ventilation, electricity savings etc. • Heat load weather normalisation with segmented multivariable linear regression. - Abstract: This study highlights the forthcoming problem with diminishing environmental benefits from heat demand reducing energy conservation measures (ECM) of buildings within district heating systems (DHS), as the supply side is becoming “greener” and more primary energy efficient. In this study heat demand profiles and annual electricity-to-heat factors of ECMs in buildings are computed and their impact on system efficiency and greenhouse gas emissions of a Swedish biomass fuelled and combined heat and power utilising DHS are assessed. A weather normalising method for the DHS heat load is developed, combining segmented multivariable linear regressions with typical meteorological year weather data to enable the DHS model and the buildings model to work under the same weather conditions. Improving the buildings’ envelope insulation level and thereby levelling out the DHS heat load curve reduces greenhouse gas emissions and improves primary energy efficiency. Reducing household electricity use proves to be highly beneficial, partly because it increases heat demand, allowing for more cogeneration of electricity. However the other ECMs considered may cause increased greenhouse gas emissions, mainly because of their adverse impact on the cogeneration of electricity. If biomass fuels are considered as residuals, and thus assigned low primary energy factors, primary energy efficiency decreases when implementing ECMs that lower heat demand.

  2. Analysis of electrical energy consumers operation in the heating plant with proposal of energy savings measures

    Directory of Open Access Journals (Sweden)

    Nikolić Aleksandar

    2016-01-01

    Full Text Available The results of power quality measurements, obtained during an energy audit in the heating plant Vreoci in the Electric Power System of Serbia, are presented in the paper. Two steam boilers, rated at 120MW each, are installed in this heating plant, using coal as a fuel. The energy audit encompassed the measurements of the complete set of parameters needed to determine the thermal efficacy of boilers and the entire heating plant. Based on the measurement results, several technical measures for improving energy efficiency of the plant are proposed. The measures evaluated in the paper should contribute to the reduction of fossil fuel usage and CO2 emissions, thereby resulting in a significant impact in both financial and ecological areas.

  3. Techno-economic analysis of energy renovation measures for a district heated multi-family house

    International Nuclear Information System (INIS)

    Gustafsson, Marcus; Gustafsson, Moa Swing; Myhren, Jonn Are; Bales, Chris; Holmberg, Sture

    2016-01-01

    Highlights: • Energy saving measures can be cost-effective as part of a planned renovation. • Primary energy consumption, non-renewable energy consumption and CO_2 emissions are assessed for different electricity mixes. • EAHP can be a cost-effective and environmentally beneficial complement to district heating. • EAHP has lower LCC and significantly shorter payback time than ventilation with heat recovery. • Low-temperature ventilation radiators improve the COP of the heat pump. - Abstract: Renovation of existing buildings is important in the work toward increased energy efficiency and reduced environmental impact. The present paper treats energy renovation measures for a Swedish district heated multi-family house, evaluated through dynamic simulation. Insulation of roof and façade, better insulating windows and flow-reducing water taps, in combination with different HVAC systems for recovery of heat from exhaust air, were assessed in terms of life cycle cost, discounted payback period, primary energy consumption, CO_2 emissions and non-renewable energy consumption. The HVAC systems were based on the existing district heating substation and included mechanical ventilation with heat recovery and different configurations of exhaust air heat pump. Compared to a renovation without energy saving measures, the combination of new windows, insulation, flow-reducing taps and an exhaust air a heat pump gave up to 24% lower life cycle cost. Adding insulation on roof and façade, the primary energy consumption was reduced by up to 58%, CO_2 emissions up to 65% and non-renewable energy consumption up to 56%. Ventilation with heat recovery also reduced the environmental impact but was not economically profitable in the studied cases. With a margin perspective on electricity consumption, the environmental impact of installing heat pumps or air heat recovery in district heated houses is increased. Low-temperature heating improved the seasonal performance factor of the

  4. Thermal energy storage material thermophysical property measurement and heat transfer impact

    Science.gov (United States)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  5. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  6. Effect of length of measurement period on accuracy of predicted annual heating energy consumption of buildings

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Kim, Won-Tae; Tae, Choon-Soeb; Zaheeruddin, M.

    2004-01-01

    This study examined the temperature dependent regression models of energy consumption as a function of the length of the measurement period. The methodology applied was to construct linear regression models of daily energy consumption from 1 day to 3 months data sets and compare the annual heating energy consumption predicted by these models with actual annual heating energy consumption. A commercial building in Daejon was selected, and the energy consumption was measured over a heating season. The results from the investigation show that the predicted energy consumption based on 1 day of measurements to build the regression model could lead to errors of 100% or more. The prediction error decreased to 30% when 1 week of data was used to build the regression model. Likewise, the regression model based on 3 months of measured data predicted the annual energy consumption within 6% of the measured energy consumption. These analyses show that the length of the measurement period has a significant impact on the accuracy of the predicted annual energy consumption of buildings

  7. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  8. Measurements of low energy neutral hydrogen efflux during ICRF heating

    International Nuclear Information System (INIS)

    Cohen, S.A.; Ruzic, D.; Voss, D.E.

    1984-09-01

    Using the Low Energy Neutral Atom Spectrometer, measurements were made of the H 0 and D 0 efflux from PLT during ion cyclotron heating experiments. The application of rf power at frequencies appropriate to fundamental and 2nd-harmonic heating results in a rapid, toroidally uniform rise in the charge-exchange efflux at a rate of about 10 15 cm -2 s -1 MW -1 . This flux increase is larger at lower plasma currents. The cause of this flux and its impact on plasma behavior are discussed

  9. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  10. District heating in sequential energy supply

    International Nuclear Information System (INIS)

    Persson, Urban; Werner, Sven

    2012-01-01

    Highlights: ► European excess heat recovery and utilisation by district heat distribution. ► Heat recovery in district heating systems – a structural energy efficiency measure. ► Introduction of new theoretical concepts to express excess heat recovery. ► Fourfold potential for excess heat utilisation in EU27 compared to current levels. ► Large scale excess heat recovery – a collaborative challenge for future Europe. -- Abstract: Increased recovery of excess heat from thermal power generation and industrial processes has great potential to reduce primary energy demands in EU27. In this study, current excess heat utilisation levels by means of district heat distribution are assessed and expressed by concepts such as recovery efficiency, heat recovery rate, and heat utilisation rate. For two chosen excess heat activities, current average EU27 heat recovery levels are compared to currently best Member State practices, whereby future potentials of European excess heat recovery and utilisation are estimated. The principle of sequential energy supply is elaborated to capture the conceptual idea of excess heat recovery in district heating systems as a structural and organisational energy efficiency measure. The general conditions discussed concerning expansion of heat recovery into district heating systems include infrastructure investments in district heating networks, collaboration agreements, maintained value chains, policy support, world market energy prices, allocation of synergy benefits, and local initiatives. The main conclusion from this study is that a future fourfold increase of current EU27 excess heat utilisation by means of district heat distribution to residential and service sectors is conceived as plausible if applying best Member State practice. This estimation is higher than the threefold increase with respect to direct feasible distribution costs estimated by the same authors in a previous study. Hence, no direct barriers appear with

  11. Development of whole energy absorption spectrometer for decay heat measurement on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    To measure decay heat on fusion reactor materials irradiated by D-T neutrons, a Whole Energy Absorption Spectrometer (WEAS) consisting of a pair of large BGO (bismuth-germanate) scintillators was developed. Feasibility of decay heat measurement with WEAS for various materials and for a wide range of half-lives (seconds - years) was demonstrated by experiments at FNS. Features of WEAS, such as high sensitivity, radioactivity identification, and reasonably low experimental uncertainty of {approx} 10 %, were found. (author)

  12. Profitability of heating entrepreneurship from the viewpoint of heating energy buyer, heating energy seller and energy wood seller

    Energy Technology Data Exchange (ETDEWEB)

    Sauvula-Seppaelae, T.; Ulander, E. (Seinaejoki Univ. of Applied Sciences, Ahtari (Finland), School of Agriculture and Forestry), e-mail: tiina.sauvula-seppala@seamk.fi, e-mail: essi.ulander@seamk.fi

    2010-07-01

    The focus of this research was to study the profitability of heating entrepreneurships from the viewpoint of heating energy buyer, seller as well as energy wood seller. The average costs of heat production were Eur 44,8 / MWh and incomes Eur 43,4 /MWh. Energy wood purchase, comminution and long distance transportation formed slightly over a half of the heat production costs. Average net income in the group of the largest heating plants (>1000 kW) was Eur 29000 per year and in the group of the smallest (<200 kW) average net income was slightly over Eur 4000 per year. The net income from selling heat represents only a part of the income a heating entrepreneur receives from heat production. Other, significant parts are formed by income from selling energy wood to the plant as well as compensation for supervision and maintenance of the plant. The average net income of a forest owner from selling energy wood to heating entrepreneurs was Eur 18 / m3. Without state subsidies the net income would have been Eur 4 / m3. The price of the heating energy sold by heating entrepreneurs was very competitive. In 2006 it was Eur 30 / MWh cheaper than oil heat, Eur 34 / MWh cheaper than electric heat and Eur 3 / MWh cheaper than district heating. (orig.)

  13. Decay heat measurement of U-235

    International Nuclear Information System (INIS)

    Baumung, K.

    1976-01-01

    The calorimeter and the transport mechanism for the fuel samples was designed and is under construction now. Calculations of the heat-source distributions for different 235U-contents led to an optimal enrichment of the UO 2 -samples which minimizes the effects of the bad heat conductivity of the oxide on temperature measurement. Monte-Carlo-calculations of the γ-leakage-spectra yielded data which allow, from the γ-energy-flow measurements, to calculate the total γ-energy loss as well as the portions of the β- and γ-heating. (orig.) [de

  14. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, M. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Opus International Consultants (New Zealand); AL-Waked, R. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU), P.O. Box 1614, AlKhobar 31952 (Saudi Arabia); Morrison, G. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Behnia, M. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2010-10-15

    The thermal performance of an enthalpy/membrane heat exchanger is experimentally investigated. The heat exchanger utilizes a 60gsm Kraft paper as the heat and moisture transfer surface for HVAC energy recovery. The heat exchanger sensible, latent and total effectiveness have been determined through temperature and moisture content measurements. The annual energy consumption of an air conditioner coupled with an enthalpy/membrane heat exchanger is also studied and compared with a conventional air conditioning cycle using in-house modified HPRate software. The heat exchanger effectiveness are used as thermal performance indicators and incorporated in the modified software. Energy analysis showed that an air conditioning system coupled with a membrane heat exchanger consumes less energy than a conventional air conditioning system in hot and humid climates where the latent load is high. It has been shown that in humid climate a saving of up to 8% in annual energy consumption can be achieved when membrane heat exchanger is used instead of a conventional HVAC system. (author)

  15. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  16. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  17. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  18. Danish heat atlas as a support tool for energy system models

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2014-01-01

    In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive infrastru......In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive...... infrastructure investments, such as the expansion of district heating networks and the introduction of significant heat saving measures require highly detailed decision-support tool. A Danish heat atlas provides highly detailed database with extensive information about more than 2.5 million buildings in Denmark...... society after 2050. The present paper shows how a Danish heat atlas can be used for providing inputs to energy system models, especially related to the analysis of heat saving measures within building stock and expansion of district heating networks. As a result, marginal cost curves are created...

  19. District heating and energy efficiency in detached houses of differing size and construction

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, Anna; Gustavsson, Leif [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2009-02-15

    House envelope measures and conversion of heating systems can reduce primary energy use and CO{sub 2} emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m{sup 2}. One of the houses was also analysed for three energy standards with differing heat loss rates. CO{sub 2} emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO{sub 2} emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures. (author)

  20. District heating and energy efficiency in detached houses of differing size and construction

    International Nuclear Information System (INIS)

    Joelsson, Anna; Gustavsson, Leif

    2009-01-01

    House envelope measures and conversion of heating systems can reduce primary energy use and CO 2 emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m 2 . One of the houses was also analysed for three energy standards with differing heat loss rates. CO 2 emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO 2 emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures

  1. Profiling Space Heating Behavior in Chilean Social Housing: Towards Personalization of Energy Efficiency Measures

    Directory of Open Access Journals (Sweden)

    Victor Bunster

    2015-06-01

    Full Text Available Global increases in the demand for energy are imposing strong pressures over the environment while compromising the capacity of emerging economies to achieve sustainable development. In this context, implementation of effective strategies to reduce consumption in residential buildings has become a priority concern for policy makers as minor changes at the household scale can result in major energy savings. This study aims to contribute to ongoing research on energy consumer profiling by exploring the forecasting capabilities of discrete socio-economic factors that are accessible through social housing allocation systems. Accordingly, survey data gathered by the Chilean Ministry of Social Development was used identify key characteristics that may predict firewood usage for space heating purposes among potential beneficiaries of the Chilean social housing program. The analyzed data evidences strong correlations between general household characteristics and space heating behavior in certain climatic zones, suggesting that personalized delivery of energy efficiency measures can potentially increase the effectiveness of initiatives aimed towards the reduction of current patterns of consumption.

  2. Free energy and heat capacity

    International Nuclear Information System (INIS)

    Kurata, M.; Devanathan, R.

    2015-01-01

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuels fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed. (authors)

  3. Use of Danish Heat Atlas and energy system models for exploring renewable energy scenarios

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2013-01-01

    networks in relation with significant heat saving measures that are capital intensive infrastructure investments require highly detailed decision - support tools. The Heat Atlas for Denmark provides a highly detailed database and includes heat demand and possible heat savings for about 2.5 million...... buildings with associated costs included. Energy systems modelling tools that incorporate economic, environmental, energy and engineering analysis of future energy systems are considered crucial for quantitative assessment of transitional scenarios towards future milestones, such as (i) EU 2020 goals...... of reducing greenhouse gas emissions, increasing share of renewable energy and improving energy efficiency and (ii) Denmark’s 2050 goals of covering entire energy supply by renewable energy. Optimization and simulation energy system models are currently used in Denmark. The present paper tends to provide...

  4. Danish heat atlas as a support tool for energy system models

    International Nuclear Information System (INIS)

    Petrovic, Stefan N.; Karlsson, Kenneth B.

    2014-01-01

    Highlights: • The GIS method for calculating costs of district heating expansion is presented. • High socio-economic potential for district heating is identified within urban areas. • The method for coupling a heat atlas and TIMES optimization model is proposed. • Presented methods can be used for any geographical region worldwide. - Abstract: In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive infrastructure investments, such as the expansion of district heating networks and the introduction of significant heat saving measures require highly detailed decision-support tool. A Danish heat atlas provides highly detailed database with extensive information about more than 2.5 million buildings in Denmark. Energy system analysis tools incorporate environmental, economic, energy and engineering analysis of future energy systems and are considered crucial for the quantitative assessment of transitional scenarios towards future milestones, such as EU 2020 goals and Denmark’s goal of achieving fossil free society after 2050. The present paper shows how a Danish heat atlas can be used for providing inputs to energy system models, especially related to the analysis of heat saving measures within building stock and expansion of district heating networks. As a result, marginal cost curves are created, approximated and prepared for the use in optimization energy system model. Moreover, it is concluded that heat atlas can contribute as a tool for data storage and visualisation of results

  5. Heat Loss Measurements in Buildings Utilizing a U-value Meter

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance...... of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning and mechanical ventilation in the tropical countries contribute to an enormous energy consumption and corresponding CO2 emission. In order to establish...... the best basis for upgrading the energy performance, it is important to measure the heat losses at different locations on a building facade, in order to optimize the energy performance. The author has invented a U-value meter, enabling measurements of heat transfer coefficients. The meter has been used...

  6. Renewable energy in the Lithuanian heating sector

    International Nuclear Information System (INIS)

    Konstantinaviciute, Inga; Bobinaite, Viktorija; Tarvydas, Dalius; Gatautis, Ramunas

    2013-01-01

    The paper analyses the role of renewable energy sources (RES) in the Lithuanian heating sector and the existing support measures. RES consumption has been continuously growing in Lithuania. During the period of 2000–2009, RES used for heat production in the district heating sector increased more than 4 times. Wood and wood products have been the most widely used RES for heat production (RES-H). The lower prices were one of the main reasons which motivated district heating companies to switch fuel to biomass. At the same time subsidies, soft loans, EU Structural Funds for 2007–2013 and some fiscal measures, which are currently available for RES-H promotion, also have some impact on the increase of RES consumption. However, seeking to achieve a 23% national RES target, additional support measures are essential. A qualitative analysis based on the selected set of criteria and consultation with stakeholders showed that energy policy package for RES promotion in the Lithuanian heating sector could encompass the following measures: tax relieves (differentiated VAT and personal income tax breaks), subsidies, soft loans, standardization, support for research, development and demonstration. These measures are market-oriented and meet cost efficiency and low transaction costs criteria. - Highlights: • Existing support measures are not strongly motivating market players. • In order to meet ambitious 23% targets consistent promotion policy package is required. • The proposed package could consist of 4 instruments: tax related, soft loans, standardization and support for RD and D. • The proposed support measures are market oriented and meets cost efficiency and low transaction costs criteria. • There is no single measure that is fairly suitable to support RES-H

  7. Energy conservation and conversion of electrical heating systems in detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund, (Sweden)

    2007-06-15

    In this study, a Swedish house built in 1974, heated with resistance heaters was analysed. Different options for changing the heating system and electricity production were compared for this type of detached house, assuming coal-based electricity production as a reference. Changes in the fuel used, the electricity production technology, the end-use heating technology and the heat demand were analysed. The aim was to show how these different parts of the energy system interact and to evaluate the cost-effectiveness of reducing CO{sub 2} emission and primary energy use by different combinations of changes. The results showed that the CO{sub 2} emission and primary energy use could be reduced by 95 and 70%, respectively, without increased heating costs in a national economic perspective. The choice of end-use heating system had a greater influence than the energy conservation measures on the parameters studied. The energy conservation measures were less cost-effective in combination with the more energy-efficient heating systems, although the fact that they reduced the heat demand, and thus also the investment cost of the new heating system, was taken into account. (Author)

  8. Solar energy plant as a complement to a conventional heating system: Measurement of the storage and consumption of solar energy

    Science.gov (United States)

    Doering, E.; Lippe, W.

    1982-08-01

    The technical and economic performances of a complementary solar heating installation for a new swimming pool added to a two-floor dwelling were examined after measurements were taken over a period of 12 months and analyzed. In particular, the heat absorption and utilization were measured and modifications were carried out to improve pipe insulation and regulation of mixer valve motor running and volume flow. The collector system efficiency was evaluated at 15.4%, the proportion of solar energy of the total consumption being 6.1%. The solar plant and the measuring instruments are described and recommendations are made for improved design and performance, including enlargement of the collector surface area, further modification of the regulation system, utilization of temperature stratification in the storage tanks and avoiding mutual overshadowing of the collectors.

  9. Collection of low-grade waste heat for enhanced energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng [Toyota Research Institute, Toyota Motor Engineering & Manufacturing North America, Ann Arbor, Michigan 48105 (United States); Nomura, Tsuyoshi [Toyota Central Research and Development Laboratories, Inc., Nagakute 480-1192 (Japan)

    2016-05-15

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  10. Collection of low-grade waste heat for enhanced energy harvesting

    International Nuclear Information System (INIS)

    Dede, Ercan M.; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng; Nomura, Tsuyoshi

    2016-01-01

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  11. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2013-01-01

    Global energy efficiency can be obtained in two ordinary ways. One way is to improve the energy production and supply side, and the other way is, in general, to reduce the consumption of energy in society. This paper has focus on the latter and especially the consumption of energy for heating...... and cooling our houses. There is a huge energy-saving potential in this area for reducing both the global climate problems as well as economy challenges. Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from...... building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning...

  12. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  13. Heat storage in forest biomass improves energy balance closure

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  14. Heat transfer measurements of the 1983 kilauea lava flow.

    Science.gov (United States)

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  15. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  16. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  17. Active ion temperature measurement with heating neutral beam

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Matsuda, Toshiaki; Yamamoto, Shin

    1987-03-01

    When the heating neutral-beam (hydrogen beam) is injected into a deuterium plasma, the density of neutral particles is increased locally. By using this increased neutral particles, the local ion temperature is measured by the active charge-exchange method. The analyzer is the E//B type mass-separated neutral particle energy analyzer and the measured position is about one third outside of the plasma radius. The deuterium energy spectrum is Maxwellian, and the temperature is increased from 350 eV to 900 eV during heating. Since the local hydrogen to deuterium density concentration and the density of the heating neutral-beam as well as the ion temperature can be obtained good S/N ratio, the usefulness of this method during neutral-beam heating is confirmed by this experiment. (author)

  18. Energy efficiency of electrical infrared heating elements

    International Nuclear Information System (INIS)

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  19. Energy reduction in buildings in temperate and tropic regions utilizing a heat loss measuring device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2012-01-01

    There exist two ordinary ways to obtain global energy efficiency. One way is to make improvements on the energy production and supply side, and the other way is, in general, to reduce the consume of energy in the society. This paper has focus on the latter and especially the consume of energy...... for heating up, and cooling down our houses. There is a huge energy saving potential on this area reducing both the World climate problems and economy challenges as well. Heating of buildings in Denmark counts for approximately 40% of the entire national energy consume. Of this reason a reduction of heat...... losses from building envelopes are of great impor­tance in order to reach the Bologna CO2-emission reduction goals. Energy renovation of buildings is a topic of huge focus around the world these years. Not only expenses for heating in the tempered and arctic regions are of importance, but also expenses...

  20. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  1. Decreasing of energy consumption for space heating in existing residential buildings

    International Nuclear Information System (INIS)

    Stamov, S.; Zlateva, M.; Gechkov, N.

    2000-01-01

    An analysis is for the technical possibilities for reducing the energy consumption in existing buildings by means of the heat control and measurement. The basic performances of the heat capacity control methods, of the hierarchy structure of the control and of the heat measurement technologies are presented. This paper also presents the results from the long-term investigation of energy consumption for heating. The results area consist of three typical and uniform buildings in the city of Kazanlak (Bulgaria). The outcome of the investigation provides a valuable basis for future decisions to be made concerning reconstruction of heating installations and enables the results to be transferred. (Authors)

  2. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  3. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  4. Geothermal heating saves energy

    International Nuclear Information System (INIS)

    Romsaas, Tor

    2003-01-01

    The article reviews briefly a pioneer project for a construction area of 200000 m''2 with residences, business complexes, a hotel and conference centre and a commercial college in Oslo. The energy conservation potential is estimated to be about 60-70 % compared to direct heating with oil, gas or electricity as sources. There will also be substantial reduction in environmentally damaging emissions. The proposed energy central combines geothermal energy sources with heat pump technology, utilises water as energy carrier and uses terrestrial wells for energy storage. A cost approximation is presented

  5. Low-energy district heating in energy-efficient building areas

    International Nuclear Information System (INIS)

    Dalla Rosa, A.; Christensen, J.E.

    2011-01-01

    This paper presents an innovative low-energy district heating (DH) concept based on low-temperature operation. The decreased heating demand from low-energy buildings affects the cost-effectiveness of traditionally-designed DH systems, so we carried out a case study of the annual energy performance of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network design, and operational temperature and pressure. In the north-European climate, we found that human behaviour can lead to 50% higher heating demand and 60% higher heating power than those anticipated in the reference values in the standard calculations for energy demand patterns in energy-efficient buildings. This considerable impact of human behaviour should clearly be included in energy simulations. We also showed that low-energy DH systems are robust systems that ensure security of supply for each customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding the optimal solution with regard to economic and energy efficiency issues. Here we showed the advantage of low supply and return temperatures, their effect on energy efficiency and that

  6. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    Denmark by about 300-600 MW, corresponding to the size of a large power plant. This can be achieved when investing in socio-economically feasible heat storages complementing the heat pumps. The potential for reducing the required investments in peak/reserve capacities is crucial for the feasibility of the heat storages. Intelligent heat storage in the building structure is identified as socio-economically feasible in 20-75 % of the houses with heat pump installations, depending on the cost of control equipment in particular. Investment in control equipment, enabling utilisation of existing hot water tanks for flexible heat pump operation, is found socio-economically feasible in about 20-70 % of the houses. In contrast, heat accumulation tanks are not competitive, due to their higher investments costs. Further analyses investigate the system effects of a gradual large-scale implementation of battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) in Denmark, Finland, Norway, Sweden, and Germany towards 2030. When charged/discharged intelligently, the electric vehicles can, in the long term, facilitate larger wind power investments, while they in the short term in many cases are likely to result in increased coal-based electricity generation. The electric vehicles can contribute significantly to reducing CO{sub 2} emissions, while system costs are generally increased, due to assumed investments in the costly BEVs. The need for peak/reserve capacities can be reduced through the use of vehicle-to-grid capability. Competing flexibility measures, such as large heat pumps, electric boilers, and thermal storages in the district heating system, have also been included in the energy systems analyses. These technologies can together facilitate increased wind power investments and reduce CO{sub 2} emissions in the same order of magnitude as a large-scale implementation of electric vehicles. Overall, it is concluded that individual heat pumps, flexibility

  7. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  8. Decomposing final energy use for heating in the residential sector in Austria

    International Nuclear Information System (INIS)

    Holzmann, Angela; Adensam, Heidelinde; Kratena, Kurt; Schmid, Erwin

    2013-01-01

    In Austria a considerable number of measures have been implemented to reduce final energy use for residential heating since the 1990s. The aim of this analysis is to investigate, why – despite these implemented measures – final energy use for heating has not decreased in the expected way. The impact of eight factors on final energy use for heating is quantified by applying the Logarithmic Mean Divisia Index (LMDI I) method. The dataset covers the sector of private households in Austria for the period from 1993 to 2009. The main findings of the analysis are: (1) while technical improvements reduce final energy use for heating significantly, rising comfort needs nearly outweigh these savings. (2) Consumer behaviour reduces calculated final energy use considerably. (3) The extent of this reduction is declining significantly in the period observed. (4) The growing share of single-family houses has increased energy demand for heating in the observed period, though a reversal of this trend is detected from 2007 onwards. (5) The impact of growing floor space per person is the major effect revealed by the analysis. (6) Weather conditions have a major impact on annual fluctuations of energy consumption. -- Highlights: •We did an Index decomposition analysis of the Austrian residential heating demand. •Eight impact factors on heating demand have been identified. •Rising comfort needs outweigh savings caused by technical improvements. •Consumer behaviour has a major impact on residential final energy use for heating. •Weather changes play a major role when analysing annual changes in energy use

  9. System impact of energy efficient building refurbishment within a district heated region

    International Nuclear Information System (INIS)

    Lidberg, T.; Olofsson, T.; Trygg, L.

    2016-01-01

    The energy efficiency of the European building stock needs to be increased in order to fulfill the climate goals of the European Union. To be able to evaluate the impact of energy efficient refurbishment in matters of greenhouse gas emissions, it is necessary to apply a system perspective where not only the building but also the surrounding energy system is taken into consideration. This study examines the impact that energy efficient refurbishment of multi-family buildings has on the district heating and the electricity production. It also investigates the impact on electricity utilization and emissions of greenhouse gases. The results from the simulation of four energy efficiency building refurbishment packages were used to evaluate the impact on the district heating system. The packages were chosen to show the difference between refurbishment actions that increase the use of electricity when lowering the heat demand, and actions that lower the heat demand without increasing the electricity use. The energy system cost optimization modeling tool MODEST (Model for Optimization of Dynamic Energy Systems with Time-Dependent Components and Boundary Conditions) was used. When comparing two refurbishment packages with the same annual district heating use, this study shows that a package including changes in the building envelope decreases the greenhouse gas emissions more than a package including ventilation measures. - Highlights: • Choice of building refurbishment measures leads to differences in system impact. • Building refurbishment in district heating systems reduces co-produced electricity. • Valuing biomass as a limited resource is crucial when assessing global GHG impact. • Building envelope measures decrease GHG (greenhouse gas) emissions more than ventilation measures.

  10. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...... to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo...

  11. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  12. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  13. Energy performance of air-to-water and water-to-water heat pumps in hotel applications

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Wilco W.

    2003-01-01

    We present work on measurement of the energy performance of heat pumps for hotel operations in subtropical climates. Two city hotels in Hong Kong were investigated. The first case was an application of an air-to-water heat pump to provide heating for an outdoor swimming pool during the heating season. The second case was the installation of three water-to-water heat pumps to complement an existing boiler system for hot water supply. The heating energy output and corresponding electricity use were measured. The heat pump energy efficiency was evaluated in terms of the coefficient of performance (COP), defined as the heating energy output to the electrical energy use. The air-to-water heat pump provided 49.1 MW h heating while consuming 24.6 MW h electricity during the 6((1)/(2))-month heating season from mid-October to April. For the water-to-water heat pumps, the estimated annual heating output and the electricity use were 952 and 544 MW h, respectively. It was found that the heat pumps generally operated in a COP range of 1.5-2.4, and the payback period was about two years, which was considered financially attractive

  14. Steady-state heat losses in pipes for low-energy district heating

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2010-01-01

    The synergy between highly energy efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy saving policies and energy supply systems based on renewable energy (RE). Distribution heat losses represent a key factor in the design o...

  15. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  16. Chapter 23: Combined Heat and Power Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simons, George [Itron, Davis, CA (United States); Barsun, Stephan [Itron, Davis, CA (United States)

    2017-11-06

    The main focus of most evaluations is to determine the energy-savings impacts of the installed measure. This protocol defines a combined heat and power (CHP) measure as a system that sequentially generates both electrical energy and useful thermal energy from one fuel source at a host customer's facility or residence. This protocol is aimed primarily at regulators and administrators of ratepayer-funded CHP programs; however, project developers may find the protocol useful to understand how CHP projects are evaluated.

  17. Operation of buildings: Energy supply and energy conservation measures

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, H

    1985-01-01

    Energy saving in public administration. A list-like collection of the measures to monitor the consumption, the measures of saving energy at existing buildings, new systems and by new techniques. Examples with figures for the savings achieved in the region of Marburg-Biedenkopf (Hesse). Guidelines are set up which are mainly based on energy saving, heat recovery, use of new technologies and renewable energy sources, fluidized-bed combustion also in smaller plants of ca. 2 MW, waste management separating wastes into burnable/unburnable, information of the public administration and the people and the setting up of energy concepts. (PJH).

  18. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    Highlights: • Specially designed fixed-inverter hybrid heat pump system was developed. • Hybrid operation performed better at part loads than single inverter operation. • The applied heat pump can work stably over a wide range of heat load variations. • Heat energy potential of treated effluent was better than influent. • The heat pump’s COP from the field test was 4.06 for heating and 3.64 for cooling. - Abstract: Among many options to improve energy self-sufficiency in sewage treatment plants, heat extraction using a heat pump holds great promise, since wastewater contains considerable amounts of thermal energy. The actual heat energy demand at municipal wastewater treatment plants (WWTPs) varies widely with time; however, the heat pumps typically installed in WWTPs are of the on/off controlled fixed-speed type, thus mostly run intermittently at severe part-load conditions with poor efficiency. To solve this mismatch, a specially designed, fixed-inverter hybrid heat pump system incorporating a fixed-speed compressor and an inverter-driven, variable-speed compressor was developed and tested in a real WWTP. In this hybrid configuration, to improve load response and energy efficiency, the base-heat load was covered by the fixed-speed compressor consuming relatively less energy than the variable-speed type at nominal power, and the remaining varying load was handled by the inverter compressor which exhibits a high load-match function while consuming relatively greater energy. The heat pump system developed reliably extracted heat from the treated effluent as a heat source for heating and cooling purposes throughout the year, and actively responded to the load changes with a high measured coefficient of performance (COP) of 4.06 for heating and 3.64 for cooling. Moreover, this hybrid operation yielded a performance up to 15.04% better on part loads than the single inverter operation, suggesting its effectiveness for improving annual energy saving when

  19. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2012-01-01

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity......Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all...

  20. The direct heat measurement of mechanical energy storage metal-organic frameworks.

    Science.gov (United States)

    Rodriguez, Julien; Beurroies, Isabelle; Loiseau, Thierry; Denoyel, Renaud; Llewellyn, Philip L

    2015-04-07

    In any process, the heat exchanged is an essential property required in its development. Whilst the work related to structural transitions of some flexible metal-organic frameworks (MOFs) has been quantified and linked with potential applications such as molecular springs or shock absorbers, the heat related to such transitions has never been directly measured. This has now been carried out with MIL-53(Al) using specifically devised calorimetry experiments. We project the importance of these heats in devices such as molecular springs or dampers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    that a least‐cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps. Keywords: Energy Efficiency, Renewable energy, Heating strategy, Heat savings, District heating, Smart energy......One of the important issues related to the implementation of future sustainable smart energy systems based on renewable energy sources is the heating of buildings. Especially, when it comes to long‐term investment in savings and heating infrastructures it is essential to identify long‐term least......‐cost strategies. With Denmark as a case, this paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used. Based on a concrete proposal to implement the Danish governmental long...

  2. Experimental study of energy performance in low-temperature hydronic heating systems

    DEFF Research Database (Denmark)

    Hesaraki, Arefeh; Bourdakis, Eleftherios; Ploskić, Adnan

    2015-01-01

    Energy consumption, thermal environment and environmental impacts were analytically and experimentally studied for different types of heat emitters. The heat emitters studied were conventional radiator, ventilation radiator, and floor heating with medium-, low-, and very-low-temperature supply....... The supply water temperature in all measurements for conventional radiator was significantly higher than ventilation radiator and floor heating; namely, 45°C. Experimental results indicated that the mean indoor temperature was close to the acceptable level of 22°C in all cases. For energy calculations......, it was assumed that all heat emitters were connected to a ground-source heat pump. Analytical calculations showed that using ventilation radiator and floor heating instead of conventional radiator resulted in a saving of 17% and 22% in heat pump's electricity consumption, respectively. This would reduce the CO2...

  3. Heat pumps in urban space heating systems: Energy and environmental aspects

    International Nuclear Information System (INIS)

    Carlini, M.; Impero Abenavoli, R.; Rome Univ. La Sapienza

    1991-01-01

    A statistical survey is conducted of air pollution in the city of Rome (Italy) due to conventional building space heating systems burning fossil fuels. The survey identifies the annual consumption of the different fuels and the relative amounts of the various pollutants released into the atmosphere by the heating plants, e.g., sulfur and nitrogen oxides, carbon monoxide, etc. Comparisons are then made between the ratios of urban heating plant air pollutants produced per tonne of fuel employed and those for ENEL (Italian National Electricity Board) coal, oil and natural gas fired power plants, in order to demonstrate the better environmental performances of the utility operated energy plants. The building space heating system energy consumption and pollution data are then used in a cost benefit analysis favouring the retrofitting of conventional heating systems with heat pump systems to obtain substantial reductions in energy consumption, heating bills and urban air pollution. The use of readily available, competitively priced and low polluting (in comparison with fuel oil and coal) methane as the energy source for space heating purposes is recommended. The paper also notes the versatility of the heat pump systems in that they could also be used for summer air conditioning

  4. Heat Energy Markets: Trends of Spatial Organization

    Directory of Open Access Journals (Sweden)

    Olga Valeryevna Dyomina

    2016-12-01

    Full Text Available The author reviews competing forms of heat supply. It is shown that in Finland, Denmark, China and Russia the dominant form of heat supply is district heating system; in the United States and Canada the dominant form of heat supply is individual one. Using the countries’ data the author allocates 4 models of heat energy markets. The analysis is based on combinations of the following characteristics: the type of market, the orientation of market, the stage of market development, forms of state support of district heating systems and the approach to pricing. The results identified the failure of the current model of heat energy market in Russia (noncompetitive, manufacturer-oriented and evolved market with massive state support of its district heating system. The ‘target’ model of heat energy market in Russia is a model of noncompetitive, customer-oriented and evolved market with no state support of its district heating system. However, the ‘target’ model takes into account spatial heterogeneity of local heat energy markets in Russia only technically

  5. Study of high energy ion loss during hydrogen minority heating in TFTR

    International Nuclear Information System (INIS)

    Park, J.; Zweben, S.J.

    1994-03-01

    High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45 degrees below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described

  6. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  7. ENERGY STAR Certified Geothermal Heat Pumps

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps

  8. Conservation heating and energy efficiency at the National Trust. Theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Blades, Nigel; Rice, Kirsty [The National Trust, Warrington (United Kingdom)

    2011-07-01

    The National Trust uses conservation heating as its main method of environmental control for the care of collections in historic houses. This paper presents work the National Trust is undertaking to understand the energy use of its conservation heating systems and to operate them as energy-efficiently as possible, in the light of the National Trust's 2020 energy targets which seek to reduce overall energy consumption across the organisation by 20 % and to shift to 50 % renewable energy sources. The energy demand of conservation heating systems is analysed using degree days; measured energy consumption data are presented; and the reductions in fuel cost and CO{sub 2} emissions achievable though switching from oil-fired to wood pellet fuel, demonstrated. (orig.)

  9. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  10. Comparison between design and actual energy performance of a HVAC-ground coupled heat pump system in cooling and heating operation

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, T.; Quilis, S. [Energesis Ingenieria S.L., Ciudad Politecnica de la Innovacion, Camino de Vera s/n, 46022 Valencia (Spain); Montero, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Urchueguia, J.F. [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2010-09-15

    This work compares the experimental results obtained for the energy performance study of a ground coupled heat pump system with the design values predicted by means of standard methodology. The system energy performance of a monitored ground coupled heat pump system is calculated using the instantaneous measurements of temperature, flow and power consumption and these values are compared with the numerical predictions. These predictions are performed with the TRNSYS software tool following standard procedures taking the experimental thermal loads as input values. The main result of this work is that simulation results solely based on nominal heat pump capacities and performances overestimate the measured overall energy performance by a percentage between 15% and 20%. A sensitivity analysis of the simulation results to changes in percentage of its input parameters showed that the heat pump nominal coefficient of performance is the parameter that mostly affects the energy performance predictions. This analysis supports the idea that the discrepancies between experimental results and simulation outputs for this ground coupled system are mainly due to heat pump performance degradation for being used at partial load. An estimation of the impact of this effect in energy performance predictions reduces the discrepancies to values around 5%. (author)

  11. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  12. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  13. Measurement of heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  14. Energy measurement of fast ions trapped in the toroidal magnetic field ripple of Tore Supra during ICRF heating

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Grisolia, C.; Hutter, T.; Mayaux, G.; Martin, G.; Saoutic, B.; Vartanian, S.

    1995-01-01

    Direct losses of ions trapped in the toroidal field ripple of Tore Supra using two techniques were made. The first (DRIPPLE I) correlates the ion loss current measured by an electric probe with the ion loss power measured by a calorimeter. As the calorimeter integrates over all particle energies and time, it yields only the averaged lost ion energy. The second technique (DRIPPLE II), still under development, is a Faraday cup positioned and filtered so as to select ions by their Larmor radius. The currents measured are small (1-100 nA), and improvements in instrumentation are needed to take full advantage of the data, but the preliminary results are still useful. During ICRH (hydrogen minority regime, resonance on axis) a direct correlation between the lost ion mean energy and the density of hydrogen was seen. The energy increased when the hydrogen minority density decreased. Moreover, the line averaged density and the lower hybrid heating (LH) had also an effect on fast ion losses. (authors). 3 refs., 7 figs

  15. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  16. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  17. The costs and profitability of heat-energy entrepreneurship

    International Nuclear Information System (INIS)

    Solmio, H.

    1998-01-01

    Heat-energy entrepreneurs are responsible for the supply of fuel to and the labour input required by heating of buildings in their locality. An individual heat-energy entrepreneur or a consortium of them, a company or a co-operative is paid for the work according to the amount of heat-energy produced. In Finland there are about 50 operational heating targets and about 100 in planning stage. TTS-Institute has studied the activities of heat-energy entrepreneurs since 1993 in connection with research projects included in the national Bioenergy research programme. This study covered 10 heating plants with capacities 60 - 1000 kW, two of which are district heating plants. Five of the targets (60 - 370 kW) were included in the previous heat-energy entrepreneurs follow-up study conducted in 1993 - 1995 and five (80 - 1000 kW) were new. The main fuel used in all the targets was wood chips with light fuel oil reserve or auxiliary fuel. All but one of the entrepreneurs, supplying these heating targets located in Central and Southern Finland, are farmers, who procure the fuelwood and take care of heating and its supervision. Transportation of wood chips, topping up of the silo and heating work and working path consumed 0.12-0.78 h of time/MWh. When compared to the five study targets' follow-up results of the years 1993 - 1995, the results of the present study show reduction in labour consumption on part of the heat-energy entrepreneurs in all these targets. Profit margins of the entrepreneurs supplying heating energy were 73 - 132 FIM/h (excluding the interest on the equipment acquisition (agricultural tractor and associated equipment), and insurance and storage costs). When these costs were also taken into account, the resulting profit margin was 71 - 127 FIM/h. The margin included the entrepreneurs' earnings incl. monitoring of the heating plant, social security costs connected to earnings and entrepreneur's risk. When compared to the previous follow-up study, also the

  18. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  19. Renewable energy in district heating grids. A realistic perspective?; Erneuerbare Energien in Waermenetzen. Eine realistische Perspektive?

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, Elke [Technische Univ. Berlin (Germany). Inst. fuer Landschaftsarchitektur und Umweltplanung; Futterlieb, Matthias; Ohlhorst, Doerte [Technische Univ. Berlin (Germany). Zentrum Technik und Gesellschaft (ZTG); Wenzel, Bernd [Ingenieurbuero fuer neue Energie (IfnE), Teltow (Germany)

    2012-09-15

    The heating sector holds high potentials for cutting CO{sub 2} emissions by using renewable energy. These potentials can be tapped either by substituting fossil fuels in individual heating units or by using renewable energy in district heating networks, which may be more efficient. This paper asks for the options to increase the share of renewable energy in Germany's district heating infrastructure and for the restrictions that are hampering further development in this field. It critically discusses the relevant technical, political and economic challenges and determinants. District heating networks fuelled by renewable energy are not only competing with fossil fuels in individual heating units. They are also facing the more fundamental question regarding the preconditions for a profitable and worthwhile operation of grid-bound heat supply. The economic viability of heat grids has to be analyzed on a case-by-case basis, since it depends predominantly on individual framework conditions. Those include a decreasing heat demand due to improving energy performance of buildings, competing gas grids already in place and the complex interest structures of the actors involved. The growth rates that were observed in the last years were predominantly achieved in small renewably fuelled district heating networks. Even under favourable framework conditions, there is a need for additional supportive measures to increase the share of renewable energy in district heating grids. This mix of policy instruments should encompass measures to increase the implementation rates of municipal heat utilization concepts, measures to decrease the initial investments needed, as well as public relations to improve the user perception of grid-bound heat supply. However, the options to increase the share of renewable heat in existing large-scale grids are considered to be rather limited. (orig.)

  20. Modeling Transient Heat Transfer in Small-Size Twin Pipes for End-User Connections to Low-Energy District Heating Networks

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2013-01-01

    The low-energy district heating concept has the potential of increasing the energy and exergy efficiencies of heat supply systems and of exploiting renewable energy, provided technical solutions for its wide application can be developed and implemented. This paper investigates the dynamic behaviour...... of district heating branch pipes in low-temperature operation (supply temperature 50-55°C and return temperature 20-25°C). We looked at state-of-the-art district heating branch pipes, suitable for the connection of a typical single-family house to a substation equipped with a heat exchanger for domestic hot...... water preparation. Experimental measurements of the supply temperature profiles at the outlet of the pipe, i.e. at the inlet to the substation, were compared with detailed simulations based on the finite volume (FV) method. A programming code was developed to model these profiles, and this was validated...

  1. Analysis of energy development sustainability: The example of the lithuanian district heating sector

    International Nuclear Information System (INIS)

    Kveselis, Vaclovas; Dzenajavičienė, Eugenija Farida; Masaitis, Sigitas

    2017-01-01

    Today, sustainable energy development is one of key issues on European development agenda. The article describes one of sustainable energy development promoting tool - the eco-labelling scheme for district heating and cooling systems elaborated within the framework of Intelligent Energy for Europe program project “Ecoheat4cities” and partially funded by European Agency for Competitiveness and Innovation. The scheme is based on measured energy and environmental performance data of the district heating and cooling system and considers primary non-renewable energy usage together with the share of renewable energy and carbon dioxide emissions calculated using life-cycle analysis methodology. The “power bonus” approach is used for performance indicators of the heat generated in cogeneration installations. An analysis of a number of Lithuanian district heating companies using elaborated labelling criteria shows positive trends towards fulfilling Lithuania's energy policy goals. The labelling scheme gives opportunity for policy makers and urban planners to compare different heat supply options and decide upon exploiting district heating advantages and benefits for reaching EU energy and environment policy goals. - Highlights: • Overview of Lithuania's district heating sector was performed via main sustainability criteria. • Developing to greener and more efficient state was disclosed via analysis of three years activity results. • Green labelling may help district heating companies to maintain existing and attract new potential consumers.

  2. D III-D divertor target heat flux measurements during Ohmic and neutral beam heating

    International Nuclear Information System (INIS)

    Hill, D.N.; Petrie, T.; Mahdavi, M.A.; Lao, L.; Howl, W.

    1988-01-01

    Time resolved power deposition profiles on the D III-D divertor target plates have been measured for Ohmic and neutral beam injection heated plasmas using fast response infrared thermography (τ ≤ 150 μs). Giant Edge Localized Modes have been observed which punctuate quiescent periods of good H-mode confinement and deposit more than 5% of the stored energy of the core plasma on the divertor armour tiles on millisecond time-scales. The heat pulse associated with these events arrives approximately 0.5 ms earlier on the outer leg of the divertor relative to the inner leg. The measured power deposition profiles are displaced relative to the separatrix intercepts on the target plates, and the peak heat fluxes are a function of core plasma density. (author). Letter-to-the-editor. 11 refs, 7 figs

  3. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  4. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating and dome......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...... storage parts already melted to cool down to surrounding temperature without solidification in which state that part of the storage will be heat loss free but still will hold the latent heat in form of the heat of fusion. At the time of energy demand the solidification of the super-cooled storage part...

  5. Marginal costs for intensified energy-efficiency measures

    International Nuclear Information System (INIS)

    Jakob, J.; Jochem, E.; Christen, K.

    2002-01-01

    The costs and benefits of investments in measures designed to improve the energy efficiency of residential buildings (in particular investments in heat insulation) were calculated as a function of increasing energy efficiency for new and renovated buildings and for single-family homes and apartment buildings. These investments in measures to improve efficiency mostly involve with the building envelope and ventilation systems and aim to successively reduce the space-heating needs of the buildings. The measures range from present-day building and renovation methods through to the 'Minergie' and 'Passive House' ('Minergie-P' in Switzerland) standards for low and very-low energy consumption buildings. Cost-benefit ratios were determined for individual building components, individual building concepts and for the whole of Switzerland, using both the average-cost as well as the pure marginal-cost methods (energy-economics level). The collection of empirical data (especially on costs) was an integral and important part of the project. The marginal costs were then compared with the benefits arising from the costs for space heating that were avoided, and, using a few typical cases as examples, with the so-called co-benefits, which are to be implemented in part by private persons and companies. For their quantification, methods were developed and used in case studies; in addition, avoided external costs are also considered. The marginal costs were also calculated for periods of time in the future, whereby they were made dynamic, according to their share of innovation, using the learning-curve method (learning and scaling effects). As far as the findings are concerned, there can be no doubt that the potential to be opened up for increasing energy efficiency using heat insulation measures is high, both for renovations and new construction work. A large portion of this potential is already economically viable and even more so when the possible risks of energy price increases

  6. The energy spectrum of cosmic rays measured with the HEAT extension at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Scharf, Nils Sven Sebastian

    2013-01-01

    This thesis describes the calculation of the energy spectrum of cosmic rays, that is the absolute flux of cosmic rays as a function of energy, from data of air showers observed with the HEAT (High Elevation Auger Telescopes) extension and the fluorescence detector of the Pierre Auger Observatory. The Pierre Auger Observatory is the largest observatory for the study of cosmic rays. The Pierre Auger Observatory observes air showers, that are cascades of particles that were instigated by cosmic rays hitting the Earth's atmosphere, with two different detection concepts. The surface detector samples the secondary particles of air showers that hit the ground with an array of surface detector stations, whereas the fluorescence detector measures the energy loss profile of air showers by detecting fluorescence light, produced by the air showers when they travel through the atmosphere, with optical telescopes. The properties of the cosmic rays are not directly measurable but have to be reconstructed from the observed air shower parameters. Properties of particular interest are the type of the primary cosmic ray particle, its energy and its arrival direction. HEAT is an extension to the fluorescence detector of the Pierre Auger Observatory. It is designed to lower the energy threshold by one order of magnitude down to 10 17 eV or lower. HEAT is taking data since 2010. The calculation of the absolute flux of cosmic rays needs two ingredients: the number of detected air showers as a function of shower energy and the exposure of the detector as a function of energy. The studied air shower class are hybrid events, which are events that have been detected by a fluorescence detector and at least one surface detector station. The used air showers were observed in a time period of fifteen month starting from June 2010. A first step of the analysis is the reconstruction of air showers and cosmic ray parameters from raw data. To calculate the exposure, the uptime, that is the integral

  7. A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation

    Science.gov (United States)

    Lee, C. K.

    2014-01-01

    This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…

  8. Simulation and energy analysis of distributed electric heating system

    Science.gov (United States)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  9. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... Consumption of Central Air Conditioners and Heat Pumps 1. DEFINITIONS 2. TESTING CONDITIONS 2.1Test room... more common ducts within each test room that contains multiple indoor coils. At the plane where each...

  10. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  11. Measuring and heat losses for district heating systems in detached house areas; Maet- och vaermefoerluster foer fjaerrvaermesystem i smaahusomraaden

    Energy Technology Data Exchange (ETDEWEB)

    Cederborg, Frederick; Nordgren, Ola [FVB Sverige ab, Vaesteraas (Sweden)

    2005-07-01

    Within 'low heat load' areas e.g. residential areas, with low energy consumption per individual customer, the resulting relationship between the heat loss and the energy sales is big. For these customers with low energy consumption, in particular during the summer season, concerns have been raised regarding the ability of the heat volume meters to register the true energy consumption. In order to determine the magnitude of the losses, the Swedish District Heating Association, has initiated a measuring project where measurements have been made in two separate residential areas with different system configurations and different temperature control programs. The measurements were performed from May 15, 2003 to September 23, 2004. The main objective for the project was to gather data and to analyse the magnitude of the total losses in the building systems. The relation between the heat losses and the measuring losses was also studied briefly. Two types of systems have been studied, on one hand a conventional district heating area with primary connected houses and on the other hand an area with secondary connected houses with PEX-pipes in Enkoeping. The heat and measuring losses at the area Munksundet in Enkoeping is 17 % at a 'load density' of 0,84. This value is somewhat lower than the accounted annual relative loss of 22-23 % stated in the report 'FVF 1997:11 Fjaerrvaerme till smaahus'. The results show that a secondary connected low temperature system with PEX-pipes is an interesting connection alternative for small houses. Also at the residential area Rotskaer in Skutskaer, the heat and measuring losses are lower than the accounted annual relative loss, about 24 % at a 'load density' of 0,49,which is to be compared with about 33 % annual relative loss according to the report 'FVF 1997:11'. Within this assignment there are difficulties to divide the measuring losses in short circuit flows and errors in the heat

  12. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  13. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  14. Main physical environmental drivers of occupant behaviour with regard to space heating energy demand

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Several studies have highlighted the significant gap between the predicted energy performance of buildings and their measured actual performance. Uncertainties regarding behaviour of building occupants are one of the key factors limiting the ability of energy simulation tools to accurately predict...... real building energy requirements . The paper focuses on the particular topics of space heating energy demand related to the occupants habits of adjusting heating set-points. The parameters influencing the user interaction with the heating control system are analyzed in literature for residential......) environmental conditions and the occupants’ heating set-point preferences. The paper aims at providing a reliable basis for a more accurate description of control action models in performance simulation applications....

  15. Measurements with the Hungarian Heat-Flow Calorimeter

    International Nuclear Information System (INIS)

    Bod, L.

    1970-01-01

    This calorimeter, like the others, consists of three essential parts: 1) the calorimetric sample; the radiation energy absorbed therein is to be determined; 2) the jacket; a well defined environment which includes the calorimetric sample; 3) the heat transfer medium, separating the former two. The measurement with this calorimeter consists of the determination of the equilibrium temperature difference between the calorimetric sample and the jacket of the calorimeter in the radiation field. From this the radiation energy absorbed in the calorimetric sample can be evaluated

  16. Energy cascading in large district heating systems

    International Nuclear Information System (INIS)

    Mayer, F.W.

    1978-01-01

    District heat transfer is the most economical utilization of the waste heat of power plants. Optimum utilization and heat transfer over large distances are possible because of a new energy distribution system, the ''energy cascading system,'' in which heat is transferred to several consumer regions at different temperature ranges. It is made more profitable by the use of heat pumps. The optimum flow-line temperature is 368 0 K, and the optimum return-line temperature is 288 0 K, resulting in an approximately 50% reduction of electric power loss at the power plant

  17. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  18. Questionnaire survey, Indoor climate measurements and Energy consumption

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Thomsen, Kirsten Engelund; Mørck, Ove

    2012-01-01

    to be designed and constructed with a heating demand corresponding to the Danish low-energy standard referred to as "low-energy class 1" in a new settlement called Stenløse Syd. This means that the energy consumption is to be 50% lower than the requirement in BR08 (Danish Building Regulations 2008). 66 flats...... were to be designed and constructed with a yearly heating demand of 15 kWh/m². Furthermore, the Concerto community include a kindergarten and an activity centre for elderly people. All the single family houses were to be heated by a heat pump supported by a 3 m² thermal solar system for hot water....... This report presents part of the results of an evaluation of the project that was performed in the settlement. The evaluation consisted of a questionnaire survey of occupant experiences and satisfaction in 35 single-family houses, measurements of energy consumption in 22 selected single-family houses and 58...

  19. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  20. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  1. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  2. The role of large‐scale heat pumps for short term integration of renewable energy

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth

    2011-01-01

    technologies is focusing on natural working fluid hydrocarbons, ammonia, and carbon dioxide. Large-scale heat pumps are crucial for integrating 50% wind power as anticipated to be installed in Denmark in 2020, along with other measures. Also in the longer term heat pumps can contribute to the minimization...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium......In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...

  3. TWO-STAGE HEAT PUMPS FOR ENERGY SAVING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    A. E. Denysova

    2017-09-01

    Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources have essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two stages heat pump installation operating as heat source at ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of groundwater energy. Calculated are the values of electric energy consumption by the compressors’ drive, and the heat supply system transformation coefficient µ for a low-potential source of heat from ground waters allowing to estimate high efficiency of two stages heat pump installations.

  4. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  5. Analyzing energy consumption while heating one-layer building envelopes in conditions of intermittent heating

    Directory of Open Access Journals (Sweden)

    Vytchikov Yury

    2017-01-01

    Full Text Available This paper focuses on energy consumption for heating single layer building envelopes, used in conditions of intermittent heating in different physical and mechanical and thermophysical parameters of construction materials. The authors investigated several variants of single-layer building envelopes, used frequently in building practice, with different density and coefficients of building materials thermal conductivity. For each variant of a building envelope heat leakage and time spent on heating were calculated. Heating time was calculated by both exact and approximate analytical method. Then the researchers draw a graphic dependence of energy consumption on the density of the material taking this computational data as a basis. Further analysis showed that building envelopes made of lightweight aggregate concrete and porous concrete were the most energy efficient.This paper focuses on energy consumption for heating single layer building envelopes, used in conditions of intermittent heating in different physical and mechanical and thermophysical parameters of construction materials. The authors investigated several variants of single-layer building envelopes, used frequently in building practice, with different density and coefficients of building materials thermal conductivity. For each variant of a building envelope heat leakage and time spent on heating were calculated. Heating time was calculated by both exact and approximate analytical method. Then the researchers draw a graphic dependence of energy consumption on the density of the material taking this computational data as a basis. Further analysis showed that building envelopes made of lightweight aggregate concrete and porous concrete were the most energy efficient.

  6. Ion temperature measurements of turbulently heated tokamak plasma by Doppler-broadening of visible lines in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-01-01

    In the turbulent heating experiment of the high-field tokamak TRIAM-1, the bulk ion heating shown by the neutral energy analyzer measurement is confirmed by the Doppler broadening measurement of visible lines. The increasing rate and decay time of the Doppler ion temperature are almost the same as those derived from the neutral energy analyzer measurement. From both methods of ion temperature measurements, it is shown that the ion temperature has a parabolic profile within 50 ..mu..s after the application of the heating pulse.

  7. On variations of space-heating energy use in office buildings

    International Nuclear Information System (INIS)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-01-01

    Highlights: • Space heating is the largest energy end use in the U.S. building sector. • A key design and operational parameters have the most influence on space heating. • Simulated results were benchmarked against actual results to analyze discrepancies. • Yearly weather changes have significant impact on space heating energy use. • Findings enable stakeholders to make better decisions on energy efficiency. - Abstract: Space heating is the largest energy end use, consuming more than seven quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However

  8. Low-energy district heating in energy-efficient building areas

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Christensen, Jørgen Erik

    2011-01-01

    of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network...... to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy...... system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding...

  9. Heat pipe heat exchanger and its potential to energy recovery in the tropics

    Directory of Open Access Journals (Sweden)

    Yau Yat H.

    2015-01-01

    Full Text Available The heat recovery by the heat pipe heat exchangers was studied in the tropics. Heat pipe heat exchangers with two, four, six, and eight numbers of rows were examined for this purpose. The coil face velocity was set at 2 m/s and the temperature of return air was kept at 24°C in this study. The performance of the heat pipe heat exchangers was recorded during the one week of operation (168 hours to examine the performance data. Then, the collected data from the one week of operation were used to estimate the amount of energy recovered by the heat pipe heat exchangers annually. The effect of the inside design temperature and the coil face velocity on the energy recovery for a typical heat pipe heat exchanger was also investigated. In addition, heat pipe heat exchangers were simulated based on the effectiveness-NTU method, and their theoretical values for the thermal performance were compared with the experimental results.

  10. The indicators of energy security of decentralized heating

    Directory of Open Access Journals (Sweden)

    Elena Vitalyevna Bykova

    2013-06-01

    Full Text Available In the paper, the new additional indicators of energy security with the purpose to include decentralized heating sector is developed in the work. The structure of the housing stock of the country is analyzed, which includes different types of central heating boilers and CHP, individual gas or electric heating and stove heating.The analysis of the existing thermal supply (per unit area and per capita living for each sector is carried out. It is found that heat consumed in the residential sector with central heating from CHP and boilers is significantly higher of heat consumed in other sectors. The missing amount of heat energy, which can be produced in two ways, is calculated. Part of the deficit heat can be produced at existing sources that are not loaded enough to the nominal parameters at the moment. The second part can be obtained from small new sources (for inhabited localities that do not have a centralized heat supply infrastructure. New indicators complement the system of indicators to be used to analyze and monitoring the level of Moldova's energy security. They allowed including decentralized heat supply sector, which is not reflected in the official statistics. At the same, the calculation methodology has been improved and the overall integral indicator of the energy security level, which was even more crisis than previously thought.

  11. Improved energy efficiency in juice production through waste heat recycling

    International Nuclear Information System (INIS)

    Anderson, J.-O.; Elfgren, E.; Westerlund, L.

    2014-01-01

    Highlights: • A heating system at a juice production was investigated and improved. • Different impacts of drying cycle improvements at the energy usage were explored. • The total heat use for drying could thereby be decreased with 52%. • The results point out a significant decrease of heat consumption with low investment costs. - Abstract: Berry juice concentrate is produced by pressing berries and heating up the juice. The by-products are berry skins and seeds in a press cake. Traditionally, these by-products have been composted, but due to their valuable nutrients, it could be profitable to sell them instead. The skins and seeds need to be separated and dried to a moisture content of less than 10 %wt (on dry basis) in order to avoid fermentation. A berry juice plant in the north of Sweden has been studied in order to increase the energy and resource efficiency, with special focus on the drying system. This was done by means of process integration with mass and energy balance, theory from thermodynamics and psychrometry along with measurements of the juice plant. Our study indicates that the drying system could be operated at full capacity without any external heat supply using waste heat supplied from the juice plant. This would be achieved by increasing the efficiency of the dryer by recirculation of the drying air and by heat supply from the flue gases of the industrial boiler. The recirculation would decrease the need of heat in the dryer with about 52%. The total heat use for the plant could thereby be decreased from 1262 kW to 1145 kW. The improvements could be done without compromising the production quality

  12. Measuring and evaluating the soft energy efficiency measures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suvilehto, H.-M.; Solid, D. [AaF-Industry Ltd, Solna (Sweden); Rouhiainen, V. [Adato Energia Ltd, Helsinki (Finland); Honkasalo, N.; Sarvaranta, A. [AaF-Consult Ltd, Solna (Sweden)

    2012-07-15

    This study discusses how to quantify the energy savings related to the companies' aims to enhance their customers' energy efficiency which is one target in the Action Plan for Energy Services in the Energy Efficiency Agreement for the Industries. In Finland, a majority of the energy utilities have signed this action plan and are providing their customers services to improve their energy efficiency. Dissemination of information is the most widely used service to the customers and it is provided in a number of ways including printed material, annual energy report, and an internet tool to access and report hourly measurements. Some of the internet tools cover electricity, district heat and water. The focus of the study is in the evaluation of 'soft' measures; in other words, those measures given by energy utilities that principally rely on communication instruments. However, monitoring the impact of information and communication is far from easy. Carrying out a properly designed evaluation of programmes aiming on enhanced energy efficiency is difficult. Evaluation of the impact of a magazine article on energy efficiency is even more challenging, costly and therefore also rare. Distribution of information as measure to enhance energy efficiency is an important part of EU.s energy policy but what are the ways and even more so, are there ways to actually quantify these savings? There has been excessive work by the member states and research institutes to find a common and robust methodology within the EU to evaluate and quantify energy savings from technical measures. The ex-ante and ex-post results from these evaluations can however differ considerably, e.g. the expected energy savings from installing air to air heat pumps in Denmark did not deliver the expected energy savings. The problems with finding a common robust methodology become even more visible when the 'soft' measures are put under the evaluation loop. The &apos

  13. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  14. Reduction of Energy Consumption and CO2 Emissions in Domestic Water Heating by Means of Direct Expansion Solar Assisted Heat Pump

    International Nuclear Information System (INIS)

    Baleta, J.; Curko, T.; Cutic, T.; Pasanec, J.; Soldo, V.

    2012-01-01

    Domestic water heating in households sector is usually performed by either fossil fuel fired or electric boilers. Both the combustion process of the former and large electricity consumption of the latter strongly influence overall greenhouse gas emissions. Moreover, very high specific heat of water requires large quantity of energy for water heating making a significant impact on the overall energy consumption in the households sector whose total consumption of 80,81 PJ equals to 19,6% of total primary energy supply in Croatia in 2010. Considering the mentioned impact on energy consumption and CO 2 emissions as well as goals set by European Commission (so called 20-20-20), new technologies based on renewable energy sources are more than welcome in the field of domestic water heating. Direct expansion solar assisted heat pump is presented in this paper. Its working principle is based on single-stage vapour-compression cycle. Representing a gradual step to commercial application with a water tank of 300 l, the developed mobile unit is designed as a test rig enabling all necessary measurements to evaluate potential of solar irradiation for domestic water heating on various locations. Besides the unit description, trial testing results are presented and analyzed as well as a basic comparison of CO 2 emissions between solar assisted heat pump and conventionally used water heating systems. Taking into account both the decentralized water heating and favourable climatic conditions (especially along the Croatian Adriatic coast) as well as rising fossil fuel prices, it is expected that solar assisted heat pumps will be commercialized in the near future.(author)

  15. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air

  16. Multiwalled Carbon Nanotube Nanofluids Used for Heat Dissipation in Hybrid Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2014-01-01

    Full Text Available This study was conducted to characterize carbon nanotube (CNT/water nanofluids (CNWNFs and to apply the nanofluids in a heat-dissipation system of dual green energy sources. CNTs were mixed with water in weight fractions of 0.125%, 0.25%, and 0.5% to produce nanofluids. The thermal conductivity, density, viscosity, and specific heat of the nanofluids were measured. An experimental platform consisting of a simulated dual energy source and a microchip controller was established to evaluate the heat-dissipation performance. Two indices, the heat dissipation enhancement ratio and specific heat dissipation enhancement ratio (SHDER, were defined and calculated. The CNWNFs with a CNT concentration of 0.125 wt.% were used because they exhibited the highest SHDER. The steady-state performance was evaluated at 2 flow rates, 11 hybrid flow ratios, and 3 heating ratios for a total power of 1000 W. The transient behavior of the energy sources at preset optimal temperatures was examined, and the CNWNFs exhibited average increases in stability and heat dissipation efficiency of 36.2% and 5%, respectively, compared with water. This nanofluid heat-dissipation system is expected to be integrated with real dual energy sources in the near future.

  17. Cognitive Simulation Driven Domestic Heating Energy Management

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.

    2016-01-01

    Energy management for domestic heating is a non trivial research challenge, especially given the dynamics associated to indoor and outdoor air temperatures, required comfortable temperature set points over time, parameters of the heating source and system, and energy loss rate and capacity of a

  18. Heat flux microsensor measurements

    Science.gov (United States)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  19. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  20. Experimental investigation of using ambient energy to cool Internet Data Center with thermosyphon heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.; Tian, X.; Ma, G. [Beijing Univ. of Technology, Beijing (China). College of Environmental and Energy Engineering

    2010-07-01

    The energy consumption of the air-conditioning system at the Internet Data Center (IDC) in Beijing comprises 40 per cent of the building's total energy consumption. Of all the energy energy management strategies available at the IDC, the most unique one is the use of ambient energy to cool the IDC by the thermosyphon heat exchanger. Atmospheric energy can reduce the air conditioner's running time while maintaining the humidity and cleanliness of the IDC. In this study, an IDC test model was set up to analyze the heat dissipating characteristics and the energy consumption of the thermosyphon heat exchanger and the air conditioner in the IDC for winter conditions. The heat dissipating capacity of the building envelope was measured and calculated. The energy consumption of the air conditioner was compared under different indoor and outdoor temperatures. The study showed that the heat dissipating need of the IDC cannot be met just by the heat dissipation of the building envelope in winter conditions. The heat dissipating capacity of the IDC building envelope comprises 19.5 per cent of the total heat load. The average energy consumption of the air conditioner is 3.5 to 4 kWh per day. The temperature difference between indoor and outdoor temperature in the IDC with the thermosyphon heat exchanger was less than 20 degrees C, and the energy consumption of the thermosyphon heat exchanger comprised only 41 per cent of that of the air conditioner. 8 refs., 1 tab., 8 figs.

  1. Scrape-off measurements during Alfven wave heating in the TCA tokamak

    International Nuclear Information System (INIS)

    Hofmann, F.; Hollenstein, C.; Joye, B.; Lietti, A.; Lister, J.B.; Pochelon, A.; Gimzewski, J.K.; Veprek, S.

    1984-01-01

    Plasma parameters and impurity fluxes in the scrape-off layer of the TCA tokamak have been measured during Alfven wave heating. Langmuir probes are used to measure electron density, electron temperature and plasma potential. Collection probes, in conjunction with XPS surface analysis, are used to determine impurity fluxes and ion impact energies. During RF heating, the electron edge temperature rises, the plasma potential drops and impurity fluxes are enhanced. Probe erosion due to impurity sputtering is clearly observed. The measurements are correlated with other diagnostics on TCA. (orig.)

  2. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  3. Performance of Space Heating in a Modern Energy System

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2011-01-01

    In the paper we study the performance of a number of heat supply technologies. The background of the study is the changes in the Danish energy systems over the last three decades which have caused integration of large shares of combined heat and power (CHP), renewable fuels and wind power....... These changes mean that there is a significant integration of electricity and heat supply in the system and that several technologies may be beneficial. In particular, heat pumps are under consideration and are often considered to be renewable energy. We study how to distribute fuel and emissions to the heat...... supply. We find that heat supply is low-efficient seen from an exergy viewpoint, between 1% and 26% utilization. As exergy is a quantification of primary energy, we conclude that far better utilization of primary energy is possible. We also find that combined heat and power and domestic heat pumps...

  4. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    Science.gov (United States)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  5. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  6. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    Science.gov (United States)

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  7. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  8. Air source integrated heat pump simulation model for EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; New, Joshua; Baxter, Van

    2017-12-01

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy saving potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.

  9. Questionnaire survey, indoor climate measurements and energy consumption: Concerto initiative. Class1

    Energy Technology Data Exchange (ETDEWEB)

    Nellemose Knudsen, H.; Engelund Thomsen, K.; Bergsoee, N.C. [Aalborg Univ., Statens Byggeforskningsinstitut (SBi), Koebenhavn (Denmark); Moerck, O.; Holmegaard Andersen, K. [Cenergia Energy Consultants, Herlev (Denmark)

    2012-12-15

    The municipality of Egedal decided in 2006 to make use of the possibility in the Danish Planning Law for a municipality to tighten the energy requirements in the local plan for a new settlement to be erected in the municipality. During the years 2007-2011 a total of 442 dwellings were to be designed and constructed with a heating demand corresponding to the Danish low-energy standard referred to as ''low-energy class 1'' in a new settlement called Stenloese Syd. This means that the energy consumption is to be 50% lower than the requirement in BR08 (Danish Building Regulations 2008). 66 flats were to be designed and constructed with a yearly heating demand of 15 kWh/m{sup .} Furthermore, the Concerto community include a kindergarten and an activity centre for elderly people. All the single family houses were to be heated by a heat pump supported by a 3 m{sup }thermal solar system for hot water preparation. The dense low-rise housing are to be heated by a district heating network. All dwellings were to be equipped with a mechanical ventilation system with heat recovery and an electronic system for energy monitoring and control of the heating systems. The first houses were occupied in 2008. This report presents part of the results of an evaluation of the project that was performed in the settlement. The evaluation consisted of a questionnaire survey of occupant experiences and satisfaction in 35 single-family houses, measurements of energy consumption in 22 selected single-family houses and 58 flats, and measurements, assessments, and a series of physical measurements of selected indoor climate parameters in 7 selected single-family houses during March 2012. (Author)

  10. Energy performance and consumption for biogas heat pump air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenjun [Architectural Engineering College, Qingdao Agricultural University, 266109 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China); Wu, Huaizhi; Wu, Meiling [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China)

    2010-12-15

    Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)

  11. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  12. Simulation Study of the Energy Performance of Different Space Heating Methods in Plus-energy Housing

    DEFF Research Database (Denmark)

    Schøtt, Jacob; Andersen, Mads E.; Kazanci, Ongun Berk

    2016-01-01

    Due to a shortage of energy resources, the focus on indoor environment and energy use in buildings is increasing which sets higher standards for the performance of HVAC systems in buildings. The variety of available heating systems for both residential buildings and office buildings is therefore...... cases the heat source was a natural gas fired condensing boiler, and for the floor heating cases also an air-to-water heat pump was used to compare two heat sources. The systems were also compared in terms of auxiliary energy use for pumps and fans. The results show that the investigated floor heating...... from the low temperature heating potential since an increased floor covering requires higher average water temperatures in the floor loops and decreases the COP of the heat pump. The water-based heating systems required significantly less auxiliary energy input compared to the air-based heating system...

  13. Heat-pump-centered integrated community energy systems: system development summary

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  14. Heating energy flexibility of dwellings. Asuinrakennusten laemmityksen energiajoustavuus

    Energy Technology Data Exchange (ETDEWEB)

    Haapalahti, P [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Yhdyskunta- ja rakennussuojelun Lab

    1989-02-01

    The problem area under study concens the heating of dwellings fluctuations in energy supply. The research has been restricted to dwellings only and those activities linked to energy production and transportation have been excluded. During energy shortage, home-owners are faced with two alternatives: to cut down their energy consumption or to use other forms of energy as substitutes for primary energy. In the case of a serious crisis regarding domestic fuel, wood in particular can be considered as a viable alternative. However, when considering present-day installations, any increase in use of wood as a fuel must be seen as limited. Thus the saving of energy in times of shortage is rendered still more important. Energy-savings is, of course, possible in terms of reduced comfort and quality factors in comparison to those preveiling under normal circumstances. For example, indoor temperatures can be lowered, ventilation diminished or the consumption of warm water deccreased. With respect to saving activities, the adjustability of heating and ventilation should be as efficient as possible. With regard to altering situations regarding energy prices, energy flexibility means, primarily, changing energy sources. Replacing an energy source is, however, a quite an expensive operation and economic dependence on the chosen system is considerable.Energy flexibility, particularly in the choice of main heating system, is easiest to achieve during new building phases and can be improved by recourse to various main solutions such as, for instance, the construction of fireplace. Mechanical incoming and exhaust air system can be chosen for direct electrical heating for a ventilation system. The control of the indoor temperature and ventilation of each separate room can be developed in all heating systems.

  15. Comparison of heat flux measurement techniques during the DIII-D metal ring campaign

    Science.gov (United States)

    Barton, J. L.; Nygren, R. E.; Unterberg, E. A.; Watkins, J. G.; Makowski, M. A.; Moser, A.; Rudakov, D. L.; Buchenauer, D.

    2017-12-01

    The heat fluxes expected in the ITER divertor raise concerns about the damage tolerances of tungsten, especially due to thermal transients caused by edge localized modes (ELMs) as well as frequent temperature cycling from high to low extremes. Therefore we are motivated to understand the heat flux conditions that can cause not only enhanced erosion but also bulk thermo-mechanical damage to a tungsten divertor. For the metal ring campaign in DIII-D, tungsten-coated TZM tile inserts were installed making two toroidal arrays of metal tile inserts in the lower divertor. This study examines the deposited heat flux on these rings with embedded thermocouples (TCs) sampling at 10 kHz and compares them to Langmuir probe (LP) and infrared thermography (IRTV) heat flux measurements. We see agreement of the TC, LP, and IRTV data within 20% of the heat flux averaged over the entire discharge, and that all three diagnostics suggest parallel heat flux at the OSP location increases linearly with input heating power. The TC and LP heat flux time traces during the discharge trend together during large changes to the average heat flux. By subtracting the LP measured inter-ELM heat flux from TC data, using a rectangular ELM energy pulse shape, and taking the relative size and duration of each ELM from {{D}}α measurements, we extract the ELM heat fluxes from TC data. This over-estimates the IRTV measured ELM heat fluxes by a factor of 1.9, and could be due to the simplicity of the TC heat flux model and the assumed ELM energy pulse shape. ELM heat fluxes deposited on the inserts are used to model tungsten erosion in this campaign. These TC ELM heat flux estimates are used in addition to IRTV, especially in cases where the IRTV view to the metal ring is obstructed. We observe that some metal inserts were deformed due to exposed leading edges. The thermal conditions on these inserts are investigated with the thermal modeling code ABAQUS using our heat flux measurements when these edges

  16. Optimal Placement of A Heat Pump in An Integrated Power and Heat Energy System

    DEFF Research Database (Denmark)

    Klyapovskiy, Sergey; You, Shi; Bindner, Henrik W.

    2017-01-01

    With the present trend towards Smart Grids and Smart Energy Systems it is important to look for the opportunities for integrated development between different energy sectors, such as electricity, heating, gas and transportation. This paper investigates the problem of optimal placement of a heat...... pump – a component that links electric and heating utilities together. The system used to demonstrate the integrated planning approach has two neighboring 10kV feeders and several distribution substations with loads that require central heating from the heat pump. The optimal location is found...

  17. Analisys and energy saving measures of kastvallen ice hockey rink arena

    OpenAIRE

    Igual Bueno, Mario; Bielsa Azcona, José Enrique

    2011-01-01

    Nowadays efficiency measures are more and more important because the price of the energy is increasing every year. Moreover, saving energy it is also important for decrease the environmental impact. Kastvallen is a hockey arena built in 1997 that cools the hockey rink with electric compressors. The changing rooms are heating by using district heating. Actually the total invoice of electricity is above the 800000 SEK. Meanwhile the district heating invoice reaches the 60000SE...

  18. Development of heat pump technology in eco-energy city project

    Energy Technology Data Exchange (ETDEWEB)

    Omata, Tomio [New Energy Development Organization (Japan); Ogisu, Yoshihiro [Office of Eco-Energy City Project, Energy Conservation Center (Japan)

    1999-07-01

    In the New Sunshine Project conducted by MITI Japan, Eco-Energy City-Project covers the research area of utilization of industrial and municipal waste heat. For the further utilization of waste heat, several research programs are carried out for recovery and conversion of waste heat, transportation and storage of waste heat and final use of rather low temperature heat transported. Various types of heat driven heat pumps are developed in the Eco-Energy City Project. Concept of the Project is to utilize industrial and municipal waste heat for the city where energy demand is increasing. These heat pumps will contribute for the reduction of CO{sub 2} emission. (orig.)

  19. Current status of decay heat measurements, evaluations, and needs

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1986-01-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs

  20. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  1. Exchanging and Storing Energy. Reducing Energy Demand through Heat Exchange between Functions and Temporary Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sillem, E.

    2011-06-15

    As typical office buildings from the nineties have large heating and cooling installations to provide heat or cold wherever and whenever needed, more recent office buildings have almost no demand for heating due to high internal heat loads caused by people, lighting and office appliances and because of the great thermal qualities of the contemporary building envelope. However, these buildings still have vast cooling units to cool down servers and other energy consuming installations. At the same time other functions such as dwellings, swimming pools, sporting facilities, archives and museums still need to be heated most of the year. In the current building market there is an increasing demand for mixed-use buildings or so called hybrid buildings. The Science Business Centre is no different and houses a conference centre, offices, a museum, archives, an exhibition space and a restaurant. From the initial program brief it seemed that the building will simultaneously house functions that need cooling most of the year and functions that will need to be heated the majority of the year. Can this building be equipped with a 'micro heating and cooling network' and where necessary temporarily store energy? With this idea a research proposal was formulated. How can the demand for heating and cooling of the Science Business Centre be reduced by using energy exchange between different kinds of functions and by temporarily storing energy? In conclusion the research led to: four optimized installation concepts; short term energy storage in pavilion concept and museum; energy exchange between the restaurant and archives; energy exchange between the server space and the offices; the majority of heat and cold will be extracted from the soil (long term energy storage); the access heat will be generated by the energy roof; PV cells from the energy roof power all climate installations; a total energy plan for the Science Business Centre; a systematic approach for exchanging

  2. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  3. German central solar heating plants with seasonal heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

  4. Comparing the energy required for fine grinding torrefied and fast heat treated pine

    International Nuclear Information System (INIS)

    Kokko, Lauri; Tolvanen, Henrik; Hämäläinen, Kai; Raiko, Risto

    2012-01-01

    The purpose of the study was to compare torrefaction to partial pyrolysis conducted with a fast heat treatment process. Both torrefaction and the fast heat treatment tests were performed in a bubbling fluidized bed reactor. The study investigated the anhydrous weight losses, the fine grinding energy requirements, and the lower heating values of the samples produced with the two methods i.e. torrefaction and the fast heat treatment. The effect of particle size to these quantities was also investigated. The measurements demonstrated that the fine grinding energy requirement decreased rapidly as a function of anhydrous weight loss. The overall energy content remaining in the solid product decreased linearly as a function of anhydrous weight loss. The study shows that there is only little difference in the final products of the two processes when using particle sizes less than 4 mm. This means that it is possible to get similar products from the fast heat treatment process that takes only seconds compared to the slower torrefaction process that takes minutes. -- Highlights: ► Fine grinding energy requirement is dependent on anhydrous weight loss. ► A fast heat treatment process of only 10 s is possible for pine wood. ► A particle size of less than 4 mm is required for the fast process.

  5. A mathematical model of heat flow in a thermopile for measuring muscle heat production: implications for design and signal analysis.

    Science.gov (United States)

    Barclay, C J

    2015-09-01

    Contracting muscles produce heat which largely arises from the biochemical reactions that provide the energy for contraction. Measurements of muscle heat production have made, and continue to make, important contributions to our understanding of the bases of contraction. Most measurements of muscle heat production are made using a thermopile, consisting of a series of thermocouples arranged so that alternate thermocouples are in thermal contact with the muscle and with an isothermal reference. In this study, a mathematical model was constructed of a muscle lying on a thermopile consisting of antimony-bismuth thermocouples sandwiched between polymer sheets. The validity of the model was demonstrated by its ability to accurately predict thermopile outputs in response to applying heat to the thermopile surface, to generating heat in the thermocouples using the Peltier effect and to adding heat capacity on the thermopile surface. The model was then used to show how practical changes to thermopile construction could minimise response time and thermopile heat capacity and allow measurement of very low rates of heat production. The impulse response of a muscle-thermopile system was generated using the model and used to illustrate how a measured signal can be deconvolved with the impulse response to correct for lag introduced by the thermopile.

  6. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  7. Measured energy savings from using night temperature setback

    International Nuclear Information System (INIS)

    Szydlowski, R.F.; Wrench, L.E.; O'Neill, P.J.

    1993-01-01

    The measured energy savings resulting from using night temperature setback in typical light-construction wooden office buildings was determined. Researchers installed monitoring equipment in a six-building sample of two-story wooden buildings at Fort Devens, Massachusetts. Data obtained during both single-setting and night-setback operating modes were used to develop models of each building's heat consumption as a function of the difference between inside and outside temperature. These models were used to estimate seasonal savings that could be obtained from the use of night-setback thermostat control. The measured savings in heating energy from using night temperature setback for the six Fort Devens buildings ranged from 14% to 25%; the mean savings was 19.2%. Based on an energy cost of $0.65/therm of natural gas, the estimated average cost savings of using automatic setback thermostats in these buildings is $780 per year per building

  8. Comprehensive thermodynamic analysis of a renewable energy sourced hybrid heating system combined with latent heat storage

    International Nuclear Information System (INIS)

    Utlu, Zafer; Aydın, Devrim; Kıncay, Olcay

    2014-01-01

    Highlights: • An experimental thermal investigation of hybrid renewable heating system is presented. • Analyses were done by using real data obtained from a prototype structure. • Exergy efficiency of system components investigated during discharging period are close to each other as 32%. • The average input energy and exergy rates to the LHS were 0.770 and 0.027 kW. • Overall total energy and exergy efficiencies of LHS calculated as 72% and 28.4%. - Abstract: In this study an experimental thermal investigation of hybrid renewable heating system is presented. Latent heat storage stores energy, gained by solar collectors and supplies medium temperature heat to heat pump both day time also night time while solar energy is unavailable. In addition to this an accumulation tank exists in the system as sensible heat storage. It provides supply–demand balance with storing excess high temperature heat. Analyses were done according to thermodynamic’s first and second laws by using real data obtained from a prototype structure, built as part of a project. Results show that high percent of heat loses took place in heat pump with 1.83 kW where accumulator-wall heating cycle followed it with 0.42 kW. Contrarily highest break-down of exergy loses occur accumulator-wall heating cycle with 0.28 kW. Averagely 2.42 kW exergy destruction took place in whole system during the experiment. Solar collectors and heat pump are the promising components in terms of exergy destruction with 1.15 kW and 1.09 kW respectively. Exergy efficiency of system components, investigated during discharging period are in a close approximately of 32%. However, efficiency of solar collectors and charging of latent heat storage are 2.3% and 7% which are relatively low. Average overall total energy and exergy efficiencies of latent heat storage calculated as 72% and 28.4% respectively. Discharging energy efficiency of latent heat storage is the highest through all system components. Also heat

  9. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  10. Thermal Energy Corporation Combined Heat and Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Turner, E. Bruce [Thermal Energy Corporation, Houston, TX (United States); Brown, Tim [Thermal Energy Corporation, Houston, TX (United States); Mardiat, Ed [Burns and McDonnell Engineering Company, Inc., Kansas City, MI (United States)

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  11. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  12. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  13. Method for optimal design of pipes for low-energy district heating, with focus on heat losses

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2011-01-01

    The synergy between highly energy-efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy-saving policies and energy supply systems based on renewable energy (RE). Network transmission and distribution heat loss is one of the k...

  14. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply.......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...

  15. Temperature distribution of the energy consumed as heat in Canada

    International Nuclear Information System (INIS)

    Puttagunta, V.R.

    1974-10-01

    The amount of energy consumed as heat (excluding thermal generation of electricity) in Canada is estimated from statistical data available on the total consumption of energy for the years 1958 to 2000. Based on some actual plant data and other statistical information this energy consumption is sub-divided into four temperature categories: high (>260 degrees C), intermediate (140-260 degrees C), low (100-140 degrees C), and space heating (<100 degrees C). The results of this analysis show that approximately half of all the energy consumed in Canada has an end use as heat. Less than 10 percent of the energy consumed as heat is in the high temperature category, 12 to 14 percent is in the intermediate temperature range, 21 to 27 percent is in the low temperature range, and 50 to 58 percent is used for space heating. Over 90 percent of the energy consumed as heat in Canada is within the temperature capability of the CANDU-PHW reactor. (author)

  16. Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation

    Directory of Open Access Journals (Sweden)

    Michel Noussan

    2018-01-01

    Full Text Available Heating and cooling in buildings is a central aspect for adopting energy efficiency measures and implementing local policies for energy planning. The knowledge of features and performance of those existing systems is fundamental to conceiving realistic energy savings strategies. Thanks to Information and Communication Technologies (ICT development and energy regulations’ progress, the amount of data able to be collected and processed allows detailed analyses on entire regions or even countries. However, big data need to be handled through proper analyses, to identify and highlight the main trends by selecting the most significant information. To do so, careful attention must be paid to data collection and preprocessing, for ensuring the coherence of the associated analyses and the accuracy of results and discussion. This work presents an insightful analysis on building heating systems of the most populated Italian region—Lombardy. From a dataset of almost 2.9 million of heating systems, selected reference values are presented, aiming at describing the features of current heating systems in households, offices and public buildings. Several aspects are considered, including the type of heating systems, their thermal power, fuels, age, nominal and measured efficiency. The results of this work can be a support for local energy planners and policy makers, and for a more accurate simulation of existing energy systems in buildings.

  17. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  18. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  19. Dossier: renewable energies for heat production; Dossier: energies renouvelables pour la production de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-09-01

    This dossier makes a state-of-the-art of today's applications of renewable energy sources in the residential, collective and tertiary sectors for the space heating and the hot water production. In France, three energy sources profit by a particularly favorable evolution: the solar thermal, the wood fuel and the geothermal energies. In these sectors, the offer of reliable and technically achieved appliances has been considerably widen thanks to the impulse of some French and German manufacturers. Part 1 - solar thermal: individual solar water heaters (monobloc, thermosyphon with separate tank, forced circulation systems, auxiliary heating systems); combined solar systems (direct heating floor, system with storage); collective solar systems for hot water production (receivers, efficiency, heat storage and transfer, auxiliary heating, decentralized systems); heating of open-air swimming pools; some attempts in air-conditioning; the warranty of results. Part 2 - wood fuels: domestic space heating (log boilers, installation rules, hydro-accumulation, automatic boilers); collective and tertiary wood-fueled heating plants (design of boiler plants, fuel supply, combustion chamber, smoke purification systems, ash removal, regulation system), fuels for automatic collective plants, design and installation rules. Part 3 - geothermal energy: different types (water-source and ground-source heat pumps, financial incentive). (J.S.)

  20. Recognising the potential for renewable energy heating and cooling

    International Nuclear Information System (INIS)

    Seyboth, Kristin; Beurskens, Luuk; Langniss, Ole; Sims, Ralph E.H.

    2008-01-01

    Heating and cooling in the industrial, commercial, and domestic sectors constitute around 40-50% of total global final energy demand. A wide range of renewable energy heating and cooling (REHC) technologies exists but they are presently only used to meet around 2-3% of total world demand (excluding from traditional biomass). Several of these technologies are mature, their markets are growing, and their costs relative to conventional heating and cooling systems continue to decline. However, in most countries, policies developed to encourage the wider deployment of renewable electricity generation, transport biofuels and energy efficiency have over-shadowed policies aimed at REHC technology deployment. This paper, based on the findings of the International Energy Agency publication Renewables for Heating and Cooling-Untapped Potential, outlines the present and future markets and compares the costs of providing heating and cooling services from solar, geothermal and biomass resources. It analyses current policies and experiences and makes recommendations to support enhanced market deployment of REHC technologies to provide greater energy supply security and climate change mitigation. If policies as successfully implemented by the leading countries were to be replicated elsewhere (possibly after modification to better suit local conditions), there would be good potential to significantly increase the share of renewable energy in providing heating and cooling services

  1. Energy saving and emission reduction of China's urban district heating

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2013-01-01

    China's carbon dioxide (CO 2 ) emission ranks highest in the world. China is committed to reduce its CO 2 emission by 40% to 45% from the 2005 levels by 2020. To fulfill the target, China's CO 2 emission reduction must exceed 6995 million tons. Energy consumption and CO 2 emission of China's urban district heating (UDH) are increasing. The current policy implemented to improve UDH focuses on replacing coal with natural gas to reduce energy consumption and CO 2 emission to some extent. This paper proposes that heat pump heating (HPH) could serve as a replacement for UDH to help realize energy-saving and emission-reduction goals to a greater extent. The paper also analyzes the impact of this replacement on the heating and power generation sectors. The results show that replacing coal-based UDH with HPH decreases energy consumption and CO 2 emission by 43% in the heating sector. In the power generation sector, the efficiency of power generation at the valley electricity time increases by 0.512%, and the ratio of peak–valley difference decreases by 16.5%. The decreases in CO 2 emission from the heating and power generation sectors cumulatively account for 5.55% of China's total CO 2 emission reduction target in 2020. - Highlights: ► Replacing urban district heating with heat pump heating. ► Impact of heat pump heating on heating and power generation sectors. ► Potential of energy saving and emission reduction for heat pump heating. ► China should adjust current urban heating strategy

  2. Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma

    Science.gov (United States)

    Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.

    2017-12-01

    Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).

  3. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  4. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    Science.gov (United States)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  5. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Ford, Rufus; Pietruschka, Dirk; Sipilä, Kari

    participants being VTT Technical Research Centre of Finland (VTT), Technical University of Denmark (DTU), Norwegian University of Science and Technology (NTNU), Stuttgart Technology University of Applied Sciences (HFT) and SSE Enterprise in United Kingdom. The demonstration cases described in the report......This report titled “Case studies and demonstrations” is the subtask D report of the IEA DHC|CHP Annex TS1 project “Low Temperature District Heating for Future Energy Systems” carried out between 2013 and 2016. The project was led by Fraunhofer Institute for Building Physics (IBP) with the other...... include examples on low temperature district heating systems, solar heating in a district heating system, heat pump based heat supply and energy storages for both peak load management and for seasonal heat storage. Some demonstrations have been implemented while others are at planning phase...

  6. Recent start of two field measurements of new heat pumps; Zwei Feldmessungen neuer Waermepumpen gestartet

    Energy Technology Data Exchange (ETDEWEB)

    Buehring, A.; Miara, M.; Russ, C.; Bichler, C.; Becker, R. [Fraunhofer-Inst. fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2006-07-01

    The contribution presents two new large-scale field measurements of heat pumps that were started in 2006. In both projects, measurements are made on a large number of heat pumps in real operation. Volume flows, temperatures, heat volumes and power consumption are measured with high temporal resolution. The data are stored and evaluated daily by Fraunhofer ISE via remote data transfer. From the measurements, characteristic values, system behaviour, quality characteristics and correlations with plant design data will be derived. In the project ''Waermepumpen-Effizienz'', 140 heat pumps of 7 producers will be tested. About half of them started operation in 2006 while the other half will be commissioned in 2008. The focus is on low capacities of 5-10 kW thermal power and with ambient air and soil as heat sources. Efficiencies will be tested in different conditions and with different system concepts, and development concepts will be derived for smaller heat pumps for low-energy buildings. These will close the current gap between available heat pumps and compact ventilation units with off-air heat pumps for passive buildings. The project is funded by the Federal Minister of Economy and TEchnology, by the seven producers and by EnBW and E.ON. The second project, ''Ersatz von Oelheizkesseln im Wohngebaeudebestand durch Waermepumpen'', comprises measurements on 100 heat pumps of leading producers in real operations. All heat pumps are suited for use in older buildings. The measuring equipment and procedure are similar to the first-mentioned project. The economic efficiency and CO2 emissions of the heat pumps are compared with those of new oil-fuelled boilers as an alternative in the modernisation of older buildings. The measurements will also show what thermal insulation is required for maximum economic efficiency of the heat pumps. The results will be made public to customers, fitters, producers, planners, universities, politicians

  7. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation

    International Nuclear Information System (INIS)

    Chan, C.W.; Ling-Chin, J.; Roskilly, A.P.

    2013-01-01

    A major cause of energy inefficiency is a result of the generation of waste heat and the lack of suitable technologies for cost-effective utilisation of low grade heat in particular. The market potential for surplus/waste heat from industrial processes in the UK is between 10 TWh and 40 TWh, representing a significant potential resource which has remained unexploited to date. This paper reviews selected technologies suitable for utilisation of waste heat energy, with specific focus on low grade heat, including: (i) chemical heat pumps, such as adsorption and absorption cycles for cooling and heating; (ii) thermodynamic cycles, such as the organic Rankine cycle (ORC), the supercritical Rankine cycle (SRC) and the trilateral cycle (TLC), to produce electricity, with further focus on expander and zeotropic mixtures, and (iii) thermal energy storage, including sensible and latent thermal energy storages and their corresponding media to improve the performance of low grade heat energy systems. - Highlights: ► The review of various thermal technologies for the utilisation of under exploited low grade heat. ► The analyses of the absorption and adsorption heat pumps possibly with performance enhancement additives. ► The analyses of thermal energy storage technologies (latent and sensible) for heat storage. ► The analyses of low temperature thermodynamic cycles to maximise power production.

  8. District Heating in Areas with Low Energy Houses

    DEFF Research Database (Denmark)

    Tol, Hakan Ibrahim

    -energy houses involved, together with the idea of utilizing booster pumps in the district heating network and (ii) use of network layouts of either a branched (tree-like) or a looped type. The methods developed were applied in a case study, the data of which was provided by the municipality of Roskilde...... in Denmark. The second case study was aimed at solving another regional energy planning scheme, one concerned with already existing houses, the heat requirements of which were currently being met by use of a natural gas grid or a conventional high-temperature district heating network. The idea considered......This PhD thesis presents a summary of a three-year PhD project involving three case studies, each pertaining to a typical regional Danish energy planning scheme with regard to the extensive use of low-energy district heating systems, operating at temperatures as low as 55°C for supply and 25°C...

  9. Analysis of the impact of heat pump technology on the Irish energy system to the year 2000. Energy case study series: No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Brady, J.

    1977-09-15

    An analysis of the impact of existing and new heat pump technology on the Irish energy system to the year 2000 was undertaken. The methodology used involved the measurement of the potential impact against a base Reference Energy System for various heat pump strategies. A short analysis of the implementation rates and their effect on technology impact was also carried out.

  10. Geothermal energy - effective solutions for heating and cooling of buildings

    International Nuclear Information System (INIS)

    Veleska, Viktorija

    2014-01-01

    Energy and natural resources are essential prerequisites for the maintenance of the life and the development of human civilization. With the advancement of technology is more emphasis on energy efficiency and reducing carbon dioxide emissions. Energy efficiency is using less power without reducing the quality of life. Almost half of the energy used is devoted to buildings, including heating and cooling. Buildings are a major source of CO_2 emissions in the atmosphere. Reducing the impact of buildings on the environment and the development of renewable energy, energy solutions are key factor in terms of sustainable development. Energy and geothermal pumps posts represent effective solutions for large facilities for heating and cooling. Geothermal energy piles represent a system of pipes that circulate thermal fluid and embedded in earth, thus extracting heat from the bearing to satisfy the needs for heating and cooling. Experience has shown that this type of energy piles can save up to two thirds of the cost of conventional heating, while geothermal pump has the ability to low temperature resources (such as groundwater and earth) to extract energy and raise the higher level needed for heating buildings. Their implementation is supported by an active group of researchers working with industry to demonstrate the benefits of dual benefit performance at the foundations. Initiative for renewable heat and potential for further adoption of solutions with these technologies is rapidly expanding. The use of this source of energy has great potential due to environmental, economic and social benefits. (author)

  11. ENERGY EFFICIENCY OF DIFFERENT WAYS OF CENTRAL HEATING

    Directory of Open Access Journals (Sweden)

    A. E. Piir

    2015-01-01

    Full Text Available  The article shows the calculation comparison of fuel for producing of heat-line water with a help of different technological installations, transforming (converting high-grade heat from burning process of fuel or in the process of non-reversible heat exchange with coolant (heating agent, or with a help of heat engines, which allow to decrease losses of working efficiency and thus to reduce the use of fuel. There were considered five types of plants beginning from the  simplest  one  up  to  the  most  complex  in  two  variants,  when  the  heat  exchangers and machines are perfect (ideal and when equipment has the known degree of efficiency (perfection:1 water-heat boiler station, working on organic fuel;2 electrical boiler station, obtaining energy on power transmission lines from condensing power station;3 line heater of TPP, obtaining steam from heating turbine;4 line heater CPP, powered by steam from pressure reducing unit;5 heat pump, producing energy on power supply lines from TPP.In this article were investigated three ideal reversible ways of transformation of   high- grade heat into low-grade heat with a help of decreasing and increasing and combined (suggested by the authors heat transformers and their thermodynamic equivalence was shown in this article. And there were suggested universal installation for electric energy generation, cold and heat of two grades for heat-water supply and the heating process on the base of gascompressors   gas turbines. These results are so important (actual for power engineers of the countries with  increasing consumption  of organic  fuel and  its enhancement in  value and realizing programs of energy saving .The analysis shows, that the quality of produced low-grade heat per unit of used high-grade heat for ideal plants (installations is: electrical boiler unit – 0.7;  water boiler unit – 1.0; for heat pump, heating turbine, combined heat transformers   – 4

  12. Radiofrequency Thermal Ablation Heat Energy Transfer in an Ex-Vivo Model.

    Science.gov (United States)

    Thakur, Shivani; Lavito, Sandi; Grobner, Elizabeth; Grobner, Mark

    2017-12-01

    Little work has been done to consider the temperature changes and energy transfer that occur in the tissue outside the vein with ultrasound-guided vein ablation therapy. In this experiment, a Ex-Vivo model of the human calf was used to analyze heat transfer and energy degradation in tissue surrounding the vein during endovascular radiofrequency ablation (RFA). A clinical vein ablation protocol was used to determine the tissue temperature distribution in 10 per cent agar gel. Heat energy from the radiofrequency catheter was measured for 140 seconds at fixed points by four thermometer probes placed equidistant radially at 0.0025, 0.005, and 0.01 m away from the RFA catheter. The temperature rose 1.5°C at 0.0025 m, 0.6°C at 0.005 m, and 0.0°C at 0.01 m from the RFA catheter. There was a clinically insignificant heat transfer at the distances evaluated, 1.4 ± 0.2 J/s at 0.0025 m, 0.7 ± 0.3 J/s at 0.0050 m, and 0.3 ± 0.0 J/s at 0.01 m. Heat degradation occurred rapidly: 4.5 ± 0.5 J (at 0.0025 m), 4.0 ± 1.6 J (at 0.0050 m), and 3.9 ± 3.6 J (at 0.01 m). Tumescent anesthesia injected one centimeter around the vein would act as a heat sink to absorb the energy transferred outside the vein to minimize tissue and nerve damage and will help phlebologists strategize options for minimizing damage.

  13. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  14. Promoting renewable energy sources for heating and cooling in EU-27 countries

    International Nuclear Information System (INIS)

    Cansino, Jose M.; Pablo-Romero, Maria del P.; Roman, Rocio; Yniguez, Rocio

    2011-01-01

    In addition to public policies aimed at improving the energy efficiency of buildings, EU authorities have also promoted the use of Renewable Energy Sources for heating and cooling uses (RES H and C). This paper analyses the main policy measures implemented in EU-27 countries up to 2009: i.e. subsidies, tax incentives, financial support and feed-in tariffs. Twenty-three Member States (MSs) have developed some of these policy measures. The most widespread measure is the subsidy (22 MSs have implemented these) because from a political point of view, subsidies provide a straightforward approach to promote the use of RES H and C. Secondly, tax incentives have been used for reducing investment costs and making renewable energy profitable. Thirdly, financial incentives and feed-in tariffs have been used sparingly. While financial incentives might be used more extensively for promoting RES H and C if they are accompanied by other policy measures, feed-in tariffs are not likely to be implemented significantly in the future because this measure is not designed for household heat producers. - Highlights: → Main EU policies to reduce energy consumption are focused on buildings' efficiency. → Alternative incentives to promote the use of RES H and C in EU-27 are now studied. → Subsidies are the most widespread measure. → Tax incentives are used for reducing investment costs and making RES profitable. → Financial incentives and feed-in tariffs have been used sparingly.

  15. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are ...

  16. The development of a new district heating concept: Network design and optimization for integrating energy conservation and renewable energy use in energy sustainable communities

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Rosa, A.

    2012-07-01

    PART I of this doctoral thesis consists of 6 chapters. Chapter 1 summarizes the main issues caused by the use of energy resources. They involve ecological, economic, demographical and socio-political topics that are linked together and define the background of the thesis. Chapter 2 describes the state-of-the-art of District Heating (DH) systems, with focus on the present and future situation in Denmark. The core of the thesis consists of the development of a new DH paradigm, the ''Low- Temperature District Heating (LTDH)'', the study of its potential, and investigations of technical options which improve its applicability in terms of energy performance and socio-economy. Chapter 3 describes the whole idea about LTDH. Chapter 4 presents the hypotheses of the studies, draws the boundaries between the focus area of the thesis and other relevant aspects of the subject, describes the limitations of the work and lists the methods which were used. Chapter 5 explains the results of the scientific content reported in the articles in PART II. Article I introduces the technical and organizational strategies that can facilitate the establishment of a successful energy planning in a community. It analyses the state-of-the-art in community energy planning, discusses critical issues, and points at the role of DH in moving towards sustainable heat supply. The articles II and III aim at providing science-based knowledge for the development of improved solutions for the DH networks; they focus on the performance simulation of DH pipelines through models for assessing the energy performance of innovative pipe geometries, materials or system configurations. The models were validated against experimental measurements on real DH pipes. Article II considers the detailed steady-state modelling and analysis of heat losses in pre-insulated DH pipes. Article III focuses on the modelling and computation of the transient heat transfer in service pipes, which are important

  17. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  18. Influence of User Behaviour on Indoor Environmental Quality and Heating Energy Consumptions in Danish Dwellings

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    Models of occupants’ interactions with heating controls based on measurements were implemented in a simulation program. Simulation results were given as probability distributions of energy consumption and indoor environmental quality depending on user behaviour. Heating set-point behaviour of 13...

  19. Primary energy use for heating in the Swedish building sector-Current trends and proposed target

    International Nuclear Information System (INIS)

    Johansson, P.; Nylander, A.; Johnsson, F.

    2007-01-01

    One goal of the Swedish energy policy is to reduce the amount of electricity used for heating in the building sector. This means to reduce the primary energy used for heating which in this paper is analyzed in the context of various heating technologies and CO 2 emissions. The analysis is applied to a region in Sweden (southern Sweden) for which detailed information on the energy infrastructure (the capital stock of the buildings and heating systems together with geographical variations in heat intensity) is available from a previous work [Johansson, P., Nylander, A., Johnsson, F., 2005. Electricity dependency and CO 2 emissions from heating in the Swedish building sector-current trends in conflict with governmental policy? Energy policy] and which is large enough to be assumed representative for Sweden as a whole. The detailed mapping of the energy infrastructure allows a good estimate on the rate at which the energy system can be expected to be replaced with respect to economical lifetime of the capital stock (the year 2025 in this case). Two scenarios are investigated; a target scenario for which energy savings are employed (e.g. improving climate shell in buildings) and oil and most of the electricity used for heating purposes are phased out and a second for which the current trend in the heating market continues. In the target scenario it is shown that although only applying commercially competitive heating technologies, it is possible to achieve a 47% reduction in primary energy use for heating with a 34% decrease in heat demand together with significant reduction in CO 2 emissions. However, the scenario which continues the current trends on the heating market instead yields an increase (of about 10%) in primary energy use (reduction in conversion efficiency) of the heating system of the region over the period studied, in spite of a slight decrease in heat demand (9%, mainly due to energy efficiency measures) as well as in CO 2 emissions. In light of the

  20. Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic disparities in urban residential heating energy efficiency

    International Nuclear Information System (INIS)

    Reames, Tony Gerard

    2016-01-01

    Fuel poverty, the inability of households to afford adequate energy services, such as heating, is a major energy justice concern. Increasing residential energy efficiency is a strategic fuel poverty intervention. However, the absence of easily accessible household energy data impedes effective targeting of energy efficiency programs. This paper uses publicly available data, bottom-up modeling and small-area estimation techniques to predict the mean census block group residential heating energy use intensity (EUI), an energy efficiency proxy, in Kansas City, Missouri. Results mapped using geographic information systems (GIS) and statistical analysis, show disparities in the relationship between heating EUI and spatial, racial/ethnic, and socioeconomic block group characteristics. Block groups with lower median incomes, a greater percentage of households below poverty, a greater percentage of racial/ethnic minority headed-households, and a larger percentage of adults with less than a high school education were, on average, less energy efficient (higher EUIs). Results also imply that racial segregation, which continues to influence urban housing choices, exposes Black and Hispanic households to increased fuel poverty vulnerability. Lastly, the spatial concentration and demographics of vulnerable block groups suggest proactive, area- and community-based targeting of energy efficiency assistance programs may be more effective than existing self-referral approaches. - Highlights: • Develops statistical model to predict block group (BG) residential heating energy use intensity (EUI), an energy efficiency proxy. • Bivariate and multivariate analyses explore racial/ethnic and socioeconomic relationships with heating EUI. • BGs with more racial/ethnic minority households had higher heating EUI. • BGs with lower socioeconomics had higher heating EUI. • Mapping heating EUI can facilitate effective energy efficiency intervention targeting.

  1. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.

    1979-01-01

    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  2. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  3. Flexibility of a combined heat and power system with thermal energy storage for district heating

    International Nuclear Information System (INIS)

    Nuytten, Thomas; Claessens, Bert; Paredis, Kristof; Van Bael, Johan; Six, Daan

    2013-01-01

    Highlights: ► A generic model for flexibility assessment of thermal systems is proposed. ► The model is applied to a combined heat and power system with thermal energy storage. ► A centrally located storage offers more flexibility compared to individual units. ► Increasing the flexibility requires both a more powerful CHP and a larger buffer. - Abstract: The trend towards an increased importance of distributed (renewable) energy resources characterized by intermittent operation redefines the energy landscape. The stochastic nature of the energy systems on the supply side requires increased flexibility at the demand side. We present a model that determines the theoretical maximum of flexibility of a combined heat and power system coupled to a thermal energy storage solution that can be either centralized or decentralized. Conventional central heating, to meet the heat demand at peak moments, is also available. The implications of both storage concepts are evaluated in a reference district. The amount of flexibility created in the district heating system is determined by the approach of the system through delayed or forced operation mode. It is found that the distinction between the implementation of the thermal energy storage as a central unit or as a collection of local units, has a dramatic effect on the amount of available flexibility

  4. Energy usage and technical potential for energy saving measures in the Swedish residential building stock

    International Nuclear Information System (INIS)

    Mata, Érika; Sasic Kalagasidis, Angela; Johnsson, Filip

    2013-01-01

    This paper provides an analysis of the current energy usage (net energy and final energy by fuels) and associated carbon dioxide (CO 2 ) emissions of the Swedish residential building stock, which includes single-family dwellings and multi-family dwellings. Twelve energy saving measures (ESMs) are assessed using a bottom–up modeling methodology, in which the Swedish residential stock is represented by a sample of 1400 buildings (based on data from the year 2005). Application of the ESMs studied gives a maximum technical reduction potential in energy demand of 53%, corresponding to a 63% reduction in CO 2 emissions. Although application of the investigated ESMs would reduce CO 2 emissions, the measures that reduce electricity consumption for lighting and appliances (LA) will increase CO 2 emissions, since the saved electricity production is less CO 2 -intensive than the fuel mix used for the increased space heating required to make up for the loss in indirect heating obtained from LA. - Highlights: ► Analysis of year 2005energy use and CO2 emissions of Swedish residential buildings. ► Includes all single-family dwellings and multi-family dwellings. ► Bottom–up modeling of building stock represented by 1400 buildings. ► Technical effects of 12 energy saving measures are assessed. ► Energy demand can be reduced by53% and associated CO 2 emissions by 63%

  5. Low-energy house in Sisimiut - Measurement equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hvidthoeft Delff Andersen, P.; Rode, C.; Madsen, Henrik

    2013-08-15

    This paper documents the measurement equipment in a low-energy house in Sisimiut, Greenland. Detailed measurements are being taken on energy consumption, indoor temperatures, floor heating, ventilation, open/closed state of doors and windows, and indoors climate. Equipped with a central control unit, experiments can be designed in order to study heat dynamics of the building. It is described how to plan and execute such experiments in one apartment in the building. The building also features both a solar thermal system and extra buffer tank facilitating testing of storage strategies on the power generated by the solar thermal system. A weather station equipped with thermometer, pyranometer and anemometer is installed on the building as well. Finally, it is described how to retrieve data from an SQL server which is configured to take monthly backups. R functions have been implemented to fetch and prepare the data for time series analysis. Examples are given on the use of these. (Author)

  6. Exergy costing for energy saving in combined heating and cooling applications

    International Nuclear Information System (INIS)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten; Andersen, Peer

    2014-01-01

    Highlights: • We investigate the basis for cost apportioning of simultaneous heating and cooling. • Two thermoeconomic methods based on energy and exergy costing is demonstrated. • The unit cost of heating and cooling for a heat pump system is found and compared. • Energy costing may obstruct efficient use of energy. • Exergy costing provides the most rational cost apportioning for energy saving. - Abstract: The aim of this study is to provide a price model that motivates energy saving for a combined district heating and cooling system. A novel analysis using two thermoeconomic methods for apportioning the costs to heating and cooling provided simultaneously by an ammonia heat pump is demonstrated. In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared. The analysis shows that the two methods yield significantly different results. Rather surprisingly, it is demonstrated that the exergy costing method results in about three times higher unit cost for heating than for cooling as opposed to equal unit costs when using the energy method. Further the exergy-based cost for heating changes considerably with the heating temperature while that of cooling is much less affected

  7. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  8. d-3He reaction measurements during fast wave minority heating in PLT

    International Nuclear Information System (INIS)

    Chrien, R.E.; Strachan, J.D.

    1983-01-01

    Time- and energy-resolved d- 3 He fusion reactions have been measured to infer the energy of the d + or He ++ minority ions heated near their cyclotron frequency by the magnetosonic fast wave. The average energy of the reacting 3 He ions during 3 He minority heating is in the range of 100 to 400 keV, as deduced from the magnitude of the reaction rate, its decay time, and the energy spread of the proton reaction products. The observed reaction rate and its scaling with wave power and electron density and temperature are in qualitative agreement with a radial reaction rate model using the minority distribution predicted from quasilinear velocity space diffusion. Oscillations in the reaction rate are observed concurrent with sawtooth and m = 2 MHD activity in the plasma

  9. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  10. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R. N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  11. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  12. Energy efficient heating and ventilation of large halls

    CERN Document Server

    Hojer, Ondrej; Kabele, Karel; Kotrbaty, Miroslav; Sommer, Klaus; Petras, Dusan

    2011-01-01

    This guidebook is focused on modern methods for design, control and operation of energy efficient heating systems in large spaces and industrial halls. The book deals with thermal comfort, light and dark gas radiant heaters, panel radiant heating, floor heating and industrial air heating systems. Various heating systems are illustrated with case studies. Design principles, methods and modeling tools are presented for various systems.

  13. Measurement of Critical Heat Flux Using the Transient Inverse Heat Conduction Method in Spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeung Chan [Andong Nat’l Univ., Andong (Korea, Republic of)

    2016-10-15

    A study on the measurement of critical heat flux using the transient inverse heat conduction method in spray cooling was performed. The inverse heat conduction method estimates the surface heat flux or temperature using a measured interior temperature history. The effects of the measuring time interval and location of temperature measurement on the measurement of critical heat flux were primarily investigated. The following results were obtained. The estimated critical heat flux decreased as the time interval of temperature measurement increased. Meanwhile, the effect of measurement location on critical heat flux was not significant. It was also found, from the experimental results, that the critical superheat increased as the measurement location of thermocouple neared the heat transfer surface.

  14. Measurement of Critical Heat Flux Using the Transient Inverse Heat Conduction Method in Spray cooling

    International Nuclear Information System (INIS)

    Kim, Yeung Chan

    2016-01-01

    A study on the measurement of critical heat flux using the transient inverse heat conduction method in spray cooling was performed. The inverse heat conduction method estimates the surface heat flux or temperature using a measured interior temperature history. The effects of the measuring time interval and location of temperature measurement on the measurement of critical heat flux were primarily investigated. The following results were obtained. The estimated critical heat flux decreased as the time interval of temperature measurement increased. Meanwhile, the effect of measurement location on critical heat flux was not significant. It was also found, from the experimental results, that the critical superheat increased as the measurement location of thermocouple neared the heat transfer surface.

  15. Increasing RES Penetration and Security of Energy Supply by Use of Energy Storages and Heat Pumps in Croatian Energy System

    DEFF Research Database (Denmark)

    Krajačić, Goran; Mathiesen, Brian Vad; Duić, Neven

    2010-01-01

    electricity, heat and transport demands, and including renewable energy, power plants, and combined heat and power production (CHP) for district heating. Using the 2007 energy system the wind power share is increased by two energy storage options: Pumped hydro and heat pumps in combination with heat storages....... The results show that such options can enable an increased penetration of wind power. Using pumped hydro storage (PHS) may increase wind power penetration from 0.5 TWh, for existing PHS installations and up to 6 TWh for very large installations. Using large heat pumps and heat storages in combination...... with specific regulation of power system could additionally increase wind penetration for 0.37 TWh. Hence, with the current technologies installed in the Croatian energy system the installed pumped hydro-plant may facilitate more than 10% wind power in the electricity system. Large-scale integration of wind...

  16. An intercomparison of surface energy flux measurement systems used during FIFE 1987

    International Nuclear Information System (INIS)

    Nie, D.; Kanemasu, E.T.; Fritschen, L.J.; Weaver, H.L.; Smith, E.A.; Verma, S.B.; Field, R.T.; Kustas, W.P.; Stewart, J.B.

    1992-01-01

    During FIFE 1987, surface energy fluxes were measured at 22 flux sites by nine groups of scientists using different measuring systems. A rover Bowen ratio station was taken to 20 of the flux stations to serve as a reference for estimating the instrument-related differences. The rover system was installed within a few meters from the host instrument of a site. Using linear regression analysis, net radiation, Bowen ratio, and latent heat fluxes were compared between the rover measurements and the host measurements. The average differences in net radiation, Bowen ratio, and latent heat flux from different types of instruments can be up to 10, 30, and 20 percent, respectively. The Didcot net radiometer gave higher net radiation while the Swissteco type showed lower values, as compared to the corrected radiation energy balance system (REBS) model. The four-way components method and the Thornthwaite type give similar values to the REBS. The surface energy radiation balance systems type Bowen ratio systems exhibit slightly lower Bowen ratios and thus higher latent heat fluxes, compared to the arid zone evapotranspiration systems. Eddy correlation systems showed slightly lower latent heat flux in comparison to the Bowen ratio systems. It is recommended that users of the flux data take these differences into account. 11 refs

  17. Various multistage ensembles for prediction of heating energy consumption

    Directory of Open Access Journals (Sweden)

    Radisa Jovanovic

    2015-04-01

    Full Text Available Feedforward neural network models are created for prediction of daily heating energy consumption of a NTNU university campus Gloshaugen using actual measured data for training and testing. Improvement of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering and membership functions are used to aggregate the selected ensemble members. Feedforward neural network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict heating energy consumption with better accuracy than the best trained single neural network, while the best results are achieved with multistage ensemble.

  18. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    International Nuclear Information System (INIS)

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  19. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  20. Energy and exergy analyses of an integrated solar heat pump system

    International Nuclear Information System (INIS)

    Suleman, F.; Dincer, I.; Agelin-Chaab, M.

    2014-01-01

    An integrated solar and heat pump based system for industrial heating is developed in this study. The system comprises heat pump cycle for process heating water and solar energy for another industrial heating process. Comprehensive energy and exergy analyses are performed on the system. These analyses generated some compelling results as expected because of the use of green and environmentally friendly energy sources. The results show that the energy efficiency of the process is 58% while the exergy efficiency is 75%. Energetic COP of the heat pump cycle is 3.54 whereas the exergy efficiency is 42.5%. Moreover, the energetic COP of the system is 2.97 and the exergy efficiency of the system is 35.7%. In the parametric study, a different variation such as changing the temperature and pressure of the condenser also shows positive results. - Highlights: • An integrated system is analysed using renewable energy source which can be used in textile industry. • Energy losses and exergy destructions are calculated at all major components. • Energy and exergy efficiencies of all subunits, subsystems and overall system are determined. • A parametric study shows the effect of environment and operating conditions on efficiencies. • Solar energy for heating in textile industry is efficient and environmentally friendly

  1. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    International Nuclear Information System (INIS)

    Zvingilaite, Erika

    2013-01-01

    A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy system optimisation model of the Danish heat and power sector. The achieved optimal level of heat savings reaches 11% of projected heat demand in 2025 under the model assumptions. Moreover, the analysis reveals the importance of considering energy conservation options in a system wide perspective. Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. - Highlights: ► Heat savings in buildings are analysed together with a heat and power system. ► Heat savings compete with electricity to heat technologies, mainly heat pumps. ► Cost effective heat-savings bring small decrease in health impacts and CO 2 emissions. ► Cost-effectiveness of heat savings depends on the marginal heat generation technology

  2. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  3. A housing stock model of non-heating end-use energy in England verified by aggregate energy use data

    International Nuclear Information System (INIS)

    Lorimer, Stephen

    2012-01-01

    This paper proposes a housing stock model of non-heating end-use energy for England that can be verified using aggregate energy use data available for small areas. These end-uses, commonly referred to as appliances and lighting, are a rapidly increasing part of residential energy demand. This paper proposes a model that can be verified using aggregated data of electricity meters in small areas and census data on housing. Secondly, any differences that open up between major collections of housing could potentially be resolved by using data from frequently updated expenditure surveys. For the year 2008, the model overestimated domestic non-heating energy use at the national scale by 1.5%. This model was then used on the residential sector with various area classifications, which found that rural and suburban areas were generally underestimated by up to 3.3% and urban areas overestimated by up to 5.2% with the notable exception of “professional city life” classifications. The model proposed in this paper has the potential to be a verifiable and adaptable model for non-heating end-use energy in households in England for the future. - Highlights: ► Housing stock energy model was developed for end-uses outside of heating for UK context. ► This entailed changes to the building energy model that serves as the bottom of the stock model. ► The model is adaptable to reflect rapid changes in consumption between major housing surveys. ► Verification was done against aggregated consumption data and for the first time uses a measured size of the housing stock. ► The verification process revealed spatial variations in consumption patterns for future research.

  4. In core instrumentation for online nuclear heating measurements of material testing reactor

    International Nuclear Information System (INIS)

    Reynard, C.; Andre, J.; Brun, J.; Carette, M.; Janulyte, A.; Merroun, O.; Zerega, Y.; Lyoussi, A.; Bignan, G.; Chauvin, J-P.; Fourmentel, D.; Glayse, W.; Gonnier, C.; Guimbal, P.; Iracane, D.; Villard, J.-F.

    2010-01-01

    The present work focuses on nuclear heating. This work belongs to a new advanced research program called IN-CORE which means 'Instrumentation for Nuclear radiations and Calorimetry Online in REactor' between the LCP (University of Provence-CNRS) and the CEA (French Atomic Energy Commission) - Jules Horowitz Reactor (JHR) program. This program started in September 2009 and is dedicated to the conception and the design of an innovative mobile experimental device coupling several sensors and ray detectors for on line measurements of relevant physical parameters (photonic heating, neutronic flux ...) and for an accurate parametric mapping of experimental channels in the JHR Core. The work presented below is the first step of this program and concerns a brief state of the art related to measurement methods of nuclear heating phenomena in research reactor in general and MTR in particular. A special care is given to gamma heating measurements. A first part deals with numerical codes and models. The second one presents instrumentation divided into various kinds of sensor such as calorimeter measurements and gamma ionization chamber measurements. Their basic principles, characteristics such as metrological parameters, operating mode, disadvantages/advantages, ... are discussed. (author)

  5. An energy and cost analysis of residential heat pumps in northern climates

    Science.gov (United States)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  6. Substituting natural gas heating for electric heating: assessment of the energy and environmental effects in Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.; Sy, E.; Gharghouri, P.

    1996-01-01

    A study was conducted to find practical ways to reduce Ontario's energy consumption and environmental emissions. A major portion of the study focused on the advantages of cogeneration in certain regions and sectors of Ontario. Substituting direct fuel heating with natural gas for electric heating was the principal recommendation. Results of a technical analysis of the effects of substituting electric heating with natural gas heating were described. One of the benefits of this substitution would be reduced fuel energy requirements for direct heating, relative to the two-step process of electricity generation followed by electric heating. It was suggested that natural gas should still be used for electricity generation because natural gas has many advantages as an electricity supply option including reductions in coal and uranium use and related emissions. It was recommended that developers and designers of energy systems seriously consider this option. 33 refs., 2 tabs., 4 figs

  7. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  8. Large heat storage tank for load management nd implementation of ambient heat. District heating networks based on combined heat and power; Grosswaermespeicher zum Lastmanagement und zur Einbindung von Umweltenergie. Auf KWK basierende Fernwaermenetze

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Sebastian; Rhein, Martin; Ruehling, Karin [Technische Universitaet Dresden (Germany). Inst. fuer Energietechnik

    2013-06-15

    The district heating based on combined heat and power is a transitional technology on the way to the supply of Germany with renewable energy. In the next years, this transitional technology can only be maintained and expanded when marketability is given. Therefore an appropriate combination has to be found from investment measures. Together with new aspects in the management strategy, these investment measures should significantly improve the marketability. The investment measures also aims to enable a primary energetic, appropriate combination of natural gas-based combined heat and power, renewable energy sources (solar thermal energy, ambient heat) and heat pump technology.

  9. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.

    Science.gov (United States)

    Straub, Anthony P; Elimelech, Menachem

    2017-11-07

    Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.

  10. Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway

    International Nuclear Information System (INIS)

    Assefa Hagos, Dejene; Gebremedhin, Alemayehu; Folsland Bolkesjø, Torjus

    2015-01-01

    The objective of this paper is to identify the most valuable sector for the use of bioenergy in a flexible energy system in order to meet the energy policy objectives of Inland Norway. A reference system was used to construct alternative systems in the heating and transport sectors. The alternative system in the heating sector is based on heat pumps and bio-heat boilers while the alternative systems in the transport sector are based on three different pathways: bio-dimethyl ether, hydrogen fuel cell vehicles and battery electric vehicles. The alternative systems were compared with the reference system after a business-economic optimisation had been made using an energy system analysis tool. The results show that the excess electricity availability due to increased energy efficiency measures hampers the competitiveness and penetration of bio-heating over heat pumps in the heating sector. Indeed, the synergy effect of using bio-dimethyl ether in the transport sector for an increased share of renewable energy sources is much higher than that of the hydrogen fuel cell vehicle and battery electric vehicle pathways. The study also revealed that increasing renewable energy production would increase the renewable energy share more than what would be achieved by an increase in energy efficiency. -- Highlights: •Bio-heating is less competitive over heat pump for low quality heat production. •Renewable energy production meets policy objectives better than system efficiency. •Bioenergy is more valuable in the transport sector than the heating sector

  11. Measurement of low-temperature specific heat

    International Nuclear Information System (INIS)

    Stewart, G.R.

    1983-01-01

    The measurement of low-temperature specific heat (LTSH) (0.1 K< T<60 K) has seen a number of breakthroughs both in design concepts and instrumentation in the last 15 years: particularly in small sample calorimetry. This review attempts to provide an overview of both large and small sample calorimetry techniques at temperatures below 60 K, with sufficient references to enable more detailed study. A comprehensive review is made of the most reliable measurements of the LTSH of 84 of the elements to illustrate briefly some of the problems of measurements and analysis, as well as to provide additional references. More detail is devoted to three special areas of low-temperature calorimetry that have seen rapid development recently: (1) measurement of the specific heat of highly radioactive samples, (2) measurement of the specific heat of materials in high magnetic fields (18 T), and (3) measurement of the specific heat of very small (100 μg) samples. The review ends with a brief discussion of the frontier research currently underway on microcalorimetry for nanogram sample weights

  12. Heat rejection efficiency research of new energy automobile radiators

    Science.gov (United States)

    Ma, W. S.; Shen, W. X.; Zhang, L. W.

    2018-03-01

    The driving system of new energy vehicle has larger heat load than conventional engine. How to ensure the heat dissipation performance of the cooling system is the focus of the design of new energy vehicle thermal management system. In this paper, the heat dissipation efficiency of the radiator of the hybrid electric vehicle is taken as the research object, the heat dissipation efficiency of the radiator of the new energy vehicle is studied through the multi-working-condition enthalpy difference test. In this paper, the test method in the current standard QC/T 468-2010 “automobile radiator” is taken, but not limited to the test conditions specified in the standard, 5 types of automobile radiator are chosen, each of them is tested 20 times in simulated condition of different wind speed and engine inlet temperature. Finally, regression analysis is carried out for the test results, and regression equation describing the relationship of radiator heat dissipation heat dissipation efficiency air side flow rate cooling medium velocity and inlet air temperature is obtained, and the influence rule is systematically discussed.

  13. Electrical energy use in different heating systems for early weaned piglets

    Energy Technology Data Exchange (ETDEWEB)

    Sarubbi, J. [Federal Univ. of Santa Maria, Palmeira das Missoes, RS (Brazil). Dept. of Animal Science; Campinas State Univ., Sao Paulo (Brazil). College of Agricultural Engineering; Rossi, L.A.; Moura, D.J.; Oliveira, R.A.; David, E. [Campinas State Univ., Sao Paulo (Brazil). College of Agricultural Engineering

    2010-07-01

    This study compared the electrical energy use and thermal comfort conditions associated with 3 heating technologies used in piglet farms. Heating systems for piglets in nursery and farrowing can be improved to conserve energy without affecting the welfare of the animals. The evaluation was conducted at a commercial farm in a subtropical climate area of Brazil. Each treatment involved 150 weaned piglets at 21 days-old. The systems were designed to keep the piglets at 28 to 30 degrees C for 14 days. Suspended electrical resistors, heated floors and convection heating were the 3 heating technologies examined during this study which evaluated the electrical energy consumption, maximum power demand requirements and dry-bulb temperature. The study also assessed the specific consumption in terms of kWh/kg of live produced body mass as well as the efficiency of heating system in terms of degrees C per cubic metre of air. In terms of electrical energy use, the best heating system was the heated floor. However, the electrical resistance heating system was the best in terms of thermal comfort.

  14. HEAT PUMP TECHNOLOGY – POTENTIAL IMPACT ON ENERGY EFFICIENCY PROBLEM AND CLIMATE ACTION GOALS WITHIN UKRAINIAN ENERGY SECTOR

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-12-01

    Full Text Available The increasing demand of energy sources for urban, household and industrial facilities requires strategies development for seeking new energy sources. In recent years an important problem is to have energy storage, energy production and energy consumption which fulfill the environment friendly expectations. A lot of attention is devoted to renewable energy sources. One of the most attracting among them is energy production form geothermal sources. At a few meters below the earth’s surface the underground maintains a constant temperature in an approximation through the year allowing to withdraw heat in winter for heating needs and to surrender heat during summer for air-conditioning purposes. Heat pump is a rapidly developing technology for heating and domestic hot water production. Using ground as a heat source, heat exchange is carried out with heat pumps compound to vertical ground heat exchanger tubes that allows the heating and cooling of the buildings utilizing a single unit installation. Heat pump unit provides a high degree of productivity with moderate electric power consumption. In this paper a theoretical performance study of a vapor compression heat pump system with various natural and synthetic refrigerants (HFCs is presented. Operation mode of the heat pump unit was chosen according to European Standard EN14511-2:2007 and EN255-2. An influence of discharge temperature on system performance was evaluated at different boiling temperatures. The comparison of mass flow rate and coefficient of performance for considered refrigerants at constant cooling capacity and condensation temperature was performed.

  15. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  16. The impact of consumer behavior on residential energy demand for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Haas, R.; Auer, H.; Biermayr, P. [Vienna Univ. of Technology (Austria). Inst. of Energy Economics

    1998-04-01

    Besides technical parameters, consumer behavior is the most important issue with respect to energy consumption in households. In this paper, the results of a cross-section analysis of Austrian households are presented. The impact of the following parameters on residential energy demand for space heating have been investigated: (i) thermal quality of buildings; (ii) consumer behavior; (iii) heating degree days; (iv) building type (single- or multi-family dwellings). The result of this investigation provides evidence of a rebound-effect of about 15 to 30% due to building retrofit. This leads to the conclusion that energy savings achieved in practice (and straightforward the reduction in CO{sub 2} emissions) due to energy conservation measures will be lower than those calculated in engineering conservation studies. Straightforward, the most important conclusions for energy policy makers are: (i) Standards, building codes, respectively, are important tools to increase the thermal quality of new buildings; and (ii) Due to prevailing low energy prices, a triggering tool has to be implemented which may be rebates or loans. (orig.)

  17. Practical versus theoretical domestic energy consumption for space heating

    International Nuclear Information System (INIS)

    Audenaert, A.; Briffaerts, K.; Engels, L.

    2011-01-01

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.

  18. Practical versus theoretical domestic energy consumption for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)

    2011-09-15

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.

  19. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  20. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  1. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  2. Multipurpose nuclear process heat for energy supply in Brazil

    International Nuclear Information System (INIS)

    Hansen, U.; Inden, P.; Oesterwind, D.; Hukai, R.Y.; Pessine, R.T.; Pieroni, R.R.; Visoni, E.

    1978-11-01

    The industrialized nations require 75% of the energy as heat and it is likely that developing countries in the course of industrialization will show a comparable energy consumption structure. The High Temperature Reactor (HTR) allows the utilization of nuclear energy at high temperatures as process heat. In the Federal Republic of Germany (FRG) the development in the relevant technical areas is well advanced and warrants investigation as a matter for transfer to Brazil. In Brazil nuclear process heat finds possible applications in steel making, shale oil extraction, petroleum refining, and in the more distant future coal gasification with distribution networks. Based on growth forecasts for these industries a theoretical potential market of 38-53 GW (th) can be identified. At present nuclear process heat is marginally more expensive than conventional fossil technologies but the anticipated development is expected to add an economic incentive to the emerging necessity of providing a sound energy base in the developing countries. (author)

  3. End users heat energy savings using thermostat regulation valves radiators, v. 16(64)

    International Nuclear Information System (INIS)

    Jakimovska, Emilija Misheva; Potsev, Eftim

    2008-01-01

    Billing the used heat energy offers the opportunity to motivate end users to use the heat energy rationally and to save the energy. Installing the thermostat valves on the radiators it is possible frequently to regulate the room temperature and to use the heat gains, obtaining comfortable climate in the apartments and saving the energy. Thermostat valves give the possibility to use the heat energy rationally and save the energy, and these way and users can regulate the heat energy consumption according to their own level of thermal comfort. (Author)

  4. End users heat energy savings using thermostat regulation valves radiators, v. 16(63)

    International Nuclear Information System (INIS)

    Jakimovska, Emilija Misheva; Potsev, Eftim

    2008-01-01

    Billing the used heat energy offers the opportunity to motivate end users to use the heat energy rationally and to save the energy. Installing the thermostat valves on the radiators it is possible frequently to regulate the room temperature and to use the heat gains, obtaining comfortable climate in the apartments and saving the energy. Thermostat valves give the possibility to use the heat energy rationally and save the energy, and these way and users can regulate the heat energy consumption according to their own level of thermal comfort. (Author)

  5. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  6. Heating and cooling energy demand and related emissions of the German residential building stock under climate change

    International Nuclear Information System (INIS)

    Olonscheck, Mady; Holsten, Anne; Kropp, Juergen P.

    2011-01-01

    The housing sector is a major consumer of energy. Studies on the future energy demand under climate change which also take into account future changes of the building stock, renovation measures and heating systems are still lacking. We provide the first analysis of the combined effect of these four influencing factors on the future energy demand for room conditioning of residential buildings and resulting greenhouse gas (GHG) emissions in Germany until 2060. We show that the heating energy demand will decrease substantially in the future. This shift will mainly depend on the number of renovated buildings and climate change scenarios and only slightly on demographic changes. The future cooling energy demand will remain low in the future unless the amount of air conditioners strongly increases. As a strong change in the German energy mix is not expected, the future GHG emissions caused by heating will mainly depend on the energy demand for future heating. - Highlights: → The future heating energy demand of German residential buildings strongly decreases. → Extent of these changes mainly depends on the number of renovated buildings. → Demographic changes will only play a minor role. → Cooling energy demand will remain low in future but with large insecurities. → Germany's 2050 emission targets for the building stock are ambitious.

  7. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  8. Actual heating energy savings in thermally renovated Dutch dwellings

    International Nuclear Information System (INIS)

    Majcen, Daša; Itard, Laure; Visscher, Henk

    2016-01-01

    The register of the Dutch social housing stock was analysed, containing 300.000 dwellings, renovated between 2010 and 2013. The main objective was twofold: to evaluate the performance gap in these dwellings before and after the renovation and to establish what renovation measures achieve the highest reduction of consumption, particularly in practice (actual savings). The results showed large performance gaps in dwellings with low R and high U values, local heating systems, changes from a non-condensing into a condensing boiler and upgrades to a natural ventilation system. Regarding the actual effectiveness of renovation measures, replacement of old gas boilers with more efficient ones yields the highest energy reduction, followed by deep improvements of windows. Installing mechanical ventilation yields a small reduction compared to other measures, but still much larger than theoretically expected. The paper shows once more that the calculation method currently in use cannot be considered accurate if compared to actual consumption. The study demonstrated that unrealistic theoretical efficiencies of heating systems and insulation values are causing a part of the performance gap. Nowadays, large datasets of buildings thermal performance and actual consumption offer an opportunity to improve these misconceptions. - Highlights: • Performance gap is lower in more efficient buildings. • Replacements of gas boilers – the most energy reduction among renovation measures. • Replacing the ventilation system yields a much larger reduction than expected. • How well are the standard values of the calculation methods defined? • Provide large public building performance databases including actual use data.

  9. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  10. Different heating systems for single family house: Energy and economic analysis

    Directory of Open Access Journals (Sweden)

    Turanjanin Valentina M.

    2016-01-01

    Full Text Available The existing building stock energy consumption accounts for about 38% of final energy consumption in Republic of Serbia. 70% of that energy is consumed by residential sector, mostly for space heating. This research is addressed to the single family house building placed in the Belgrade city. The house has ground and first floor with total heating area of 130 m2 and pellet as space heating source. The aim of this paper is to evaluate energy and economic analysis for different heating systems. Several homeheating were compared: Option 1 (biomass combustion boiler using pellet as a fuel, Option 2 (gas combustion boiler and Option 3 (heat pump. The building performance was evaluated by TRNSYS 17 simulation code. Results show estimated savings using renewable energy sources. [Projekat Ministarstva nauke Republike Srbije, br. III42008

  11. Geothermal energy: the earth, source of heat and electric power

    International Nuclear Information System (INIS)

    Lenoir, D.

    2005-01-01

    This document provides information on the geothermal energy. It presents the different types of geothermal deposits (very low, low and medium energy geothermal energy), the french deposits and the heat production. The electric power production from the geothermal energy is also discussed with the example of Soultz-sous-Forets. The last part deals with the heat pumps. (A.L.B.)

  12. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    Science.gov (United States)

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  13. Geothermal energy: clean power from the Earth's heat

    Science.gov (United States)

    Duffield, Wendell A.; Sass, John H.

    2003-01-01

    Societies in the 21st century require enormous amounts of energy to drive the machines of commerce and to sustain the lifestyles that many people have come to expect. Today, most of this energy is derived from oil, natural gas, and coal, supplemented by nuclear power. Local exceptions exist, but oil is by far the most common source of energy worldwide. Oil resources, however, are nonrenewable and concentrated in only a few places around the globe, creating uncertainty in long-term supply for many nations. At the time of the Middle East oil embargo of the 1970s, about a third of the United States oil supply was imported, mostly from that region. An interruption in the flow of this import disrupted nearly every citizen’s daily life, as well as the Nation’s economy. In response, the Federal Government launched substantial programs to accelerate development of means to increasingly harness “alternative energies”—primarily biomass, geothermal, solar, and wind. The new emphasis on simultaneously pursuing development of several sources of energy recognized the timeless wisdom found in the proverb of “not putting all eggs in one basket.” This book helps explain the role that geothermal resources can play in helping promote such diversity and in satisfying our Nation’s vast energy needs as we enter a new millennium. For centuries, people have enjoyed the benefits of geothermal energy available at hot springs, but it is only through technological advances made during the 20th century that we can tap this energy source in the subsurface and use it in a variety of ways, including the generation of electricity. Geothermal resources are simply exploitable concentrations of the Earth’s natural heat (thermal energy). The Earth is a bountiful source of thermal energy, continuously producing heat at depth, primarily by the decay of naturally occurring radioactive isotopes—principally of uranium, thorium, and potassium—that occur in small amounts in all rocks

  14. Performance of low-temperature district heating for low-energy houses

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    A Low Energy District Heating (LEDH) network supplying district heating water with temperature 50°C was built in Lærkehaven-Lystrup, Denmark, as a part of the ongoing “Energy Technology Development and Demonstration Programme” [EUDP, 2008] focused on “CO2-reduction in low energy buildings and com...

  15. Geothermal heat pumps as one of possibilities of an alternative energy used for objects heating objects in Czech Republic

    Directory of Open Access Journals (Sweden)

    Jiří Ryška

    2007-06-01

    Full Text Available The use of geothermal energy for more localised energy requirements is becoming more apparent with the use of geothermal heat pumps. The use of heat from the upper portion of the earth's crust can be useful and efficient method of energy saving. At around 50 m below the earth's surface the ambient temperature fluctuates between around 8-12 oC. This heat can be used by being transferred to the surface via a loop system using a high-efficiency refrigerant type of material.These systems are also typically more efficient than gas or oil-fired heating systems. They are more energy efficient than air-source heat pumps because they draw heat from, or release heat to, the earth, which has moderate temperatures all the year, rather than to the air. Geothermal heat pumps use the relatively constant temperature of the ground or water several meters below the earth's surface as source of heating and cooling. Geothermal heat pumps are appropriate for retrofit or new homes, where both heating and cooling are desired. In addition to heating and cooling, geothermal heat pumps can provide domestic hot water. They can be used for virtually any home size or lot in any region of the Czech Republic.

  16. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  17. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2018-06-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  18. Estimating the Influence of Housing Energy Efficiency and Overheating Adaptations on Heat-Related Mortality in the West Midlands, UK

    Directory of Open Access Journals (Sweden)

    Jonathon Taylor

    2018-05-01

    Full Text Available Mortality rates rise during hot weather in England, and projected future increases in heatwave frequency and intensity require the development of heat protection measures such as the adaptation of housing to reduce indoor overheating. We apply a combined building physics and health model to dwellings in the West Midlands, UK, using an English Housing Survey (EHS-derived stock model. Regional temperature exposures, heat-related mortality risk, and space heating energy consumption were estimated for 2030s, 2050s, and 2080s medium emissions climates prior to and following heat mitigating, energy-efficiency, and occupant behaviour adaptations. Risk variation across adaptations, dwellings, and occupant types were assessed. Indoor temperatures were greatest in converted flats, while heat mortality rates were highest in bungalows due to the occupant age profiles. Full energy efficiency retrofit reduced regional domestic space heating energy use by 26% but increased summertime heat mortality 3–4%, while reduced façade absorptance decreased heat mortality 12–15% but increased energy consumption by 4%. External shutters provided the largest reduction in heat mortality (37–43%, while closed windows caused a large increase in risk (29–64%. Ensuring adequate post-retrofit ventilation, targeted installation of shutters, and ensuring operable windows in dwellings with heat-vulnerable occupants may save energy and significantly reduce heat-related mortality.

  19. Environmental and economic performance of heating systems for energy-efficient dwellings: Case of passive and low-energy single-family houses

    International Nuclear Information System (INIS)

    Georges, L.; Massart, C.; Van Moeseke, G.; De Herde, A.

    2012-01-01

    In order to reduce the energy consumption of the building stock, a major trend is to drastically reduce the space-heating (SH) needs by improving the thermal performance of the envelope. In general, this measure is combined with efficient heating systems to minimize the delivered energy and greenhouse gas emissions. Nevertheless, these better systems are often more expensive so that the extra-investment could be hardly recovered for small-scale energy consumption. The main objective of the article is to show how equilibria between cost-effectiveness and environmental performance of heating systems are changed when small SH needs are considered (i.e. for passive and low-energy houses). The scope is limited to new single-family dwellings. Furthermore, the passive house standard provides means of simplifying the SH by using the ventilation air: the idea is that savings should counterbalance the extra-investment in super-insulation. In theory, a new global economic optimum is generated at the passive house level. The second objective of the work is to study which conditions could lead to this new optimum. Only a detached-house typology is investigated to address this last issue. Regarding methodology, all the investigations are done considering the Belgian context. Energy and environmental performance is evaluated using a method that complies with the EN-15603 and EN-15316 standards. - Highlights: ► Cost-benefit analysis is performed without incentives and is based on the Belgian market. ► Equilibria between cost-effectiveness and environmental performance of heating systems are changed for very low-energy houses. ► The space-heating simplification at the passive house level can hardly produce a new global economic optimum.

  20. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  1. The assessment of global thermo-energy performances of existing district heating systems optimized by harnessing renewable energy sources

    Science.gov (United States)

    Şoimoşan, Teodora M.; Danku, Gelu; Felseghi, Raluca A.

    2017-12-01

    Within the thermo-energy optimization process of an existing heating system, the increase of the system's energy efficiency and speeding-up the transition to green energy use are pursued. The concept of multi-energy district heating system, with high harnessing levels of the renewable energy sources (RES) in order to produce heat, is expected to be the key-element in the future urban energy infrastructure, due to the important role it can have in the strategies of optimizing and decarbonizing the existing district heating systems. The issues that arise are related to the efficient integration of different technologies of harnessing renewable energy sources in the energy mix and to the increase of the participation levels of RES, respectively. For the holistic modeling of the district heating system, the concept of the energy hub was used, where the synergy of different primary forms of entered energy provides the system a high degree energy security and flexibility in operation. The optimization of energy flows within the energy hub allows the optimization of the thermo-energy district system in order to approach the dual concept of smart city & smart energy.

  2. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    Science.gov (United States)

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Parkhotel Bellevue, Adelboden - Measurement campaign on heat recovery; Parkhotel Bellevue Adelboden. Schlussbericht der Messkampagne der WRG Wellness-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Grob, D. [Grob und Schoepfer AG, Wil (Switzerland); Baumann, E. [Baumann Akustik und Bauphysik AG, Bazenheid (Switzerland)

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a measurement campaign carried out on the heat-recovery system of a spa and wellness complex installed at the Park Hotel Bellevue in Adelboden, Switzerland, in 2001. The report takes a look at how heat is recovered from wastewater from the baths, showers and the filter-backwash water of the hotels' salt-water pool. The heat recovered is used to pre-heat the hot-water supply and the brine supply for the salt-water pool. Schematics, photos and tables present details of the installations. The results of the measurements made are presented and discussed. The percentage of energy needs met by the heat-recovery system is quoted and discussed. The economic feasibility of the project is also examined. Suggestions for further heat-recovery action to be taken are made.

  4. Assessment and optimisation of energy efficiency in heat treatment plants; Bewertung und Optimierung der Energieeffizienz von Thermoprozessanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Krail, Juergen [Forschung Burgendland GmbH, Pinkafeld (Austria). Dept. Energie- und Umweltmanagement; Buchner, Klaus [Aichelin Ges.m.b.H., Moedling (Austria); Altena, Herwig [Aichelin Holding GmbH, Moedling (Austria)

    2013-06-15

    The last years are marked by heavily fluctuating energy costs and insecurity in the energy supply. Prognoses exhibit a dramatic difference between supply and demand of fossil fuel energy carriers in the years to come. Energy efficiency is one key to cover the future worldwide energy demand. In Austria and Germany process heat represents a considerable portion of total energy consumption. Targeted primary measurements and a consequent utilisation of waste heat in plants may lead to a significant improvement of plant efficiency and in consequence to a reduction of CO{sub 2}-emissions. By way of a gas-fired pusher type furnace for carburising internal and external efficiency increasing measures are demonstrated and their influences on the overall process are assessed. An increase of energy efficiency increasing measures are demonstrated and their influences on the overall process are assessed. An increase of energy efficiency up to 19 % and a reduction of CO{sub 2}-emissions of 547 t/y can be reached. However, a multidisciplinary cooperation of the plant supplier, energy engineer and operating company will be necessary for an optimum integration into a corporate energy concept. (orig.)

  5. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  6. Optimization of flat-plate solar energy heat pipe collector parameters

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Garakovich, L P; Khrustalev, D K

    1984-01-01

    Performance characteristics of flat solar energy collectors with heat pipes have been analysed with regard to various parameters. Their advantages are discussed. The use of heat pipes in solar energy collectors is proved to be efficient.

  7. Performance of Radiant Heating Systems of Low-Energy Buildings

    Science.gov (United States)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  8. Heat Roadmap Europe 3 (STRATEGO)

    DEFF Research Database (Denmark)

    Connolly, David; Hansen, Kenneth; Drysdale, David

    Heat Roadmap Europe 3 is from work package 2 of the STRATEGO project (http://stratego-project.eu/). It quantifies the impact of implementing various energy efficiency measures in the heating and cooling sectors of five EU Member States: Czech Republic, Croatia, Italy, Romania, and the United...... of approximately €1.1 trillion in energy efficiency measures across all five of these countries, between 2010 and 2050, will save enough fuel to reduce the costs of their energy systems. After considering both the initial investment and the resulting savings, the total annual cost of the heating, cooling......, and electricity sectors is reduced by an average of ~15% in each country. These initial investments are primarily required in heat savings for the buildings, district heating in urban areas, and electric heat pumps in rural areas. In essence, energy efficiency measures in the heating sector will enable EU Member...

  9. Energy confinement comparison of ohmically heated stellarators to tokamaks

    International Nuclear Information System (INIS)

    Chu, T.K.; Lee, Y.C.

    1979-12-01

    An empirical scaling prescribes that the energy confinement time in ohmically heated stellarators and tokamaks is proportional to the internal energy of the plasma and the minor radius, and inversely proportional to the current density. A thermal-conduction energy transport model, based on a heuristic assumption that the effective momentum transfer in the radial direction is proportional to the classical parallel momentum transfer which results in ohmic heating, is used to explain this scaling

  10. Measurement of ion energy by a calorimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Bunak, Suwat

    1996-12-01

    In calorimetric method, ion energy is determined based on the temperature changes during radiation of an absorbing material, radiation current and heat capacity of the calorimeter. This method is convenient and its measuring procedures are simple as well as the measuring apparatus. Here, the temperature changes of the calorimeter during {sup 14}N ion beam radiation were determined. The temperature increased linearly when irradiated with {sup 14}N{sup 3+}, 8.3 MeV or {sup 14}N{sup 2+}, 6 MeV, but not linearly for {sup 14}N{sup 1+}, 3.6 MeV, resulting in a comparatively large error. Thus, the measurement of ion energy by calorimetric method was found available as a convenient method for an accelerator having an energy stability less than 10{sup -3}. Especially this method seems to be useful for low-energy ion accelerator or ion injecting apparatus. (M.N.)

  11. Combined heat and power and solar energy; BHKW und solare Energie

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, M.; Schmidt, A.

    2006-07-01

    This illustrated article takes a look at a new apartment complex in Buelach, Switzerland, that meets the 'Minergie' low energy-consumption standard and also features solar-thermal heat generation. This solar installation provides heat for the provision of domestic hot water and, also, heat for the space-heating system of the building complex. The solar collectors cover an area of 153 m{sup 2}; their power is rated at 96 kW. Further elements of the building's technical services include a combined heat and power plant, a heat-pump and a gas-fired boiler. The article discusses ecological and social aspects of the design and construction of the building complex and briefly describes the installations, which also include a 'Minergie' fan-assisted balanced ventilation system.

  12. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  13. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  14. Surface-near geothermal energy. Ground coupled heat pumps and underground thermal energy storage; Oberflaechennahe Geothermie. Erdgekoppelte Waermepumpen und unterirdische thermische Energiespeicher

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the eleventh International User Forum at 27th/28th September, 2011 in Regensburg (Federal Republic of Germany) the following lectures were held: (1) Ecologic evaluation of heat pumps - a question of approach (Roland Koenigsdorff); (2) An actual general comment to WHG, the preparations for the new VAUwS and possible consequences on the surface-near geothermal energy (Walker-Hertkorn); (3) Field-test experiences: Ground source heat pumps in small residential buildings (Jeannette Wapler); (4) GeoT*SOL basic - Program for the evaluation and simulation of heat pump systems (Bernhard Gatzka); (5) Monitoring and modelling of geothermal heat exchanger systems (Fabian Ochs); (6) Thermal response tests for the quality assurance of geothermal heat probes (Markus Proell); (7) Process of determining an untroubled soil temperature in comparison (Andreas Koehler); (8) Borehole resistance - Is the TRT measured value also the planning value? (Roland Koenigsdorff); (9) Consideration of the heat transport in geothermal probes (Martin Konrad); (10) Process of evaluation the sealing of geothermal probes with backfilling materials (Manfred Reuss); (11) Quality assessment of geothermal probes in real standard (Mathieu Riegger); (12) Comparison of flat collectors salt water and direct evaporation, design, impacs, consequences (Bernhard Wenzel); (13) Non-covered photovoltaic thermal collectors in heat pump systems (Erik Bertram); (14) Seasonal geothermal probe-heat storage - Heat supply concepts for objects with overbalancing heating level of more than 100 kW (Volker Liebel); (15) Application of geothermal probe fields as a cold storage (Rolf Wagner); (16) Geothermal energy and waste water warmth: State of the art and new technologies for a combined utilization (Wolfram Stodtmeister); (17) Integration of a heat pump into a solar supported local heat supply in Neckarsulm (Janet Nussbicker-Lux); (18) Regenerative heating with photovoltaics and geothermal energy (Christoph Rosinski

  15. Electron energy budget in the high-latitude ionosphere during Viking/EISCAT coordinated measurements

    International Nuclear Information System (INIS)

    Lilensten, J.; Kofman, W.; Lathuillere, C.; Fontaine, D.; Eliasson, L.; Oran, E.S.

    1990-01-01

    The magnetospheric electron fluxes precipitating at the top of the auroral ionosphere contribute to the production of ionization, to the excitation of atmospheric constituents, and to the heating of the ambient electrons. This last process occurs essentially when the energy of the initial precipitated electrons and photoelectrons has been degraded to values lower than approximately 10 eV. The heated ambient electron gas loses this energy to the neutral gas and ambient ions. Finally, the temperature gradient produced in the ionospheric plasma induces a heat flux. In the absence of an electric field and for stationary conditions, the energy budget of ionospheric electrons results from the balance between these processes of heating, cooling, and heat conduction. The intensity of these different processes is quantitatively computed at each altitude in the ionosphere by combining simultaneous EISCAT and Viking in situ measurements, and by means of an electron transport model. The stationary electron flux, which leads to the heating rate, is computed, and remaining differences in the energy budget are discussed

  16. Case Study of a Low-Energy District Heating Network in Energy-Efficient Settlements in Denmark

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Christensen, Jørgen Erik

    for low-energy houses in Denmark was investigated. We considered the influence of the human behavior on the energy demand, the importance of the degree of buildings connected to the network and a socio-economical comparison with ground source heat pumps. In the North European climate, the human behavior...... customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m.year). This suggests that the mandatory connection of low-energy buildings to DH in specific areas, by means of detailed energy planning, would improve the energy efficiency and the overall...... socio-economy and it is strategic for effective energy policy. The levelised cost of energy in case of low-energy DH supply is competitive with the scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years...

  17. Apparatus intended for measuring heat capacity and heat transfer down to mK range

    International Nuclear Information System (INIS)

    Hebral, B.; Frossati, G.; Godfrin, H.; Schumacher, G.; Thoulouze, D.

    1978-01-01

    A cryogenic apparatus to perform heat capacity and heat transfer measurements in the range 1.5 mK-50 mK is described. Measurements are performed in an adiabatic demagnetization cell attached to a dilution refrigerator. Heat capacity measurements were effected on CMN-helium systems; the CMN specific heat was deduced above 1.6 mK when using liquid 3 He or a mixture 1.1% 3 He - 98.9% 4 He. A specific heat anomaly was observed with 4 He below 10 mK. It does not seen possible to interprete it by simple thermal equilibrium considerations. The superfluid 3 He heat capacity was also deduced from the results obtained with liquid 3 He under pressure. In heat transfer measurements at the interface CMN-mixture 3 He- 4 He, the temperature dependence of the thermal boundary resistance is in rather good agreement with other powder results. The measured resistances are larger than those predicted by the classical phonon process [fr

  18. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2015-01-01

    Highlights: • A parameter to indicate the energy efficiency ratio of PCTES units is defined. • The characteristics of the energy efficiency ratio of PCTES units are reported. • A combined parameter of the physical properties of the working mediums is found. • Some implications of the energy efficiency ratio in design of PCTES units are analyzed. - Abstract: From aspect of energy consuming to pump heat transfer fluid, there is no sound basis on which to create an optimum design of a thermal energy storage unit. Thus, it is necessary to develop a parameter to indicate the energy efficiency of such unit. This paper firstly defines a parameter that indicates the ratio of heat storage of phase change thermal energy storage unit to energy consumed in pumping heat transfer fluid, which is called the energy efficiency ratio, then numerically investigates the characteristics of this parameter. The results show that the energy efficiency ratio can clearly indicate the energy efficiency of a phase change thermal energy storage unit. When the fluid flow of a heat transfer fluid is in a laminar state, the energy efficiency ratio is larger than in a turbulent state. The energy efficiency ratio of a shell-and-tube phase change thermal energy storage unit is more sensitive to the outer tube diameter. Under the same working conditions, within the heat transfer fluids studied, the heat storage property of the phase change thermal energy storage unit is best for water as heat transfer fluid. A combined parameter is found to indicate the effects of both the physical properties of phase change material and heat transfer fluid on the energy efficiency ratio

  19. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003

    International Nuclear Information System (INIS)

    Hadorn, J.-C.; Renaud, P.

    2003-01-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD+D projects

  20. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  1. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  2. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    scientific understanding on how we can design and implement a suitable and least-cost transformation into a sustainable energy future. The concept of Smart Energy Systems emphasizes the importance of being coherent and cross-sectoral when the best solutions are to be found and how this also calls......This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  3. Direct electronic measurement of Peltier cooling and heating in graphene.

    Science.gov (United States)

    Vera-Marun, I J; van den Berg, J J; Dejene, F K; van Wees, B J

    2016-05-10

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  4. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  5. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    2014-01-01

    This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish...... governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new...... buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating...

  6. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  7. Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem

    2007-07-01

    World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation

  8. Energy from Waste: Reuse of Compost Heat as a Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    G. Irvine

    2010-01-01

    Full Text Available An in-vessel tunnel composting facility in Scotland was used to investigate the potential for collection and reuse of compost heat as a source of renewable energy. The amount of energy offered by the compost was calculated and seasonal variations analysed. A heat exchanger was designed in order to collect and transfer the heat. This allowed heated water of 47.3oC to be obtained. The temperature could be further increased to above 60oC by passing it through multiple tunnels in series. Estimated costs for installing and running the system were calculated. In order to analyse these costs alternative solar thermal and ground source heat pump systems were also designed. The levels of supply and economic performance were then compared. A capital cost of £11,662 and operating cost of £1,039 per year were estimated, resulting in a cost of £0.50 per kWh for domestic water and £0.10 per kWh for spatial heat. Using the heat of the compost was found to provide the most reliable level of supply at a similar price to its rivals.

  9. ORC waste heat recovery in European energy intensive industries: Energy and GHG savings

    International Nuclear Information System (INIS)

    Campana, F.; Bianchi, M.; Branchini, L.; De Pascale, A.; Peretto, A.; Baresi, M.; Fermi, A.; Rossetti, N.; Vescovo, R.

    2013-01-01

    Highlights: • A methodology to estimate ORC industrial heat recovery potential is defined. • Heat recovery applications for different industrial processes are shown. • Cement, steel, glass and oil and gas applications are considered in EU27. • Savings in electricity costs and greenhouse gases are quantified. - Abstract: Organic Rankine Cycle (ORC) is a technology with important opportunities in heat recovery from energy intensive industrial processes. This paper represents the first comprehensive estimate of ORC units that can be installed in cement, steel, glass and oil and gas industries in the 27 countries of the European Union based on an accurate methodology related to real plants in operation or under construction. An evaluation of energy savings, depending on the number of operating hours per year and of the consequent decrease in CO 2 emission and electricity expenditure, is also provided. The study, carried out in the framework of an European research project on heat recovery in energy intensive industries, found that, in the most convenient considered scenario, up to about 20,000 GW h of thermal energy per year can be recovered and 7.6 M ton of CO 2 can be saved by the application of ORC technology to the investigated and most promising industrial sectors

  10. Bayesian inferences of the thermal properties of a wall using temperature and heat flux measurements

    KAUST Repository

    Iglesias, Marco

    2017-09-20

    The assessment of the thermal properties of walls is essential for accurate building energy simulations that are needed to make effective energy-saving policies. These properties are usually investigated through in situ measurements of temperature and heat flux over extended time periods. The one-dimensional heat equation with unknown Dirichlet boundary conditions is used to model the heat transfer process through the wall. In Ruggeri et al. (2017), it was assessed the uncertainty about the thermal diffusivity parameter using different synthetic data sets. In this work, we adapt this methodology to an experimental study conducted in an environmental chamber, with measurements recorded every minute from temperature probes and heat flux sensors placed on both sides of a solid brick wall over a five-day period. The observed time series are locally averaged, according to a smoothing procedure determined by the solution of a criterion function optimization problem, to fit the required set of noise model assumptions. Therefore, after preprocessing, we can reasonably assume that the temperature and the heat flux measurements have stationary Gaussian noise and we can avoid working with full covariance matrices. The results show that our technique reduces the bias error of the estimated parameters when compared to other approaches. Finally, we compute the information gain under two experimental setups to recommend how the user can efficiently determine the duration of the measurement campaign and the range of the external temperature oscillation.

  11. Heat Saving Strategies in Sustainable Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Henrik Lund

    2014-06-01

    Full Text Available This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps.

  12. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  13. Theory of energy level and its application in water-loop heat pump system

    International Nuclear Information System (INIS)

    Yu, Qi Dong

    2017-01-01

    Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.

  14. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  15. A review on transportation of heat energy over long distance. Exploratory development

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q.; Wang, R.Z. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Luo, L.; Sauce, G. [LOCIE, Polytech' Savoie, Campus Scientifique, Savoie Technolac, 73376 Le Bourget-Du-Lac cedex (France)

    2009-08-15

    This paper presents a review on transportation of heat energy over long distance. For the transportation of high-temperature heat energy, the chemical catalytic reversible reaction is almost the only way available, and there are several reactions have been studied. For the relatively low-temperature heat energy, which exists widely as waste heat, there are mainly five researching aspects at present: chemical reversible reactions, phase change thermal energy storage and transportation, hydrogen-absorbing alloys, solid-gas adsorption and liquid-gas absorption. The basic principles and the characteristics of these methods are discussed. (author)

  16. Capacity of 50Ti-47Ni-3Cu composite to convert heat energy to mechanical work under cyclic measurement of temperature

    International Nuclear Information System (INIS)

    Belyaev, S.P.; Kuz'min, S.L.; Likhachev, V.A.

    1984-01-01

    The TiNiCu alloy with a shape memory which may be used as a working medium for the martensite engine converting heat energy to mechanical one is studied for its energy characteristics. Mechanical characteristics of the material are studied under torsion of cylindrical specimens of stressed thermocycling through temperature intervals of martensite transformations. It is established that the shape memory and transformation ductility effects determining serviceability and power of the martensite enginem vary gradually with the number of heat changes reaching saturation after 10-15 thermocycles, The heating-and-cooling stress dependence of deformations due to the shape memory and transformation ductility effects also varied with the number of heat changes, Cooling conditions under stress of 50 MPa and heating conditions under 200 MPa and above proved to be most optimal. Serviceability of the engine made of the TiNiCu alloy exceeds 10 MJ/m 3 and its power reaches 10 5 MW m -3 under operation frequency of 10 3 Hz

  17. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  18. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  19. Controlled ventilation in gas-heated low-energy houses. Primary energy savings in regard to the users behaviour

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    With the introduction of the energy savings regulation in Germany (ESVO) low-energy buildings will be the standard for new buildings at the turn of the millennium. The heating energy demand will sink around 30 % facing the actual standard. Systems for controlled Ventilation with heat-recovery are often regarded as an essential component to achieve the low-energy standard for buildings. The quota of the ventilation losses in high insulated buildings is up to far over 50 % of the heating energy demand. However, in practice ventilation systems often do not achieve the calculated energy-savings on the heat requirement. Until now, both technical defects of ventilation systems and the tightness of buildings are at the centre of discussion dealing with this problem. Therefore, in a common research project of three gas supply companies, an electricity distribution company and the Department of Technical Thermodynamics at the TUHH, the bandwidth of the possible energy-savings by ventilation systems with heat recovery was investigated by dynamic simulation of the thermal behaviour of buildings and ventilation systems. Above all, the question of the influence of the user behaviour was at the centre of attention. (author)

  20. Nuclear and geothermal energy as a direct heat source

    International Nuclear Information System (INIS)

    Field, A.A.

    1976-01-01

    After some remarks on economic aspects, the swimming pool reactor simplified for the purpose of heat generation is described, the core of which supplies heat of 100-120 0 C for district heating. In this context, ways of storing waste heat are discussed. The alternative is pointed out that energy may be transferred by means of hydrogen. In conclusion, it is demonstrated on a French plant how geothermal water can be used directly via heat exchangers for district heating. (UA/LN) [de

  1. Solar energy and global heat balance of a city

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)

    2001-07-01

    The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)

  2. Geothermal energy and district heating in Ny-Ålesund, Svalbard

    OpenAIRE

    Iversen, Julianne

    2013-01-01

    This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-Ålesund. The current energy supply in Ny-Ålesund is a diesel generator, which does not comply with the Norwegian government and Ny-Ålesund Science Managers Committee’s common goal to maintain the natural environment in Ny-Ålesund. Ny-Ålesund has a potential for replacing the heat from the current diesel based energy source with geothermal energy. Geothermal energy is considered to have low im...

  3. Renewable energy for passive house heating. Part 1. Building description

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Polytechnic Univ., Bucharest (Romania). Faculty of Mechanical Engineering; Sicre, B. [Technical Univ., Chemnitz (Germany). Computational Physics

    2003-12-01

    A passive house is a cost-efficient building that can manage throughout the heating period, due to its specific construction design, with more than 10 times less heat energy than the same building designed to standards presently applicable across Europe. Its extended thermal insulation and enhanced air-tightness removes the need for temperatures higher than 50 {sup o}C. This makes renewable energy sources particularly suitable for heating, cooling and domestic hot water production. Modeling of renewable energy usage for space heating requires as a preliminary stage the detailed description of the building structure, of the HVAC equipment and of the internal heat sources. This paper shows the main data used to model the thermal behavior of a passive house. Details about Pirmasens Passive House (Rhineland Palatinate, Germany) are given, as for example, the internal heat sources, including electric appliances, heat and humidity released by human bodies, thermal internal facilities as hot and cold water pipes. All these are quantified by using statistically derived data. A detailed time schedule for a standard German family with two adults and two children was prepared. It takes into account the national celebrations, vacation and weekends among others. (Author)

  4. Energy harvesting via thermo-piezoelectric transduction within a heated capillary

    Science.gov (United States)

    Monroe, J. G.; Bhandari, M.; Fairley, J.; Myers, O. J.; Shamsaei, N.; Thompson, S. M.

    2017-07-01

    Thermal-to-kinetic-to-electrical energy conversion is demonstrated through the use of a piezoelectric transducer (PZT) integrated within a section of an oscillating heat pipe (OHP) partially filled with water. The sealed PZT transducer was configured as a bow spring parallel to the dominant flow direction within the OHP. The bottom portion of the OHP was heated in increments of 50 W, while its top portion was actively cooled via water blocks. At ˜50 W, the internal fluid started to oscillate at ˜2-4 Hz due to the non-uniform vapor pressure generated in the OHP evaporator. Low-frequency fluid "pulses" were observed to occur across the flexed, in-line piezoelectric transducer, resulting in its deflection and measureable voltage spikes ranging between 24 and 63 mV. The OHP, while having its internal fluid enthalpy harvested, was found to still have an ultra-high thermal conductivity on-the-order of 10 kW/m K; however, its maximum operating heat load decreased due to the pressure drop introduced by the PZT material. The thermo-piezoelectric harvesting concept made possible via the thermally driven fluid oscillations within an OHP provides a passive method for combined energy harvesting and thermal management that is both scalable and portable.

  5. Conceptual adsorption system of cooling and heating supplied by solar energy

    Directory of Open Access Journals (Sweden)

    Turski Michał

    2016-06-01

    Full Text Available This paper presents the possibility of reducing the demand for nonrenewable primary energy for buildings using a new conceptual adsorption system of cooling and heating supplied by solar energy. Moreover, the aim of this study is to shorten the payback time of investment in the standard adsorption cooling system through its integration with the heating system. Research has been carried out for an energy-efficient medium-sized single-family building with a floor area of 140 m2 and a heat load of 4.2 kW and cold load of 4.41 kW. It has been shown that the use of an adsorption system of cooling and heating supplied by solar energy decreased the demand for nonrenewable primary energy by about 66% compared to the standard building that meets the current requirements.

  6. A review of U-235 decay heat measurements and calculations

    International Nuclear Information System (INIS)

    Walker, W.H.

    1979-08-01

    Recent scintillator measurements of fission product decay β and γ power, and calorimetric measurements of their sum are analyzed to obtain estimates of E sub(β) and E sub(γ), the β and γ components of the delayed energy per fission in a reactor. Calculations using the ENDF/B-4 fission product file are compared to the measured results and used to estimate the contributions to E sub(β) and E sub(γ) for decay times greater than 10 5 s. A value of E sub(ν), the anti-neutrino component, consistent with the measured component is also calculated. It is found that the decay heat measured in two calorimetric experiments (the sum of the β and γ components) is about 15 percent greater than the separately-measured energies (averages of five β and two γ measurements). Thus, depending on normalization, E sub(β) and E sub(γ) can vary widely. After all experimental uncertainties are taken into account the range of possible values has as lower limits the values calculated using ENDF/B-4, with upper limits about 40 percent greater. (author)

  7. Transient modelling of heat loading of phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Asyraf W.M.

    2017-01-01

    Full Text Available As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3 and potassium nitrate (KNO3 was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3.

  8. Measurement of heat transfer coefficient using termoanemometry methods

    Science.gov (United States)

    Dančová, P.; Sitek, P.; Vít, T.

    2014-03-01

    This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC) is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  9. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    Science.gov (United States)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262

  10. Regional energy system optimization - Potential for a regional heat market

    International Nuclear Information System (INIS)

    Karlsson, Magnus; Gebremedhin, Alemayehu; Klugman, Sofia; Henning, Dag; Moshfegh, Bahram

    2009-01-01

    Energy supply companies and industrial plants are likely to face new situations due to, for example, the introduction of new energy legislation, increased fuel prices and increased environmental awareness. These new prerequisites provide companies with new challenges but also new possibilities from which to benefit. Increased energy efficiency within companies and increased cooperation between different operators are two alternatives to meet the new conditions. A region characterized by a high density of energy-intensive processes is used in this study to find the economic potential of connecting three industrial plants and four energy companies, within three local district heating systems, to a regional heat market, in which different operators provide heat to a joint district heating grid. Also, different investment alternatives are studied. The results show that the economical potential for a heat market amounts to between 5 and 26 million EUR/year with payback times ranging from two to eleven years. However, the investment costs and the net benefit for the total system need to be allotted to the different operators, as they benefit economically to different extents from the introduction of a heat market. It is also shown that the emissions of CO 2 from the joint system would decrease compared to separate operation of the systems. However, the valuation of CO 2 emissions from electricity production is important as the difference of emitted CO 2 between the accounting methods exceeds 650 kton/year for some scenarios

  11. Effect of heat-insulating wall on input energy of a photovoltaic/solar/air-heat system for a residence; Jutaku no kodannetsuka ni yoru taiyoko netsu/taiki netsu system no donyu energy sakugen koka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru College of Technology, Kyoto (Japan)

    1996-10-27

    A proposal was made to introduce a photovoltaic/solar/air-heat system which positively utilizes natural energy in order to curtail consumption of fossil energy, corroborating that the system has greatly reduced energy input in the primary energy level in a house. This paper examines the effect of curtailment of energy input in the case of reducing the load of air conditioning through the high heat insulation of a house. The energy input was evaluated by calculating additional equipment energy needed newly for the high heat insulation. The system performance and the energy load varied greatly depending on weather conditions. The subject system consisted of solar cells, inverter, heat concentrator, heat storage tank, heat pump and gas hot-water supply device. The thickening of the insulation sharply reduced heating load in the house, thereby decreasing fuel energy substantially. An insulation material of 100mm thick was capable of reducing energy input by 16-23% compared with that of 50mm thick. 5 refs., 5 figs, 3 tabs.

  12. Grenelle Environnement: passing the energy transition with success; 50 measures for developing renewable energies with a high environmental quality

    International Nuclear Information System (INIS)

    2008-01-01

    One of the objectives of the Grenelle Environnement Forum conclusions is to double the contribution of renewable energies in France by 2020, and reach the level of 20 percent of the final energy consumption. 50 measures have been decided by the French government in order to meet this objective while ensuring a high environmental quality. The 50 measures are detailed: heat production (biomass, geothermal and solar energy, wastes, biogas) and electric power generation (hydroelectricity, terrestrial and marine wind turbines, biomass, photovoltaic solar energy, geothermal and marine energies) are concerned

  13. Energy efficiency measures for offshore oil and gas platforms

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter; Elmegaard, Brian

    2016-01-01

    Oil and gas platforms are energy-intensive systems – each facility uses from a few to several hundreds MW of energy, depending on the petroleum properties, export specifications and field lifetime. Several technologies for increasing the energy efficiency of these plants are investigated in this work. They include: (i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphase expanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation around the compressors, (v) the exploitation of low-temperature heat from the gas cooling steps, (vi) the downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the power plant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions and strategies. The benefits and practical limitations of each measure are discussed based on thermodynamic, economic and environmental factors. Significant energy savings and reductions in CO_2-emissions are depicted, reaching up to 15–20%. However, they strongly differ from one facility to another, which suggests that generic improvements can hardly be proposed, and that thorough techno-economic analyses should be conducted for each plant. - Highlights: • Energy efficiency measures for offshore platforms are assessed. • Energy savings and reductions in CO_2-emissions can reach up to 15-20%. • They differ strongly depending on the oil type, operating conditions and strategies.

  14. Thermal indoor environment and energy consumption in a plus-energy house: cooling season measurements

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    indoor environment. For the energy consumption of the HVAC system, air-to-brine heat pump, mixing station and controller of the radiant floor, and the air handling unit were considered. The measurements were analyzed based on the achieved indoor environment category (according to EN 15251...... the floor cooling system) and increasing the ventilation rate provided a better thermal indoor environment but with increased energy consumption. The thermal indoor environment and energy performance of the house can be improved with decreased glazing area, increased thermal mass, installation of solar...

  15. The Importance of Heating System Transient Response in Domestic Energy Labelling

    Directory of Open Access Journals (Sweden)

    George Bennett

    2016-08-01

    Full Text Available European National Calculation Methods (NCM, such as the UK Standard Assessment Procedure (SAP, are used to make standardised and simplified assessments of building energy performance. These NCMs contain simplifications to aid ease of use and comparability of resulting Energy Performance Certificates (EPC. By comparing SAP with a modern, dynamic modelling system, this study quantifies internal temperatures and thereby heating energy consumption. Results show that for the considered test house SAP results correspond closely to a dynamic model using an idealistic heating system, with perfect control and instant responsiveness. However, the introduction of a dynamic, physically realistic gas fired boiler and water based heating system to the model results in a consistent increase in internal temperature (0.5 °C and energy demand (by ca. 1000 kWh/a. Variation of further parameters within the dynamic model, controls and heat source size, are presented and compared to SAP results and assumptions. The inclusion of more realistic dynamics in building energy modelling for NCMs may provide a better basis for effective decision making with respect to a wide range of heating systems.

  16. Rapid charging of thermal energy storage materials through plasmonic heating.

    Science.gov (United States)

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  17. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  18. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  19. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    Science.gov (United States)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  20. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.

    2014-03-01

    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  1. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11

    Ceralink Inc. developed FastFuse™, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse™ during the course of the project. FastFuse™ has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse™ transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse™ offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse™ is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  2. Effects of the regulating energy levy and energy tariffs on the cost effectiveness of energy efficient production of heat and cold

    International Nuclear Information System (INIS)

    2000-01-01

    With respect to the title subject collective and stand-alone systems for house and office buildings were analyzed. For houses a high-efficiency boiler as reference system, and individual micro-cogeneration unit, an individual electric heat pump with a collective aquifer as heat source, an individual gas heat pump with outside air as a heat source, a collective cogeneration system, and a collective energy plant with cogeneration and an electric heat pump. For office buildings a high-efficiency boiler and a cooling machine as a reference system, an individual electric heat pump with an individual aquifer as a heat source, cold storage, collective cogeneration, and a collective energy plant with cogeneration and an electric heat pump. Also an overview is given of the changes that are taking place in the tariffs for natural gas, e.g. the use of so-called Commodity Services. Finally, the impact on prices of natural gas and electricity of the fact that the tax-free threshold of the regulating energy levy (REB, abbreviated in Dutch) will disappear is investigated. 5 refs

  3. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States); Childress, Amy [Univ. of Nevada, Reno, NV (United States); Hiibel, Sage [Univ. of Nevada, Reno, NV (United States); Kim, Kwang [Univ. of Nevada, Reno, NV (United States); Park, Chanwoo [Univ. of Nevada, Reno, NV (United States); Wirtz, Richard [Univ. of Nevada, Reno, NV (United States)

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  4. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  5. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  6. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting syst......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods......According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...... systems. This energy declaration must refer to the primary energy or CO2 emissions. The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant...

  7. Solar-energy heats a transportation test center--Pueblo, Colorado

    Science.gov (United States)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  8. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    International Nuclear Information System (INIS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-01-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies. (letter)

  9. Energy use in low-energy and passive buildings: A comparison of predicted and measured energy; Energibruk i lavenergi- og passivbygg

    Energy Technology Data Exchange (ETDEWEB)

    Langseth, Benedicte; Everett, Emilie Naerum; Havskjold, Monica

    2012-11-01

    The purpose of this report is to get a better view of the real energy use in low-energy and passive buildings in relation to what is intended in the design phase.There is obtained 64 observations of expected and measured energy use in low-energy and passive buildings. Some of these observations are the average of several homes in the same field. There have been some difficulties to obtain information on energy use in Norwegian buildings. This is partly because there are few such buildings in Norway so far, it has not been a focus on energy monitoring, and partly that some building owners have not wanted to give up information.The data show that the measured energy use in buildings, on average, is higher than expected energy consumption. There are some very large differences between expected and measured energy use, both in terms of energy for heating and total energy consumption. In addition, there is big variation in the differences - some observations have almost no difference, others have large positive deviations while others have large negative deviation.There are five main reasons for discrepancies that go on in our findings, these are: errors in building body, faulty technical equipment, improper design of the building, higher indoor temperatures than expected, and improper use of the building. The first three reasons should be relatively easy to reduce the impact of, through increased training and knowledge of the developer, better monitoring of energy use, and especially the communication between the developer and the residents / operator. Many of them Xrgia have been in contact with think they could build 'correct' at the next opportunity. For the last two reasons, indoor temperature and the use of the building, this will be largely dependent on the individual. Data show that more than one building with the same expected energy consumption can have significant variations in measured energy use. Our conclusion is that the use of the building is

  10. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  11. A Direct Heat Exchanger Unit used for Domestic Hot Water Supply in a Single-family House Supplied by Low Energy District Heating

    DEFF Research Database (Denmark)

    Brand, Marek; Thorsen, Jan Eric; Svendsen, Svend

    2010-01-01

    The increasing number of new and renovated buildings with reduced heating requirements will soon make traditional District Heating (DH) systems uneconomic. To keep DH competitive in the future, the heat loss in DH networks needs to be reduced. One option is to reduce the supply temperature of DH...... as much as possible. This requires a review of the behaviour of the whole domestic hot water (DHW) supply system with focus on the user comfort and overall costs. This paper describes some practical approaches to the implementation of this Low Energy District Heating (LEDH) concept. It reports...... on the testing of the dynamic behaviour of an Instantaneous Heat Exchanger Unit(IHEU) designed for DHW heating and space heating in detached family houses supplied by LEDH ensuring an entry-to-substation temperature of 51 °C. We measured the time it takes for the IHEU to produce DHW with a temperature of 42 °C...

  12. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads

    International Nuclear Information System (INIS)

    Ettouney, Hisham; Alatiqi, Imad; Al-Sahali, Mohammad; Al-Hajirie, Khalida

    2006-01-01

    Energy storage is an attractive option to conserve limited energy resources, where more than 50% of the generated industrial energy is discarded in cooling water and stack gases. This study focuses on the evaluation of heat transfer enhancement in phase change energy storage units. The experiments are performed using spherical capsules filled with paraffin wax and metal beads. The experiments are conducted by inserting a single spherical capsule filled with wax and metal beads in a stream of hot/cold air. Experimental measurements include the temperature field within the spherical capsule and in the air stream. To determine the enhancement effects of the metal beads, the measured data is correlated against those for a spherical capsule filled with pure wax. Data analysis shows a reduction of 15% in the melting and solidification times upon increasing the number and diameter of the metal beads. This reduction is caused by a similar decrease in the thermal load of the sphere due to replacement of the wax by metal beads. The small size of the spherical capsule limits the enhancement effects; this is evident upon comparison of the heat transfer in a larger size, double pipe energy storage unit, where 2% of the wax volume is replaced with metal inserts, result in a three fold reduction in the melting/solidification time and a similar enhancement in the heat transfer rate

  13. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  14. Energy-Storage Modules for Active Solar Heating and Cooling

    Science.gov (United States)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  15. Standard Test Method for Calculation of Stagnation Enthalpy from Heat Transfer Theory and Experimental Measurements of Stagnation-Point Heat Transfer and Pressure

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the calculation from heat transfer theory of the stagnation enthalpy from experimental measurements of the stagnation-point heat transfer and stagnation pressure. 1.2 Advantages 1.2.1 A value of stagnation enthalpy can be obtained at the location in the stream where the model is tested. This value gives a consistent set of data, along with heat transfer and stagnation pressure, for ablation computations. 1.2.2 This computation of stagnation enthalpy does not require the measurement of any arc heater parameters. 1.3 Limitations and ConsiderationsThere are many factors that may contribute to an error using this type of approach to calculate stagnation enthalpy, including: 1.3.1 TurbulenceThe turbulence generated by adding energy to the stream may cause deviation from the laminar equilibrium heat transfer theory. 1.3.2 Equilibrium, Nonequilibrium, or Frozen State of GasThe reaction rates and expansions may be such that the gas is far from thermodynamic equilibrium. 1.3.3 Noncat...

  16. Energy efficiency of gas engine driven heat pumps for heating and cooling applications; Energieeffizienter Einsatz von Gasmotorwaermepumpen fuer Heiz- und Kuehlanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Juergen [Magdeburg Univ. (Germany). Inst. fuer Stroemungstechnik und Thermodynamik

    2012-11-15

    Heat pumps are gaining in importance for a sustainable and ecological heat supply. Gas engine driven systems can contribute to a decentralized energy supply by power heat cogeneration. In the paper, a pilot plant, which offers high energy efficiency by simultaneous use of the heat of evaporation and condensation, is presented. The plant permits the testing of different operating modes and obtains high values above three for the primary energy ratio. (orig.)

  17. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  18. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    Science.gov (United States)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  19. Valuing energy-saving measures in residential buildings. A choice experiment study

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, So-Yoon; Kwak, Seung-Jun [Department of Economics, Korea University, 5-1 Anam-Dong, Seoul 136-701 (Korea); Yoo, Seung-Hoon [Department of International Area Studies, Hoseo University, 268 Anseo-Dong, Cheonan, Chungnam 330-713 (Korea)

    2010-01-15

    Air-conditioning and heating energy-saving measures can cut back the usage of energy. This paper attempts to apply a choice experiment in evaluating the consumer's willingness to pay (WTP) for air-conditioning and heating energy-saving measures in Korea's residential buildings. We consider the trade-offs between price and three attributes of energy-saving (window, facade, and ventilation) for selecting a preferred alternative and derive the marginal WTP (MWTP) estimate for each attribute. We also try to test irrelevant alternatives property for the estimation model holds and compare the estimation results of the multinomial logit (MNL) and the nested logit (NL) models. The NL model outperforms the MNL model. The NL model show that MWTPs for increasing the number of glasses and their variety, for increasing the thickness of facade for 1 mm, and for establishing a ventilation system are KRW 17,392 (USD 18.2), 1,112 (1.2), and 11,827 (12.4), respectively. Overall, the potential consumers have significant amount of WTP. (author)

  20. Evapotranspiration and heat fluxes over a patchy forest - studied using modelling and measurements

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Dellwik, Ebba; Boegh, Eva

    using these parameters without a proper interpretation in mesoscale or global circulation models can results in serious bias of estimates of modelled evapotranspiration or heat fluxes from given area. Since representative measurements focused on heterogeneous effects are scarce numerical modelling can...... and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest (Klaassen et al. 2002, Theor. Appl. Climatol. 72, 231-243). Because such flux measurements are very often used for calibration of forest parameters or model constants, further......, Ecological. Appl. 18, 1454-1459). In the present work, we apply the SCADIS with enhanced turbulence closure including buoyancy for investigation of the spatial distribution of latent and sensible heat vertical fluxes over patchy forested terrain in Denmark during selected days in the summer period. A closer...

  1. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    potential of the energy saving in the society it is very important to address the decisive involvement of the end-users. The human behaviour is the factor that affects the most the energy use in low-energy buildings and should be included in energy simulations. The results can then be linked to programs...... the implementation of C02 neutral communities. A link between a dynamic energy simulation program for buildings and a simulation program for district heating networks is demonstrated. The results of the investigation give an example of how to analyze a community and make recommendations for applying the low...... in a cost-effective way in areas with linear heat densities down to 0.20 MWh/(m.year). Even in cases where the user behaviour is not optimal, the system is able to deliver heat to each customer. The low-energy district heating concept could be strategic for reaching ambitious energy and climate targets...

  2. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  3. 谈供热系统中的节能问题%Discussion on the energy saving problem in heating system

    Institute of Scientific and Technical Information of China (English)

    赵旗

    2016-01-01

    基于供热节能的现状,分析了供热节能的必要性,并从化石燃料梯级利用、工业余热利用、分户计量收费、变频调速等方面,提出了实现供热节能的措施,从而提高能源的利用率。%Based on the current situation of heating energy,this paper analyzed the necessity of heating energy,and from the fossil fuels cascade utilization,industrial waste heat utilization,household metering and charging,variable frequency speed regulation and other aspects,proposed the measures to achieve energy saving heating,in order to improve the efficiency of energy use.

  4. Heat production thanks to waste water; Produire de l'energie grace aux eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J.

    2009-07-01

    The district heating of a large residential compound in Rheinfelden, Switzerland has been refurbished and extended in order to include new buildings and take advantage of the heat from the municipal waste water treatment plant. The initial system was built in 1976 and delivered heat to 3000 people in 1050 housing units, from three natural gas fired boilers with a total power of 3 MW. In 1993, a study supported by the Swiss Federal Office of Energy identified considerable possible energy savings. Some operational measures were implemented immediately. The recent extension of the district heating to a second residential compound in the neighbourhood increased the heat demand by about 50%. In the course of the planning process it was recognized that waste water from the joint municipal treatment plant of Rheinfelden and Magden - a second city located in the vicinity - has to be cooled by 5 K before being rejected into the Rhine River. This water is now used after filtration as the heat source for two big heat pumps (total 2.5 MW; working fluid: ammonia) supplying the refurbished and extended district heating. Peak heat demand is covered by natural gas boilers (total 9 MW) that can operate alone or in parallel with the heat pumps. Provision has been made to later connect another waste heat source to the district heating network: the municipal skating rink and swimming pool sport facility.

  5. Improving adsorption dryer energy efficiency by simultaneous optimization and heat integration

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van

    2011-01-01

    Conventionally, energy-saving techniques in drying technology are sequential in nature. First, the dryer is optimized without heat recovery and then, based on the obtained process conditions, heat recovery possibilities are explored. This work presents a methodology for energy-efficient adsorption

  6. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  7. Dynamic modeling of а heating system using geothermal energy and storage tank

    Directory of Open Access Journals (Sweden)

    Milanović Predrag D.

    2012-01-01

    Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.

  8. Historical changes and recent energy saving potential of residential heating in Korea

    International Nuclear Information System (INIS)

    Yeo, M.-S.; Yang, I.-H.; Kim, K.-W.

    2003-01-01

    The residential heating method in Korea underwent various phases of development to reach the current system. The first phase was the traditional Ondol (the traditional under-floor heating system in Korea), where the floor was heated by the circulation of hot gas produced by a fire furnace (before the 1950s). The second phase involved the use of the modified anthracite coal Ondol, for which the fire furnace was modified for briquette use (from the early 1950s to the late 1970s). The third phase involved the use of hot water radiant floor heating with embedded tubes (from the late 1970s). This paper presents insights into the problem of current residential heating in Korea and the general aspects of heating energy savings by tracing the history of residential heating in Korea and analyzing related data. The results show that modern apartment buildings with hot water radiant floor heating (the third phase) yield less heat loss due to the tighter envelope, but also yield higher energy consumption than the traditional Ondol heating housing (the first phase). Because of an inefficient system and lack of thermal insulation of the traditional Ondol heating housing, Ondol heating was used to heat occupants sitting directly on the floor, keeping lower room temperature and higher floor surface temperature. So the range of comfortable floor temperature for Korean people is higher and this unique comfort sense is related to energy consumption in modern apartment housing. As a result, several energy saving methods were found such as reducing the total floor heating area or zoning the floor area, receiving continuous heat supply, and installing a delicate control system and metering devices. (author)

  9. Renewable heat: Waste heat, an emerging sector full of resources. An eco-district fed by the heat from a data center; Integrating objectives matching the ambitions, clear and on the long term; High-energy wastes in Brittany: Brest is securing its heat network with multiple energies

    International Nuclear Information System (INIS)

    Richard, Aude

    2017-01-01

    This file on renewable heat contains four articles which themes are: waste heat (from incineration plants or industrial sites) is an emerging sector full of resources, which benefits now of a financial subsidy from ADEME, the French organization for energy and environment; an example is given with Chamtor, a highly energy-consuming cereal transformer. The second article presents an urban eco-district in Paris that is fed by the heat issued by a data center. The third article (Integrating objectives matching the ambitions, clear and on the long term) presents some recommendations from the French Renewable Energy Association (SER) towards a better energy valorization of residual wastes. The fourth article presents two examples of energy valorization of wastes in Brittany, one with the valorization of high-energy solid wastes for supplying heat to a milk farm and greenhouses, the other one concerns the development of a heat network supplied by an incineration plant, with a mix of energy sources such as wastes, wood and gas, and a special juridical scheme

  10. Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation

    Directory of Open Access Journals (Sweden)

    Govinda Mahajan

    2017-11-01

    Full Text Available The feasibility of using finned oscillating heat pipes (OHPs for heat exchange between counter-flowing air streams in HVAC air systems (i.e., outdoor and exhaust air flows, along with the associated cost savings in typical North American climates, is investigated. For a prescribed temperature difference and volumetric flow rate of air, rudimentary design parameters for a viable OHP Heat Recovery Ventilator (OHP-HRV were determined using the ε-NTU (effectiveness-Number of Transfer Unit method. The two-phase heat transfer within the OHP-HRV is modeled via effective evaporation/condensation heat transfer coefficients, while the latent heat transfer required to initiate OHP operation via boiling and evaporation is also considered. Results suggest that an OHP-HRV can possess a reasonable pressure drop (5 kW. The proposed OHP-HRV can possess an effectiveness near 0.5 and can pre-cool/heat HVAC air by >5°C. Potential energy and cost savings associated with using an OHP-HRV were estimated for commercial building envelopes in various regions of the United States. It is found that the proposed OHP-HRV can save more than $2500 annually in cities that have continental climatic conditions, such as Chicago and Denver, and for the selected locations the average yearly cost savings per building is found to be on-the-order of $700. Overall, the OHP-HRV shows potential in effectively reducing energy consumption and the operational cost of air handling units in buildings.

  11. Dynamic target high pressure control of a VRF system for heating energy savings

    International Nuclear Information System (INIS)

    Yun, Geun Young; Lee, Je Hyeon; Kim, Inhan

    2017-01-01

    Highlights: • We developed the dynamic target high pressure control of a VRF system. • We created the VRF control model using the EnergyPlus runtime language. • Multicalorimeter experimental results indicate that the energy efficiency improved by 21%. • EnergyPlus simulations demonstrate that the annual heating energy consumption was lowered by 22%. - Abstract: Variable refrigerant flow (VRF) systems are widely used because of their ability to provide individualized comfort control with energy-saving potential. This study develops load responsive high pressure control of a VRF system with the aim of reducing the heating energy consumption of a VRF system under part load conditions. The developed control consists of two parts: one part that determines the level of heating load, and the other that assigns a target high pressure based on the level of heating load. In this way, the compressor speed can be accurately matched to heating load, which improves the energy performance of the VRF system. A series of multicalorimeter experiments revealed that the heating capacity of the VRF system varied by 45% by modulating the target high pressure and that its efficiency was enhanced by 21% by changing the high pressure from 30 kgf/cm"2 to 25 kgf/cm"2. To evaluate the annual heating energy performance of the VRF system with the developed control, a custom computer code was developed to implement the developed control using a programming language called EnergyPlus Runtime Language. Simulation outcomes showed that the annual heating energy consumption of a medium-size office building was reduced by 22% when the developed control was applied.

  12. Solution microcalorimeter for measuring heats of solution of radioactive elements and compounds

    International Nuclear Information System (INIS)

    Raschella, D.L.

    1978-12-01

    The microcalorimeter vessel is constructed of tantalum metal, with a nominal volume of 5 cm 3 . Its energy equivalent is 24 J K -1 when containing 5 cm 3 H 2 O. The thermal leakage modulus is 0.010 min -1 . A thermistor is employed as the temperature sensor. The operating sensitivity is about 1 x 10 -5 K (300 μJ). The performance of the calorimetry system was tested using tris(hydroxymethyl)aminomethane (TRIS) and magnesium metal. The results of the TRIS experiments, at a concentration of 1 g dm -3 in 0.1 N HCl at 298 K, yielded a heat of solution of -29.606 +- 0.063 kJ mol -1 . The magnesium experiments, in 1 N HCl at 298 K, gave a heat of solution of -465.965 +- 1.136 kJ mol -1 . The heat of solution of curium-248 metal in 1 N HCl at 298 K was measured. The experiments, which should not be considered definitive, yielded a heat of solution of -606.4 +- 1.8 kJ mol -1 . A single measurement in 6 N HCl gave a heat of solution of -602.3 kJ mol -1 . From these results the heat of formation of Cm 3+ /sub (aq)/ is calculated to be -607.2 +- 2.5 kJ mol -1

  13. The role of district heating in future renewable energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Möller, Bernd; Mathiesen, Brian Vad

    2010-01-01

    Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted...... to 100 per cent Renewable Energy Sources (RES) in the year 2060 including reductions in space heating demands by 75 per cent. By use of a detailed energy system analysis of the complete national energy system, the consequences in relation to fuel demand, CO2 emissions and cost are calculated for various...... as in a potential future system based 100 per cent on renewable energy....

  14. Study of thermal energy storage using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  15. Case Studies in Low-Energy District Heating Systems: Determination of Dimensioning Methods for Planning the Future Heating Infrastructure

    DEFF Research Database (Denmark)

    Tol, Hakan; Nielsen, Susanne Balslev; Svendsen, Svend

    suggests a plan for an energy efficient District Heating (DH) system with low operating temperatures, such as 55°C supply and 25°C return; connected to low-energy buildings. Different case studies referring to typical DH planning situations could show the rational basis for the integrated planning...... of the future’s sustainable and energy efficient heating infrastructure. In this paper, a case study which focuses on dimensioning method of piping network of low-energy DH system in a new settlement, located in Roskilde Municipality, Denmark, is presented. In addition to the developed dimensioning method......, results about the optimal network layout and substation type for low-energy DH systems are also pointed out regarding to this case study. A second case study, included in this paper, focuses on technical and economical aspects of replacing natural gas heating system to low-energy DH system in an existing...

  16. Renewable energies heat act and government grants in Germany

    International Nuclear Information System (INIS)

    Nast, M.

    2010-01-01

    In Germany renewable energies in the heat market are promoted by the Renewable Energies Heat Act (EEWaermeG) and by government grants. Ultimately, these two instruments are not only about short-term market success, but rather about the perspectives of climate protection and resource conservation. The focus of this report is therefore on the long-term significance of the current design of government grants and EEWaermeG. We will introduce and discuss the quantitative goals and structural changes strived for as well as - on a slightly shorter time horizon - the quality assurance regulations which must accompany the steady and stable growth of renewable energies. In the process, we will elaborate in particular on heat pumps, which have recently been added to the government support programme, along with solar collectors. Some explanations regarding the structural relationships between EEWaermeG and government grants round off this contribution. (author)

  17. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  18. Optimal dimensioning of low-energy district heating networks with operational planning

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    in design stage resulted in satisfaction of heat demand of the house in low temperature operation. In this paper the operational planning of the low-energy DH systems was investigated to reduce the dimensions of the distribution network with consideration given both to current high-heat and future low......-heat demand situations. The operational planning was based on boosting (increasing) the supply temperature at peak-demand situations which occur rarely over a year period. Hence optimal pipe dimensions of low-energy DH systems were investigated based on the dynamic response of in-house heating systems...... of operational planning in comparison to DH network dimensioned according to high heat demand situation....

  19. An Assessment of Envelope Measures in Mild Climate Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Energy end-uses and interior comfort conditions have been monitored in 11 Deep Energy Retrofits (DERs) in a mild marine climate. Two broad categories of DER envelope were identified: first, bringing homes up to current code levels of insulation and airtightness, and second, enhanced retrofits that go beyond these code requirements. The efficacy of envelope measures in DERs was difficult to determine, due to the intermingled effects of enclosure improvements, HVAC system upgrades and changes in interior comfort conditions. While energy reductions in these project homes could not be assigned to specific improvements, the combined effects of changes in enclosure, HVAC system and comfort led to average heating energy reductions of 76percent (12,937 kWh) in the five DERs with pre-retrofit data, or 80percent (5.9 kWh/ft2) when normalized by floor area. Overall, net-site energy reductions averaged 58percent (15,966 kWh; n=5), and DERs with code-style envelopes achieved average net-site energy reductions of 65percent (18,923 kWh; n=4). In some homes, the heating energy reductions were actually larger than the whole house reductions that were achieved, which suggests that substantial additional energy uses were added to the home during the retrofit that offset some heating savings. Heating system operation and energy use was shown to vary inconsistently with outdoor conditions, suggesting that most DERs were not thermostatically controlled and that occupants were engaged in managing the indoor environmental conditions. Indoor temperatures maintained in these DERs were highly variable, and no project home consistently provided conditions within the ASHRAE Standard 55-2010 heating season comfort zone. Thermal comfort and heating system operation had a large impact on performance and were found to depend upon the occupant activities, so DERs should be designed with the occupants needs and patterns of consumption in mind. Beyond-code building envelopes were not found to be

  20. On energy optimisation in multipurpose batch plants using heat storage

    CSIR Research Space (South Africa)

    Majozi, T

    2010-10-01

    Full Text Available time interval. Indirect heat integration makes use of a heat transfer fluid for storing energy and allows heat integration of processes regardless of the time interval. This is possible as long as the source process takes place before the sink process...

  1. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    International Nuclear Information System (INIS)

    Harbour, J.; Williams, V.

    2008-01-01

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  2. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  3. Study on the Optimizing Operation of Exhaust Air Heat Recovery and Solar Energy Combined Thermal Compensation System for Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available This study proposed an exhaust air heat recovery and solar energy combined thermal compensation system (ESTC for ground-coupled heat pumps. Based on the prediction of the next day’s exhaust air temperature and solar irradiance, an optimized thermal compensation (OTC method was developed in this study as well, in which the exhaust air heat recovery compensator and solar energy compensator in the ESTC system run at high efficiency throughout various times of day. Moreover, a modified solar term similar days group (STSDG method was proposed to improve the accuracy of solar irradiance prediction in hazy weather. This modified STSDG method was based on air quality forecast and AQI (air quality index correction factors. Through analyzing the operating parameters and the simulation results of a case study, the ESTC system proved to have good performance and high efficiency in eliminating the heat imbalance by using the OTC method. The thermal compensation quantity per unit energy consumption (TEC of ESTC under the proposed method was 1.25 times as high as that under the traditional operation method. The modified STSDG method also exhibited high accuracy. For the accumulated solar irradiance of the four highest daily radiation hours, the monthly mean absolute percentage error (MAPE between the predicted values and the measured values was 6.35%.

  4. Measurement of the energy stored in alkalihalogenids by radiation defects

    International Nuclear Information System (INIS)

    Schrey, P.

    1976-01-01

    The energy stored in alkali-halogen crystals after X-ray irradiation is studied at 11 K. Using a heat flux calorimeter designed especially for this experiment, single crystals are irradiated and the energy release is recorded as the temperature is increased proportional to time from 10 K to 50 K. The energy release spectra are compared with relevant optical measurements and thus a relation between energy release and tempering of point defects is established. The energy release peaks can be assigned definitly to tempering stages of the Frenkel pairs. For explanation a simple model is proposed. (orig./HPOE) [de

  5. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  6. Adaptation measures for climate change and the urban heat island in Japan's built environment

    International Nuclear Information System (INIS)

    Shimoda, Y.

    2003-01-01

    Climate change scenarios are discussed for Japan with clear implications drawn for the built environment in terms of increased temperatures of 4-5 o C, rising sea levels and subterranean water tables. Research on the impacts and adaptation measures for global warming in Japan is reviewed. One of the most significant impacts of climate change in Japan will exacerbate the existing heat island phenomenon in cities by absorbing increased solar radiation. This will lead to further increases in temperatures in an urban microclimate with negative implications for energy and water consumption, human health and discomfort, and local ecosystems. The current urban heat island phenomenon and its impacts are described. The relationships between climate change and urban heat island impacts are discussed. Potential adaptation measures to those impacts are also discussed and proposed. (author)

  7. Environmental Aspects as Assessment Criteria in Municipal Heat Energy Decisions - Case of Eno Energy Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Puhakka, Asko [North Karelia Univ. of Applied Sciences, Joensuu (Finland)

    2006-07-15

    The aim of this paper is to provide information whether it is possible to consider the sustainable development perspectives in the decision making of the district energy decision. The new EU-directives concerning public procurements allow the use of environmental aspects as selection criteria. The focus here is on small-scale district heating systems and their fuel-supply chains. The comparable fuels included the analysis are forest chips, heavy fuel oil, light fuel oil and peat. The paper focuses to the concept of the sustainable development and establishes the indicators for ecological-, social- and economical aspects of the district heating. The indicators are utilized in the case study on the Eno Energy Cooperative. The equivalent CO{sub 2} emissions from the production and the combustion of the fuel, the employment impacts of the fuel production and the formation of the price of energy for the consumers are considered. After presenting the sustainable development indicators in the case of Eno Energy Cooperative, the investment models of heat entrepreneurship business are discussed. Finally, we also raise an attention into important aspects to be considered when establishing a local district heating scheme. The indicators used in this presentation show that the use of forest chips in energy production has positive effect through the reduced greenhouse gases. The use of wood in energy production also provides employment opportunities and is more favourable to consumers, because of the steady fuel price when compared to other alternative fuels.

  8. Nuclear heating measurements by in-pile calorimetry: prospective works for a microsensor design

    Energy Technology Data Exchange (ETDEWEB)

    Reynard-Carette, C.; Carette, M.; Aguir, K.; Bendahan, M.; Fiorido, T. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 (France); Barthes, M.; Lanzetta, F.; Layes, G.; Vives, S. [FEMTO-ST, UMR 6174, Departement ENERGIE, Universite de Franche-Comte, 90000, Belfort (France)

    2015-07-01

    Since 2009 works have been performed in the framework of joint research programs between CEA and Aix-Marseille University. The main aim of these programs is to design and develop in-pile instrumentations, advanced calibration procedure and accurate measurement methods in particular for the new Material Testing Reactor (MTR) under construction in the South of France: Jules Horowitz Reactor (JHR). One major sensor is a specific radiometric calorimeter, which was studied out-of-pile from a thermal point of view and in-pile during irradiation campaigns. This sensor type is dedicated to measurements of nuclear heating (energy deposition rate per mass unit induced by interactions between nuclear rays and matter) inside experimental channels of MTRs. This kind of in-pile calorimeter corresponds to heat flux calorimeter exchanging with the external cooling fluid. This thermal running mode allows the establishment of steady thermal conditions inside the sensor to carry out online continuous measurements inside the reactor (core or reflector). Two main types of calorimeters exist. The first type consists of a single cell calorimeter. It is divided into a sample of material to be tested and a jacket instrumented with two thermocouples or a single thermocouple (Gamma Thermometer). The second, called a differential calorimeter, is composed of two superposed twin cells (a measurement cell containing a sample of material, and a reference cell to remove the heating of the cell body) instrumented with four thermocouples and two electrical heaters. Contrary to a single-cell calorimeter, a differential calorimeter allows the compensation of the parasite nuclear heating of the sensor body or jacket. Moreover, it possesses interesting advantages: thanks to the heaters embedded in the cells, three different measurement methods can be applied during irradiations to quantify nuclear heating. The first one is based on the use of out-of-pile calibration curves obtained by generating a heat

  9. Simultaneousness of room heating and ventilation air heating

    International Nuclear Information System (INIS)

    Mathisen, Hans Martin

    2006-01-01

    The report is part of NTNU-SINTEF's Smart Buildings program, Smart Energy Efficient Buildings (2002-2006), subprogram 3.1 Heating, ventilation and cooling systems. An important part of this subprogram is the development and implementation of heating distribution systems with low return temperature. A comparison has been made of the simultaneousness of room heating and ventilation air heating in six buildings. Existing measuring data with hourly measurements of effect requirements for the different purposes have been employed. Based on the measuring data the relation between the requirements for room heating and ventilation is estimated. A 'fictitious' return temperature has also been estimated. The result shows a significant variation between the buildings. For all there are short periods where the efficiency need for room heating and ventilation is equal (ml)

  10. Solar/Geothermal Saves Energy in Heating and Cooling of Greenhouses

    Science.gov (United States)

    Sanders, Matthew; Thompson, Mark; Sikorski, Yuri

    2010-04-01

    The steady increase in world population and problems associated with conventional agricultural practices demand changes in food production methods and capabilities. Locally grown food minimizes the transportation costs and gas emissions responsible for Global Warming. Greenhouses have the potential to be extremely ecologically friendly by greatly increasing yields per year and facilitating reduced pesticide use. Globally, there are 2.5 million acres of greenhouse cover, including 30,640 acres in North America. In Europe, greenhouses consume 10% of the total energy in agriculture. Most of that energy is utilized for heating. Heating and cooling amount to 35% of greenhouse production costs. This high percentage value can be partially attributed to currently poor insulation values. In moderate-to-cold climate zones, it can take up to 2,500 gallons of propane, currently costing around 5,000, to keep a 2,000 sq. ft. greenhouse producing all winter. Around 350 tons of CO2 per acre per year are released from these structures, contributing to global climate change. Reducing the energy needs of a greenhouse is the first step in saving money and the environment. Therefore, an efficient and environmentally friendly heating and cooling system selection is also crucial. After selecting appropriate energy sources, the next major concern in a greenhouse would be heat loss. Consequently, it is critically important to understand factors contributing to heat loss.

  11. Heat pump for comfort, with added energy savings

    NARCIS (Netherlands)

    Cauberg, H.; Van de Dobbelsteen, A.; Van der Spoel, W.; Van de Graaf, A.

    2005-01-01

    The high-efficiency central heating boiler is about to reach the limits of its potential, so innovative insulation and other energy efficiency solutions are required, even though energy consumption in the Netherlands per household has dropped by 70% since 1986. Now that houses and offices are being

  12. Heat pumps as a tool for energy recovery from mining wastes

    Energy Technology Data Exchange (ETDEWEB)

    Banks, D.; Skarphagen, H.; Wiltshire, R.; Jessop, C. [Holymoor Consultancy, Chesterfield (United Kingdom)

    2004-10-22

    The article explains the principles of open-loop and closed-loop heat pumps and discusses the use of mine water as a source for ground heat. The use of mine water for space heating or cooling purposes has been demonstrated to be feasible and economic in applications in Scotland, Canada, Norway and the USA. Mine water is an attractive energy resource due to: (1) the high water storage and water flux in mine workings, representing a huge renewable enthalpy reservoir; (2) the possibility of re-branding a potentially polluting environmental liability as a 'green' energy resource; and (3) the development of many mine sites as commercial/industrial parks with large space heating/cooling requirements. The exothermic nature of the pyrite oxidation reaction implies added benefits if closed-loop systems can harness the chemical energy released in mine-waste tips. An appreciation of geochemistry also assists in identifying and solving possible problems with precipitation reactions occurring in heat pump systems. 51 refs., 4 figs., 4 tabs.

  13. Inventory of existing heat pump projects and the use of solar energy for heat pumps in the Dutch house construction sector

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the title inventory is to learn from the experiences with heat pump projects in the Netherlands. Descriptions are given of practical experiences with heat pump applications in the last 15 years in the housing sector. Possible and feasible heat pump system concepts are analyzed and energy balances and energy consumption are calculated. Special attention is paid to the use of solar energy in combination with electric (compression) heat pumps. One of the most important bottlenecks is the method and availability of heat extraction: the choice for the different options is determined by investment costs, permission, regulations, and local conditions. 14 refs., 4 appendices

  14. Model-based energy performance assessment of the world largest underground seasonal thermal energy storage in a pilot district heating system in Chifeng City

    NARCIS (Netherlands)

    Xu, L.; Torrens Galdiz, J.I.; Guo, F.; Yang, X.; Hensen, J.L.M.

    2017-01-01

    District heating systems play an important role in supporting energy transition by using and storing energy delivered by renewable and other low-grade energy sources such as industrial waste heat. However, this low-grade heat is not always able to satisfy the heating demand, including space heating

  15. 76 FR 43941 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Science.gov (United States)

    2011-07-22

    ... included the HPBA membership directory, Air-Conditioning, Heating, and Refrigeration Institute (AHRI.... Summary of the Proposed Rule II. History of the Energy Conservation Standards Rulemaking and Current... notice. DOE's rationale is presented in further detail immediately below. II. History of the Energy...

  16. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  17. An iterative procedure for estimating areally averaged heat flux using planetary boundary layer mixed layer height and locally measured heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R. L.; Gao, W.; Lesht, B. M.

    2000-04-04

    Measurements at the central facility of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) are intended to verify, improve, and develop parameterizations in radiative flux models that are subsequently used in General Circulation Models (GCMs). The reliability of this approach depends upon the representativeness of the local measurements at the central facility for the site as a whole or on how these measurements can be interpreted so as to accurately represent increasingly large scales. The variation of surface energy budget terms over the SGP CART site is extremely large. Surface layer measurements of the sensible heat flux (H) often vary by a factor of 2 or more at the CART site (Coulter et al. 1996). The Planetary Boundary Layer (PBL) effectively integrates the local inputs across large scales; because the mixed layer height (h) is principally driven by H, it can, in principal, be used for estimates of surface heat flux over scales on the order of tens of kilometers. By combining measurements of h from radiosondes or radar wind profiles with a one-dimensional model of mixed layer height, they are investigating the ability of diagnosing large-scale heat fluxes. The authors have developed a procedure using the model described by Boers et al. (1984) to investigate the effect of changes in surface sensible heat flux on the mixed layer height. The objective of the study is to invert the sense of the model.

  18. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2016-01-01

    of Sustainable Energy Planning and Management. The editorial and the volume presents work on district heating system scenarios in Austria, grid optimisation using genetic algorithms and finally design of energy scenarios for the Italian Alpine town Bressanone-Brixen from a smart energy approach. © 2016, Aalborg...

  19. Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient, Null-Point Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of the heat-transfer rate or the heat flux to the surface of a solid body (test sample) using the measured transient temperature rise of a thermocouple located at the null point of a calorimeter that is installed in the body and is configured to simulate a semi-infinite solid. By definition the null point is a unique position on the axial centerline of a disturbed body which experiences the same transient temperature history as that on the surface of a solid body in the absence of the physical disturbance (hole) for the same heat-flux input. 1.2 Null-point calorimeters have been used to measure high convective or radiant heat-transfer rates to bodies immersed in both flowing and static environments of air, nitrogen, carbon dioxide, helium, hydrogen, and mixtures of these and other gases. Flow velocities have ranged from zero (static) through subsonic to hypersonic, total flow enthalpies from 1.16 to greater than 4.65 × 101 MJ/kg (5 × 102 to greater than 2 × 104 ...

  20. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  1. Changing the energy climate: clean and green heat from grass biofuel pellets

    International Nuclear Information System (INIS)

    Jannasch, R.; Samson, R.; DeMaio, A.; Adams, T.; Ho Lem, C.

    2001-01-01

    Uncertain energy supplies and international agreements to reduce greenhouse gas (GHG) emissions have created unique opportunities for biofuel development. Pelleted fuels from warm season grasses such as switchgrass (Panicum virgatum) can be grown for $3-4/GigaJoule (GJ) with only minor emissions of CO 2 . Using close-coupled gasifer combustion technology, switchgrass fuel pellets emit 86%, 91%, 71% and 89% less CO 2 than electricity, heating oil, natural gas and propane, respectively. Every 100 ha of switchgrass converted into pellet form and used to displace fossil fuel for space-heating prevents the emission of 1000 tonnes of CO 2 . Heating an average Ontario house with a 90GJ heat demand costs $1213 with switchgrass pellets compared to $2234, $1664, $882 and $3251 with electricity, heating oil, natural gas and propane, respectively. An estimated 23.4 million acres of agricultural land in Canada could potentially be converted to perennial grass biofuel production. The depressed farm sector would benefit economically from energy farming. Low-grade heat energy derived from grass pellets could displace some of the 30,000 GigaWatt Hours of electricity currently used for home heating in Quebec, Ontario and Manitoba. Surplus electricity could be exported or used to replace nuclear or coal burning plants. Contrary to prevailing beliefs that reducing GHG emissions will raise societal energy costs, pelletized grass biofuels could provide consumers with less expensive and more GHG-friendly heating options than most fossil energy sources. If the political support and direction exist to implement the Kyoto Protocol as intended, grass pellets could well become a heating fuel of choice in North America. (author)

  2. Radiant heat exchange measurements for Tore Supra

    International Nuclear Information System (INIS)

    Chatain, D.; Disdier, F.; Gauthier, A.; Raffin, M.; Renaud, M.

    1984-03-01

    In order to minimize the energy consumption of the low temperature cryogenic system connected to the superconducting magnet of TORE-SUPRA, heat exchange from thermal radiation between the vacuum vessels and the thermal shields has been studied. Accordingly large scale cold and hot walls of T.S. have been simulated in a model with reduced dimensions. In this model, the experiment consists in the measurement of the thermal radiated power between two concentric cylindrical surfaces of stainless steel under vacuum conditions. The temperature of the external cylinder was kept constant at 80 K. The internal cylinder was bakeable up to 250 0 C. Various surface treatments were applied on the two cylinders (mechanical polishing and metal deposition of Al, Ag, Ni) [fr

  3. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  4. Unutilized energy utilizing systems. ; Power and levelling measures and unutilized energies. Miriyo energy katsuyo system. ; Denryoku fuka heijunka taisaku to miriyo energy

    Energy Technology Data Exchange (ETDEWEB)

    Kuromoto, E. (The Tokyo Electric Power Co. Inc., Tokyo (Japan))

    1993-02-12

    This paper explains quantitatively performance of heat storage tanks contributing largely to levelling power loads, and promoting and spreading more effective use of unutilized energies. A model case was used to compare differences in effectiveness of unutilized energy utilization with and without use of heat storage tanks. The heat demand used was a value in a day with a peak room cooling demand, and a heat supply system using water heat source heat pumps that utilize sewage treated water was used to manufacture cold water. As a result, the effective utilization rate of unutilized energy was increased to about 1.3 times when heat storage tanks were used. Effectiveness of a heat storage tank comes from its capability that excess amount of cold water manufactured during nighttime when heat demand falls by utilizing sewage treated water is stored in the heat storage tank, and the stored cold water can be supplied being mixed with cold water manufactured during daytime when heat demand rises sharply in daytime. Because sewage treated water has its annual temperature difference stabilized at about 10[degree]C, a heat pump utilizing the sewage treated water can reduce power required to produce heat of 1 Gcal by about 40% during room heating and about 15% during room cooling over the heating tower type heat pump. 8 figs., 1 tab.

  5. Experimental investigation of an active magnetic regenerative heat circulator applied to self-heat recuperation technology

    International Nuclear Information System (INIS)

    Kotani, Yui; Kansha, Yasuki; Ishizuka, Masanori; Tsutsumi, Atsushi

    2014-01-01

    An experimental investigation into an active magnetic regenerative (AMR) heat circulator based on self-heat recuperation technology, was conducted to evaluate its energy saving potential in heat circulation. In an AMR heat circulator, magnetocaloric effect is applied to recuperate the heat exergy of the process fluid. The recuperated heat can be reused to heat the feed process fluid and realize self-heat recuperation. In this paper, AMR heat circulator has newly been constructed to determine the amount of heat circulated when applied to self-heat recuperation and the energy consumption of the heat circulator. Gadolinium and water was used as the magnetocaloric working material and the process fluid, respectively. The heat circulated amount was determined by measuring the temperature of the process fluid and gadolinium. The net work input for heat circulation was obtained from the magnetizing and demagnetizing forces and the distance travelled by the magnetocaloric bed. The results were compared with the minimum work input needed for heat circulation derived from exergy loss during heat exchange. It was seen that the experimentally obtained value was close to the minimum work input needed for heat circulation. - Highlights: • AMR heat circulator has newly been constructed for experimental evaluation. • Heat circulation in the vicinity of Curie temperature was observed. • Energy consumption of an AMR heat circulator has been measured. • Energy saving for processes near Curie temperature of working material was seen

  6. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  7. Measurement of inequality using household energy consumption data in rural China

    Science.gov (United States)

    Wu, Shimei; Zheng, Xinye; Wei, Chu

    2017-10-01

    Measuring inequality can be challenging due to the limitations of using household income or expenditure data. Because actual energy consumption can be measured more easily and accurately and is relatively more stable, it may be a better measure of inequality. Here we use data on energy consumption for specific devices from a large nation-wide household survey (n = 3,404 rural households from 12 provinces) to assess inequality in rural China. We find that the overall inequality of energy consumption and expenditure varies greatly in terms of energy type, end-use demand, regions and climatic zones. Biomass, space heating and cooking, intraregional differences, and climatic zones characterized as cold or hot summer/cold winter contribute the most to total inequality for each indicator, respectively. The results suggest that the expansion of infrastructure does not accompany alleviation of energy inequality, and that energy affordability should be improved through income growth and targeted safety-net programmes instead of energy subsidies.

  8. Diamagnetic measurement of JFT-2 plasma heated by neutral beam injection

    International Nuclear Information System (INIS)

    Maeno, Masaki; Sengoku, Seio; Yamamoto, Shin; Suzuki, Norio; Yamauchi, Toshihiko; Kawashima, Hisato; Miura, Yukitoshi

    1984-01-01

    A neutral beam was injected into the plasma in the JFT-2 tokamak, and the poloidal beta value βsub(p) of the plasma was determined by a diamagnetic method in which the change in the magnetic flux due to the plasma was obtained by measuring the very small perturbation of the current in the tokamak's toroidal field coil. The ratio of the perturbed to unperturbed currents in the coil was found to be (2-3) x 10 -4 . The poloidal beta value βsub(pd) determined by this method agrees within experimental error with that obtained from magnetic and energy profile analyses. βsub(pd) increases linearly with the total power Psub(net) deposited by the neutral beam in the plasma when Psub(net)=1.5 MW. The heating efficiency of the beam injection heating was found to be lower than that of Joule heating. (author)

  9. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  10. Reducing heat loss from the energy absorber of a solar collector

    Science.gov (United States)

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  11. Energy efficiency measures for offshore oil and gas platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter

    2016-01-01

    . They include: (i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphaseexpanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation around the compressors, (v) the exploitation of low-temperature heat from...... the gas cooling steps, (vi) the downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the powerplant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions...... and strategies. The benefits and practical limitations of each measure are discussed based on thermodynamic, economic and environmental factors. Signiffcant energy savings and reductions in CO2-emissions are depicted, reaching up to 15-20 %. However, they strongly differ from one facility to another, which...

  12. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz

    2017-01-01

    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  13. Measurement of condensation heat transfer coefficients in a steam chamber using a variable conductance heat pipe

    International Nuclear Information System (INIS)

    Robinson, J.A.; Windebank, S.R.

    1988-01-01

    Condensation heat transfer coefficients have been measured in a pressurised chamber containing a mixture of saturated steam and air. They were determined as a function of the air-steam ratio in nominally stagnant conditions. The effect of pressure is assessed and preliminary measurements with a forced convective component of velocity are presented. A novel measurement technique was adopted, namely to use a vertical heat pipe whose conductance could easily be varied. It transported heat from an evaporator located inside the chamber to a condenser section outside, at which the heat flow was measured. Heat flux at the evaporator could then be determined and a condensation heat transfer coefficient derived. The range of coefficients covered was from 150 W/m 2 0 K at high air-steam ratios to 20,000 W/m 2 0 K in pure steam. Results show that increasing either total pressure or velocity enhances condensation heat transfer over the range of air/steam ratios considered. (author)

  14. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    Directory of Open Access Journals (Sweden)

    Dongmin Yu

    2017-06-01

    Full Text Available Many combined heat and power (CHP units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity and heat loads are firstly used as sizing criteria in finding the best capacities of different types of CHP with the help of the maximum rectangle (MR method. Subsequently, the genetic algorithm (GA will be used to optimise the daily energy costs of the different cases. Then, heat and electricity loads are jointly considered for sizing different types of CHP and for optimising the daily energy costs through the GA method. The optimisation results show that the GA sizing method gives a higher average daily energy cost saving, which is 13% reduction compared to a building without installing CHP. However, to achieve this, there will be about 3% energy efficiency reduction and 7% input power to rated power ratio reduction compared to using the MR method and heat demand in sizing CHP.

  15. Energy efficiency policies and measures in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-01

    This report represents the national case study of Norway for the IEE-project {sup M}onitoring of EU and national energy efficiency targets (ODYSSEE-MURE 2010)'. The Norwegian part of the project is co-funded by Enova. The report presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. The database contains information on energy use in a detailed level of the industry, transport, household and service sectors and other energy use. lt also contains information on energy drivers like heated square meters in the households and services sectors, transported passenger-km and ton-km of gods, value added, production index, production volumes etc. Final energy consumption has increased from 195 TWh in 1990 lo 229 TWh in 2010 The last ten years the energy consumption has varied between 212I Wh (2009) and 229 TWh (2010) with an annual average of 221TfUh. The sector using most energy is the industry, but the share has decreased from 40 % in 1990 to 31 % in 2010. From 1990 to 2010 the growth rate has been highest in the transport sector. Half of the energy end-use was electricity in 20,10, 42 % was fossil fuels and 6 % was biomass. The electricity use has an annual increase of 0.8 % since 1990, but the last decade the annual increase is reduced to 0.14 %. The consumption of oil products has decreased in stationary end-use (heating) and increased in the transport sector. In ODYSSEE, an aggregate bottom-up energy efficiency index, ODEX, is calculated. This energy efficiency index aggregates the trends in the detailed bottom-up indicators in one single indicator. This ODEX has improved by 26 o/o from 1990 to 2010 or by 1.3 o/o per year. This means that energy efficiency policies and measures implemented since 1990 have contributed to a decrease in the energy use of 2010 of approximately 59 TWh. (Author)

  16. Energy saving by enhanced temperature measurement of stock materials of heat- and heat treatment process. Final report; Energieeinsparung durch verbesserte Nutzguttemperaturbestimmung bei Waerm- und Waermebehandlungsprozessen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ley, I.; Klima, R.

    1999-06-01

    The essential source of errors for stock temperature measurement in industrial furnaces is the not well enough known emissivity and the reflected radiation. The examined pyrometers turned out to be not precise enough especially in case of reflected radiation. Measures trying to compensate the reflected radiation by measuring it separately or shielding the pyrometer from reflected radiation did not show satisfactory results. The most important result of the project was the development and operational test of a thermoelectric measurement by a so-called thermocouple probe. This probe measures by a thermocouple which is positioned to have a very intensive radiation exchange with the surface of the stock. Thus it can measure the surface temperature almost independently from emissivity. The advantages of the thermocouple probe where shown by installations at a heat treating and a reheating furnace. Because of the continuous measurement the furnaces could be optimised for energy saving or better product quality. The thermocouple probe enables strict optimisation of model aided furnace control and leads to improved quality and energy savings. (orig.) [German] Die wesentlichen Fehlerquellen bei der Messung der Nutzgutoberflaechentemperatur sind der haeufig nicht genau genug bekannte Nutzgut-Emissionsgrad und die an der Nutzgutoberflaeche reflektierte Fremdstrahlung. Die untersuchten auf dem Markt befindlichen Pyrometer erwiesen sich bei vorhandener Fremdstrahlung in Oefen als nicht genau und verlaesslich genug. Sowohl Versuche zur Abschirmung der Fremdstrahlung wie auch zur separaten Messung und Beruecksichtigung der Fremdstrahlung liefern bei wechselnden Prozesszustaenden jedoch keine befriedigenden Ergebnisse. In dieser Arbeit wurde als wichtigstes Ergebnis ein thermoelektrisches Temperaturmessverfahren mittels einer sogenannten Thermoelementsonde entwickelt und betrieblich erprobt. Mit der Thermoelementsonde wird die Nutzgutoberflaechentemperatur mittels eines

  17. Streamlined energy-savings calculations for heat-island reduction strategies

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Konopacki, Steven J.

    2003-03-15

    We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2

  18. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    . Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept......Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  19. Solutions for Energy Efficient and Sustainable Heating of Ventilation Air: A Review

    Directory of Open Access Journals (Sweden)

    A. Žandeckis

    2015-10-01

    Full Text Available A high energy efficiency and sustainability standards defined by modern society and legislation requires solutions in the form of complex integrated systems. The scope of this work is to provide a review on technologies and methods for the heating of ventilation air as a key aspect for high energy and environmental performance of buildings located in a cold climate. The results of this work are more relevant in the buildings where space heating consumes a significant part of the energy balance of a building, and air exchange is arranged in an organized manner. A proper design and control strategy, heat recovery, the use of renewable energy sources, and waste heat are the main aspects which must be considered for efficient and sustainable ventilation. This work focuses on these aspects. Air conditioning is not in the scope of this study.

  20. Operational Planning of Low-Energy District Heating Systems Connected to Existing Buildings

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    . The response of the radiator heating systems at different levels of supply temperature was used to form the operational planning of the low-energy DH system, which determined the design parameters of the low-energy DH network in terms of overall mass flow requirement and the return temperature from...... the buildings. Since the existing buildings were considered to be renovated to low-energy class, the operational planning was simultaneously modelled for both present high-demand and future low-demand situations of the same case area.......This article focuses on low-energy District Heating (DH) systems operating in low-temperatures such as 55°C in terms of supply and 25°C in terms of return in connection with existing buildings. Since the heat loss from the network has a significant impact in case of supplying heat to low...

  1. Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network

    International Nuclear Information System (INIS)

    Laajalehto, Tatu; Kuosa, Maunu; Mäkilä, Tapio; Lampinen, Markku; Lahdelma, Risto

    2014-01-01

    Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat

  2. Bio energy heating plant heats municipal buildings in Nord-Odal; Bioenergisentral varmer kommunale bygg i Nord-Odal

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    When Nord-Odal planned to build a new nursing home, they wanted to find a more environmental friendly heating system than based on oil and electricity. Several energy consultants evaluated the task. But when all consultants concluded there would be no cost benefit in this task, local experts looked into it - and because they got a long term agreement, it was possible to finance a local bio energy heat plant. (AG)

  3. Annual energy performance of R744 and R410A heat pumping systems

    International Nuclear Information System (INIS)

    Jin, Zhequan; Eikevik, Trygve M.; Nekså, Petter; Hafner, Armin; Wang, Ruzhu

    2017-01-01

    Highlights: • Annual energy performance of R744 and R410A heat pumping systems is compared. • Several dynamic models of heat pumping systems are developed. • Annual energy efficiency of R744 hybrid ground-coupled heat pumping system. • The seasonal COPc and COPh of R744 hybrid system are 3.55 and 3.32. • The superiority of R744 system on the integration of two heat sinks is discussed. - Abstract: This work compares the annual energy performance of heat pumping systems using R744 and R410A as refrigerant. Focus is the annual energy efficiency of R744 hybrid ground-coupled heat pumping system. The hybrid system uses both ambient air and ground as heat sinks in the cooling mode. This is important to eliminate the underground heat accumulation phenomenon in warm climates. Several quasi-steady state models of heat pumping systems, using R744 and R410A, have been developed. Simulation results show that the annual COP_c and COP_h of an R744 hybrid system reaches 3.55 and 3.32, and its cooling performance is 42% better than for a R744 ASHP and 23% better than for a R744 GCHP system. The annual energy performance factor of a R410A ASHP system is better than for a R744 hybrid system, but the COP_c for the R410A system will be lower when the ambient temperature is higher than 30 °C.

  4. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...... a missing link in the development. In this paper is demonstrated how a link between a dynamic Building Simulation Programme (BSP) and a simulation program for District Heating (DH) networks can give important information during the design phase. By using a BSP it is possible to analyze the influence...... of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand...

  5. Solar heating and cooling demonstration project at the Florida solar energy center

    Science.gov (United States)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  6. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet......Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  7. Monitoring of a heat pump to energy recovery and process temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Kaneps, M

    1986-03-01

    This reports on the development and implementation of a heat pump monitoring program detailing the application and adaptation of standard commercial heat pump equipment for the extraction and use of themal energy from ocean source seawater along Canada's Atlantic Coast. The specific application was a lobster holding facility owned by Clearwater Lobsters Limited of Halifax, Nova Scotia. Examination of the daata indicated the heat pump system could extract and use thermal energy at or near initial design conditions. The lobsters were able to be held at consistently lower temperatures which improved product quality and reduced shrinkage. Influx of seawater debris, marine growth, and dryland pound heat gain were indentified as the only major problems. The information gathered from the monitoring study indicated that heat pump systems can be adapted to extract and utilize thermal energy from ocean source seawater. 50 figs., 123 tabs.

  8. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Johnson, Tim [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  9. Low-potencial Earth thermalEnergy Utilization in Heat Pump Systems

    Directory of Open Access Journals (Sweden)

    Marina Sidorová

    2006-10-01

    Full Text Available The underground in the first approx. 100 m is well suited for supply and storage of thermal energy. The climatic temperature change over the seasons is reduced to a steady temperature at 10-20 m. With further depth, the temperatures increase according to the geothermal gradient (average 3 °C for each 100 m of depth.Ground-source or geothermal heat pumps are a highly efficient, renewable energy technology for the space heating and cooling. This technology relies on the fact that, at a depth, the Earth has a relatively constant temperature, higher than that of air in winter and cooler than the air in summer. A geothermal heat pump (GHP can transfer heat stored in the Earth into a building during the winter, and transfer heat out of the building during the summer. Special geologic conditions, such as hot springs, are not needed for a successful application of GHP.

  10. Energy conservation. Purposeful regulation and control systems for gas infrared radiation heating

    Energy Technology Data Exchange (ETDEWEB)

    Reitsch, L [GoGaS Goch G.m.b.H. und Co., Dortmund (Germany, F.R.)

    1978-01-01

    Gas infrared radiators have been in use for a long time for heating large halls of trade and industrial buildings as well as sport centers. The success of this heating system is based mainly on considerably reduced energy consumption as against convective heating systems. However, the biggest energy savings can be achieved when heating systems of this kind are equipped with regulation and control systems which are adapted to the way the rooms are used. Solutions to problems are described and information is given for planning.

  11. USING REGIONAL RENEWABLE ENERGY RESOURSES FOR HEATING SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2017-02-01

    Full Text Available Purpose. The study analyzed the possibility and conditions for the effective operation of heating systems during the transition of the heat-generating capacity to biofuels energy. The straw of cereal crops, which are prevailing in Dnipro region, is used for this. The main purpose is scientific calculation of opportunities and cost of specific measures for such a transition. As an example it was taken the boiler-room of campus at Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan (DNURT that consumes natural gas. Methodology. The work analyses the legislative base of Ukraine, which promotes the using of renewable energy sources as fuel, as well as the incentive mechanisms for the development of this trend. The paper identifies opportunities of Prydniprovsk region to ensure straw supply for the boiler-room. Cost parameters of cargo transportation on the territory of Ukraine in 2016, which depend on the distance and the size of the trucks, are analysed. These indicators, as well as indicators related to its purchase, are considered together with energy potential of using the straw as fuel. Findings. With existing in Ukraine (as of 2016 the grain yielding capacity in the agriculture and cost indicators in the field of transportations, the transition of capacity share to biofuel is sufficiently profitable. The thermal power unit cost can be reduced fourfold. Originality. For the first time it is proposed to use the new integrated approaches to assess the cost of thermal power unit boiler with its transition to the use of renewable energy sources. The authors also proposed a new logistics delivery of these sources to the place of their application. From a technical and cost points of view it was determined the optimal order of capacity transfer for new renewable sources of energy in a given region depending on the structure of areas under crops and their productivity. Originality. The introduction of the

  12. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  13. Supplementary plasma heating studies in the Atomic Energy Commission France

    International Nuclear Information System (INIS)

    Consoli, T.

    1976-01-01

    The research on supplementary heating of toroidal plasma made in France at the Atomic Energy Commission and in the European Community are described (with special reference to the J.E.T. project) in the frame of the national programs. A non exhaustive description of the world effort in this topic is also presented: (neutral injection heating, TTMP (transit time magnetic pumping) heating, electron and ion cyclotron resonance, and lower hybrid resonance heating)

  14. The effects of heating temperatures and time on deformation energy and oil yield of sunflower bulk seeds in compression loading

    Science.gov (United States)

    Kabutey, A.; Herak, D.; Sigalingging, R.; Demirel, C.

    2018-02-01

    The deformation energy (J) and percentage oil yield (%) of sunflower bulk seeds under the influence of heat treatment temperatures and heating time were examined in compression test using the universal compression testing machine and vessel diameter of 60 mm with a plunger. The heat treatment temperatures were between 40 and 100 °C and the heating time at specific temperatures of 40 and 100 °C ranged from 15 to 75 minutes. The bulk sunflower seeds were measured at a pressing height of 60 mm and pressed at a maximum force of 100 kN and speed of 5 mm/min. Based on the compression results, the deformation energy and oil yield increased along with increasing heat treatment temperatures. The results were statistically significant (p 0.05).

  15. Measurements of radial profiles of ion cyclotron resonance heating on the tandem mirror experiment

    International Nuclear Information System (INIS)

    Falabella, S.

    1988-01-01

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawrence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). This analyzer indicates an increase in ion temperature from ∼20 eV before ICRH to ∼150 eV during ICRH, with ∼60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial integral of n i T i as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma potential is seen to vary from axially peaked, to nearly flat, as the plasma conditions varied over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U

  16. Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing

    International Nuclear Information System (INIS)

    Cuce, Erdem; Cuce, Pinar Mert; Young, Chin-Huai

    2016-01-01

    HISG (heat insulation solar glass) is a recently developed multi-functional glazing technology to mitigate energy consumption of buildings. HISG can generate electricity similar to conventional PV (photovoltaic) glazing products when exposed to sunlight, however it differs from them by having some extraordinary characteristic features such as thermal insulation, which is competitive with Argon filled triple glazed windows, acoustic comfort, remarkable energy saving potential and self-cleaning ability owing to TiO_2 nano coating. Within the scope of this research, latest results from laboratory and in-situ testing of HISG are presented in terms of its key role in mitigating heating and cooling demand of buildings as well as clean energy generation. Lighting and thermal comfort related parameters such as shading coefficient, UV, IR and visible light intensity are also investigated through the tests conducted in real operating conditions. It is achieved from the results that instant electricity generation of HISG is 16% higher than that of standard PV glazing owing to its nano layer reflective film. Shading coefficient of HISG is only 0.136, which provides almost 80% reduction in solar heat gain compared to ordinary glazing. Indoor air temperature measured from HISG test house in summer time is very close to the ambient temperature, whereas it is found to be 14.7 °C higher in ordinary glass test house due to greenhouse effect. Annual heating and cooling demand tests indicate that HISG provides 38 and 48% energy saving in heating and cooling season, respectively. - Highlights: • Nano layer reflective film of HISG enables 16% more power generation. • 80% of undesired outdoor thermal radiation is prevented by HISG. • HISG has a 100% UV blocking rate. • The shading coefficient of HISG is 0.136. • HISG provides 38 and 48% energy saving in heating and cooling season.

  17. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump

    International Nuclear Information System (INIS)

    Dong Jiankai; Deng Shiming; Jiang Yiqiang; Xia Liang; Yao Yang

    2012-01-01

    For a space heating air source heat pump (ASHP) unit, when its outdoor coil surface temperature is below both the air dew point temperature and the freezing point of water, frost will form on its outdoor coil surface. Frosting affects its operational performance and energy efficiency. Therefore, periodic defrosting is necessary. Currently, the most widely used standard defrosting method for ASHP units is reverse cycle defrost. The energy that should have been used for space heating is used to melt frost, vaporize the melted frost off outdoor coil surface and heat ambient air during defrosting. It is therefore necessary to study the sources of heat supplies and the end-uses of the heat supplied during a reverse cycle defrost operation. In this paper, firstly, an experimental setup is described and experimental procedures are detailed. This is followed by reporting the experimental results and the evaluation of defrosting efficiency for the experimental ASHP unit. Finally, an evaluation of defrosting heat supplies and energy consumptions during a revere cycle defrost operation for the experimental ASHP unit is presented. The experimental and evaluation results indicated that the heat supply from indoor air contributed to 71.8% of the total heat supplied for defrosting and 59.4% of the supplied energy was used for melting frost. The maximum defrosting efficiency could be up to 60.1%. - Highlights: ► Heat supply and consumption during reverse cycle defrost was experimentally studied. ► Indoor air contributed to >70% of total heat supply when indoor fan was turned on. ► ∼60% of the supplied energy was used for melting frost. ► Alternate heat supply other than indoor air should be explored.

  18. Investigation of energy confinement during ICRF heating on EAST

    Science.gov (United States)

    Yang, Y. Q.; Zhang, X. J.; Zhao, Y. P.; Qin, C. M.; Cheng, Y.; Mao, Y. Z.; Yang, H.; Yuan, S.; Wang, L.; Ju, S. Q.; Chen, G.; Zhang, J. H.; Wang, J. H.; Chen, Z.; Wan, B. N.; Gong, X. Z.; Qian, J. P.; Zhang, T.; Li, J. G.; Song, Y. T.; Lin, Y.; Taylor, G.; Hosea, J. C.; Perkins, R. J.; Wukitch, S.; Noterdaeme, J. M.; Kumazawa, R.; Seki, T.; Saito, K.; Kasahara, H.

    2017-09-01

    A summary is given on recent experiments in L-mode with ion cyclotron resonance heating (ICRH) of hydrogen minority in deuterium plasmas on EAST. Experiments show a degradation of confinement with increasing power. Furthermore, the energy confinement time increases with plasma current and magnetic field, whereas it is insensitive to line averaged density. Minority heating has been found to be efficient, and parameters were optimized to maximize its efficiency. ICRH in lower hybrid waves heated plasma was also investigated.

  19. FY 1986 report on research and development of super heat pump energy accumulation system. R and D of total systems (Surveys on heat sources and heat-utilization systems); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. Total system no kenkyu (netsugen netsu riyokei no chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The heat source systems and heat utilization systems are surveyed and studied for the super heat pump energy accumulation systems, in order to clarify effective application and application types of these systems in the domestic and industrial energy areas. These works include surveys on literature, both domestic and foreign, surveys on actual situations of the related facilities and plants and on-the-spot hearing, and numerical simulation to establish the basic data for some items. The FY 1986 program includes the literature surveys on heat source and heat utilization systems and on-the-spot hearing for the domestic energy areas, reviews of heat demand variation patterns, and studies on methodology for applying the data to the areas not investigated so far. For the industrial areas to which super heat pumps are potentially applicable, the chemical, refining, food manufacturing and plastic manufacturing/processing industries are selected, to study problems related to system structures and conditions of the heat pump systems in these areas. (NEDO)

  20. Small-scale automated biomass energy heating systems: a viable option for remote Canadian communities?

    Energy Technology Data Exchange (ETDEWEB)

    McCallum, B. [Canadian Forest Service, Ottawa, ON (Canada). Industry, Economics and Programs Branch

    1997-12-31

    The potential benefits of wood energy (forest biomass) for space heating in Canada`s remote communities was discussed. Diesel fuel and heating oil must be transported into these communities to produce electricity and to heat large public buildings. Below the treeline, roundwood is often used to heat private homes. The move toward environmentally sustainable development has focussed much attention on renewable energy technologies such as biomass energy, (i.e. any form of energy derived from plant or animal materials). Wood is the most readily available biomass fuel in remote communities. Woodchips and sawmill waste can be burned in automated biomass heating systems which provide a convenient way to use low-grade wood to heat large buildings or groups of buildings which would not be feasible to heat with roundwood. It was shown that one cord of spruce can produce 1.5 tonnes of woodchips to ultimately displace 300 litres of heating oil. A description of a small-commercial and small-industrial biomass system was presented. The benefits of biomass were described as: (1) direct savings compared to high-cost oil heat, (2) increased circulation of energy dollars inside the community, and (3) employment opportunities in harvesting, processing and operating biomass systems. A steady supply of good quality woodchips to the heating plant must be ensured. 1 ref., 3 figs.

  1. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  2. Evaluation of inductive heating energy of a PF insert coil conductor by the calorimetric method (Contract research)

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Nabara, Yoshihiro; Nunoya, Yoshihiko; Koizumi, Norikiyo; Okuno, Kiyoshi

    2009-02-01

    The PF Insert Coil is a single layer solenoid coil using a superconducting conductor designed for ITER, housed in a Poloidal field coil and installed in the bore of the CS Model Coil. A stability test of the conductor will be performed in a magnetic field generated by the CS Model Coil. In this test, the inductive heat of an inductive heater attached to the conductor will be applied to initiate a normal zone in the conductor. Since the conductor for the PF Insert Coil is a cable-in-conduit conductor, it is quite difficult to estimate inductive heating energy theoretically. Thus, the inductive heating energy is measured experimentally by the calorimetric method. The heating energy is in proportion to a constant multiplied by the integrated square of an applied sinusoidal current wave over the heating period. Experimental results show that the proportional constants of the conductor, cable, conduit and dummy conductor are 0.138 [J/A 2 s], 0.028 [J/A 2 s], 0.118 [J/A 2 s] and 0.009 [J/A 2 s], respectively. The first three denote not only the inductive heating but also the joule heating of the inductive heater. The final value denotes joule heating only. Therefore, subtracting the first three constants by the last one, the proportional constants of inductive heating generated in the conductor, cable and conduit are estimated to be 0.129 [J/A 2 s], 0.019 [J/A 2 s] and 0.109 [J/A 2 s], respectively. (author)

  3. Thermal diffusivity measurement of erythritol and numerical analysis of heat storage performance on a fin-type heat exchanger

    International Nuclear Information System (INIS)

    Zamengo, Massimiliano; Funada, Tomohiro; Morikawa, Junko

    2017-01-01

    Highlights: • Thermal diffusivity of Erythritol was measured by temperature wave method. • Thermal diffusivity was measured in function of temperature and during phase change. • Database of temperature-dependent thermal properties is used for numerical analysis. • Heat transfer and heat storage were analyzed in a fin-type heat exchanger. • Use of temperature-dependent properties in calculations lead to longer melting time. - Abstract: Temperature dependency of thermal diffusivity of erythritol was measured by temperature wave analysis (TWA) method. This modulating technique allowed measuring thermal diffusivity continuously, even during the phase transition solid-liquid. Together with specific heat capacity and specific enthalpy measured by differential scanning calorimetry, the values of measured properties were utilized in a bi-dimensional numerical model for analysis of heat transfer and heat storage performance. The geometry of the model is representative of a cross section of a fin-type heat exchanger, in which erythritol is filling the interspaces between fins. Time-dependent temperature change and heat storage performance were analyzed by considering the variation of thermophysical properties as a function of temperature. The numerical method can be utilized for a fast parametric analysis of heat transfer and heat storage performance into heat storage systems of phase-change materials and composites.

  4. A Scandinavian chemical wood pulp mill. Part 1. Energy audit aiming at efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Klugman, Sofia [Department of Technology and Building Environment, Gaevle University, SE-801 76 Gaevle (Sweden); Karlsson, Magnus; Moshfegh, Bahram [Department of Mechanical Engineering, Division of Energy Systems, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2007-03-15

    A Swedish wood-pulp mill is surveyed in terms of energy supply and use in order to determine the energy-saving potential. Conservation measures are of increasing interest to Swedish industry, as energy prices have continued to rise in recent years. The electricity price particularly increased after the deregulation of the Scandinavian electricity market in 1996. The deregulation expanded to all of the EU in July 2004, which may increase the Swedish electricity price further until it reaches the generally higher European price level. Furthermore, oil prices have increased and the emissions trading scheme for CO{sub 2} adds to the incentive to reduce oil consumption. The energy system at the surveyed pulp mill is described in terms of electricity and process heat production and use. The total energy-saving potential is estimated and some saving points are identified. The heat that today is wasted at the mill has been surveyed in order to find potential for heat integration or heat export. The result shows that the mill probably could become self-sufficient in electricity. Particularly important in that endeavour is updating old pumps. (author)

  5. Heat pump used in milk pasteurization: an energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ozyurt, O.; Comakli, O.; Yilmaz, M. [Ataturk Univ., Erzurum (Turkey). Dept. of Mechanical Engineering; Karsli, S. [Ataturk Univ., Erzurum (Turkey). Vocational School of Higher Education

    2004-07-01

    This study investigates the applicability of heat pumps to milk pasteurization for cheese production and to compare the results with classical pasteurization systems. The experiments are conducted in a liquid-to-liquid vapour compression heat pump system and a milk-to-milk plate heat exchanger is used as an economizer. The experiments are also conducted in a double jacket boiler system and a plate pasteurization system, which are classical milk pasteurization systems. The results for the three systems are compared and the advantages/disadvantages of using heat pump for milk pasteurization instead of classical systems are determined. It is found that the heat pump consumes less energy than the other two classical systems. (Author)

  6. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  7. Technology line and case analysis of heat metering and energy efficiency retrofit of existing residential buildings in Northern heating areas of China

    International Nuclear Information System (INIS)

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    The building area in northern heating areas accounting for 70% of the total land area in China is 6,500,000,000 m 2 . The average heating energy consumption in northern China is 100-200% times more than developed countries in the same latitude. This paper introduced firstly the heat metering and energy efficiency retrofit background of existing residential buildings in northern heating areas of China organized by mohurd and MOF, and then put forward the total principle and contents of retrofit. Through analyzing some retrofit cases in Germany, Poland and China, some technological experiences were summarized and finally a technology line suitable for heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China which involved retrofit for heat metering and temperature regulation of heating systems, heat balance of heat source and network, and building envelope was described to provide a systematic, scientific, technological guide for the retrofit projects of 0.15 billion m 2 in 'the Eleventh Five-Year Plan' period.

  8. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  9. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhen

    2018-01-01

    Full Text Available In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  10. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  11. Energy conservation measures adopted at Heavy Water Plant, Manuguru

    International Nuclear Information System (INIS)

    Gupta, R.V.; Venugopal, M.

    1997-01-01

    The importance of conservation of energy is well recognised all over the world as the world reserves of fossil fuels will eventually run out depending on the rate of their use. This paper deals with various energy conservation schemes adopted at Heavy Water Plant, Manuguru (HWPM). Most energy conservation measures offer large financial saving with very short pay back periods. This fact has been well recognised by the management of HWPM as well as Heavy Water Board and their wholehearted and enthusiastic approach to energy conservation and energy management yielded very good results in reducing the operating cost. The process of energy conservation is not a one time exercise. Persistent efforts are on to identify the areas like condition of heat exchangers, margins in control valves, steam and condensate leakages etc. for further reduction in energy consumption

  12. Research and development on super heat pump energy accumulation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This is the final report on research and development of super heat pump energy accumulation system, which has been carried out from FY 1985 to 1992. It describes outline of the research and development program, R and D results, final evaluation methodology, evaluation of the R and D, proposals for the commercialization, and so on. The super high performance compression heat pumps are technically evaluated for highly efficient type (for heating, and cooling and heating), high temperature type (utilizing high temperature heat source, and low temperature heat source), working fluids (alcohol-based and nonalcohol-based), stainless steel plate fin type heat exchanger, EHD heat exchanger, and so on. The other techniques evaluated include those for chemical heat storage, combined systems, plant simulation, and systemization. The evaluation works are also directed to the economic and environmental aspects. Finally, the R and D themes are proposed to leap over various hurdles, e.g., reliability and economic viability, for the eventual commercialization of the energy accumulation system. (NEDO)

  13. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  14. Optimization of a dual-fuel heating system utilizing an EMS a maintain persistence of measures

    International Nuclear Information System (INIS)

    Wolpert, J.S.; Wolpert, S.B.; Martin, G.

    1993-01-01

    An older small office building was subjected to a program substituting gas for electric heat to reduce energy cost and improve comfort for approximately one year and was permanently instituted, with the installation of an energy management system (EMS) the following year. This paper will present a description of the facility, its usage patterns, and the measures taken to introduce the fuel-switching program. The impacts on energy usage and cost as well as comfort will also be reported. This program was initiated by a preliminary audit of the facility conducted by the service contractor in conjunction with the area gas wholesaler. During the audit it was observed that the heating set points for the gas-fired equipment was kept fairly low. This was the result of the desire to keep the cooling set point low and the use of auto-changeover thermostats. The result of this was that the system utilized the gas heat to come up to 68-70 degrees with the majority of the zones then relying on their electric heat to bring temperatures into the 73-75 degrees range. In addition to impacting energy costs, this approach generated numerous comfort complaints. As a further electric penalty, the low cooling set point resulted in a heavy reliance on electric heat (reheat) all summer. The basis of the proposed strategy was to reduce the heavy usage of electric heat by making the building comfortable through reliance more heavily on gas heat. This was tested by raising the heating set points for the RTUS. The success of this approach, along with the comfort considerations and the desire for further savings, led to the installation of an EMS. This allowed further refinements of the control strategy, which are briefly described. When completed, the fuel-switching led to an increase in annual gas costs of 125% with a corresponding decrease in electric cost of nearly 30% for an annual utility cost savings of over 19%

  15. Generalized Energy Flow Analysis Considering Electricity Gas and Heat Subsystems in Local-Area Energy Systems Integration

    Directory of Open Access Journals (Sweden)

    Jiaqi Shi

    2017-04-01

    Full Text Available To alleviate environmental pollution and improve the efficient use of energy, energy systems integration (ESI—covering electric power systems, heat systems and natural gas systems—has become an important trend in energy utilization. The traditional power flow calculation method, with the object as the power system, will prove difficult in meeting the requirements of the coupled energy flow analysis. This paper proposes a generalized energy flow (GEF analysis method which is suitable for an ESI containing electricity, heat and gas subsystems. First, the models of electricity, heat, and natural gas networks in the ESI are established. In view of the complexity of the conventional method to solve the gas network including the compressor, an improved practical equivalent method was adopted based on different control modes. On this basis, a hybrid method combining homotopy and the Newton-Raphson algorithm was executed to compute the nonlinear equations of GEF, and the Jacobi matrix reflecting the coupling relationship of multi-energy was derived considering the grid connected mode and island modes of the power system in the ESI. Finally, the validity of the proposed method in multi-energy flow calculation and the analysis of interacting characteristics was verified using practical cases.

  16. Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States)

    2017-01-01

    IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside the ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.

  17. Development of a new distillation unit combined with compressed heat pump (heat integrated distillation column (HIDiC)) (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Toshinari; Aso, Kazumasa [Kimura Chemical Plants Co., Ltd., Amagasaki City, Hyogo (Japan); Takamatsu, Takeichiro [Research Inst. of Industrial Technology, Suita-City, Osaka (Japan); Nakaiwa, Masaru [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan); Noda, Hideo; Kuratani, Nobuyuki [Kansai Chemical Engineearing Co., Ltd., Amagasaki-city, Hyogo (Japan); Yoshida, Kazufumi [Maruzen Petrochemical Co., Ltd., 25-10, Tokyo (Japan)

    1999-07-01

    To reduce the irreversible loss the Heat Integrated Distillation Column (HIDiC) is proposed by application of heat-pump technology. (Distillation column, which is an energy consuming separation unit, has been widely used in oil refinery and the other chemical-related plants. The reason why it is a major energy consumer is that a large amount of irreversible loss occurs in heat transfer within the process.) In this paper, current results on the study of HIDiC in both simulations and experiments are shown. HIDiC must be operated at a higher pressure in the rectifying section so as to make its temperature higher than that of the stripping section which stands parallel with the rectifying section. That makes heat transfer from the rectifying section to the stripping section. Because of vaporization in the stripping section and condensation in the rectifying section, the energy for the reboiler can be saved. The degree of energy saving can be expected to be much more than 30%, although the exact value depends on the characteristics of mixture to be separated. (The degree of energy saving is higher than the above, if the exhaust vapor from the HIDiC is used to heat the feed or the other processes.) To save energy by the HIDiC, high separation performances and heat transfer capabilities are required. It has been found out that the HIDiC, whose shape is like vertical shell and tube heat exchanger was enough to be practical use of the HIDiC from the static design principle points of view. (orig.)

  18. Uses of geothermal energy in Jordan for heating greenhouses; project proposal

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.; Masarwah, Rober; Elkarmi, Fawwaz

    1993-08-01

    A proposal for the exploration of geothermal energy in Jordan for heating greenhouses. The report gives some background information on geothermal anomalies in Jordan, and outlines some on-going uses of geothermal energy in various parts of Jordan. The proposal is modelled on the 2664 square meter Filclair Super 9 Multispan greenhouse from France. The overall cost of the project involves three variables, the cost of the borehole, the cost of the greenhouse, and the cost of engineering services. The total cost ranges between three to four million dollars depending on the quantity and quality of information to be collected from the borehole. The advantages of geothermal heating compared with oil heating are emphasized. The project will enable geothermal heating and horticultural production to be monitored throughout the year, will produce data enabling rational and reliable water resources management, and will produce environmentally clean and efficient energy. (A.M.H.). 1 tab. 1 map

  19. A multi-lateral trading model for coupled gas-heat-power energy networks

    International Nuclear Information System (INIS)

    Chen, Yue; Wei, Wei; Liu, Feng; Mei, Shengwei

    2017-01-01

    Highlights: •Optimal energy flows in the gas, heat, and power systems are modeled in detail. •A multi-lateral trading model for the coupled energy markets is proposed. •A two-phase algorithm for computing the market equilibrium. •Case studies demonstrate that market competition pilots reasonable energy prices. -- Abstract: The proliferation of cogeneration technology and the need for more resilient energy utilization inspire the emerging trend of integration of multi-resource energy systems, in which natural gas, heat, and electricity are produced, delivered, converted, and distributed more efficiently and flexibly. The increasing interactions and interdependencies across heterogenous physical networks impose remarkable challenges on the operation and market organization. This paper envisions the market trading scheme in the network-coupled natural gas system, district heating system, and power system. Based on the physical energy flow models of each system and their interdependency, a multi-lateral trading gas-heat-power (MLT-GHP) model is suggested, and a mixed-integer linear programming based two-phase algorithm is developed to find the market equilibrium. Case studies on two testing systems demonstrate the effectiveness of the proposed model and method, showing that the multi-lateral trading essentially results in market competition that orientates reasonable energy prices. Some prospects for future researches are also summarized.

  20. Domestic hot water. Measurements of consumption and heat loss from circulation pipes; Varmt brugsvand. Maaling af forbrug og varmetab fra cirkulationsledninger

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B.; Schroeder, F.; Bergsoee, N.C.

    2009-07-01

    It is likely that the production and distribution of domestic hot water (DHW) in buildings will constitute a dominant share of both the present and in particular future energy design requirements. The goal of this project has been to propose more energy efficient and environmentally friendly solutions for DHW systems based on analyses of existing conditions. The possibilities include new types of circulation pipes, which have the potential of a 40 per cent reduction of heat losses. In addition to the reduction of heat losses inside the building, a low return temperature from the hot water system will have a large impact on the heat losses from the district heating network when the building is being heated by district heating. The results of this project could influence not only future buildings but also existing buildings in case of renovation of the installations. In this project measurements of water and energy consumptions have been carried out in a number of buildings, and heat losses from the production of domestic hot water and the distribution lines have been measured. In addition to the measurements, analyses and simulations have been carried out. Two models have been developed: One of an apartment room with vertical pipes passing through the room, and one of a room above a basement with horizontal heating pipes. The models make it possible to assess how much of the heat loss from the heating pipes is utilised for space heating. The following recommendations are pointed out: 1) In large buildings e.g. apartment buildings and office buildings the technical installations should be provided with meters so that it is possible to separate the energy consumption for DHW, space heating and ventilation, respectively. 2) In new buildings and in case of retrofitting existing buildings, careful planning of the placement and disposition of hot water taps compared with the location of the hot water tank or heat exchanger is recommended. Also, the necessity of a

  1. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes

    International Nuclear Information System (INIS)

    Akki, T.S.; Benayad, S.A.; Megahid, R.M.

    1992-01-01

    Measurements have been carried out to study the spatial fluxes and energy distributions of reactor fast neutrons transmitted through two types of heat resistant concretes, serpentine concrete and magnetic lemonite concrete. The physical, chemical and mechanical properties of these concretes were checked by well known techniques. In addition, the effect of heating at temperatures up to 500deg C on the crystaline water content was checked by the method of differential thermal analysis. Measurements were performed using a collimated beam of reactor neutrons emitted from a 10 MW research reactor. The neutron spectra transmitted through concrete barriers of different thickness were measured by a scintillation spectrometer with NE-213 liquid organic scintillator. Discrimination against undesired pulses due to gamma-rays was achieved by a method based on pulse shape discrimination technique. The operating principle of this technique is based on the comparison of two weighted time integrals of the detector signal. The measured pulse amplitude distribution was converted to neutron energy distribution by a computational code based on double differentiation technique. The spectrometer workability and the accuracy of the unfolding technique were checked by measuring the neutron spectra of neutrons from Pu-α-Be and 252 Cf neutron sources. The obtained neutron spectra for the two concretes were used to derive the total cross sections for neutrons of different energies. (orig.)

  2. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat

  3. EPR ohmic heating energy storage

    International Nuclear Information System (INIS)

    Heck, F.M.; Stillwagon, R.E.; King, E.I.

    1977-01-01

    The Ohmic Heating (OH) Systems for all the Experimental Power Reactor (EPR) designs to date have all used temporary energy storage to assist in providing the OH current charge required to build up the plasma current. The energies involved (0.8 x 10 9 J to 1.9 x 10 9 J) are so large as to make capacitor storage impractical. Two alternative approaches are homopolar dc generators and ac generators. Either of these can be designed for pulse duty and can be made to function in a manner similar to a capacitor in the OH circuit and are therefore potential temporary energy storage devices for OH systems for large tokamaks. This study compared total OH system costs using homopolar and ac generators to determine their relative merits. The total system costs were not significantly different for either type of machine. The added flexibility and the lower maintenance of the ac machine system make it the more attractive approach

  4. Mathematical modeling of the energy consumption of heated swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Le Bel, C.; Millette, J. [LTE Shawinigan, Shawinigan, PQ (Canada)

    2007-07-01

    A mathematical model was developed to estimate the water temperature of a residential swimming pool. The model can compare 2 different situations and, if local climatic conditions are known, it can accurately predict energy costs of the pool relative to the total energy consumption of the house. When used with the appropriate energy transfer coefficient and weather file, the model can estimate the water temperature of a residential swimming pool having specific characteristics, such as in-ground, above-ground, heated or non-heated. The model is suitable for determining residential loads. It can be applied to different pool types and sizes, for different water heating scenarios and different climatic regions. Data obtained from the monitoring of water temperature and electricity use of 57 residential swimming pools was used to validate the model. In addition, 5 above-ground pools were installed on the property of LTE Shawinigan to allow for a more detailed study of the parameters involved in the thermal balance of a pool. The mathematical model, based on a global heat transfer coefficient, can determine the effect of a solar blanket and the effect of water volume. 14 refs., 5 tabs., 11 figs.

  5. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system

    International Nuclear Information System (INIS)

    Yang, Ke; Zhang, Yuan; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected

  6. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  7. Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell

    International Nuclear Information System (INIS)

    Huang, Bi; Jian, Qifei; Luo, Lizhong; Zhao, Jing

    2017-01-01

    Highlights: • A novel heat recovery device was designed and tested. • Aiming at avoiding liquid slugging in cold areas. • Recovery of the waste energy of compressor housing. • Refrigerant is heated with the energy recovered before it is sucked into the compressor. • Requires no extra power while the recovery system is operating. - Abstract: A novel heat recovery device designed to recover the heat that is released from the outer surface of heat pump compressors, and to enhance the performance of heat pumps in cold areas was made and tested in this study. The novel heat recovery device consists of three fundamental units: a heat absorption unit, a heat emission unit and heat pipes. An amount of work focused on recovering the heat of compressors through oil system, but few studies concentrated on the housing. The main advantage of the heat recovery device is no need for extra energy consumption for its only driving force is the temperature difference between the compressor shell and the working fluid inside the suction line. The experimental results were obtained from a series of tests with a R410A air-source heat pump. Effects of the device are analyzed with respect of the suction temperature, temperature distribution among the housing, input power and exergy destruction. Moreover, the impact on the heating capacity is also discussed. Further, direction for improvement is also given based on the analysis.

  8. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Science.gov (United States)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  9. Experience in the use of wind energy for greenhouse heating

    Energy Technology Data Exchange (ETDEWEB)

    O' Flaherty, T; Kocsis, K; Petersen, H [eds.

    1987-05-01

    Study of the appliction of wind energy for greenhouse heating began at Kinsealy Research Centre in 1980 with the installation of a multi-blade 6m diamter wind turbine. This produced electricity which was used to provide root zone warming for a glasshouse tomato crop. The application worked well and the wind turbine is still in operation, although it has been out of service for substantial periods and has required major refurbishment. In July 1985 a new wind turbine was commissioned as an EEC Wind Energy Demonstration Project. This is an 11m diameter grid-connected unit, and the project involves using its output to power a heat pump which in turn supplies heat to a greenhouse. The system is operating well and initial performance results have been obtained during the 1985-'86 heating season. The paper summarises the experience to data with both of these projects.

  10. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  11. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  12. Binding energy and formation heat of UO2

    International Nuclear Information System (INIS)

    Almeida, M.R. de; Veado, J.T.; Siqueira, M.L. de

    The Born-Haber cycle is utilized for the calculation of the heat of formation of UO 2 , on the assumption that the binding energy is predominantly ionic in character. The ionization potentials of U and the repulsion energy are two critical values that influence calculations. Calculations of the ionization potentials with non-relativistic Hartree-Fock-Gaspar-Kohn-Sham approximation are presented [pt

  13. Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010

    International Nuclear Information System (INIS)

    Ó Broin, Eoin; Nässén, Jonas; Johnsson, Filip

    2015-01-01

    Highlights: • Space heating demand between 1990 and 2010 modelled using a panel of 14 EU countries. • The impacts of 260 efficiency polices affecting space heating demand are examined. • Regulatory policies found to have had a greater success than financial or informative. • High priority should be given to regulatory policies for space heating energy goals. - Abstract: We present an empirical analysis of the more than 250 space heating-focused energy efficiency policies that have been in force at the EU and national levels in the period 1990–2010. This analysis looks at the EU-14 residential sector (Pre-2004 EU-15, excluding Luxembourg) using a panel data regression analysis on unit consumption of energy for space heating (kWh/m 2 /year). The policies are represented as a regression variable using a semi-quantitative impact estimation obtained from the MURE Policy Database. The impacts of the policies as a whole, and subdivided into financial, regulatory, and informative policies, are examined. The correlation between the actual reductions in demand and the estimated impact of regulatory policies is found to be stronger than the corresponding correlations with the respective impacts of financial policies and informative polices. Together with the well-known market barriers to energy efficiency that exist in the residential sector, these findings suggest that regulatory policy measures be given a high priority in the design of an effective pathway towards the EU-wide goals for space heating energy

  14. Evaluation of geothermal energy as a heat source for the oilsands industry in Northern Alberta (Canada)

    Science.gov (United States)

    Majorowicz, J. A.; Unsworth, M.; Gray, A.; Nieuwenhuis, G.; Babadagli, T.; Walsh, N.; Weides, S.; Verveda, R.

    2012-12-01

    The extraction and processing of bitumen from the oilsands of Northern Alberta requires very large amounts of heat that is obtained by burning natural gas. At current levels, the gas used represents 6% of Canada's natural gas production. Geothermal energy could potentially provide this heat, thereby reducing both the financial costs and environmental impact of the oilsands industry. The Helmholtz Alberta Initiative is evaluating this application of geothermal energy through an integrated program of geology, geophysics, reservoir simulation and calculations of the cost benefit. A first stage in this evaluation is refining estimates of subsurface temperature beneath Northern Alberta. This has involved three stages: (1) Corrected industrial thermal data have been used to revise estimates of the upper crustal temperatures beneath the oilsands regions in Alberta. The geothermal gradient map produced using heat flow and thermal conductivity for the entire Phanerozoic column suggests that the overall gradient of the entire column is less than the gradients calculated directly from industry measurements. (2) Paleoclimatic corrections must be applied , since this region has experienced a significant increase in surface temperatures since the end of the last ice age causing a perturbation of shallow heat flow. For this reason, estimates of geothermal gradient based on shallow data are not necessarily characteristic of the whole sedimentary column and can lead to errors in temperature prediction at depth. (3) Improved measurements have been made of the thermal conductivity of the crystalline basement rocks (average = 2.9±0.8 W/m K). Thermal conductivity exhibits significant spatial variability and to a large degree controls the temperature conditions in the Precambrian crystalline basement rocks and its heat content at given heat flow-heat generation. When these steps are used to calculate subsurface temperatures, it can be shown that the temperatures required for geothermal

  15. Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2016-01-01

    Full Text Available Fatigue crack initiation and propagation involve plastic strains that require some work to be done on the material. Most of this irreversible energy is dissipated as heat and consequently the material temperature increases. The heat being an indicator of the intense plastic strains occurring at the tip of a propagating fatigue crack, when combined with the Neuber’s structural volume concept, it might be used as an experimentally measurable parameter to assess the fatigue damage accumulation rate of cracked components. On the basis of a theoretical model published previously, in this work the heat energy dissipated in a volume surrounding the crack tip is estimated experimentally on the basis of the radial temperature profiles measured by means of an infrared camera. The definition of the structural volume in a fatigue sense is beyond the scope of the present paper. The experimental crack propagation tests were carried out on hot-rolled, 6-mm-thick AISI 304L stainless steel specimens subject to completely reversed axial fatigue loading.

  16. Technology data for energy plants. Individual heating plants and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The present technology catalogue is published in co-operation between the Danish Energy Agency and Energinet.dk and includes technology descriptions for a number of technologies for individual heat production and energy transport. The primary objective of the technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for the work with energy planning and the development of the energy sector, including future outlooks, scenario analyses and technical/economic analyses. The technology catalogue is thus a valuable tool in connection with energy planning and assessment of climate projects and for evaluating the development opportunities for the energy sector's many technologies, which can be used for the preparation of different support programmes for energy research and development. The publication of the technology catalogue should also be viewed in the light of renewed focus on strategic energy planning in municipalities etc. In that respect, the technology catalogue is considered to be an important tool for the municipalities in their planning efforts. (LN)

  17. Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment

    Science.gov (United States)

    Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.

    2012-04-01

    Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the

  18. Heat transfer measurements of internally heated liquids in cylindrical convection cells

    International Nuclear Information System (INIS)

    Fieg, G.

    1978-10-01

    In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de

  19. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    International Nuclear Information System (INIS)

    Emin, D.

    1984-01-01

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (approx.1/N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments

  20. Thermal energy storage with geothermal triplet for space heating and cooling

    Science.gov (United States)

    Bloemendal, Martin; Hartog, Niels

    2017-04-01

    Many governmental organizations and private companies have set high targets in avoiding CO2 emissions and reducing energy (Kamp, 2015; Ministry-of-Economic-affairs, 2016). ATES systems use groundwater wells to overcome the discrepancy in time between the availability of heat (during summer) and the demand for heat (during winter). Aquifer Thermal Energy Storage is an increasingly popular technique; currently over 2000 ATES systems are operational in the Netherlands (Graaf et al., 2016). High temperature ATES may help to improve performance of these conventional ATES systems. ATES systems use heat pumps to get the stored heat to the required temperature for heating of around 40-50°C and to produce the cold water for cooling in summer. These heat pumps need quite a lot of power to run; on average an ATES system produces 3-4 times less CO2 emission compared to conventional. Over 60% of those emission are accounted for by the heat pump (Dekker, 2016). This heat pump power consumption can be reduced by utilizing other sources of sustainable heat and cooling capacity for storage in the subsurface. At such operating temperatures the required storage temperatures do no longer match the return temperatures in the building systems. Therefore additional components and an additional well are required to increase the groundwater temperature in summer (e.g. solar collectors) and decrease it in winter (e.g. dry coolers). To prevent "pollution" of the warm and cold well return water from the building can be stored in a third well until weather conditions are suitable for producing the required storage temperature. Simulations and an economical evaluation show great potential for this type of aquifer thermal energy storage; economic performance is better than normal ATES while the emissions are reduce by a factor ten. At larger temperature differences, also the volume of groundwater required to pump around is much less, which causes an additional energy saving. Research now

  1. Natural gas heating. The energy saving concept. Topical tasks of consumer guidance

    Energy Technology Data Exchange (ETDEWEB)

    Windfeder, H

    1978-01-01

    Brief comments on natural gas, the technology of using natural gas for heating purposes, consumer psychology, and on energy policies are presented. It is concluded that the more natural gas heating is installed, the more primary energy can be saved. Some fundamental thoughts on consumer guidance are given for discussion.

  2. French know-how in the field of geothermal energy. District heating and electricity generation systems

    International Nuclear Information System (INIS)

    2012-08-01

    This brochure is aimed at presenting the French expertise, public and private, at international level in the field of geothermal energy (district heating and electricity generation systems). It presents a summary of the French public policy framework, measures to support Research and Development, innovation and training and offers from private companies. It has been designed by the ADEME in cooperation with the French ministry for Ecology and Sustainable Development, the French association of geothermal energy professionals, Ubifrance (the French Agency for international business development) and the French renewable energies union

  3. Energy conservation measures in an institutional building in sub-tropical climate in Australia

    International Nuclear Information System (INIS)

    Rahman, M.M.; Rasul, M.G.; Khan, M.M.K.

    2010-01-01

    In this study, various energy conservation measures (ECMs) on heating, ventilating and air conditioning (HVAC) and lighting systems for a four-storied institutional building in sub-tropical (hot and humid climate) Queensland, Australia are evaluated using the simulation software called DesignBuilder (DB). Base case scenario of energy consumption profiles of existing systems are analysed and simulated first then, the simulated results are verified by on-site measured data. Three categories of ECMs, namely major investment ECMs (variable air volume (VAV) systems against constant air volume (CAV); and low coefficient of performance (COP) chillers against high COP chillers); minor investment ECMs (photo electric dimming control system against general lighting, and double glazed low emittance windows against single-glazed windows) and zero investment ECMs (reset heating and cooling set point temperatures) are evaluated. It is found that the building considered in this study can save up to 41.87% energy without compromising occupancies thermal comfort by implementing the above mentioned ECMs into the existing system.

  4. Health Externalities and Heat savings in Energy System Modelling

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    Energy consumption and production can cause air pollution with global impact, such as CO2, and local/regional air pollutants, such as SO2, NOx and PM2.5, as a result of fuel combustion. Use of fossil fuels leads to global CO2 emissions and causes global warming effects, regardless place or height......-related external costs can be internalised, for instance, in energy system modelling. External costs of global warming and human health damage can be of comparable magnitude.However, in contrast to global CO2 impacts, air pollution damage to human health depends on a number of factors, related to location...... and included in an energy system optimisation model. The performed analysis of the Danish heat and power sector concludes that accounting for spatial variation of health damage costs in heat and power system optimisation model has an effect on the optimal technology mix and distribution of energy plants among...

  5. Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources

    KAUST Repository

    Missimer, Thomas M.

    2013-01-01

    Key goals in the improvement of desalination technology are to reduce overall energy consumption, make the process "greener," and reduce the cost of the delivered water. Adsorption desalination (AD) is a promising new technology that has great potential to reduce the need for conventional power, to use solely renewable energy sources, and to reduce the overall cost of water treatment. This technology can desalt seawater or water of even higher salinity using waste heat, solar heat, or geothermal heat. An AD system can operate effectively at temperatures ranging from 55 to 80 °C with perhaps an optimal temperature of 80 °C. The generally low temperature requirement for the feedwater allows the system to operate quite efficiently using an alternative energy source, such as solar power. Solar power, particularly in warm dry regions, can generate a consistent water temperature of about 90 °C. Although this temperature is more than adequate to run the system, solar energy collection only can occur during daylight hours, thereby necessitating the use of heat storage during nighttime or very cloudy days. With increasing capacity, the need for extensive thermal storage may be problematic and could add substantial cost to the development of an AD system. However, in many parts of the world, there are subsurface geothermal energy sources that have not been extensively used. Combining a low to moderate geothermal energy recovery system to an AD system would provide a solution to the thermal storage issue. However, geothermal energy development from particularly Hot Dry Rock is limited by the magnitude of the heat flow required for the process and the thermal conductivity of the rock material forming the heat reservoir. Combining solar and geothermal energy using an alternating 12-h cycle would reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of renewable energy. © 2013 Desalination Publications.

  6. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    International Nuclear Information System (INIS)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G.B.

    2017-01-01

    Highlights: •A new configuration of compressed air energy storage system is proposed and analyzed. •This system, so-called subcooled-CAES, offers cogeneration of electricity, heat and cooling. •A pseudo-dynamic energy, exergy and economic analysis of the system for an entire year is presented. •The annual power, cooling and heat efficiencies of the system are around 31%, 32% and 92%. •The overall energy and exergy performance coefficients of the system are 1.55 and 0.48, respectively. -- Abstract: Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of electricity, heat and cooling. The new system may be very advantageous for locations with high penetration of renewable energy in the electricity grid as well as high heating and cooling demands. The latter would typically be locations with district heating and cooling networks. A thorough design, sizing and thermodynamic analysis of the system for a typical wind farm with 300 MW capacity in Denmark is presented. The results show a great potential of the system to support the local district heating and cooling networks and reserve services in electricity market. The values of power-to-power, power-to-cooling and power-to-heat efficiencies of this system are 30.6%, 32.3% and 92.4%, respectively. The exergy efficiency values are 30.6%, 2.5% and 14.4% for power, cooling and heat productions. A techno-economic comparison of this system with two of the most efficient previous designs of compressed air energy storage system proves the firm superiority of the new concept.

  7. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    Science.gov (United States)

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  8. Energy Efficiency of Technological Equipment at the Economic Agent by Identifying the Points with Recoverable Heat Potential

    Directory of Open Access Journals (Sweden)

    Arina Negoiţescu

    2017-11-01

    Full Text Available For an energy-efficient future, the EU needs to step up its efforts to maximize energy savings. In this context, the paper addresses the steps needed to establish energy efficiency measures and proposes effective measures to reduce consumption by recovering large amounts of energy lost to industrial consumers. The points with the highest recoverable energy potential have been identified and it is proposed to install the heat recovery systems on the flue gas exhaust circuits and polluted air from Industrial Technological Equipment (ITE such as dyeing/drying cabins (DDC. Therefore, whenever possible and as small as energy saving, energy recovery solutions at any level, but especially at local level, need to be applied. In conclusion, by concentrating all the energy-saving efforts that are still being wasted, Europe can contribute, by saving energy, to ensuring a sustainable energy future

  9. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1979-07-01

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  10. Exergy costing for energy saving in combined heating and cooling applications

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten

    2014-01-01

    . In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where...... exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared...

  11. Demonstration of low-energy district heating for low-energy buildings in EnergyFlexHouse. Subreport 1; Demonstration af lavenergifjernvarme til lavenergibyggeri i energyflexhouse. Delrapport 1

    Energy Technology Data Exchange (ETDEWEB)

    Holm Christiansen, C.

    2011-05-15

    This report concerns demonstration of a new concept for low temperature district heating to low energy buildings with district heating flow temperatures on just above 50 deg. C. The concept was developed in a previous energy research project under the EFP-2007-programme supported by the Danish Energy Agency. New types of prototypes for district heating consumer substations and district heating pipes in very small dimensions were developed and manufactured. Demonstration has been carried out in the Danish Technological Institute test houses 'EnergyFlexHouse' with the objective of analyzing and evaluating the performance of the concept in a real low energy house. The EnergyFlexHouse is actually two houses either each designed to be energy neutral with PV's but also fulfilling the Danish building codes low energy class 2015 requirements without the PV's. The two houses are called 'Lab' and 'Family' and are supplied with district heating from a small local distribution network. The tests are carried out in the 'Lab' house connected with a district heating branch twin pipe with two service pipes of just 10 mm inner diameter/14 mm outer diameter and with outer casing diameter of 110 mm corresponding to series 2 insulation. An accumulator consumer substation with a 175 liter storage tank on the primary side (district heating side) has been subject to tests. Tree different tapping patterns of domestic hot water were performed including tapping patterns based on the European standard PrEN50440. Generally the results show that balancing the primary loading flow in relation to actual tapping patterns and domestic hot water consumption is important in order to keep the district heating return temperature as low as possible. Based on the results different options are proposed in order to optimize the operation of the consumer substation. Recently a new project under the EUDP 2010-II has received grant to continue improving and

  12. Forum environmental and energy technology 2013. Power-heat cogeneration and air pollution prevention

    International Nuclear Information System (INIS)

    Carlowitz, Otto; Meyer, Sven

    2013-01-01

    The volume covers the following topics: The teaching reward 2013 - concept and implementation of the ''Forum environmental and energy technology''; energy efficient air pollution control and material recovery; air pollution control by oxidation; electrical energy production from low-temperature waste heat (ORC processes), electrical power production and process heat utilization.

  13. Evaluation of inductive heating energy of sub-size improved DPC-C conductor by calorimetric method

    International Nuclear Information System (INIS)

    Ito, Toshinobu; Koizumi, Norikiyo; Wakabayashi, Hiroshi; Miura, Yuushi; Fujisaki, Hiroshi; Matsui, Kunihiro; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1996-08-01

    The improved DPC-U conductor consisting of 648 chrome plated NbTi strands was fabricated and its stability has been investigated using 1/24 sub-size conductor. In the stability experiment, the inductive heating method was applied to originate initial normal zone. Since it is difficult to calculate the inductive heating energy deposited on the conductor because of complicate geometry of the twisted multi-strand cable, inductive heating energy had to be experimentally evaluated using calorimetric method. The heating energy is in proportion to integration of square of an applied sinusoidal wave pulsed current over the heating period. The experimental result shows the proportional constants for the conductor and conduit are 2.062 x 10 -3 [J/A 2 s] and 0.771 x 10 -3 [J/A 2 s], respectively. The coupling between the eddy currents in the strands and conduit might take effect on the heating energy put in the strands. It was shown this effect was however small in this experiment. Consequently, the inductive heating energy applied in the strands was estimated to be the proportional constant of 1.291 x 10 -3 [J/A 2 s] from the difference of the heat energies in the conductor and conduit. (author)

  14. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  15. Studies of Heat Dynamics in an Arctic Low-energy House

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff; Rode, Carsten; Madsen, Henrik

    2012-01-01

    . Statistical methods are being developed in a PhD project to derive the properties to be used in a dynamic thermal model of the whole building. Characteristic of the building is its exposure to the extreme Arctic climate, which is both very cold and where the sun in some periods may shine constantly...... energy-efficient windows, and heat recovery. The house is divided into two symmetric apartments, of which one is inhabited by a family, and the other is used for experiments and demonstration. The situation provides unique options for measuring and analysis with large signal to noise ratios facilitating...

  16. A LCC model of renewal energy : the cases of water heating system in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.J. [Leader Univ., Tainan City, Taiwan (China). Dept. of Construction Technology; Huang, J.S. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Bioenvironmental Systems Engineering

    2007-07-01

    One of the most important renewable energy strategies being promoted by the Bureau of Energy, Ministry of Economic Affairs in Taiwan is the use of solar energy water heating systems. This paper presented the results of a study that examined whether these systems were a feasible alternative without governmental subsidies. Economic methods of investment analysis, such as net benefit analysis, the saving-to-investment ratio, the adjusted internal rate of return, the life cycle cost (LCC) analysis, and sensitivity analysis can be used to evaluate buildings and building systems. Comparing different kinds of energy consumption alternatives, the LCC method is particularly suitable for determining whether the higher initial cost of the systems is economically justified by reductions in future costs. This study used the LCC method to evaluate renewable energy alternatives in Taiwan using water heating systems in the National Taiwan University (NTU) Smart Home as illustrative examples. Three kinds of water heating systems are used in the NTU Smart Home, including the evacuated tubular collectors, heat pump water heating system and power-saving water heating system. This study assessed LCC using gas geyser heating as the contrast group. Sensitivity analysis was used to verify the major factors, and show how it influences life cycle costing. It was concluded that compared with the gas geyser water heating system, the power-saving water heating system was the inefficient scheme. 7 refs., 1 tab., 2 figs.

  17. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2013-01-01

    . Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. © 2012Elsevier Ltd. All rights reserved.......A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers...... and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy...

  18. Energy Efficient Clothes Dryer with IR Heating and Electrostatic Precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Stanton [GE Global Research, Niskayuna, NY (United States)

    2017-12-12

    The project goal was to develop a revolutionary energy saving technology for residential clothes drying. The team developed an IR (infrared) heating system and NESP (Nebulizer and Electro-Static Precipitator) for integration into a ventless clothes dryer. The proposed technology addresses two of the major inefficiencies in current electric vented dryers by providing effective energy transfer for the removal of the water and recapture of the vapor latent heat. The IR heaters operating in the mid wave (2.5-10um) are very efficient as they target the 3-micron peak absorption of the water molecule. This allows direct energy absorption, unlike conventional element heaters where heat is transferred by convection. The low power NESP removes water vapor from the exhausted stream and recaptures the latent heat in the ESP (Electro-Static Precipitator) exchanger section. This allows the warm dry air to be recirculated back into the drum for additional efficiency savings. The remaining majority of the dryer hardware stays the same. Summing the efficiency gain from the two subcomponents we anticipated the EF (Efficiency Factor) to exceed the goal of 4.04. EF is obtained by dividing the weight (lbs) of water removed by the energy (kWhr) used, where the test load size is 8.45 lbs of bone dry clothing wetted to 57.5% or 4.8lbs of water, and dried to a remaining moisture content of 2.5-5%. Additional benefits include not having to recondition (heat or cool) the large amounts of make-up air to replace the air exhausted by a vented dryer. It was anticipated that the NESP/heat exchanger would be the most challenging and highest risk element in the program. Therefore, the team focused their efforts during Phase 1 of the program on the design, construction, testing, and optimization of the NESP/heat exchanger. At the end Phase 1, the team compared the performance of the NESP/heat exchanger with the system level requirements and made a Go/No-Go decision on proceeding with the second

  19. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  20. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWh heat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  1. Energy models. Integrated heating and cooling in different sports fields and halls; Energiamalli. Urheilupaikkojen integroitu laemmitys ja jaeaehdytys (UPILAEJAE)

    Energy Technology Data Exchange (ETDEWEB)

    Aittomaeki, A.; Maekinen, A.

    2009-07-01

    The efficient use of energy is playing an increasing role in saving natural resources and in maintaining competitiveness. The system integration plays an essential role when efficiency is maximized. Expressed in thermodynamical terms the question is about minimizing the loss of energy. When planning the integration of heating and cooling the impacts of different coupling possibilities and measurements should be compared. In this report the modeling or simulation of energy balances studies in different systems is described. In the system integration of different sports buildings the modeling parts are the following: office space with heating systems, indoor ice-skating rink, skiing tunnel, indoor swimming pool, sports-field and sport center

  2. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  3. Pricing district heating by marginal cost

    International Nuclear Information System (INIS)

    Difs, Kristina; Trygg, Louise

    2009-01-01

    A vital measure for industries when redirecting the energy systems towards sustainability is conversion from electricity to district heating (DH). This conversion can be achieved for example, by replacing electrical heating with DH and compression cooling with heat-driven absorption cooling. Conversion to DH must, however, always be an economically attractive choice for an industry. In this paper the effects for industries and the local DH supplier are analysed when pricing DH by marginal cost in combination with industrial energy efficiency measures. Energy audits have shown that the analysed industries can reduce their annual electricity use by 30% and increase the use of DH by 56%. When marginal costs are applied as DH tariffs and the industrial energy efficiency measures are implemented, the industrial energy costs can be reduced by 17%. When implementing the industrial energy efficiency measures and also considering a utility investment in the local energy system, the local DH supplier has a potential to reduce the total energy system cost by 1.6 million EUR. Global carbon dioxide emissions can be reduced by 25,000 tonnes if the industrial energy efficiency measures are implemented and when coal-condensing power is assumed to be the marginal electricity source

  4. The EU CONCERTO project Class 1 - Demonstrating cost-effective low-energy buildings - Recent results with special focus on comparison of calculated and measured energy performance of Danish buildings

    DEFF Research Database (Denmark)

    Mørck, Ove; Thomsen, K.E.; Rose, J.

    2012-01-01

    -chip heating plant has been added. The project demonstrates the benefits of ultra-low-energy buildings integrated with biomass- and solar heating energy supply. The CLASS1 project involves 4 other countries: Estonia, France, Italy and Romania. These countries develop training activities based on the results......In 2007 the Class1 project commenced. Originally, 442 dwellings were to be designed and constructed as "low-energy class 1" houses according to requirements set by the Municipality of Egedal/Denmark. This means that the energy consumption is 50% below the existing energy regulations. 65 dwellings...... and experiences gained from the Danish housing projects. This paper describes the comparisons between measured and calculated energy consumption in a social housing settlement and in a detached single-family house. Results show relatively large discrepancies between measured and calculated results...

  5. Valorization of the energy potential of fossil and fissile fuels for heat production: dual-purpose power plants and heat-producing nuclear reactors

    International Nuclear Information System (INIS)

    Lavite, Michel.

    1975-07-01

    The heat market is analyzed briefly within the French context: present structures and characteristics of the market, current means of heat production, predictable trend of the demand. The possible applications of nuclear energy to heat production, through the agency of combined electricity-steam stations or heat-producing stations, are then examined. Nuclear solutions are compared with others from the technico-economic and ecological wiewpoints and an estimate fo their respective impacts on the energy balance is attempted [fr

  6. The method of UCN "small heating" measurement in the big gravitational spectrometer (BGS) and studies of this effect on Fomblin oil Y-HVAC 18/8

    Science.gov (United States)

    Nesvizhevsky, V. V.; Voronin, A. Yu.; Lambrecht, A.; Reynaud, S.; Lychagin, E. V.; Muzychka, A. Yu.; Nekhaev, G. V.; Strelkov, A. V.

    2018-02-01

    The Big Gravitational Spectrometer (BGS) takes advantage of the strong influence of the Earth's gravity on the motion of ultracold neutrons (UCNs) that makes it possible to shape and measure UCN spectra. We optimized the BGS to investigate the "small heating" of UCNs, that is, the inelastic reflection of UCNs from a surface accompanied by an energy change comparable with the initial UCN energy. UCNs whose energy increases are referred to as "Vaporized UCNs" (VUCNs). The BGS provides the narrowest UCN spectra of a few cm and the broadest "visible" VUCN energy range of up to ˜150 cm (UCN energy is given in units of its maximum height in the Earth's gravitational field, where 1.00 cm ≈ 1.02 neV). The dead-zone between the UCN and VUCN spectra is the narrowest ever achieved (a few cm). We performed measurements with and without samples without breaking vacuum. BGS provides the broadest range of temperatures (77-600 K) and the highest sensitivity to the small heating effect, up to ˜10-8 per bounce, i.e., two orders of magnitude higher than the sensitivity of alternative methods. We describe the method to measure the probability of UCN "small heating" using the BGS and illustrate it with a study of samples of the hydrogen-free oil Fomblin Y-HVAC 18/8. The data obtained are well reproducible, do not depend on sample thickness, and do not evolve over time. The measured model-independent probability P+ of UCN small heating from an energy "mono-line" 30.2 ± 2.5 cm to the energy range 35-140 cm is in the range (1.05 ±0.02s t a t )×1 0-5-(1.31 ±0.24s t a t )×1 0-5 at a temperature of 24 °C. The associated systematic uncertainty would disappear if a VUCN spectrum shape were known, for instance, from a particular model of small heating. This experiment provides the most precise and reliable value of small heating probability on Fomblin measured so far. These results are of importance for studies of UCN small heating as well as for analyzing and designing neutron

  7. The method of UCN "small heating" measurement in the big gravitational spectrometer (BGS) and studies of this effect on Fomblin oil Y-HVAC 18/8.

    Science.gov (United States)

    Nesvizhevsky, V V; Voronin, A Yu; Lambrecht, A; Reynaud, S; Lychagin, E V; Muzychka, A Yu; Nekhaev, G V; Strelkov, A V

    2018-02-01

    The Big Gravitational Spectrometer (BGS) takes advantage of the strong influence of the Earth's gravity on the motion of ultracold neutrons (UCNs) that makes it possible to shape and measure UCN spectra. We optimized the BGS to investigate the "small heating" of UCNs, that is, the inelastic reflection of UCNs from a surface accompanied by an energy change comparable with the initial UCN energy. UCNs whose energy increases are referred to as "Vaporized UCNs" (VUCNs). The BGS provides the narrowest UCN spectra of a few cm and the broadest "visible" VUCN energy range of up to ∼150 cm (UCN energy is given in units of its maximum height in the Earth's gravitational field, where 1.00 cm ≈ 1.02 neV). The dead-zone between the UCN and VUCN spectra is the narrowest ever achieved (a few cm). We performed measurements with and without samples without breaking vacuum. BGS provides the broadest range of temperatures (77-600 K) and the highest sensitivity to the small heating effect, up to ∼10 -8 per bounce, i.e., two orders of magnitude higher than the sensitivity of alternative methods. We describe the method to measure the probability of UCN "small heating" using the BGS and illustrate it with a study of samples of the hydrogen-free oil Fomblin Y-HVAC 18/8. The data obtained are well reproducible, do not depend on sample thickness, and do not evolve over time. The measured model-independent probability P + of UCN small heating from an energy "mono-line" 30.2 ± 2.5 cm to the energy range 35-140 cm is in the range 1.05±0.02 stat ×10 -5 -1.31±0.24 stat ×10 -5 at a temperature of 24 °C. The associated systematic uncertainty would disappear if a VUCN spectrum shape were known, for instance, from a particular model of small heating. This experiment provides the most precise and reliable value of small heating probability on Fomblin measured so far. These results are of importance for studies of UCN small heating as well as for analyzing and designing neutron lifetime

  8. Energy and environmental evaluation of combined cooling heating and power system

    Science.gov (United States)

    Bugaj, Andrzej

    2017-11-01

    The paper addresses issues involving problems of implementing combined cooling, heating and power (CCHP) system to industrial facility with well-defined demand profiles of cooling, heating and electricity. The application of CCHP system in this particular industrial facility is being evaluated by comparison with the reference system that consists of three conventional methods of energy supply: (a) electricity from external grid, (b) heat from gas-fired boilers and (c) cooling from vapour compression chillers run by electricity from the grid. The CCHP system scenario is based on the combined heat and power (CHP) plant with gas turbine-compressor arrangement and water/lithium bromide absorption chiller of a single-effect type. Those two scenarios are analysed in terms of annual primary energy usage as well as emissions of CO2. The results of the analysis show an extent of primary energy savings of the CCHP system in comparison with the reference system. Furthermore, the environmental impact of the CCHP usage, in the form of greenhouse gases emission reductions, compares quite favourably with the reference conventional option.

  9. A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis

    International Nuclear Information System (INIS)

    Calise, Francesco; Figaj, Rafal Damian; Vanoli, Laura

    2017-01-01

    Highlights: • Space heating/cooling, domestic hot water and electrical energy are provided by the system. • Two different users are investigated: fitness center and office. • The influence of the battery system on system economic performance is scarce. • Net metering contract is more profitable compared to simplified purchase/resale arrangement one. - Abstract: In this paper a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system are presented. The system includes photovoltaic/thermal collectors coupled with a solar-assisted heat pump, an adsorption chiller and an electrical energy storage. The modelled plant supplies electrical energy, space heating and cooling and domestic hot water. The produced solar thermal energy is used during the winter to supply the heat pump evaporator, providing the required space heating. In summer, solar thermal energy is used to drive an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess, with respect to the space heating and cooling demand, is used to produce domestic hot water. The produced electrical energy is self-consumed by both user and system auxiliary equipment and/or supplied to the grid. The system model includes a detailed electrical energy model for user storage and exchange with the grid along with a detailed building model. This study is a continuation of previous works recently presented by the authors. In particular, the present paper focuses on the real electrical demands of several types of users and on the analysis of the comfort of building users. Differently from the works previously published by the authors, the present work bases the calculations on measured electrical demands of real users (fitness center and offices). The system performance is analyzed with two different electricity supply contracts: net metering and simplified purchase/resale arrangement. Daily, weekly and yearly results are presented. Finally, a

  10. A system design for distributed energy generation in low temperature district heating (LTDH) networks

    OpenAIRE

    Jones, Sean; Gillott, Mark C.; Boukhanouf, Rabah; Walker, Gavin S.; Tunzi, Michele; Tetlow, David; Rodrigues, Lucélia Taranto; Sumner, M.

    2017-01-01

    Project SCENIC (Smart Controlled Energy Networks Integrated in Communities) involves connecting properties at the University of Nottingham’s Creative Energy Homes test site in a community scale, integrated heat and power network. Controls will be developed to allow for the most effective heat load allocation and power distribution scenarios. Furthermore, the system will develop the prosumer concept, where consumers are both buyers and sellers of energy in both heat and power systems. \\ud \\ud ...

  11. Investigation of the possibility of using residual heat reactor energy

    Science.gov (United States)

    Aminov, R. Z.; Yurin, V. E.; Bessonov, V. N.

    2017-11-01

    The largest contribution to the probable frequency of core damage is blackout events. The main component of the heat capacity at each reactor within a few minutes following a blackout is the heat resulting from the braking of beta-particles and the transfer of gamma-ray energy by the fission fragments and their decay products, which is known as the residual heat. The power of the residual heat changes gradually over a long period of time and for a VVER-1000 reactor is about 15-20 MW of thermal power over 72 hours. Current cooldown systems increase the cost of the basic nuclear power plants (NPP) funds without changing the amount of electricity generated. Such systems remain on standby, accelerating the aging of the equipment and accordingly reducing its reliability. The probability of system failure increases with the duration of idle time. Furthermore, the reactor residual heat energy is not used. A proposed system for cooling nuclear power plants involves the use of residual thermal power to supply the station’s own needs in emergency situations accompanied by a complete blackout. The thermal power of residual heat can be converted to electrical energy through an additional low power steam turbine. In normal mode, the additional steam turbine generates electricity, which makes it possible to ensure spare NPP and a return on the investment in the reservation system. In this work, experimental data obtained from a Balakovo NPP was analyzed to determine the admissibility of cooldown of the reactors through the 2nd circuit over a long time period, while maintaining high-level parameters for the steam generated by the steam generators.

  12. Analyzing variables for district heating collaborations between energy utilities and industries

    International Nuclear Information System (INIS)

    Thollander, P.; Svensson, I.L.; Trygg, L.

    2010-01-01

    One vital means of raising energy efficiency is to introduce district heating in industry. The aim of this paper is to study factors which promote and inhibit district heating collaborations between industries and utilities. The human factors involved showed to affect district heating collaborations more than anything else does. Particularly risk, imperfect and asymmetric information, credibility and trust, inertia and values are adequate variables when explaining the establishment or failure of industry-energy utility collaborations, while heterogeneity, access to capital and hidden costs appear to be of lower importance. A key conclusion from this study is that in an industry-energy utility collaboration, it is essential to nurture the business relationship. In summary, successful collaboration depends more on the individuals and organizations involved in the relationship between the two parties than on the technology used in the collaboration.

  13. Effects of heating energy and heating position on the conversion characteristics of the catalyst of a four-stroke motorcycle engine in cold start conditions

    International Nuclear Information System (INIS)

    Horng, R.-F.; Chou, H.-M.; Hsu, T.-C.

    2004-01-01

    The effects of heating energy and heating position on the conversion efficiency of an electrically heated catalyst of a four stroke motorcycle engine under cold start conditions were investigated in this study. In general, during cold start, the operating temperatures of a four stroke motorcycle engine and its catalyst would not be optimized. It was found in this paper that by applying heat to the catalyst however, the reaction of the catalyst could be promoted, which, consequently, improved the conversion efficiency. The experimented parameters were heating energy, heating position, heating temperature and the carbon monoxide (CO) setting level. The heating temperatures included 100, 140 and 180 deg. C, while three different heating powers and six different heating positions were used. The CO levels were set as 1.0%, 1.8% and 2.3%. The best CO conversion efficiency was obtained by applying heating at the inlet of the catalyst. It was revealed that a high heating power induced a high temperature rising rate and, consequently, a high CO conversion efficiency. In terms of energy economy efficiency, however, heating at the mid-section of the catalyst gave the best results and through a relatively low heating power

  14. Impact of different improvement measures on the thermal performance of a solar collector field for district heating

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon

    2018-01-01

    The paper describes the impact of different measures to improve the thermal performance of a solar heating plant for district heating applications. The impact of the different measures was evaluated through a validated TRNSYS-Matlab model. The model included details such as effect of the flow...... temperature of the collector field, control strategy based on weather forecast and use of different heat transfer fluids. The results showed that accurate input to the control strategy improved the yearly energy output of the plant by about 3%. If accurate input is not technically or economically feasible...... regime in the absorber pipes on the collector efficiency, flow distribution in the collector field, thermal capacity of the pipes and shadows from row to row. The improvement measures included variation of the operating temperatures, accurate input to the control strategy, feedback control on the outlet...

  15. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  16. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  17. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  18. Economic evaluation of energy saving measures in a common type of Greek building

    International Nuclear Information System (INIS)

    Nikolaidis, Yiannis; Pilavachi, Petros A.; Chletsis, Alexandros

    2009-01-01

    This paper deals with the economic analysis and evaluation of various energy saving measures in the building sector, focusing on a domestic detached house in Greece, i.e. in a typical Mediterranean climate. In order to detect the energy saving measures that, in addition to energy benefits, can also provide economic profits, the study examines the following measures: all kinds of insulation; upgrading of the heating system; use of thermal solar systems; upgrading of lighting; upgrading of electric appliances; upgrading of the cooling system. The economic evaluation methods used for ranking the energy saving measures are the Net Present Value, the Internal Rate of Return, the Savings to Investment Ratio and the Depreciated Payback Period. It has been found that amongst the most effective energy saving methods are the upgrading of lighting, the insulation of the roof of the building and the installation of an automatic temperature control system.

  19. Solar Sustainable Heating, Cooling and Ventilation of a Net Zero Energy House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Olesen, Bjarne W.

    Present work addresses the heating, cooling and ventilation concerns of the Technical University of Denmark’s house, Fold, for Solar Decathlon Europe 2012. Various innovative approaches are investigated, namely, utilization of ground, photo-voltaic/thermal (PV/T) panels and phase change materials...... (PCM). The ground heat exchanger acts as the heat sink and heat source for cooling and heating seasons, respectively. Free cooling enables the same cooling effect to be delivered with 8% of the energy consumption of a representative chiller. The heating and cooling needs of the house are addressed...... by the embedded pipes which are coupled with the ground. Ventilation is mainly used to control the humidity and to remove sensory and chemical pollution. PV/T panels enable the house to be a “plus” energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively...

  20. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  1. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-01-01

    The ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated, including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using results based on Monte Carlo simulations (Murakami, S., et al., Fusion Eng. Des. 26 (1995) 209). The global energy confinement time including the energetic ion effect can be expressed in heliotrons in terms of ICRF heating power, plasma density and magnetic field strength. Results in plasmas at CHS show a systematic decrease of the global energy confinement time due to energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. The model is also applied to ICRF minority heating in LHD plasmas in two cases of typical magnetic configurations. A clear increase of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while a decrease is observed in the 'standard' configuration. (author)

  2. Wave heating and the U.S. magnetic fusion energy program

    International Nuclear Information System (INIS)

    Staten, H.S.

    1985-01-01

    The U.S. Government's support of the fusion program is predicated upon the long-term need for the fusion option in our energy future, as well as the near-term benefits associated with developments on the frontier of science and high technology. As a long-term energy option, magnetic fusion energy has the potential to provide an inexpensive, vast, and secure fuel reserve, to be environmentally clean and safe. It has many potential uses, which include production of central station electricity, fuel for fission reactors, synthetic fuels, and process heat for such applications as desalination of sea water. This paper presents an overview of the U.S. Government program for magnetic fusion energy. The goal and objectives of the U.S. program are reviewed followed by a summary of plasma experiments presently under way and the application of wave heating to these experiments

  3. Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF

    Science.gov (United States)

    Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.

    2017-08-01

    The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.

  4. Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of a steady heat flux to a given water-cooled surface by means of a system energy balance. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Combination of a gas heat pump with geothermal energy and solar heat utilisation; Kombination einer Gaswaermepumpe mit Geothermie und Solarwaermenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Andreas [Robur GmbH, Friedrichshafen (Germany)

    2009-01-15

    A home for handicapped persons in Berlin was modernised. This included the installation of a gas-fuelled absorption heat pump combined with geothermal heat supply and solar heating. CO2 emissions and primary energy consumption were reduced considerably by this concept. (orig.)

  6. Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories

    International Nuclear Information System (INIS)

    Miah, J.H.; Griffiths, A.; McNeill, R.; Poonaji, I.; Martin, R.; Leiser, A.; Morse, S.; Yang, A.; Sadhukhan, J.

    2015-01-01

    Highlights: • A new practical heat integration framework incorporating heat pump technology for simple and complex food factories. • A decision making procedure was proposed to select process or utility heat integration in complex and diverse factories. • New stream classifications proposed to identify and compare streams linked between process and utility, especially waste heat. • A range of ‘Heat Pump Thresholds’ to identify and compare heat pump configurations with steam generation combustion boiler. - Abstract: The recovery of heat has long been a key measure to improving energy efficiency and maximising the heat recovery of factories by Pinch analysis. However, a substantial amount of research has been dedicated to conventional heat integration where low grade heat is often ignored. Despite this, the sustainability challenges facing the process manufacturing community are turning interest on low grade energy recovery systems to further advance energy efficiency by technological interventions such as heat pumps. This paper presents a novel heat integration framework incorporating technological interventions for both simple and complex factories to evaluate all possible heat integration opportunities including low grade and waste heat. The key features of the framework include the role of heat pumps to upgrade heat which can significantly enhance energy efficiency; the selection process of heat pump designs which was aided by the development of ‘Heat Pump Thresholds’ to decide if heat pump designs are cost-competitive with steam generation combustion boiler; a decision making procedure to select process or utility heat integration in complex and diverse factories; and additional stream classifications to identify and separate streams that can be practically integrated. The application of the framework at a modified confectionery factory has yielded four options capable of delivering a total energy reduction of about 32% with an economic payback

  7. Energy and economic savings using geothermal heat pumps in different climates

    International Nuclear Information System (INIS)

    Morrone, Biagio; Coppola, Gaetano; Raucci, Vincenzo

    2014-01-01

    Highlights: • Numerical study on 20 years Ground Source Heat Pumps (GSHPs) operation is achieved. • Increase in ground temperature due to GSHP can occur during 20 years operation. • Economical and GHG savings using GSHP show divergent trends for different climates. - Abstract: A technical and economic feasibility study is performed on residential buildings, heated and cooled by geothermal heat pumps (GHPs) equipped with energy piles. The analysis is carried out for two different climate locations and building energy needs, which have been evaluated following the current European standard ISO 13790. The energy pile system performance coupled with the GHP has been numerically calculated by using the PILESIM2 software over 20 years of operation. The Primary Energy Saving (PES) indices were calculated comparing the actual GHPs systems with traditional cooling and heating systems, together with their sensitivity to thermal and cooling loads for two different climate locations. Also, economic savings and greenhouse gases (GHG) reduction have been calculated resulting from the GHPs use. The results show that in mild climates, where the GHPs are mainly used as HP, the annual average temperature of the ground around the energy piles can increase up to about 10 °C after many years of operation, whereas in cold climates the increase is nearly negligible. Thus, the economical profit of GHPs is more difficult to achieve in mild climates than in cold ones. Conversely, GHG emission reduction is found to be larger in mild climates than in cold ones

  8. Liquid neon heat intercept for superconducting energy storage magnets

    International Nuclear Information System (INIS)

    Khalil, A.; McIntosh, G.E.

    1982-01-01

    Previous analyses of heat intercept solutions are extended to include both insulation and strut heat leaks. The impact of using storable, boiling cryogens for heat intercept fluids, specifically liquid neon and nitrogen, is also examined. The selection of fluid for the heat intercepts is described. Refrigeration power for 1000 and 5000 MWhr SMES units is shown with optimum refrigeration power for each quantity shown in tables. Nitrogen and Neon cooled intercept location for minimum total refrigeration power for a 5000 MWhr SMES are each shown, as well as the location of nitrogen and neon cooled intercepts for minimum total refrigeration power for 5000 MWhr SMES. Cost comparisons are itemized and neon cost and availability discussed. For a large energy storage magnet system, liquid neon is a more effective heat intercept fluid than liquid nitrogen. Reasons and application of the conclusion are amplified

  9. Optical sensor for heat conduction measurement in biological tissue

    International Nuclear Information System (INIS)

    Gutierrez-Arroyo, A; Sanchez-Perez, C; Aleman-Garcia, N

    2013-01-01

    This paper presents the design of a heat flux sensor using an optical fiber system to measure heat conduction in biological tissues. This optoelectronic device is based on the photothermal beam deflection of a laser beam travelling in an acrylic slab this deflection is measured with a fiber optic angle sensor. We measure heat conduction in biological samples with high repeatability and sensitivity enough to detect differences in tissues from three chicken organs. This technique could provide important information of vital organ function as well as the detect modifications due to degenerative diseases or physical damage caused by medications or therapies.

  10. Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities

    International Nuclear Information System (INIS)

    Borge-Diez, David; Colmenar-Santos, Antonio; Pérez-Molina, Clara; López-Rey, África

    2015-01-01

    In Europe energy services are underutilized in terms of their potential to improve energy efficiency and reduce external energy dependence. Agricultural and stockbreeding sectors have high potential to improve their energy efficiency. This paper presents an energy model for geothermal source heat pumps in stockbreeding facilities and an analysis of an energy services business case. The proposed solution combines both energy cost reduction and productivity increases and improves energy services company financing scheme. CO 2 emissions drop by 89%, reducing carbon footprint and improving added value for the product. For the two different evaluated scenarios, one including winter heating and one including heating and cooling, high IRR (internal return rate) values are obtained. A sensitivity analysis reveals that the IRR ranges from 10.25% to 22.02%, making the investment attractive. To make the research highly extensible, a sensitivity analysis for different locations and climatic conditions is presented, showing a direct relationship between financial parameters and climatic conditions. A Monte Carlo simulation is performed showing that initial fuel cost and initial investment are the most decisive in the financial results. This work proves that energy services based on geothermal energy can be profitable in these sectors and can increase sustainability, reduce CO 2 emissions and improve carbon footprint. - Highlights: • Geothermal heat pumps are studied to promote industrial energy services. • Geothermal energy in farming facilities improves global competitiveness. • Research shows profitability of low enthalpy geothermal energy services. • Climatic conditions sensitivity analysis reveals IRR ranges from 10.25% to 22.02%. • Added market value for the product as carbon footprint reduction, are achieved

  11. Electrical heating tapes, their use, energy consumption and energy savings potential

    International Nuclear Information System (INIS)

    Nipkow, J.; Lingenhel, S.

    2002-01-01

    Heating cables require about 0.6% of Swiss electricity consumption, approximately as much as all TV-sets. Most important applications are domestic hot water distribution tubing, frost protection (tubing, gutters) and industrial tubing, each requiring about 1/3. For over 10 years, self-regulating technology is standard for heating cables and offers pre-defined maintenance temperatures. To minimize electricity consumption, in most applications additional control devices (timer, temperature-/ power control) are necessary. The study could not give a general answer to whether domestic hot water distribution systems should be heated by heating cables or circulation systems. The best solution depends on the specific building circumstances. Conclusions of the technical and market analysis say that measures in different fields can transfer the saving potentials into practice: architects and designers of sanitary and electrical installations should be informed by articles in specialized magazines: the goal is either to avoid the use of heating cables or to minimize their electricity consumption, training of plumbers and electricians should treat the efficient use of heating cables. An instruction leaflet is to be created. Building owners and operators should be informed by their specialized magazines about problems with heating cables. (author)

  12. Using Heat Pump Energy Storages in the Power Grid

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2011-01-01

    The extensive growth of installed wind energy plants lead to increasing balancing problems in the power grid due to the nature of wind fields and diurnal variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction...... and large fluctuations in prices. The paper presents a method which takes advantage of heat capacity in single-family houses using heat pumps which are anticipated to be installed in large numbers in Denmark in next decade. This type of heating gives a large time constant and it is shown possible to move...

  13. Direct electronic measurement of Peltier cooling and heating in graphene

    NARCIS (Netherlands)

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of

  14. Measured performance of 12 demonstation projects - IEA Task 13 "advanced solar low energy buildings"

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Poel, Bart

    2005-01-01

    This paper presents the results obtained from measurements and experiences gained from interviews on 12 advanced solar low energy houses designed and built as part of the IEA Solar Heating and Cooling Programme – Task 13. Three years after the IEA Task 13 formally ended, the results were collected...... climate conditions are compared and differences explained. Special innovative installations and systems are de-scribed and evaluated. In general the measured energy consumption was higher than the expected values due to user influence and unforeseen technical problems but still an energy saving of 60...

  15. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  16. Energy Consumption and Indoor Climate Measurements in New Low-Energy Houses

    DEFF Research Database (Denmark)

    Mørck, Ove; Andersen, Karen Holmegaard; Bergsøe, Niels Christian

    2013-01-01

    The CLASS1 project commenced in 2007 and involves 5 countries: Denmark, Estonia, France, Italy and Romania. Originally, 442 dwellings, a kindergarten and an activity centre for elderly people were to be designed and constructed as "low-energy class 1" houses according to requirements set by the M......The CLASS1 project commenced in 2007 and involves 5 countries: Denmark, Estonia, France, Italy and Romania. Originally, 442 dwellings, a kindergarten and an activity centre for elderly people were to be designed and constructed as "low-energy class 1" houses according to requirements set...... dwellings and a CO2-neutral district heating network will not be constructed within the timeframe of the project Therefore, a contingency plan was developed introducing the renovation of public buildings and large-scale implementation of solar cells on public buildings of the municipality. The CLASS 1...... project used the requirements to low-energy buildings as a driving force for the technological development of 6 different key building components/technologies: windows, slab and foundation insulation systems, bio-mass gasification, local district heating distribution networks, ventilation heat recovery...

  17. Cost of district heating using geothermal energy; Ist geothermische Waerme wirtschaftlich?

    Energy Technology Data Exchange (ETDEWEB)

    Oppermann, G [GRUNEKO AG, Ingenieure fuer Energiewirtschaft, Basel (Switzerland)

    1997-12-01

    The environmental advantages of a district heating network using geothermal energy are obvious. On the other hand utilizing geothermal energy is considered to be very expensive. The goal of this paper is to compare the costs of geothermal energy with other renewable energy sources. Based on the costs of realized plants and projects the following energy sources have been analysed. Geothermal energy, water of tunnel-drainage, waste heat of a sewage disposal platn and waste wood. All plants have a district heating network. The results are a contribution to the actuel discussion about public subsiding of geothermal energy. (orig.) [Deutsch] Die oekologischen Vorteile einer geothermischen Fernwaermeversorgung sind fuer jeden, der Bohrungen in Erwaegung zieht, unschwer erkennbar. Wie steht es aber mit den Kosten einer geothermischen Nutzung? Hier beleben Horrorzahlen wie auch Wunschdenken die Diskussionen. Der Artikel beabsichtigt einen sachlichen Beitrag zu dieser Diskussion uz liefern. Konkrete Bauprojekte im Megawattbereich der GRUNEKO AG werden kostenmaessig nach gleichen Kriterien analysiert und verglichen. Auf goethermischer Seite wird ein Doublettensystem und eine Tunnelwasserwaermenutzung kostenmaessig analysiert. Als Quervergleich werden ebenfalls GRUNEKO-Projekte mit regenerierbaren Energietraegern herangezogen (Holzschnitzelanlage, Klaeranlagenabwaerme, Seewasser-Abkuehlung). Alle Analgen haben Waermeverteilnetze. Die nachgewiesenen Kostendifferenzen zwischen Geothermie und anderen regenerativen Waermversorgungen koennten einen Beitrag leisten zu der gegenwaertig aktuellen `Ueberpruefung staatlicher Foerderungsmassnahmen zugunsten einer verstaerkten Nutzung der Geothermie`. (orig.)

  18. Development of graphite foam infiltrated with MgCl 2 for a latent heat based thermal energy storage (LHTES) system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Kim, Taeil; Zhao, Weihuan; Yu, Wenhua; France, David M.

    2016-08-01

    Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermal diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.

  19. Electrical Energy Harvesting from Cooker’s Wasted Heat with Using Conduction Cooling

    Directory of Open Access Journals (Sweden)

    Amouzard Mahdiraji Wincent Ghafour

    2018-01-01

    Full Text Available In order meet the demand of electricity in current era, the need for new sources of energy even in very minimal amount, could be done with proper research and technology advancement in order to convert as much wasted energy as possible. Collecting and analyses cooker’s wasted heat as a main wasted energy source become the main interest for this research. This application can be installed either in household usage or commercial usage. Based on majority stove in household datasheet it shown that the efficiency of the stove is approximately 50%. With half of the efficiency turn into wasted heat, this application is suitable for thermoelectric generator (TEG to harvest the heat. The objective of this research is to determine whether the thermoelectric generator (TEG would able to power the 3V LED light as a small lighting system in household. Several designs with five TEGs in series circuit are tested to the application to analyses which method generated a better result. Since this research only focus in using a conduction cooling, aluminum heat sink will be utilized either for heat absorption or heat rejection. The maximum temperature differences between hot side and cold side is 209.83 °C with average power approximately 0.1 W.

  20. Gas-solid heat exchange in a fibrous metallic material measured by a heat regenerator technique

    NARCIS (Netherlands)

    Golombok, M.; Jariwala, H.; Shirvill, C.

    1990-01-01

    The convective heat transfer properties of a porous metallic fibre material used in gas surface combustion burners are studied. The important parameter governing the heat transfer between hot gas and metal fibre—the heat transfer coefficient—is measured using a non-steady-state method based on