WorldWideScience

Sample records for heated capillary inlet

  1. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions

    Science.gov (United States)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten

    2016-09-01

    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  2. Transient analysis of a capillary pumped loop heat pipe

    Science.gov (United States)

    Kiper, A. M.; Feric, G.; Anjum, M. I.; Swanson, T. D.

    1990-01-01

    A bench-top Capillary Pumped Loop (CPL) test system has been developed and tested to investigate the transient mode operation of this system by applying a step power input to the evaporators. Tests were conducted at several power input and evaporator inlet subcooling combinations. In addition, a lumped-heat-capacity model of the CPL test system has been presented which is used for predicting qualitatively the transient operation characteristics. Good agreement has been obtained between the predicted and the measured temperature variations. A simple evaporator inlet subcooler model has also been developed to study effects of inlet subcooling on the steady-state evaporator wall temperature. Results were compared with the test data collected.

  3. A Multi-capillary Inlet Jet Disruption Electrodynamic Ion Funnel Interface for Improved Sensitivity Using Atmospheric Pressure Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Man (ASSOC WESTERN UNIVERSITY); Tang, Keqi (BATTELLE (PACIFIC NW LAB)); Udseth, Harold R.(BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2001-09-01

    A new multicapillary inlet and ion funnel interface for electrospray ionization-mass spectrometry has been developed and demonstrated to achieve higher ion transmission efficiency compared to a single capillary inlet and ion funnel interface. Even though the distance between the end of the ESI inlet capillary and the exit of the ion funnel (10 cm) is significantly longer than that of the conventional interface (typically a few mm), a significant part of the directed gas flow persists into the first stage of pumping and results in an increased gas load to the second chamber. A jet disrupter made of a circular metal disk placed on axis in the ion funnel enhanced the dispersion of the directed gas flow from a multi-capillary inlet and was found to improve the ion transmission. The ion funnel with the jet disrupter demonstrated a 15% improvement in ion transmission compared to that without the jet disrupter, and simultaneously reduced the pumping speed required for the first or second stage by a factor of 2 to 3. Compared to the sensitivity with the standard mass spectrometer interface (an API 3000, SCIEX, Concord, ON, Canada) in MS/MS operation using an interface equipped with the jet disrupter and ion funnel, a factor of 5.3 to 10.7 enhancement in signal was observed for samples with concentrations of 100 to 500 pg/ul and 10.2 to 14.1 for concentrations of 10 to 50 pg/ul. The decreased enhancement at higher concentrations is attributed to space change effects.

  4. Capillary Pump Loop (CPL) heat pipe development status report

    Science.gov (United States)

    1982-01-01

    The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.

  5. Some non-Fourier heat conduction characters under pulsed inlet conditions

    Institute of Scientific and Technical Information of China (English)

    FAN Qingmei; LU Wenqiang

    2004-01-01

    Through simulating one- and two-dimensional non-Fourier heat conduction problems under different pulsed inlet conditions, this paper numerically predicts some different non-Fourier heat conduction characters arose from different pulse types and different pulse frequencies. Meanwhile, the differences among thermal wave, non-Fourier and Fourier heat conduction are also showed.

  6. Fabrication and modeling of narrow capillaries for vacuum system gas inlets

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Jensen, Søren; Hansen, Ole

    2005-01-01

    Micrometer-sized cylindrical capillaries with well-controlled dimensions are fabricated using deep reactive ion etching. The flow through the capillaries is experimentally characterized for varying pressures, temperatures, and diameters. For the parameters used, it is shown that the Knudsen numbe...... is in the intermediate flow regime, and Knudsen's expression for the flow fit the data well. The flow properties of the capillaries make them ideal for introducing gas into vacuum systems and in particular mass spectrometers. ©2005 American Institute of Physics...

  7. Capillary flow through heat-pipe wicks

    Science.gov (United States)

    Eninger, J. E.

    1975-01-01

    Theoretical expressions are obtained for the capillary-pressure limit and permeability of a fibrous wick in terms of the porosity and fiber diameter. Hysteresis in capillary pressure is included through the introduction of an empirical hysteresis constant. A partial-saturation model based on the statistical distribution of local porosity requires an additional empirical constant, the standard deviation. The theory is compared to results of a beta-ray absorption experiment that measured the liquid content of a partially saturated wick and to results of permeability measurements on partially and fully saturated wicks. A simple wick-weighing experiment is described that yields values for the empirical hysteresis constant and the standard deviation. Theoretical results are used to design an optimum wick.

  8. Heat Transfer in a Fin-Tube Type Heat Exchanger with Multiple Inlet Ports

    Science.gov (United States)

    Umekawa, Hisashi; Ozawa, Mamoru; Kawamoto, Akira; Takifuji, Tomonori; Kataoka, Masaki

    Numerical simulation of gas flow in a fin-tube type heat exchanger model has been conducted. The simulation model is two-dimensional and has three inlet ports at the lower boundary and one exit port at the upper boundary. The flow field is partitioned into several sub-channels by spacers. In order to realize the uniform temperature distribution at the exit port and relatively uniform heat transfer rate among the spacers,It is necessary to arrange so that the higher temperature fluid is injected from center port at lower velocity and the lower temperature fluid is injected from both side ports at higher velocity. The thermal flow visualization experiment with thermosensitive liquid-crystal sheet has confirmed the simulation results.

  9. Capillary layer structure effect upon heat transfer in flat heat pipes

    Science.gov (United States)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    The research presented in this paper aimed to determine the maximum heat transfer a heat pipe can achieve. To that purpose the structure of the capillary layer which can be deposited on the walls of the heat pipe was investigated. For the analysis of different materials that can produce capillarity, the present study takes into account the optimal thickness needed for this layer so that the accumulated fluid volume determines a maximum heat transfer. Two materials that could be used to create a capillary layer for the heat pipes, were investigated, one formed by sintered copper granules (the same material by which the heat pipe is formed) and a synthetic material (cellulose sponge) which has high absorbing proprieties. In order to experimentally measure and visualize the surface characteristics for the considered capillary layers, laser profilometry was employed.

  10. Experimental Studies on Heat Transfer Characteristics In Inverted Evaporator of Micaro/Miniature Capillary Pumped Loop

    Institute of Scientific and Technical Information of China (English)

    ZhuNing; HouZengqi; 等

    1996-01-01

    This paperpresents the experimental inverstigation on the heat transfer characteristics in inverted evaporator of Micro/Miniature Capillary Pumped Loop(MCPL).THe evaporation heat transfer coefficients as a function of the heat flux density,the geometrical sizes of capillary wick structure and the vapor grooves are shown.Qualitative analysis of the heat transfer characteristics of the inverted evaporator of MCPL is also made.

  11. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples.

  12. Secondary flow and heat transfer control in gas turbine inlet nozzle guide vanes

    Science.gov (United States)

    Burd, Steven Wayne

    1998-12-01

    Endwall heat transfer is a very serious problem in the inlet nozzle guide vane region of gas turbine engines. To resolve heat transfer concerns and provide the desired thermal protection, modern cooling flows for the vane endwalls tend to be excessive leading to lossy and inefficient designs. Coolant introduction is further complicated by the flow patterns along vane endwall surfaces. They are three-dimensional and dominated by strong, complex secondary flows. To achieve performance goals for next-generation engines, more aerodynamically efficient and advanced cooling concepts, including combustor bleed cooling, must be investigated. To this end, the overall performance characteristics of several combustor bleed flow designs are assessed in this experimental study. In particular, their contributions toward secondary flow control and component cooling are documented. Testing is performed in a large-scale, guide vane simulator comprised of three airfoils encased between one contoured and one flat endwall. Core flow is supplied to this simulator at an inlet chord Reynolds number of 350,000 and turbulence intensity of 9.5%. Combustor bleed cooling flow is injected through the contoured endwall via inclined slots. The slots vary in cross-sectional area, have equivalent slot widths, and are positioned with their leeward edges 10% of the axial chord ahead of the airfoil leading edges. Measurements with hot-wire anemometry characterize the inlet and exit flow fields of the cascade. Total and static pressure measurements document aerodynamic performance. Thermocouple measurements detail thermal fields and permit evaluation of surface adiabatic effectiveness. To elucidate the effects of bleed injection, data are compared to an experiment taken without bleed. The influence of bleed mass flow rate and slot geometry on the aerodynamic losses and thermal protection arc given. This study suggests that such combustor bleed flow cooling offers significant thermal protection without

  13. Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Majdi Yazdi

    2015-10-01

    Full Text Available Gas turbines incur a loss of output power during hot seasons due to high ambient air temperatures, and input air cooling systems are often used to partly offset this problem. Here, results are reported for an investigation of the utilization of a heat pump to cool the inlet air of a gas turbine compressor. The analyses are carried out for two climates: the city of Yazd, Iran, which has a hot, arid climate, and Tehran, Iran, which has a temperate climate. The heat pump input power is obtained from the gas turbine. The following parameters are determined, with and without the heat pump: net output power, first and second law efficiencies, quantities and costs of environmental pollutants, entropy generation and power generation. The results suggest that, by using the air-inlet cooling system, the mean output power increases during hot seasons by 11.5% and 10% for Yazd and Tehran, respectively, and that the costs of power generation (including pollution costs decrease by 11% and 10% for Yazd and Tehran, respectively. Also, the rate of generation of pollutants such as NOx and CO decrease by about 10% for Yazd and 35% for Tehran, while the average annual entropy generation rate increases by 9% for Yazd and 7% for Tehran, through air-inlet cooling. The average increase of the system first law efficiency is 2% and of the system second law efficiency is 1.5% with the inlet-air cooling system.

  14. Inlet turbulence intensity level and cross-stream distribution effects on the heat transfer in plane wall jets

    Science.gov (United States)

    Adeniji-Fashola, A. A.

    1989-01-01

    The effect of the turbulence intensity level and its cross-stream distribution at the inlet on the numerical prediction of the heat transfer in a two-dimensional turbulent-wall jet was investigated. The investigation was carried out within the framework of the standard kappa-epsilon turbulence model. The predicted Nusselt number showed the influence of the turbulence intensity level and its cross-stream distribution at the inlet to be significant but restricted to the first 15 slot widths from the inlet slot. Beyond this location, all the predictions were observed to collapse onto a single curve which exhibited a maximum over-prediction of about 30 percent when compared with the available experimental data.

  15. Convective heat transfer studies at high temperatures with pressure gradient for inlet flow Mach number of 0.45

    Science.gov (United States)

    Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.

    1984-01-01

    Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.

  16. Investigation of the influence of capillary effect on operation of the loop heat pipe

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz

    2014-09-01

    Full Text Available In the paper presented are studies on the investigation of the capillary forces effect induced in the porous structure of a loop heat pipe using water and ethanol ad test fluids. The potential application of such effect is for example in the evaporator of the domestic micro-CHP unit, where the reduction of pumping power could be obtained. Preliminary analysis of the results indicates water as having the best potential for developing the capillary effect.

  17. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.

    Science.gov (United States)

    Xuan, Xiangchun; Li, Dongqing

    2005-02-04

    Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.

  18. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A. [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Institute of Mathematical Sciences, Chennai 600113 (India)

    2015-03-15

    This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field.

  19. Investigation on heat transfer characteristic and optimization of the cooling air inlet for the twin-web turbine disk

    Science.gov (United States)

    Zhang, Mengchuang; Gou, Wenxuan; Yao, Qin; Li, Lei; Yue, Zhufeng

    2017-08-01

    With a higher operation temperature, the conventional aero-turbine single web disk (SWD) has reached its limits. The twin-web disk (TWD) has been designed as a breakthrough, which has an expected performance in weight loss, strength and heat transfer efficiency. However, the lack of investigation on the position of the cooling air inlet is slowing down further application of TWD. Therefore, for a further study, inlet position optimization with maximum average Nusselt number is conducted for TWD flow structure study. The average Nusselt number result shows that the TWD has a better performance in heat transfer. All the works, including modeling and analyzing, can be referred for engineering design. And the conclusions obtained in this paper could be valuable for the future improvement of the TWD.

  20. Heat Removal Performance in accordance with the Location of the Half-blockage of the Inlet Openings of Concrete Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Yu, S. H.; Lee, J. C.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The heat transfer rate to the ambient atmosphere by convective air through a passive heat removal system under off-normal conditions reached 87.4 %. Therefore, the half-blockage of the inlet openings has a relatively small effect on the maximum temperature and temperature distributions. A temperature difference in accordance with the location of the half-blockage of the inlet openings was not found. Therefore, the influence of the direction of the half-blockage of the inlet openings reaching the heat removal performance was estimated to be minimal.

  1. Analysis of Evaporation Heat Transfer of Thin Liquid Film in a Capillary of Equilateral Triangular Cross-Section

    Institute of Scientific and Technical Information of China (English)

    Miao Jianyin; Wang Jinliang; Ma Tongze

    2001-01-01

    In this paper, theoretical analysis on evaporating heat transfer in capillary with equilateral triangular cross section is presented and numerical calculations based on glass-water system are carried out. Considering evaporation mechanism in capillary with polygonal section, one-dimensional model is used to describe the three-dimensional case. The evaporating meniscus in the capillary along axis can be divided into six regions. The following conclusions are obtained: (1) The local heat transfer coefficients and heat fluxes in capillary increase quickly in the first and second regions, and slowly in the third region. The maximum value appears at interline between the third and fourth regions, then gradually decreases in the last three regions. (2) The average heat transfer coefficients decrease when the sizes of the capillary section increase, and become larger under higher wall temperature.

  2. An Improvement on the Method for Calculating the Capillary Limit of Axial—Grooved Heat Piper

    Institute of Scientific and Technical Information of China (English)

    ChenHanzhuo; MaTongze

    1993-01-01

    A new model has been developed to predict the capillary limit of axial-grooved heat pipe.In the model the concepts of liquid saturation or liquid fraction of the cross-sectional area of groove,the modified relative permeability,absolute permeability of groove and Leverrt's function are used.The Leverrt's function is well represented by the functionf(s)=1(1/√5)(1/2-)0.175.In the model the effects of gravitational force,capillary force and viscous force are considered.The calcuated results are in good agreement with existing experimental data reported in the literature.

  3. Transport phenomena in capillary-porous structures and heat pipes

    CERN Document Server

    Smirnov, Henry

    2009-01-01

    With emphasis on the processes involved, this text explores the experimental efforts in two-phase thermal control technology research and development. This work evaluates and compares different theoretical approaches, experimental results, and models, such as semi-empirical models for critical boiling heat fluxes.

  4. Mathematic modeling of the kinetics of heat-and-humidity state of capillary-porous bodies under convection drying

    Science.gov (United States)

    Kovalnogov, Vladislav N.; Karpukhina, Tamara V.; Korotkov, Evgeny A.

    2016-06-01

    The work suggests a mathematical model and a technique for numerical research of the kinetics of a heat-and-humidity state of a capillary-porous body built on a simultaneous equations solution of heat conductivity and moisture transfer. Experimental data on a liquid diffusion coefficient in capillary-porous space of a ceramic brick are obtained. Results of numerical research of a heat-and-humidity state of a ceramic brick in the process of convective drying are presented.

  5. The influence of three-dimensional capillary-porous coatings on heat transfer at liquid boiling

    Science.gov (United States)

    Surtaev, A. S.; Pavlenko, A. N.; Kalita, V. I.; Kuznetsov, D. V.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu.

    2016-04-01

    The process of heat transfer at pool boiling of liquid (Freon R21) on tubes with three-dimensional plasma-deposited capillary-porous coatings of various thicknesses has been experimentally studied. Comparative analysis of experimental data showed that the heat transfer coefficient for a heater tube with a 500-μm-thick porous coating is more than twice as large as that in liquid boiling on an otherwise similar uncoated tube. At the same time, no intensification of heat exchange in the regime of bubble boiling is observed on a tube with a 100-μm-thick porous coating.

  6. THEORETICAL CALCULATION METHOD FOR POWDER CAPILLARY STRUCTURE OF LOOP HEAT PIPE WITH INVERTED MENISCUS

    Directory of Open Access Journals (Sweden)

    A. V. Ageenko

    2011-01-01

    Full Text Available Organization of heat exchange in the evaporator of a loop heat pipe (LHP by the principle of inverted menisci is connected with considerable non-uniformity of heat flow on an evaporating surface that reduces LHP operating characteristics. The paper considers a possible variant concerning  decrease of this non-uniformity which is not connected with the usage of an internal surface of powder capillary structure that starts playing a role at partial drainage of  a pore space. This variant presupposes creation of a system of vapor-outlet channels located inside of the capillary structure on some distance from the evaporator wall. The paper shows that such design of the LHP evaporator makes it possible to distribute heat flow on an evaporating surface much more uniformly and decrease a maximum heat flow density by several folds. Thus it is possible significantly to intensify a heat exchange process and increase a critical average heat flow and also reduce a temperature of an LHP evaporator body.

  7. Two phase capillary pumped heat transfer in the Instrument Thermal Test Bed

    Science.gov (United States)

    Didion, Jeffrey R.; Martins, Mario S.

    1992-01-01

    An experimental study of the thermal performance of two evaporators installed in the Instrument Thermal Test Bed (ITTB) was conducted. The ITTB was operated as a capillary pumped loop (CPL) with a transport length of approximately 12 meters. Empirical determinations of a general start up procedure, overall heat transfer coefficient, and minimum operating power were accomplished for each evaporator. Additionally, a detailed thermal model was developed for the High Power Spacecraft Thermal Management (HPSTM) evaporator and validated.

  8. An analytical and experimental investigation of rotating, non-capillary heat pipes

    Science.gov (United States)

    Marto, P. J.

    1972-01-01

    An approximate theoretical model is derived for laminar film condensation on the inside of a rotating, truncated cone, and is used to predict the heat transfer performance of rotating, non-capillary heat pipes for a wide variety of parametric conditions. Experimental results are presented for water, ethyl alcohol, and freon-113 in a stainless steel heat pipe rotating to speeds of 2800 rpm. Results show that these devices can be used effectively to transfer large quantities of heat in rotating systems. Predicted results agree to within + or - 20 percent of the experimental data. Dropwise condensation, instead of film condensation, improves heat pipe performance while the presence of non-condensible gases impairs performance.

  9. Design, development and test of a capillary pump loop heat pipe

    Science.gov (United States)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-01-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  10. Effects of heating the inlet air with a burner when natural air drying

    Energy Technology Data Exchange (ETDEWEB)

    Stock, W.F.; Lischynski, D.E.; Wassermann, J.D.; Frehlich, G.E.; Sokhansanj, S.

    1987-03-01

    During the 1985 and 1986 harvest seasons in Saskatchewan, cool and humid conditions reduced the performance of natural air drying systems for grains. This prompted many producers to consider supplemental heat when natural air drying. Research was conducted to investigate the implications of supplemental heating during grain drying and to develop recommendations about adding supplemental heat. Field tests were performed to compare drying time, energy consumption, quality of work, and ease of operation with different supplemental heat strategies. A computer model was developed to simulate adding supplemental heat during natural air drying, and the simulation was verified by comparing the computer simulation results with those obtained in the field tests. Natural air drying without heat was found to be more economical than with heat in the early fall. In late fall, drying costs by both methods were nearly equal but higher than in early fall. It is therefore recommended to attempt to complete all drying in early fall using natural air. If the harvest is delayed to late fall, natural air drying or supplemental heat drying can both be used. However, by adding supplemental heat, there is a very good chance of completing drying in the fall. Drying by natural air would likely have to be completed in the spring. 30 refs., 15 figs., 28 tabs.

  11. Stabilization of Mass Absorption Cross Section of Elemental Carbon for Filter-Based Absorption Photometer by Heated Inlet

    Science.gov (United States)

    Kondo, Y.; Sahu, L.; Takegawa, N.; Miyazaki, Y.; Han, S.; Moteki, N.; Hu, M.; Kim Oanh, N.; Kim, Y.

    2008-12-01

    Accurate measurements of elemental carbon (EC) or black carbon on a long-term basis are important for the studies of impacts of EC on climate and human health. In principle, mass concentrations of EC (MEC) can be estimated by the measurement of light absorption coefficient by EC. Filter-based methods, which quantify the absorption coefficient (kabs) from the change in transmission through a filter loaded with particles, have been widely used to measure MEC because of the ease of the operation. However, in practice, reliable determination of MEC has been very difficult because of the large variability in the mass absorption cross sections (Cabs), which is a conversion factor from kabs to MEC. Coating of EC by volatile compounds and co-existence of light-scattering particles greatly contributes to the variability of Cabs. In order to overcome this difficulty, volatile aerosol components were removed before collection of EC particles on filters by heating an inlet section to 400°C. The heated inlet vaporized almost completely sulfate, nitrate, ammonium, and organics without any detectable loss of EC. Simultaneous measurements of kabs by two types photometers (Particle Soot Absorption Photometer (PSAP) and Continuous Soot Monitoring System (COSMOS)) together with MEC by the EC-OC analyzer were made to determine Cabs at 6 different locations in Asia (Japan, Korea, China, and Thailand) in different seasons. The Cabs was stable to be 10.5±0.7 m2 g-1 at the wavelength of 565 nm for EC strongly impacted by emissions from vehicles and biomass burning. The stability of the Cabs for different EC sources and under the different physical and chemical conditions provides a firm basis for its use in estimating MEC in fine mode with an accuracy of about 10%.

  12. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  13. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    Science.gov (United States)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  14. [A simple preparation method of an electric heating apparatus for heating capillary chromatographic columns and its application in liquid chromatography-mass spectrometry system].

    Science.gov (United States)

    Jin, Zuyao; Lü, Yayao; Zhou, Shanshan; Hao, Feiran; Fu, Bin; Ying, Wantao; Qian, Xiaohong; Zhang, Yangjun

    2015-06-01

    For deep coverage of proteome, especially in performing qualitative identification and quantitative analysis of low-abundance proteins, the most commonly used method is the application of a longer capillary chromatographic column or a capillary column packed with smaller particle sizes. However, this causes another problem, the very high back pressure which results in liquid leaks in some connection parts in a liquid chromatograph. To solve this problem, an electric heating apparatus was developed to raise the temperature of a capillary column for reducing its back pressure, which was further applied in a capillary high performance liquid chromatography-tandem mass spectrometry system (cHPLC-MS/MS), and evaluated in the terms of chromatographic column back pressure and chromatographic column efficiency using bovine serum albumin (BSA) tryptic digests and yeast tryptic digests, separately. The results showed that at the optimum current, our electric heating apparatus could reduce the column pressure of a capillary column packed with 3 µm packing materials by at least 50% during the separation of BSA tryptic digestion and yeast tryptic digestion, compared with that without electric heating. The column efficiency was also increased slightly. This suggested that the electric heating apparatus can significantly reduce the column pressure, which provides an efficient way to use capillary chromatographic columns packed with smaller sizes of particles at a lower pressure.

  15. Shell-side distribution and the influence of inlet conditions in a model of a disc-and-doughnut heat exchanger

    Science.gov (United States)

    Founti, M. A.; Vardis, C.; Whitelaw, J. H.

    1985-09-01

    Measurements of wall pressure and of three orthogonal velocity components with their corresponding fluctuations are reported for two systems of alternating and equi-spaced doughnut and disc baffles axisymmetrically located in a water turbulent pipe flow, simulating the isothermal shell-side flow in shell and tube heat exchangers. The influence of inlet Reynolds number and of asymmetric inlet flow conditions was studied for two geometries. The velocity field was dominated by the pressure gradient and the flow around each individual baffle was influenced by the relative position of its neighbouring baffles.

  16. High Q silica microbubble resonators fabricated by heating a pressurized glass capillary

    Science.gov (United States)

    Yu, Zhe; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Chen, Wenjie; Zhang, Xuezhi; Lin, Xujun; Liu, Wenhui

    2014-11-01

    Microbubble resonators combine the unique properties of whispering gallery mode resonators with the capability of integrated microfluidics. The microbubble resonator is fabricated by heating the tapered tip of a pressurized glass capillary with oxyhydrogen flame. Firstly, a microtube with a diameter of 250um is stretched under heating of oxyhydrogen flame, the heating zone length is set to be 20mm and the length of stretch is set to be 7000um.Then nitrogen will be pumped in to the tapered microtube with the pressure of 0.1Mpa, the tapered tip will be heated by the oxyhydrogen flame continuously until a microbubble forms. An optical fiber taper with a diameter of 2 um, fabricated by stretching a single-mode optical fiber under flame was brought in contact with the microbubble to couple the light from a 1550nm tunable diode laser into the whispering gallery mode. The microbubble resonator has a Q factors up to 1.5 × 107 around 1550nm. Different concentrations of ethanol solution (from 5% to 30%) are filled into it in order to test the refractive index sensing capabilities of such resonator, which shows a sensitivity of 82nm/RIU.

  17. Improved ion transmission from atmospheric pressure to high vacuum using a multicapillary inlet and electrodynamic ion funnel interface

    Science.gov (United States)

    Kim; Udseth; Smith

    2000-10-15

    A heated multicapillary inlet and ion funnel interface was developed to couple an electrospray ionization (ESI) source to a high-vacuum stage for obtaining improved sensitivity in mass spectrometric applications. The inlet was constructed from an array of seven thin-wall stainless steel tubes soldered into a central hole of a cylindrical heating block. An electrodynamic ion funnel was used in the interface region to more effectively capture, focus, and transmit ions from the multicapillary inlet. The interface of seven capillary inlets with the ion funnel showed more than 7 times higher transmission efficiency compared to that of a single capillary inlet with the ion funnel and a 23-fold greater transmission efficiency than could be obtained using the standard orifice-skimmer interface of a triple-quadrupole MS. The multiple-capillary inlet and ion funnel interface showed an overall 10% ion transmission efficiency and approximately 3-4% overall detection efficiency of ions from solution based (i.e., prior to electrospray). The improved performance was achieved under conditions where ESI operation is robust and results in a significant increase in dynamic range.

  18. Thermal Energy Storage in the Ground of a Greenhouse by the Polypropylene Capillary Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Lazâar

    2008-01-01

    Full Text Available The problem of temperature inversion is one of solar origin principal problems about which the cultures under shelters complain. Indeed, for the winter period, the temperature under greenhouse is very low at night and it is rather high during the day in summer. Consequently, the heating of the greenhouses is essential. In this work, we studied the advisability of using two exchangers coupled between them to manage thermal energy in a greenhouse. The first system is a battery of plaits with capillary tubes buried under ground with a depth of 70 cm. The second is an air exchanger based on plastic tubes black known as agrotherms suspended with two meters and half height. The hot water, which circulates in the exchangers, is provided by the hot-water tank of the electro-solar power station of the Center of Energy Researches and Technologies (CRTEn from Tunisia.

  19. Study on Heat Transfer and Pressure Drop in a Spiral Capillary Tube

    Science.gov (United States)

    Asano, Hitoshi; Takenaka, Nobuyuki

    Adiabatic vertically upward and downward air-water two-phase flow characteristics in a commercial plate heat exchanger were investigated based on visualization experiments by a neutron radiography method. From the visualized results of gas-liquid two-phase flows in a single channel, large difference in the flow pattern between the upward and downward flows was observed at lower gas volumetric flux less than about 2 m/s. In this case, the flow pattern for the upward and downward flow was an intermittent flow and separate flow, respectively. For high gas volumetric flux above 13 m/s, liquid distribution in the heat exchanger seemed to be homogenous for the both flow directions. In spite of the difference in flow pattern for low gas volumetric flux, the effect of the flow direction on the average void fraction was little over the experimental range. On the other hand, liquid distributions into 18 parallel channels were evaluated from the measured results of liquid volumetric fractions in each channel. It was shown that the liquid distribution strongly depended on the inlet flow condition and configuration of the header.

  20. In-line application of electric field in capillary separation systems: Joule heating, pH and conductivity.

    Science.gov (United States)

    Eriksson, Björn O; Skuland, Inger Lill; Marlin, Nicola D; Andersson, Magnus B O; Blomberg, Lars G

    2008-03-15

    This study concerns the technique electric field-assisted capillary liquid chromatography. In this technique, an electric field is applied over the separation capillary in order to provide an additional selectivity. In this technique, the electric field is applied in-line in the separation capillary and here the electric current is the factor limiting the magnitude of applied electric field. The influence of Joule heating and other factors on the current in such systems has been investigated. The temperature in the capillary was first measured within a standard CE set-up, as function of effect per unit of length. Then the same cooling system was applied to an in-line set-up, to replicate the conditions between the two systems, and thus the temperature. Thus Joule heating effects could then be calculated within the in-line system. It was found that for systems applying an electric field in line, the direct influence from Joule heating was only relatively small. The pH in the capillary was measured in the in-line set-up using cresol red/TRIS solutions as pH probe. Significant changes in pH were observed and the results suggested that electrolysis of water is the dominant electrode reaction in the in-line system. In summary, the observed conductivity change in in-line systems was found to be mainly due to the pH change by hydrolysis of water, but primarily not due the temperature change in the capillary column.

  1. Heat Transfer with Flow and Phase Change in an Evaporator of Miniature Flat Plate Capillary Pumped Loop

    Institute of Scientific and Technical Information of China (English)

    Zhongmin WAN; Wei LIU; Zhaoqing ZHENG; A. Nakayama

    2007-01-01

    An overall two-dimensional numerical model of the miniature flat plate capillary pumped loop (CPL) evaporator is developed to describe the liquid and vapor flow, heat transfer and phase change in the porous wick structure,liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall.The entire evaporator is solved with SIMPLE algorithm as a conjugate problem. The effect of heat conduction of metallic side wall on the performance of miniature flat plate CPL evaporator is analyzed, and side wall effect heat transfer limit is introduced to estimate the performance of evaporator. The shape and location of vapor-liquid interface inside the wick are calculated and the influences of applied heat flux, liquid subcooling, wick material and metallic wall material on the evaporator performance are investigated in detail. The numerical results obtained are useful for the miniature flat plate evaporator performance optimization and design of CPL.

  2. Effect of Heat Transfer on Oscillatory Flow of Blood through a Permeable Capillary

    Directory of Open Access Journals (Sweden)

    Aniruddha Sinha

    2016-01-01

    Full Text Available Of concern in the paper is a study on heat transfer in the unsteady magnetohydrodynamic (MHD flow of blood through a porous segment of a capillary subject to the action of an external magnetic field. Nonlinear thermal radiation and velocity slip condition are taken into account. The time-dependent permeability and suction velocity are considered. The governing non-linear patial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using Crank-Nicolson scheme. The computational results are presented in graphical/tabular form and thereby some theoretical predictions are made with respect to the hemodynamical flow of blood in a hyperthermal state under the action of a magnetic field. Effects of different parameters are adequately discussed. The results clearly indicate that the flow is appreciably influenced by slip velocity and also by the value of the Grashof number. It is also observed that the thermal boundary layer thickness enhances with increase of thermal radiation.

  3. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  4. Measurement of Liquid Viscosities in Tapered or Parabolic Capillaries.

    Science.gov (United States)

    Ershov; Zorin; Starov

    1999-08-01

    The possibility of using tapered or parabolic capillaries for measurement of liquid viscosities is investigated both experimentally and theoretically. It is demonstrated that even small deviations in capillary radius from a constant value may substantially affect measurement results. Equations are derived which allow correct analysis of the measurement results in tapered or parabolic capillaries. The following cases are analyzed: a water imbibition into a tapered or parabolic capillary and displacement of one liquid by another immiscible liquid in tapered or parabolic capillaries. Two possibilities are considered: (a) the narrow end of the capillary as capillary inlet and (b) the wide end of the capillary as capillary inlet. Copyright 1999 Academic Press.

  5. An Experimental Parametric Study of Geometric, Reynolds Number, and Ratio of Specific Heats Effects in Three-Dimensional Sidewall Compression Scramjet Inlets at Mach 6

    Science.gov (United States)

    Holland, Scott D.; Murphy, Kelly J.

    1993-01-01

    Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.

  6. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  7. Capillary pumps applied to double-phase heat transfer circuits; Bombas capilares aplicadas a circuitos de transferencia de calor de dupla fase

    Energy Technology Data Exchange (ETDEWEB)

    Bazzo, Edson; Colle, Sergio [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    1995-07-01

    Circumferentially grooved capillary pumps have been successfully tested at several operational conditions. Tests carried out in the capillary pumped mode have indicated heat fluxes up to 12 kW/m{sup 2}, using Freon 11 as the working fluid. According to a mathematical model, the estimated values have indicated good agreement with measured powers. particularly, the ability in repriming is an important advantage over other type of capillary pumps. In case of dry-out, there is no need to turn off the loop, nor to increase the pressure in the reservoir, nor to inject sub-cooling liquid into the evaporator cold plate. (author)

  8. Effects of Surface Roughness of Capillary Wall on the Profile of Thin Liquid Film and Evaporation Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Qu Wei; Ma Tongze

    2001-01-01

    The surface of capillary wall can be treated to have a periodic microrelief mathematically. The roughness is micro enough compared with the thickness of the liquid film. So, the surface roughness only exerts influence on the adsorptive potential. Macroscopically, the flow field of the liquid film can be considered as that when the rough surface has an equivalent smooth surface, whose position is at the crests of the microrelief. The mechanism of heat transfer is in connection with two resistances: the thermal resistance of the liquid film conduction and the thermal resistance of the interfacial evaporation. The capillary pressure between the two sides of the vapor-liquid interface due to the interfacial curvature and the disjoining pressure owing to the thin liquid film are considered simultaneously. Several micro tubes with different micro rough surfaces are studied. The length of the evaporating interfacial region decreases with the increase of roughness angle and/or the increase of the roughness height. The heat transfer coefficient and the temperature of the vapor-liquid interface will change to fit the constant mass flow rate.

  9. Enhanced pool boiling critical heat flux induced by capillary wicking effect of a Cr-sputtered superhydrophilic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Seo, Gwang Hyeok; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    In light of boiling heat transfer, the smooth surface potentially reduces active nucleation of bubbles and rewetting of dry spots near the critical heat flux (CHF). This kind of process is highly likely to deteriorate the CHF. Thus, it is essential to produce appropriate microstructures on the surface for the enhancement of the CHF. In this study, to investigate the microstructural effect of thin film-fabricated surfaces on the pool boiling CHF, we controlled the surface roughness in a narrow range of 0.1-0.25 μm and its morphologies, in the form of micro-scratches using PVD sputtering technique. Specifically for DC magnetron sputtering, pure chromium (Cr) was selected as a target material owing to its high oxidation resistance. In order to analyze the CHF trend with changes in roughness, we introduced existing capillary wicking-based models because superhydrophilic characteristics of microstructures are highly related to the capillary wicking behaviors in micro-flow channels. After Cr sputtering under given conditions, the Cr-sputtered surfaces showed superhydrophilic characteristics and its capability became more enhanced with an increase of surface roughness. Judging from spreading behavior of a liquid droplet, the presence of micro-wicking channels, coupled with Cr nanostructures, effectively enhanced the advancing rate of drop base diameter. The CHF exhibited an increasing trend with increasing surface roughness. However, the enhancement ratio agreed poorly with the predictions of the roughness factor-based models, all of which originated from a conventional static force balance.

  10. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    Science.gov (United States)

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  11. Mathematical Modeling of Loop Heat Pipes with Multiple Capillary Pumps and Multiple Condensers. Part 1; Stead State Stimulations

    Science.gov (United States)

    Hoang, Triem T.; OConnell, Tamara; Ku, Jentung

    2004-01-01

    Loop Heat Pipes (LHPs) have proven themselves as reliable and robust heat transport devices for spacecraft thermal control systems. So far, the LHPs in earth-orbit satellites perform very well as expected. Conventional LHPs usually consist of a single capillary pump for heat acquisition and a single condenser for heat rejection. Multiple pump/multiple condenser LHPs have shown to function very well in ground testing. Nevertheless, the test results of a dual pump/condenser LHP also revealed that the dual LHP behaved in a complicated manner due to the interaction between the pumps and condensers. Thus it is redundant to say that more research is needed before they are ready for 0-g deployment. One research area that perhaps compels immediate attention is the analytical modeling of LHPs, particularly the transient phenomena. Modeling a single pump/single condenser LHP is difficult enough. Only a handful of computer codes are available for both steady state and transient simulations of conventional LHPs. No previous effort was made to develop an analytical model (or even a complete theory) to predict the operational behavior of the multiple pump/multiple condenser LHP systems. The current research project offered a basic theory of the multiple pump/multiple condenser LHP operation. From it, a computer code was developed to predict the LHP saturation temperature in accordance with the system operating and environmental conditions.

  12. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look.

    Science.gov (United States)

    Petersen, Nickolaj J; Nikolajsen, Rikke P H; Mogensen, Klaus B; Kutter, Jörg P

    2004-01-01

    An attempt is made to revisit the main theoretical considerations concerning temperature effects ("Joule heating") in electro-driven separation systems, in particular lab-on-a-chip systems. Measurements of efficiencies in microfabricated devices under different Joule heating conditions are evaluated and compared to both theoretical models and measurements performed on conventional capillary systems. The widely accepted notion that planar microdevices are less susceptible to Joule heating effects is largely confirmed. The heat dissipation from a nonthermostatically controlled glass microdevice was found to be comparable to that from a liquid-cooled-fused silica capillary. Using typically dimensioned glass and glass/silicon microdevices, the experimental results indicate that 5-10 times higher electric field strengths can be applied than on conventional capillaries, before detrimental effects on the separation efficiency occur. The main influence of Joule heating on efficiency is via the establishment of a radial temperature profile across the lumen of the capillary or channel. An overall temperature increase of the buffer solution has only little influence on the quality of the separation. Still, active temperature control (cooling, thermostatting) can help prevent boiling of the buffer and increase the reproducibility of the results.

  13. DNA mutation detection with chip-based temperature gradient capillary electrophoresis using a slantwise radiative heating system.

    Science.gov (United States)

    Zhang, Hui-Dan; Zhou, Jing; Xu, Zhang-Run; Song, Jin; Dai, Jing; Fang, Jin; Fang, Zhao-Lun

    2007-09-01

    A simple and robust chip-based temperature gradient capillary electrophoresis (TGCE) system was developed for DNA mutation/single-nucleotide polymorphism (SNP) analysis using a radiative heating system. Reproducible, stable and uniform temperature gradients were established along a 3 cm length of the electrophoretic separation channel using a single thermostated aluminium heater plate. The heater was slightly slanted relative to the plane of the glass chip at 0.2-1.3 degrees by inserting thin spacers between the plate and chip at one end to produce differences in radiative heating that created the temperature gradient. On-chip TGCE analyses of 4 mutant DNA model samples amplified from plasmid templates, each containing a single base substitution, with a wide range of melting temperatures, showed that mutations were successfully detected under a wide temperature gradient of 10 degrees C and within a short gradient region of about 3 cm (3.3 degrees C cm(-1) gradient). The radiative heating system was able to establish stable spatial temperature gradients along short microfluidic separation channels using simple peripheral equipment and manipulation while ensuring good resolution for detecting a wide range of mutations. Effectiveness of the system was demonstrated by the successful detection of K-ras gene mutations in 6 colon cancer cell lines.

  14. Simple and low cost method for metal-based micro-capillary channels for heat exchanger use

    Science.gov (United States)

    Ogbonnaya, E.; Champagne, C.; Weiss, L.

    2013-11-01

    In this work, we present an alternative, low cost method for the fabrication of a heat exchanger utilizing metal-based microchannels using the UV-LiGA technique. Lithography is used to pattern dry film negative photoresist (Ordyl P-50100) on the substrate. The resist is laminated over the substrate and exposed with a UV source. The use of dry film resist allows for simple and inexpensive microchannel patterns without requiring advanced cleanroom equipment. Following the lithography process, electrodeposition of metals is used to fill the recesses patterned in the resist. In this work, nickel has been electroplated into the bounding resist structure. After electroplating, the remaining resist is dissolved leaving free standing metal structures. The fabricated exchanger is then evaluated based on thermal absorption of simulated waste heat sources and capillary action of the metal channels themselves. Channels are fabricated to heights of 60, 70 and 90 μm respectively on copper substrate using these methods. Working fluid mass transfer rate from the heated microchannel heat exchanger (MHE) is utilized as a basic metric of operation. The mass transfer rate recorded from the nickel-based MHE is 2.19, 2.81 and 3.20 mg s-1 respectively for the different channel heights. This implies an effective thermal power consumption rate of 1.66, 2.13 and 2.42 kW m-2 respectively. By contrast, an MHE fabricated with 115 and 142 μm tall channels on silicon substrate is shown to evaporate up to 2.84 and 3.04 mg s-1 respectively, giving an effective thermal power consumption of 2.15 and 2.31 kW m-2 respectively. An investigation of working fluid contact angle with the electroplated nickel surface is also presented. The surface is found to be a porous structure stemming from the electroplating process.

  15. Correlation of Forced-convection Heat-transfer Data for Air Flowing in Smooth Platinum Tube with Long-approach Entrance at High Surface and Inlet-air Temperatures

    Science.gov (United States)

    Desmon, Leland G; Sams, Eldon W

    1950-01-01

    A heat-transfer investigation was conducted with air in an electrically heated platinum tube with long-approach entrance, inside diameter of 0.525 inch, and effective heat-transfer length of 24 inches over ranges of Reynolds number up to 320,000, average inside-tube-wall temperature up to 3053 degrees R, and inlet-air temperature up to 1165 degrees R. Correlation of data by the conventional Nusselt relation resulted in separation of data with tube-wall temperature. Good correlation was obtained, however, by use of a modified Reynolds number.

  16. Energy harvesting via thermo-piezoelectric transduction within a heated capillary

    Science.gov (United States)

    Monroe, J. G.; Bhandari, M.; Fairley, J.; Myers, O. J.; Shamsaei, N.; Thompson, S. M.

    2017-07-01

    Thermal-to-kinetic-to-electrical energy conversion is demonstrated through the use of a piezoelectric transducer (PZT) integrated within a section of an oscillating heat pipe (OHP) partially filled with water. The sealed PZT transducer was configured as a bow spring parallel to the dominant flow direction within the OHP. The bottom portion of the OHP was heated in increments of 50 W, while its top portion was actively cooled via water blocks. At ˜50 W, the internal fluid started to oscillate at ˜2-4 Hz due to the non-uniform vapor pressure generated in the OHP evaporator. Low-frequency fluid "pulses" were observed to occur across the flexed, in-line piezoelectric transducer, resulting in its deflection and measureable voltage spikes ranging between 24 and 63 mV. The OHP, while having its internal fluid enthalpy harvested, was found to still have an ultra-high thermal conductivity on-the-order of 10 kW/m K; however, its maximum operating heat load decreased due to the pressure drop introduced by the PZT material. The thermo-piezoelectric harvesting concept made possible via the thermally driven fluid oscillations within an OHP provides a passive method for combined energy harvesting and thermal management that is both scalable and portable.

  17. Thermo capillary and buoyancy convection in a fluid locally heated on its free surface; Convection thermocapillaire et thermogravitaire dans un fluide chauffe localement sur sa surface libre

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.

    1997-09-26

    coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.

  18. Dual capillary tube / heat exchanger in combination with cycle priming for reducing charge migration

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Alberto Regio; Kuehl, Steven J.; Litch, Andrew D.; Wu, Guolian

    2017-07-04

    A refrigerator appliance including a multi-capacity compressor and a refrigerant circuit with two conduits and pressure reducing devices arranged in parallel between an evaporator and a condenser. Refrigerant can flow through one, both or none of the conduits and pressure reducing devices. The appliance also has a heat exchanger in contact with either one pressure reducing device, or one conduit between the pressure reducing device and the valve system. The appliance also includes a controller for priming the compressor above a nominal capacity for a predetermined or calculated duration at the beginning of an ON-cycle.

  19. Capillary Hemangioma

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Capillary Hemangioma En Español Read in Chinese What is a capillary hemangioma? A capillary hemangioma (“strawberry” birthmark) is a benign ( ...

  20. Numerical Solutions of Heat and Mass Transfer with the First Kind Boundary and Initial Conditions in Capillary Porous Cylinder Using Programmable Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Hira Narang

    2016-06-01

    Full Text Available Recently, heat and mass transfer simulation is more and more important in various engineering fields. In order to analyze how heat and mass transfer in a thermal environment, heat and mass transfer simulation is needed. However, it is too much time-consuming to obtain numerical solutions to heat and mass transfer equations. Therefore, in this paper, one of acceleration techniques developed in the graphics community that exploits a graphics processing unit (GPU is applied to the numerical solutions of heat and mass transfer equations. The nVidia Compute Unified Device Architecture (CUDA programming model provides a straightforward means of describing inherently parallel computations. This paper improves the performance of solving heat and mass transfer equations over capillary porous cylinder with the first boundary and initial conditions numerically running on GPU. Heat and mass transfer simulation using the novel CUDA platform on nVidia Quadro FX 4800 is implemented. Our experimental results clearly show that GPU can accurately perform heat and mass transfer simulation. GPU can significantly accelerate the performance with the maximum observed speedups 10 times. Therefore, the GPU is a good approach to accelerate the heat and mass transfer simulation.

  1. INLET STRATIFICATION DEVICE

    DEFF Research Database (Denmark)

    2006-01-01

    An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...... formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous...

  2. Experimental Research on Flow and Heat Transfer Characteristic in Pin Fin Passage with Double-Inlet%双向进气时扰流柱通道内流动与换热特性试验研究

    Institute of Scientific and Technical Information of China (English)

    任芳; 潘炳华; 郭文; 朱惠人

    2013-01-01

    The tests were carried out to study the heat transfer characteristic of the pin fin at the turbine blade trailing edge in the double-inlet case. The test model of turbine blade trailing edge rib and pin fin were simplified and magnified four times so to keep the basic characteristics of trailing edge. Pressure distri⁃bution and Nusselt number distribution at measuring points were obtained through regulating flow between pin fin passage and rib passage. The results showed that, with double-inlet structure, the distribution of pressure and heat transfer were relatively uniform , and the problem of poor heat transfer in blade tip caused by large resistance of flow and much pressure loss in pin fin passage with one inlet was conquered.%  试验研究了两端进气时涡轮叶片尾缘扰流柱通道内的流动与换热特性。试验模型对涡轮叶片尾缘横肋、扰流柱通道进行了简化,并放大四倍,保留了叶片尾缘的基本特征。试验中通过调节扰流柱通道和横肋通道的流量分配,得到各测点的压力分布和努赛尔数据分布。研究结果表明,扰流柱通道两端进气结构,使整个通道的压力分布和换热分布比较均匀,克服了一端进气时流阻和压力损失较大引起的叶尖换热较差的缺点。

  3. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    Science.gov (United States)

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS.

  4. Capillary sample

    Science.gov (United States)

    ... several times a day using capillary blood sampling. Disadvantages to capillary blood sampling include: Only a limited ... do not constitute endorsements of those other sites. Copyright 1997-2017, A.D.A.M., Inc. Duplication ...

  5. Inlet stratification device

    DEFF Research Database (Denmark)

    2014-01-01

    ) with an inlet passage way (16). The upper end of the inlet pipe (6) is connected with a top cap (9). The top cap (9) and the bottom cap (10) are mutually connected by means of a wire (8) and the top cap (9) is configured as a floating device providing a buoyancy force larger than the downwardly directed force......An inlet stratification (5) is adapted to be arranged vertically in a tank (1) during operation. The stratification device (5) comprises an inlet pipe (6) formed of a flexible porous material and having a lower and upper end. The lower end of the inlet pipe (6) is connected to a bottom cap (10...

  6. 空气预热器烟气入口增设非平衡换热器的可行性分析%Feasibility of adding non-balance heat exchanger at gas inlet of air preheater

    Institute of Scientific and Technical Information of China (English)

    王春昌

    2014-01-01

    Against the rotating characteristics,low temperature corrosion ash deposition perform-ance and outlet gas temperature distribution rule of the rotary air preheater,it suggests non-bal-ance heat exchanger be added at the air preheater inlet and the flue duct be divided into several small ones.By properly reducing the inlet gas temperature of each small flue duct,the boiler ex-haust temperature becomes equilibrium and decreases on a whole.Finally,the boiler exhaust tem-perature can be reduced and the boiler efficiency and unit heat efficiency can be enhanced.%针对回转式空气预热器的旋转特性、低温腐蚀堵灰特征以及出口烟气温度分布规律,提出了在空气预热器入口设置非平衡换热器,将烟道分隔为几个小烟道,通过适度地降低各个小烟道的入口烟气温度,使锅炉排烟温度分布趋于平衡并整体有所降低,最终达到进一步降低锅炉排烟温度的目的,提高锅炉热效率或机组热效率。

  7. Direct vacuum inlet system enabling highly sensitive in-situ analysis of chemical reaction products

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard; Scott, Søren Bertelsen; Pedersen, Thomas

    , a capillary maintaining a controlled flow over a pressure drop to ultra-high vacuum, and inlet and outlet channels for an inert make up gas. The use of a direct inlet enables orders of magnitude higher sensitivity than differentially pumped systems without a loss in time response for volatile products, while...

  8. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  9. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the ratio...

  10. 热泵直供采暖两相流毛细管网性能研究%Study of two-phase flow performance of capillary net during heat pump heating

    Institute of Scientific and Technical Information of China (English)

    王振辉; 杜少勋; 季文军; 高伟

    2015-01-01

    In this paper,the gas-liquid conversion of CFD calculation model in capillary network is established by adding the quality source terms and energy source terms of two-phase flow in user-defined functions.Condensation performance of R22 in smooth tubes of small diameter is researched.The condensation process of R22 is calculated on different gaseous phase inlet flow velocity by CFD model.The pressure drop,the condensation coefficient and the velocity correlation curve are obtained.It provides a theory basis for the radiation end design of small diameter capillary net,and a guidance for the choosing of refriger-ant flow rate.%通过在用户自定义程序增加两相流动中质量源项和能量源项的方法,建立了毛细管网内气-液转化的 CFD 计算模型,对小管径光滑铜管内 R22的冷凝性能进行研究。根据 CFD 模型,计算了不同气相进口流速下 R22蒸汽的冷凝过程。得到了压力损失、冷凝系数和流速的关联曲线。对小管径毛细管网辐射末端的设计提供了理论依据,对制冷剂流速选择有一定指导意义。

  11. Long time durability tests of fabric inlet stratification pipes

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    The long time durability of seven different two layer fabric inlet stratification pipes for enhancing thermal stratification in hot water stores is investigated experimentally. Accelerated durability tests are carried out with the inlet stratification pipes both in a domestic hot water tank...... and that this destroys the capability of building up thermal stratification for the fabric inlet stratification pipe. The results also show that although dirt, algae etc. are deposited in the fabric pipes in the space heating tank, the capability of the fabric inlet stratifiers to build up thermal stratification...

  12. Esophageal Inlet Patch

    Directory of Open Access Journals (Sweden)

    C. Behrens

    2011-01-01

    Full Text Available An inlet patch is a congenital anomaly consisting of ectopic gastric mucosa at or just distal to the upper esophageal sphincter. Most inlet patches are largely asymptomatic, but in problematic cases complications related to acid secretion such as esophagitis, ulcer, web and stricture may occur. The diagnosis of inlet patch is strongly suggested on barium swallow where the most common pattern consists of two small indentations on the wall of the esophagus. The diagnosis of inlet patch is confirmed via endoscopy with biopsy. At endoscopy, the lesion appears salmon-coloured and velvety and is easily distinguished from the normal grey-white squamous epithelium of the esophagus. The prominent margins correlate with the radiological findings of indentations and rim-like shadows on barium swallow. Histopathology provides the definitive diagnosis by demonstrating gastric mucosa adjacent to normal esophageal mucosa. No treatment is required for asymptomatic inlet patches. Symptomatic cases are treated with proton pump inhibitors to relieve symptoms related to acid secretion. Strictures and webs are treated with serial dilatation and should be biopsied to rule out malignancy.

  13. Capillary imbibition in parallel tubes

    Science.gov (United States)

    McRae, Oliver; Ramakrishnan, T. S.; Bird, James

    2016-11-01

    In modeling porous media two distinct approaches can be employed; the sample can be examined holistically, using global variables such as porosity, or it can be treated as a network of capillaries connected in series to various intermediate reservoirs. In forced imbibition this series-based description is sufficient to characterize the flow, due to the presence of an externally maintained pressure difference. However, in spontaneous imbibition, flow is driven by an internal capillary pressure, making it unclear whether a series-based model is appropriate. In this talk, we show using numerical simulations the dynamics of spontaneous imbibition in concentrically arranged capillary tubes. This geometry allows both tubes access to a semi-infinite reservoir but with inlets in close enough proximity to allow for interference. We compare and contrast the results of our simulations with theory and previous experiments. Schlumberger-Doll Research.

  14. Inlet throttling effect on the boiling two-phase flow stability in a natural circulation loop with a chimney

    Science.gov (United States)

    Furuya, M.; Inada, F.; Yasuo, A.

    Experiments have been conducted to investigate an effect of inlet restriction on the thermal-hydraulic stability. A Test facility used in this study was designed and constructed to have non-dimensional values that are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation at the stability boundary was described as a function of heat flux and inlet subcooling independent of inlet restriction. In order to extend experimental database regarding thermal-hydraulic stability to different inlet restriction, numerical analysis was carried out based on the homogeneous flow model. Stability maps in reference to the core inlet subcooling and heat flux were presented for various inlet restrictions using the above-mentioned function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux.

  15. Coastal Inlets Research Program

    Science.gov (United States)

    2014-04-01

    2003 2005 2007 2009 2011 2013 Calendar Year CIRP Website: Tech Transfer http://cirp.usace.army.mil What new technology transfer do we have to discuss...etc.), nested grids; integrated with CMS-Flow Verification & Validation Cases (14) Bouss-2D: Phase -resolving shallow- water, nonlinear wave model for...Port Orford, OR Tillamook Inlet, OR  SPN: Half Moon Bay CA Waves at  Navigation  Structures ,  SWG: Matagorda Ship Channel, TX West Galveston

  16. 变径毛细管代替毛细管组件在冷暖空调器上的应用研究%Experimental Investigation on Thermal Properties of Heat pump Air-conditioner with Variable Diameter Capillary Instead of Capillary Module

    Institute of Scientific and Technical Information of China (English)

    徐言生; 何钦波; 黎绵昌; 邹时智; 金波

    2013-01-01

    The refrigerant flow characteristics of variable diameter capillary in forward flow and reverse flow are different. It can be used as a throttle device instead of the capillary module in heat pump air-conditioner. To achieve this goal, the refrigerant flow characteristic of the original capillary module for refrigerating and heating circulation was performed in the refrigerant flow experimental facility. The size of variable diameter capillary was adjusted to make its refrigerant flow performance is accordance with that of capillary module. The capability of air conditioner with variable diameter capillary and capillary module were tested respectively in the standard condition. The experimental results show that the performance of air-conditioner with variable diameter capillary compared to that of air conditioner with capillary module, the refrigerating capacity decreased by 0.5% , the energy efficiency ratio(EER) increased by 0. 3% , the heating capacity reduced by 1. 1% , the coefficient of performance ( COP) increased by 1.4%. Hence, the higher flow performances of variable diameter capillary indicate that it can completely used as a throttle device instead of the capillary module in the heat pump air-conditioner after it matched exactly.%变径毛细管在正向流动和反向流动时其制冷剂流量特性不同,因而可以作为节流元件代替现有冷暖空调器中使用的毛细管组件.为实现这一目的,利用制冷剂流量试验台,先测定原毛细管组件制冷、制热时的制冷剂流量特性,然后通过调整变径毛细管规格尺寸,使变径毛细管制冷、制热时的流量特性与原毛细管组件基本一致,再安装在空调器整机上进行整机性能对比试验.试验表明,在标准工况下,新空调器与原空调器相比,其制冷量减少0.5%,制冷能效比增加0.3%,制热量减少1.1%,制热性能系数增加1.4%.因此可以得出,变径毛细管经过精确匹配,完全可以作为节流

  17. 蒸发器内置毛细管开孔系统强化换热的试验研究%Experimental Study on Heat Transfer Enhancement by Holes Opened in the Capillary Inserted in the Tube of the Evaporator

    Institute of Scientific and Technical Information of China (English)

    李鹏; 刘斌; 王清伟; 段爱鹏

    2016-01-01

    Based on the field synergy principle and enhancement of heat transfer characteristics of jet impingement,a new type heat ex-changer was designed.In this device,the capillary with opening holes was placed into the evaporation tube,making the refrigerant directly spray to the inner surface of the evaporation and absorb heat by evaporating,in which the heat transferring effi-ciency was extremely high because of the best coordination between velocity field and temperature gradient field.Theoretical anal-ysis of the capillary tube was taken to learn the coordination between velocity field and temperature gradient field with inlet veloci-ty (2m/s and 0.5m/s)and aperture (1mm and 0.5mm).Meanwhile experiments of the new type heat ex-changer were carried out under the evaporation pressure of 0 MPa,and compared with conventional capillary throttle system.The results shows the temperature field on the surface of the evaporation tube was more stable in the opening experiments,while there was a big fluctua-tion in contrast capillary experiment due to its poor ability of flow adjustment.With the same conditions of evaporation pressure and heat transfer area,the exhaust pressure in conventional capillary experiment was 13.6%higher than that of opening experi-ment,so the coefficient of performance and refrigerant charge amount are better than those of conventional capillary experiment. Meanwhile compressor power consumption in conventional capillary experiment was 9.1% higher than that of opening experiment, which verified the higher refrigerating efficiency of opening experiment.Due to the jet impingement of refrigerant and the best co-ordination between the flow field and temperature gradient field,the performance of heat ex-changer was dramatically improved, which made the temperature field on the surface of the evaporating tubes more uniform.%基于场协同强化理论,结合射流冲击的换热特点对常规毛细节流制冷系统进行优化,设计出一种新型的换

  18. Minimizing the impact of Joule heating as a prerequisite for the reliable analysis of metal-protein complexes by capillary electrophoresis.

    Science.gov (United States)

    Nowak, Paweł Mateusz; Śpiewak, Klaudyna; Woźniakiewicz, Michał; Kościelniak, Paweł

    2017-04-28

    Herein we report on a drastic release of metal ions from the Fe-bound transferrin, and Fe- or Mn-bound lactoferrin, observed upon the increase in the separation voltage during CE-based analysis. To verify whether this process is caused directly by electric field, we developed an Isothermal Voltage Increase approach (IVI), which is the extension of methods reported by Krylov et al. IVI ensures isothermal conditions while increasing separation voltage by a hydrodynamic pushing of the injected sample to the actively cooled capillary section, combined with a rationale choice of cooling temperature, dependent on the value of current. Interestingly, the application of IVI revealed that the previously observed effect was caused solely by the insufficient dissipation of Joule heating - the saturation of each protein remained unchanged despite a significant rise in the electric field. This outcome demonstrates how crucial is to ensure an effective temperature control for preventing systematic errors in the analysis of biomolecular complexes. IVI seems also to be a simple and useful tool for discovering new potential processes that may be stimulated directly by electric field. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Capillary origami

    OpenAIRE

    Py, Charlotte; Reverdy, Paul; Doppler, L.; J. Bico; Roman, B.; Baroud, Charles,

    2007-01-01

    International audience; The hairs of a wet dog rushing out from a pond assemble into bundles; this is a common example of the effect of capillary forces on flexible structures. From a practical point of the deformation and adhesion of compliant structures induced by interfacial forces may lead to disastrous effects in mechanical microsystems.

  20. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given ...

  1. Inlet Geomorphology Evolution Work Unit

    Science.gov (United States)

    2015-10-30

    the expected behavior and benefits of nearshore placement. Nearshore placement studies have been documented in two journal papers, one technical...Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...sensing measurements, and USACE projects to create valuable guidance that address geomorphic questions. The present focus of the work unit is a common

  2. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  3. Flow in the Inlet Region in Tangential Inlet Cyclones

    NARCIS (Netherlands)

    Peng, W.; Boot, P.J.A.J.; Hoffmann, A.C; Dries, H.W.A.; Kater, J.

    2001-01-01

    In this paper the flow pattern in a tangential inlet cyclone is studied by laser Doppler anemometry, with emphasis on the inlet region. The particular focus is on axial asymmetry in the flow, which was studied by determining radial profiles of the axial and tangential gas velocity components at four

  4. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the ratio...... between the energy tapped in one storage volume and the energy content in the tank before the tapping is measured. Afterwards the mixing factor, corresponding to the measured ratio, can be determined. It is proposed that the mixing factor is taken into consideration when the governmental subsidy for SDHW...

  5. Capillary-based multi nanoelectrospray emitters: improvements in ion transmission efficiency and implementation with capillary reversed-phase LC-ESI-MS.

    Science.gov (United States)

    Kelly, Ryan T; Page, Jason S; Zhao, Rui; Qian, Wei-Jun; Mottaz, Heather M; Tang, Keqi; Smith, Richard D

    2008-01-01

    We describe the coupling of liquid chromatography (LC) separations with mass spectrometry (MS) using nanoelectrospray ionization (nano-ESI) multiemitters. The array of 19 emitters reduced the flow rate delivered to each emitter, allowing the enhanced sensitivity that is characteristic of nano-ESI to be extended to higher flow rate separations. The signal for tryptic fragments from proteins spiked into a human plasma sample increased 11-fold on average when the multiemitters were employed, due to increased ionization efficiency and improved ion transfer efficiency through a newly designed heated multicapillary MS inlet. Additionally, the LC peak signal-to-noise ratio increased approximately 7-fold when the multiemitter configuration was used. The low dead volume of the emitter arrays preserved peak shape and resolution for robust capillary LC separations using total flow rates of 2 microL/min.

  6. Application of ground-source heat pump with capillary mesh central air conditioning system in summer%毛细管网热泵集中空调系统夏季应用实例分析

    Institute of Scientific and Technical Information of China (English)

    张洋; 刘晓蕊; 郑英姿; 韩东太

    2011-01-01

    The system combines ground-source heat pump technology and capillary mesh radiation technology,taking ground-source heat pump unit as cold and heat source and capillary mesh as terminal device. Presents the application case of the system. Explains the effect of outdoor air system and gravity circulating air conditioning unit on desiccant and compares the measured parameters. Puts forward some problems needed special attention and treatment during construction and operation of the system.%该系统将地源热泵技术与毛细管网辐射技术相结合,以地源热泵机组为冷热源,末端采用毛细管网.介绍了该系统在夏季的应用实例,阐述了新风系统及重力循环空调柜联合除湿的效果,并将实测参数进行对比,提出了系统在施工及运行过程中需要注意的问题.

  7. Non-Aqueous Capillary Electrophoresis

    Science.gov (United States)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  8. Effect of temperature gradients on single-strand conformation polymorphism analysis in a capillary electrophoresis system using Pluronic polymer matrix.

    Science.gov (United States)

    Hwang, Hee Sung; Shin, Gi Won; Park, Han Jin; Ryu, Chang Y; Jung, Gyoo Yeol

    2013-09-02

    Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) analysis is a prominent bioseparation method based on the mobility diversity caused by sequence-induced conformational differences of single-stranded DNA. The use of Pluronic polymer matrix has opened up new opportunities for CE-SSCP, because it improved the resolution for various genetic analyses. However, there still exists a challenge in optimizing Pluronic-based CE-SSCP, because the physical properties of Pluronic solutions are sensitive to temperature, particularly near the gelation temperature, where the viscoelasticity of Pluronic F108 solutions sharply changes from that of a Newtonian fluid to a hydrogel upon heating. We have focused on a set of experiments to control the ambient temperature of the CE system with the aim of enhancing the reliability of the CE-SSCP analysis by using the Applied Biosystems ABI 3130xl genetic analyzer with Pluronic F108 solution matrix. The ambient temperature control allowed us to vary the inlet and outlet portion of the capillary column, while the temperature of the column was kept at 35°C. The resolution to separate 2 single-base-pair-differing DNA fragments was significantly enhanced by changing the temperature from 19 to 30°C. The viscoelastic properties of the F108 solution matrix upon heating were also investigated by ex situ rheological experiments with an effort to reveal how the development of gels in Pluronic solutions affects the resolution of CE-SSCP. We found that the column inlet and outlet temperatures of the capillary column have to be controlled to optimize the resolution in CE-SSCP by using the Pluronic matrix.

  9. Leukocytes in capillary flow.

    Science.gov (United States)

    Schmid-Schönbein, G W; Lee, J

    1995-01-01

    During disease, the flow of blood cells through the capillary network is one of the most perilous events in the microcirculation. Capillary distensibility, cytoplasmic activity of endothelial cells, red cells and leukocytes play an important role in capillary perfusion. Occlusion of capillaries is one of the early signs of vascular failure and is encountered in many different conditions and organs. Adhesion of leukocytes to the endothelium via expression of membrane adhesion molecules leads to microvascular entrapment with capillary occlusion.

  10. Evaluation of capillary and myofiber density in the pectoralis major muscles of rapidly growing, high-yield broiler chickens during increased heat stress.

    Science.gov (United States)

    Joiner, K S; Hamlin, G A; Lien, A R J; Bilgili, S F

    2014-09-01

    Skeletal muscle development proceeds from early embryogenesis through marketing age in broiler chickens. While myofiber formation is essentially complete at hatching, myofiber hypertrophy can increase after hatch by assimilation of satellite cell nuclei into myofibers. As the diameter of the myofibers increases, capillary density peripheral to the myofiber is marginalized, limiting oxygen supply and subsequent diffusion into the myofiber, inducing microischemia. The superficial and deep pectoralis muscles constitute 25% of the total body weight in a market-age bird; thus compromise of those muscle groups can have profound economic impact on broiler production. We hypothesized that marginal capillary support relative to the hypertrophic myofibers increases the incidence of microischemia, especially in contemporary high-yield broilers under stressing conditions such as high environmental temperatures. We evaluated the following parameters in four different broiler strains at 39 and 53 days of age when reared under thermoneutral (20 to 25 C) versus hot (30 to 35 C) environmental conditions: capillary density, myofiber density and diameter, and degree of myodegeneration. Our data demonstrate that myofiber diameter significantly increased with age (P > or = 0.0001), while the absolute numbers of capillaries, blood vessels, and myofibers visible in five 400 x microscopic fields decreased (P > or = 0.0001). This is concomitant with marginalization of vascular support in rapidly growing myofibers. The myofiber diameter was significantly lower with hot environmental temperatures (P > or = 0.001); therefore, the absolute number of myofibers visible in five 400X microscopic fields was significantly higher. The incidence and subjective degree of myodegeneration characterized by loss of cross-striations, myocyte hyperrefractility, sarcoplasmic vacuolation, and nuclear pyknosis or loss also increased in hot conditions. Differences among strains were not observed.

  11. In-capillary derivatization and capillary electrophoresis separation of amino acid neurotransmitters from brain microdialysis samples.

    Science.gov (United States)

    Denoroy, Luc; Parrot, Sandrine; Renaud, Louis; Renaud, Bernard; Zimmer, Luc

    2008-09-26

    A new in-capillary derivatization method with naphtalene-2,3-dicarboxyaldehyde (NDA)/CN(-) has been developed for capillary electrophoresis with laser-induced fluorescence detection of brain microdialysate amino acids. Samples are sandwiched between two plugs of reagent mixture at the capillary inlet and subsequently separated. Highest derivatization yields are obtained by using a reagent to sample plug length ratio equal to 4, performing a first electrophoretic mixing followed by a zero potential amplification step before applying the separation voltage and using a NaCN to NDA concentration ratio equal to 1. This new single-step methodology allows the analysis of amino acid neurotransmitters in rat brain microdialysis samples.

  12. Method for Determining Optimum Injector Inlet Geometry

    Science.gov (United States)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  13. Centrifugal pump inlet pressure site affects measurement.

    Science.gov (United States)

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  14. Comparison of two models of a double inlet miniature pulse tube refrigerator: Part A thermodynamics

    Science.gov (United States)

    Nika, Philippe; Bailly, Yannick

    2002-10-01

    The cooling of electronic components is of great interest to improve their capabilities, especially for CMOS components or infrared sensors. The purpose of this paper is to present the design and the optimization of a miniature double inlet pulse tube refrigerator (DIPTR) dedicated to such applications. Special precautions have to be considered in modeling the global functioning of small scale DIPTR systems and also in estimating the net cooling power. In fact, thermal gradients are greater than those observed in normal scale systems, and moreover, because of the small dimensions of ducts (diameter), the pulse tube cannot be assumed to be adiabatic. Hence thermal heat conduction phenomena must be considered. Besides dead volumes introduced by junctions and capillaries cannot be neglected any more in front of the volume of the gas tube itself. The hydrodynamic and thermal behaviors of the cooler are predicted by means of two different approaches: a classical thermodynamic model and a model based on an electrical analogy. The results of these analysis are tested and criticized by comparing them with experimental data obtained on a small commercial pulse tube refrigerator.

  15. Microchannel heat sink assembly

    Science.gov (United States)

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  16. Bundled capillary electrophoresis using microstructured fibres.

    Science.gov (United States)

    Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D

    2011-01-01

    Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.

  17. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y.; Umigishi, M. [Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506 (Japan); Ishii, K.; Ogawa, H. [Department of Physics, Nara Women’s University, Nara 630-8506 (Japan)

    2015-07-01

    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account.

  18. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  19. Characterization of Inlet Diffuser Performance for Stratified Thermal Storage

    Science.gov (United States)

    Cimbala, John M.; Bahnfleth, William; Song, Jing

    1999-11-01

    Storage of sensible heating or cooling capacity in stratified vessels has important applications in central heating and cooling plants, power production, and solar energy utilization, among others. In stratified thermal storage systems, diffusers at the top and bottom of a stratified tank introduce and withdraw fluid while maintaining a stable density gradient and causing as little mixing as possible. In chilled water storage applications, mixing during the formation of the thermocline near an inlet diffuser is the single greatest source of thermal losses. Most stratified chilled water storage tanks are cylindrical vessels with diffusers that are either circular disks that distribute flow radially outward or octagonal rings of perforated pipe that distribute flow both inward and outward radially. Both types produce gravity currents that are strongly influenced by the inlet Richardson number, but the significance of other parameters is not clear. The present investigation considers the dependence of the thermal performance of a perforated pipe diffuser on design parameters including inlet velocity, ambient and inlet fluid temperatures, and tank dimensions for a range of conditions representative of typical chilled water applications. Dimensional analysis is combined with a parametric study using results from computational fluid dynamics to obtain quantitative relationships between design parameters and expected thermal performance.

  20. Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube

    Directory of Open Access Journals (Sweden)

    Shodiya Sulaimon

    2012-07-01

    Full Text Available This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube.

  1. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    Science.gov (United States)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  2. Tidal Motion in a Complex Inlet and Bay System, Ponce de Leon Inlet, Florida

    Science.gov (United States)

    2000-01-01

    REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Tidal Motion in a Complex Inlet and Bay System, Ponce de Leon Inlet, Florida 5a...investigated in Ponce de Leon (Ponce) Inlet, Florida, and its bay channels through a 10-week data-collection campaign and two-dimensional numerical...Beach, Florida Summer 2000 Tidal Motion in a Complex Inlet and Bay System, Ponce de Leon Inlet, Florida Adele Militellot and Gary A. Zarillo:j: t

  3. Converging of Argon Cluster Ion Beams with a Glass Capillary

    Science.gov (United States)

    Shoji, Kazuhiro; Iuchi, Kensuke; Izumi, Motoki; Moritani, Kousuke; Inui, Norio; Mochiji, Kozo

    We have investigated the converging behavior of argon gas cluster ion beam passed through a glass capillary. The gas cluster ions are attractive as a projectile for SIMS from the view point of minimization of the damages. The cluster ion beam of 5 keV consisting of 500˜3000 argon atoms was injected in the capillary. The inner diameters of the capillary at the inlet and outlet were 0.8 mm and 9.6˜140 μm, respectively. Ion current from the outlet of the all the capillaries were detected. We obtained the converging factor of 2˜7, which depended on the incident ion current. The kinetic energy of the incident ions was found to be reduced by 20˜30% by passing through the capillary. Contrary, the velocity of the ions was not changed. These facts suggest that the cluster becomes 20˜30% smaller in mass by passing through the capillary. As far as we know, this is the first report on the study of the converging of cluster ions by using a glass capillary.

  4. HINCOF-1: a Code for Hail Ingestion in Engine Inlets

    Science.gov (United States)

    Gopalaswamy, N.; Murthy, S. N. B.

    1995-01-01

    One of the major concerns during hail ingestion into an engine is the resulting amount and space- and time-wise distribution of hail at the engine face for a given geometry of inlet and set of atmospheric and flight conditions. The appearance of hail in the capture streamtube is invariably random in space and time, with respect to size and momentum. During the motion of a hailstone through an inlet, a hailstone undergoes several processes, namely impact with other hailstones and material surfaces of the inlet and spinner, rolling and rebound following impact; heat and mass transfer; phase change; and shattering, the latter three due to friction and impact. Taking all of these factors into account, a numerical code, designated HINCOF-I, has been developed for determining the motion hailstones from the atmosphere, through an inlet, and up to the engine face. The numerical procedure is based on the Monte-Carlo method. The report presents a description of the code, along with several illustrative cases. The code can be utilized to relate the spinner geometry - conical or, more effective, elliptical - to the possible diversion of hail at the engine face into the bypass stream. The code is also useful for assessing the influence of various hail characteristics on the ingestion and distribution of hailstones over the engine face.

  5. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  6. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T

    2012-02-03

    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  7. Planar Inlet Design and Analysis Process (PINDAP)

    Science.gov (United States)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  8. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  9. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  10. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  11. External-Compression Supersonic Inlet Design Code

    Science.gov (United States)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  12. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors

    NARCIS (Netherlands)

    Susanti,; Winkelman, Jozef G.M.; Schuur, Boelo; Heeres, Hero J.; Yue, Jun

    2016-01-01

    Capillary microreactors operated under the slug flow regime were investigated for the separation of lactic acid from the aqueous phase using liquid–liquid reactive extraction. The experiments were performed at a 1:1 flow ratio of the aqueous to organic phases in a setup consisting of an inlet Y-type

  13. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... prior to the detection by MIMS. The gaseous sample is simply adsorbed on the adsorbent, which is then rapidly heated from 30 degrees C to 250 degrees C at a rate of 50 degrees C/min, Trapped organic compounds are released from the adsorbent into a helium stream at different temperatures depending...

  14. Gas Turbine Engine Inlet Wall Design

    Science.gov (United States)

    Florea, Razvan Virgil (Inventor); Matalanis, Claude G. (Inventor); Stucky, Mark B. (Inventor)

    2016-01-01

    A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.

  15. Annual report, Cook Inlet District, 1958 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1958, including lists of operators and extensive statistics.

  16. Annual report, Cook Inlet District, 1956 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1956, including lists of operators and extensive statistics.

  17. Annual report, Cook Inlet District, 1954 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1954, including lists of operators and extensive statistics.

  18. Annual report, Cook Inlet District, 1957 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1957, including lists of operators and extensive statistics.

  19. Annual report, Cook Inlet District, 1959 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1959, including lists of operators and extensive statistics.

  20. Hybrid integrated PDMS microfluidics with a silica capillary.

    Science.gov (United States)

    Dimov, Ivan K; Riaz, Asif; Ducrée, Jens; Lee, Luke P

    2010-06-07

    To harness the properties of both PDMS and silica, we have demonstrated hybrid integrated PDMS microfluidic systems with fused silica capillaries. The hybrid integrated PDMS microfluidics and silica capillary (iPSC) modules exhibit a novel architecture and method for leakage free CE sample injection merely requiring a single high voltage source and one pair of electrodes. The use of the iPSC device is based on a modular approach which allows the capillary to be reused extensively whilst replacing the attached fluidic module for different experiments. Integrating fused silica capillaries with PDMS microfluidic modules allows the direct application of a wide variety of well established conventional CE protocols for separations of complex analytes. Furthermore it bears the potential for facile coupling to standard electro-spray ionization mass spectrometry (ESI-MS), letting users focus on the sample analysis rather than the development of new separation protocols. The fabrication of the iPSC module consists of a simple and quick three-step method that submerges a fused silica capillary in PDMS prepolymer. After cross linking the prepolymer and punching the inlets, the iPSC module layer can be mounted onto a microfluidic device for CE separation.

  1. Interactions Between Wetlands and Tidal Inlets

    Science.gov (United States)

    2008-08-01

    Madre, TX), (3) fjord-type (e.g., Penobscot Bay , ME), and (4) tectonically created estuaries (e.g., San Francisco Bay , CA) (Pritchard 1967). This CHETN...small marsh island in San Francisco Bay , CA. Wolaver et al. (1988) measured suspended sediment flux of 827 g/m2/year into a marsh in North Inlet, SC...permanent or ephemeral inlets. Conversely, the development or construction of wetlands within an estuary reduces bay area and the tidal prism, which will

  2. Gas-Filled Capillary Model

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2006-11-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  3. Derivatization in Capillary Electrophoresis.

    Science.gov (United States)

    Marina, M Luisa; Castro-Puyana, María

    2016-01-01

    Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS).

  4. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H

    2010-01-01

    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  5. Chemical power for microscopic robots in capillaries.

    Science.gov (United States)

    Hogg, Tad; Freitas, Robert A

    2010-04-01

    The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells. Robots about 1 microm in size can produce up to several tens of picowatts, in steady state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries. The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls was evaluated in this study. The presented numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries. Copyright 2010. Published by Elsevier Inc.

  6. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    Science.gov (United States)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  7. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L

    1976-01-01

    of about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  8. A new injection method for soil nutrient analysis in capillary electrophoresis

    Science.gov (United States)

    Smolka, M.; Puchberger-Enengl, D.; Bipoun, M.; Fercher, G.; Klasa, A.; Krutzler, C.; Keplinger, F.; Vellekoop, M. J.

    2013-05-01

    We present a new method for the direct injection of liquid sample into a capillary electrophoresis (CE) device. Instead of a double-T injection mechanism, a single inlet provided with a membrane filter is used. From a reservoir on top of this inlet, the liquid directly enters the separation channel through the membrane. The driving force is a short electrical pulse. This avoids an additional sample channel, so that the chip needs only three microfluidic connects and no mechanical sample pumping is demanded. The high injection reproducibility and the comparatively simple setup open up the way for mobile application of soil analysis.

  9. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng Hui; Mao, Yi Jun [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an (China); Tan, Ji Jian [Dept. of Research and Development, Shenyang Blower Works Group Co., Ltd., Shenyang (China)

    2016-11-15

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets.

  10. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller

    2013-09-01

    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  11. A rotating ball inlet for on-line MALDI mass spectrometry.

    Science.gov (United States)

    Orsnes, H; Graf, T; Degn, H; Murray, K K

    2000-01-01

    The rotating ball inlet (ROBIN) is presented in a new design for on-line matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). This method uses a capillary to deliver a matrix and analyte solution to the surface of a rotating ball upon which MALDI is carried out. The ball is in contact with a polymer gasket surrounding the capillary. Sample adhering to the surface of the ball is dragged past the gasket into the vacuum of the mass spectrometer where it is irradiated by a pulsed UV laser, and the resulting ions are mass-separated in a linear time-of-flight mass spectrometer. The mechanical sample introduction prevents clogging of the vacuum interface by matrix crystals or frozen solvent. Preliminary results from flow injection analysis (FIA) suggest that the new interface does not introduce a significant peak-tailing or memory effect. The system is capable of 20-30 h of continuous operation with a flow rate of 2 microL/min before cleaning of the ball is needed. With the prototype inlet, concentration detection limits are at the low micromolar level.

  12. Influence of combustion-preheating vitiation on operability of a hypersonic inlet

    Science.gov (United States)

    Liu, K.; Zhu, Y.; Gao, W.; Yang, J.; Jin, Y.; Wu, Y.

    2016-11-01

    Vitiation of the test flow with combustion products is inherent in combustion wind tunnels, and its effect on experimental results needs to be clarified. In this study, the influence of air vitiation on the startability and performance of a hypersonic inlet is investigated through two-dimensional (2D) numerical simulation. The study examines the vitiation effects introduced by carbon dioxide and water vapor, on the basis of maintaining the static pressure, static temperature and Mach number of the incoming flow. The starting Mach number limits of the inlet are estimated, and it is found that both of these vitiation components lower the starting limit of the inlet. This suggests that the experimental results acquired by tests in combustion wind tunnels overestimate the startability of an inlet and, therefore, combustion-preheated facilities may not be completely trusted in this respect. Deviations in the inlet performance caused by the vitiation are also detected. These are nevertheless minor as long as the flow is at the same started or unstarted condition. A further analysis reveals that it is mainly the increase in the heat capacity, and the resulting weaker shock/compression waves and shock-wave/boundary-layer interactions that account for the aforementioned effects.

  13. Liquefied Bleed for Stability and Efficiency of High Speed Inlets

    Science.gov (United States)

    Saunders, J. David; Davis, David; Barsi, Stephen J.; Deans, Matthew C.; Weir, Lois J.; Sanders, Bobby W.

    2014-01-01

    A mission analysis code was developed to perform a trade study on the effectiveness of liquefying bleed for the inlet of the first stage of a TSTO vehicle. By liquefying bleed, the vehicle weight (TOGW) could be reduced by 7 to 23%. Numerous simplifying assumptions were made and lessons were learned. Increased accuracy in future analyses can be achieved by: Including a higher fidelity model to capture the effect of rescaling (variable vehicle TOGW). Refining specific thrust and impulse models ( T m a and Isp) to preserve fuel-to-air ratio. Implementing LH2 for T m a and Isp. Correlating baseline design to other mission analyses and correcting vehicle design elements. Implementing angle-of-attack effects on inlet characteristics. Refining aerodynamic performance (to improve L/D ratio at higher Mach numbers). Examining the benefit with partial cooling or densification of the bleed air stream. Incorporating higher fidelity weight estimates for the liquefied bleed system (heat exchange and liquid storage versus bleed duct weights) could be added when more fully developed. Adding trim drag or 6-degree-of-freedom trajectory analysis for higher fidelity. Investigating vehicle optimization for each of the bleed configurations.

  14. Miniature piezo electric vacuum inlet valve

    Science.gov (United States)

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  15. Optimization of a Water Window Capillary Discharge Radiation Source

    Directory of Open Access Journals (Sweden)

    M. Stefanovič

    2011-01-01

    Full Text Available Computer modeling of a fast electrical discharge in a nitrogen-filled alumina capillary was performed in order to discover discharge system parameters that lead to high radiation intensity in the so-called water window range of wavelengths (2–4 nm. The modeling was performed by means of the two-dimensional RMHD code Z*. The time and spatial distribution of plasma quantities were used for calculating the ion level populations and for estimating the absorption of the 2.88 nm radiation line in the capillary plasma, using the FLYCHK code. Optimum discharge parameters for the capillary discharge water window source are suggested. The heating of the electrodes and the role of capillary channel shielding were analyzed according to the Z* code.

  16. Chemical Power for Microscopic Robots in Capillaries

    CERN Document Server

    Hogg, Tad

    2009-01-01

    The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells. Robots about one micron in size can produce up to several tens of picowatts, in steady-state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries.

  17. Capillary droplets on Leidenfrost micro-ratchets

    CERN Document Server

    Marin, Alvaro G; Römer, Gertwillem R B E; Pathiraj, B; Veld, Albertus Huis in 't; Lohse, Detlef

    2012-01-01

    Leidenfrost ratchets are structures with the ability of transporting liquid droplets when heated over the critical Leidenfrost temperature. Once this temperature is reached, the droplet levitates over the surface and moves in the direction marked by the slope of the ratchet at terminal velocities around 10 cm/s. Here we provide new experiments with micron-sized ratchets, which have been produced with picosecond pulse laser ablation. In the following work, we use a simple method to measure the thrust driving droplets of capillary size over the micro-ratchets. The mechanism responsible for the force acting on the drop on superheated ratchets has been recently under debate. We extend the recently proposed 'viscous mechanism' proposed by Dupeaux et al. [Europhys. Lett., 96, 58001 (2011)] to capillary droplets and find good agreement with our measurements.

  18. A multicapillary inlet jet disruption electrodynamic ion funnel interface for improved sensitivity using atmospheric pressure ion sources.

    Science.gov (United States)

    Kim, T; Tang, K; Udseth, H R; Smith, R D

    2001-09-01

    A new multicapillary inlet and ion funnel interface for electrospray ionization-mass spectrometry has been developed and demonstrated to achieve higher ion transmission efficiency compared to a single-capillary inlet and ion funnel interface. Even though the distance between the end of the ESI inlet capillary and the exit of the ion funnel (10 cm) is significantly longer than that of the conventional interface (typically a few millimeters), a significant part of the directed inlet gas flow persists into the first stage of pumping and results in an increased gas load to the second chamber. A jet disrupter made of a circular metal disk placed on axis in the ion funnel enhanced the dispersion of the directed gas flow from a multicapillary inlet and was also found to improve the ion transmission. The ion funnel with the jet disrupter demonstrated a 15% improvement in ion transmission (compared to that without the jet disrupter) and simultaneously reduced the pumping speed required for the first or second stage by a factor of 2-3. Compared to the sensitivity with the standard mass spectrometer interface (an API 3000, Sciex, Concord, ON, Canada) in MS/MS operation using an interface equipped with the jet disrupter and ion funnel, a 5.3-10.7-fold enhancement in signal was observed for samples with concentrations of 100-500 pg/microL and 10.2 to 14.1-fold enhancement for concentrations of 10 to 50 pg/microL. The decreased enhancement at higher concentrations is attributed to space charge effects and detector saturation.

  19. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  20. Practical capillary electrophoresis

    CERN Document Server

    Weinberger, Robert

    2000-01-01

    In the 1980s, capillary electrophoresis (CE) joined high-performance liquid chromatography (HPLC) as the most powerful separation technique available to analytical chemists and biochemists. Published research using CE grew from 48 papers in the year of commercial introduction (1988) to 1200 in 1997. While only a dozen major pharmaceutical and biotech companies have reduced CE to routine practice, the applications market is showing real or potential growth in key areas, particularly in the DNA marketplace for genomic mapping and forensic identification. For drug development involving small molecules (including chiral separations), one CE instrument can replace 10 liquid chromatographs in terms of speed of analysis. CE also uses aqueous rather than organic solvents and is thus environmentally friendlier than HPLC. The second edition of Practical Capillary Electrophoresis has been extensively reorganized and rewritten to reflect modern usage in the field, with an emphasis on commercially available apparatus and ...

  1. due to Capillary Forces

    Directory of Open Access Journals (Sweden)

    Hassen M. Ouakad

    2009-01-01

    Full Text Available We present modeling and analysis for the static behavior and collapse instabilities of doubly-clamped and cantilever microbeams subjected to capillary forces. These forces can be as a result of a volume of liquid trapped underneath the microbeam during the rinsing and drying process in fabrication. The model considers the microbeam as a continuous medium, the capillary force as a nonlinear function of displacement, and accounts for the mid-plane stretching and geometric nonlinearities. The capillary force is assumed to be distributed over a specific length underneath the microbeam. The Galerkin procedure is used to derive a reduced-order model consisting of a set of nonlinear algebraic and differential equations that describe the microbeams static and dynamic behaviors. We study the collapse instability, which brings the microbeam from its unstuck configuration to touch the substrate and gets stuck in the so-called pinned configuration. We calculate the pull-in length that distinguishes the free from the pinned configurations as a function of the beam thickness and gap width for both microbeams. Comparisons are made with analytical results reported in the literature based on the Ritz method for linear and nonlinear beam models. The instability problem, which brings the microbeam from a pinned to adhered configuration is also investigated. For this case, we use a shooting technique to solve the boundary-value problem governing the deflection of the microbeams. The critical microbeam length for this second instability is also calculated.

  2. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  3. The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters.

    Science.gov (United States)

    Hedlin, Michael A H; Alcoverro, Benoit

    2005-04-01

    Rosette spatial filters are used at International Monitoring System infrasound array sites to reduce noise due to atmospheric turbulence. A rosette filter consists of several clusters, or rosettes, of low-impedance inlets. Acoustic energy entering each rosette of inlets is summed, acoustically, at a secondary summing manifold. Acoustic energy from the secondary manifolds are summed acoustically at a primary summing manifold before entering the microbarometer. Although rosette filters have been found to be effective at reducing infrasonic noise across a broad frequency band, resonance inside the filters reduces the effectiveness of the filters at high frequencies. This paper presents theoretical and observational evidence that the resonance inside these filters that is seen below 10 Hz is due to reflections occuring at impedance discontinuities at the primary and secondary summing manifolds. Resonance involving reflections at the inlets amplifies noise levels at frequencies above 10 Hz. This paper further reports results from theoretical and observational tests of impedance matching capillaries for removing the resonance problem. Almost total removal of resonant energy below 5 Hz was found by placing impedance matching capillaries adjacent to the secondary summing manifolds in the pipes leading to the primary summing manifold and the microbarometer. Theory and recorded data indicate that capillaries with resistance equal to the characteristic impedance of the pipe connecting the secondary and primary summing manifolds suppresses resonance but does not degrade the reception of acoustic signals. Capillaries at the inlets can be used to remove resonant energy at higher frequencies but are found to be less effective due to the high frequency of this energy outside the frequency band of interest.

  4. Flow Control in a Compact Inlet

    Science.gov (United States)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  5. Electrohydrodynamic heat pipes.

    Science.gov (United States)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  6. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    Science.gov (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  7. New inlet nozzle assembly: C Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, J.F.

    1960-10-19

    The use of self-supported fuel elements in ribless Zircaloy-2 tubes at C-Reactor requires some inlet nozzle modification to allow charging of the larger overall diameter fuel pieces. A new nozzle assembly has been developed (by Equipment Development Operation -- IPD) which will allow use of the new fuel pieces and at the same time increase the reliability of the header-to-tube piping and reduce pumping power losses. Flow test data were requested for the new assembly and the results of these tests are presented herein. This report also presents a comparison of the header to tube energy losses for the various reactor inlet nozzle assemblies which are currently used on the Hanford production reactors.

  8. Modelling Complex Inlet Geometries in CFD

    DEFF Research Database (Denmark)

    Skovgaard, M.; Nielsen, Peter V.

    Modem inlet devices applied in the field of ventilation of rooms are getting more complex in terms of geometry in order to fulfil the occupants' demand for thermal comfort in the room and in order to decrease the energy consumption. This expresses the need for a more precise calculation of the fl...... and tested. The method is based upon threedimensional - and radial wall jet theory and upon diffuser specific experimental data....

  9. Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals.

    Science.gov (United States)

    Haselberg, R; Brinks, V; Hawe, A; de Jong, G J; Somsen, G W

    2011-04-01

    In this work, the usefulness of capillary electrophoresis-electrospray ionization time-of-flight-mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight-mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6-7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.

  10. Optimal Design of a Subsonic Submerged Inlet

    Science.gov (United States)

    Taskinoglu, Ezgi; Jovanovic, Vasilije; Elliott, Gregory; Knight, Doyle

    2003-11-01

    A multi-objective optimization study based on an epsilon-constraint method is conducted for the design optimization of a subsonic submerged air vehicle inlet. The multi-objective optimization problem is reformulated by minimizing one of the objectives and restricting the other objectives within user specified values. The figures of merits are the engine-face distortion and swirl that determines the inlet/engine compatibility. The distortion index is minimized while the feasible design space is determined by the swirl index. The design variables are the geometrical parameters defining the surface alteration. The design algorithm is driven by a gradient-based optimizer, and is constructed by integrating the optimizer with a solid modeller (Pro/Engineer), a mesh generator (Grid/Pro) and a flow solver (GASPex). The optimizer is CFSQP (C code for Feasible Sequential Quadratic Programming). Integration of the software packages is achieved by a Perl script. In order to verify the numerical results, an experimental setup for the same inlet geometry is prepared to run at the same flow conditions. The presentation will describe the numerical approach and summarize the results.

  11. Cogen-absorption plants for refrigeration purposes and turbine air inlet cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langreck, Juergen [Colibri bv (Netherlands)

    2000-04-01

    Most cogeneration systems produce power and heat but with absorption refrigeration plants (ARP) the products are power and 'cold'. An ARP driven by heat from a turbine exhaust can provide the cooling for the inlet air with very low consumption of electricity, consequently there is a significant increase in power output from the cogeneration unit. Two different ARP systems are currently available but the author describes only the ammonia-water system, which can achieve temperatures down to -60 degrees C. The article discusses the principle behind ARP, the capital cost and returns on investment, how the cogeneration plant is linked to the ARP, ARP for turbine inlet air cooling, and the potential applications of cogeneration-ARP.

  12. Unsteady lubrication modeling of inlet zone in metal rolling processes

    Institute of Scientific and Technical Information of China (English)

    毛明智; 谭建平

    2002-01-01

    An unsteady lubrication model of inlet zone in metal rolling was established. The simulation computations show that for the variation amplitude of the inlet film thickness, the variation of the inlet angle contributes the largest, the surface mean speed contributes the second and the back tension stress the least. The higher the input frequency is, the smaller the amplitude output of the inlet film thickness will be. For a sinusoidal input, the inlet film thickness varies periodically but is not a sine wave because the system is not linear.

  13. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  14. Tapered capillary optics

    Science.gov (United States)

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  15. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  16. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  17. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...

  18. Redistribution of an inlet temperature distortion in an axial flow turbine stage

    Science.gov (United States)

    Butler, T. L.; Sharma, O. P.; Joslyn, H. D.; Dring, R. P.

    1986-06-01

    The results of an experimental program aimed at determining the extent of the redistribution of an inlet temperature distortion in an axial flow turbine stage are presented. The program was conducted in a large-scale, low speed, single stage turbine where air, seeded with CO2 was introduced at one circumferential location upstream of the inlet guide vane. The migration of the seeded air through the turbine was determined by sensing CO2 concentration inside the stage. A temperature distortion was introduced by heating the seeded air. The CO2 concentration contours measured downstream of the vane showed little change with heating, indicating that the vane flowfield was relatively unaffected by the introduction of the temperature distortion. However, the CO2 contours observed on the rotor airfoil surfaces for the case with inlet heating indicated segregation of hot and cold gas, with the higher temperature gas migrating to the pressure side and the lower temperature gas migrating to the suction side. Significant increases in rotor secondary flow were also observed.

  19. Paper capillary force driven hollow channel as a platform for multiphase flows bioassays

    Directory of Open Access Journals (Sweden)

    Zheng Tengfei

    2016-05-01

    Full Text Available This paper develops a simple, inexpensive, and portable diagnostic assays that may be useful in remote settings, and in particular, in less industrialized countries where simple assays are becoming increasingly important for detecting disease and monitoring health. In this assays, the paper capillary force is first used to transport complex fluids such as whole blood or colloidal suspensions that contain particulates in a new type channel - paper capillary driven hollow channel, which offset the disadvantages of current paper microfluidic technologies. To demonstrate the various applications of the paper capillary force driven hollow channel, several devices are design and made to complete the purpose of exhibiting laminar flow in a T-junction microchannel, sheath a core stream in a three-inlet channel and transportation whole blood.

  20. Biomedical applications of capillary electrophoresis

    Science.gov (United States)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  1. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  2. Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator

    Directory of Open Access Journals (Sweden)

    Azam Che Idris

    2014-04-01

    Full Text Available Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.

  3. Experimental Research on Flow Maldistribution in Plate-Fin Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    张哲; 厉彦忠; 许箐

    2004-01-01

    The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because of the defects of inlet configurations, while the inlet configuration and Reynolds number are the main factors affecting the flow distribution. The improved inlet configurations, which are the header with a two-stage distributing configuration and the guide vane with a fluid complementary cavity were proposed and tested in this paper. The experimental results show that the improved inlet configurations can effectively improve the performance of flow distribution in heat exchangers.

  4. Long-Term Morphological Modeling of Barrier Island Tidal Inlets

    Directory of Open Access Journals (Sweden)

    Richard Styles

    2016-09-01

    Full Text Available The primary focus of this study is to apply a two-dimensional (2-D coupled flow-wave-sediment modeling system to simulate the development and growth of idealized barrier island tidal inlets. The idealized systems are drawn from nine U.S. coastal inlets representing Pacific Coast, Gulf Coast and Atlantic Coast geographical and climatological environments. A morphological factor is used to effectively model 100 years of inlet evolution and the resulting morphological state is gauged in terms of the driving hydrodynamic processes. Overall, the model performs within the range of established theoretically predicted inlet cross-sectional area. The model compares favorably to theoretical models of maximum inlet currents, which serve as a measure of inlet stability. Major morphological differences are linked to inlet geometry and tidal forcing. Narrower inlets develop channels that are more aligned with the inlet axis while wider inlets develop channels that appear as immature braided channel networks similar to tidal flats in regions with abundant sediment supply. Ebb shoals with strong tidal forcing extend further from shore and spread laterally, promoting multi-lobe development bisected by ebb shoal channels. Ebb shoals with moderate tidal forcing form crescent bars bracketing a single shore-normal channel. Longshore transport contributes to ebb shoal asymmetry and provides bed material to help maintain the sediment balance in the bay.

  5. Multidimensional capillary electrophoresis.

    Science.gov (United States)

    Grochocki, Wojciech; Markuszewski, Michał J; Quirino, Joselito P

    2015-01-01

    Multidimensional separation where two or more orthogonal displacement mechanisms are combined is a promising approach to increase peak capacity in CE. The combinations allow dramatic improvement of analytical performance since the total peak capacity is given by a product of the peak capacities of all methods. The initial reports were concentrated on the construction of effective connections between capillaries for 2D analysis. Today, 2D and 3D CE systems are now able to separate real complex biological or environmental mixtures with good repeatability, improved resolution with minimal loss of sample. This review will present the developments in the field of multidimensional CE during the last 15 years. The endeavors in this specific field were on the development of interfaces, interface-free techniques including integrated separations, microdevices, and on-line sample concentration techniques to improve detection sensitivity.

  6. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  7. Heat conduction controlled combustion for scramjet applications

    Science.gov (United States)

    Ferri, A.; Agnone, A. M.

    1974-01-01

    The use of heat conduction flame generated in a premixed supersonic stream is discussed. It is shown that the flame is controlled initially by heat conduction and then by chemical reaction. Such a flame is shorter than the diffusion type of flame and therefore it requires a much shorter burner. The mixing is obtained by injecting the hydrogen in the inlet. Then the inlet can be cooled by film cooling.

  8. Marine Ice Atlas for Cook Inlet, Alaska

    Science.gov (United States)

    2007-11-02

    microwave/imager TDD thawing degree-day USACE U.S. Army Corps of Engineers USCB U.S. Census Bureau USCG U.S. Coast Guard USNO U.S. Naval Observatory WMO...large com- mercial fishing fleet based there. Homer, also a center for tourism , has a population of about 4,800. Marine facilities there include a deep...the importance of commercial navigation, fishing, and tourism access to remote sites around Cook Inlet, the practice continues today with even greater

  9. Low cost inlet filters for rainwater tanks

    OpenAIRE

    Martinson, Brett; Thomas, T.

    2005-01-01

    Inlet filters are a common method for enhancing water quality in rainwater harvesting systems. They range from cheap cloth or gravel filters to complex and expensive multi-stage systems. Field experience has shown, however that filters often suffer from a lack of maintenance so self-cleaning is an advantage. Filters can clean themselves by dividing the water stream into two components; the first and largest is the clean water passed to the tank, the second much smaller component can be used t...

  10. Hydraulics and Stability of Five Texas Inlets.

    Science.gov (United States)

    1981-01-01

    8217~~r 0.38 .. , q . P . I Pleasure Pier 7 Morgan’s Point 2 South Jetty 8 Railroad Causeway N 1. 3 Teuas City Dike 9 Chocolate Bayou A 4 Manna Reel 10 Son...Range and Level.............15 III HYDRAULICS AND STABILITY OF SPECIFIC INLETS...................... 15 1. Brazos River-Freeport Harbor Entrance...g acceleration of gravity K Keulegan repletion coefficient k wave number L channel length Le effective channel length n Manning’s coefficient P

  11. Influence of Inlet / Shoal Complex on Adjacent Shorelines via Inlet Sink Method

    Science.gov (United States)

    2012-07-01

    placing dredged material onto adjacent beaches in moderate quantities (~200-500K cu yd) since the 1970 ’s (Dredging Information System (DIS...southward to Matanzas Inlet. Analysis of the ebb shoal volume change between surveys was made within a GIS framework using an area mask (Fig. 6

  12. Sub-Alfvenic inlet boundary conditions for axisymmetric MHD nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Cassibry, J T [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Wu, S T [Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2007-09-07

    There are numerous electromagnetic accelerator concepts which require plasma expansion through a magnetic nozzle. If the inlet flow is slower than one or all of the outgoing characteristics, namely, the Alfven, slow and fast magnetosonic speeds, then the number of inlet conditions which could be arbitrarily specified are reduced by the number of outgoing characteristics (up to three). We derive the axisymmetric compatibility equations using the method of projected characteristics for the inlet conditions in the z-plane to assure the boundary conditions being consistent with flow properties. We make simplifications to the equations assuming that the inlet Alfven speed is much faster than the sonic and slow magnetosonic speeds. We compare results for various inlet boundary conditions, including a modified Lax-Wendroff implementation of the compatibility equations, first order extrapolation and arbitrarily specifying the inlet conditions, in order to assess the stability and accuracy of various approaches.

  13. CFD numerical simulation of Archimedes spiral inlet hydrocyclone

    Science.gov (United States)

    Zhang, L.; Wei, L.; Chang, B. H.; Xing, J. L.; Jia, K.

    2013-12-01

    For traditional linear type inlet, hydrocyclone has an unstable inner field, high turbulence intensity and low separation efficiency, this paper proposes an inlet mode that uses an Archimedes spiral hydrocyclone. A Mixture liquid-solid multiphase flow model combined with the kinetic theory of granular flow was used to simulate the high concentration water-sand-air three-phase flow in a hydrocyclone. We analyzed the pressure field, velocity field and turbulent kinetic energy and compared with traditional linear type inlet hydrocyclone inner field. The results show that Archimedes spiral inlet hydrocyclone's pressure field is evenly distributed. The Archimedes spiral inlet hydrocyclone can guide and accelerate the mixture flow and produce small forced vortex and less short circuit flow. The particles easily go to the outer vortex and are separated. The Archimedes spiral inlet hydrocyclone has effectively improved the stability of inner flow field and separation efficiency.

  14. Capillary flow solder wettability test

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.; Rejent, J.A.

    1996-01-01

    A test procedure was developed to assess the capillary flow wettability of solders inside of a confined geometry. The test geometry was comprised of two parallel plates with a controlled gap of constant thickness (0.008 cm, 0.018 cm, 0.025 cm, and 0.038 cm). Capillary flow was assessed by: (1) the meniscus or capillary rise of the solder within the gap, (2) the extent of void formation in the gap, and (3) the time-dependence of the risen solder film. Tests were performed with the lead-free solders.

  15. Comparison of two models of a Double Inlet Miniature Pulse Tube Refrigerator - Part B Electrical Analogy

    CERN Document Server

    Bailly, Y; Bailly, Yannick; Nika, Philippe

    2002-01-01

    The design of a Double Inlet Pulse Tube Refrigerator is investigated by means of an analogy with an electric circuit. The results obtained with the electric scheme are compared with both those of the thermodynamic model (Part A) and experiments. The basic formulation of equivalent electronic components is discussed and a few improvements are proposed to adjust the theoretical expressions of the electrical impedances of capillaries and regenerator in order to consider additional effects such pressure drops due to geometrical singularities at different internal flow regimes. A simplified formulation for the regenerator inefficiency is deduced from considerations on its harmonic functioning. The main purpose of this analysis considers especially the design of miniature cryocoolers dedicated to electronic applications. These models are applied to a commercial miniature refrigerator. A discussion of their relevance is achieved and a few suggestions on the refrigerator design are proposed to improve the cooling pro...

  16. Numerical Simulation of Unsteady Blood Flow through Capillary Networks.

    Science.gov (United States)

    Davis, J M; Pozrikidis, C

    2011-08-01

    A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.

  17. Analysis of Capillary Rise in Asymmetric Branch-Like Capillary

    Science.gov (United States)

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Yang, Zhihui; Su, Shuai; Ren, Kai; Huang, Heyu

    2016-05-01

    Transport in porous media is common in nature, attracting many attentions for a long time. Tree-like network model is often used as a simplification for porous space, expressing the complexity of pore spaces instead of capillary bundle. To investigate spontaneous imbibition characteristics in this network, a dynamic asymmetric branch-like capillary model is used to represent basic network structure, using fractal method to represent tortuosity. This work investigates the influence of parameters on imbibition process in the branch-like capillary model. An analytical equation for the imbibition mass versus time is derived. Parameters from capillary structures to liquid properties are taken into account and analyzed based on the numerical solution of the equation. It is found that the imbibition process in asymmetric branch-like capillary model can be recognized by four sections and brunching tubes are positive for imbibition process. Concomitantly, meniscus arrest event is simulated and discussed. Moreover, the influence of parameters on imbibition process is discussed. These parameters can be classified as static and dynamic. Static parameters mainly change the capillary force, which are related to the ultimate imbibition mass or imbibition ability, while dynamic parameters mainly have influence on resistance of flowing fluid, which are related to the imbibition speed in the imbibition process.

  18. The Geometry of Selected U.S. Tidal Inlets.

    Science.gov (United States)

    1980-05-01

    Bodega Bay Inlet. Calif. 1931 NI C6GS S162 56 Humboldt Bay Inlet, Calif. 1859 NI CIGS 5710 57 Coos Bay Inlet. Oreg. 1885 NI USAE CB-I-18 58 Umpqua...Group 2 Group 3 Group 4 Group 5 Group 6 Outliers koriches Fripps Carolina Beach Lockwoods Folly Townsend Beaufort Hillsboro Stump St. Augustine Bodega ...Drakes Inlet, Calif. 1860 141 AlAN - -1 4-- * LtA94 LAND 0( -RAY 339 ft SECTON WDTHCHANNEL LENGTH 542. 626. Boo EGA BA 1931 C GS5162 BODEGA BAY 1931

  19. Hysteresis phenomenon of hypersonic inlet at high Mach number

    Science.gov (United States)

    Jiao, Xiaoliang; Chang, Juntao; Wang, Zhongqi; Yu, Daren

    2016-11-01

    When the hypersonic inlet works at a Mach number higher than the design value, the hypersonic inlet is started with a regular reflection of the external compression shock at the cowl, whereas a Mach reflection will result in the shock propagating forwards to cause a shock detachment at the cowl lip, which is called "local unstart of inlet". As there are two operation modes of hypersonic inlet at high Mach number, the mode transition may occur with the operation condition of hypersonic inlet changing. A cowl-angle-variation-induced hysteresis and a downstream-pressure-variation-induced hysteresis in the hypersonic inlet start↔local unstart transition are obtained by viscous numerical simulations in this paper. The interaction of the external compression shock and boundary layer on the cowl plays a key role in the hysteresis phenomenon. Affected by the transition of external compression shock reflection at the cowl and the transition between separated and attached flow on the cowl, a hysteresis exists in the hypersonic inlet start↔local unstart transition. The hysteresis makes the operation of a hypersonic inlet very difficult to control. In order to avoid hysteresis phenomenon and keep the hypersonic inlet operating in a started mode, the control route should never pass through the local unstarted boundary.

  20. Effects of Flow Parameters and Inlet Geometry on Cyclone Efficiency

    Institute of Scientific and Technical Information of China (English)

    赵兵涛

    2006-01-01

    A novel cyclone design, named converging symmetrical spiral inlet (CSSI) cyclone, is developed by improving the inlet geometry of conventional tangential single inlet (CTSI) cyclone for enhancing the physical performance of the cyclone.The collection efficiency of the CSSI cyclone is experimentally compared with the widely used CTSI cyclone. The results indicate that the CSSI cyclone provides higher collection efficiency by 5%~20% than that of the CTSI cyclone for a tested inlet velocity range of 11.99~23.85 m/s. In addition, the results of collection efficiency comparison between experimental data and theoretical model are also discussed.

  1. INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES

    OpenAIRE

    A. G. Kulakov

    2005-01-01

    Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of ope...

  2. Inlet and airframe compatibility for a V/STOL fighter/attack aircraft with top-mounted inlets

    Science.gov (United States)

    Durston, D. A.; Smeltzer, D. B.

    1982-01-01

    Aerodynamic force and inlet pressure data are obtained for 9.5% force and pressure models of a V/STOL fighter/attack aircraft configuration with top mounted twin inlets. Data are presented from tests conducted in the Ames Unitary Wind Tunnels at Mach numbers of 0.6, 0.9, and 1.2 at angles of attack up to 27 deg. and angles of sideslip up to 12 deg. Trimmed aerodynamic characteristics and inlet performance are compared for three different leading edge extension (LEX) configurations. The effects of wing leading and trailing-edge flaps on the inlet are also determined. Maneuver perfromance is calculated form combined force and inlet pressure data. The largest of the three LEX sizes tested gives the best airplane maneuver performance. Wing flap deflections improved inlet recovery at all Mach numbers.

  3. Selectivity in capillary electrokinetic separations

    NARCIS (Netherlands)

    de Zeeuw, R.A; de Jong, G.J.; Ensing, K

    1999-01-01

    This review gives a survey of selectivity modes in capillary electrophoresis separations in pharmaceutical analysis and bioanalysis. Despite the high efficiencies of these separation techniques, good selectivity is required to allow quantitation or identification of a Chemistry and Toxicology, parti

  4. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  5. Manufacturing of flat porous structures for capillary pump applications

    Energy Technology Data Exchange (ETDEWEB)

    Reimbrecht, E.G.; Wendhausen, P.A.P.; Fredel, M.C.; Bazzo, E. [Dept. of Mechanical Engineering, Univ. Federal de Santa Catarina-UFSC, Florianopolis (Brazil)

    2001-07-01

    A flat porous structure is proposed to be used as wick in capillary pumps to move the working fluid in two-phase heat transfer loops. Capillary pumps have been studied to become a reliable alternative for isothermalization and thermal control of satellites and space stations. Sintered nickel powder is an alternative to produce capillary structures, once it presents appropriate sinterability and it is compatible with current working fluids (e.g. ammonia). The desirable parameters for the capillary structure are a porosity level of about 60% and a mean pore size smaller than 10 {mu}m. The flat porous elements was produced by a loose powder sintering and powder injection molding. Powder size and shape, sintering process, sintering time and sintering temperature, were investigated in order to achieve the desired porosity and mechanical resistance. Analyses were accomplished to characterize the capillary structure, and to determine the appropriate manufacturing route. The porosity was determined by using the method of Arquimedes and the porous structures analyzed by scanning electron microscopy. (orig.)

  6. Comparative analysis of gas–liquid flow in T-junction microchannels with different inlet orientations

    Directory of Open Access Journals (Sweden)

    Dongren Liu

    2016-03-01

    Full Text Available In this study, a comparative analysis of two-phase flow in T-junction microchannels with different inlet orientations was carried out. Based on computational fluid dynamics and the volume-of-fluid model, bubble size, bubble velocities, and pressure distributions were analyzed. The numerical algorithm was validated with the experimental observations from former literatures; the results show that when the capillary number, Ca, is low, the length of gas and liquid slug in the symmetric T-junction is higher than that in the cross-flow T-junction. The effect of different forces acting on the slugs during the process of bubble formation was studied by investigating the velocity gradient and pressure distribution in the mixing zone. The result shows that the shear stress in cross-flow T-junction is over two times of that in T-junction with two symmetric inlets under the same operating conditions, which indicates that the size of bubble and liquid slug depends on the shear stress at low Ca number.

  7. Mach 6 flowfield survey at the engine inlet of a research airplane

    Science.gov (United States)

    Johnson, C. B.; Lawing, P. L.

    1977-01-01

    A flowfield survey was conducted to better define the nature of vehicle forebody flowfield at the inlet location of an airframe-integrated scramjet engine mounted on the lower surface of a high-speed research airplane to be air launched from a B-52 and rocket boosted to Mach 6. The tests were conducted on a 1/30-scale brass model in a Mach-6 20-in. wind tunnel at Reynolds number of 11,200,000 based on distance to engine inlet. Boundary layer profiles at five spanwise locations indicate that the boundary layer in the area of the forebody centerline is more than twice as thick as the boundary layer at three outboard stations. It is shown that the cold streak found in heating contours on the centerline of the forebody is caused by a thickening of the boundary layer on the centerline, and that this thickening decreases with angle of attack.

  8. Recent research progress on unstart mechanism, detection and control of hypersonic inlet

    Science.gov (United States)

    Chang, Juntao; Li, Nan; Xu, Kejing; Bao, Wen; Yu, Daren

    2017-02-01

    The present paper aims to provide a summary report on recent research progress about unstart mechanism, detection and control of hypersonic inlet to help the researchers working on hypersonic inlet to further their work. It covers unstart patterns with their mechanisms, monitoring methods for start/unstart classification and detection, characterization methods for unstart margin, and methods for unstart suppression and control. At first, the inner mechanisms of various unstart patterns have been surveyed and classified, which are respectively caused by contraction ratio (CR)/internal contraction ratio (ICR), backpressure, Mach number and heat release. Followed, monitoring methods (one is for start/unstart classification and the other is for unstart detection) have been introduced respectively. Thirdly, three types of techniques for margin characterization of unstart are listed, which are respectively based on backpressure, the location of shock train leading edge and pressure distribution. At last, unstart suppression and control have been discussed, which are based on flow control or feedback control.

  9. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet. [Supersonic Cruise Aircraft Research

    Science.gov (United States)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined where the second cone of a two cone centerbody collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  10. Climate Change Impacts on the Stability of Small Tidal Inlets: A Numerical Modelling Study Using the Realistic Analogue Approach

    Directory of Open Access Journals (Sweden)

    Trang Minh Duong

    2012-09-01

    Full Text Available Tidal inlets are of great societal importance as they are often associated with ports and harbours, industry, tourism, recreation and prime waterfront real estate. Their behaviour is governed by the delicate balance of oceanic processes (tides, waves and mean sea level, and fluvial/estuarine processes (riverflow and heat fluxes, all of which can be significantly affected by climate change (CC processes. This study investigates the potential range of CC impacts on the stability (closed/open state and locational stability via the application of a sophisticated process based morphodynamic model (Delft3D to strategically selected schematized inlet morphologies and forcing conditions. Results show that, under worst case scenario conditions, the integrated effect of climate change driven increase in mean sea level, wave height and wave angle may significantly change inlet stability condition.

  11. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  12. Usage of Connor Inlets to Eliminate Shrinkage

    Directory of Open Access Journals (Sweden)

    D. Fecko

    2012-09-01

    Full Text Available The demand for castings of high quality and sound work is nowadays very high. The production of sound castings without foundryerrors is the big issue in modern foundries. Foundry simulation software can do a lot to help improve the disposition of castings, gatingsystem and feeder system, and assure good filling and solidification conditions, and also produce sound casting without the need of the oldmethod of "try and error". One can easily change a lot of parameters for filling and solidification, and create the best proposal forproduction. Connor inlets have two functions. One is that it serves as an ingate, through which molten metal passes and comes into themould cavity. The second function is that it serves as a feeder and substitutes the metal contracted during solidification and cooling of the castings. It can also save quite a lot of metal in comparison to classic feeders.

  13. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  14. Two-dimensional capillary electrophoresis using tangentially connected capillaries.

    Science.gov (United States)

    Sahlin, Eskil

    2007-06-22

    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  15. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... visited by the crew. (e) Through-hull piping systems in machinery spaces may have valves with...

  16. Bedform evolution in a tidal inlet referred from wavelet analysis

    DEFF Research Database (Denmark)

    Fraccascia, Serena; Winter, Christian; Ernstsen, Verner Brandbyge;

    2011-01-01

    inlet and evaluate how they changed over consecutive years, when morphology was modified and bedforms migrated. High resolution bathymetric data from the Grådyb tidal inlet channel (Danish Wadden Sea) from seven years from 2002 to 2009 (not in 2004) were analyzed. Continuous wavelet transform of bed...

  17. Morphodynamics of tidal inlets in a tropical monsoon area

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2007-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic b

  18. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Inlet, engine, and exhaust compatibility. 25.941 Section 25.941 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or...

  19. Effect of inlet box on performance of axial flow fans

    Institute of Scientific and Technical Information of China (English)

    Jingyin LI; Hua TIAN; Xiaofang YUAN

    2008-01-01

    Numerical investigations on 3D flow fields in an axial flow fan with and without an inlet box have been extensively conducted, focusing on the variation of fan performance caused by the internal flow fields and the velocity evenness at the exit of the inlet box. It is interest-ing to find that although the inlet box is well designed in accordance with basic design principles, there is a flow separation region in it. Furthermore, this flow separation and the resulting uneven velocity distribution at the exit lead to some decrease in the efficiency and an increase in the total pressure rise of the fan. This research shows that the inlet box needs further improvement and such a check on the flow fields is of value for the design of inlet boxes.

  20. Open-loop heat-recovery dryer

    Science.gov (United States)

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  1. The effect of capillary pressure for concave liquid-vapor interface on interfacial evaporation

    Institute of Scientific and Technical Information of China (English)

    张金涛; 王补宣; 彭晓峰

    2001-01-01

    The analysis in this paper demonstrates that the capillary pressure on the concave liquid-vapor interface will promote the interfacial evaporation, therefore clarifying the confusion over the great difference between the estimated and real rate of interfacial evaporation. This difference increases with decreasing capillary radius, and becomes more apparent for liquid with high latent heat. The present analysis also shows that the capillary pressure on the concave interface will result in a decrease in liquid phase equilibrium temperature, which can explain the possibility of vapor bubble formation on micro liquid layer interfacial evaporation under low superheat, or even below the nominal saturated temperature.

  2. Thermal management in high-power electronics cooled down using capillary pump

    Science.gov (United States)

    Wiecek, Boguslaw; Wajman, Tomasz; Felczak, Mariola; Berlinski, Marek

    2003-04-01

    By using the evaporation of working fluid in the capillary it is possible to design and build cooling device, with high cooling effectiveness. This paper presents a preliminary cooling system integrated with electronic device., which is supported by evaporation and capillarity effects. A simplified modeling of conjugate heat transfer including evaporation using FLUENT package is discussed. The experiments for open and close loop capillary pomp are shown to compare and verify the measurements and simulation results.

  3. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing.

    Science.gov (United States)

    Groskreutz, Stephen R; Horner, Anthony R; Weber, Stephen G

    2015-07-31

    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of pre-column dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis.

  4. An electrohydrodynamic heat pipe.

    Science.gov (United States)

    Jones, T. B.

    1972-01-01

    A heat pipe of new design, using an electrode structure to orient and guide the dielectric liquid phase flow, is proposed. Analysis indicates that the operation of the electrohydrodynamic heat pipe is in direct analogy to capillary devices, with the polarization force acting in place of capillarity. Advantages of these new heat pipes include greatly reduced liquid friction, electrohydrodynamically enhanced evaporation and condensation heat transfer, and a possible voltage-controlled on/off feature. Preliminary calculations indicate that relatively high performance devices are possible.

  5. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo...

  6. Experimental research on heat transfer of pulsating heat pipe

    Institute of Scientific and Technical Information of China (English)

    LI Jia; Yan Li

    2008-01-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper,and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  7. Simulation of rarefied gas flow and heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    王娴; 王秋旺; 陶文铨; 郑平

    2002-01-01

    Analysis and simulation of rarefied nitrogen gas flow and heat transfer were performed with the Knusden number ranging from 0.05 to 1.0, using the direct simulation of Monte Carlo (DSMC) method. The influences of the Kn number and the aspect ratio on the gas temperature and wall heat flux in the microchannels were studied parametrically. The total and local heat fluxes of the microchannel walls varying with the channel inlet velocities were also investigated in detail. It was found that the Kn number and the aspect ratio greatly influence the heat transfer performance of microchannels, and both the channel inlet and outlet have higher heat fluxes while the heat flux in the middle part of channels is very low. It is also found that the inlet free stream flow velocity has small affect on the wall total heat flux while it changes the distribution of local heat flux.

  8. Development of a liquid-junction/low-flow interface for phosphate buffer capillary electrophoresis mass spectrometry.

    Science.gov (United States)

    Li, Fu-An; Huang, Ju-Li; Shen, Shang-Yu; Wang, Che-Wei; Her, Guor-Rong

    2009-04-01

    To alleviate ion suppression from phosphate buffer and to preserve separation integrity, a new capillary electrophoresis mass spectrometry (CE-MS) interface was developed. The interface consisted of a low-flow interface and a liquid junction. In this design, both the inlet reservoir and the liquid-junction reservoir were filled with phosphate running buffer. Because the phosphate anions in the column migrated toward the inlet reservoir (away from the electrospray ionization (ESI) source) the problem of ion suppression in ESI was avoided. The liquid junction was incorporated to eliminate issues of degraded separation observed when sheath liquid interfaces use different buffers for separation and MS analysis attributed to differences in anion velocity. The utility of the interface was demonstrated by the analysis of antihistamines at pH 3.5 and the analysis of perfluorocarboxylic acid at pH 9.5.

  9. Electrical resistance of a capillary endothelium

    Science.gov (United States)

    1981-01-01

    The electrical resistance of consecutive segments of capillaries has been determined by a method in which the microvessels were treated as a leaky, infinite cable. A two-dimensional analytical model to describe the potential field in response to intracapillary current injection was formulated. The model allowed determination of the electrical resistance from four sets of data: the capillary radius, the capillary length constant, the length constant in the mesentery perpendicular to the capillary, and the relative potential drop across the capillary wall. Of particular importance were the mesothelial membranes covering the mesenteric capillaries with resistances several times higher than that of the capillary endothelium. 27 frog mesenteric capillaries were characterized. The average resistance of the endothelium was 1.85 omega cm2, which compares well with earlier determinations of the ionic permeability of such capillaries. However, heterogeneity with respect to resistance was observed, that of 10 arterial capillaries being 3.0 omega cm2 as compared with 0.95 omega cm2 for 17 mid- and venous capillaries. The average in situ length constant was 99 micrometers for the arterial capillaries and 57 micrometers for the mid- and venous capillaries. It is likely that the ions that carry the current must move paracellularly, through junctions that are leaky to small solutes. PMID:7241087

  10. Performance influence in submersible pump with different diffuser inlet widths

    Directory of Open Access Journals (Sweden)

    Qingshun Wei

    2016-12-01

    Full Text Available The diffuser inlet width is a key geometric parameter that affects submersible pump performance. On the basis of diffuser characteristic curve analyses, diffusers with different inlet widths and the same impeller were equipped to construct a submersible pump model through the use of AutoCAD software. The performance curves of the submersible pump, with six diffuser inlet widths, were obtained using computational fluid dynamics method. Simultaneously, the simulation results were tested with the experimental method presented in this article. The results show that the optimum value of the inlet width (b3 = 50 mm is larger than the experience-based one. With an increase in the inlet width, the optimum operating point of a submersible pump offsets to a larger flow rate. When the guide blade inlet width is approximately 40–55 mm, the submersible pump efficiency is relatively high, approximately 75.9%–83.7% capacity, and the flow rate is approximately 105–135 m3/h. The numerical results of submersible pump performance are higher than those of the test results; however, their change trends have an acceptable agreement with each other. The practical significance is supplied by changing the inlet width of the diffuser to expand the scope of use.

  11. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  12. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  13. Capillary interactions in Pickering emulsions

    Science.gov (United States)

    Guzowski, J.; Tasinkevych, M.; Dietrich, S.

    2011-09-01

    The effective capillary interaction potentials for small colloidal particles trapped at the surface of liquid droplets are calculated analytically. Pair potentials between capillary monopoles and dipoles, corresponding to particles floating on a droplet with a fixed center of mass and subjected to external forces and torques, respectively, exhibit a repulsion at large angular separations and an attraction at smaller separations, with the latter resembling the typical behavior for flat interfaces. This change of character is not observed for quadrupoles, corresponding to free particles on a mechanically isolated droplet. The analytical results are compared with the numerical minimization of the surface free energy of the droplet in the presence of spherical or ellipsoidal particles.

  14. Inlet Guide Vane Wakes Including Rotor Effects

    Science.gov (United States)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  15. Is Cervical Inlet Patch Important Clinical Problem?

    Science.gov (United States)

    SAHIN, Gurol; ADAS, Gokhan; KOC, Bora; AKCAKAYA, Adem; DOGAN, Yasar; Goksel, Suha; Yalcin, Ozben

    2014-01-01

    AIM: In this study we aim to determine the frequency of Inlet Patch (IP) and its association to clinical symptoms and draw attention to be aware of this heterotopic gastric mucosa. METHODS: This study was a prospective case series that IP was detected in the upper gastrointestinal endoscopy. Patients with laringopharyngeal reflux symptoms underwent endoscopy between March 2009 and July 2012 in two different institutions. All the biopsies were obtained from if there is the IP lesion and antral or/and gastric mucosa. The data was prospectively evaluated. The prevalence was compared with those of patients that did not determine IP in the study period. RESULTS: 3907 upper gastrointestinal system endoscopy was performed while 123 patients consist of 51 male and 72 female was determined as IP. The prevalence of IP in patiens who underwent upper gastrointestinal endoscopy was 3.14% in our study. The majority of symptoms of those who had IP were laringopharyngeal reflux symptoms. Heterotopic gastric mucosa was fixed in 114 cases while 28 chronic inflammation, 9 esophagitis, 5 intestinal metaplasia, 4 glicogenic acanthosis were obtained as additional findings in pathological examinations. CONCLUSION: Heterotopic gastric mucosa in the proximal esophagus is a frequent finding if the endoscopist is aware of this entity. The importance of IP is the increasing number of cases of neoplastic transformation. Symptomatic patients should be treated and should be considered of the complications of heterotopic gastric mucosa. PMID:25018682

  16. Explicit analytical solutions for liquid infiltration into capillary tubes: dynamic and constant contact angle.

    Science.gov (United States)

    Hilpert, Markus

    2010-04-01

    We derive new analytical solutions for liquid infiltration into a gas-filled capillary tube, whose inlet is connected to a liquid reservoir held at a constant pressure. We generalize the Lucas-Washburn theory to account for a model for dynamic contact angle that assumes the nonequilibrium Young force to depend linearly on the velocity of the gas-liquid interface. Like Lucas and Washburn, we neglect inertial forces. Using the Lambert function, we derive explicit analytical solutions for the interface position, velocity, and acceleration as a function of time. Consistent with previous work, which used more general models for dynamic contact angle, we can distinguish between five infiltration scenarios: horizontal infiltration, upward infiltration (capillary rise), as well as steady-state, accelerating, and decelerating downward infiltration. We determine the mutually exclusive conditions for the different infiltration scenarios to occur in terms of the nondimensional parameters that define the problem. Moreover, we develop 2D and 3D diagrams that show which parameter combination results in which infiltration scenario. Our analytical solutions are also valid in the limit where the dynamic contact angle becomes constant. For a constant contact angle, accelerating downward infiltration occurs only if the initial interface is not located at the tube inlet but further down the tube. For the special case in which the contact angle is constant, the liquid pressure at the tube inlet is equal to the gas pressure, and the interface is initially located at the tube inlet, our solution for upward infiltration is identical to a solution previously reported in the literature.

  17. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet......Jet impingement heat transfer from a round gas jet to a flat wall was investigated numerically for a ratio of 2 between the jet inlet to wall distance and the jet inlet diameter. The influence of turbulence intensity at the jet inlet and choice of turbulence model on the wall heat transfer...... was observed in the stagnation region, where the wall heat flux increased by a factor of almost 3 when increasing the turbulence intensity from 1.5% to 10%. The choice of turbulence model also influenced the heat transfer predictions significantly, especially in the stagnation region, where differences of up...

  18. Should we attempt global (inlet engine airframe) control design?

    Science.gov (United States)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  19. Conceptual Design of a Variable Air Inlet, JAS 39 Gripen

    OpenAIRE

    Rosén, Malin; Boström, Andreas

    2015-01-01

    The JAS 39 Gripen currently has a static air inlet designed for cooling the engine bay. This inlet has been developed over the years and has consisted of several different solutions. In this master’s thesis an investigation of past and current designs has been conducted in order to develop new concepts with a variable solution. Since the static inlet is designed for a worst case scenario, long duration of flight at low altitudes and high atmospheric temperatures, the cooling produced is not a...

  20. Variable geometry inlet design for scram jet engine

    Science.gov (United States)

    Guinan, Daniel P. (Inventor); Drake, Alan (Inventor); Andreadis, Dean (Inventor); Beckel, Stephen A. (Inventor)

    2005-01-01

    The present invention relates to an improved variable geometry inlet for a scram jet engine having at least one combustor module. The variable geometry inlet comprises each combustor module having two sidewalls. Each of the sidewalls has a central portion with a thickness and a tapered profile forward of the central portion. The tapered profile terminates in a sharp leading edge. The variable geometry inlet further comprises each module having a lower wall and a movable cowl flap positioned forward of the lower wall. The movable cowl flap has a leading edge and the leading edges of the sidewalls intersect the leading edge of the cowl flap.

  1. Simultaneous mass detection for direct inlet mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament.

  2. Automated polymerase chain reaction in capillary tubes with hot air.

    Science.gov (United States)

    Wittwer, C T; Fillmore, G C; Hillyard, D R

    1989-06-12

    We describe a simple, compact, inexpensive thermal cycler that can be used for the polymerase chain reaction. Based on heat transfer with air to samples in sealed capillary tubes, the apparatus resembles a recirculating hair dryer. The temperature is regulated via thermocouple input to a programmable set-point process controller that provides proportional output to a solid state relay controlling a heating coil. For efficient cooling after the denaturation step, the controller activates a solenoid that opens a door to vent hot air and allows cool air to enter. Temperature-time profiles and amplification results approximate those obtained using water baths and microfuge tubes.

  3. Capillary electrophoresis-diode array detection--electrospray mass spectrometry for the analysis of selected tropane alkaloids in plant extracts.

    Science.gov (United States)

    Mateus, L; Cherkaoui, S; Christen, P; Veuthey, J L

    1999-11-01

    Capillary zone electrophoresis, coupled to UV and interfaced with electrospray ionization mass spectrometry (ESI-MS), is described for the simultaneous analysis of hyoscyamine and scopolamine. On-line UV detection occurred at 22 cm from the inlet of the capillary and ESI-MS monitoring was performed along the entire length of the capillary (85 cm). An alkaline solution of 40 mM ammonium acetate at pH 8.5 was suitable for the analysis of the alkaloids under consideration. Under the optimized conditions, including CE and ESI-MS parameters, the two alkaloids were resolved within a short time and with very high sensitivity. The differentiation of hyoscyamine and its positional isomer littorine, commonly encountered in plant material, is also presented using up-front collision-induced dissociation. Finally, the developed method was applied to the analysis of these alkaloids in Belladonna leaf extract and in Datura candida x D. aurea hairy root extract.

  4. Study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flows

    Science.gov (United States)

    Boltenko, E. A.

    2016-10-01

    The results of the experimental study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flow are presented. The experiments were carried out using electric heated annular channels with one and (or) two heat-release surfaces. For the organization of transit flow on a convex heat-release surface, four longitudinal ribs were installed uniformly at its perimeter. Swirl flow was realized using a capillary wound tightly (without gaps) on the ribs. The ratio between swirl and transit flows in the annular gap was varied by applying longitudinal ribs of different height. The experiments were carried out using a closed-type circulatory system. The experimental data were obtained in a wide range of regime parameters. Both water heated to the temperature less than the saturation temperature and water-steam mixture were fed at the inlet of the channels. For the measurement of the temperature of the heat-release surfaces, chromel-copel thermocouples were used. It was shown that the presence of swirl flow on a convex heatrelease surface led to a significant decrease in critical heat flows (CHF) compared to a smooth surface. To increase CHF, it was proposed to use the interaction of swirl flows of the heat carrier. The second swirl flow was transit flow, i.e., swirl flow with the step equal to infinity. It was shown that CHF values for a channel with swirl and transit flow in all the studied range of regime parameters was higher than CHF values for both a smooth annular channel and a channel with swirl. The empirical ratios describing the dependence of CHF on convex and concave heat-release surfaces of annular channels with swirl and transit flow on the geometrical characteristics of channels and the regime parameters were obtained. The experiments were carried out at the pressure p = 3.0-16.0 MPa and the mass velocity ρw = 250-3000 kg/(m2s).

  5. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  6. A heating tube

    Energy Technology Data Exchange (ETDEWEB)

    Burmistrov, V.M.; Rachev, L.A.

    1980-09-23

    Hollow needles made of an electrically conducting material are attached by hinges in the openings of the perforated end of an insert in order to intensify heat and mass transfer. The free sections of the needles are placed outside the insert, and a wick is placed on the wall of the frame in the condensation area. The wick overlaps the inlet openings of the insert.

  7. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...... and quantified. (C) 1999 The Society of Rheology. [S0148-6055(99)00103-0]....

  8. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...

  9. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  10. Capillary waves and ellipsometry experiments

    Science.gov (United States)

    Bonn, D.; Wegdam, G. H.

    1992-09-01

    The inclusion of higher-order terms in the capillary-wave Hamiltonian may reduce the contributions of these fluctuations to the ellipsometric coefficients. We show that the renormalization of capillary waves at a fluid-fluid interface by Sengers and van Leeuwen [Phys. Rev. A 39 (1989) 6346] using the wave vector-dependent surface tension that follows from the coupled mode theory by Meunier [Phys. France 48 (1987)1819] yields a satisfactory agreement with recent ellipsometry measurements by Schmidt [Phys. Rev. A 38 (1988) 567]. The interface is viewed upon as an intrinsic interface broadened by capillary waves. We suppose that the cutoff wave vector q_{max} that follows from mode-coupling theory marks the transition from the short-wavelength bulk-like fluctuations that contribute to the bare surface tension to the long-wavelength capillary wave-like fluctuations that contribute to the full surface tension. This enables us to calculate, without any adjustable parameters, both the ratio of the bare and experimental surface tension and the universal constant for the elliptical thickness of the interface. Both agree remarkably well with experimental values.

  11. Manufacturing and microstructural characterization of sintered nickel wicks for capillary pumps

    Directory of Open Access Journals (Sweden)

    Reimbrecht Eduardo Gonçalves

    1999-01-01

    Full Text Available Sintered nickel powder is proposed to be used as porous wicks in heat pipes and capillary pumps. In this work the manufacturing procedure for tubular wicks for capillary pump application is discussed. The porosity, mechanical resistance and roundness of tubular wicks made of carbonila powder, atomized powder and a powder mixture of both are analyzed. A powder mixture was selected as the best raw material. In this case, pore size in the range of 2 to 24 mm and porosity about 50% were measured. First tests carried out in the laboratory, using acetone as the working fluid, show capillary pumping pressures up to 4 kPa and heat fluxes of about 1 W/cm2 in a two-phase heat transfer loop.

  12. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  13. An Alternative Ice Protection System for Turbine Engine Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a dual approach to the development and certification of an alternative system for ice protection of turbine engine inlets. It combines a new...

  14. Piping Plover (Charadrius ntelodus) monitoring at Oregon Inlet, North Carolina

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report recommends a plan of monitoring Piping Plovers adjacent to Oregon Inlet relative to activities associated with the construction of a new bridge across...

  15. Cook Inlet and Kenai Peninsula, Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Cook Inlet and Kenai Peninsula, Alaska. Vector lines in this data set represent...

  16. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  17. Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...

  18. Cook Inlet and Kenai Peninsula, Alaska ESI: INDEX (Index Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet and Kenai...

  19. Cook Inlet and Kenai Peninsula, Alaska ESI: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  20. Cook Inlet and Kenai Peninsula, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  1. Cook Inlet and Kenai Peninsula, Alaska ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for razor clams in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

  2. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  3. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  4. A multiobjective shape optimization study for a subsonic submerged inlet

    Science.gov (United States)

    Taskinoglu, Ezgi S.

    The purpose of the present work is to summarize the findings of a multiobjective shape optimization study conducted for a subsonic submerged air vehicle inlet. The objective functions of the optimization problem are distortion and swirl indices defined by the distribution of flow parameters over the exit cross-section of the inlet. The geometry alteration is performed by placing a protrusion in the shape of a fin on the baseline inlet surface. Thus, the design variables of the optimization problem are chosen to be the geometrical parameters defining the fin protrusion; namely fin height, length and incidence angle. The Trade Off (also known as epsilon-constraint) method is employed for finding the Pareto optimal set formed by the nondominated solutions of the feasible design space. Since the flow domain solution is required for every step along the line search, an automated optimization loop is constructed by integrating the optimizer with a surface modeler, a mesh generator and a flow solver through which the flow parameters over the compressor face are computed. In addition, the trade study for fin protrusion, the analyses and the comparison of the baseline and Pareto optimal solutions are presented and observations concerning grid resolution and convergence behaviour are discussed. The results display an irregular and discontinuous Pareto optimal set. Optimum inlet designs are scattered in two regions from which one representative inlet design is chosen and analyzed. As a result, it is concluded that an inlet designer has two options within the framework of this optimization study: an inlet design with high swirl but low distortion or an inlet design with low swirl but higher distortion.

  5. Capillary SFC-APCI-MS characterization of PACs obtained by the fractionation of a contaminated pond sediment

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.; Sim, P.G.; Crain, S.M. [National Research Council, Halifax (Canada); Benoit, F.M. [Health Canada, Ottawa, Ontario (Canada)

    1994-12-31

    Capillary supercritical fluid chromotography can be directly coupled to a mass spectrometer by utilizing interfaces based on the direct fluid interface. In these, the capillary restrictor passes through a probe, at the end of which is positioned a heating element used to directly heat the end of the capillary restrictor to prevent solute precipitation and freezing of the mobile phase in the restrictor during decompression. Such SFC interfaces, which pass directly into the source of the MS, suffer from sensitivity problems, especially in the electron impact mode. Many of the problem associated with SFC-MS could effectively be removed if the ionization of the compounds were to occur at atmospheric pressure. Capillary SFC was combined with APCI-MS via heated pneumatic nebulizer interfaces modified for use with SFC, and applied to analyze a complex mixture of polycyclic aromatic compounds obtained by the fractionation of a contaminated pond sediment.

  6. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    Science.gov (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  7. Temperature Distribution and Heat Saturating Time of Regenerative Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Li JIA; Ying MAO; Lixin YANG

    2006-01-01

    In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of regenerator and gas were obtained. The variation of temperature with time was discussed. In addition, the effects of some parameters such as switching time, gas temperature at the inlet of regenerator, height of regenerator and specific heat of the regenerative materials on heat saturating time were discussed. It provided primarily theoretic basis for further study of regenerative heat transfer mechanism.

  8. NRL capillary Z-pinch experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sethian, J.D.; Gerber, K.A.; Robson, A.E. [Naval Research Lab., Washington, DC (United States); DeSilva, A.W. [Sachs/Freeman Associates, Inc., Landover, MD (United States)]|[Maryland Univ., College Park, MD (United States)

    1984-12-31

    The current renewed interest in the dense linear z-pinch is due in large part to a recent Los Alamos Study which concluded that a z- pinch based reactor could produce 4.4 KJ of fusion energy per pulse for the modest input of 140 kJ per pulse, if a straight pinch could be maintained for 2 {mu}sec. Early attempts to achieve suitable high density z-pinches were of the implosion type which produced hollow pressure profiles that quickly resulted in disruptive m = 0 instabilities. These instabilities are not found in the gas embedded pinch in which an initially small diameter plasma is kept in radial equilibrium by following a prescribed current waveform. Unfortunately, these pinches are prone to a rapid accretion of the surrounding gas during the early stages of formation. Our approach is to form the pinch inside small diameter quartz capillaries filled with neutral hydrogen. This fixes the line density. By driving currents through the pinch at a rate that exceeds that necessary for radial equilibrium, we expect the pinch to contract away from the walls and be subject to compressional, as well as ohmic heating. This contraction will, of course, produce a plasma between the pinch and the capillary wall, but we anticipate this ``corona`` will be kept at a low temperature (i.e., high resistance) by radiation and hence shunt only a small fraction of the pinch current. We also expect negligible impurities in the pinch as the classical mixing time will be much longer than the pinch duration at the densities (10{sup 21}- 10{sup 22} ions/cm{sup 3}) and magnetic fields (1 - 10 MG) involved. However, we do expect the presence of the dense corona to reduce the growth rate of the m = 1 instability. Our results demonstrate that a z-pinch can be formed inside a capillary, but our limited current rise rates and peak current have limited our test abilities. Planned improvements in electrical equipment should yield successful testing results.

  9. Correlations to predict thermal performance affected by working fluid’s properties of vertical and horizontal closed-loop pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Sakulchangsatjatai Phrut

    2016-01-01

    Full Text Available Objectives of this paper are to investigate the effects of dimensionless numbers on the thermal performance, and to establish correlations to predict the thermal performance of the vertical and a horizontal closed-loop pulsating heat pipe. The heat pipes were made of long copper capillary tubes with 26 meandering turns and both the ends were connected together to form a loop. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with a constant filling ratio of 50% by total volume. The inlet temperature of the heating medium and the adiabatic section temperature were constantly controlled and maintained at 80°C and 50°C, respectively. The thermal performance was represented in terms of the Kutateladze number. It can be concluded that when the Prandtl number of the liquid working fluid, as well as the Karman number, increases, the thermal performance increases. On the other hand, when the Bond number, the Jacob number, and the Aspect ratio increase, the thermal performance decreases. These effects of the dimensionless numbers on the thermal performance are valid for both the heat pipes, except in the case of Bond number which has no effect on the thermal performance as far as the horizontal heat pipe is concerned. Moreover, correlations to predict thermal performance have been successfully established.

  10. Study on the interrelated effects of capillary diameter, background electrolyte concentration, and flow rate in pressure assisted capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Mai, Thanh Duc; Hauser, Peter C

    2013-06-01

    A detailed study on the effect of the buffer concentration and the magnitude of the superimposed hydrodynamic flow on separation performance in CZE with contactless conductivity detection was carried out with capillaries of 10, 25, and 50 μm internal diameter. It was confirmed that capillaries of narrow internal diameters require higher buffer concentrations for best sensitivities. For all diameters it was found that electrodispersion was the most pronounced band-broadening factor for relatively long residence times. For shorter times, Joule heating related band broadening appears to be the most significant factor, which means that best separation efficiencies are obtained with the narrowest capillaries. As detection limits are as good for capillaries of 10 μm internal diameters as for the other diameters when using contactless conductivity detection, these narrow capillaries are, therefore, generally of benefit when employing this detection technique. Hydrodyamic flow was found to have only a very limited effect on band broadening; an effect was only noticeable for the 50 μm capillary and relatively high flow rates.

  11. Mixed Capillary Venous Retroperitoneal Hemangioma

    Directory of Open Access Journals (Sweden)

    Mohit Godar

    2013-01-01

    Full Text Available We report a case of mixed capillary venous hemangioma of the retroperitoneum in a 61-year-old man. Abdominal ultrasonography showed a mass to be hypoechoic with increased flow in color Doppler imaging. Dynamic contrast-enhanced computed tomography revealed a centripetal filling-in of the mass, located anterior to the left psoas muscle at the level of sacroiliac joint. On the basis of imaging features, preoperative diagnosis of hemangioma was considered and the mass was excised by laparoscopic method. Immunohistochemical studies were strongly positive for CD31 and CD34, and negative for calretinin, EMA, WT1, HMB45, Ki67, synaptophysin, and lymphatic endothelial cell marker D2–40. Histologically, the neoplasm was diagnosed as mixed capillary venous hemangioma.

  12. General Investigation of Tidal Inlets: Stability of Selected United States Tidal Inlets

    Science.gov (United States)

    1991-09-01

    to determine the relationships that exist among the geometric and dynamic characterisa tics and the e n’. -onmen fac tocs that control these...73 5 50 Siletz, OR 7-39 to 2-76 4 51 Netarts, OR 7-53 to 7-73 4 Report Organizacion 8. Previous research on tidal inlet stability is summarized in Part...Relatinsh-i ps Among Time Variar.t Cha neteri tics Channel Indices R SC LC T W:L R 1 3 3 5 SC 0 3 0 3 LC 0 1 9 2 T 4 6 3 8 W: R 1 6 1 4 SC 0 1 2 3 LC 0 1 7 4

  13. Off-Design Performance of a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Slater, John W.

    2017-01-01

    A computational study was performed to explore the aerodynamic performance of a streamline-traced, external-compression inlet designed for Mach 1.664 at off-design conditions of freestream Mach number, angle-of-attack, and angle-of-sideslip. Serious degradation of the inlet performance occurred for negative angles-of-attack and angles-of-sideslip greater than 3 degrees. At low subsonic speeds, the swept leading edges of the inlet created a pair of vortices that propagated to the engine face. Increasing the bluntness of the cowl lip showed no real improvement in the inlet performance at the low speeds, but did improve the inlet performance at the design conditions. Reducing the inlet flow rate improved the inlet performance, but at the likely expense of reduced thrust of the propulsion system. Deforming the cowl lip for low-speed operation of the inlet increased the inlet capture area and improved the inlet performance.

  14. Capillary electrophoresis in food authenticity.

    Science.gov (United States)

    Kvasnicka, Frantisek

    2005-06-01

    Food authenticity is a term which simply refers to whether the food purchased by the consumer matches its description. False description can occur in many forms, from the undeclared addition of water or other cheaper materials, or the wrong declaration of the amount of a particular ingredient in the product, to making false statements about the source of ingredients i.e., their geographic, plant, or animal origin. The aim of this review is to summarize applications of capillary electrophoresis in food authentication.

  15. Capillary electrophoresis systems and methods

    Science.gov (United States)

    Dorairaj, Rathissh; Keynton, Robert S.; Roussel, Thomas J.; Crain, Mark M.; Jackson, Douglas J.; Walsh, Kevin M.; Naber, John F.; Baldwin, Richard P.; Franco, Danielle B.

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  16. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  17. Control of Inflow Distortion in a Scarf Inlet

    Science.gov (United States)

    Gerhold, Carl H.; Clark, Lorenzo R.; Biedron, Robert T.

    2002-01-01

    The scarf inlet has the potential to reduce aircraft inlet noise radiation to the ground by reflecting it into the space above the engine. Without forward motion of the engine, the non-symmetry of the inlet causes inflow distortion which generates noise that is greater than the noise reduction of the scarf. However, acoustic evaluations of aircraft engines are often done on static test stands. A method to reduce inflow distortion by boundary layer suction is proposed and evaluated using a model of a high bypass ratio engine located in an anechoic chamber. The design goal of the flow control system is to make the inflow to the inlet circumferentially uniform and to eliminate reversed flow. This minimizes the inflow distortion and allows for acoustic evaluation of the scarf inlet on a static test stand. The inlet boundary layer suction effectiveness is evaluated both by aerodynamic and by acoustic measurements. Although the design goal is not met, the control system is found to have a beneficial effect on the engine operation, reducing blade stall and speed variation. This is quantified by two acoustic benefits, reduction both of the variability of tone noise and of the low frequency wideband noise due to the inflow distortion. It is felt that a compromise in the manufacture of the control hardware contributes to the inability of the control system to perform as expected from the analysis. The control system with sufficient authority is felt to have the potential to permit reliable acoustic testing in a static configuration of engines with non-symmetric inlets. Because the control system can improve operation of the engine, it may also have the potential to reduce noise and vibration and enhance engine longevity during low speed ground operations in the terminal area.

  18. Exploring heating performance of gas engine heat pump with heat recovery

    Institute of Scientific and Technical Information of China (English)

    董付江; 刘凤国; 李先庭; 尤学一; 赵冬芳

    2016-01-01

    In order to evaluate the heating performance of gas engine heat pump (GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed (1400−2600 r/min), ambient air temperature (2.4−17.8 °C) and condenser water inlet temperature (30−50 °C). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance (COP) and system primary energy ratio (PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 °C to 17.8 °C, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 °C to 50 °C. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.

  19. Capillary stretching of elastic fibers

    Science.gov (United States)

    Protiere, Suzie; Stone, Howard A.; Duprat, Camille

    2014-11-01

    Fibrous media consisting of constrained flexible fibers can be found in many engineered systems (membranes in filters, woven textile, matted paper). When such materials interact with a liquid, the presence of liquid/air interfaces induces capillary forces that deform the fibers. To model this interaction we study the behaviour of a finite volume of liquid deposited on two parallel flexible fibers clamped at both ends. A tension along the fibers is imposed and may be varied. We show that the system undergoes various morphological changes as the interfiber distance, the elasticity and the tension of the fibers are varied. For a certain range of parameters, the liquid spreads along the fibers and pulls them together, leading to the ``zipping'' of the fibers. This capillary adhesion can then be enhanced or reduced by changing the tension within the fibers. We will show that balancing stretching and capillary forces allows the prediction of this transition as well as the conditions for which detachment of the fibers occurs. These results may be used to prevent the clogging of fibrous membranes or to optimize the capture of liquids.

  20. Capillary Electrophoresis - Optical Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  1. An experimental study of the flow of LPG as refrigerant inside an adiabatic helical coiled capillary tube in vapour compression refrigeration system

    Science.gov (United States)

    Punia, Sanjeev Singh; Singh, Jagdev

    2015-11-01

    This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.

  2. Critical Capillary Number of Interfacial Film Displacement in a Capillary Tube

    CERN Document Server

    Yan, Changfei

    2016-01-01

    The role of surface tension and wettability in the dynamics of air-liquid interfaces during immiscible fluid displacement flows in capillary tube driven by pressure has been investigated. The contact angle and capillary number drive the force wetting processes which is controlled by the balance between the capillary and the viscous lubrication forces. The dynamic wetting condition with the critical capillary number is studied analytically and validated experimentally, which demonstrates that the critical capillary number is associated with the contact angle, slip length and capillary radius.

  3. Application of LES in the study of inlet flow field in marine gas turbine

    Institute of Scientific and Technical Information of China (English)

    SHI Bao-long; SUN Hai-ou; SUN Tao; HU Yan-yong

    2005-01-01

    The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are conducted and reliable foundation for design and manufacture of marine gas turbine inlet system of high performance is provided. Numerical simulations and experiments of two inlet system models of gas turbine are conducted with satisfactory results and are of significance to the actual application of the inlet system.

  4. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  5. A glass capillary based microfluidic electromembrane extraction of basic degradation products of nitrogen mustard and VX from water.

    Science.gov (United States)

    Tak, Vijay; Kabra, Ankur; Pardasani, Deepak; Goud, D Raghavender; Jain, Rajeev; Dubey, D K

    2015-12-24

    In this work, a glass capillary based microfluidic electromembrane extraction (μ-EME) was demonstrated for the first time. The device was made by connecting an auxillary borosilicate glass tubing (O.D. 3mm, I.D. 2mm) perpendicular to main borosilicate glass capillary just below one end of the capillary (O.D. 8mm, I.D. 1.2mm). It generated the distorted T-shaped device with inlet '1' and inlet '2' for the introduction of sample and acceptor solutions, respectively. At one end of this device (inlet '2'), a microsyringe containing acceptor solution along with hollow fiber (O.D. 1000μm) was introduced. This configuration creates the micro-channel between inner wall of glass capillary and outer surface of hollow fiber. Sample solution was pumped into the system through another end of glass capillary (inlet '1'), with a micro-syringe pump. The sample was in direct contact with the supported liquid membrane (SLM), consisted of 20% (w/w) di-(2-ethylhexyl)phosphate in 2-nitrophenyl octyl ether immobilized in the pores of the hollow fiber. In the lumen of the hollow fiber, the acceptor phase was present. The driving force for extraction was direct current (DC) electrical potential sustained over the SLM. Highly polar (logP=-2.5 to 1.4) basic degradation products of nitrogen mustard and VX were selected as model analytes. The influence of chemical composition of SLM, extraction time, voltage and pH of donor and acceptor phase were investigated. The model analytes were extracted from 10μL of pure water with recoveries ranging from 15.7 to 99.7% just after 3min of operation time. Under optimized conditions, good limits of detection (2-50ngmL(-1)), linearity (from 5-1000 to 100-1000ngmL(-1)), and repeatability (RSDs below 11.9%, n=3) were achieved. Applicability of the proposed μ-EME was proved by recovering triethanolamine (31.3%) from 10μL of five times diluted original water sample provided by the Organization for the Prohibition of Chemical Weapons during 28th official

  6. Development of the Planar Inlet Design and Analysis Process (PINDAP)

    Science.gov (United States)

    Gruber, Christopher R.

    2004-01-01

    The aerodynamic development of an engine inlet requires a comprehensive program of both wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. To save time and resources, much "testing" is done using CFD before any design ever enters a wind tunnel. The focus of my project this summer is on CFD analysis tool development. In particular, I am working to further develop the capabilities of the Planar Inlet Design and Analysis Process (PINDAP). "PINDAP" is a collection of computational tools that allow for efficient and accurate design and analysis of the aerodynamics about and through inlets that can make use of a planar (two-dimensional or axisymmetric) geometric and flow assumption. PINDAP utilizes the WIND CFD flow solver, which is capable of simulating the turbulent, compressible flow field. My project this summer is a continuation of work that I performed for two previous summers. Two years ago, I used basic features of the PINDAP to design a Mach 5 hypersonic scramjet engine inlet and to demonstrate the feasibility of the PINDAP. The following summer, I worked to develop its geometry and grid generation capabilities to include subsonic and supersonic inlets, complete bodies and cowls, conic leading and trailing edges, as well as airfoils. These additions allowed for much more design flexibility when using the program.

  7. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas).

    Science.gov (United States)

    Lammers, Marc O; Castellote, Manuel; Small, Robert J; Atkinson, Shannon; Jenniges, Justin; Rosinski, Anne; Oswald, Julie N; Garner, Chris

    2013-09-01

    The endangered beluga whale (Delphinapterus leucas) population in Cook Inlet, AK faces threats from a variety of anthropogenic factors, including coastal development, oil and gas exploration, vessel traffic, and military activities. To address existing gaps in understanding about the occurrence of belugas in Cook Inlet, a project was developed to use passive acoustic monitoring to document the year-round distribution of belugas, as well as killer whales (Orcinus orca), which prey on belugas. Beginning in June 2009, ten moorings were deployed throughout the Inlet and refurbished every two to eight months. Despite challenging conditions consisting of strong tidal currents carrying debris and seasonal ice cover, 83% of mooring deployments were successfully recovered. Noise from water flow, vessel traffic, and/or industrial activities was present at several sites, potentially masking some signals. However, belugas were successfully detected at multiple locations. Detections were relatively common in the upper inlet and less common or absent at middle and lower inlet locations. Killer whale signals were also recorded. Some seasonal variability in the occurrence of both belugas and killer whales was evident.

  8. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  9. Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guobing [School of Energy and Power Engineering, North China Electric Power University, Beijing 102206 (China); Zhang, Yufeng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-05-15

    This paper experimentally investigated the system performance of a split-type air conditioner matching with different coiled adiabatic capillary tubes for HCFC22 and HC290. Experiments were carried out in a room-type calorimeter. The results have shown that (1) similar cooling effects can be achieved by matching various capillary tubes of different inner diameters; (2) parallel capillary tubes presented better system performance and flow stability with weaker inlet pressure fluctuations than the single capillary tube; (3) with the coil diameter of the capillary tube increasing from 40 mm to 120 mm, the mass flow rate tended to increase slightly. But the cooling capacity, input power and energy efficiency ratio (EER) did not show evident tendency of change; (4) the refrigerant charge and mass flow rate for HC290 were only 44% and 47% of that for HCFC22, respectively, due to the much lower density. And HC290 had 4.7-6.7% lower cooling capacity and 12.1-12.3% lower input power with respect to HCFC22. However, the EER of HC290 can be 8.5% higher than that of HCFC22, which exhibits the advantage of using HC290. In addition, the experimental uncertainties were analyzed and some application concerns of HC290 were discussed. (author)

  10. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  11. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    Harinarayan Tiwari; Nayan Sharma

    2015-10-01

    This paper presents fundamental outcomes from an experimental study on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). Hydrodynamic performance was tested in a circulated open channel that comprised of PKW and sand bed (d50 = 0.25 mm). Instantaneous velocities were measured at 20 cross sections using Laser Doppler Velocimeter (LDV) with constant discharge and depth. Average velocity and turbulence intensities in both directions were investigated. Average longitudinal velocities are found very much consistent at every point and maximum around the midway of inlet key. In transverse direction, flow is bifurcating in two directions which are also confirmed by average transverse velocity estimation. Variation of turbulence intensity presents average 10 times higher transverse turbulence than longitudinal turbulence near inlet key of PKW.

  12. A New Conductivity Detector for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new conductivity detector for capillary electrophoresis consisting of an electrochemical cell and a conductive meter was developed. In the cell, the microelectrode and capillary were inserted through the cell wall and fixed by screws and sealing ring, the ends of microelectrode and capillary were located by a guide with two cross holes. LOD for K+ was 1.5×10-5 mol/L.

  13. Intracranial capillary hemangioma mimicking a dissociative disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lacasse

    2012-01-01

    Full Text Available Capillary hemangiomas, hamartomatous proliferation of vascular endothelial cells, are rare in the central nervous system (CNS. Intracranial capillary hemangiomas presenting with reversible behavioral abnormalities and focal neurological deficits have rarely been reported. We report a case of CNS capillary hemangioma presenting with transient focal neurological deficits and behavioral abnormalities mimicking Ganser’s syndrome. Patient underwent total excision of the vascular malformation, resulting in complete resolution of his symptoms.

  14. Heat transfer at the sintered layer-polysynthetic material interface inside heat micro pipes

    Science.gov (United States)

    Sprinceana, Siviu; Mihai, Ioan

    2016-12-01

    If micro heat pipe heat transfers, the inside working fluid goes through a biphasic state. The flow of the liquid and the vapor thereof by the capillary beds of frittered copper and the layer of capillary polysynthetic material and migration of vapors liquid from the end, takes the heat flow towards the end where a transfer of heat may occur only if there is a difference in temperature between the end of a flat micro heat pipe that gives the acquirer heat and heat flux. The porosity of the material is total pore of the total material volume. In the analysis of heat and mass transfer through porous media, both convective and conductive transfer forms can not be separated, because of the surfaces in contact between the two capillar layers. It had been studied the dependence of the rate of flow of liquid through the frittered porous media, and Reynolds polysynthetic. It tracks changes in the Reynolds number based on the interior capillary porosity. They traced in Mathcad [1] the graphs for changing the Reynolds number of capillary pressure by capillary porosity.

  15. Dynamics of transitions between capillary stable states under weightlessness

    Science.gov (United States)

    Srikanth, Praveen

    The study of two phase systems with one of the phases obstructing the other is of importance in a lot of fields. Liquid droplets in airways and air bubbles in the blood stream both fall under this category of problems. Helium bubbles in hydrazine fuel lines of satellites also have been found to cause frequent thruster shutdown and also seriously affect spacecraft control. Studies have been carried out until now to look at static equilibrium topologies and stability of such two phase systems in straight, bent and laterally compressed capillaries. In this investigation we look at the dynamics of the transitions between the stable topologies identified for a straight cylindrical capillary. The break up of the interface could adversely affect system performance. OpenFOAM is used to compute transitions from a stable droplet to a plug or the reverse by suitably adding or removing the obstructing phase through inlet patches on the wall of the cylinder. The main parameters presented are the non-dimensional energy, non-dimensional transition times, non-dimensional transition volumes and the general dynamics of the transitions itself. Before computing transitions the static equilibrium topologies computed by OpenFOAM are compared with those predicted by Surface Evolver and are found to be within acceptable deviations. The grid dependence of these transitions has also been studied. Transitions are computed for contact angles in the range of 10° to 170°. Different modes of transitions are observed depending on the contact angle of the case for both the types of transitions. The transition volumes are compared to the volume of existence limits for the corresponding initial topology at a particular contact angle for both the transitions.

  16. Oxygen exchange in silicone rubber capillaries.

    Science.gov (United States)

    Heineken, F G; Predecki, P K; Filley, G F

    1978-06-01

    Capillaries of 7 and 12.5 mu diameter have been fabricated in silicone rubber. Whole blood treated with heparin has been perfused through these capillaries. Under flowing conditions, no clotting or other clumping effects have been observed and red cells appear to maintain a constant velocity. Oxygen transfer data to and from saline perfusing the 12.5 mu diameter capillaries have been obtained in order to determine how rapidly O2 will permeate the silicone rubber film. The data indicate that the capillaries simulate lung tissue oxygen exchange and will allow for the first time the experimental determination of oxygen exchange kinetics in flowing whole blood.

  17. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  18. Rapidly design safety relief valve inlet piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Westman, M.A.

    1997-03-01

    Safety relief valves (SRVs) used to protect against overpressure require well-designed inlet piping for proper operation. The engineer`s job is to produce these designs from a thorough understanding of the inlet piping as a key component in the safety relief system and the correct application of the governing fluid dynamics principles. This article will present a technique for analysis and design using classical ideal-gas adiabatic fluid flow principles. Also, it will discuss the advantages of using the personal computer (PC) to quickly arrive at accurate designs. This work applies to SRVs in which relief flows are limited by sonic conditions at their nozzles.

  19. Augustine Volcano, Cook Inlet, Alaska (January 31, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. In the last week, volcanic flows have been seen on the volcano's flanks. An ASTER thermal image was acquired at night at 22:50 AST on January 31, 2006, during an eruptive phase of Augustine. The image shows three volcanic flows down the north flank of Augustine as white (hot) areas. The eruption plume spreads out to the east in a cone shape: it appears dark blue over the summit because it is cold and water ice dominates the composition; further downwind a change to orange color indicates that the plume is thinning and the signal is dominated by the presence of ash. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion

  20. Engine inlet distortion in a 9.2 percent scale vectored thrust STOVL model in ground effect

    Science.gov (United States)

    Johns, Albert L.; Neiner, George; Flood, J. D.; Amuedo, K. C.; Strock, T. W.

    1989-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot low speed wind tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results are presented which show the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale vectored thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0 degrees, -6 degrees, and 18 degrees. The model support system had 4 degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 knots.

  1. Engine inlet distortion in a 9.2 percent scaled vectored thrust STOVL model in ground effect

    Science.gov (United States)

    Johns, Albert L.; Neiner, George; Flood, J. D.; Amuedo, K. C.; Strock, T. W.

    1989-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, a cooperative program has been defined for testing in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. This paper presents results showing the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale Vectored Thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0, -6, and 18 deg. The model support system had 4 deg of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 kn.

  2. THREE-DIMENSIONAL REGULARITIES OF DISTRIBUTION OF AIR-INLET CHARACTERISTIC VELOCITY IN NATURAL-DRAFT WET COOLING TOWER

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; SUN Feng-zhong; ZHAO Yuan-bin; GAO Ming; SHI Yue-tao

    2008-01-01

    A model for heat and mass transfer in a natural-draft wet cooling tower was established. Numerical simulation with the k-ε turbulent model was conducted. Distribution rules of air inlet aerodynamic field were studied. Field experiments were done in a cooling tower in power plant, and the test data was compared with the related results. The definition of characteristic air velocity was proposed and its influencing factors, such as the cross-wind velocity and circumferential angle, were quantitatively studied. It can be used to evaluate the performance of cooling tower and to calculate the ventilation quantity and resistance of air inlet. It is also a theoretical basis for cooling tower design and performance optimization.

  3. Design and performance test of miniature capillary pumped loop for electronics cooling

    Institute of Scientific and Technical Information of China (English)

    万珍平; 皮丕辉; 付永清; 汤勇

    2008-01-01

    Considering two characteristics of compact heat dissipation room and high heat flux, a novel miniature capillary pumped loop (MCPL) for electronics cooling was proposed. MCPL consists of evaporator, condenser, vapor and liquid line dissipates heat by boiling and condensation of working fluids with no extra power consumption. Working fluid circulation is ensured by vapor pressure and capillary head. Saturated wick screens vapor and liquid, and ensures one-way flow of working fluid with no extra valve. In order to promote heat dissipation capacity of MCPL, the intensified boiling and condensation structures are embedded into evaporator and condenser respectively, which are useful to increasing boiling and condensation efficiency. Startup and run characteristics are tested by experiments in the condition of different power inputs and working fluids. MCPL is capable of dissipating 80 W of thermal energy and keeping the bottom substrate temperature of evaporator at 80 ℃.

  4. Vacuum scanning capillary photoemission microscopy

    DEFF Research Database (Denmark)

    Aseyev, S.A.; Cherkun, A P; Mironov, B N

    2017-01-01

    of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ...... distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element...

  5. Capillary Bridges between Soft Substrates

    Science.gov (United States)

    Wexler, Jason S.; Heard, Tiara M.; Stone, Howard A.

    2014-02-01

    A wetting droplet trapped in the thin gap between two elastic bodies will deflect the bodies towards one another. The deformation increases the total capillary adhesion force by increasing the contact radius and narrowing the gap height. For flat droplets, with a large ratio of radius to gap height, the Laplace pressure causes surface deformations that are orders of magnitude larger than those induced by a sessile droplet of the same radius. We present experiments, scalings, and closed-form solutions that describe the deformation. Using variational techniques, we also show that the problem exhibits a bifurcation, where the gap spontaneously closes due to an incremental increase in drop volume.

  6. Capillary electrophoresis theory and practice

    CERN Document Server

    Grossman, Paul D

    1992-01-01

    This book is designed to be a practical guide, used by wide audience, including those new to CE, those more experienced, routine users, those interested in technology development, and those involved with applications research. References have been emphasized to allow the reader to explore the detailed specifics and theoretical foundations.This book draws together the rapidly evolving, diverse, and multidisciplinary subject of capillary electrophoresis (CE). It is designed as a practical guide to be used by a wide audience, including those new to CE as well as more experienced users. T

  7. Electromigration dispersion in Capillary Electrophoresis

    CERN Document Server

    Chen, Zhen; 10.1007/s11538-011-9708-7

    2012-01-01

    In a previous paper (S. Ghosal and Z. Chen Bull. Math. Biol. 2010, vol. 72, pg. 2047) it was shown that the evolution of the solute concentration in capillary electrophoresis is described by a nonlinear wave equation that reduced to Burger's equation if the nonlinearity was weak. It was assumed that only strong electrolytes (fully dissociated) were present. In the present paper it is shown that the same governing equation also describes the situation where the electrolytic buffer consists of a single weak acid (or base). A simple approximate formula is derived for the dimensionless peak variance which is shown to agree well with published experimental data.

  8. Improving the reproducibility in capillary electrophoresis by incorporating current drift in mobility and peak area calculations

    DEFF Research Database (Denmark)

    Petersen, Nickolaj J.; Hansen, Steen H

    2012-01-01

    The traditional way of calculating mobility and peak areas in capillary electrophoresis does not take into account the changes in the buffer viscosity at different thermostatic control and that the analytes may accelerate during the individual runs due to Joule heating effects. We present a method...

  9. System simulation for an untreated sewage source heat pump (USSHP) in winter

    Science.gov (United States)

    Qin, Na; Hao, Peng Z.

    2017-01-01

    The paper discusses the system characteristics of an untreated sewage source heat pump in winter. In this system, the sewage enters into the evaporator directly. The variable parameters to control the system contain the sewage temperature at evaporator inlet and the water temperature at condenser inlet. It is found that most parameters, except the condensation heat transfer coefficient, change in the form of sine wave the same as the sewage temperature at inlet. The heating load and consumed power are 12.9kW and 3.45kW when the sewage temperature at inlet is 13°C. COP is about 3.75 in the range of the sewage temperature at inlet of 12-13°C.

  10. Experimental Research on Flow Maldistribution in Plate-Fin Heat Exchangers%板翘式换热器物流分配特性的实验研究

    Institute of Scientific and Technical Information of China (English)

    张哲; 厉彦忠; 许箐

    2004-01-01

    The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because of the defects of inlet configurations, while the inlet configuration and Reynolds number are the main factors affecting the flow distribution. The improved inlet configurations, which are the header with a two-stage distributing configuration and the guide vane with a fluid complementary cavity were proposed and tested in this paper. The experimental results show that the improved inlet configurations can effectively improve the performance of flow distribution in heat exchangers.

  11. Effect of Fluorosurfactant on Capillary Instabilities in Nanoimprinted Polymer Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Ding, Yifu; Douglas, Jack F.; Ro, Hyun W.; Okerberg, Brian C.; Karim, Alamgir; Lavery, Kristopher A.; Lin-Gibson, Sheng; Soles, Christopher L.

    2009-12-15

    Surface forces play a paramount role in most aspects of Nanoimprint Lithography. In particular, subjecting nanoimprinted patterns to moderate heating allows surface tension to smooth out undesirable roughness and defects in the patterns, but this thermal reflow treatment can induce structural decay or even collapse of the patterns by capillary instability if this process is not carefully controlled. Adhesion between the mold and polymer film can also cause the imprinted structure to tear or fracture. Fluorinated surfactants (FS) are attractive for reducing mold adhesion, yet the effects of these additives on nanostructure stability during thermal reflow are not well understood. Here we present thermal stability studies of line-space grating patterns created by Thermal Embossing Nanoimprint Lithography (TENIL) on model polystyrene (PS) films with FS additives. As expected by energy considerations, FS segregates to the air interface where it seems to facilitate mold release. This also reduces the surface energy and thus reduces the driving force for pattern "slumping" (height decay). However, the beneficial effects of the surfactant are counterbalanced by the fact that the FS decreases the effective film viscosity, which accelerates nanopattern leveling. The net effect is that the pattern height decay is strongly a function of FS concentration. This enhanced film fluidity in the presence of FS also makes the pattern more susceptible to an undulatory capillary instability under thermal reflow conditions. Surface phase segregation of FS and PS is also observed in conjunction with both slumping and lateral capillary instabilities, which may be useful for producing chemically patterned surfaces.

  12. Upscaling of CO 2 vertical migration through a periodic layered porous medium: The capillary-free and capillary-dominant cases

    Science.gov (United States)

    Mouche, Emmanuel; Hayek, Mohamed; Mügler, Claude

    2010-09-01

    We present an upscaled model for the vertical migration of a CO 2 plume through a vertical column filled with a periodic layered porous medium. This model may describe the vertical migration of a CO 2 plume in a perfectly layered horizontal aquifer. Capillarity and buoyancy are taken into account and semi-explicit upscaled flux functions are proposed in the two following cases: (i) capillarity is the main driving force and (ii) buoyancy is the only driving force. In both cases, we show that the upscaled buoyant flux is a bell-shaped function of the saturation, as in the case of a homogeneous porous medium. In the capillary-dominant case, we show that the upscaled buoyant flux is the harmonic mean of the buoyant fluxes in each layer. The upscaled saturation is governed by the continuity of the capillary pressure at the interface between layers. In the capillary-free case, the upscaled buoyant flux and upscaled saturation are determined by the flux continuity condition at the interface. As the flux is not continuous over the entire range of saturation, the upscaled saturation is only defined where continuity is verified, i.e. in two saturation domains. As a consequence, the upscaled buoyant flux is described by a piecewise continuous function. Two analytical approximations of this flux are proposed and this capillary-free upscaled model is validated for two cases of heterogeneity. Upscaled and cell averaged saturations are in good agreement. Furthermore, the proposed analytical upscaled fluxes provide satisfactory approximations as long as the saturation set at the inlet of the column is in a range where analytical and numerical upscaled fluxes are close.

  13. Critical effect of pore characteristics on capillary infiltration in mesoporous films

    Science.gov (United States)

    Ceratti, D. R.; Faustini, M.; Sinturel, C.; Vayer, M.; Dahirel, V.; Jardat, M.; Grosso, D.

    2015-03-01

    Capillary phenomena governing the mass-transport (capillary filling, condensation/evaporation) has been experimentally investigated in around 20 different silica thin films exhibiting various porosities with pores dimension ranging from 2 to 200 nm. Films have been prepared by sol-gel chemistry combined with soft-templating approaches and controlled dip coating process. Environmental ellipsometric porosimetry combined with electronic microscopy were used to assess the porosity characteristics. Investigation of lateral capillary filling was performed by following the natural infiltration of water and ionic liquids at the edge of a sessile drop in open air or underneath a PDMS cover. The Washburn model was applied to the displacement of the liquid front within the films to deduce the kinetic constants. The role of the different capillary phenomena were discussed with respect to the porosity characteristics (porosity vol%, pore dimensions and constrictions). We show that correlation between capillary filling rate and pore dimensions is not straightforward. Generally, with a minimum of constrictions, faster filling is observed for larger pores. In the case of mesopores (capillary condensation dynamics, taking place at the meniscus inside the porosity, has to be considered to explain the transport mode. This fundamental study is of interest for applications involving liquids at the interface of mesoporous networks such as nanofluidics, purification, separation, water harvesting or heat transfer.

  14. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  15. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  16. Atomic Force Controlled Capillary Electrophoresis

    Science.gov (United States)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  17. Characteristics of ac capillary discharge produced in electrically conductive water solution

    Science.gov (United States)

    DeBaerdemaeker, F.; Simek, M.; Schmidt, J.; Leys, C.

    2007-05-01

    Basic electrical, optical and calorimetric characteristics of an ac (50 Hz) driven capillary discharge produced in a water solution were studied for initial water solution conductivity in the range 50-1000 µS cm-1. Typical current and voltage waveforms and emission intensities produced by several electronically excited species were recorded with high time resolution. The evolution of the electrical current, power and capillary resistance was inspected during positive ac half-cycle for various operational regimes. A fast relaxation of the discharge following a breakdown event was observed. Optical measurements indicate that radiative species are mostly generated during the first few hundreds of nanoseconds of plasma generation and that the average duration of plasma emission induced by a discharge pulse is of the order of a few microseconds. Results of calorimetric measurements are in good agreement with average electrical measurements and support the assumption that the discharge is a constant source of heat delivered to the liquid. Assuming that only a fraction of the heat released inside the capillary can be transported by conduction through the capillary wall and via its orifices, the processes of bubble formation, expulsion and re-filling the capillary with 'fresh' water must play a key role in maintaining a thermal balance during long-time steady-state operation of the device. Furthermore, a simplified numerical model and a first order energy deposition calculation prove the plausibility of the bubble breakdown mechanism.

  18. Review of Singular Cooling Inlet and Linear Pressure Drop for ITER Coils Cable in Conduit Conductor

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Cloez, H.; Decool, P.; Lacroix, B.; Lebailly, C. A.; Serries, J. P.

    2006-04-01

    New tests and measurements performed (Othello Facility, EFDA Task) on TF mock up cooling inlet and different central spirals (characteristics: hydraulic outer diameter and perforation ratio) are presented, as well as the new model of singular and linear friction factor. The ITER Coils CICC hydraulic length pressure drop is determined in operating conditions (m=8 g/s, P=0.6 MPa and T=5 K): the important result is an increase in linear pressure drop for the TF (290 Pa/m) and CS (430 Pa/m), in comparison with prototype model coils TFMC (100 Pa/m) and CSMC (180 Pa/m). The main reason is the reduction of the central spiral diameter and associated increase of friction factor and bundle to total mass flow ratio α (from 1/3 up to 2/3 typically). The ratio of singular cooling inlet to CICC linear pressure drop is estimated: TF mock up ratio (3 m) is lower than previous CS mock up tested (12 m), due to design changes. The cryogenic power necessary to compensate the CICC pressure drop is calculated for the 4 primary loop circuits: typically 2.3 kW at 5 K for TF winding system represents 40% of the whole average TF winding magnet heat loads during operation.

  19. Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loop Heat Pipe (LHP) is a high performance heat transport device using capillary forces to circulate the working fluid in a closed loop. Conventional LHPs usually...

  20. Micro-Ramps for External Compression Low-Boom Inlets

    Science.gov (United States)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  1. Open inlet conversion: Water quality benefits of two designs

    Science.gov (United States)

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...

  2. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  3. Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.

    2008-01-01

    Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK RU

  4. Cross-sectional stability of double inlet systems

    NARCIS (Netherlands)

    Brouwer, R.L.

    2013-01-01

    Barrier coasts and their associated tidal inlet systems are a common feature in many parts of the world. They constitute dynamic environments that are in a continuous stage of adapting to the prevailing tide and wave conditions. Commonly, these coastal areas are densely populated and (partly) as a r

  5. Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.

    2008-01-01

    Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK

  6. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  7. Max Data Report Jet Stability versus Inlet Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This document describes experiments investigating the effect of inlet geometry on the flow field within a glass tank where two jets mix and impinge upon the lid. The setup mimics the outlet plenum of a fast reactor where core exit flows of different temperatures can mix in ways that induce thermal cycling in neighboring structures.

  8. 33 CFR 334.1310 - Lutak Inlet, Alaska; restricted areas.

    Science.gov (United States)

    2010-07-01

    ... signs will not be lighted. (2) Dry Cargo dock mooring area. (i) The waters within 60 feet off the face... dropping and dragging of anchors, weights, or other ground tackle within the Dry Cargo dock mooring area is...; restricted areas. (a) The areas—(1) Army POL dock restricted area. (i) The waters of Lutak Inlet bounded as...

  9. Experimental determination of stator endwall heat transfer

    Science.gov (United States)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane possage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Resutls were obtained for Reynolds numbers based on inlet velocity and axial chord between 75,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  10. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...... the inlet increases, natural convection starts to dominate. The heat transfer between the wall of the inner hot water tank and the domestic water is governed by natural convection. The results of the CFD-calculations are used to determine improved heat transfer correlations based on dimensionless analysis...

  11. Modeling capillary forces for large displacements

    NARCIS (Netherlands)

    Mastrangeli, M.; Arutinov, G.; Smits, E.C.P.; Lambert, P.

    2014-01-01

    Originally applied to the accurate, passive positioning of submillimetric devices, recent works proved capillary self-alignment as effective also for larger components and relatively large initial offsets. In this paper, we describe an analytic quasi-static model of 1D capillary restoring forces tha

  12. Capillary waveguide optrodes for Medical applications

    Science.gov (United States)

    Kieslinger, Dietmar; Weigl, Bernhard H.; Draxler, Sonja; Lippitsch, Max E.

    1997-01-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. The capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Different optical setups have been investigated and compared regarding its waveguiding properties.

  13. Arrested segregative phase separation in capillary tubes

    NARCIS (Netherlands)

    Tromp, R. Hans; Lindhoud, Saskia

    2006-01-01

    Phase separation in a capillary tube with one of the phases fully wetting the capillary wall is arrested when the typical size of the phase domains reaches the value of the diameter of the tube. The arrested state consists of an alternating sequence of concave-capped and convex-capped cylindrical

  14. Coarse mode aerosol measurement using a Low Turbulence Inlet

    Science.gov (United States)

    Brooke, J.; Bart, M.; Trembath, J.; McQuaid, J. B.; Brooks, B. J.; Osborne, S.

    2012-04-01

    The Sahara desert is a major natural source of global mineral dust emissions (Forster et al., 2007) through the mobilisation and lifting of dust particles into the atmosphere from dust storms. A significant fraction of this dust is in the aerosol coarse mode (Weinzierl et al., 2009). It is highlighted of the difficulty in making accurate and reliable measurements from an aircraft platform, particularly that of coarse mode aerosol (Wendisch et al., 2004). To achieve the measurement of a representative aerosol sample an aerosol inlet, on an aircraft, is required for the delivery of the sample to the instruments making the measurements. Inlet design can modify aerosol size distribution through either underestimating due to aerosol losses or overestimation due to enhancements. The Low Turbulence Inlet (LTI) was designed to improve inlet efficiency. This is achieved by reducing turbulence flow within the tip of the inlet, reducing impaction of particles to the walls of the inlet (Wilson et al., 2004). The LTI further maintains isokinetic sampling flow (free stream velocity, U0 and sampling velocity, U are equal to 1). Dust aerosol over the Sahara desert provides an excellent environment to test and quantify the capabilities of the LTI on the FAAM BAe 146, whilst enabling in-situ dust measurement. The LTI was operated during the Fennec field campaign in June 2011 with 11 flights during the campaign over Mauritania and Mali. We are using the LTI to provide critical information on the sampling characteristics of the inlet used by nearly all aerosol instruments inside the aircraft (AMS, Nephelometer, PSAP, and CCN). Inlet experiments were performed with identical Optical Particle Counters (OPC) connected to the rosemount and LTI with size distribution for each inlet measured and Rosemount enhancements determined. Rosemount inlet enhancements were determined to be 2 to 4 times for particles up to 2.5 µm. A key parameter in aerosol measurement is size distribution, in which

  15. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  16. Taguchi Method for Development of Mass Flow Rate Correlation using Hydrocarbon Refrigerant Mixture in Capillary Tube

    Directory of Open Access Journals (Sweden)

    Shodiya Sulaimon

    2014-07-01

    Full Text Available The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM. The Taguchi method, a statistical experimental design approach, was employed. This approach explores the economic benefit that lies in studies of this nature, where only a small number of experiments are required and yet valid results are obtained. Considering the effects of the capillary tube geometry and the inlet condition of the tube, dimensionless parameters were chosen. The new correlation was also based on the Buckingham Pi theorem. This correlation predicts 86.67% of the present experimental data within a relative deviation of -10% to +10%. The predictions by this correlation were also compared with results in published literature.

  17. Capillary electrophoresis using core-based hyperbranched polyethyleneimine (CHPEI) static-coated capillaries.

    Science.gov (United States)

    Boonyakong, Cheerapa; Tucker, Sheryl A

    2009-10-01

    With unique 3-D architecture, the application of core-based hyperbranched polyethyleneimine (CHPEI), as a capillary coating in capillary electrophoresis, is demonstrated by manipulation of the electroosmotic mobility (EOF). CHPEI coatings (CHPEI5, M(w) approximately 5000 and CHPEI25, M(w) approximately 25,000) were physically adsorbed onto the inner surface of bare fused-silica capillary (BFS) via electrostatic interaction of the oppositely charged molecules by rinsing the capillaries with different CHPEI aqueous solutions. The EOF values of the coated capillaries were measured over the pH range of 4.0-9.0. At higher pH (pH >6) the coated capillary surface possesses excess negative charges, which causes the reversal of the EOF. The magnitudes of the EOF obtained from the coated capillaries were three-fold lower than that of BFS capillary. Desirable reproducibility of the EOF with % RSD (n = 5) capillaries were successfully utilized to separate phenolic compounds, B vitamins, as well as basic drugs and related compounds with reasonable analysis time (capillary and capillary).

  18. Microjet flow control in an ultra-compact serpentine inlet

    Institute of Scientific and Technical Information of China (English)

    Da Xingy; Fan Zhaolin; Fan Jianchao; Zeng Liquan; Rui Wei; Zhou Run

    2015-01-01

    Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interface plane (AIP) face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC) effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90? circumferential distortion pattern to 180? circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the momentum coefficient affects the control effectiveness in a dual stepping manner.

  19. Microjet flow control in an ultra-compact serpentine inlet

    Directory of Open Access Journals (Sweden)

    Da Xingya

    2015-10-01

    Full Text Available Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interface plane (AIP face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the momentum coefficient affects the control effectiveness in a dual stepping manner.

  20. The physical environment affects cyanophage communities in British Columbia inlets.

    Science.gov (United States)

    Frederickson, C M; Short, S M; Suttle, C A

    2003-10-01

    Little is known about the natural distribution of viruses that infect the photosynthetically important group of marine prokaryotes, the cyanobacteria. The current investigation reveals that the structure of cyanophage communities is dependent on water column structure. PCR was used to amplify a fragment of the cyanomyovirus gene (g) 20, which codes for the portal vertex protein. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified g20 gene fragments was used to examine variations in cyanophage community structure in three inlets in British Columbia, Canada. Qualitative examination of denaturing gradient gels revealed cyanophage community patterns that reflected the physical structure of the water column as indicated by temperature and salinity. Based on mobility of PCR fragments in the DGGE gels, some cyanophages appeared to be widespread, while others were observed only at specific depths. Cyanophage communities within Salmon Inlet were more related to one another than to communities from either Malaspina Inlet or Pendrell Sound. As well, surface communities in Malaspina Inlet and Pendrell Sound were different when compared to communities at depth. In the same two locations, distinct differences in community composition were observed in communities that coincided with depths of high chlorophyll fluorescence. The observed community shifts over small distances (only a few meters in depth or inlets separated by less than 100 km) support the idea that cyanophage communities separated by small spatial scales develop independently of each other as a result isolation by water column stratification or land mass separation, which may ultimately lead to changes in the distribution or composition of the host community.

  1. Characteristics of heat flow in recuperative heat exchangers

    Directory of Open Access Journals (Sweden)

    Lalović Milisav

    2005-01-01

    Full Text Available A simplified model of heat flow in cross-flow tube recuperative heat exchangers (recuperators was presented in this paper. One of the purposes of this investigation was to analyze changes in the values of some parameters of heat transfer in recuperators during combustion air preheating. The logarithmic mean temperature (Atm and overall heat transfer coefficient (U, are two basic parameters of heat flow, while the total heated area surface (A is assumed to be constant. The results, presented as graphs and in the form of mathematical expressions, were obtained by analytical methods and using experimental data. The conditions of gaseous fuel combustions were defined by the heat value of gaseous fuel Qd = 9263.894 J.m-3, excess air ratio λ= 1.10, content of oxygen in combustion air ν(O2 = 26%Vol, the preheating temperature of combustion air (cold fluid outlet temperature tco = 100-500°C, the inlet temperature of combustion products (hot fluid inlet temperature thi = 600-1100°C.

  2. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  3. Interfacial Evaporation of Falling Liquid Films with Wall Heating

    Institute of Scientific and Technical Information of China (English)

    张金涛; 王补宣; 彭晓峰

    2001-01-01

    The interfacial evaporation of falling water films with wall heating was experimentally studied andanalyzed. The results presented in this paper showed that the capillary-induced interfacial evaporation playedan important role in heat transfer of a falling liquid film. It would be independent of the wall heat flux andsomewhat lower than that without wall heating for impure fluids such as water-air system. The thermodynamicanalysis conducted gave a theoretical basis for the experimental observations. The effective capillary radiuswas correlated with the mass flow rate. The experimental results and analysis showed that the interfacialevaporation should be taken into account in the study of falling liquid film heat transfer.``

  4. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  5. Capillary Separation: Micellar Electrokinetic Chromatography

    Science.gov (United States)

    Terabe, Shigeru

    2009-07-01

    Micellar electrokinetic chromatography (MEKC), a separation mode of capillary electrophoresis (CE), has enabled the separation of electrically neutral analytes. MEKC can be performed by adding an ionic micelle to the running solution of CE without modifying the instrument. Its separation principle is based on the differential migration of the ionic micelles and the bulk running buffer under electrophoresis conditions and on the interaction between the analyte and the micelle. Hence, MEKC's separation principle is similar to that of chromatography. MEKC is a useful technique particularly for the separation of small molecules, both neutral and charged, and yields high-efficiency separation in a short time with minimum amounts of sample and reagents. To improve the concentration sensitivity of detection, several on-line sample preconcentration techniques such as sweeping have been developed.

  6. Capillary Discharge XUV Radiation Source

    Directory of Open Access Journals (Sweden)

    M. Nevrkla

    2009-01-01

    Full Text Available A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 

  7. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  8. Gravity Capillary Standing Water Waves

    Science.gov (United States)

    Alazard, Thomas; Baldi, Pietro

    2015-09-01

    The paper deals with the 2D gravity-capillary water waves equations in their Hamiltonian formulation, addressing the question of the nonlinear interaction of a plane wave with its reflection off a vertical wall. The main result is the construction of small amplitude, standing (namely periodic in time and space, and not travelling) solutions of Sobolev regularity, for almost all values of the surface tension coefficient, and for a large set of time-frequencies. This is an existence result for a quasi-linear, Hamiltonian, reversible system of two autonomous pseudo-PDEs with small divisors. The proof is a combination of different techniques, such as a Nash-Moser scheme, microlocal analysis and bifurcation analysis.

  9. Copolymers For Capillary Gel Electrophoresis

    Science.gov (United States)

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  10. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  11. Multiple source ground heat storage

    Science.gov (United States)

    Belzile, P.; Lamarche, L.; Rousse, D. R.

    2016-09-01

    Sharing geothermal borefields is usually done with each borehole having the same inlet conditions (flow rate, temperature and fluid). The objective of this research is to improve the energy efficiency of shared and hybrid geothermal borefields by segregating heat transfer sources. Two models are briefly presented: The first model allows the segregation of the inlet conditions for each borefields; the second model allows circuits to be defined independently for each leg of double U-tubes in a borehole. An application couples residential heat pumps and arrays of solar collectors. Independent circuits configuration gave the best energy savings in a symmetric configuration, the largest shank spacing and with solar collectors functioning all year long. The boreholes have been shortened from 300 m to 150 m in this configuration.

  12. Stability Investigation on the Thin Films in Capillary

    Institute of Scientific and Technical Information of China (English)

    Zhang Lichun; Ma Tongze; Ge Xinshi

    2001-01-01

    The stability of the thin liquid film in a capillary is important to the phase-change heat transfer process in miniature or micro structures. From the basic equations for motion and heat transfer at the interface of the film,its stability is theoretically studied. With evaluation of the effects and relative magnitudes of various driving forces and with the use of long-wave theory in addition to linear stability analysis, the controlling equations are simplified and an evolution equation for the film's thickness is obtained. Detailed analysis on the evolution equation shows that instability occurs first in the meniscus region and the instability condition varies with boundary conditions, geometrical scales and thermal properties. The numerical results agree well with earlier ones with some favorable extensions and improvements.

  13. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    Science.gov (United States)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  14. Influence of the inlet air in efficiency of photocatalytic devices for mineralization of VOCs in air-conditioning installations.

    Science.gov (United States)

    Jimenez-Relinque, E; Castellote, M

    2014-10-01

    Nowadays, a large proportion of photocatalytic oxidation (PCO) devices are being implemented in heating, ventilation and air-conditioning systems. However, no systematic studies have been carried out regarding the influence of inlet air preconditioning. To analyse the impact of the inlet air-conditions into photocatalytic efficiency, a simulated air-conditioning duct with flowing gas through inside was designed. Isobutylene was chosen as the target VOCs. The concentration in the gas phase was monitored using a photoionization detector. The influence of flow rate, relative humidity and temperature on the VOC removal efficiency was analysed. Experimental results were presented in terms of gas-removal efficiency (η) and clean air delivery rate (CADR) and analysed on a kinetic basis. From them, the weight of each parameter in the global process has been determined, from bigger to smaller contribution, flow>temperature>relative humidity. Also, the relevance of the inlet air conditions has been illustrated in a model room in order to determinate the time necessary to obtain a threshold value accomplishing with enough air quality and the energy consumption of the device. Additionally, the photocatalytic decontamination has been assimilated to the "air exchange rate", a parameter commonly used in indoor air quality studies. The results show that preconditioning of air can improve the efficiency of photocatalytic devices and bring important energy savings.

  15. Modelling Morphological Response of Large Tidal Inlet Systems to Sea Level Rise

    NARCIS (Netherlands)

    Dissanayake, P.K.

    2011-01-01

    This dissertation qualitatively investigates the morphodynamic response of a large inlet system to IPCC projected relative sea level rise (RSLR). Adopted numerical approach (Delft3D) used a highly schematised model domain analogous to the Ameland inlet in the Dutch Wadden Sea. Predicted inlet evolut

  16. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air...

  17. A Combined CFD/Characteristic Method for Prediction and Design of Hypersonic Inlet with Nose Bluntness

    Science.gov (United States)

    Gao, Wenzhi; Li, Zhufei; Yang, Jiming

    Leading edge bluntness is widely used in hypersonic inlet design for thermal protection[1]. Detailed research of leading edge bluntness on hypersonic inlet has been concentrated on shock shape correlation[2], boundary layer flow[3], inlet performance[4], etc. It is well known that blunted noses cause detached bow shocks which generate subsonic regions around the noses and entropy layers in the flowfield.

  18. Non-linear dynamics of inlet film thickness during unsteady rolling process

    Science.gov (United States)

    Fu, Kuo; Zang, Yong; Gao, Zhiying; Qin, Qin; Wu, Diping

    2016-05-01

    The inlet film thickness directly affects film and stress distribution of rolling interfaces. Unsteady factors, such as unsteady back tension, may disturb the inlet film thickness. However, the current models of unsteady inlet film thickness lack unsteady disturbance factors and do not take surface topography into consideration. In this paper, based on the hydrodynamic analysis of inlet zone an unsteady rolling film model which concerns the direction of surface topography is built up. Considering the small fluctuation of inlet angle, absolute reduction, reduction ratio, inlet strip thickness and roll radius as the input variables and the fluctuation of inlet film thickness as the output variable, the non-linear relationship between the input and output is discussed. The discussion results show that there is 180° phase difference between the inlet film thickness and the input variables, such as the fluctuant absolute reduction, the fluctuant reduction ratio and non-uniform inlet strip thickness, but there is no phase difference between unsteady roll radius and the output. The inlet angle, the steady roll radius and the direction of surface topography have significant influence on the fluctuant amplitude of unsteady inlet film thickness. This study proposes an analysis method for unsteady inlet film thickness which takes surface topography and new disturbance factors into consideration.

  19. 78 FR 11094 - Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL

    Science.gov (United States)

    2013-02-15

    ... Guard is establishing a temporary safety zone on Lake Worth Inlet, West Palm Beach, Florida, to provide..., February 20, 2013, dredging operations will be conducted on Lake Worth Inlet in West Palm Beach, Florida... the southwestern corner of Singer Island and then due south across the inlet to Palm Beach...

  20. 78 FR 48314 - Drawbridge Operation Regulation; Milford Haven Inlet, Hudgins, VA

    Science.gov (United States)

    2013-08-08

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Milford Haven Inlet, Hudgins, VA... Bridge (Gwynn's Island) across the Milford Haven Inlet, mile 0.1, at Hudgins, Virginia. The deviation is... Milford Haven Inlet near Hudgins, Virginia. VDOT requested a deviation from the requirement to open on...

  1. 76 FR 24513 - Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida

    Science.gov (United States)

    2011-05-02

    ... Bureau of Land Management Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse... Management to continue to be managed as part of the Jupiter Inlet Lighthouse Outstanding Natural Area. DATES... Resource Act of 2008 (43 U.S.C. 1787), which created the Jupiter Inlet Lighthouse Outstanding Natural...

  2. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  3. A capillary viscometer designed for the characterization of biocompatible ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, J., E-mail: johannes.nowak@tu-dresden.de; Odenbach, S.

    2016-08-01

    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application. - Highlights: • A capillary viscometer to characterize biocompatible ferrofluids is presented. • Shear rates and capillary diameters

  4. Multi-leg heat pipe evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  5. Multi-leg heat pipe evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A.

    1986-04-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  6. Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with

  7. Test results of reliable and very high capillary multi-evaporators / condenser loop

    Energy Technology Data Exchange (ETDEWEB)

    Van Oost, S.; Dubois, M.; Bekaert, G. [Societe Anonyme Belge de Construction Aeronautique - SABCA (Belgium)

    1996-12-31

    The paper present the results of various SABCA activities in the field of two-phase heat transport system. These results have been based on a critical review and analysis of the existing two-phase loop and of the future loop needs in space applications. The research and the development of a high capillary wick (capillary pressure up to 38 000 Pa) are described. These activities have led towards the development of a reliable high performance capillary loop concept (HPCPL), which is discussed in details. Several loop configurations mono/multi-evaporators have been ground tested. The presented results of various tests clearly show the viability of this concept for future applications. Proposed flight demonstrations as well as potential applications conclude this paper. (authors) 7 refs.

  8. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2005-06-01

    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied.

  9. Prototype testing of heat pipes for spacecraft heat control systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, L.L.; Gil, V.V.; Zharikov, N.A.; Zelenin, V.E.; Syvorotka, O.M.; Uvarov, E.I.

    1980-05-01

    Prototype testing of heat pipes for spacecraft heat control was done on board the Interkosmos-15 satellite launched on 19 June 1976. The purpose was to gather data for optimizing the design, namely the capillary structure and the selection of heat transfer agent, as well as to verify the soundness of manufacturing technologies and test procedures. Three heat pipes were tested, each 412 mm long with a 14 mm outside diameter. All had been made of an aluminum alloy. In two pipes the capillary structure consisted of 0.6 x 0.5 mm/sup 2/ rectangular channels running axially along the inside wall, in the third pipe a 1 mm thick tubular mesh of Kh18N10T steel wire running coaxially inside served as the capillary structure. The heat transfer agent was Freon-11 in one of the first two pipes and synthetic liquid ammonia in the other two pipes. The three pipes were mounted radially around a radiator as the hub, with the test conditions controllable by means of an electric heater coil along the evaporation zone of each pipe, resistance thermometers for the evaporation zone and for the condensation zone of each, and also an external cooling fan. The radial distribution of temperature drops along the pipes was measured and the thermal fluxes were calculated, these data being indicative of the performance under conditions of weightlessness over the 0 to 70/sup 0/C temperature range. The somewhat worse performance of the heat pipe with a tubular capillary mesh inside is attributable to formation of vapor bubbles which impede the mass transfer along such an artery.

  10. Simplified universal method for determining electrolyte temperatures in a capillary electrophoresis instrument with forced-air cooling.

    Science.gov (United States)

    Patel, Kevin H; Evenhuis, Christopher J; Cherney, Leonid T; Krylov, Sergey N

    2012-03-01

    Temperature increase due to resistive electrical heating is an inherent limitation of capillary electrophoresis (CE). Active cooling systems are used to decrease the temperature of the capillary, but their capacity is limited; and in addition, they leave "hot spots" at the detection interface and at the capillary ends. Until recently, the matter was complicated by the lack of a fast and generic method for temperature determination in efficiently and inefficiently cooled regions of the capillary. Our group recently introduced such a method, termed "Universal Method for determining Electrolyte Temperatures" (UMET). UMET is a probe-less approach that requires only measuring current versus voltage for different voltages and processing the data using an iterative algorithm. Here, we apply UMET to develop a Simplified Universal Method of Temperature Determination (SUMET) for a CE instrument with a forced-air cooling system using an Agilent 7100 CE instrument (Agilent Technologies, Saint Laurent, Quebec, Canada) as an example. We collected a wide set of empirical voltage-current data for a variety of buffers and capillary diameters. We further constructed empirical equations for temperature calculation in efficiently and inefficiently cooled parts of the capillary that require only the data from a single 1-min voltage-current measurement. The equations are specific for the Agilent 7100 CE instrument (Agilent Technologies) but can be applied to all kinds of capillaries and buffers. Similar SUMET approaches can be developed for other CE instruments with forced-air cooling using our approach.

  11. Mechanics and rates of tidal inlet migration: Modeling and application to natural examples

    Science.gov (United States)

    Nienhuis, Jaap H.; Ashton, Andrew D.

    2016-11-01

    Tidal inlets on barrier coasts can migrate alongshore hundreds of meters per year, often presenting great management and engineering challenges. Here we perform model experiments with migrating tidal inlets in Delft3D-SWAN to investigate the mechanics and rates of inlet migration. Model experiments with obliquely approaching waves suggest that tidal inlet migration occurs due to three mechanisms: (1) littoral sediment deposition along the updrift inlet bank, (2) wave-driven sediment transport preferentially eroding the downdrift bank of the inlet, and (3) flood-tide-driven flow preferentially cutting along the downdrift inlet bank because it is less obstructed by flood-tidal delta deposits. To quantify tidal inlet migration, we propose and apply a simple mass balance framework of sediment fluxes around inlets that includes alongshore sediment bypassing and flood-tidal delta deposition. In model experiments, both updrift littoral sediment and the eroded downdrift inlet bank are sediment sources to the growing updrift barrier and the flood-tidal delta, such that tidal inlets can be net sink of up to 150% of the littoral sediment flux. Our mass balance framework demonstrates how, with flood-tidal deltas acting as a littoral sediment sink, migrating tidal inlets can drive erosion of the downdrift barrier beach. Parameterizing model experiments, we propose a predictive model of tidal inlet migration rates based upon the relative momentum flux of the inlet jet and the alongshore radiation stress; we then compare these predicted migration rates to 22 natural tidal inlets along the U.S. East Coast and find good agreement.

  12. Experimental Investigation of Fan Rotor Response to Inlet Swirl Distortion

    OpenAIRE

    Frohnapfel, Dustin Joseph

    2016-01-01

    Next generation aircraft design focuses on highly integrated airframe/engine architectures that exploit advantages in system level efficiency and performance. One such design concept incorporates boundary layer ingestion which locates the turbofan engine inlet near enough to the lifting surface of the aircraft skin that the boundary layer is ingested and reenergized. This process reduces overall aircraft drag and associated required thrust, resulting in fuel savings and decreased emissions;...

  13. Observations and modeling of a tidal inlet dye tracer plume

    Science.gov (United States)

    Feddersen, Falk; Olabarrieta, Maitane; Guza, R. T.; Winters, D.; Raubenheimer, Britt; Elgar, Steve

    2016-10-01

    A 9 km long tracer plume was created by continuously releasing Rhodamine WT dye for 2.2 h during ebb tide within the southern edge of the main tidal channel at New River Inlet, NC on 7 May 2012, with highly obliquely incident waves and alongshore winds. Over 6 h from release, COAWST (coupled ROMS and SWAN, including wave, wind, and tidal forcing) modeled dye compares well with (aerial hyperspectral and in situ) observed dye concentration. Dye first was transported rapidly seaward along the main channel and partially advected across the ebb-tidal shoal until reaching the offshore edge of the shoal. Dye did not eject offshore in an ebb-tidal jet because the obliquely incident breaking waves retarded the inlet-mouth ebb-tidal flow and forced currents along the ebb shoal. The dye plume largely was confined to <4 m depth. Dye was then transported downcoast in the narrow (few 100 m wide) surfzone of the beach bordering the inlet at 0.3 m s-1 driven by wave breaking. Over 6 h, the dye plume is not significantly affected by buoyancy. Observed dye mass balances close indicating all released dye is accounted for. Modeled and observed dye behaviors are qualitatively similar. The model simulates well the evolution of the dye center of mass, lateral spreading, surface area, and maximum concentration, as well as regional ("inlet" and "ocean") dye mass balances. This indicates that the model represents well the dynamics of the ebb-tidal dye plume. Details of the dye transport pathways across the ebb shoal are modeled poorly perhaps owing to low-resolution and smoothed model bathymetry. Wave forcing effects have a large impact on the dye transport.

  14. Advanced Scavenge Systems for an Integrated Engine Inlet Particle Separator

    Science.gov (United States)

    1977-09-01

    Fully machined centerbody and outer casing. Four strut (. 093 nch constant thickless. were silver - soldered to form the assembly. AIR SPLITTER ASSEMBLY...pieces of ice, nominally 1/2-inch cubes, weee introduced a.s well. In order that some degree of randomness be present, the objects were directed, unde...section (. 125-inch orifice/ •415-in. duct) followed by a high-pressure manifold to which the nozzle is silver brazed. In the secondary duct, an inlet

  15. Starting Processes of High Contraction Ratio Scramjet Inlets

    Science.gov (United States)

    2012-01-01

    lack of thrust production that can lead to terminal flight failure. Between these two regions however lie conditions of great interest. Both started...coated cable of 0.7mm diameter. A brass cylindrical attachment was screwed onto the piston con-rod, with a brass champignon/ mushroom connector...At a given substrate depth x (distance from the wall of the inlet geometry), the temperature can be considered to be constant during the short

  16. Boussinesq Modeling for Inlets, Harbors & Structures (Bouss-2D)

    Science.gov (United States)

    2014-10-27

    longshore and rip currents, wave-current and wave interaction with porous media , wave propagation over vegetated areas, wetlands and marshes, and vessel...circulation in surf and swash zone; wave-current interaction in channels and inlets; generation and impacts of infra- gravity waves on ports and...New structures will be proposed to reduce navigation channel shoaling and decrease vessel influence (e.g., waves, erosion). Ship-to-ship and ship

  17. Technology Review of Modern Gas Turbine Inlet Filtration Systems

    OpenAIRE

    2012-01-01

    An inlet air filtration system is essential for the successful operation of a gas turbine. The filtration system protects the gas turbine from harmful debris in the ambient air, which can lead to issues such as FOD, erosion, fouling, and corrosion. These issues if not addressed will result in a shorter operational life and reduced performance of the gas turbine. Modern day filtration systems are comprised of multiple filtration stages. Each stage is selected based on the local operating envir...

  18. Safety analysis on large partial inlet flow blockage in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Chang, W. P.; Jeong, J. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The objective of the present study is to predict cladding temperature for the hot assembly by postulating flow blockage accident occurring side orifice nozzles at lower plenum. The large partial inlet flow blockage occurring orifice nozzles of receptacle was estimated by MATRA-LMR/FB. It is hypothesized that a large object has gotten down to lower plenum during normal operation and blocked side orifice nozzles at lower plenum. The flow blockage has been considered one of the main issues to be addressed in SFR since the Ferim-1 suffered a partial fuel meltdown. The flow blockage causes an insufficient amount of coolant to enter the fuel assembly. Large Partial Inlet flow blockage is classified as DEC (Design Extension Condition) for PGSFR. There are several flow paths at lower plenum and possibility of occurrence of inlet flow blockage is estimated to be about 1 x 10{sup -8} which is very remote. However, it should be dealt with in PGSFR because it is a BE (Bounding Event). There are no known sources for inlet flow blockage but one could postulate that a large object might be gotten down to lower plenum during normal operation. Then it leads to not only reduced flow rate that flows into assemblies but also temperature increase within fuel assembly. The results indicate that 3-orifice nozzles blockage (50% of blockage area) lead to a maximum clad temperature of inner/outer core assembly around 670 .deg. C/580 .deg. C. This is guaranteed that safety margin is enough considering the eutectic temperature. On the other hand, for more than 4-orifice nozzles blockage (67% of blockage area), the maximum clad temperature of both inner/outer core assembly reaches around 806 .deg. C/739 .deg. C, respectively, which go beyond eutectic temperature.

  19. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M

    2005-01-01

    initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...

  20. Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  1. Thermography of the New River Inlet plume and nearshore currents

    Science.gov (United States)

    Chickadel, C.; Jessup, A.

    2012-12-01

    As part of the DARLA and RIVET experiments, thermal imaging systems mounted on a tower and in an airplane captured water flow in the New River Inlet, NC, USA. Kilometer-scale, airborne thermal imagery of the inlet details the ebb flow of the estuarine plume water mixing with ocean water. Multiple fronts, corresponding to the preferred channels through the ebb tidal delta, are imaged in the aerial data. A series of internal fronts suggest discreet sources of the tidal plume that vary with time. Focused thermal measurements made from a tower on the south side of the inlet viewed an area within a radius of a few hundred meters. Sub-meter resolution video from the tower revealed fine-scale flow features and the interaction of tidal exchange and wave-forced surfzone currents. Using the tower and airborne thermal image data we plan to provide geophysical information to compare with numerical models and in situ measurements made by other investigators. From the overflights, we will map the spatial and temporal extent of the estuarine plume to correlate with tidal phase and local wind conditions. From the tower data, we will investigate the structure of the nearshore flow using a thermal particle image velocimetry (PIV) technique, which is based on tracking motion of the surface temperature patterns. Long term variability of the mean and turbulent two-dimensional PIV currents will be correlated to local wave, tidal, and wind forcing parameters.

  2. JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION

    Directory of Open Access Journals (Sweden)

    Jiří Pečinka

    2017-02-01

    Full Text Available Total pressure distortion is one of the three basic flow distortions (total pressure, total temperature and swirl distortion that might appear at the inlet of a gas turbine engine (GTE during operation. Different numerical parameters are used for assessing the total pressure distortion intensity and extent. These summary descriptors are based on the distribution of total pressure in the aerodynamic interface plane. There are two descriptors largely spread around the world, however, three or four others are still in use and can be found in current references. The staff at the University of Defence decided to compare the most common descriptors using basic flow distortion patterns in order to select the most appropriate descriptor for future department research. The most common descriptors were identified based on their prevalence in widely accessible publications. The construction and use of these descriptors are reviewed in the paper. Subsequently, they are applied to radial, angular, and combined distortion patterns of different intensities and with varied mass flow rates. The tests were performed on a specially designed test bench using an electrically driven standalone industrial centrifugal compressor, sucking air through the inlet of a TJ100 small turbojet engine. Distortion screens were placed into the inlet channel to create the desired total pressure distortions. Of the three basic distortions, only the total pressure distortion descriptors were evaluated. However, both total and static pressures were collected using a multi probe rotational measurement system.

  3. Data base for the prediction of inlet external drag

    Science.gov (United States)

    Mcmillan, O. J.; Perkins, E. W.; Perkins, S. C., Jr.

    1980-01-01

    Results are presented from a study to define and evaluate the data base for predicting an airframe/propulsion system interference effect shown to be of considerable importance, inlet external drag. The study is focused on supersonic tactical aircraft with highly integrated jet propulsion systems, although some information is included for supersonic strategic aircraft and for transport aircraft designed for high subsonic or low supersonic cruise. The data base for inlet external drag is considered to consist of the theoretical and empirical prediction methods as well as the experimental data identified in an extensive literature search. The state of the art in the subsonic and transonic speed regimes is evaluated. The experimental data base is organized and presented in a series of tables in which the test article, the quantities measured and the ranges of test conditions covered are described for each set of data; in this way, the breadth of coverage and gaps in the existing experimental data are evident. Prediction methods are categorized by method of solution, type of inlet and speed range to which they apply, major features are given, and their accuracy is assessed by means of comparison to experimental data.

  4. Exchange inlet optimization by genetic algorithm for improved RBCC performance

    Science.gov (United States)

    Chorkawy, G.; Etele, J.

    2017-09-01

    A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.

  5. Numerical study of unsteady starting characteristics of a hypersonic inlet

    Institute of Scientific and Technical Information of China (English)

    Wang Weixing; Guo Rongwei

    2013-01-01

    The impulse and self starting characteristics of a mixed-compression hypersonic inlet designed at Mach number of 6.5 are studied by applying the unsteady computational fluid dynamics (CFD) method.The full Navier-Stokes equations are solved with the assumption of viscous perfect gas model,and the shear-stress transport (SST) k-ω two-equation Reynolds averaged NavierStokes (RANS) model is used for turbulence modeling.Results indicate that during impulse starting,the flow field is divided into three zones with different aerodynamic parameters by primary shock and upstream-facing shock.The separation bubble on the shoulder of ramp undergoes a generating,growing,swallowing and disappearing process in sequence.But a separation bubble at the entrance of inlet exists until the freestream velocity is accelerated to the starting Mach number during self starting.The mass flux distribution of flow field is non-uniform because of the interaction between shock and boundary layer,so that the mass flow rate at throat is unsteady during impulse starting.The duration of impulse starting process increases almost linearly with the decrease of fleestream Mach number but rises abruptly when the freestream Mach number approaches the starting Mach number.The accelerating performance of booster almost has no influence on the self starting ability of hypersonic inlet.

  6. Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet

    DEFF Research Database (Denmark)

    Jacobsen, Lis

    A ventilation system with ambient air supply through diffuse ceiling used in pig production facilities is presented. The climatic conditions were examined both experimentally and numerically in an full scale experimental room and the inlet boundary conditions of the diffuse inlet were examined...... of thermal comfort in terms of the operative temperature of the occupational zone. A model of the boundary condition of the diffuse inlet is necessary because the inlet is a conglomeration of an inlet and a wall boundary condition. Two methods of modelling can be chosen, a model based on the determination...

  7. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  8. Heat transfer characteristics of a new helically coiled crimped spiral finned tube heat exchanger

    Science.gov (United States)

    Srisawad, Kwanchanok; Wongwises, Somchai

    2009-02-01

    In the present study, the heat transfer characteristics in dry surface conditions of a new type of heat exchanger, namely a helically coiled finned tube heat exchanger, is experimentally investigated. The test section, which is a helically coiled fined tube heat exchanger, consists of a shell and a helical coil unit. The helical coil unit consists of four concentric helically coiled tubes of different diameters. Each tube is constructed by bending straight copper tube into a helical coil. Aluminium crimped spiral fins with thickness of 0.5 mm and outer diameter of 28.25 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Ambient air is used as a working fluid in the shell side while hot water is used for the tube-side. The test runs are done at air mass flow rates ranging between 0.04 and 0.13 kg/s. The water mass flow rates are between 0.2 and 0.4 kg/s. The water temperatures are between 40 and 50°C. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. The air-side heat transfer coefficient presented in term of the Colburn J factor is proportional to inlet-water temperature and water mass flow rate. The heat exchanger effectiveness tends to increase with increasing water mass flow rate and also slightly increases with increasing inlet water temperature.

  9. CAPILLARY ELECTROPHORETIC BEHAVIOR OF SEVEN SULFONYLUREAS

    Science.gov (United States)

    The electrophoretic behavior of bensulfuron Me, sulfometuron Me, nicosulfuron (Accent), chlorimuron Et, thifensulfuron Me (Harmony), metsulfuron Me, and chlorsulfuron was studied under capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) conditio...

  10. Capillary electrochromatography using fibers as stationary phases.

    Science.gov (United States)

    Jinno, K; Watanabe, H; Saito, Y; Takeichi, T

    2001-10-01

    Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method.

  11. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  12. Cycloaliphatic epoxy resin coating for capillary electrophoresis.

    Science.gov (United States)

    Shah, Roopa S; Wang, Qinggang; Lee, Milton L

    2002-04-05

    Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were methods.

  13. Uptake of water droplets by nonwetting capillaries

    CERN Document Server

    Willmott, Geoff R; Hendy, Shaun C

    2010-01-01

    We present direct experimental evidence that water droplets can spontaneously penetrate non-wetting capillaries, driven by the action of Laplace pressure due to high droplet curvature. Using high-speed optical imaging, microcapillaries of radius 50 to 150 micron, and water microdroplets of average radius between 100 and 1900 micron, we demonstrate that there is a critical droplet radius below which water droplets can be taken up by hydrophobised glass and polytetrafluoroethylene (PTFE) capillaries. The rate of capillary uptake is shown to depend strongly on droplet size, with smaller droplets being absorbed more quickly. Droplet size is also shown to influence meniscus motion in a pre-filled non-wetting capillary, and quantitative measurements of this effect result in a derived water-PTFE static contact angle between 96 degrees and 114 degrees. Our measurements confirm recent theoretical predictions and simulations for metal nanodroplets penetrating carbon nanotubes (CNTs). The results are relevant to a wide ...

  14. Capillary Optics generate stronger X-rays

    Science.gov (United States)

    1996-01-01

    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  15. Applicability of chemically modified capillaries in chiral capillary electrophoresis for methamphetamine profiling.

    Science.gov (United States)

    Iwata, Yuko T; Mikuma, Toshiyasu; Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2013-03-10

    We examined the applicability of chemically modified capillaries on the chiral capillary electrophoresis of essential compounds for methamphetamine (MA) profiling (MA, amphetamine, ephedrine, pseudoephedrine, norephedrine, and norpseudoephedrine) using highly sulfated γ-cyclodextrin as a chiral selector. Four types of chemically modified capillaries, namely, FunCap-CE/Type D (possessing diol groups), Type A (amino groups), Type C (carboxyl groups), and Type S (sulfate groups), were evaluated. Repeatability, speed, and good chiral resolution sufficient for routine MA profiling were achieved with the Type S capillary.

  16. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    Science.gov (United States)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the

  17. Analysis of flow and heat transfer characteristics of porous heat-storage wall in greenhouse

    Institute of Scientific and Technical Information of China (English)

    Li OUYANG; Wei LIU

    2008-01-01

    The flow and heat transfer characteristics of porous heat-storage wall in greenhouse are studied by using the one-dimensional steady energy two-equation model for saturated porous medium. The results show that the heat exchange between the air and the solid matrix of the porous heat-storage wall depends upon the inlet air velocity, the porosity and the permeability of porous medium, and the thermal conductivity of the solid matrix. Because the incidence of solar radiation on the porous heat-storage wall is not uniform, the new compos-ite porous solar wall with different porosity is proposed to reduce the disadvantageous effect.

  18. Unusual intraosseous capillary hemangioma of the mandible.

    Science.gov (United States)

    Dereci, Omur; Acikalin, Mustafa Fuat; Ay, Sinan

    2015-01-01

    Intraosseous hemangioma is a benign vascular neoplasm, which is mostly seen in vertebrae, maxillofacial bones, and long bones. Intraosseous hemangioma is rarely seen on jaw bones compared to other skeletal bones and usually occurs in the cavernous form. Capillary intraosseous hemangioma of jaws is an uncommon form of intraosseous hemangioma and has not been thoroughly described so far. In this study, a case of capillary intraosseous hemangioma of the mandible was presented with relevant literature review.

  19. Unusual intraosseous capillary hemangioma of the mandible

    OpenAIRE

    Dereci, Omur; Acikalin, Mustafa Fuat; Ay, Sinan

    2015-01-01

    Intraosseous hemangioma is a benign vascular neoplasm, which is mostly seen in vertebrae, maxillofacial bones, and long bones. Intraosseous hemangioma is rarely seen on jaw bones compared to other skeletal bones and usually occurs in the cavernous form. Capillary intraosseous hemangioma of jaws is an uncommon form of intraosseous hemangioma and has not been thoroughly described so far. In this study, a case of capillary intraosseous hemangioma of the mandible was presented with relevant liter...

  20. Unusual intraosseous capillary hemangioma of the mandible

    OpenAIRE

    Dereci, Omur; ACIKALIN, Mustafa Fuat; AY, Sinan

    2015-01-01

    Intraosseous hemangioma is a benign vascular neoplasm, which is mostly seen in vertebrae, maxillofacial bones, and long bones. Intraosseous hemangioma is rarely seen on jaw bones compared to other skeletal bones and usually occurs in the cavernous form. Capillary intraosseous hemangioma of jaws is an uncommon form of intraosseous hemangioma and has not been thoroughly described so far. In this study, a case of capillary intraosseous hemangioma of the mandible was presented with relevant liter...

  1. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yonghua [Iowa State Univ., Ames, IA (United States)

    2000-01-01

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  2. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    Energy Technology Data Exchange (ETDEWEB)

    Yonghua Zhang

    2002-05-27

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  3. Refrigerant charge management in a heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  4. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  5. Ion guiding in curved glass capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takao M. [Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ikeda, Tokihiro [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kanai, Yasuyuki; Yamazaki, Yasunori [Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2015-07-01

    Straight and curved glass capillaries were tested for the guiding of 8 keV Ar{sup 8+} ion beams. The straight capillary was about 50 mm long and 0.87 mm/1.1 mm in inner/outer diameter. One of the two curved capillaries was similar, but was curved with a 270 mm radius. The other was 53 mm long, had diameters of 2.34 mm/2.99 mm, and was curved with a 150 mm radius. The corresponding bending angles of the two curved capillaries were 9.6° and 17.5°, respectively. Transmission through the straight capillary disappeared when the tilt angle was larger than 5°. The curved capillaries guided the ion beams into their corresponding bending angles, which were much larger than 5°, with transmission efficiencies of a few tens percent. This demonstrates the possibility of developing a new scheme of simple small beam deflectors and related beam optics.

  6. Methodology for the Design of Streamline-Traced External-Compression Supersonic Inlets

    Science.gov (United States)

    Slater, John W.

    2014-01-01

    A design methodology based on streamline-tracing is discussed for the design of external-compression, supersonic inlets for flight below Mach 2.0. The methodology establishes a supersonic compression surface and capture cross-section by tracing streamlines through an axisymmetric Busemann flowfield. The compression system of shock and Mach waves is altered through modifications to the leading edge and shoulder of the compression surface. An external terminal shock is established to create subsonic flow which is diffused in the subsonic diffuser. The design methodology was implemented into the SUPIN inlet design tool. SUPIN uses specified design factors to design the inlets and computes the inlet performance, which includes the flow rates, total pressure recovery, and wave drag. A design study was conducted using SUPIN and the Wind-US computational fluid dynamics code to design and analyze the properties of two streamline-traced, external-compression (STEX) supersonic inlets for Mach 1.6 freestream conditions. The STEX inlets were compared to axisymmetric pitot, two-dimensional, and axisymmetric spike inlets. The STEX inlets had slightly lower total pressure recovery and higher levels of total pressure distortion than the axisymmetric spike inlet. The cowl wave drag coefficients of the STEX inlets were 20% of those for the axisymmetric spike inlet. The STEX inlets had external sound pressures that were 37% of those of the axisymmetric spike inlet, which may result in lower adverse sonic boom characteristics. The flexibility of the shape of the capture cross-section may result in benefits for the integration of STEX inlets with aircraft.

  7. Hydrogel plug for independent sample and buffer handling in continuous microchip capillary electrophoresis

    Science.gov (United States)

    Puchberger-Enengl, Dietmar; Bipoun, Mireille; Smolka, Martin; Krutzler, Christian; Keplinger, Franz; Vellekoop, Michael J.

    2013-05-01

    In microchip capillary electrophoresis most frequently electrokinetic sample injection is utilized, which does not allow pressure driven sample handling and is sensitive for pressure drops due to different reservoir levels. For efficient field tests a multitude of samples have to be processed with the least amount of external equipment. We present the use of a hydrogel plug to separate the sample from clean buffer to enable independent sample change and buffer refreshment. In-situ polymerization of the gel does away with complex membrane fabrication techniques. The sample is electrokinetically injected through the gel and subsequently separated by a voltage between the second gel inlet and the buffer outlet. By blocking of disturbing flows by the gel barrier a well-defined ion plug is obtained. After each experiment, the sample and the separation channel can be flushed independently, allowing for a continuous operation mode in order to process multiple samples.

  8. Characterization and analysis of real-time capillary convective PCR toward commercialization.

    Science.gov (United States)

    Qiu, Xianbo; Zhang, Shiyin; Mei, Lanju; Wu, Di; Guo, Qi; Li, Ke; Ge, Shengxiang; Ye, Xiangzhong; Xia, Ningshao; Mauk, Michael G

    2017-03-01

    Almost all the reported capillary convective polymerase chain reaction (CCPCR) systems to date are still limited to research use stemming from unresolved issues related to repeatability, reliability, convenience, and sensitivity. To move CCPCR technology forward toward commercialization, a couple of critical strategies and innovations are discussed here. First, single- and dual-end heating strategies are analyzed and compared between each other. Especially, different solutions for dual-end heating are proposed and discussed, and the heat transfer and fluid flow inside the capillary tube with an optimized dual-end heating strategy are analyzed and modeled. Second, real-time CCPCR is implemented with light-emitting diode and photodiode, and the real-time fluorescence detection method is compared with the post-amplification end-point detection method based on a dipstick assay. Thirdly, to reduce the system complexity, e.g., to simplify parameter tuning of the feedback control, an internal-model-control-based proportional-integral-derivative controller is adopted for accurate temperature control. Fourth, as a proof of concept, CCPCR with pre-loaded dry storage of reagent inside the capillary PCR tube is evaluated to better accommodate to point-of-care diagnosis. The critical performances of improved CCPCR, especially with sensitivity, repeatability, and reliability, have been thoroughly analyzed with different experiments using influenza A (H1N1) virus as the detection sample.

  9. Separation and determination of aloperine, sophoridine, matrine and oxymatrine by combination of flow injection with microfluidic capillary electrophoresis.

    Science.gov (United States)

    Cheng, Yuqiao; Chen, Hongli; Li, Yuqin; Chen, Xingguo; Hu, Zhide

    2004-05-28

    A novel, rapid and accurate method for the separation and determination of aloperine (ALP), sophoridine (SRI), matrine (MT) and oxymatrine (OMT) has been developed by combination of flow injection (FI) with microfluidic capillary electrophoresis (CE) for the first time. In the present paper, a continuous sample introduction interface was described. The interface with an H-channel structure was produced using a non-lithographic approach. The H-channel structure was fixed on a planar plastic base utilizing a horizontal 6.5cm-long separation capillary with two vertical sidearm tubes on each end that served as inlet and outlet flow-through electrode reservoirs. The inlet reservoir also functioned as interface for coupling to the FI system. The buffer solution used was a 50mmoll(-1) borate solution with the pH adjusted to 8.80 with 2moll(-1) HCl. The performance of the system was demonstrated in the separation and determination of ALP, SRI, MT and OMT with UV detection at 215nm, achieving baseline separation within 2min. A series of samples was injected repeatedly without current interruption and subsequent rinsing, and the contents of these four bio-alkaloids in two marketed drugs were determined with satisfactory recovery by this proposed method.

  10. Evaporative heat transfer in beds of sensible heat pellets

    Energy Technology Data Exchange (ETDEWEB)

    Arimilli, R.V.; Moy, C.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1989-03-01

    An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.

  11. A capillary viscometer designed for the characterization of biocompatible ferrofluids

    Science.gov (United States)

    Nowak, J.; Odenbach, S.

    2016-08-01

    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application.

  12. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    Science.gov (United States)

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  13. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Dickerson, Jane A; Ramsay, Lauren M; Dada, Oluwatosin O; Cermak, Nathan; Dovichi, Norman J

    2010-08-01

    CIEF and CZE are coupled with LIF detection to create an ultrasensitive 2-D separation method for proteins. In this method, two capillaries are joined through a buffer-filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first-dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second-dimension separation. A fraction was transferred to the second-dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125.

  14. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction

    NARCIS (Netherlands)

    Serne, EH; Gans, ROB; ter Maaten, JC; Tangelder, GJ; Donker, AJM; Stehouwer, CDA

    2001-01-01

    Capillary rarefaction occurs in many tissues in patients with essential hypertension and may contribute to an increased vascular resistance and impaired muscle metabolism. Rarefaction may be caused by a structural (anatomic) absence of capillaries, functional nonperfusion, or both. The aim of this s

  15. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient.

    Science.gov (United States)

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, Filip; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-10-01

    The electro-osmotic flow, a significant factor in capillary electrophoretic separations, is very sensitive to small changes in structure and surface roughness of the inner surface of fused silica capillary. Besides a number of negative effects, the electro-osmotic flow can also have a positive effect on the separation. An example could be fused silica capillaries with homogenous surface roughness along their entire separation length as produced by etching with supercritical water. Different strains of methicillin-resistant and methicillin-susceptible Staphylococcus aureus were separated on that type of capillaries. In the present study, fused-silica capillaries with a gradient of surface roughness were prepared and their basic behavior was studied in capillary zone electrophoresis with UV-visible detection. First the influence of the electro-osmotic flow on the peak shape of a marker of electro-osmotic flow, thiourea, has been discussed. An antifungal agent, hydrophobic amphotericin B, and a protein marker, albumin, have been used as model analytes. A significant narrowing of the detected zones of the examined analytes was achieved in supercritical-water-treated capillaries as compared to the electrophoretic separation in smooth capillaries. Minimum detectable amounts of 5 ng/mL amphotericin B and 5 μg/mL albumin were reached with this method.

  16. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  17. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  18. Directional transport of impinging capillary jet on wettability engineered surfaces

    Science.gov (United States)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  19. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    Science.gov (United States)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  20. A Novel Polybrene/Chondroitin Sulfate C Double Coated Capillary and Its Application in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    DU,Ying-Xiang(杜迎翔); HONDA,Susumu; TAGA,Atsushi; LIU,Wen-Ying(刘文英); SUZUKI,Shigeo

    2002-01-01

    A new capillary coated by double polymer, polybrene/chondroitin sulfate C (P/CC), was developed using a simple procedure. The P/CC double coated capillary showed long lifetime,strong chemical stability and good reproducibility. It endured during more than 100 replicated analyses and was also tolerant to HCl (1 mol/L), NaOH (0.01 mol/L), CH3OH and CH3CN. The P/CC double coated capillary can be applied to basic drug analyses. The adsorption of basic drugs to the capillary wall was suppressed and the peak tailing greatly decreased. The use of the P/CC double coated capillary allowed excelent separation of the enantiomers of some basic drugs by using chondroitin sulfate C as the chiral selector, ami the peak symmetry of basic drugs was further improved under these conditions.

  1. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.

    Science.gov (United States)

    Ashish Saha, Auro; Mitra, Sushanta K

    2009-11-15

    We perform three-dimensional numerical and experimental study of the dynamic contact angle using volume of fluid (VOF) method applied to microfluidic channels with integrated pillars. Initially, we evaluated different dynamic contact angle models (hydrodynamic, molecular kinetic and empirical) for capillary filling of a two-dimensional microchannel using analytical formulation. Further, the models which require a minimum prescription of adjustable parameters are only used for the study of capillary filling of microchannels with integrated pillars using different working fluids such as DI water, ethanol and isopropyl alcohol. Different microchannel geometry with varying diameter/height/spacing were studied for circular pillars. Effect of square pillars and changing the overall number of pillars on the capillary phenomena were also simulated. Our study demonstrated that the dynamic contact angle models modifies the transient response of the meniscus displacement and also the observed trends are model specific for the various microchannel geometries and working fluids. However, the different models have minimal effect on the meniscus profile. Different inlet boundary conditions were applied to observe the effect of grid resolution selected for numerical study on the capillary filling time. A grid dependent dynamic contact angle model which incorporates effective slip in the model was also used to observe the grid convergence of the numerical results. The grid independence was shown to improve marginally by applying the grid dependent dynamic contact angle model. Further we did numerical experiments of capillary filling considering variable surface wettability on the top and bottom walls of the microchannel with alternate hydrophilic-hydrophobic patterns. The meniscus front pinning was noticed for a high wetting contrast between the patterns. Non uniform streamline patterns indicated mixing of the fluid when using patterned walls. Such a microfluidic device with

  2. Synthetic Capillaries to Control Microscopic Blood Flow

    Science.gov (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function.

  3. Restructuring and aging in a capillary suspension.

    Science.gov (United States)

    Koos, Erin; Kannowade, Wolfgang; Willenbacher, Norbert

    2014-12-01

    The rheological properties of capillary suspensions, suspensions with small amounts of an added immiscible fluid, are dramatically altered with the addition of the secondary fluid. We investigate a capillary suspension to determine how the network ages and restructures at rest and under applied external shear deformation. The present work uses calcium carbonate suspended in silicone oil (11 % solids) with added water as a model system. Aging of capillary suspensions and their response to applied oscillatory shear is distinctly different from particulate gels dominated by the van der Waals forces. The suspensions dominated by the capillary force are very sensitive to oscillatory flow, with the linear viscoelastic regime ending at a deformation of only 0.1% and demonstrating power-law aging behavior. This aging persists for long times at low deformations or for shorter times with a sudden decrease in the strength at higher deformations. This aging behavior suggests that the network is able to rearrange and even rupture. This same sensitivity is not demonstrated in shear flow where very high shear rates are required to rupture the agglomerates returning the apparent viscosity of capillary suspensions to the same viscosity as for the pure vdW suspension. A transitional region is also present at intermediate water contents wherein the material response depends very strongly on the type, strength, and duration of the external forcing.

  4. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core.

  5. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section

    Science.gov (United States)

    Nissan, Alon; Wang, Qiuling; Wallach, Rony

    2016-11-01

    A mathematical model for slug (finite liquid volume) motion in not-fully-wettable capillary tubes with sinusoidally varying cross-sectional areas was developed. The model, based on the Navier-Stokes equation, accounts for the full viscous terms due to nonuniform geometry, the inertial term, the slug's front and rear meniscus hysteresis effect, and dependence of contact angle on flow velocity (dynamic contact angle). The model includes a velocity-dependent film that is left behind the advancing slug, reducing its mass. The model was successfully verified experimentally by recording slug movement in uniform and sinusoidal capillary tubes with a gray-scale high-speed camera. Simulation showed that tube nonuniformity has a substantial effect on slug flow pattern: in a uniform tube it is monotonic and depends mainly on the slug's momentary mass/length; an undulating tube radius results in nonmonotonic flow characteristics. The static nonzero contact angle varies locally in nonuniform tubes owing to the additional effect of wall slope. Moreover, the nonuniform cross-sectional area induces slug acceleration, deceleration, blockage, and metastable-equilibrium locations. Increasing contact angle further amplifies the geometry effect on slug propagation. The developed model provides a modified means of emulating slug flow in differently wettable porous media for intermittent inlet water supply (e.g., raindrops on the soil surface).

  6. Effects of dynamic contact angle on liquid withdrawal from capillary tubes: (semi)-analytical solutions.

    Science.gov (United States)

    Hilpert, Markus

    2010-07-15

    The displacement of a gas by a liquid in both horizontal and inclined capillary tubes where the tube inlet is connected to a liquid reservoir of constant pressure can be described by the Lucas-Washburn theory. One can also use the Lucas-Washburn theory to model the reverse flow, that is, liquid withdrawal, even though the latter case has received relatively little attention. In this paper, we derive analytical solutions for the travel time of the gas-liquid interface as a function of interface velocity. The interface position can be obtained by numerically integrating the numerically inverted interface velocity. Therefore we refer to these solutions as (semi)-analytical. We neglect inertial forces. However, we account for a dynamic contact angle where the nondimensional non-equilibrium Young force depends on the capillary number in the form of either a power law or a power series. We explore the entire nondimensional parameter space. The analytical solutions allow us to show that five different liquid withdrawal scenarios may occur that differ in the direction of flow and the sign of the acceleration of the gas-liquid interface: horizontal, upward, steady-state downward, accelerating downward, and decelerating downward flow. In the last case, the liquid is withdrawn from the tube either completely or partially. The (semi)-analytical solutions are also valid within the limit where the contact angle is constant.

  7. Liquid withdrawal from capillary tubes: explicit and implicit analytical solution for constant and dynamic contact angle.

    Science.gov (United States)

    Hilpert, Markus

    2010-11-01

    In a preceding paper, we derived analytical solutions for the displacement of a gas by a liquid in horizontal and inclined capillary tubes where the tube inlet is connected to a liquid reservoir of constant pressure. We considered quite general models for the dynamic contact angle and were able to derive implicit equations for the velocity of the gas-liquid interface. These solutions allowed us to identify five different flow scenarios for liquid withdrawal that differed in the direction of flow and the sign of the acceleration of the gas-liquid interface. In this paper, we consider the special case where the dynamic contact angle is determined by a nonequilibrium Young force that depends linearly on the capillary number. Thus we can derive explicit and the more traditional implicit analytical solutions for both the position and the velocity of the gas-liquid interface. We also construct diagrams that allow us to predict which of the five flow scenarios will occur depending on the nondimensional parameters that define the problem. The diagrams can be combined with diagrams previously obtained for infiltration and the entire parameter space subdivided into regions that are associated with either liquid withdrawal, liquid infiltration, or metastable and stable equilibrium states. Our solutions are also valid within the limit where the contact angle is constant.

  8. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  9. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  10. Flow distribution in the inlet plenum of steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Khadamakar, H.P. [Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Patwardhan, A.W., E-mail: aw.patwardhan@ictmumbai.edu.in [Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Padmakumar, G.; Vaidyanathan, G. [Experimental Thermal Hydraulics Section, Separation Technology and Hydraulics Division, Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-15

    Highlights: > Various flow distribution devices have been studied to make the flow distribution uniform in axial as well as tangential direction. > Experiments were performed using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV). > CFD modeling has been carried out to give more insights. > Various flow distribution devices have been compared. - Abstract: The flow distribution in a 1/5th and 1/8th scale models of inlet plenum of steam generator (SG) has been studied by a combination of experiments and Computational Fluid Dynamics (CFD) simulations. The distribution of liquid sodium in the inlet plenum of the SG strongly affects the thermal as well as mechanical performance of the steam generator. Various flow distribution devices have been used to make the flow distribution uniform in axial as well as tangential direction in the window region. Experiments have been conducted to measure the radial velocity distribution using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV) under a variety of conditions. CFD modeling has been carried out for various configurations to give more insight into the flow distribution phenomena. The various flow distribution devices have been compared on the basis of a non-uniformity index parameter.

  11. Technology Review of Modern Gas Turbine Inlet Filtration Systems

    Directory of Open Access Journals (Sweden)

    Melissa Wilcox

    2012-01-01

    Full Text Available An inlet air filtration system is essential for the successful operation of a gas turbine. The filtration system protects the gas turbine from harmful debris in the ambient air, which can lead to issues such as FOD, erosion, fouling, and corrosion. These issues if not addressed will result in a shorter operational life and reduced performance of the gas turbine. Modern day filtration systems are comprised of multiple filtration stages. Each stage is selected based on the local operating environment and the performance goals for the gas turbine. Selection of these systems can be a challenging task. This paper provides a review of the considerations for selecting an inlet filtration system by covering (1 the characteristics of filters and filter systems, (2 a review of the many types of filters, (3 a detailed look at the different environments where the gas turbine can operate, (4 a process for evaluating the site where the gas turbine will be or is installed, and (5 a method to compare various filter system options with life cycle cost analysis.

  12. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    the inlet water temperature for the Dh preheating gas cooler unit. The lower the inlet temperature, the higher the Cop. The CO{sub 2} system will therefore achieve the highest COP at low city water temperatures, and when there is negligible mixing and minimum conductive heat transfer between the hot and cold water in the DHW tank during the tapping and charging periods. (5) The COP for the integrated CO{sub 2} heat pump is generally more sensitive to variations in the compressor efficiency than that of conventional brine/water-to-water heat pump systems. It is therefore of particular importance to apply a high-efficiency compressor. (6) At each operating mode and temperature programme, there will be an optimum gas cooler (high-side) pressure that leads to a maximum COP for the integrated CO{sub 2} heat pump. However, at moderate DHW temperatures, the heat pump can be operated at constant high-side pressure in all heating modes with only a minor reduction in the COP. This is favourable, since it simplifies the operation of the system and reduces the first cost. (7) During operation in the combined heating mode, the COP for the integrated CO{sub 2} heat pump may be higher than in the DHW heating mode due to similar temperature approaches at the cold outlet of the gas coolers and lower optimum high-side pressure. The higher the DHW temperature, the larger the COP difference for the operating modes. (8) The integrated CO{sub 2} heat pump system will be more complex than the state-of-the art residential heat pump systems due to the requirement for a tripartite gas cooler, extra valves and tubing for by-pass of fluids, an inverter controlled pump in the DHW circuit as well as an especially designed DHW storage tank. The application of optimum high-side pressure control will further increase the technical and operational complexity of the system. (9) Conductive heat transfer between the DHW and the cold city water in the storage tank during the tapping and charging periods

  13. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  14. Development of Capillary Loop Convective Polymerase Chain Reaction Platform with Real-Time Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Wen-Pin Chou

    2017-02-01

    Full Text Available Polymerase chain reaction (PCR has been one of the principal techniques of molecular biology and diagnosis for decades. Conventional PCR platforms, which work by rapidly heating and cooling the whole vessel, need complicated hardware designs, and cause energy waste and high cost. On the other hand, partial heating on the various locations of vessels to induce convective solution flows by buoyancy have been used for DNA amplification in recent years. In this research, we develop a new convective PCR platform, capillary loop convective polymerase chain reaction (clcPCR, which can generate one direction flow and make the PCR reaction more stable. The U-shaped loop capillaries with 1.6 mm inner diameter are designed as PCR reagent containers. The clcPCR platform utilizes one isothermal heater for heating the bottom of the loop capillary and a CCD device for detecting real-time amplifying fluorescence signals. The stable flow was generated in the U-shaped container and the amplification process could be finished in 25 min. Our experiments with different initial concentrations of DNA templates demonstrate that clcPCR can be applied for precise quantification. Multiple sample testing and real-time quantification will be achieved in future studies.

  15. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yongjun [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  16. Capillary rise of water in hydrophilic nanopores

    CERN Document Server

    Gruener, Simon; Wallacher, Dirk; Kityk, Andriy V; Huber, Patrick; 10.1103/PhysRevE.79.067301

    2009-01-01

    We report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5nm and 5nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16h investigated. Provided we assume two preadsorbed strongly bound layers of water molecules resting at the silica walls, which corresponds to a negative velocity slip length of -0.5nm for water flow in silica nanopores, we can describe the filling process by a retained fluidity and capillarity of water in the pore center. This anticipated partitioning in two dynamic components reflects the structural-thermodynamic partitioning in strongly silica bound water layers and capillary condensed water in the pore center which is documented by sorption isotherm measurements.

  17. Capillary self-assembly of floating bodies

    Science.gov (United States)

    Jung, Sunghwan; Thompson, Paul; Bush, John

    2007-11-01

    We study the self-assembly of bodies supported on the water surface by surface tension. Attractive and repulsive capillary forces exist between menisci of, respectively, the same and opposite signs. In nature, floating objects (e.g. mosquito larvae) thus interact through capillary forces to form coherent packings on the water surface. We here present the results of an experimental investigation of such capillary pattern formation. Thin elliptical metal sheets were designed to have variable shape, flexibility and mass distribution. On the water surface, mono-, bi-, or tri-polar menisci could thus be achieved. The influence of the form of the menisci on the packings arising from the interaction of multiple floaters is explored. Biological applications are discussed.

  18. Numerical analysis of heat and mass transfer in a compact finned tubes air heat exchanger under dehumidification conditions

    Energy Technology Data Exchange (ETDEWEB)

    Benelmir, Riad; Mokraoui, Salim [Henri Poincare University, Faculty of Sciences and Technology, Lab. LERMAB, Vandoeuvre-Les-Nancy (France)

    2012-04-15

    A simulation model of a fin-and-tube heat exchanger is presented. The effect of the relative humidity, air speed, fin base temperature, and inlet air temperature on the estimation of the overall heat-transfer coefficient and fin efficiency under wet conditions is also investigated. This model considers a non-uniform airflow velocity as well as a variable sensible heat transfer coefficient. (orig.)

  19. Numerical analysis of heat and mass transfer in a compact finned tubes air heat exchanger under dehumidification conditions

    Science.gov (United States)

    Benelmir, Riad; Mokraoui, Salim

    2012-04-01

    A simulation model of a fin-and-tube heat exchanger is presented. The effect of the relative humidity, air speed, fin base temperature, and inlet air temperature on the estimation of the overall heat-transfer coefficient and fin efficiency under wet conditions is also investigated. This model considers a non-uniform airflow velocity as well as a variable sensible heat transfer coefficient.

  20. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.R. [National Oceanic and Atmospheric Administration, Silver Springs, MD (United States); Pietrafesa, L.J. [North Carolina State Univ., Raleigh, NC (United States). Department of Marine, Earth and Atmospheric Sciences

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  1. Is there an association between Helicobacter pylori in the inlet patch and globus sensation?

    Institute of Scientific and Technical Information of China (English)

    Hakan; Alagozlu; Zahide; Simsek; Selahattin; Unal; Mehmet; Cindoruk; Sukru; Dumlu; Ayse; Dursun

    2010-01-01

    AIM:To determine the association between Helicobacter pylori(H.pylori)and globus sensation(GS)in the patients with cervical inlet patch. METHODS:Sixty-eight patients with esophageal inlet patches were identified from 6760 consecutive patients undergoing upper gastrointestinal endoscopy prospectively.In these 68 patients with cervical inlet patches, symptoms of globus sensation(lump in the throat), hoarseness,sore throat,frequent clearing of the throat,cough,dysphagia,odynophagia of at least 3 mo duration wa...

  2. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.R. [National Oceanic and Atmospheric Administration, Silver Springs, MD (United States); Pietrafesa, L.J. [North Carolina State Univ., Raleigh, NC (United States). Department of Marine, Earth and Atmospheric Sciences

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  3. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    DEFF Research Database (Denmark)

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures...... for the coefficient of performance, COP. By comparing the cycles it is found that for each set of operating conditions the two refrigerants perform equally well at one given inlet temperature of the heat sink. Above this temperature ammonia cycles have the best COP and below CO2 cycles perform best. A general...

  4. Photosensitive diazotized poly(ethylene glycol) covalent capillary coatings for analysis of proteins by capillary electrophoresis.

    Science.gov (United States)

    Yu, Bing; Chen, Xin; Cong, Hailin; Shu, Xi; Peng, Qiaohong

    2016-09-01

    A new method for the fabrication of covalently cross-linked capillary coatings of poly(ethylene glycol) (PEG) is described using diazotized PEG (diazo-PEG) as a new photosensitive coating agent. The film of diazo-PEG depends on ionic bonding and was first prepared on the inner surface of capillary by self-assembly, and ionic bonding was converted into covalent bonding after reaction of ultraviolet light with diazo groups through unique photochemical reaction. The covalently bonded coating impedance adsorption of protein on the central surface of capillary and hence the four proteins ribonuclease A, cytochrome c, bovine serum albumin, and lysosome can be baseline separated by using capillary electrophoresis (CE). The covalently cross-linked diazo-PEG capillary column coatings not only improved the CE separation performance for proteins compared to non-covalently cross-linked coatings or bare capillary but also showed a remarkable chemical solidity and repeatability. Because photosensitive diazo-PEG took the place of the highly noxious and silane moisture-sensitive coating reagents in the fabrication of covalent coating, this technique shows the advantage of being environment-friendly and having a high efficiency for CE to make the covalently bonded capillaries.

  5. Mach-like capillary-gravity wakes.

    Science.gov (United States)

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  6. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2016-06-17

    250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC.

  7. The Phillips Laboratory capillary pumped loop test facility

    Science.gov (United States)

    Gluck, Donald F.; Kaylor, Marc C.

    1996-03-01

    An ammonia capillary pumped loop (CPL) test facility has been designed, fabricated, subject to acceptance tests, and assembled at Phillips Laboratory. Its intent is to support a wide range of Air Force programs, bringing CPL technology to flight readiness for operational systems. The facility provides a high degree of modularity and flexibility with several heating and cooling options, and capability for elevation (+/- 15 in.), tilt (+/-60°) and transport length variation. It has a 182 by 44 by 84 inch envelope, an expected heat load capability of 2500 W, and a temperature range of 0 to 50 °C. The evaporator section has two plates with four capillary pumps (CPs) each, with a starter pump on one plate. The CPs are 5/8 in., with TAG aluminum 6063-T6 casing and UHMW polyethylene wicks. The active lengths are 15 and 30 inch with both 10 and 15 micron wicks. The individual CPs have thermal and hydraulic isolation capability, and are removable. The transport section consists of stainless steel lines in a serpentine configuration, a 216 in3 free volume reservoir, and a mechanical pump. The vapor transport line contains a capillary device (which can be bypassed) for vapor blockage during startup. The condenser consists of two separately valved, parallel cold plates each with a downstream noncondensible gas trap. Cooling of up to 1500 W at -50 °C is provided by an FTS Systems chiller using Flourinert FC-72. An enclosure/exhaust system is provided for safety and emergency venting of ammonia. An ammonia charge station performs or supports the functions of proof pressure, flushing with ammonia, purging with gaseous nitrogen, evacuation of all or part of the CPL to 20 microns, and charging. Instrumentation consists of over 116 thermocouples, five of which are internal; one absolute and six differential pressure transducers; eleven watt transducers, and a reservoir load cell. The data acquisition system consists of a temperature scanner, Bernoulli drive, and two Macintosh

  8. Cavitation performance and flow characteristic in a centrifugal pump with inlet guide vanes

    Science.gov (United States)

    Tan, L.; Zha, L.; Cao, S. L.; Wang, Y. C.; Gui, S. B.

    2015-01-01

    The influence of prewhirl regulation by inlet guide vanes (IGVs) on cavitation performance and flow characteristic in a centrifugal pump is investigated. At the impeller inlet, the streamlines are regulated by the IGVs, and the axial velocity distribution is also influenced by the IGVs. Due to the total pressure loss on the IGVs, the cavitation performance of the centrifugal pump degrades. The cavitation area in impeller with IGVs is larger than one without IGVs. The specify values of total pressure loss between the suction pipe inlet and impeller inlet for three cavitation conditions show that the IGVs will generate additional pressure loss, which is related to the IGVs angles and cavitation conditions.

  9. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  10. Inlet boundary conditions for shock wave propagation problems in air ducts

    Science.gov (United States)

    Fashbaugh, R. H.

    1992-03-01

    Shock waves propagating into air ducting systems are numerically studied using data from Kriebel (1972). Small-scale junctions mounted in shock tubes with an incident shock wave are considered. The stagnation pressure ratio through a duct inlet is evaluated for various junction types. The logarithm of this ratio varies linearly with the Mach number of the flow behind the incident shock wave. The static pressure inside the inlet is established using experimental data with given Mach numbers of the incident and inlet flows. A constant stagnation enthalpy through the inlet junction is assumed to establish inflow to the duct.

  11. Design concept of three-dimensional section controllable internal waverider hypersonic inlet

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows, namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal waverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed ex- plores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.

  12. Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    Science.gov (United States)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet for a turbine based combined cycle (TBCC) propulsion system is to be tested in order to evaluate methodologies for performing a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms which are designed to maintain shock position during inlet disturbances. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the development of a mode transition schedule for the HiTECC simulation that is analogous to the development of inlet performance maps. Inlet performance maps, derived through experimental means, describe the performance and operability of the inlet as the splitter closes, switching power production from the turbine engine to the Dual Mode Scram Jet. With knowledge of the operability and performance tradeoffs, a closed loop system can be designed to optimize the performance of the inlet. This paper demonstrates the design of the closed loop control system and benefit with the implementation of a Proportional-Integral controller, an H-Infinity based controller, and a disturbance observer based controller; all of which avoid inlet unstart during a mode transition with a simulated disturbance that would lead to inlet unstart without closed loop control.

  13. Design concept of three-dimensional section controllable internal waverider hypersonic inlet

    Institute of Scientific and Technical Information of China (English)

    YOU YanCheng; LIANG DeWang

    2009-01-01

    A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows,namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal wsverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed explores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.

  14. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  15. Intracerebral Capillary Hemangioma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Kim, Jae Kyun; Byun, Jun Soo [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of); Park, Eon Sub [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2012-01-15

    Intracerebral capillary hemangiomas are very rare benign vascular tumors that mostly occur during infancy. We described a 69-year-old man with generalized tonic-clonic seizures who was diagnosed with an intracranial mass. Multidetector computed tomography, magnetic resonance imaging and digital subtraction angiography studies were performed for evaluation of brain, and there was a well-enhancing mass found in the right temporal lobe without a definite feeding vessel. The patient underwent surgery and the pathologic examination demonstrated marked proliferation of small vessels with a lobular pattern in the brain parenchyma, which was confirmed to be capillary hemangioma.

  16. Capillary origami and superhydrophobic membrane surfaces

    Science.gov (United States)

    Geraldi, N. R.; Ouali, F. F.; Morris, R. H.; McHale, G.; Newton, M. I.

    2013-05-01

    Capillary origami uses surface tension to fold and shape solid films and membranes into three-dimensional structures. It uses the fact that solid surfaces, no matter how hydrophobic, will tend to adhere to and wrap around the surface of a liquid. In this work, we report that a superhydrophobic coating can be created, which can completely suppress wrapping as a contacting water droplet evaporates. We also show that using a wetting azeotropic solution of allyl alcohol, which penetrates the surface features, can enhance liquid adhesion and create more powerful Capillary Origami. These findings create the possibility of selectively shaping membrane substrates.

  17. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences.The book gives an overview of the development of MC and CE technology as well as technology that now allows

  18. TESTICULAR CAPILLARY HEMANGIOMA: DESCRIPTION OF A CASE

    Directory of Open Access Journals (Sweden)

    A. S. Markova

    2012-01-01

    Full Text Available The paper describes a clinical case of testicular capillary hemangioma in a 24-year-old man undergone a partial resection of the testis with the intraoperative morphological examination. Testicular capillary hemangioma is a rare benign tumor of a vascular origin, which can be similar to malignant testicular tumors on the clinical presentation, as well as on the imaging methods, in particular to seminoma. The intraoperative histological study can assist in avoiding organ-removing surgical interventions in diagnostically ambiguous cases if a benign testicular tumor is diagnosed.

  19. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  20. Effects of dynamic contact angle on liquid infiltration into inclined capillary tubes: (semi)-analytical solutions.

    Science.gov (United States)

    Hilpert, Markus

    2009-09-01

    In a recent paper, we generalized Washburn's analytical solution for capillary flow in a horizontally oriented tube by accounting for a dynamic contact angle. In this paper, we derive solutions for flow in inclined tubes that account for gravity. We again consider two general models for dynamic contact angle: the uncompensated Young force on the contact line depends on the capillary number in the form of (1) a power law with exponent beta, or (2) a polynomial. A dimensional analysis shows that, aside from the parameters for the model for the uncompensated Young force, the problem is defined through four nondimensional parameters: (1) the advancing equilibrium contact angle, (2) the initial contact angle, (3) a Bond number, and (4) nondimensional liquid pressure at the tube inlet relative to the constant gas pressure. For both contact angle models, we derive analytical solutions for the travel time of the gas-liquid interface as a function of interface velocity. The interface position as a function of travel time can be obtained through numerical integration. For the power law and beta=1 (an approximation of Cox's model for dynamic contact angle), we obtain an analytical solution for travel time as a function of interface position, as Washburn did for constant contact angle. Four different flow scenarios may occur: the interface moves (1) upward and approaches the height of capillary rise, (2) downward with the steady-state velocity, (3) downward while approaching the steady-state velocity from an initially higher velocity, or (4) downward while approaching the steady-state velocity from an initially smaller velocity.

  1. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...... performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes....

  2. Numerical analysis of the steam flow field in shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    Bartoszewicz Jarosław

    2016-06-01

    Full Text Available In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ε, RNG k-ε, Wilcox k-ω, Chen-Kim k-ε, and Lam-Bremhorst k-ε. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.

  3. Numerical analysis of the steam flow field in shell and tube heat exchanger

    Science.gov (United States)

    Bartoszewicz, Jarosław; Bogusławski, Leon

    2016-06-01

    In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ɛ, RNG k-ɛ, Wilcox k-ω, Chen-Kim k-ɛ, and Lam-Bremhorst k-ɛ. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.

  4. Energy and exergy efficiency of heat pipe evacuated tube solar collectors

    Directory of Open Access Journals (Sweden)

    Jafarkazemi Farzad

    2016-01-01

    Full Text Available In this paper, a heat pipe evacuated tube solar collector has been investigated both theoretically and experimentally. A detailed theoretical method for energy and exergy analysis of the collector is provided. The method is also evaluated by experiments. The results showed a good agreement between the experiment and theory. Using the theoretical model, the effect of different parameters on the collector’s energy and exergy efficiency has been investigated. It is concluded that inlet water temperature, inlet water mass flow rate, the transmittance of tubes and absorptance of the absorber surface have a direct effect on the energy and exergy efficiency of the heat pipe evacuated tube solar collector. Increasing water inlet temperature in heat pipe evacuated solar collectors leads to a decrease in heat transfer rate between the heat pipe’s condenser and water.

  5. Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink

    Science.gov (United States)

    Naphon, Paisarn; Nakharintr, Lursukd

    2012-11-01

    The nanofluid jet impingement heat transfer characteristics in a rectangular mini-fin heat sink are studied. The heat sink is fabricated from aluminum by a wire electrical discharge machine. The nanofluid is a mixture of deionized water and nanoscale TiO2 particles with a volume nanoparticle concentration of 0.2%. The results obtained for nanofluid jet impingement cooling in the rectangular mini-fin heat sink are compared with those found in the water jet impingement cooling. The effects of the inlet temperature of the nanofluid, its Reynolds number, and the heat flux on the heat transfer characteristics of the rectangular mini-fin heat sink are considered. It is found that the average heat transfer rates for the nanofluid as coolant are higher than those for deionized water.

  6. Thermal performance of capillary micro tubes integrated into the sandwich element made of concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of High Performance Concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating and cooling. The investigations were conceived as a low temperature concept, where the difference between the temperature of circulating fluid and air in the room was kept in range of 1 to 4°C. © (2013...

  7. Solar Powered Heat Control System for Cars

    Directory of Open Access Journals (Sweden)

    Abin John

    2014-05-01

    Full Text Available It takes times for an air-conditioner to effectively start cooling the passenger compartment in the car. So the passenger of the car will feel the heat in the car extremely before the air-conditioner fully cooling the interior of the car. Excessive heat can also damage an automobile's interior as well as personal property kept in the passenger compartment. So, a system to reduce this excessive heat by pumping out hot air and allowing cooler ambient air to enter the car by means of two micro fans was made. Also a cooling chamber was set up around the inlet fan to cool it a little further.

  8. High-frequency capillary waves excited by oscillating microbubbles

    CERN Document Server

    Pommella, Angelo; Poulichet, Vincent; Garbin, Valeria

    2013-01-01

    This fluid dynamics video shows high-frequency capillary waves excited by the volumetric oscillations of microbubbles near a free surface. The frequency of the capillary waves is controlled by the oscillation frequency of the microbubbles, which are driven by an ultrasound field. Radial capillary waves produced by single bubbles and interference patterns generated by the superposition of capillary waves from multiple bubbles are shown.

  9. Subcooled Boiling Near a Heated Wall

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Trabold; C.C. Maneri; P.F. Vassallo; D.M. Considine

    2000-10-27

    Experimental measurements of void fraction, bubble frequency, and velocity are obtained in subcooled R-134a flowing over a heated flat plate near an unheated wall and compared to analytical predictions. The measurements were obtained for a fixed system pressure and mass flow rate (P = 2.4 MPa and w = 106 kg/hr) at various inlet liquid temperatures. During the experiments, electrical power was applied at a constant rate to one side of the test section. The local void fraction data, acquired with a hot-film anemometer probe, showed the existence of a significant peak near the heated wall and a smaller secondary peak near the unheated wall for the larger inlet subcoolings. Local vapor velocity data, taken with the hot-film probe and a laser Doppler velocimeter, showed broad maxima near the centerline between the heated and unheated plates. Significant temperature gradients near the heated wall were observed for large inlet subcooling. Bubble size data, inferred from measurements of void fraction, bubble frequency and vapor velocity, when combined with the measured bubble chord length distributions illustrate the transition from pure three dimensional spherical to two-dimensional planar bubble flow, the latter being initiated when the bubbles fill the gap between the plates. These various two-phase flow measurements were used for development of a multidimensional, four-field calculational method; comparisons of the data to the calculations show reasonable agreement.

  10. Development of novel separation techniques for biological samples in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huan -Tsung [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  11. A Low-Cost and Fast Real-Time PCR System Based on Capillary Convection.

    Science.gov (United States)

    Qiu, Xianbo; Ge, Shengxiang; Gao, Pengfei; Li, Ke; Yang, Yongliang; Zhang, Shiyin; Ye, Xiangzhong; Xia, Ningshao; Qian, Shizhi

    2017-02-01

    A low-cost and fast real-time PCR system in a pseudo-isothermal manner with disposable capillary tubes based on thermal convection for point-of-care diagnostics is developed and tested. Once stable temperature gradient along the capillary tube has been established, a continuous circulatory flow or thermal convection inside the capillary tube will repeatedly transport PCR reagents through temperature zones associated with the DNA denaturing, annealing, and extension stages of the reaction. To establish stable temperature gradient along the capillary tube, a dual-temperature heating strategy with top and bottom heaters is adopted here. A thermal waveguide is adopted for precise maintenance of the temperature of the top heater. An optimized optical network is developed for monitoring up to eight amplification units for real-time fluorescence detection. The system performance was demonstrated with repeatable detection of influenza A (H1N1) virus nucleic acid targets with a limit of detection of 1.0 TCID50/mL within 30 min.

  12. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2016-06-01

    Full Text Available Micro-fabricated devices integrated with fluidic components provide an in vitro platform for cell studies best mimicking the in vivo micro-environment. These devices are capable of creating precise and controllable surroundings of pH value, temperature, salt concentration, and other physical or chemical stimuli. Various cell studies such as chemotaxis and electrotaxis can be performed by using such devices. Moreover, microfluidic chips are designed and fabricated for applications in cell separations such as circulating tumor cell (CTC chips. Usually, there are two most commonly used inlets in connecting the microfluidic chip to sample/reagent loading tubes: the vertical (top-loading inlet and the parallel (in-line inlet. Designing this macro-to-micro interface is believed to play an important role in device performance. In this study, by using the commercial COMSOL Multiphysics software, we compared the cell capture behavior in microfluidic devices with different inlet types and sample flow velocities. Three different inlets were constructed: the vertical inlet, the parallel inlet, and the vertically parallel inlet. We investigated the velocity field, the flow streamline, the cell capture rate, and the laminar shear stress in these inlets. It was concluded that the inlet should be designed depending on the experimental purpose, i.e., one wants to maximize or minimize cell capture. Also, although increasing the flow velocity could reduce cell sedimentation, too high shear stresses are thought harmful to cells. Our findings indicate that the inlet design and flow velocity are crucial and should be well considered in fabricating microfluidic devices for cell studies.

  13. Long-Term Ecological Research (LTER) Climate Data with Water Parameters from North Inlet Meteorological Station, North Inlet Estuary, Georgetown, South Carolina: 1982-1996.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Meteorological data with water parameters were collected on an hourly basis from June 3, 1982 through April 29, 1996 in the North Inlet Estuary, Georgetown County,...

  14. North Inlet-Winyah Bay National Estuarine Research Reserve's (NERR) Estuarine Water Quality Data for the North Inlet and Winyah Bay Estuaries, Georgetown, South Carolina: 1993-2002

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of the Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve...

  15. Phosphorus mass balance in a highly eutrophic semi-enclosed inlet near a big metropolis: a small inlet can contribute towards particulate organic matter production.

    Science.gov (United States)

    Asaoka, Satoshi; Yamamoto, Tamiji

    2011-01-01

    Terrigenous loading into enclosed water bodies has been blamed for eutrophic conditions marked by massive algal growth and subsequent hypoxia due to decomposition of dead algal cells. This study aims to describe the eutrophication and hypoxia processes in a semi-enclosed water body lying near a big metropolis. Phosphorus mass balance in a small inlet, Ohko Inlet, located at the head of Hiroshima Bay, Japan, was quantified using a numerical model. Dissolved inorganic phosphorous inflow from Kaita Bay next to the inlet was five times higher than that from terrigenous load, which may cause an enhancement of primary production. Therefore, it was concluded that not only the reduction of material load from the land and the suppression of benthic flux are needed, but also reducing the inflow of high phosphorus and oxygen depleted water from Kaita Bay will form a collective alternative measure to remediate the environmental condition of the inlet.

  16. Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor. Ph.D. Thesis - Toledo Univ., OH

    Science.gov (United States)

    Owen, Albert K.

    1991-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. Laser anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A primary flow is defined in the rotor and deviations from this primary flow for each inlet flow condition identified. A comparison between the two flow deviations is made to assess the development of a passage vortex due to the distortion of the inlet flow. A comparison of experimental results with computational predictions from a Navier-Stokes solver showed good agreement between predicted and measured flow. Measured results indicate that a distorted inlet profile has minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  17. North Inlet • Winyah Bay (NIW) National Estuarine Research Reserve Meteorological Data, North Inlet Estuary, Georgetown, South Carolina: 1997 • 1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve System...

  18. Effect of Inlet Geometry on the Turbine Blade Tip Region Heat Transfer Coefficient and Effectiveness

    Science.gov (United States)

    2007-11-02

    weight loss can rapidly occur, thus increasing leakage flow loss. A typical clearance gap flow is illustrated in Fig. 1, where the arrows represent the... gap flow . The effect of shroud motion was confined to a thin layer adja- cent to the shroud in both cases. The cavity region flow patterns, 2 mean...1988) showed that gap flow was essentially loss-free up to the separation bubble and then under- went sudden expansion causing significant diffusion

  19. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications.

    Science.gov (United States)

    Adly, Frady G; Antwi, Nana Yaa; Ghanem, Ashraf

    2016-02-01

    In this review, the recently reported approaches for the preparation of cyclodextrin-functionalized capillary monolithic columns are highlighted, with few applications in chiral separations using capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Chirality 28:97-109, 2016. © 2015 Wiley Periodicals, Inc.

  20. Nanoparticles as a tool in capillary electrochromatography

    OpenAIRE

    Ribeiro, Susana

    2009-01-01

    Two different types of molecularly imprinted nanoparticles against (R)-propranolol were used to separate the enantiomers of propranolol in capillary electrochromatography mode, methacrylic acid based nanoparticles and core-shell molecularly imprinted polymer nanoparticles. Partial filling technique was used to avoid interference of molecularly imprinted polymer nanoparticles in UV detection. With methacrylic acid based nanoparticles it was not possible to obtain enantiomer s...

  1. Elastic deformation due to tangential capillary forces

    NARCIS (Netherlands)

    Das, Siddhartha; Marchand, Antonin; Andreotti, Bruno; Snoeijer, Jacco H.

    2011-01-01

    A sessile liquid drop can deform the substrate on which it rests if the solid is sufficiently “soft.” In this paper we compute the detailed spatial structure of the capillary forces exerted by the drop on the solid substrate using a model based on Density Functional Theory. We show that, in addition

  2. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-03

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  3. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial capi....... The theory can be applied to the description of flocculations in two-dimensional systems of colloids....

  4. Electroviscous effects in capillary filling of nanochannels

    DEFF Research Database (Denmark)

    Mortensen, Asger; Kristensen, Anders

    2008-01-01

    We theoretically examine the widespread hypothesis of an electroviscous origin of the increase in apparent viscosity observed in recent experiments on capillary filling of nanochannels. Including Debye-layer corrections to the hydraulic resistance, we find that the apparent viscosity reaches a ma...

  5. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  6. Drops: The collapse of capillary jets

    Science.gov (United States)

    Cordoba, Antonio; Cordoba, Diego; Fefferman, Charles; Fontelos, Marco A.

    2002-01-01

    The appearance of fluid filaments during the evolution of a viscous fluid jet is a commonly observed phenomenon. It is shown here that the break-up of such a jet subject to capillary forces is impossible through the collapse of a uniform filament. PMID:12172005

  7. Shift dynamics of capillary self-alignment

    NARCIS (Netherlands)

    Arutinov, G.; Mastrangeli, M.; Smits, E.C.P.; Heck, G.V.; Schoo, H.F.M.; Toonder, J.J.M. den; Dietzel, A.H.

    2014-01-01

    This paper describes the dynamics of capillary self-alignment of components with initial shift offsets from matching receptor sites. The analysis of the full uniaxial self-alignment dynamics of foil-based mesoscopic dies from pre-alignment to final settling evidenced three distinct, sequential regim

  8. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida;

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  9. In-capillary detection of fast antibody-peptide binding using fluorescence coupled capillary electrophoresis.

    Science.gov (United States)

    Qin, Yuqin; Qiu, Lin; Qin, Haifang; Ding, Shumin; Liu, Li; Teng, Yiwan; Chen, Yao; Wang, Cheli; Li, Jinchen; Wang, Jianhao; Jiang, Pengju

    2016-01-01

    Herein, we report a technique for detecting the fast binding of antibody-peptide inside a capillary. Anti-HA was mixed and interacted with FAM-labeled HA tag (FAM-E4 ) inside the capillary. Fluorescence coupled capillary electrophoresis (CE-FL) was employed to measure and record the binding process. The efficiency of the antibody-peptide binding on in-capillary assays was found to be affected by the molar ratio. Furthermore, the stability of anti-HA-FAM-E4 complex was investigated as well. The results indicated that E4 YPYDVPDYA (E4) or TAMRA-E4 YPYDVPDYA (TAMRA-E4) had the same binding priorities with anti-HA. The addition of excess E4 or TAMRA-E4 could lead to partial dissociation of the complex and take a two-step mechanism including dissociation and association. This method can be applied to detect a wide range of biomolecular interactions.

  10. Preparation approaches of the coated capillaries with liposomes in capillary electrophoresis.

    Science.gov (United States)

    Mei, Jie; Tian, Yan-Ping; He, Wen; Xiao, Yu-Xiu; Wei, Juan; Feng, Yu-Qi

    2010-10-29

    The use of liposomes as coating materials in capillary electrophoresis has recently emerged as an important and popular research area. There are three preparation methods that are commonly used for coating capillaries with liposomes, namely physical adsorption, avidin-biotin binding and covalent coupling. Herein, the three different coating methods were compared, and the liposome-coated capillaries prepared by these methods were evaluated by studying systematically their EOF characterization and performance (repeatability, reproducibility and lifetime). The amount of immobilized phospholipids and the interactions between liposome or phospholipid membrane and neutral compounds for the liposome-coated capillaries prepared by these methods were also investigated in detail. Finally, the merits and disadvantages for each coating method were reviewed.

  11. Determination of Amino Acids in Panax notoginseng by Microwave Hydrolysis and Derivatization Coupled with Capillary Zone Electrophoresis Detection

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-tian; ZHAO Ya-jing; JIANG Cheng-fei; ZHANG Han-qi; YU Ai-min

    2013-01-01

    The microwave hydrolysis and derivatization coupled with capillary electrophoresis detection were developed for the separation and determination of the amino acids in Panax notoginseng.The experimental conditions for the microwave hydrolysis and derivatization were examined and optimized.Several parameters of capillary electrophoresis,such as pH value of background electrolyte,borate concentration and applied voltage were optimized.Under the selected conditions,11 amino acids were completely separated.The real sample was analyzed and the results were satisfactory.Compared with that of conventional heat hydrolysis and derivatization,the analytical time of this method was significantly shortened.

  12. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  13. Mass independent kinetic energy reducing inlet system for vacuum environment

    Science.gov (United States)

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  14. Subclavian artery resection and reconstruction for thoracic inlet neoplasms.

    Science.gov (United States)

    Mercier, Olaf; Su, Xiao-Dong; Lahon, Benoit; Mussot, Sacha; Fabre, Dominique; Delemos, Alexandra; Le Chevalier, Thierry; Dartevelle, Philippe G; Fadel, Elie

    2015-12-01

    To update the long-term outcomes after subclavian artery (SA) resection and reconstruction during surgery for thoracic inlet (TI) cancer through the anterior transclavicular approach. Between 1985 and 2014, 85 patients (60 men and 25 women; mean age, 52 years) underwent en bloc resection of thoracic-inlet non-small cell lung cancer (NSCLC) (n=69), sarcoma (n=11), breast carcinoma (n=3) or thyroid carcinoma (n=2) involving the SA. L-shaped transclavicular cervicothoracotomy was performed, with posterolateral thoracotomy in 18 patients or a posterior midline approach in 15 patients. Resection extended to the chest wall (>2 ribs, n=60), lung (n=76), and spine (n=15). Revascularization was by end-to-end anastomosis (n=48), polytetrafluoroethylene (PTFE) graft interposition (n=28), subclavian-to-common carotid artery transposition (n=8), or grafting of the autologous superficial femoral artery in an anterolateral thigh free flap (n=1). Complete R0 resection was achieved in 75 patients and microscopic R1 resection in 10 patients. Postoperative radiation therapy was given to 51 patients. There were no cases of postoperative death, neurological sequelae, graft infection or occlusion, or limb ischemia. Postoperative morbidity consisted of pneumonia (n=16), phrenic nerve palsy (n=2), recurrent nerve palsy (n=4), bleeding (n=4), acute pulmonary embolism (n=1), cerebrospinal fluid leakage (n=1), chylothorax (n=1), and wound infection (n=2). Five-year survival and disease-free survival rates were 32% and 22%, respectively. Long-term survival was not observed after R1 resection. Subclavian arteries invaded by TI malignancies can be safely resected and reconstructed through the anterior transclavicular approach, with good long-term survival provided complete R0 resection is achieved.

  15. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  16. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    Science.gov (United States)

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  17. Evaluation of migration behaviour of therapeutic peptide hormones in capillary electrophoresis using polybrene-coated capillaries.

    Science.gov (United States)

    Aptisa, Ghiulendan; Benavente, Fernando; Sanz-Nebot, Victoria; Chirila, Elisabeta; Barbosa, José

    2010-02-01

    Modelling electrophoretic mobility as a function of pH can be simultaneously used for determination of ionization constants and for rapid selection of the optimum pH for separation of mixtures of the modelled compounds. In this work, equations describing the effect of pH on electrophoretic behaviour were used to investigate migration of a series of polyprotic amphoteric peptide hormones between pH 2 and 12 in polybrene-coated capillaries. Polybrene (hexadimethrin bromide) is a polymer composed of quaternary amines that is strongly adsorbed by the fused-silica inner surface, preventing undesired interactions between the peptides and the inner capillary wall. In polybrene-coated capillaries the separation voltage must be reversed, because of the anodic electroosmotic flow promoted by the polycationic polymer attached to the inner capillary wall. The possibility of using polybrene-coated capillaries for determination of accurate ionization constants has been evaluated and the optimum pH for separation of a mixture of the peptide hormones studied has been selected. Advantages and disadvantages of using bare fused-silica and polybrene-coated capillaries for these purposes are discussed.

  18. Numerical Study on the Thermal Performance of a Shell and Tube Phase Change Heat Storage Unit during Melting Process

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-11-01

    Full Text Available This work presents a numerical study of the thermal performance in a shell and tube phase change heat storage unit. Paraffin wax as phase change material (PCM is filled in the shell space. The heat transfer fluids (HTFs: air and water flow through the tube and transfer the heat to PCM. A mathematical model involving HTF and PCM is developed to analyze the thermal performance of the phase change heat storage unit and is validated with experimental data. Numerical investigation is conducted to evaluate the effect of HTF inlet velocity on the HTF outlet temperature, Nu, and melt fraction when air or water is used as HTF. Results indicate that the air inlet velocity has a great effect on the air outlet temperature and heat transfer rate, and the water inlet velocity has little effect on the water outlet temperature. The investigated results can provide a reference for designing phase change heat storage system.

  19. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  20. Preliminary Test of a small heat pipe for hybrid control rod in-core passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Ban, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    This paper introduces 'Hybrid control rod' combining its original function and heat removal ability. The high temperature operation and high resistance of radiation should be considered to adopt the hybrid heat pipe at the in-core condition. Other design consideration is to make extra inlet parts because it has a high risk of inlet boundary failure. It means that the introduction of heat pipe system is difficult to present nuclear power plants. The other concepts are presented to out-core cooling design but it has low performance compared with in-core heat removal system. Hybrid heat pipe for in-core heat removal system suggests the solution of these problems. Ultimate objective of this research is to develop the passive emergency decay heat removal system using hybrid heat pipes targeting design bases accidents such as station black-out (SBO) and small break loss of coolant accident (SBLOCA). The purpose of this work is to confirm the performance and heat transfer behavior of hybrid heat pipe. The hybrid heat pipe has special condition for operation. Therefore, it is hard to analyze their behavior in core. Table I shows the characteristics of hybrid heat pipe and consideration for manufacturing the heat pipe.

  1. 33 CFR 110.170 - Lockwoods Folly Inlet, N.C.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lockwoods Folly Inlet, N.C. 110.170 Section 110.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.170 Lockwoods Folly Inlet, N.C. (a)...

  2. 33 CFR 334.130 - Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone.

    Science.gov (United States)

    2010-07-01

    ... and Chincoteague Inlet, Va.; danger zone. 334.130 Section 334.130 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.130 Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone. (a) The...

  3. 77 FR 6065 - Proposed Information Collection; Comment Request; Cook Inlet Beluga Whale Economic Survey

    Science.gov (United States)

    2012-02-07

    ....) waters. It was listed as endangered under the Endangered Species Act on October 22, 2008 (73 FR 62919... Inlet Beluga Whale Economic Survey AGENCY: National Oceanic and Atmospheric Administration (NOAA....Lew@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract The population of Cook Inlet beluga whales...

  4. Assessing climate change impacts on the stability of small tidal inlet systems: Why and how?

    NARCIS (Netherlands)

    Duong, T.; Ranasinghe, Ranasinghe W M R J B; Walstra, D.J.R.; Roelvink, D.

    2016-01-01

    Coastal zones in the vicinity of tidal inlets are commonly utilised for navigation, fishing, sand mining, waterfront development and recreation and are under very high population pressure. Any negative impacts of climate change (CC) on inlet environment are therefore very likely to result in

  5. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    Science.gov (United States)

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  6. Assessing climate change impacts on the stability of small tidal inlet systems: Why and how?

    NARCIS (Netherlands)

    Duong, T.; Ranasinghe, R.W.M.R.J.; Walstra, D.J.R.; Roelvink, D.

    2016-01-01

    Coastal zones in the vicinity of tidal inlets are commonly utilised for navigation, fishing, sand mining, waterfront development and recreation and are under very high population pressure. Any negative impacts of climate change (CC) on inlet environment are therefore very likely to result in signifi

  7. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  8. A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization.

    Science.gov (United States)

    Trimpin, Sarah; Wang, Beixi; Inutan, Ellen D; Li, Jing; Lietz, Christopher B; Harron, Andrew; Pagnotti, Vincent S; Sardelis, Diana; McEwen, Charles N

    2012-10-01

    Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.

  9. Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets

    KAUST Repository

    Guiberti, T. F.

    2016-10-11

    This paper reports an analysis of the influence of fuels on the stabilization of turbulent piloted jet flames with inhomogeneous inlets. The burner is identical to that used earlier by the Sydney Group and employs two concentric tubes within the pilot stream. The inner tube, carrying fuel, can be recessed, leading to a varying degree of inhomogeneity in mixing with the outer air stream. Three fuels are tested: dimethyl ether (DME), liquefied petroleum gas (LPG), and compressed natural gas (CNG). It is found that improvement in flame stability at the optimal compositional inhomogeneity is highest for CNG and lowest for DME. Three possible reasons for this different enhancement in stability are investigated: mixing patterns, pilot effects, and fuel chemistry. Numerical simulations realized in the injection tube highlight similarities and differences in the mixing patterns for all three fuels and demonstrate that mixing cannot explain the different stability gains. Changing the heat release rates from the pilot affects the three fuels in similar ways and this also implies that the pilot stream is unlikely to be responsible for the observed differences. Fuel reactivity is identified as a key factor in enhancing stability at some optimal compositional inhomogeneity. This is confirmed by inference from joint images of PLIF-OH and PLIF-CHO, collected at a repetition rate of 10kHz in turbulent flames of DME, and from one-dimensional calculations of laminar flames using detailed chemistry for DME, CNG, and LPG.

  10. Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques

    Directory of Open Access Journals (Sweden)

    Alaa A. El-Shazly

    2016-09-01

    Full Text Available Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambient air can be cooled by using either evaporative cooler or absorption chiller. Currently, the performance was simulated thermodynamically for a natural gas operated gas turbine. The performance was tested for the base case without any turbine inlet cooling (TIC systems and compared with the performance for both evaporative cooler and absorption chiller separately in terms of output power, thermal efficiency, heat rate, specific fuel consumption, consumed fuel mass flow rate, and economics. Results showed that at air ambient temperature equals to 37 °C and after deducting all the associated auxiliaries power consumption for both evaporative cooler and absorption chiller, the absorption chiller with regenerator can achieve an augmentation of 25.47% in power and 33.66% in efficiency which provides a saving in average power price about 13%, while the evaporative cooler provides only an increase of 5.56% in power and 1.55% in efficiency, and a saving of 3% in average power price.

  11. Experimental and numerical investigation on performance of a double inlet type cryogenic pulse tube refrigerator

    Science.gov (United States)

    Biswas, Animesh; Ghosh, Subrata K.

    2016-09-01

    A helium filled double inlet pulse tube refrigerator (DIPTR) has been designed, built and operated to provide cryogenic cooling. The experimental studies have been carried out to characterize the performance of the DIPTR at various values of the mean pressure of helium (0.7-1.5 MPa), amplitudes of pressure oscillations, and sizes of orifice opening. A detailed time-dependent three dimensional computational fluid dynamics (CFD) model of the DIPTR has also been developed to predict its performance. In the CFD model, the continuity, momentum and energy equations have been solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and heat exchangers) in the DIPTR. The computational results have been compared with specific experimental results to validate the numerical model. The results predicted by the model show better results as compared to experimental results, as the effects of wall thicknesses and natural convective losses of the various components of the DIPTR to the surroundings have not been included in the model.

  12. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  13. [The rapid analysis of polychlorinated quaterphenyls in blood using different diameter capillary column with the high-resolution gas chromatograph high-resolution mass spectrometer].

    Science.gov (United States)

    Yasutake, Daisuke; Ashizuka, Yuki; Hori, Tsuguhide; Kurokawa, Youichi; Kajiwara, Jumboku; Hirata, Teruaki; Ishiguro, Yasuhisa; Iida, Takao; Uchi, Hiroshi; Furue, Masutaka

    2011-04-01

    The polychlorinated quaterphenyl (PCQ) concentrations in blood are important discriminative parameters in yusho patient. In this study, a rapid analytical method for PCQ using different diameter capillary column (rapid-Rtx65TG) with high-resolution gas chromatograph high-resolution mass spectrometer (HRGC/HRMS) instead of the gas chromatograph electron capture detector (ECD/GC) was developed. Using different diameter capillary columns, the analysis time of the HRGC/HRMS was drastically shortened, and the detection sensitivity was improved. In the rapid-Rtx65TG column, a small-bore capillary column (length 1m, I.D. 0.1mm) was connected with the inlet side of the GC, and behind that column, a large-bore capillary column (length 15mm, I.D. 0.53mm) for octadecachloroquaterphenyl (ODCQ) analysis was connected. In the HRGC/HRMS measurement of ODCQ by the rapid-Rtx65TG column, the minimum limit of detection for the apparatus was 0.4 pg, and the minimum limit of determination for the blood was 0.008 ppb. On ECD/GC in the conventional method and HRGC/HRMS in this study, the PCQ concentration in blood including yusho patients and yusho suspected persons was almost equivalent.

  14. Quantitative twoplex glycan analysis using (12)C6 and (13)C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    Science.gov (United States)

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available (12/13)C6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for (12)C6 'light' and (13)C6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  15. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  16. Thermal stratification built up in hot water tank with different inlet stratifiers

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Dannemand, Mark

    2017-01-01

    H is a rigid plastic pipe with holes for each 30 cm. The holes are designed with flaps preventing counter flow into the pipe. The inlet stratifier from EyeCular Technologies ApS is made of a flexible polymer with openings all along the side and in the full length of the stratifier. The flexibility...... in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb...... of the stratifier prevents counterflow. The tests have shown that both types of inlet stratifiers had an ability to create stratification in the test tank under the different test conditions. The stratifier from EyeCular Technologies ApS had a better performance at low flows of 1-2 l/min and the stratifier...

  17. Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition

    Science.gov (United States)

    Smart, M. K.

    1998-01-01

    A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.

  18. Effects of Inlet/Outlet Ducts on Acoustic Attenuation Characteristics of Circular Expansion Chambers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-bo; GE Yun-shan; JI Zhen-lin; ZHANG Wen-ping; SONG Yan-rong; HAN Xiu-kun; ZHANG Xue-min

    2006-01-01

    The effect of coaxial, offset and extended inlet/outlet on the acoustic attenuation characteristics of circular expansion chambers are studied by the three-dimensional finite element method. The numerical results of transmission loss are compared with experiment results to verify the necessary of using three-dimensional methods. Maps of acoustic pressure level distribution inside of chambers and inlet/outlet ducts are given at a frequency to demonstrate the difference of acoustic wave propagation behavior caused by locations of inlet/outlet ducts. For the chambers of the same length, the chamber with extended inlet/outlet duct has higher attenuation ability than coaxial and offset inlet/outlet duct over middle frequencies.

  19. A sedimentological approach to P-A relationships for tidal inlet systems:an example from Yuehu Inlet,Shandong Peninsula,China

    Institute of Scientific and Technical Information of China (English)

    Jianjun jIA; Shu GAO

    2008-01-01

    Power-law relationship between tidal prism (P) and the cross-sectional area of the entrance channel (A)is applicable to assess the equilibrium conditions of a tidal inlet system.The classic method of determining P-A relationships proposed bv O'Brien depends on datasets from multi-tidal inlet systems,which has shown some limitations and is unable to assess equilibrium of a single tidal inlet.This paper focuses on establishing a new P-A relationship for a single tidal inlet.Our experimental result shows that in order to maintain the status,power n should be>1.implying that the inlet width will narrow and current speed within the entrance will increase as tidal prism becomes smaller.A possible explanation for power n<41.0.as many researchers argued before,iS that the influence of tidal prism has been exaggerated.Meanwhile,the magnitude of coefficient C iS dependent on many factors such as longshore drift,freshwater discharge,etc,resulting in a wide range of variation Of C.It should be pointed out that P-A relationship given by the sediment dynamical approach is still a representative of average status for tidal inlets in equilibrium.As tide,wave,freshwater discharge and tidal inlet morphology change with time,actual P-Arelationships will fluctuate also.The problems that needto be solved when applying sediment dynamic methods to P-A relationships include the cross-sectional distribution Pattern of tidal currnt speeds in the entrance channel,the relationship between the tidal current and the tidal water level at the entrance,and the calculation of the ratio of width to depth.This paper will establish a sediment dynamical approach of P-A relationship for a single tidal inlet.The results are tested for P-A relationships of YuehuInlet,a small inlet-lagoon system located in Shandong Peninsula,China.

  20. Gold nanoparticles deposited capillaries for in-capillary microextraction capillary zone electrophoresis of monohydroxy-polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Huiyong; Knobel, Gaston; Wilson, Walter B; Calimag-Williams, Korina; Campiglia, Andres D

    2011-03-01

    This article presents the first application of gold nanoparticles deposited capillaries as pre-concentration devices for in-capillary microextraction CZE and their use for the analysis of monohydroxy-polycyclic aromatic hydrocarbons in synthetic urine samples. The successful separation of 1-hydroxypyrene, 9-hydroxyphenanthrene, 3-hydroxybenzo[a]pyrene (3-OHbap), 4-hydroxybenzo[a]pyrene and 5-hydroxybenzo[a]pyrene under a single set of electrophoretic conditions is demonstrated as well as the feasibility to obtain competitive ultraviolet absorption LOD with commercial instrumentation. Enrichment factors ranging from 87 (9-OHphe) to 100 (3-OHbap) made it possible to obtain LOD ranging from 9 ng/mL (9-OHphe and 3-OHbap) to 14 ng/mL (4-hydroxybenzo[a]pyrene).