WorldWideScience

Sample records for heat venting technology

  1. Oil heat venting technology and NFPA standard 31 revision year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    The revision of National Fire Protection Association (NFPA) Standard 31 for the year 2000 offers an opportunity to update the Appendix which currently offers recommendations for basic metal relining of masonry chimneys up to and including 25 feet. The paper discusses the proposed update of the existing recommendations to include flexible (rough) metal liners. In addition, the discussion addresses the inclusion of additional information for unlined (non-conforming), lined (conforming to NFPA 211) masonary chimneys, insulated metal chimneys, chimney heights beyond what are now published, as well as power venting both forced and induced draft. Included in the paper is a discussion of the existing Oil Heat Vent Analysis Program (OHVAP Version 3.0) and issues that need resolution to make it a better vent system model.

  2. Heat Pipe Technology: A bibliography with abstracts

    Science.gov (United States)

    1974-01-01

    This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.

  3. Cryogenic fluid management technologies for space transportation. Zero G thermodynamic vent system

    Science.gov (United States)

    1994-01-01

    Long term storage of subcritical cryogens in space must address the problem of thermal stratification in the storage tanks, liquid acquisition devices, and associated feed systems. Due to the absence of gravity induced body forces, thermal stratification in zero-g is more severe than commonly experienced in a one-g environment. If left uncontrolled, the thermal gradients result in excessive tank pressure rise and the formation of undesirable liquid/vapor mixtures within the liquid bulk, liquid acquisition system, and propellant transfer lines. Since external heat leakage cannot be eliminated, a means of minimizing the thermal stratification in the ullage gas, liquid, and feed system is required. A subsystem which minimizes the thermal stratification and rejects the environmental heat leakage in an efficient manner is therefore needed for zero-g subcritical cryogenic systems. In ground based storage systems the ullage gas location is always known (top of the tank) and therefore direct venting of gases as a means of heat rejection is easily accomplished. In contrast, because the ullage location in a zero-g environment is not easily predictable, heat rejection through direct gaseous venting is difficult in space (requires liquid settling, or surface tension devices). A means of indirect venting through the use of a thermodynamic vent system (TVS) is therefore required. A thermodynamic vent system allows indirect venting of vapor through heat exchange between the vented fluid and the stored fluid. The objective is to ensure that only gas and not liquid is vented, in order to minimize the propellant losses. Consequently, the design of a TVS is a critical enabling technology for future applications such as solar thermal and electric propulsion, single-stage-to-orbit vertical landers and upper stages, and any space based operations involving subcritical cryogenics. To bridge this technology gap NASA MSFC initiated an effort to build and verify through ground tests a zero

  4. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  5. Energy-saving Technology of Vent in Passive Solar Wall of Rural House of Severe Cold Region

    Institute of Scientific and Technical Information of China (English)

    Wei Ling; TianYu Zhao; Hong Jin; XiPeng Zhao

    2014-01-01

    This paper aims at solving the problems of low thermal collection rate, inconvenient maintenance, hindering indoor using during the application of passive solar technologies in rural houses in severe cold region. All these defects prevent the passive solar houses'further development. This paper chooses trombe wall, which has higher thermal efficiency of the passive solar house, as research object. The traditional vent is improved into a new type of ventilation device. This improvement overcomes the shortcoming, which traditional vent loses huge heat, and simplifies the construction of vent. Comparing with traditional trombe wall, the energy saving rate is 15�69%.

  6. Heat flux estimates from the Gakkel Ridge 85E vent field from the AGAVE 2007 expedition

    Science.gov (United States)

    Stranne, C.; Winsor, P.; Sohn, R. A.; Liljebladh, B.

    2009-04-01

    During the Arctic Gakkel Vents Expedition (AGAVE) 2007, abundant hydrothermal venting was discovered on the Gakkel Ridge at 85E. Hydrothermal vents on the sea floor give rise to buoyant plumes which, when reaching neutral buoyancy, spreads horizontally over areas with length scales on the order of several kilometres and are therefore easily detected with a CTD rosette. The detected anomalies are consistent with the findings 6 years earlier during the Arctic Mid-Ocean Ridge Expedition (AMORE) 2001. The horizontal and vertical distribution of the anomalies is considered in order to establish the number of individual plumes detected. The objective of this paper is to estimate the minimum heat input required to reproduce the observed plumes, using a turbulent entrainment model. The model was run with a large number of combinations of boundary conditions (nozzle area, vertical velocity and temperature) in order to see which combinations that give rise to the observed plume characteristics (level of neutral buoyancy and temperature anomaly). For each individual plume, we estimate the minimum heat flux required to obtain the observed temperature anomaly. Adding the minimum heat flux from each vent together, the total heat flux for the vent field is estimated to be ~ 2 GW. The estimated value is comparable or larger than any other known vent field.

  7. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  8. Study of heat transfer on front– and back-vented brake discs

    Directory of Open Access Journals (Sweden)

    Supachai Lakkam

    2013-12-01

    Full Text Available A brake disc plays an important role in the automotive industry since it concerns directly with safety. In order to develop proper heat ventilation a wide range of brake discs have been designed. Different types of physical brake disc geometries, as front- and back-vented brake discs, affect the heat ventilation directly. This is a vital factor of the brake’s capability. We recognized the importance of this circumstance and therefore attempted to create a test to investigate the temperature gradient of the brake disc in order to evaluate the coefficients of heat convection. The coefficients were modified by the change of temperature distribution in both brake discs under the forced heat convection in steady state conditions. However, the heat radiation value does not take into account that the heat convection is dominated by the physical geometry of the brake disc. To set up the experimental test for investigating the heat transfer by convection the JASO C406 standard is adopted. The experimental results in terms of heat convection coefficients are used in the numerical simulation via the finite element method in order to study the temperature diffusion and heat ventilation of front and back-vented brake discs. Conse-quently, the experimental results reveal that the overall heat convection coefficients of the front-vented brake disc are higher than these of the back-vented one. In other words the simulation yields that the front-vented brake disc allows stronger heat ventilation than its compared object, leading to larger temperature differences between outboard and inboard rotors, resulting in more thermal stress. This makes it more susceptible to be damaged during operation.

  9. Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

  10. Two-Phase Cryogenic Heat Exchanger for the Thermodynamic Vent System

    Science.gov (United States)

    Christie, Robert J.

    2011-01-01

    A two-phase cryogenic heat exchanger for a thermodynamic vent system was designed and analyzed, and the predicted performance was compared with test results. A method for determining the required size of the Joule-Thomson device was also developed. Numerous sensitivity studies were performed to show that the design was robust and possessed a comfortable capacity margin. The comparison with the test results showed very similar heat extraction performance for similar inlet conditions. It was also shown that estimates for Joule- Thomson device flow rates and exit quality can vary significantly and these need to be accommodated for with a robust system design.

  11. Technology assessment heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, R.; Purper, G. (Battelle-Institut e.V., Frankfurt am Main (Germany, F.R.))

    Technology assessment for an increased application of heat pumps is carried out in four areas: Effects in the economics area, i.e. effects on the economic goals which are defined in the Stability Law, on the goals of the power supply policy which result from the energy programme and its projections, and on the economic structure as a whole. The whole range of social problems concerning the use of heat pumps, i.e. the questions which social groups are affected, how they react, and what consequences are they expected to have on energy conservation as an object of social policy. Consequences in the governmental and administrative sectors, i.e. effects on legislation, administration and government budgets. Effects on the ecological systems; of prime interest in this context are the utilisation of environmental energy, changes in the heat balance, and emmission of pollutants.

  12. Mixed Convection Heat Transfer Enhancement in a Vented Cavity Filled with a Nanofluid

    Directory of Open Access Journals (Sweden)

    Ahmed BAHLAOUI

    2016-01-01

    Full Text Available In this paper, a numerical investigation is carried out on mixed convection in a vertical vented rectangular enclosure filled with Al2O3-water nanofluid. The mixed convection effect is attained by heating the right wall by a constant hot temperature and cooling the cavity by an injected or sucked imposed flow. The effects of some pertinent parameters such as the Reynolds number, 100  Re  5000, the solid volume fraction of the nanoparticles, 0    0.1, and the aspect ratio of the cavity, 1  A  4, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes. For a value of the aspect ratio A = 2, the obtained results demonstrate that the increase of volume fraction of nanoparticles contributes to an enhancement of the heat transfer and to an increase of the mean temperature within the cavity. Also, it was revealed that the fluid suction mode yields the best heat transfer performance. In the case when A is varied from 1 to 4, it was obtained that the heat transfer enhancement, using nanofluids, is more pronounced at shallow enclosures than at tall ones.

  13. Dielectric heating. Technologies; Chauffage dielectrique. Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roussy, G. [Universite Henri-Poincare, Dir. de Recherche, 54 - Nancy (France); Rochas, J.F. [Societe Sairem, 69 - Lyon (France); Oberlin, C. [Electricite de France (EDF), 75 - Paris (France)

    2003-08-01

    The electrothermal heating processes are of two types: the indirect heating (indirect resistance, infrared, indirect arc and plasma heating) in which the energy transfer from the source to the receptor complies with the usual thermal laws, and the direct heating (direct ohmic, induction, high-frequency, microwave, electron bombardment, laser and direct arc heating) in which the receptor is crossed by an electric current which generates a heat release inside the receptor. This paper treats of the technologies used in high frequency and microwave heating: 1 - techniques of implementation of high-frequency (HF) heating: HF generator, energy transmission line, HF applicator, impedance adjustment system, auxiliary devices; 2 - techniques of implementation of microwave heating: microwave generator, wave guide, microwave applicator, impedance adjustment circuit, auxiliary devices. (J.S.)

  14. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    Science.gov (United States)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  15. Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, J.W.; James, L.C.; Stevens, S.; Autry, A.N.; Nussbaum, M.; MacQueen, S.V.

    1983-06-22

    Our goal was to design and monitor a hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a micro-computer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Micro-computer hardware and computer programs were developed to make cost effective decisions between the various modes of operation. Although recent advances in micro-computer hardware make similar control systems more readily achievable utilizing standard components, attention to the decision making criteria will always be required.

  16. Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…

  17. Proceedings of the 1998 oil heat technology conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  18. Electricity generation from hydrothermal vents

    Science.gov (United States)

    Aryadi, Y.; Rizal, I. S.; Fadhli, M. N.

    2016-09-01

    Hydrothermal vent is a kind of manifestation of geothermal energy on seabed. It produces high temperature fluid through a hole which has a diameter in various range between several inches to tens of meters. Hydrothermal vent is mostly found over ocean ridges. There are some 67000 km of ocean ridges, 13000 of them have been already studied discovering more than 280 sites with geothermal vents. Some of them have a thermal power of up to 60 MWt. These big potential resources of energy, which are located over subsea, have a constraint related to environmental impact to the biotas live around when it becomes an object of exploitation. Organic Rankine Cycle (ORC) is a method of exploiting heat energy to become electricity using organic fluid. This paper presents a model of exploitation technology of hydrothermal vent using ORC method. With conservative calculation, it can give result of 15 MWe by exploiting a middle range diameter of hydrothermal vent in deep of 2000 meters below sea level. The technology provided here really has small impact to the environment. With an output energy as huge as mentioned before, the price of constructing this technology is low considering the empty of cost for drilling as what it should be in conventional exploitation. This paper also presents the comparison in several equipment which is more suitable to be installed over subsea.

  19. Heat transfer system safety: Comparing the effectiveness of batch venting and a light-ends removal kit (LERK

    Directory of Open Access Journals (Sweden)

    Christopher Ian Wright

    2014-11-01

    Full Text Available Heat transfer fluids (HTF should be analysed at least once per year to determine the extent of thermal degradation. Under normal operating conditions, mineral-based HTFs will thermally degrade and the bonds between hydrocarbons break to form shorter-chain hydrocarbons known as “light-ends”. These light-ends accumulate in a HTF system and present a future potential fire risk. Light-ends can be removed from a HTF system via a batch vent or installation of a temporary or permanently installed light-ends removal kit (LERK. Data was collected prior to and following batch venting or installation of a LERK. The main study parameter was closed flash temperature as open flash temperature and fire point did not change considerably. Analysis showed that both methods increased closed flash temperature in excess of 130 °C three months after the intervention, so both methods were deemed effective. Data showed that the percentage change achieved with the LERK, compared to batch venting, was 2-fold higher at three months and 10-fold higher at 6 months. The duration of effect was longer with the LERK with closed flash temperature being stable and consistently above 130 °C for 50 months after being permanently installed. This case highlights the effectiveness of a permanently fitted LERK which is effective for the longer-term control of closed flash temperature. However, mobile LERKs could be an option for manufacturers looking to manage closed flash temperature on a shorter-term basis or as an alternative to batch venting.

  20. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  1. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    Science.gov (United States)

    Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.

    2007-12-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries

  2. Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    S. Puttagunta, S. Maxwell, D. Berger, and M. Zuluaga

    2015-10-01

    The Consortium for Advanced Residential Buildings (CARB) conducted research to gain more insight into passive vents. Because passive vents are meant to operate in a general environment of negative apartment pressure, the research assessed whether these negative pressures prevail through a variety of environmental conditions.

  3. Proceedings of the 1996 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1996-07-01

    This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1996 Oil Technology Conference comprised: (a) fourteen technical papers, and (b) four workshops which focused on mainstream issues in oil-heating technology, namely: oilheat research agenda forum; fan atomized burner commercialization, applications, and product development; fuel quality, storage and maintenance--industry discussion; and application of oil heat venting tables, NFPA 31 standard. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    Science.gov (United States)

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  5. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  6. Technology Solutions Case Study: Design Guidance for Passive Vents in New Construction, Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-12

    In an effort to improve indoor air quality in high-performance, new construction, multifamily buildings, dedicated sources of outdoor air are being implemented. Passive vents are being selected by some design teams over other strategies because of their lower first costs and operating costs. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings constructed eight steps, which outline the design and commissioning required for these passive vents to perform as intended.

  7. PreVent technology in gas chromatograph%气相色谱预排一切割技术

    Institute of Scientific and Technical Information of China (English)

    魏红

    2000-01-01

    The working principle and mode of the PreVent system in the gas chromatograph was introduced and it was compared with the conventional gas chromatograph analysis by examples. The results showed that PreVent technology could simplify the former processing of samples and raise the analytic working efficiency.%介绍了气相色谱预排-切割技术的工作原理及模式。通过实例与常规气相色谱分析进行了对比,指出在气相色谱分析中应用这种技术,可以简化样品的前处理过程,提高分析效率。

  8. 40 CFR 63.113 - Process vent provisions-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater... or equal to 4.0 shall maintain a TRE index value greater than 1.0 and shall comply with the... greater than 4.0 shall maintain a TRE index value greater than 4.0, comply with the provisions...

  9. Air Conditioning and Heating Technology--II.

    Science.gov (United States)

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  10. Air Conditioning and Heating Technology--II.

    Science.gov (United States)

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  11. HEAT PUMP APPLICATION IN FOOD TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Péter Korzenszky

    2012-10-01

    Full Text Available The economy of food technologies is greatly influenced by their energy consumption. Almost no operation or procedure exists that could be executed without the need for electricity. At the same time, several technologies require direct or indirect input of thermal energy as well. An example to quote is the heating of the raw materials of food industry or the pasteurisation or sterilisation of finished products, but heating the production rooms or cleaning or washing the machinery also require energy. Needless to say food industry plants constantly seek ways to improve their energy efficiency such as the reintroduction of waste heat into the technology and the use of renewables. Heat recovering heat exchangers are used in the pasteurisation technology of milk. In case of lower temperatures, however, simple heat exchangers are of no use. Few practical examples of heat recovery obtained upon cooling products or raw materials exist in the food industry even though the possibility of this is available using heat pumps. Heat pumps have been successfully applied to heat apartments with thermal energy recovered from the cooling of soils, water or air or to utilise the excess heat of thermal spring waters. Our present article introduces the application possibility in a soda water plant, fundamentally determining the quality of soda water and showing an example of rational utilisation.

  12. Oil heat technology research and development

    Energy Technology Data Exchange (ETDEWEB)

    Kweller, E.R. [Department of Energy, Washington, DC (United States); McDonald, R.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    The purpose of this United States Department of Energy (DOE)/Brookhaven National Laboratory (BNL) program is to develop a technology base for advancing the state-of-the-art related to oilfired combustion equipment. The major thrust is through technology based research that will seek new knowledge leading to improved designs and equipment optimization. The Combustion Equipment space Conditioning Technology program currently deals exclusively with residential and small commercial building oil heat technology.

  13. IITRI RADIO FREQUENCY HEATING TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    IITRI's patented in situ RFH technology enhances the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and potentially higher soil permeability. RFH heats soil us...

  14. IITRI RADIO FREQUENCY HEATING TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    IITRI's patented in situ RFH technology enhances the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and potentially higher soil permeability. RFH heats soil us...

  15. Preoperational test, vent building ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T., Westinghouse Hanford

    1996-08-20

    Preoperational Test Procedure for Vent Building Ventilation System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The Vent Building ventilation system provides ventilation, heating, cooling, and zone confinement control for the W-030 Project Vent Building. The tests verify correct System operation and correct indications displayed by the central Monitor and Control system.

  16. Heating Unsaturated Sediments Using Solar Energy to Enhance Passive Sediment Remediation Technologies

    Science.gov (United States)

    Rossman, A.

    2002-12-01

    Sediment heating has been shown to enhance passive sediment remediation technologies such as bioremediation and barometric pumping (passive soil venting). Sediment heating raises the slow remediation rates that often limit the widespread use of these technologies. In bioremediation applications, a 10 degree C increase in subsurface temperature is expected to double the microbial activity, and thus the remediation rate. The removal rate of tetracholorethylene (PCE - a common subsurface contaminant) by passive soil vapor extraction is expected to nearly double in low-permeable sediments when the subsurface is heated 10 degree C from ambient temperatures due to an increased vapor pressure in the PCE. When the sediment is heated using renewable energy sources, these thermally enhanced remediation technologies can be environmentally benign alternatives to conventional remediation techniques that rely on large external energy inputs. The thermally enhanced passive technologies may be particularly useful for remediating unsaturated, low-permeable lenses that are troublesome to most conventional remediation technologies such as conventional soil vapor extraction and co-solvent flushes. The main objective of this work was to quantify subsurface sediment heating using a solar powered heat injection well. To do this, a pilot sediment heating system was installed in Vermont and high resolution meteorological and sediment temperature data were collected using a stand-alone data acquisition system. Unsaturated, silty sediments were heated in-situ by converting the direct and indirect solar energy available at the surface to heat energy in the subsurface using stand-alone renewable energy sources and a resistive element heat injection well. The heat injection well was powered by a 600-W passively tracking photovoltaic (PV) array and a small 1.2-m swept area wind turbine. It is envisioned that the heat injection well would be placed directly into an area of high subsurface

  17. Gas chromatography using resistive heating technology.

    Science.gov (United States)

    Wang, Anzi; Tolley, H Dennis; Lee, Milton L

    2012-10-26

    Air bath ovens are standard in conventional gas chromatography (GC) instruments because of their simplicity and reliability for column temperature control. However, their low heating rates, high power consumption and bulky size are in conflict with the increasing demands for fast separation and portable instrumentation. The deficiencies of air bath ovens can be eliminated using resistive heating technology, as the column is conductively heated by compact resistive heaters with low thermal mass. Resistive heating methods were employed in the early years of GC history, and they are emerging again as instrumentation is becoming more compact and sophisticated. Numerous designs have been tested and some have been successfully commercialized. Development of portable GC systems, including lab-on-a-chip devices, greatly benefits from the use of small, low-power resistive heating hardware. High speed GC separations using conventional instruments also can be best achieved with resistive heating modules. Despite some of its own inherent disadvantages, including efficiency loss, complex manufacturing and inconvenient column maintenance, resistive heating is expected to rapidly become a mature technology and even replace oven heating in the not-to-distant future.

  18. The Lost City hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes

    Science.gov (United States)

    Seyfried, W. E.; Pester, Nicholas J.; Tutolo, Benjamin M.; Ding, Kang

    2015-08-01

    dissolution and precipitation clarifies the feedback between permeability, heat loss, and changes in the dissolved Si of the vent fluids. Assuming both the Beehive and M6 vent fluids were sourced at similar subseafloor conditions (tremolite buffered at 200 °C), model results indicate loss of approximately 30% Si upon cooling to ∼150 °C during upflow. However, Si concentrations remained largely conservative with continued cooling to lower temperatures owing to unfavorable reaction kinetics. While consistent with the Beehive endmember composition, these results fail to explain the relative Si depletion in the lower temperature M6 fluids. Thus, it may be that more robust kinetic models for silicates are needed to accurately account for the mechanism and rate of silica removal in the unusually high pH of the Lost City vent fluids.

  19. SITE TECHNOLOGY CAPSULE: KAI RADIO FREQUENCY HEATING TECHNOLOGY

    Science.gov (United States)

    KAI developed a patented, in situ RFH technology to enhance the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and soil permeability that may increase with dry...

  20. INNOVATIVE TECHNOLOGY EVALUATION REPORT: RADIO FREQUENCY HEATING, KAI TECHNOLOGIES, INC.

    Science.gov (United States)

    A demonstration of KAI Technologies in-situ radio frequency heating system for soil treatment was conducted from January 1994 to July 1994 at Kelly Air Force Base in San Antonio, Texas. This demonstration was conducted as a joint effort between the USEPA and the USAF. The technol...

  1. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  2. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  3. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  4. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  5. Survey of available technology for the improvement of gas-fired residential heating equipment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, A.A.; Talbert, S.G.; Vergara, R.D.; Levy, A.; DeWerth, D.W.; Norris, T.R.

    1979-08-01

    Available technology was surveyed as to possible application to more efficient gas-fired comfort heating and water heating in residences. Objectives were (1) to evaluate energy saving modifications and design approaches, including both retrofit and new systems, and (2) to identify RD and D required to bring to the marketplace those concepts that have a reasonable payback period. Over 60 concepts, including both retrofit devices and new designs, were identified on the basis of the study of the technical literature and discussions with various segments of industry. After evaluating each concept on the basis of expected initial cost, energy consumption, and operating cost, those concepts with a reasonably short payback period were considered from the point of view of RD and D needs. A principal recommendation covering several specific concepts was the study of condensing heat-exchanger systems. RD and D was recommended on both mechanical and aerodynamically valved pulse combustors, radiant burners, catalytic systems, heat pipe systems, self-powered heating units, and gas-fired heat pumps. Relative to retrofit concepts, recommendations covered the effects of derating on furnace corrosion and the methodology for predicting savings in individual homes. Need was also indicated for a methodology to optimize sizing of heating units and for data on energy demand requirements for integrated appliances. General recommendations related to systems control analysis, minimum venting requirements, and combustion air requirements in tight homes.

  6. 10 CFR Appendix O to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Vented Home Heating Equipment

    Science.gov (United States)

    2010-01-01

    ... determine the concentration by volume of carbon dioxide present in the dry gas with instrumentation which... vent terminal which is not equipped with a draft control device, designed to open the venting system when the appliance is in operation and to close the venting system when the appliance is in a...

  7. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  8. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  9. Current situation and development of solar heating technology in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Ruicheng

    2009-01-01

    It is introduced the current situation and development for solar heating technology including passive solar heat-ing and solar heating combisystems in China in this paper. Combined with the engineering application projects, the au-thor gave the technical and economic analysis of the passive solar and solar heating combisystems in China and summa-rized the developing obstacle and the spreading tactics for raising marketing of the solar heating in China.

  10. Implementation of the new hydrographic technologies for bottom topography and seafloor gas venting investigations in the russian northern seas

    Science.gov (United States)

    Koloskov, Evgenii

    2017-04-01

    The report examines modern hydrographic technologies for the Russian northern seas investigations. The new hydro acoustics methods for seabed study are discussed. It presents stages of seafloor relief studies in the Russian Arctic seas since the 1950s and the obtained results. At the beginning of the 21st century an entirely new phase of bathymetric investigations began with the use of Multibeam Echosounders (MB) and modern hydrographic software. The software tools to process and analyze the bathymetry, and more recently to characterize the seabed from the backscatter, are available in a majority of modern sonar systems. Besides the bathymetry and sonar data, modern MB can produce water column images. These hydrographic technologies provide the possibility to achieve a high level of the seafloor topography. The latest generation of hydrographic MB now has the ability to provide the water column images along with the seafloor. The gas seeps from multibeam water column data can be distantly discerned against the seabed relief background with the aid of the Fledermause software package ("FMMidwater" module). The ability to integrate the water column data with the seafoor and other information,in an integrated geospatial and temporal environment, enhanced the analysis and interpretation of the data which is essential for marine geological research and investigations. The modern hydrographic equipment presents the ability to integrate the MB digital relief models (DTM) and sub bottom profiler data. This provide the possibility to obtain not only the detailed seabed topography, but also the additional information concerning the structure of under bottom soil layers and presence of the endogenous objects in near bottom environment. The importance of the hydrographic software tools needed to process and analyze the bathymetry and water column data are emphasized. The practical importance of the water column and bottom profiler data processing for the submarine gas

  11. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    Science.gov (United States)

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  12. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world’s total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world’s final energy use – more than the combined global demand for electricity and transport – solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  13. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world's total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world's final energy use -- more than the combined global demand for electricity and transport -- solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  14. Fundamentals of electroheat electrical technologies for process heating

    CERN Document Server

    Lupi, Sergio

    2017-01-01

    This book provides a comprehensive overview of the main electrical technologies for process heating, which tend to be treated separately in specialized books. Individual chapters focus on heat transfer, electromagnetic fields in electro-technologies, arc furnaces, resistance furnaces, direct resistance heating, induction heating, and high-frequency and microwave heating. The authors highlight those topics of greatest relevance to a wide-ranging teaching program, and at the same time offer a detailed review of the main applications of the various technologies. The content represents a synthesis of the extensive knowledge and experience that the authors have accumulated while researching and teaching at the University of Padua’s Engineering Faculty. This text on industrial electroheating technologies is a valuable resource not only for students of industrial, electrical, chemical, and material science engineering, but also for engineers, technicians and others involved in the application of electroheating and...

  15. Brayton-cycle heat exchanger technology program

    Science.gov (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  16. Analysis of the Technological Parameters of the Heat Exchanger in the Heating Pipe

    Directory of Open Access Journals (Sweden)

    Knyazev Vladimir

    2017-01-01

    Full Text Available The main purpose of this article is to analyze the selecting of technological parameters for the heat exchanger to improve the heat transfer and reduce the noise during operation in the heating pipe, which is used in the different systems of the planes and helicopters. In result of this study, the best technical parameters are found, considering different variations of deformation cutting heat exchanger pipes.

  17. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    Science.gov (United States)

    Mittelstaedt, Eric; EscartíN, Javier; Gracias, Nuno; Olive, Jean-Arthur; Barreyre, Thibaut; Davaille, Anne; Cannat, Mathilde; Garcia, Rafael

    2012-04-01

    The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck'09 cruise (Fall, 2009) and the Momarsat'10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the "Pourquoi Pas"? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by cross-correlation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s-1 and 11.1 cm s-1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s-1 and 119 cm s-1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ± 2.22 MW, discrete venting of

  18. District heating and cooling technology selection and characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Metz, P.D.; Catan, M.; Piraino, M.; Timmerman, R.W.; Gleason, J.

    1986-03-01

    This report describes the district heating and cooling (DHC) technology selection and characterization tasks performed under Part I of the project ''District Heating and Cooling Market Potential and Penetration Study'' for the USDOE. The purpose of this project is to determine the applicability of various DHC technologies to different community types and regions of the country. The results will be used by DOE to guide R and D program planning.

  19. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...

  20. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their help and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.

  1. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due...... for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. © 2014 Elsevier Ltd. All Rights reserved...

  2. Fort Bragg Embraces Groundbreaking Heat Pump Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    The U.S. Army’s Fort Bragg partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  3. PROCEEDINGS OF THE 1998 OIL HEAT TECHNOLOGY CONFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference will be held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting will be held in cooperation with the Petroleum Marketers Association of America (PMAA). The 1998 Oil Heat Technology Conference, will be the twelfth since 1984, is an important technology transfer activity and is supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The reason for the conference is to provide a forum for the exchange of information and perspectives among international researchers, engineers, manufacturers and marketers of oil-fired space-conditioning equipment. They will provide a channel by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the Conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ECR TECHNOLOGIES, INC., EARTHLINKED GROUND-SOURCE HEAT PUMP WATER HEATING SYSTEM

    Science.gov (United States)

    EPA has created the Environmental Technology Verification program to provide high quality, peer reviewed data on technology performance. This data is expected to accelerate the acceptance and use of improved environmental protection technologies. The Greenhouse Gas Technology C...

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ECR TECHNOLOGIES, INC., EARTHLINKED GROUND-SOURCE HEAT PUMP WATER HEATING SYSTEM

    Science.gov (United States)

    EPA has created the Environmental Technology Verification program to provide high quality, peer reviewed data on technology performance. This data is expected to accelerate the acceptance and use of improved environmental protection technologies. The Greenhouse Gas Technology C...

  6. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due...... heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine...

  7. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu

    2013-01-01

    technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three...... different technologies are presented, considering the Draugen platform in the North Sea as a base case. The Turboden 65-HRS unit is considered as representative of the organic Rankine cycle technology. Air bottoming cycles are analyzed and optimal design pressure ratios are selected. We also study a one...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...

  8. Proceedings of the 1993 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1993-09-01

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu;

    2013-01-01

    In off-shore oil and gas platforms the selection of the gas turbine to support the electrical and mechanical demand on site is often a compromise between reliability, efficiency, compactness, low weight and fuel flexibility. Therefore, recovering the waste heat in off-shore platforms presents both...... technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...

  10. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  11. Proceedings of the 1997 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1997-09-01

    This report documents the Proceedings of the 1997 Oil Heat Technology Conference and Workshop, held on April 3--4 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy--Office of Building Technologies, State and Community programs (DOE-BTS), in cooperation with the Petroleum Marketers Association of America (PMAA). This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely: and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1997 Oil Technology Conference comprised: (a) five plenary sessions devoted to presentations and summations by public and private sector industry representatives from the US, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. This book contains 14 technical papers and four summaries from the workshops. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  13. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  14. Symposium on advances in refrigeration and heat pump technology. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Elmegaard, B.; Brix, W.; Ryhl Kaern, M. (and others)

    2012-06-15

    Technical University of Denmark - Department of Mechanical Engineering, Danish Technological Institute, and the Danish Energy Association in collaboration hosted a two-day symposium covering advances in refrigeration and heat pump technology on the 15th and 16th of May 2012. These proceedings are the formal documentation of the lectures that were given over the two days on several topics of significant relevance for the future development of technology for cooling and heating application. The focus was on both the industrial development of solutions for domestic, commercial and industrial applications in the near future as well as the scientific and engineering research in the more distant years to come. Applications of compression technology, phase changing materials and magnetic refrigeration were presented as well as novel results for selection of working fluids and design of cycles, development of components and cycles. (LN)

  15. Proceedings of the 1995 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1995-04-01

    This report documents the Proceedings of the 1995 Oil Heat Technology Conference and Workshop, held on March 22-23 at Brookhaven National Laboratory (BNL), and sponsored by the U.S. Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the ninth held since 1984, is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: (1) Identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1995 Oil Technology Conference comprised: (a) three plenary sessions devoted to presentations and summations by public and private sector industry representatives from the United States, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. Individual reports presented at the conference have been processed separately for database entry.

  16. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  17. Status report on survey of alternative heat pumping technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.

    1998-07-01

    The Department of Energy is studying alternative heat pumping technologies to identify possible cost effective alternatives to electric driven vapor compression heat pumps, air conditioners, and chillers that could help reduce CO{sub 2} emissions. Over thirty different technologies are being considered including: engine driven systems, fuel cell powered systems, and alternative cycles. Results presented include theoretical efficiencies for all systems as well as measured performance of some commercial, prototype, or experimental systems. Theoretical efficiencies show that the alternative electric-driven technologies would have HSPFs between 4 and 8 Btu/Wh (1.2 to 2.3 W/W) and SEERs between 3 and 9.5 Btu/Wh (0.9 and 2.8 W/W). Gas-fired heat pump technologies have theoretical seasonal heating gCOPs from 1.1 to 1.7 and cooling gCOPs from 0.95 to 1.6 (a SEER 12 Btu/Wh electric air conditioner has a primary energy efficiency of approximately 1.4 W/W).

  18. A new technology for solving diffusion and heat equations

    Directory of Open Access Journals (Sweden)

    Yang Xiao-Jun

    2017-01-01

    Full Text Available In this paper, a new technology combing the variational iterative method and an integral transform similar to Sumudu transform is proposed for the first time for solutions of diffusion and heat equations. The method is accurate and efficient in development of approximate solutions for the partial differential equations.

  19. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    Science.gov (United States)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  20. Profile: Department of Refrigeration and Heat Pump Technology

    NARCIS (Netherlands)

    Sluis, S.M. van der

    2000-01-01

    The activities in the fields of refrigeration and heatpumps are concentrated within TNO Environment, Energy and Process Innovation, Apeldoorn, and specifically within the Department of Refrigeration and Heat Pump Technology. The aim of this department is to develop, implement and test: — systems for

  1. Profile: Department of Refrigeration and Heat Pump Technology

    NARCIS (Netherlands)

    Sluis, S.M. van der

    2000-01-01

    The activities in the fields of refrigeration and heatpumps are concentrated within TNO Environment, Energy and Process Innovation, Apeldoorn, and specifically within the Department of Refrigeration and Heat Pump Technology. The aim of this department is to develop, implement and test: — systems for

  2. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  3. Variable conductance heat pipe technology. [research project resulting in heat pipe experiment on OAO-3 satellite

    Science.gov (United States)

    Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.

    1974-01-01

    A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.

  4. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1992-07-01

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  5. Preoperational test report, vent building ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  6. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  7. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    Science.gov (United States)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  8. Heat stress monitoring system. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  9. Innovative technology summary report: six phase soil heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Six Phase Soil Heating (SPSH) was developed to remediate soils contaminated with volatile and semi-volatile organic compounds. SPSH is designed to enhance the removal of contaminants from the subsurface during soil vapor extraction. The innovation combines an emerging technology, that of six-phase electrical heating, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system for difficult soil and/or contaminant applications. SPSH is especially suited to sites where contaminants are tightly bound to clays and are thus difficult to remove using soil vapor extraction alone. Target zones to be treated would most likely be above the water table, but a thicker treatment zone could be addressed by hydraulically lowering the water table with pumping wells.

  10. JOULE HEATING INDUCED INTERCONNECT FAILURE IN 3D IC TECHNOLOGY

    OpenAIRE

    Li, Menglu

    2016-01-01

    With the slow-down of Moore’s law of scaling transistors, the industry is looking for 3D IC technology to extend the Moore’s law by stacking chips vertically. In the 3D IC technology, Joule heating is the most serious reliability concern because of increased power density. Moreover, there are new interconnects in the package to support vertical stacking, including the Through Silicon Via (TSV) inside silicon die, μ-bumps between different dies, and redistribution layer (RDL) to fan out the cu...

  11. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Florent Chaffotte; Linda L(e)fevre; Didier Domergue; Aymeric Goldsteinas; Xavier Doussot; Qingfei Zhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  12. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    FiorentChaffotte; LindaLefevre; DidierDomergue; AymericGoidsteinas; XavierDoussot; QingfeiZhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. ThE configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  13. UTILIZATION OF INDUCTION HEATING TECHNOLOGY IN GALVANIZING LINES

    OpenAIRE

    2015-01-01

    Continuous Hot-Dip Galvanizing lines are widely used for the production of coated steel sheets. Quality improvement measures are of great importance for this type of line. A significant proportion of production and quality losses when operating these types of lines occurs when production is transitioning from one strip gauge/thermal cycle to another. Utilizing induction heating technology, in combination with a sophisticated control system, can dramically decrease yield losses during transiti...

  14. A review of technology of personal heating garments.

    OpenAIRE

    Wang, Faming; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2010-01-01

    Modern technology makes garments smart, which can help a wearer to manage in specific situations by improving the functionality of the garments. The personal heating garment (PHG) widens the operating temperature range of the garment and improves its protection against the cold. This paper describes several kinds of PHGs worldwide; their advantages and disadvantages are also addressed. Some challenges and suggestions are finally addressed with regard to the development of PHGs.

  15. Computer simulation and optimal designing of energy-saving technologies of the induction heating of metals

    Science.gov (United States)

    Demidovich, V. B.

    2012-12-01

    Advanced energy-saving technologies of induction heating of metals are discussed. The importance of the joint simulation of electromagnetic and temperature fields on induction heating is demonstrated. The package of specialized programs for simulating not only induction heating devices, but also technologies that employ industrial heating has been developed. An intimate connection between optimal design and control of induction heaters is shown.

  16. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    Science.gov (United States)

    Ravex, Alain; Flachbart, Robin; Holt, Barney

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6

  17. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2011-01-01

    Full Text Available The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  18. Environmentally friendly heat from modern heating technology. Optimal heat distribution using jet pumps; Umweltschonende Waerme durch moderne Heiztechnik. Optimale Waermeverteilung mit Strahlpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kilpper, Renate; Baelz, Uwe [W. Baelz und Sohn GmbH und Co., Heilbronn (Germany)

    2011-07-15

    The wood chip fired district heating plant in Olang in South Tyrol produces environmentally friendly heat from domestic wood. Its heat is delivered directly to the consumer using electricity-saving, durable jet pumps in combination with reliable, low-maintenance heating equipment as well as modern control technology. Consumers can regulate the jet pumps individually and use the heat optimally according to their demand.

  19. Low Temperature Heat Source Utilization Current and Advanced Technology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  20. Perspectives of heating technology in view of changed energy saving consciousness and building technology now and in future

    Energy Technology Data Exchange (ETDEWEB)

    Moellmann, E.

    1989-04-01

    The development and status of the central heating technology are described. Today's low-temperature heating systems have reduced the fuel consumption by 15 to 30%. Trends with regard to dimensioning and design of systems, microelectronic systems in control technology, exhaust removal systems, burner technologies are briefly described.

  1. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Ilona [BCS, Inc., Laurel, MD (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States); Davidson, Amber [BCS, Inc., Laurel, MD (United States)

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  2. Measure Guideline: Passive Vents

    Energy Technology Data Exchange (ETDEWEB)

    Berger, David [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Neri, Robin [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated source of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.

  3. Vent Relief Valve Test

    Science.gov (United States)

    2008-01-01

    Shown is the disassembly, examination, refurbishment and testing of the LH2 ( liquid hydrogen) and LOX (liquid oxygen) vent and relief valves for the S-IVB-211 engine stage in support of the Constellation/Ares project. This image is extracted from high definition video and is the highest resolution available.

  4. Hybrid Cooling Loop Technology for Robust High Heat Flux Cooling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. proposes to develop a hybrid cooling loop technology for space thermal control. The proposed technology combines the high heat...

  5. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    Science.gov (United States)

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.

  6. Advanced technology options for industrial heating equipment research

    Energy Technology Data Exchange (ETDEWEB)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  7. District heating as the infrastructure for competition among fuels and technologies

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Mortensen, Bent Ole Gram

    2016-01-01

    District heating networks offer the possibility of competition between a wide range of fuels for combustion as well as technologies for comfort heat and cooling in buildings. For decades, cogeneration of electricity and heat for industrial processes or district heating has been a key technology...... for increased energy efficiency. Additional technologies suitable for small-scale networks are heat pumps, solar panels and local biomass in the form of straw or biogas. For large-scale urban networks, incineration of urban waste and geothermal heat are key technologies. With heat storages district heating...... infrastructure can contribute significantly to balancing the intermittency of wind power. This paper is an update of the authors' article published in Energy Policy in 2003 focusing on the European directives focusing on competition in the electricity and gas network industries and promotion of renewables...

  8. UTILIZATION OF INDUCTION HEATING TECHNOLOGY IN GALVANIZING LINES

    Directory of Open Access Journals (Sweden)

    Victor Demidovich

    2015-09-01

    Full Text Available Continuous Hot-Dip Galvanizing lines are widely used for the production of coated steel sheets. Quality improvement measures are of great importance for this type of line. A significant proportion of production and quality losses when operating these types of lines occurs when production is transitioning from one strip gauge/thermal cycle to another. Utilizing induction heating technology, in combination with a sophisticated control system, can dramically decrease yield losses during transitions. Dynamic Transition and Production Planning Models have recently been developed for the simulation and control of the continuous hot-dip galvanizing line. The results of this work have been implemented in some galvanizing lines with production rate up to 350,000-ton annual capacity.

  9. Solar augmentation for process heat with central receiver technology

    Science.gov (United States)

    Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul

    2016-05-01

    Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.

  10. Study of heat transfer characteristics in PCFG fabrication technology using heat method

    Institute of Scientific and Technical Information of China (English)

    Yuefeng Qi; Hanping Qiao; Weihong Bi

    2011-01-01

    @@ The fiber gratings fabrication technology with the heating method in a photonic crystal fiber (PCF) based on structural change is examined. The principle of photonic crystal fiber gratings (PCFGs) is analyzed in theory. The heat transfer theory and finite element method are used to examine the thermal field distribution in the fiber and the influence of the air hole structure in the cladding, and the parameters of the laser beam in the process of grating fabrication are discussed. The results show that gratings can be formed by the periodic collapse of air holes in the cladding of PCFs. Under double-point heating condition, the energy is uniformly distributed in the radial direction and is approximate to Gaussian distribution in the axial direction. With the same size of the luminous spot, as the layers and radius of the air holes increase, the laser power needed to make the air holes collapse decreases. With the same laser power, as the luminous spot radius increases, the needed heating time increases. Moreover, the relationship between the laser power needed and the air filling rate is obtained as the number of layers of the air holes changes from 1 to 7. This kind of PCFG can overcome the long-term thermal instability of conventional gratings in substance and thus has great potential applications in the related field of optical fiber sensors.%The fiber gratings fabrication technology with the heating method in a photonic crystal fiber (PCF) based on structural change is examined. The principle of photonic crystal fiber gratings (PCFGs) is analyzed in theory. The heat transfer theory and finite element method are used to examine the thermal field distribution in the fiber and the influence of the air hole structure in the cladding, and the parameters of the laser beam in the process of grating fabrication are discussed. The results show that gratings can be formed by the periodic collapse of air holes in the cladding of PCFs. Under double-point heating

  11. Description of emission control using fluidized-bed, heat-exchange technology

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Grogan, P.J.

    1980-06-01

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  12. Сombined Thermal Insulating Module of Mounted Vented Facades

    Directory of Open Access Journals (Sweden)

    Ryabukhina Svetlana

    2016-01-01

    Full Text Available In order to define an optimum type of mounted vented facades among the existing ones, comparative analysis of two façade modules has been conducted. The first module type is a widespread standard module of hinged vented facade and the second type is less applicable combined thermal insulating module. Those two technologies were compared thermal engineering and energy efficiency parameters. It was defined that the application of a thermal insulating module with combined insulation system improves thermal engineering parameters of the building as well as leads to a substantial savings. This article exposes innovative materials and structure of vented facades which can be applied in modern construction.

  13. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  14. The technology of generating infrared image based on electric heating film technology

    Science.gov (United States)

    Lu, Yuan; Feng, Yun-song; Qiao, Ya

    2011-08-01

    The technology of generating infrared image based on electric heating film technology by its resistance per unit area was studied. A Lifgt-off-road vehicle was used as an object to be simulated. An infrared thermograph was used to photography the light-off-road vehicle from a specific corner. As a result several infrared images of the light-off-road vehicle were obtained and the thermal distribution of the vehicle was also obtained at the same time. A matlab program was used to process the image. The image was divided into several areas according to its grey level. Each area has its own temperature range. The average temperature of each area was calculated. A thermal balance equation was established according to the average temperature of each area and the environment temperature. By solving these equations, the radiant existances of these areas were gotten. The heating power per unit area of these areas was calculated. The electric heating film was preparation accordingly. The power was applied on the film and the infrared thermograph was used to observe it. The infrared image of the film has a high similarity with the true light-off-road vehicle's.

  15. The Study of New Technology of Tempered Glass--Using Microwave Heating Method

    Science.gov (United States)

    Sun, Wan-Xiao; Wang, Li-Zhong; Zhong, Pei-Ze; Liu, Quan-Wei

    2016-05-01

    Effective heating method is one of the critical technologies to influence the quality of tempered glass. The three dimensional thermal-structural tempering of glass has been simulated by using ANSYS software. The temperature and stress distribution of tempered glass using microwave heating method has been compared with distribution using traditional infrared radiation heating method. Considering the efficiency and effect of heating, and the routine of increasing heat transfer coefficient to enhance strength of tempered glass in practical, a more effective heating method -microwave heating has been introduced.

  16. Analysis of containment venting following a core damage at a BWR Mark I using THALES-2

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Surip [Nuclear Safety Technology Development Center, National Nuclear Energy Agency (BATAN), Tangerang (Indonesia); Ishikawa, Jun; Muramatsu, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sakamoto, Toru [Toshiba Advanced System Co., Kawasaki, Kanagawa (Japan)

    2000-11-01

    Analysis of containment venting following a core damage at a boiling water reactor (BWR) Mark I using THALES-2 was performed. In this analysis, the effect of various parameters, namely, the areas of the vent path, containment venting pressure, and accident sequences on the containment thermodynamic response, and radionuclide transport and release in the containment venting at a BWR was examined. The code THALES-2B developed by the Japan Atomic Energy Research Institute (JAERI) was used in this analysis. The model plant in this analysis was the Browns Ferry plant. From this analysis was found that the 4-inch pipe of containment venting flow path is sufficient to maintain the containment pressure in the specified range if the containment was pressurized by the decay heat power. The entrainment by the pool swelling as well as by the flashing was not occurred during the containment venting. The source terms are not sensitive to the variation of containment venting flow path area. The containment venting pressure operation setting point has important rule in the containment venting. In the containment venting, the source terms are not sensitive to the accident sequence, except for Sr source term. In order to get better understanding on the containment venting strategy, the following analyses are necessary. Analyses of accident sequence which has a high power such as anticipated transient without scram are necessary, as well as analyses of accident sequence which pressurize the containment before the core damage. (author)

  17. 24 CFR 3280.611 - Vents and venting.

    Science.gov (United States)

    2010-04-01

    ... Case Iron Soil Pipe and Fittings, or, Silicone Rubber, Low and High Temperature and Tear Resistant... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Vents and venting. 3280.611 Section 3280.611 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  18. Heat and power sources based on nuclear shipbuilding technologies

    Energy Technology Data Exchange (ETDEWEB)

    Veshnyakov, K.; Fadeev, Y.; Panov, Y.; Polunichev, V. [JSC Afrikantov OKBM, Nizhny Novgorod (Russian Federation)

    2009-07-01

    The report gives information on the application of power units with small-power nuclear reactors as advanced energy sources to provide world consumers with electric power, domestic and industrial heat and fresh water. The report describes the technical concept of ABV unified reactor plant (RP) for floating and ground small power plants (SPP) developed in JSC 'Afrikantov OKBM'. The report contains the technical specification of the ABV RP utilizing an integral water-cooled reactor with thermal power of 38 to 45 MW, natural coolant circulation and improved inherent safety, as well as main characteristics of the reactor and core fuel ensuring acceptable mobility of the RP and NPP as a whole. The indicated refueling interval is 10-12 years. The report gives a detailed description of the concept for RP safety provision and compliance with international radiation and nuclear safety requirements, as well as the description of passive and other safety systems securing stability to any low-probability internal events, personnel errors and external impacts. The report provides data on application and technological properties of the floating and ground SPPs with a unified ABV RP; absence of spent fuel and radioactive waste at floating nuclear power plants (FNPP); FNPP transportation to consumers in a ready-to-operate state; arrangement, operation and disposal requirements.

  19. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  20. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.

    1988-01-01

    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  1. Vent sizing: analysis of the blowdown of a hybrid non tempered system.

    Science.gov (United States)

    Véchot, Luc; Minko, Wilfried; Bigot, Jean-Pierre; Kazmierczak, Marc; Vicot, Patricia

    2011-07-15

    The runaway and blowdown of a non tempered hybrid chemical system (30% cumene hydroperoxide) exposed to an external heat input was investigated using a 0.1l scale tool. The maximum temperature and the maximum temperature rise rate were showed to be sensitive to the vent size. An Antoine type correlation between the maximum temperatures and pressures was observed. These resulted from the presence of vapour, mainly generated by the reaction products. Increasing the initial filling ratio resulted in an earlier vent opening but did not have a significant influence on the blow-down. Three types of mass venting behaviour were observed, when changing the vent area to volume ratio (A/V): • for large A/V, two-phase venting occurred from the vent opening until the end of the second pressure peak; • for medium A/V, two-phase venting occurred before and after the turnaround. The data seem to indicate that gas only venting occurred at turn-around; • for low A/V, two-phase venting was observed only after the second pressure peak. Two-phase venting after the second pressure peak probably results from the boiling of the hot reaction products at low pressure.

  2. Advances in Integrated Heat Pipe Technology for Printed Circuit Boards

    NARCIS (Netherlands)

    Wits, Wessel W.; Riele, te Gert Jan

    2010-01-01

    Designing thermal control systems for electronic products has become very challenging due to the continuous miniaturization and increasing performance demands. Two-phase cooling solutions, such as heat pipes or vapor chambers, are increasingly used as they offer higher thermal coefficients for heat

  3. Thermal storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  4. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  5. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thekdi, Arvind [E3M, Inc. North Potomac, MD (United States); Rogers, Benjamin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kafka, Orion L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  6. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Donald L.

    2001-03-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  7. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  8. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Science.gov (United States)

    2010-07-01

    ... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or...-77 as indicated in paragraph (d)(2)(ii) of this section. Hj=Net heat of combustion of compound...

  9. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  10. Vente d'artisanat

    CERN Multimedia

    Staff Associaiton

    2014-01-01

      Éducation et Libération Vente d’artisanat du Tiers Monde Mardi 22 et mercredi 23 avril 2014 CERN, Bâtiment principal Togo, École Arc en ciel, construction des salles de classe. Appel pour le financement de ce chantier afin de libérer l’école de la charge des loyers payés pendant des années. Après nos réalisations en Amérique latine et au Bénin, nous mobilisons nos efforts pour l’école Arc en ciel de Kpémé, au Togo, sur les bords de l’Océan, à mi-chemin entre Lomé et la frontière entre le Bénin et le Togo. Il s’agit d’une école primaire privée, laïque qui a très bonne réputation en termes de résultats, notamment pour les écoliers en fin de scolar...

  11. Identification of existing waste heat recovery and process improvement technologies

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  12. Diffuse versus discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    Science.gov (United States)

    Mittelstaedt, E. L.; Escartin, J.; Gracias, N.; Olive, J. L.; Barreyre, T.; Davaille, A. B.; Cannat, M.

    2010-12-01

    Two styles of fluid flow at the seafloor are widely recognized: (1) localized outflows of high temperature (>300°C) fluids, often black or grey color in color (“black smokers”) and (2) diffuse, lower temperature (Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperature and video data were acquired during the recent Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September, 2009) by Victor aboard “Pourquoi Pas?” (IFREMER, France). Temperature measurements were made of fluid exiting discrete vents, of diffuse effluents immediately above the seafloor, and of vertical temperature gradients within discrete hydrothermal plumes. Video data allow us to calculate the fluid velocity field associated with these outflows: for diffuse fluids, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time; for individual hydrothermal plumes, Particle Image Velocimetry tracks eddies by cross-correlation of pixels intensities between subsequent images. Diffuse fluids exhibit temperatures of 8-60°C and fluid velocities of ~1-10 cm s-1. Discrete outflows at 204-300°C have velocities of ~1-2 m s-1. Combined fluid flow velocities, temperature measurements, and full image mosaics of the actively venting areas are used to estimate heat flux of both individual discrete vents and diffuse outflow. The total integrated heat flux and the partitioning between diffuse and discrete venting at Tour Eiffel, and its implications for the nature of hydrothermal activity across the Lucky Strike site are discussed along with the implications for crustal permeability, associated ecosystems, and mid-ocean ridge processes.

  13. Factors influencing the uptake of heat pump technology by the UK domestic sector

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H. [Faculty of Engineering, Kingston University, Roehampton Vale, London SW15 3DW (United Kingdom); Muetze, A. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Eames, P.C. [CREST, Holywell Park, Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3T (United Kingdom)

    2010-04-15

    Enhancement of energy efficiency and introduction of newer and more efficient space and water heating technologies in the UK domestic sector are essential if the UK is to achieve its ambitious target for 2050 of reducing greenhouse gas (GHG) emissions to less than 80% of 1990 levels. The UK domestic sector currently relies heavily on conventional boilers for space and water heating even though electric or gas engine driven vapour compression heat pumps can provide heating and cooling with more than double the efficiency of conventional boilers. UK government has recently introduced laws and policies that are designed to accelerate the uptake of renewable heating technologies by domestic consumers rather than relying solely on market forces. To date despite their excellent performance heat pumps are not the primary choice of the general UK domestic consumer. Factors that may influence this behaviour have been analysed and are discussed here. (author)

  14. Break-through technologies. Power and/or heat generation; Genombrottstekniker. Kraft- vaermeproduktion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report gives a compilation of technologies for the future in producing electric power and heat. The focus is on the areas Cogeneration, Fuel cells, Wind power, Solar cells, Artificial photosynthesis, and Hydrogen. Refs, 9 figs, 5 tabs

  15. Pressure Venting Tests of Phenolic Impregnated Carbon Ablator (PICA)

    Science.gov (United States)

    Blosser, Max L.; Knutson, Jeffrey R.

    2015-01-01

    A series of tests was devised to investigate the pressure venting behavior of one of the candidate ablators for the Orion capsule heat shield. Three different specimens of phenolic impregnated carbon ablator (PICA) were instrumented with internal pressure taps and subjected to rapid pressure changes from near vacuum to one atmosphere and simulated Orion ascent pressure histories. The specimens vented rapidly to ambient pressure and sustained no detectable damage during testing. Peak pressure differences through the thickness of a 3-inch-thick specimen were less than 1 psi during a simulated ascent pressure history.

  16. Heat pumps and technological development: Civil use in 80's (1st part)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici)

    1990-09-01

    This article analyses the technological development of heat pumps for civil purposes. These devices belong to the big family of heat pumps: electrical compression devices, thermally driven machines, adsorption machines, internal and external combustion engines. Electrical heat pumps saw an interesting development in their components, particularly in the compressor (with the adoption of screw and scroll compressors) and in the thermal exchange batteries, without forgetting the progress in electronics, from the setting to the expansion valve and the defrosting system.

  17. Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers

    Science.gov (United States)

    2007-11-02

    in converting electric energy to thermal energy for the decon applications. Other conductive materials, such as polythiophenes , polypyrroles, carbon...Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers...Joule)-heating with conducting polymers. The basic concept is that electrically conducting polymers, such as polyaniline, can be used as coatings or

  18. Multi-energy systems applied to the building sector (Heat Pump Technology)

    OpenAIRE

    Lorenzo Izquierdo, Marta

    2008-01-01

    The project deals with the study of multi-energy systems applied to the building sector. Nowadays, this thematic is very important because the use of systems integrating different energy sources and energy technologies is a key element in the design of low emission buildings. In particular, the project focuses on heat pump technologies. In the first part of the project an over view of the status of the heat pump development is investigated. Then, a numerical model to simulat...

  19. District heating and cooling : review of technology and potential enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Rezaie, B.; Rosen, M.A. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    This study reviewed the economic and environmental aspects of district energy systems in order to facilitate research into expanded thermal networks. The work is part of a broader research program by the authors regarding the use of integrated thermal networks, based on expanded district heating and cooling systems, to meet the thermal requirements for various buildings and applications with greater efficiency and less environmental impact than traditional systems. This paper presented various definitions, classifications and applications of district cooling and heating and described the elements of a district energy system. The study investigated the integration of combined heat and power (CHP) with district energy, permitting the cogeneration of electricity and heat. Environmental benefits are among the main advantages of district heating and cooling systems. This paper described the economics of a thermal network system, as a major factor in the justification for any project from industrial, governmental and societal perspectives. Related regulations at government levels were also suggested based on various investigations. The efficiency of district energy was discussed and exergy analysis was shown to be an effective method for calculating the efficiency of a thermal network. 38 refs., 2 tabs., 2 figs.

  20. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  1. Multifunctional absorption technology in district heating systems; Absorptionsteknik med multifunktion i fjaerrvaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Viktoria; Setterwall, Fredrik

    2010-05-15

    Within the framework of the IEA's implementing agreement on heat pumping technologies, a state-of-the-art assessment of absorption technology was presented the year 2000. There, barriers for increased implementation of absorption technology were pointed out as being the high investment cost, as well as lack of knowledge with engineers and other actors. The project presented herein has analyzed the situation ten years later, with a wide scope of using the absorption technology - from ice to steam production in a district energy system. The overall aim of the presented project is to provide new knowledge on the technical and economical possibilities of integrating multiple function absorption technology in district energy systems. Also, new knowledge on important design parameters for practical and cost-effective design is given, for example the influence of temperatures (heat source as well as heat sink) and desired COP. A combination of renewed state-of-the-art assessment and new calculations has been used to reach this goal. The state-of-the-art assessment show that the increased focus on combined heat and power (CHP) for resource-efficient energy conversion go hand in hand with an increased interest in thermally driven cooling (TDC) technology. This project has identified the following to be specifically district energy adapted in absorption cooling: - design for low return temperature of the heat carrier leaving the generator part - design for 'high enough' COP maintained at part load for heat source temperatures as low as 70 deg C. - cost minimization by optimal sizing of heat exchanger surfaces for district energy design criteria (as opposed to accepting 'off-the-shelf' designs intended for higher operating temperatures). The overall analysis and findings regarding trigeneration concludes that: a. a holistic view of the production of power, heat and cold should be adopted when considering absorption technology in district energy

  2. Fundamental Research on Convective Heat Transfer in Electronic Cooling Technology

    Institute of Scientific and Technical Information of China (English)

    C.F.Ma; Y.P.Gan; 等

    1992-01-01

    During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelestanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microleectronic devices.This paper provides a review and summary of the programs with emphasis on direct liquid cooling.Included in this review are the heat transfer investigations related to the following cooling modes:liquid free,mixed and forced convection.liquid jet impingement,flowing liquid film cooling,pool boiling,spray cooling,foreign gas jet impingement in liquid pool,and forced convection air-cooling.

  3. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  4. Peeling of tomatoes using novel infrared radiation heating technology

    Science.gov (United States)

    The effectiveness of using infrared (IR) dry-peeling as an alternative process for peeling tomatoes without lye and water was studied. Compared to conventional lye peeling, IR dry-peeling using 30 s to 75 s heating time resulted in lower peeling loss (8.3% - 13.2% vs. 12.9% - 15.8%), thinner thickne...

  5. Development of infrared heating technology for tomato peeling

    Science.gov (United States)

    The commercial lye and steam peeling methods used in tomato processing industry are water- and energy-intensive and have a negative impact on the environment. To develop alternative peeling methods, we conducted comprehensive studies of using infrared (IR) heating for tomato peeling. The three major...

  6. Technological and chemical properties of heat-treated Anatolian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... chemical content and cellulose crystallinity of Anatolian black pine [Pinus nigra J.F. Arnold subsp. .... was determined as acid-insoluble Klason lignin by Runkel method ..... crystalline structure of cellulose using static and dynamic FT-IR ... different models for the high-temperature heat-treatment of wood. Int.

  7. Feasibility of Jujube peeling using novel infrared radiation heating technology

    Science.gov (United States)

    Infrared (IR) radiation heating has a promising potential to be used as a sustainable and effective method to eliminate the use of water and chemicals in the jujube-peeling process and enhance the quality of peeled products. The objective of this study was to investigate the feasibility of use IR he...

  8. Heat pumps in practice. Technology - projecting - installation; Praxis Waermepumpe. Technik - Planung - Installation

    Energy Technology Data Exchange (ETDEWEB)

    Sobotta, S.

    2008-07-01

    With the aid of many pictures and graphical illustrations, Stefan Sobotta presents a clear and systematic introducation to this well-established technology for sustainable heat supply in buildings. From basic knowledge to concrete examples of projecting and application, this book outlines the usefulness of ambient heat and stresses the need for a complete rethink in the field of heat supply in view of current political boundary conditions. The book addresses craftsmen and designers, energy consultants and architects, as well as all those concerned in sustainable heat supply. The book is an orientation tool and also a reference manual for everyday work. (orig.)

  9. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.

    Science.gov (United States)

    Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker

    2008-04-01

    Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.

  10. New Technology and Experimental Study on Snow-Melting Heated Pavement System in Tunnel Portal

    Directory of Open Access Journals (Sweden)

    Jinxing Lai

    2015-01-01

    Full Text Available In recent years, with the rapid growth of economy and sharp rise of motor vehicles in China, the pavement skid resistance in tunnel portals has become increasingly important in cold region. However, the deicing salt, snow removal with machine, and other antiskid measures adopted by highway maintenance division have many limitations. To improve the treatment effect, we proposed a new snow-melting approach employing electric heat tracing, in which heating cables are installed in the structural layer of road. Through the field experiment, laboratory experiment, and numerical investigation, structure type, heating power, and preheating time of the flexible pavement heating system in tunnel portal were systematically analyzed, and advantages of electric heat tracing technology in improving the pavement skid resistance in tunnel portal were also presented. Therefore, such new technology, which offers new snow-melting methods for tunnel portal, bridge, mountainous area, and large longitudinal slope in cold region, has promising prospect for extensive application.

  11. Modern trends in improvement of steel heating technology in continuous furnaces

    Science.gov (United States)

    Timoshpolskiy, V. I.; Temlyantsev, M. V.; Trusova, I. A.

    2016-09-01

    The principles and approaches in the development and improvement of steel heating technology in the furnaces of rolling manufacture of various structural design, based on the systematic study of thermal physical and technological processes, including mathematical modeling, industrial experiments, development of rational temperature-thermal modes.

  12. The History of Venting (part I)

    Science.gov (United States)

    Leiter, Stephen C.

    2017-01-01

    Venting techniques and design are an important implementation strategy for observatory and payload contamination control, and yet venting analysis has seen a topsey turvey history, at lease from the perspective of the simple Layman trying to design a black box. Additionally, designing the vent has competing controls from Safety and EMIEMC. In the days of Shuttle, Safety placed liens against the vents of blankets, boxes, and large structural items principally to protect cargo bay vents but also from a flammability perspective. What continues to elude the Designer Community is a stable, simple way of designing vents for black boxes that satisfies everybody. But we continue to try.

  13. Green Roof Technology- Mitigate Urban Heat Island (UHI Effect

    Directory of Open Access Journals (Sweden)

    Odli Z.S. M.

    2016-01-01

    Full Text Available Alterations on the land surfaces, which are attributed by human activities, especially in cities, cause many implications to the ecosystem. The increase of buildings in cities is reflecting the growth of human activities resulted in a significant temperature increase and warmer pattern in the urban area than the surrounding countryside. The phenomenon defined as urban heat island. This study investigates the application and efficiency of the green roof as an approach to mitigate urban heat island and reducing indoor temperature in a building. Two types of roof models, which consist of vegetative roof and non-vegetative roof, were built to investigate the efficiency of vegetated roof in reducing indoor temperature compared to the non-vegetated roof. The outdoor and indoor temperature and humidity of each roof model were monitored by using RH520 Thermo Hygrometer. The data was collected for three times in a week for 9 weeks at 9:00am to 5:00pm. It was found that the indoor average temperature data for vegetative roof could be reduced 2.4°C from the outdoor average temperature and 0.8°C for non-vegetative roof. The difference of temperature reduction for vegetative roof was greater than the nonvegetative roof, thus indicate that green roof was highly efficient in reducing indoor temperature and mitigate urban heat island impact.

  14. A framework for identifying the applicability of heating or cooling technologies based on initial project information

    Science.gov (United States)

    Cacace, Katie Meng

    In order to fully achieve the energy savings and human comfort benefits of many alternative heating and cooling technologies, design considerations for these technologies must be made during the conceptual design stage. However, at this stage architects are often faced with challenges that inhibit the integration of such technologies. At the early stages of design, architects have limited time and technical knowledge to research alternative technologies and mechanical engineers are typically not yet part of the design team to offer their expertise. To address these problems, this research developed a framework for a Technology Identifier that would inform an architect about alternative heating and cooling technologies that are applicable to their specific project at the conceptual design stage. The framework is based on the premise that a quantitative relationship between the initial project information and a technology's critical output variable(s) for heat transfer to the space can be established. Therefore, to be included in the framework a technology must possess a component that provides direct heat transfer to the space for the framework to determine if the technology can maintain the desired space temperature. The climatic influences on a technology's performance and the effect of changing a technology's input variables on the heat transfer output variable(s) were also quantified. Existing building energy simulation programs were used in these analyses. The framework develops simulation input files for multiple technologies, utilizes existing simulation programs to predict the performance of these technologies, and then displays the output results along with other information that is useful to designers at the conceptual stage. Each simulation input file is compiled from a template that queries databases and requires minimal user input. The output display includes the space temperature, energy consumption, and design considerations of each technology. A

  15. Experimental measurement, calculation and thermal visualization condenser temperature of cooling device with a heat pipe technology

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2017-01-01

    Full Text Available This work deal with evaluation of condenser temperature by experimental measurement, calculation and thermal visualization of cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. One from many things influenced the heat flux amount transferred from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. The work contain description, working principle and construction of cooling device. Experimental part describe the measuring method and mathematical calculation to condenser temperature evaluation of cooling device depending on the loaded heat of electronic components in range from 250 to 750 W. The mathematical calculation is based on physical phenomena of boiling, condensation and natural convection heat transfer. The results of experimental measurement and mathematical calculation are verified by thermal imagining of device condenser by IR camera.

  16. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States); Childress, Amy [Univ. of Nevada, Reno, NV (United States); Hiibel, Sage [Univ. of Nevada, Reno, NV (United States); Kim, Kwang [Univ. of Nevada, Reno, NV (United States); Park, Chanwoo [Univ. of Nevada, Reno, NV (United States); Wirtz, Richard [Univ. of Nevada, Reno, NV (United States)

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  17. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  19. Gasification technologies for heat and power from biomass

    NARCIS (Netherlands)

    Beenackers, AACM; Maniatis, K; Kaltschmitt, M; Bridgwater, AV

    1997-01-01

    A critical review is presented of biomass gasifier systems presently commercially available or under development. Advantages and possible problem areas are discussed in relation to particular applications. Both large and small scale technologies are reviewed. Catalysed by the EC JOULE and AIR

  20. PREFACE: 7th International Conference on Cooling & Heating Technologies (ICCHT 2014)

    Science.gov (United States)

    2015-09-01

    The Kyoto protocol has initiated a pledge from almost all developing and developed countries to be committed to reducing CO2 emissions. Development of new renewable energy technologies are also of interest in this conference. Greenhouse gases have contributed to global warming and other man-made disasters. Cooling and Heating communities also have responsibilities towards the commitment of reducing the greenhouse gas emissions. In addition, depleting natural resources also act as a threat to the Cooling and Heating industries, causing them to develop highly efficient equipment and innovative technologies. The 1st International Conference on Cooling & Heating Technologies was held in Hanoi Vietnam (Jan. 2005). Whereas the 2nd, 3rd, 4th and 5th ICCHT conferences were held in Dalian, China (Jul. 2006), Tokyo, Japan (Jul. 2007), Jinhae, Korea (Oct. 2008) and Bandung, Indonesia (Dec. 2010) respectively. The 6th International Conference on Cooling & Heating Technologies (ICCTH2012) was held in Xi'an in China on November 9-12, 2012. It is our pleasure to welcome you to the 7th International Conference on Cooling & Heating Technologies (ICCTH2014) on 4th - 6th November 2014 at the Grand Dorsett Subang Hotel, Subang Jaya, Selangor Darul Ehsan, Malaysia The Theme of the Conference is ''Sustainability and Innovation in Heating & Cooling Technologies''. The sub-themes are:- • CO2 Reduction and Low Carbon Technologies • HVAC System and Natural Ventilation • Energy & Alternative Energy • Computational Fluid Dynamics • Low Temperature & Refrigeration Engineering In conjunction with the Conference, an Exhibition will be organized as an integral part of the Conference. Project experiences, product solutions, new applications and state-of-the art information will be highlighted.

  1. Technology data for electricity and heat generating plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The Danish Energy Authority and the two Danish electricity transmission and system operators, Elkraft System and Eltra, initiated updating of current technology catalogues in 2003. The first updated catalogue was published in March 2004. This report presents the results of the second phase of updating. The primary objective has been to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses. The catalogue may furthermore be used as reference for evaluations of the development perspectives for the numerous technologies available for energy generation in relation to the programming of funding schemes for research, development and demonstration of emerging technologies. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiates aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to primarily rely on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesses. (au)

  2. Variable conductance heat pipe technology for precise temperature control of the NASA/DDLT transmitter

    Science.gov (United States)

    Vanevenhoven, D. E.; Antoniak, D.

    1989-01-01

    The application of variable conductance heat pipe technology for achieving precise temperature control to + or - 0.1 C for a space-based laser diode transmitter is described. Heat pipe theory of operation and test data are presented along with a discussion of its applicability for NASA's Direct Detection Laser Transceiver (DDLT) program. This design for the DDLT transmitter features a reduction in space radiator size and up to 42 percent reduction in prime power requirements.

  3. HEATING OF BLANK IN FORM OF PRISM IN ACCORDANCE WITH TECHNOLOGICAL LIMITATIONS

    Directory of Open Access Journals (Sweden)

    V. B. Kovalevsky

    2009-01-01

    Full Text Available The paper considers a problem on optimum heating control of a blank in the form of prism under complicated conditions of heat-transfer in accordance with criteria of gas consumption minimization, decarburized layer and scaling. Numerical algorithm of the problem solution and examples are given in the paper. A new technology of the flame furnace operation has been developed in the paper. 

  4. TECHNOLOGY OF HEAT TREATING-STRAIGHTENING OF LONG SHAFTS WITH LOW RIGIDITY

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    2016-09-01

    Full Text Available The paper presents a new method of heat treating-straightening of long shafts with low rigidity. Analytical relationships for the determination of rectilinearity of shaft axis in heat treating- straightening are presented. A fixture for heat treating-straightening of shafts was developed. The experiment conducted as well as the calculations confirm high effectiveness of the developed method of heat treating-straightening of long shafts with low rigidity. Application of the developed technology of heat treating-straightening permits minimisation of the value of deflection of semi-finished product and stabilisation of the level of residual longitudinal stress, which results in enhanced operational accuracy of long shafts with low rigidity, improved quality and operation parameters of finished products.

  5. Geothermal heat pumps, a booming technology in North America; Geothermal Heat Pumps - der Boom der oberflaechennahen Geothermie in Nordamerika

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B. [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften

    1997-12-01

    Over the last years, the interest in and the use of ground-source heat pumps has substantially increased in North America. In a market dominated by space cooling heat pumps can show clearly their advantages. This paper describes the development in Canada and USA, gives examples of the technologies used and presents some large plants. The differences to the Central European situation are discussed. Also mentioned are the various activities in market penetration, which peaked in the foundation of the `Geothermal Heat Pump Consortium` in Washington in 1994. (orig.) [Deutsch] In den letzten Jahren hat das Interesse an und der Einsatz von erdgekoppelten Waermepumpen in Nordamerika stark zugenommen. In einem von der Raumkuehlung dominierten Markt koennen Waermepumpen ihre Vorteile voll ausspielen. Der Beitrag beschreibt die Entwicklung in Kanada und den USA, stellt Beispiele der eingesetzten Technik vor und geht auf einige Grossanlagen ein. Ausserdem werden die Unterschiede zu der Situation in Mitteleuropa herausgearbeitet und die verschiedenen Aktivitaeten zu `Markt Penetration` behandelt, die 1994 in die Gruendung des `Geothermal Heat Pump Consortiums` in Washington muendeten. (orig.)

  6. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...

  7. Effect of pressure vents on the fast cookoff of energetic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Oliver, Michael S.; Erikson, William W

    2013-10-01

    The effect of vents on the fast cookoff of energetic materials is studied through experimental modifications to the confinement vessel of the Radiant Heat Fast Cookoff Apparatus. Two venting schemes were investigated: 1) machined grooves at the EM-cover plate interface; 2) radial distribution of holes in PEEK confiner. EM materials of PBXN-109 and PBX 9502 were tested. Challenges with the experimental apparatus and EM materials were identified such that studying the effect of vents as an independent parameter was not realized. The experimental methods, data and post-test observations are presented and discussed.

  8. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  9. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses

  10. CONSUMPTION VOLUMES TECHNOLOGY OF ELECTRICITY AND HEAT BY DEPARTMENTS OF THE UNIVERSITY

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-01-01

    Full Text Available Purpose. Efficient use of natural energy resources is one of the priorities of the state policy in the sphere of universities and institutions of the Ministry of Education and Science of Ukraine. Besides search and development the new efficient and clean energy systems it is necessary to implement optimal management of the development and operation of existing facilities, reducing their energy costs. Purpose of this work is to develop consumption volume technology of electricity and heat by scientific departments of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan (DNURT for further finding the ways to reduce energy consumption. The problem is due to the specifics of University’s energy scheme. There is a difficulty for the installation of energy meters and data acquisition about their use in individual branches and structural units. At the same time it is impossible to assess qualitatively the energy position of scientific departments. Methodology. The method to determine the electricity and heat consumption for space heating of scientific departments at the university is based on «The intersectoral rules of electricity and heat energy for institutions and public sector organizations in Ukraine» and «Codes and regulations on rationing of fuel and heat energy for heating the residential buildings as well as for economic needs in Ukraine». Findings. Developed determining expenditure technology of electricity and heat for heating by scientific departments at the DNURT named after Academician V. Lazaryan allows obtaining data on energy consumption in individual units without direct measure and analyzing the effectiveness of energy saving technologies. Originality. It is represented by energy costs in the form of two components and these components are defined on the basis of the energy audit. This enables the energy inputs to implement energy efficiency measures in the research departments of the

  11. Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence

    Directory of Open Access Journals (Sweden)

    Lisa Ann Levin

    2016-05-01

    Full Text Available Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by benthic background fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as

  12. Hydrothermal vents and methane seeps: Rethinking the sphere of influence

    Science.gov (United States)

    Levin, Lisa A.; Baco, Amy; Bowden, David; Colaco, Ana; Cordes, Erik E.; Cunha, Marina; Demopoulos, Amanda; Gobin, Judith; Grupe, Ben; Le, Jennifer; Metaxas, Anna; Netburn, Amanda; Rouse, Greg; Thurber, Andrew; Tunnicliffe, Verena; Van Dover, Cindy L.; Vanreusel, Ann; Watling, Les

    2016-01-01

    Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as

  13. The New Heat Treatment Technology of A356 Aluminium Alloy Prepared by Ptc

    Science.gov (United States)

    Zhang, Lianyong; Jiang, Yanhua; Ma, Zhuang; Wang, Wenkui

    Phase Transition Cooling (PTC), using the absorbed latent heat during the melting of phase transition cooling medium to cool and solidify alloys in the process of casting, is a new casting technology. Specimens of A356 casting aluminum alloy were prepared by this method in the paper. The new heat treatment process (cast and then aging directly without solid solution) of A356 alloy was performed. For comparison, the conventional T6 heat treatment (solution and then aging treatment) was performed too. The mechanical properties of A356 alloy with different heat treatments were measured by tensile strength testing methods and microstructures of the alloy with different heat treatment process were investigated by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-rays diffraction (XRD) and transmission electron microscopy (TEM) too. The results show that ultimate tensile strength (UTS) of A356 alloy with the new heat treatment process is much higher than that with conventional heat treatment while the elongations with the two heat treatment processes are very close. This is due to the grain refinement obtained after PTC processing.

  14. Improving the installation of renewable heating technology in UK social housing properties through user centred design.

    Science.gov (United States)

    Moore, Natalie; Haines, Victoria; Lilley, Debra

    2015-11-01

    Social housing organisations are increasingly installing renewable energy technologies, particularly for the provision of heating and hot water. To meet carbon reduction targets, uptake and installation must allow occupants to use the technology effectively. This paper describes research which investigated the service of installing heat pumps into UK social housing properties, from both landlords' and tenants' experiences. Adopting a user centred design approach, the research was in three phases: an exploration study to investigate landlords' and tenants' experiences of heat pump installation and use; refinement and development of the requirements for improved service delivery, primarily technology introduction and control; and the development and initial evaluation of an information leaflet as a key touchpoint in the service delivery. Recommendations for improved service delivery, to enable heat pumps to be accepted and used more effectively, are presented, as well as reflection on the process of applying user centred design in this context. In a relatively immature area of industry, installations to date have been heavily focused on technical aspects. This paper provides an insight into the human aspects of the service delivery of heat pumps in social housing, providing designers and social housing landlords with insight about how to improve the service.

  15. Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process

    Science.gov (United States)

    Kuroki, Takashi; Murai, Ryota; Makino, Kazuya; Nagano, Kouji; Kajihara, Takeshi; Kaibe, Hiromasa; Hachiuma, Hirokuni; Matsuno, Hidetoshi

    2015-06-01

    In Japan, integrated steelworks have greatly lowered their energy use over the past few decades through investment in energy-efficient processes and facilities, maintaining the highest energy efficiency in the world. However, in view of energy security, the steelmaking industry is strongly required to develop new technologies for further energy saving. Waste heat recovery can be one of the key technologies to meet this requirement. To recover waste heat, particularly radiant heat from steel products which has not been used efficiently yet, thermoelectric generation (TEG) is one of the most effective technologies, being able to convert heat directly into electric power. JFE Steel Corporation (JFE) implemented a 10-kW-class grid-connected TEG system for JFE's continuous casting line with KELK Ltd. (KELK), and started verification tests to generate electric power using radiant heat from continuous casting slab at the end of fiscal year 2012. The TEG system has 56 TEG units, each containing 16 TEG modules. This paper describes the performance and durability of the TEG system, which has been investigated under various operating conditions at the continuous casting line.

  16. Maldistribution in air-water heat pump evaporators. Part 2: Economic analysis of counteracting technologies

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    In this study a methodology is applied to quantify the effect of evaporator maldistributionon operating costs of airewater heat pumps. The approach is used to investigate the cost-effectivenessof two technologies enabling to counteract maldistribution: a flash gasbypass setup and the individual...

  17. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE

    2011-04-07

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  18. Development of a micro-heat exchanger with stacked plates using LTCC technology

    Directory of Open Access Journals (Sweden)

    E. Vásquez-Alvarez

    2010-09-01

    Full Text Available A green ceramic tape micro-heat exchanger was developed using Low Temperature Co-fired Ceramics technology (LTCC. The device was designed by using Computational Aided Design software and simulations were made using a Computational Fluid Dynamics package (COMSOL Multiphysics to evaluate the homogeneity of fluid distribution in the microchannels. Four geometries were proposed and simulated in two and three dimensions to show that geometric details directly affect the distribution of velocity in the micro-heat exchanger channels. The simulation results were quite useful for the design of the microfluidic device. The micro-heat exchanger was then constructed using the LTCC technology and is composed of five thermal exchange plates in cross-flow arrangement and two connecting plates, with all plates stacked to form a device with external dimensions of 26 x 26 x 6 mm³.

  19. The earth-coupled heat pump: Utilizing innovative technology in single family rehabilitation strategies

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    The study examines the feasibility of incorporating the use of earth-coupled heat pump technology in single-family housing rehabilitation projects, based on energy conservation attributes and financial considerations. Following evaluation of a theoretical model which indicated that installations of the heat pumps were feasible, the heat pumps were tested under actual conditions in five single family housing units which were part of the Urban Homesteading Program, and were matched with comparable units which did not receive special treatment. Energy consumption information was collected for all units for twelve months. Variables were identified, and the data was analyzed for individual housing units and compared with the results predicted by the theoretical model to determine the practicality of incorporating such technology in large scale rehabilitation projects. 14 refs., 14 figs., 3 tabs.

  20. The technology of heat transfer enhancement in channels by means of flow pulsations

    Directory of Open Access Journals (Sweden)

    Tsynaeva Anna

    2016-01-01

    Full Text Available The rate and efficiency of curing of concrete can boost when used intense heat. The work is dedicated to the development and research of technologies of intensification of heat transfer in channels by pulsations. The study was conducted by means of numerical methods based on mass and momentum conservation equations (Navier-Stokes with software Code Saturne. Verification of implemented methods and software was performed. The research of heat transfer enhancement for semicircle-shaped channel exposed to low-frequency pulsations was performed. The pulsation frequency of the flow during the study was in a range of 0…10 Hz. A significant (up to 4 times increase of turbulent kinetic energy with implementing pulsations was detected. Flow pulsations with frequency of 10 Hz results in 1.21 times increase of heat transfer coefficient.

  1. Design of Heat Exchanger Network for VCM Distillation Unit Using Pinch Technology

    Directory of Open Access Journals (Sweden)

    VISHAL G. BOKAN

    2015-06-01

    Full Text Available In process industries, heat exchanger networks represent an important part of the plant structure. The purpose of the networks is to maximize heat recovery, thereby lowering the overall plant costs. In process industries, during operation of any heat exchanger network (HEN, the major aim is to focus on the best performance of the network As in present condition of fuel crises is one of the major problem faced by many country & industrial utility is majorly depend on this. There is technique called process integration which is used for integrate heat within loop so optimize the given process and minimize the heating load and cooling load .In the present study of heat integration on VCM (vinyl chloride monomer distillation unit, Heat exchanger network (HEN is designed by using Aspen energy analyzer V8.0 software. This software implements a methodology for HEN synthesis with the use of pinch technology. Several heat integration networks are designed with different ΔT min and total annualized cost compared to obtain the optimal design. The network with a ΔT min of 90C is the most optimal where the largest energy savings are obtained with the appropriate use of utilities (Save 15.3764% for hot utilities and 47.52% for cold utilities compared with the current plant configuration. Percentage reduction in total operating cost is 18.333%. From calculation Payback Period for new design is 3.15 year. This save could be done through a plant revamp, with the addition of two heat exchangers. This improvement are done in the process associated with this technique are not due to the use of advance unit operation, but to the generation of heat integration scheme. The Pinch Design Method can be employed to give good designs in rapid time and with minimum data.

  2. Symposium in Moscow on advanced district heating technology from the Federal Republic of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Neufer, H. (Vereinigung Deutscher Elektrizitaetswerke, Frankfurt am Main (Germany, F.R.))

    1988-12-01

    Describes a symposium that took place in Moscow on 22-23 March 1983 on district heating in the FRG, covering topics such as the production of thermal power from power plants, transportation and distribution of heat and control at local thermal substations. Presentations were made by companies using district heating systems and the manufacturers of the systems such as AEG, Deutsche Babcock, Bayer AG and Siemens. Experts demonstrated that it is most probably feasible to use fuels such as gas and coal in combined processes burning them in swirl flow furnaces. A further topic was how to reduce sulfur dioxide and nitrogen oxide emissions from thermal power plants. It was demonstrated how the introduction of large heat conductors with diameters of up to 800 mm and plastic thermal insulating linings has reduced the cost and increased the speed of construction work. One direction of future research identified was the study of stresses and deformation in conductors. As the FRG already has the most comprehensive district heating system in Western Europe (producing more than 50% of its heat from coal) and thermal power losses are low and heat transfer and distribution technology is improving all the time, the main task now is to reduce costs.

  3. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    Science.gov (United States)

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  4. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    Science.gov (United States)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The

  5. Self-Heating in Individual Nanowires: a Major Breakthrough in Sensors Technology

    Science.gov (United States)

    Prades, J. D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Fischer, T.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J. R.

    2009-05-01

    The major advantages of using self-heated individual nanowires as chemical gas sensors are presented and discussed. This novel strategy is based on the exploitation of dissipated power at the nanowire by Joule effect due to the bias current applied in conductometric measurements, which enables heating the tinny mass of these wires up to the optimum temperatures for gas sensing applications. Due to the nanoscale integration of the heater in the sensing material itself, the power required to operate these sensors is significantly reduced, if they are compared to the state-of-the-art technologies such as thin-film sensors with external microheaters. Furthermore, this strategy enables a reduction of the response time, improving the dynamic behavior of sensors obtained with current technologies. In summary, this approach represents a major breakthrough in sensor technology and it paves the way towards a new generation of fully integrated and autonomous electronic nano-noses.

  6. Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.

    Science.gov (United States)

    Wasserscheid, Peter; Seiler, Matthias

    2011-04-18

    One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    Science.gov (United States)

    Tiercelin, Jean-Jacques; Pflumio, Catherine; Castrec, Maryse; Boulégue, Jacques; Gente, Pascal; Rolet, Joël; Coussement, Christophe; Stetter, Karl O.; Huber, Robert; Buku, Sony; Mifundu, Wafula

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 °C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza,active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO3-enriched fluid similar to the NaHCO3 thermal fluids from lakes Magadi and Bogoria in the eastern branch off the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction off 219 and 179 °C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130 °N normal-dextral faults that intersect the north- south major rift trend. The source of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza.

  8. A DISCUSSION ON UTILIZATION OF HEAT PIPE AND VAPOUR CHAMBER TECHNOLOGY AS A PRIMARY DEVICE FOR HEAT EXTRACTION FROM PHOTON ABSORBER SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Suthar, K. J.; Lurie, Alexander M.; Den Hartog, P.

    2016-01-01

    Heat pipes and vapour chambers work on heat exchange phenomena of two-phase flow and are widely used for in-dustrial and commercial applications. These devices offer very high effective thermal conductivities (5,000-200,000 W/m/K) and are adaptable to various sizes, shapes, and ori-entations. Although they have been found to be an excel-lent thermal management solution for laptops, satellites, and many things in-between, heat pipes and vapour cham-bers have yet to be adopted for use at particle accelerator facilities where they offer the possibility of more compact and more efficient means to remove heat from unwanted synchrotron radiation. As with all technologies, there are inherent limitations. Foremost, they are limited by practi-cality to serve as local heat transfer devices; heat transfer over long distances is likely best provided by other means. Heat pipes also introduce unique failure modes which must be considered.

  9. Development of materials database system for cae system of heat treatment based on data mining technology

    Institute of Scientific and Technical Information of China (English)

    GU Qiang; ZHONG Rui; JU Dong-ying

    2006-01-01

    Computer simulation for materials processing needs a huge database containing a great deal of various physical properties of materials. In order to employ the accumulated large data on materials heat treatment in the past years,it is significant to develop an intelligent database system. Based on the data mining technology for data analysis,an intelligent database web tool system of computer simulation for heat treatment process named as IndBASEweb-HT was built up. The architecture and the arithmetic of this system as well as its application were introduced.

  10. Carbon fluxes from hydrothermal vents off Milos, Aegean Volcanic Arc, and the influence of venting on the surrounding ecosystem.

    Science.gov (United States)

    Dando, Paul; Aliani, Stefano; Bianchi, Nike; Kennedy, Hilary; Linke, Peter; Morri, Carla

    2014-05-01

    The island of Milos, in the Aegean Sea, has extensive hydrothermal fields to the east and southeast of the island with additional venting areas near the entrance to and within the central caldera. A calculation of the total area of the vent fields, based on ship and aerial surveys, suggested that the hydrothermal fields occupy 70 km2, twice the area previously estimated. The vents ranged in water depth from the intertidal to 300 m. As a result of the low depths there was abundant free gas release: in places water boiled on the seabed. The stream of gas bubbles rising through the sandy seabed drove a shallow re-circulation of bottom seawater. The majority of the water released with the gas, with a mean pH of 5.5, was re-circulated bottom water that had become acidified in contact with CO2 gas and was often diluted by admixture with the vapour phase from the deeper fluids. The major component of the free gas, 80%, was CO2, with an estimated total flux of 1.5-7.5 x 1012 g a-1. The methane flux, by comparison, was of the order of 1010 g a.-1 Using methane as a tracer it was shown that the major gas export from the vents was below the thermocline towards the southwest, in agreement with the prevailing currents. Areas of hydrothermal brine seepage occurred between the gas vents and occasional brine pools were observed in seabed depressions. Under relatively calm conditions, many of the brine seeps were covered by thick minero-bacterial mats consisting of silica and sulphur and surrounded by mats of diatoms and cyanobacteria. The minerals were not deposited in the absence of bacteria. Storms disrupted the mats, leading to an export of material to the surrounding area. Stable isotope data from sediments and sediment trap material suggested that exported POM was processed by zooplankton. The combined effects of the geothermal heating of the seabed, the large gas flux, variation in the venting and the effect of the brine seeps had a dramatic effect on the surrounding

  11. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the

  12. Technologies for small scale wood-fueled combined heat and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.; Houmoeller, S.; Thaaning Pedersen, L.

    1998-01-01

    The aim of this study is to describe and compare different technologies for small cogeneration systems (up to 2-3 MW{sub e}), based on wood as fuel. For decentralized cogeneration, i.e. for recovering energy from saw mill wood wastes or heat supply for small villages, it is vital to know the advantages and disadvantages of the different technologies. Also, for the decision-makers it is of importance to know the price levels of the different technologies. A typical obstacle for small wood cogeneration systems is the installation costs. The specific price (per kW) is usually higher than for larger plants or plants using fossil fuels. For a saw mill choosing between cogeneration and simple heat production, however, the larger installation costs are counter weighed by the sale of electricity, while the fuel consumption is the same. Whether it is profitable or not to invest in cogeneration is often hard to decide. For many years small wood cogeneration systems have been too expensive, leading to the construction of only heat producing systems due to too high price levels of small steam turbines. In recent years a great deal of effort has been put into research and developing of new technologies to replace this traditional steam turbine. Among these are: Steam engines; Stirling engines; Indirectly fired gas turbines; Pressurized down draft combustion. Along with the small scale traditional steam turbines, these technologies will be evaluated in this study. When some or all these technologies are fully developed and commercial, a strong means of reducing the strain on the environment and the greenhouse effect will be available, as the total efficiency is high (up to 90%) and wood is an energy source in balance with nature. (au) EFP-95. 19 refs.

  13. Complex of automated equipment and technologies for waveguides soldering using induction heating

    Science.gov (United States)

    Murygin, A. V.; Tynchenko, V. S.; Laptenok, V. D.; Emilova, O. A.; Bocharov, A. N.

    2017-02-01

    The article deals with the problem of designing complex automated equipment for soldering waveguides based on induction heating technology. A theoretical analysis of the problem, allowing to form a model of the «inductor-waveguide» system and to carry out studies to determine the form of inducing wire, creating a narrow and concentrated heat zone in the area of the solder joint. Also solves the problem of the choice of the temperature control means, the information from which is used later to generate the effective management of induction soldering process. Designed hardware complex in conjunction with the developed software system is a system of automatic control, allowing to manage the process of induction heating, to prevent overheating and destruction of the soldered products, improve the stability of induction soldering process, to improve the quality of products, thereby reducing time and material costs for the production.

  14. The Oregon Institute of Technology geothermal heating system - then and now

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.

    1999-03-01

    Oregon Institute of Technology (OIT) is located on a hill, which gently slopes from the east to the west, in the northeast part of Klamath Falls. The campus has been using geothermal water, for its heating and domestic hot water needs, since it was relocated to this location in 1964. It has been in continuous operation for 35 years and now heats 11 buildings (~600,000 ft2 / 55,700 m2). It is the oldest of the modern geothermal district-heating systems, and due to the lack of experience with the design of large systems in the early-1960s, it has experienced some difficulties through the years. These difficulties have been resolved and the experience has provided a substantial body of information concerning the applicability of various materials and designs for low-temperature use.

  15. Technology and Properties of Layered Composites as Coatings for Heat Transfer Enhancement

    Science.gov (United States)

    Chatys, R.; Orman, Ł. J.

    2017-07-01

    The mechanical properties of porous structures consisting of copper wires reinforced with carbon and glass fibers for assessment of the adhesion strength of the porous structure produced and cohesion between components of the structures investigated, which are used for heat exchangers, are considered. The internal structure of bonds between their elements was analyzed by metallographic techniques. The statistical relationships for bonds between layers are given. The auxiliary characteristics of technology connected with the "hydrogen disease" of copper are discussed. Specimens were tested for characteristics of their tensile strength. The thermal performance of sintered heat exchangers was also investigated on brass-copper, bronze-copper, and copper-copper samples. The nucleate boiling mode of heat transfer was selected for experiments with distilled water and ethyl alcohol as working fluids.

  16. Technology data for energy plants. Individual heating plants and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The present technology catalogue is published in co-operation between the Danish Energy Agency and Energinet.dk and includes technology descriptions for a number of technologies for individual heat production and energy transport. The primary objective of the technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for the work with energy planning and the development of the energy sector, including future outlooks, scenario analyses and technical/economic analyses. The technology catalogue is thus a valuable tool in connection with energy planning and assessment of climate projects and for evaluating the development opportunities for the energy sector's many technologies, which can be used for the preparation of different support programmes for energy research and development. The publication of the technology catalogue should also be viewed in the light of renewed focus on strategic energy planning in municipalities etc. In that respect, the technology catalogue is considered to be an important tool for the municipalities in their planning efforts. (LN)

  17. Application of Heat Pipe Technology in Flue Gas Waste Heat Recycling of Organic Heat Carrier Boiler%热管技术在有机热载体锅炉烟气余热回收上的应用

    Institute of Scientific and Technical Information of China (English)

    黄云燕

    2014-01-01

    In recent years, more and more construction units use heat pipe technology to reduce exhaust gas temperature for reducing flue gas heat loss. Industrial managers should attach great importance to the application of heat pipe technology in the flue gas waste heat recycling of organic heat carrier boiler. From energy consumption situation of organic heat carrier boiler, this paper introduces the main purpose of flue gas waste heat recycling of organic heat carrier boiler, carries on a brief introduction for application of heat pipe technology in flue gas waste heat recycling of organic heat carrier boiler.%近些年来,越来越多建设单位采用热管技术降低排烟温度来减少烟气热损失,工业管理者应该高度重视热管技术在有机热载体锅炉烟气余热回收上的应用。本文从有机热载体锅炉能耗状况着手,介绍了有机热载体锅炉烟气余热回收的主要用途,对热管技术在有机热载体锅炉烟气余热回收上的应用做了简单介绍。

  18. Geophysical Signatures of cold vents on the northern Cascadia margin

    Science.gov (United States)

    Riedel, M.; Paull, C. K.; Spence, G.; Hyndman, R. D.; Caress, D. W.; Thomas, H.; Lundsten, E.; Ussler, W.; Schwalenberg, K.

    2009-12-01

    The accretionary prism of the northern Cascadia margin is a classic gas hydrate research area. Ocean Drilling Program Leg 146 and Integrated Ocean Drilling Program (IODP) Expedition 311 documented that gas hydrate is widely distributed across the margin. In recent years an increased research focus has been on cold vents, where methane gas is actively released. Two recent expeditions funded by the Monterey Bay Aquarium Research Institute (MBARI) were conducted in the area of IODP Sites U1327 and U1328. An autonomous underwater vehicle (AUV) was used to map the seafloor bathymetry followed by dives with the ROV Doc Ricketts for ground truth information of various seafloor morphological features identified. The two cruises revealed many new seafloor features indicative of methane venting that were previously unknown. Bullseye Vent (BV) has been extensively studied using seismic imaging, piston coring, heat-flow, controlled-source EM, and deep drilling. BV is seismically defined by a circular wipe-out zone but the new AUV data show that BV is rather an elongated depression. BV is associated with a shoaling in the BSR, but lacks evidence for the existence of an underlying fault in the previous data. Although a massive gas-hydrate plug was encountered within the top 40 mbsf in the IODP holes, the ROV observations only revealed some platy methane derived carbonate outcrops at the outer-most rim of the depressions, a few beds of Vesicomya clams, and no observed gas vents, which together do not indicate that BV is especially active now. Further northeast of BV, but along the same trend, active gas venting was found associated with seafloor blistering and bacterial mats suggesting that there is an underlying fault system providing a fluid flow conduit. The newly discovered vent area has few seismic line crossings; however the available seismic data surprisingly are not associated with wipe-out zones. Another prominent fault-related gas vent also was investigated during the

  19. National Deployment of Domestic Geothermal Heat Pump Technology: Observations on the UK Experience 1995–2013

    Directory of Open Access Journals (Sweden)

    Simon Rees

    2014-08-01

    Full Text Available Uptake of geothermal heat pump technology in the UK and corresponding development of a domestic installation industry has progressed significantly in the last decade. This paper summarizes the growth process and reviews the research that has been specifically concerned with conditions in the UK. We discuss the driving forces behind these developments and some of the supporting policy initiatives that have been implemented. Publically funded national trials were completed to assess the performance and acceptance of the technology and validate design and installation standards. We comment on both the technical and non-technical findings of the trials and the related academic research and their relevance to standards development. A number of technical issues can be identified—some of which may be particular to the UK—and we suggest a number of research and development questions that need to be addressed further. Current national support for the technology relies solely on a tariff mechanism and it is uncertain that this will be effective enough to ensure sufficient growth to meet the national renewable heat target in 2020. A broader package of support that includes mandatory measures applied to future housing development and retrofit may be necessary to ensure long-term plans for national deployment and decarbonization of heat are achieved. Industry needs to demonstrate that efficiency standards can be assured, capital costs reduced in the medium-term and that national training schemes are effective.

  20. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  1. Key Technology and Experimental Results of the Clean Air Heated Facility for Supersonic Combustion

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zipeng; SONG Wenyan; LE Jialing

    2009-01-01

    The scramjet, which is the propulsion of hypersonic vehicle, has become the focus in many military developed countries. The ground tests play an important role in the research of scramjet. There is defect of test medium contamination (the thermochemical characteristic of the ground test medium is different from that of the flight medium) in existing ground test facilities for scramjet combustor experiment. To solve the problem of test medium contamination, the first clean air heated facility of China for scramjet combustor experiment is designed. The key technology of designing the clean air heated facility is summarized. By using bypass duct, combustor model is protected from high temperature. To reduce the switching time between main duct and bypass duct, solenoid valve and water-cooled system were used. Having centrosymmetric structure, the heat radiating area of the facility and heat loss of the facility are much lower than others. Clean air heated facility is adopted to conduct experiment, which is the first experiment of China in clean air inflow, research on hydrogen-fueled and ethylene-fueled ignition and combustion for scramjet combustor at different equivalence ratio. Successful ignition and sustained combustion of hydrogen has been achieved. Successful ethylene ignition and sustained main stream combustion is achieved with normal fuel injection and taking hydrogen as pilot flame. Experiment result shows that the wall pressure of combustor model rises when the equivalence ratio of hydrogen rises. As the wall pressure of combustor model rises, the pressure disturbance influences the shock train in the upstream.

  2. Research Progress in Heat Transfer Enhancement Technology of Shell and Tube Heat Exchangers%管壳式换热器强化传热进展

    Institute of Scientific and Technical Information of China (English)

    张轮亭; 邱丽灿; 王臣

    2014-01-01

    管壳式换热器在石油化工领域应用广泛,其强化传热技术的研究受到普遍关注。主要介绍了近年来国内与国外高效节能管壳式换热器强化传热技术研究的进展情况,分别从管侧、壳侧和整体结构改进三方面分析了管壳式换热器的强化传热效果及特点,最后提出了强化传热的发展方向。%The tube and shell heat exchanger is widely used in the petrochemical field; research on the heat transfer enhancement technology is widely concerned. In this paper, research progress in the heat transfer enhancement technology of high efficiency shell and tube heat exchangers was introduced. From three aspects of the tube side, the shell side and the overall improvement, effect and features of the heat transfer enhancement of shell and tube heat exchangers were analyzed. At last, the development direction of the enhanced heat transfer technology was put forward.

  3. Numerical Analysis of Heat Transfer and Fluid Flow in Heat Exchangers with Emphasis on Pin Fin Technology

    OpenAIRE

    2012-01-01

    One of the most important industrial processes is heat transfer, carried out by heat exchangers in single and multiphase flow applications. Despite the existence of well-developed theoretical models for different heat transfer mechanisms, the expanding need for industrial applications requiring the design and optimization of heat exchangers, has created a solid demand for experimental work and effort. This thesis concerns the use of numerical approaches to analyze and optimize heat transfer a...

  4. The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood.

    Science.gov (United States)

    Korkut, Süleyman; Kök, M Samil; Korkut, Derya Sevim; Gürleyen, Tuğba

    2008-04-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on technological properties of Red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures (120 degrees C, 150 degrees C and 180 degrees C) and for varying durations (2h, 6h and 10h). The technological properties of heat-treated wood samples and control samples were tested. Compression strength parallel to grain, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength, and tension strength perpendicular to grain were determined. The results showed that technological strength values decreased with increasing treatment temperature and treatment times. Red-bud maple wood could be utilized by using proper heat treatment techniques with minimal losses in strength values in areas where working, and stability such as in window frames, are important factors.

  5. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2015-12-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled ‘Climate responsive behaviour heat pipe technology for enhanced passive airside cooling’ by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article “CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices” by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.

  6. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment.

    Science.gov (United States)

    Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard

    2015-12-01

    The data presented in this article were the basis for the study reported in the research articles entitled 'Climate responsive behaviour heat pipe technology for enhanced passive airside cooling' by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices" by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.

  7. HEAT PUMP TECHNOLOGY – POTENTIAL IMPACT ON ENERGY EFFICIENCY PROBLEM AND CLIMATE ACTION GOALS WITHIN UKRAINIAN ENERGY SECTOR

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-12-01

    Full Text Available The increasing demand of energy sources for urban, household and industrial facilities requires strategies development for seeking new energy sources. In recent years an important problem is to have energy storage, energy production and energy consumption which fulfill the environment friendly expectations. A lot of attention is devoted to renewable energy sources. One of the most attracting among them is energy production form geothermal sources. At a few meters below the earth’s surface the underground maintains a constant temperature in an approximation through the year allowing to withdraw heat in winter for heating needs and to surrender heat during summer for air-conditioning purposes. Heat pump is a rapidly developing technology for heating and domestic hot water production. Using ground as a heat source, heat exchange is carried out with heat pumps compound to vertical ground heat exchanger tubes that allows the heating and cooling of the buildings utilizing a single unit installation. Heat pump unit provides a high degree of productivity with moderate electric power consumption. In this paper a theoretical performance study of a vapor compression heat pump system with various natural and synthetic refrigerants (HFCs is presented. Operation mode of the heat pump unit was chosen according to European Standard EN14511-2:2007 and EN255-2. An influence of discharge temperature on system performance was evaluated at different boiling temperatures. The comparison of mass flow rate and coefficient of performance for considered refrigerants at constant cooling capacity and condensation temperature was performed.

  8. Survey on the social and economic influences of wide-spreading heat-pump technology

    Science.gov (United States)

    Katayama, Kozo

    1988-07-01

    A survey was conducted on the current status of utilization, trends in technical development for future and policy of heat pumps (HP). Heat pumps exceeded 65 pct of shipment of air conditioners for home and 70 pct for business. Proportion of installation was 20 pct per household and a 4.8 pct per room in 1984. It was already applied to industrial processes. Technological developments are in progress on HP for cold regions, multisystem for air conditioning/hot water supply, and absorption-type HP in order to widen its application. In political aspects, its proliferation is promoted by the financial aids and favorable charging system. The use of HP in 2000 is estimated as 26 to 51 pct per room for air conditioning, 40 to 64 pct of total heat demands for air conditioning, and 7 to 17 pct in heat demands for hot water supply. Share of HP in business application will be 39 to 68 pct for air conditioning, and 3 to 9 pct for hot water supply. About 2.3 to 5.0 pct of demands for industrial process will be filled with HP. HP will have a significant influence on energy conservation and environmental improvement.

  9. Air cushion furnace technology for heat treatment of high quality aluminum alloy auto body sheet

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Zhaodong; Ma Mingtu; Wang Guodong; Fu Tianliang; Li Jiadong; Liang Xiong

    2014-01-01

    The process characteristics of heat treatment of aluminum alloy auto body sheet and the working prin-ciple of air cushion furnace were introduced. The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied. Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages. Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward. With the rapid de-velopment of automotive industry,there will be certainly a new upsurge of research and application of air cush-ion furnace for heat treatment of aluminum alloy auto body sheet.

  10. Effect of Joule heating and current crowding on electromigration in mobile technology

    Science.gov (United States)

    Tu, K. N.; Liu, Yingxia; Li, Menglu

    2017-03-01

    In the present era of big data and internet of things, the use of microelectronic products in all aspects of our life is manifested by the ubiquitous presence of mobile devices as i-phones and wearable i-products. These devices are facing the need for higher power and greater functionality applications such as in i-health, yet they are limited by physical size. At the moment, software (Apps) is much ahead of hardware in mobile technology. To advance hardware, the end of Moore's law in two-dimensional integrated circuits can be extended by three-dimensional integrated circuits (3D ICs). The concept of 3D ICs has been with us for more than ten years. The challenge in 3D IC technology is dense packing by using both vertical and horizontal interconnections. Mass production of 3D IC devices is behind schedule due to cost because of low yield and uncertain reliability. Joule heating is serious in a dense structure because of heat generation and dissipation. A change of reliability paradigm has advanced from failure at a specific circuit component to failure at a system level weak-link. Currently, the electronic industry is introducing 3D IC devices in mainframe computers, where cost is not an issue, for the purpose of collecting field data of failure, especially the effect of Joule heating and current crowding on electromigration. This review will concentrate on the positive feedback between Joule heating and electromigration, resulting in an accelerated system level weak-link failure. A new driving force of electromigration, the electric potential gradient force due to current crowding, will be reviewed critically. The induced failure tends to occur in the low current density region.

  11. Research and Development on Heat Pipes and Related Thermal Engineering Technologies in Japan

    OpenAIRE

    OSHIMA, Koichi

    1989-01-01

    Five advanced heat pipe systems utilizing phase changing heat transfer concept are introduced, which are; a separate type heat pipe heat exchanger, a heat pipe turbine, micro heat pipes, a thermocapillary loop system and mass-produced tubes with inner fin. Inside of these heat pipes, contrary to the conventional heat transfer tubes, evaporation and condensation processes are heavily influenced by the surface tension effect. This effect is also dominant in the heat pipes operating under micro-...

  12. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  13. Technology for industrial waste heat recovery by organic Rankine cycle systems

    Science.gov (United States)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  14. Application of Program Generation Technology in Solving Heat and Flow Problems

    Institute of Scientific and Technical Information of China (English)

    Shui Wan; Bangxian Wu; Ningning Chen

    2007-01-01

    Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.

  15. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  16. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other

  17. 40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.

    Science.gov (United States)

    2010-07-01

    ... process heater with a design heat input capacity of 44 megawatts or greater. (2) Any boiler or process... emission rate specified or implied within a permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical...

  18. Space Shuttle Orbiter AFT heat shield seal

    Science.gov (United States)

    Walkover, L. J.

    1979-01-01

    The evolution of the orbiter aft heat shield seal (AHSS) design, which involved advancing mechanical seal technology in severe thermal environment is discussed. The baseline design, various improvements for engine access, and technical problem solution are presented. It is a structure and mechanism at the three main propulsion system (MPS) engine interfaces to the aft compartment structure. Access to each MPS engine requires disassembly and removal of the AHSS. Each AHSS accommodates the engine movement, is exposed to an extremely high temperature environment, and is part of the venting control of the aft compartment.

  19. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    Energy Technology Data Exchange (ETDEWEB)

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SWINE WASTE ELECTRIC POWER AND HEAT PRODUCTION--MARTIN MACHINERY INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system designed by Martin Machinery was evaluated. This paper provides test result...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SWINE WASTE ELECTRIC POWER AND HEAT PRODUCTION--CAPSTONE 30KW MICROTURBINE SYSTEM

    Science.gov (United States)

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system was evaluated based on the Capstone 30kW Microturbine developed by Cain Ind...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SWINE WASTE ELECTRIC POWER AND HEAT PRODUCTION--MARTIN MACHINERY INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system designed by Martin Machinery was evaluated. This paper provides test result...

  3. 46 CFR 153.355 - PV venting systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false PV venting systems. 153.355 Section 153.355 Shipping... Systems § 153.355 PV venting systems. When Table 1 requires a PV venting system, the cargo tank must have a PV valve in its vent line. The PV valve must be located between the tank and any connection...

  4. 46 CFR 64.63 - Minimum emergency venting capacity.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Minimum emergency venting capacity. 64.63 Section 64.63... emergency venting capacity. (a) The total emergency venting capacity (Q) of the relief devices of an... ASME Code, 1974 edition, or 315. (b) The total emergency venting capacity (Q) of an insulated...

  5. 30 CFR 77.304 - Explosion release vents.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion release vents. 77.304 Section 77.304... Dryers § 77.304 Explosion release vents. Drying chambers, dry-dust collectors, ductwork connecting dryers... explosion release vents which open directly to the outside atmosphere, and all such vents shall be:...

  6. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  7. Building heating technology in Smart Home using PI System management tools

    Directory of Open Access Journals (Sweden)

    Jan Vanus

    2016-03-01

    Full Text Available For comfortable remote monitoring of some operational and technical functions inside own Smart Home building, it is possible to use a lot of useful programmes and tools. However, not each programme or tool is suited to this purpose, or it does not offer required functionality. The aim of this paper is to describe using an appropriate software tool of PI System for a real-time monitoring of acquired data from real technology parts located at a training centre of the Moravian-Silesian Wood Cluster. Then a superior system including applications of PI Coresight and PI ProcessBook is used for analysis and processing of these acquired data (e.g. by using the Dynamic Time Warping method for specific technological quantities. Each application has own advantages and disadvantages, which are evaluated in conjunction with possibilities of manipulating the data. In an experimental part, there are also applied a technological communication standard of BACnet to controlling heating, cooling and forced ventilation, and a software tool of DESIGO Insight for visualising the data in forms of tables, multi-layer graphs, and screens for a certain technology.

  8. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  9. Toyota's heat management system - coolant heat storage for mass production today, new technologies for the future

    Energy Technology Data Exchange (ETDEWEB)

    Ichinose, Hiroki; Takaoka, Toshifumi; Kobayashi, Hideo [Toyota Motor Corporation (Japan)

    2004-07-01

    There has been pressing needs for the protection of metropolitan environment and the challenge of global warming. A heat management system prevails to meet such requirements. In actual driving condition, only about 30% of the total fuel energy is consumed for propulsion and air conditioner. At the same time 60% of fuel energy is wasted as exhaust gas, thermal loss and warm up loss. It is important to manage total thermal energy as a whole vehicle to improve thermal efficiency. The principle is to reduce heat loss in order to increase exhaust gas temperature and recover heat energy for pre-heating at the next cold start. Further developed versions may include thermal management strategies including turbocharger and thermal exchanger using exhaust gas heat energy. Toyota has developed the Coolant Heat Storage system (CHSS) for one of heat management systems to reduce cold emission and improve cabin comfort. The system enables to store hot coolant at the warmed up condition in a heat storage tank. At the next cold start, it is possible for CHSS to reduce unburned hydrocarbon by preheating intake port quickly with the hot coolant in the tank. CHSS was adopted in hybrid vehicle Prius for the US model in 2003. This vehicle achieved to meet the ATPZEV,the most stringent emission regulation in the US. This paper describes a total heat management focusing on the newly developed CHSS.

  10. MHD heat and seed recovery technology project. Tenth quarterly report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Johnson, T. R.

    1980-12-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The primary effort of the HSR Technology Project at Argonne is directed toward experimental investigations of critical problem areas, such as (1) corrosion and erosion of refractories and metal alloys; (2) NO/sub x/ behavior in the radiant boiler and secondary combustor; (3) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (4) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (5) formation, growth, and deposition of seed-slag particles; and (6) character of the combustion gas effluents. These investigations are performed primarily in a 2-MW test facility, the Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, and evaluation of seed regeneration processes. Progress is reported.

  11. Heat-shield for Extreme Entry Environment Technology (HEEET) Development Status

    Science.gov (United States)

    Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter

    2016-01-01

    The Heat shield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD and SMD co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASA's high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI managed mission cost (PIMMC) for investigations utilizing the Heat Shield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment. The HEEET ablative TPS utilizes 3D weaving technology to manufacture a dual layer material architecture. The 3-D weaving allows for flat panels to be woven. The dual layer consists of a top layer designed to withstand the extreme external environment while the inner or insulating layer by design, is designed to achieve low thermal conductivity, and it keeps the heat from conducting towards the structure underneath. Both arc jet testing combined with material properties have been used to develop thermal response models that allows for comparison of performance with heritage carbon phenolic. A 50% mass efficiency is achieved by the dual layer construct compared to carbon phenolic for a broad range of missions both to Saturn and Venus. The 3-D woven flat preforms are molded to achieve the shape as they are compliant and then resin infusion with curing forms a rigid panels. These panels are then bonded on to the aeroshell structure. Gaps

  12. Gas Explosions Mitigation by Ducted Venting

    OpenAIRE

    2007-01-01

    The mitigation of effects of gas and dust explosions within industrial equipment is effective if venting the combustion products to safe location. The presence of relief duct is however likely to increase the severity of the explosion with respect to equipment vented to open atmosphere, due to secondary explosions occurring in the initial sections of duct, frictional drag and inertia of the gas column, acoustic and Helmholtz oscillations. The weights of these phenomena on explosion e...

  13. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    Directory of Open Access Journals (Sweden)

    Premila D. Thongbam

    2011-04-01

    Full Text Available Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  14. The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.

    Science.gov (United States)

    Minic, Zoran; Thongbam, Premila D

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  15. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    Science.gov (United States)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation

  16. Experimental Study on Behavior of Bubbles and Heat transfer by Using Heat Transfer Surface with Artificial Cavities Created by MEMS Technology

    Science.gov (United States)

    Sato, Takato; Koizumi, Yasuo; Ohtake, Hiroyasu

    Pool nucleate boiling heat transfer experiments were performed for water using heat transfer surfaces having unified cavities. Cylindrical holes of 10 μm in diameter and 40 μm in depth were formed on a mirror-finished silicon wafer of 0.2 mm in thickness using Micro-Electro Mechanical Systems (MEMS) technology. This silicon plate was used as the heat transfer surface. The test heat transfer surface was heated by a semiconductor laser beam. Experiments were conducted in the range of up to 1.35 × 105 W⁄m2. When a single cavity was formed, the vertical coalescence of bubbles above the cavity was 60 % and no coalescence was 40 %. The ratios of the convection and the phase change were 80 % and 20 %, respectively. When the number of cavities were increased to three, the coalescence of bubbles on the heat transfer surface became important. When the role of the convection and the phase change in nucleate boiling is considered, it is appropriate to examine the bubble departure from the vapor mass on the heat transfer surface not from cavities.

  17. Waste Heat Power Generation Technology of Steelmaking EAF%炼钢电炉余热发电技术

    Institute of Scientific and Technical Information of China (English)

    何立波

    2013-01-01

    The waste heat condition of flue gas in steelmaking EAF and the project examples of waste heat power generation were introduced. The technologies of gas pulse soot blowing, steam accumulator and saturated steam generation were used to solve the waste heat recovery problem in the project. The waste heat was hard to recovery because of the overmuch dust and big waste heat fluctuation in the waste heat power generation system of the steelmaking EAF.%介绍了炼钢电炉烟气的余热情况及其余热发电的项目实例.项目利用燃气脉冲吹灰、蒸汽蓄能及饱和蒸汽发电技术,解决炼钢电炉烟气余热发电系统中因烟气含尘多和余热波动大而难于回收利用的问题.

  18. The vent microbiome: patterns and drivers

    Science.gov (United States)

    Pachiadaki, M.

    2015-12-01

    Microbial processes within deep-sea hydrothermal vents affect the global biogeochemical cycles. Still, there are significant gaps in our understanding of the microbiology and the biogeochemistry of deep-sea hydrothermal systems. Vents differ in temperature, host rock composition and fluid chemistry; factors that are hypothesized to shape the distribution of the microbial communities, their metabolic capabilities and their activities. Using large-scale single cell genomics, we obtained insights into the genomic content of several linkages of a diffuse flow vent. The genomes show high metabolic versatility. Sulfur oxidation appears to be predominant but there is the potential of using a variety of e- donors and acceptors to obtain energy. To further assess the ecological importance of the vent auto- and heterotrophs, the global biogeography of the analyzed lineages will be investigated by fragment recruitment of metagenomes produced from the same site as well as other hydrothermal systems. Metatranscriptomic and metaproteomic data will be integrated to examine the expression of the predominant metabolic pathways and thus the main energy sources driving chemoautotrophic production. The comparative analysis of the key players and associated pathways among various vent sites that differ in physicochemical characteristics is anticipated to decipher the patterns and drivers of the global dispersion and the local diversification of the vent microbiome.

  19. Application of HEMS cooling technology in deep mine heat hazard control

    Institute of Scientific and Technical Information of China (English)

    HE Man-chao

    2009-01-01

    This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines. Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines. Be-cause of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams. With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations. At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines. The principle of HEMS is to extract cold energy from mine water inrush. Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines: 1) the Jiahe model with a moderate source of cold energy; 2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy. The cooling process of HEMS applied in deep coal mine are as follows: 1) extract cold energy from mine water inrush to cool working faces; 2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure. HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.

  20. Hydrothermal vents is Lake Tanganyika, East African Rift system

    Energy Technology Data Exchange (ETDEWEB)

    Tiercelin, J.J. [Universite de Bretagne Occidentale, Brest (France); Pflumio, C.; Castrec, M. [Universite Paris VI, Paris (France)] [and others

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  1. Euryhaline Halophilic Microorganisms From the Suiyo Seamount Hydrothermal Vents.

    Science.gov (United States)

    Okamoto, T.; Kimura, H.; Maruyama, A.; Naganuma, T.

    2002-12-01

    The euryhaline halophilic microorganisms grow in a wide salinity range from 15% NaCl or to even saturation (about 30% NaCl). A number of euryhaline halophiles have been found in a wide range of habitats from oceanic and terrestrial regimes, from deep-sea vents and seeps, and from Antarctic sea ice and terrains. We have isolated the euryhaline strains independently from a Mid-Atlantic Ridge vent fluids and Antarctic terrains are closely related species of the genus Halomonas. Some euryhaline halophiles maintain intracellular osmotic balance by controlling the concentration of compatible solute such as ectoine. This compatible solute not only stabilizes the proteins from denaturation caused by high salt concentration but also serves as a protectant against stresses such as heating, freezing and drying. The sub-seafloor structure of a hydrothermal vent is highly complicated with mosaic heterogeneity of physicochemical parameters such as temperature and salinity. This premise led us to the hypothesis that some euryhaline halophiles including Halomonas species well adapt to a wide salinity-ranged habitat in the sub-vent. To test this hypothesis, isolation and characterization of euryhaline halophiles from the Suiyo Seamount hydrothermal vents were conducted the drill-cored rock samples from the sites APSK-02, 03, and 07 and the filter-trapped fluid particle samples from the sites APSK-01 and 05 were used. For initial cultivation, a heterotrophic bacterial medium of 15% NaCl was used. The samples was added to the medium and incubated under both aerobic and anaerobic conditions at room temperature. A total of 5 euryhaline halophilic strains were obtained and phylogenetically characterized: two strains (both related to Marinobacter) from APSK-02 core section 2; one strain (related to H. meridiana) from APSK-07 core section 3; and two strains (related to H. meridiana and H. variabilis) from APSK-01 trapped particles. In addition, some thermophilic halophiles that grow at 20

  2. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.

    Science.gov (United States)

    Suzuki, Koichi; Kawamura, Hiroshi

    2004-11-01

    Research and development on advanced high heat flux cooling technology for electronic devices has been carried out as the Project of Fundamental Technology Development for Energy Conservation, promoted by the New Energy and Industrial Technology Development Organization of Japan (NEDO). Based on the microgravity experiments on boiling heat transfer, the following useful results have obtained for the cooling of electronic devices. In subcooled flow boiling in a small channel, heat flux increases considerably more than the ordinary critical heat flux with microbubble emission in transition boiling, and dry out of the heating surface is disturbed. Successful enhancement of heat transfer is achieved by a capillary effect from grooved surface dual subchannels on the liquid supply. The critical heat flux increases 30-40 percent more than for ordinary subchannels. A self-wetting mechanism has been proposed, following investigation of bubble behavior in pool boiling of binary mixtures under microgravity. Ideas and a new concept have been proposed for the design of future cooling system in power electronics.

  3. Flow through reactors for organic chemistry: directly electrically heated tubular mini reactors as an enabling technology for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ulrich Kunz

    2009-11-01

    Full Text Available Until recently traditional heating in organic chemistry has been done with oil heating baths or using electric heat exchangers. With the advent of microwave equipment, heating by microwaves was rapidly introduced as standard method in organic chemistry laboratories, mainly because of the convenient possibility to operate at high temperature accompanied by accelerated reaction rates. In the present contribution we discuss the method of heating small, continuously operated reactors by passing electric current directly through the reactor wall as an enabling technology in organic chemistry. The benefit of this method is that the heat is generated directly inside the reactor wall. By this means high heating rates comparable to microwave ovens can be reached but at much lower cost for the equipment. A tool for the comparison of microwave heating and traditional heating is provided. As an example kinetic data for the acid catalyzed hydrolysis of methyl formate were measured using this heating concept. The reaction is not only a suitable model but also one of industrial importance since this is the main production process for formic acid.

  4. Flow through reactors for organic chemistry: directly electrically heated tubular mini reactors as an enabling technology for organic synthesis.

    Science.gov (United States)

    Kunz, Ulrich; Turek, Thomas

    2009-11-30

    Until recently traditional heating in organic chemistry has been done with oil heating baths or using electric heat exchangers. With the advent of microwave equipment, heating by microwaves was rapidly introduced as standard method in organic chemistry laboratories, mainly because of the convenient possibility to operate at high temperature accompanied by accelerated reaction rates. In the present contribution we discuss the method of heating small, continuously operated reactors by passing electric current directly through the reactor wall as an enabling technology in organic chemistry. The benefit of this method is that the heat is generated directly inside the reactor wall. By this means high heating rates comparable to microwave ovens can be reached but at much lower cost for the equipment. A tool for the comparison of microwave heating and traditional heating is provided. As an example kinetic data for the acid catalyzed hydrolysis of methyl formate were measured using this heating concept. The reaction is not only a suitable model but also one of industrial importance since this is the main production process for formic acid.

  5. Flow through reactors for organic chemistry: directly electrically heated tubular mini reactors as an enabling technology for organic synthesis

    Science.gov (United States)

    Turek, Thomas

    2009-01-01

    Summary Until recently traditional heating in organic chemistry has been done with oil heating baths or using electric heat exchangers. With the advent of microwave equipment, heating by microwaves was rapidly introduced as standard method in organic chemistry laboratories, mainly because of the convenient possibility to operate at high temperature accompanied by accelerated reaction rates. In the present contribution we discuss the method of heating small, continuously operated reactors by passing electric current directly through the reactor wall as an enabling technology in organic chemistry. The benefit of this method is that the heat is generated directly inside the reactor wall. By this means high heating rates comparable to microwave ovens can be reached but at much lower cost for the equipment. A tool for the comparison of microwave heating and traditional heating is provided. As an example kinetic data for the acid catalyzed hydrolysis of methyl formate were measured using this heating concept. The reaction is not only a suitable model but also one of industrial importance since this is the main production process for formic acid. PMID:20300506

  6. Technological and physics assessments on heating and current drive systems for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Thomas, E-mail: thomas.franke@efda.org [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany); Barbato, E. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Bosia, G. [Department of Physics, University of Turin, Via P. Giuria 1, 10125 Turin (Italy); Cardinali, A.; Ceccuzzi, S.; Cesario, R. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Van Eester, D. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Federici, G. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Gantenbein, G. [Karlsruhe Institute of Technology (KIT), Association EURATOM-KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany); Helou, W.; Hillairet, J. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Jenkins, I. [CCFE, Culham Science Centre, Abingdon OX143DB (United Kingdom); Kazakov, Ye.O. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Kemp, R. [CCFE, Culham Science Centre, Abingdon OX143DB (United Kingdom); Lerche, E. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Mirizzi, F. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Noterdaeme, J.-M.; Poli, E. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany); Porte, L. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 13, CH-1015 Lausanne (Switzerland); Ravera, G.L. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); and others

    2015-10-15

    Highlights: • Basic physics requirements of H&CD systems in DEMO have been captured. • The four H&CD systems NBI, EC, IC and LH were analysed to optimize performance. • Novel solutions were studied to overcome the limitations of the present H&CD systems. • RAMI as well as efficiency and optimized design of H&CD systems have been assessed. • Further constraints by remote maintenance or breeding blanket interactions were considered. - Abstract: The physics requirements of the heating and current (H&CD) systems in a Demonstration Fusion Power Plant (DEMO) are often beyond the actual level of design maturity and technology readiness required. The recent EU fusion roadmap advocates a pragmatic approach and favours, for the initial design integration studies, systems to be as much as possible, extrapolated from the ITER experience. To reach the goal of demonstrating the production of electricity in DEMO with a closed fuel cycle by 2050, one must ensure reliability, availability, maintainability, inspectability (RAMI) as well as performance, efficiency and optimized design for the H&CD systems. In the recent Power Plant Physics & Technology (PPP&T) Work Programme, a number of H&CD studies were performed. The four H&CD systems Neutral Beam (NB) Injection, Electron Cyclotron (EC), Ion Cyclotron (IC) and Lower Hybrid (LH) were considered. First, a physics optimization study was made assuming all technologies are available and identifying which parameters are needed to optimize the performance for given plasma parameters. Separately, the (i) technological maturity was considered (e.g. 240 GHz gyrotrons for EC) and (ii) technologies were adapted (e.g. multi-stage depressed collector for EC) or (iii) novel solutions (e.g. photo-neutralization for NB or new antennae concepts for IC) were studied to overcome the limitations of the present H&CD systems with respect to DEMO requirements. Further constraints imposed by remote maintenance or breeding blanket interactions

  7. Sustainable power generation and heat production. Modern technology produces green and cost efficient energy; Nachhaltige Strom- und Waermeerzeugung. Moderne Technologie erzeugt umweltfreundliche und kostenguenstige Energie

    Energy Technology Data Exchange (ETDEWEB)

    Baelz, Uwe; Kilpper, Renate [W. Baelz und Sohn GmbH und Co., Heilbronn (Germany)

    2012-11-01

    The district heating plant in Olang / South Tyrol produces clean, green heat from local wood. Connected with reliable, trouble-free and maintenance-friendly heating technology and advanced visualization, energy-efficient, long-lasting jet pumps directly supply the heat to the consumer considering the individual needs.

  8. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-09-01

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating

  9. On the global distribution of hydrothermal vent fields: One decade later

    Science.gov (United States)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with Antarctic Ridge, and the intermediate spreading Pacific-Antarctic Ridge. Although a greater percentage of the ~11,000 km of BASCs has been surveyed for hydrothermal activity, the discoveries at BASCs in the past decade were mainly at segments with intermediate to fast spreading rates. Using the same equation for F_s vs. u_s, we predicted 71 vent fields remaining to be discovered at BASCs, and most are likely to be found at ultra-slow and slow spreading segments (e.g., Andaman Basin, and central to northern Mariana Trough). With 2/3 of our overall predicted total vent fields at spreading ridges remaining to be discovered, we expect that the next decade of exploration will continue to yield new discoveries, leading to new insights into biogeography of vent fauna and the global impacts of fluxes of heat and

  10. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... end at any point— (i) Where the discharge of fuel from the vent outlet would constitute a fire hazard... with vapor elimination connections must have a vent line to lead vapors back to one of the fuel tanks... line must lead back to the fuel tank used for takeoff and landing....

  11. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... may end at any point— (i) Where the discharge of fuel from the vent outlet would constitute a fire... carburetor with vapor elimination connections must have a vent line to lead vapors back to one of the fuel... return line must lead back to the fuel tank used for takeoff and landing....

  12. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... will constitute a fire hazard or from which fumes may enter personnel compartments; and (7) Vents must... a separate vent line to lead vapors back to the top of one of the fuel tanks. If there is more than... line must lead back to the fuel tank to be used first, unless the relative capacities of the tanks...

  13. ANALYSIS OF VENTING OF A RESIN SLURRY

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  14. ANALYSIS OF VENTING OF A RESIN SLURRY

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  15. Bulk soybean grain mass temperature in warehouses with isolated vents and vent-exhaust combined systems

    Directory of Open Access Journals (Sweden)

    Eliza Rigoni de Pontes

    Full Text Available ABSTRACT: This study aimed to compare the temperatures in the mass of bulk soybeans ( Glycine max in warehouses with isolated vents and vent-combined exhaustion. A completely randomized design was used, with two treatments and ten repetitions. Treatments consisted of warehouse with curved vents and warehouse with curved + static exhaust vents. Each repetition contained the average of all readings in three days in all cables of the warehouse part under study, totaling 10 repetitions per month. The variable analyzed was the temperature in the grain mass in the lower, middle and upper parts of the warehouse from January to May 2012. The environment temperature and humidity were also registered. Static hoods, along with curved vents on the roof of the warehouse showed a tendency to reduce the temperature of the soybean mass with decrease in environmental temperature and increase in relative environmental humidity.

  16. Regulatory framework and examples of ground-source heating/cooling technology in the Winnipeg area

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R. [Manitoba Conservation, Winnipeg, MB (Canada)

    2003-07-01

    Winnipeg, Manitoba lies over a highly transmissive Carbonate Aquifer of Ordovician age, which provides a suitable environment for groundwater supply and return wells. Many licensed ground-source heating cooling (GSHC) systems have been installed in and around the Winnipeg urban area over the last several decades. A water rights licence, issued by the Provincial Department of Conservation, is required for all groundwater supply and return wells. This licence comes with certain rights and responsibilities. This paper describes the regulatory framework which governs the licensing process. The author emphasized that the future use and success of the technology depends, in large part, on the development of a critical mass of experienced contractors, hydrogeologists and consulting engineers. 2 refs.

  17. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center

    Science.gov (United States)

    Johnson, Kenneth S.; Childress, James J.; Hessler, Robert R.; Sakamoto-Arnold, Carole M.; Beehler, Carl L.

    1988-10-01

    The concentrations of a suite of redox reactive chemicals were measured in the Rose Garden hydrothermal vent field of the Galapagos spreading center. Sulfide, silicate, oxygen and temperature distributions were measured in situ with a submersible chemical analyser. In addition, 15 chemical species were measured in discrete samples. Variability in the slope of the temperature-silicate plots indicates that heat is lost from these relatively low temperatures (<15°C) solutions by conduction to the solid phase. Consumption of oxygen, sulfide and nitrate from the hydrothermal solution as it flows past the vent animals is apparent from the distributions measured in situ and in the discrete samples. The fraction of sulfide and nitrate removed from the solution by consumption appears to have increased between 1979-1985. Sulfide and oxygen appear to be consumed under different conditions: sulfide is removed primarily from the warmest solutions, and oxygen is consumed only from the cold seawater. This separation may be driven primarily by the increased gradients of each chemical under these conditions. There is no evidence for the consumption of significant amounts of manganese(II) by the vent organisms. The analysis of other data sets from this vent field indicate no significant consumption of methane by the vent organisms, as well.

  18. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  19. Development of 3D modeling technology for manufacturing finned ribbons from heat-resistant steels

    Science.gov (United States)

    Lyashkov, A. A.; Vasil'ev, E. V.; Popov, A. Y.

    2017-06-01

    The process of shaping a workpiece by a tool using the rolling method is, from the geometric point of view, a process of interaction of two conjugate surfaces. The technology of rolling finned stainless steel ribbons is close to the technology of shaping details by cutting. However, the problems of its practical implementation in the well-known papers analyzing this issue are practically not considered. As a result of the analysis of conjugate surfaces profiling methods in relation to the problem, it was concluded that it seems urgent to develop a methodology for the formation of corrugated ribbon based on 3D modeling use. The implementation of this methodology includes the creation of solid models of the product and the tool, as well as computer simulation of their shaping processes using rolling method. So, at the first stage, a 3D model of finned ribbon was developed, which was then used to produce a profile of a rolling tool. The modeling of this profile was carried out on the basis of the proposed software package in the CAD environment. The created theoretical model of the tool profile was replaced from the technological point of view by a rectilinear profile. To carry out the analysis of the obtained results, the inverse shaping problem was solved - according to the corrected profile of the tool, real profile of the corrugated ribbon is obtained. Computer modeling of extruded volumes in the process of shaping was performed. The analysis of qualitative and quantitative parameters of the extruded volumes made it possible to give recommendations on setting the increment of the tool motion parameter. Based on the results of the studies, profile parameters of the roller are assigned for its practical implementation. The proposed methodology, based on 3D-modeling, allowed to develop a technology for manufacturing finned ribbons from heat-resistant steels by rolling with high productivity, accuracy and stability of the sizes obtained.

  20. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    Science.gov (United States)

    Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.

  1. Design and technology parameters influence on durability for heat exchangers tube to tubesheet joints

    Science.gov (United States)

    Ripeanu, R. G.

    2017-02-01

    The main failures of heat exchangers are: corrosion of tubes and jacket, tubes blockage and failures of tube to tubesheet joints also by corrosion. The most critical zone is tube to tubesheet joints. Depending on types of tube to tubesheet joints, in order to better respect conditions of tension and compression, this paper analyses the tubesheet holes shapes, smooth and with a grove, on corrosion behavior. In the case of welding tubes with tubesheet, welding parameters modify corrosion behavior. Were realized welded joints by three welding regimes and tested at corrosion in two media, tap water and industrial water. Were tested also samples made of smooth tubes, finned tubes and tubes coated with a passive product as applied by a heat exchanger manufacturer. For all samples, the roughness parameters were measured, before and after the corrosion tests. The obtained corrosion rates show that stress values and their distribution along the joint modify the corrosion behavior. The optimum welding parameters were established in order to increase the joint durability. The paper has shown that passive product used is not proper chosen and the technology of obtaining rolled thread pipes diminishes tubes’ durability by increasing the corrosion rate.

  2. New technologies for integrated treatment of vent gas from sour water tank farm in refinery%炼厂酸性水罐区气体减排和治理新技术

    Institute of Scientific and Technical Information of China (English)

    方向晨; 刘忠生; 郭兵兵; 王海波

    2012-01-01

    Sour water tank farm is the largest waste water tank farm in refinery. The vent gas of which consists of H2S, ammonia, organic sulfides, oil vapor, steam and air. Direct emission of odor gas will pollute the air and waste oil vapor. The emission can be reduced more than 50% by degassing waste water, connecting vent gas pipelines together, reducing gas volume in the tank, arranging the drain time at night, etc. The fire by auto-ignition of FeS can be prevented by introducing inert gases to the tank. The vent gas of the tank farm is treated by "low-temperature diesel oil absorption-alkali absorption" ; The diesel oil comes from FCC fractionator and the rich absorption oil flows to hydrotreating unit. When the hydrogen sulfide is absorbed by sodium hydroxide or ammonia, the spent absorption liquid is treated in sour water tank. When hydrogen sulfide is absorbed by alcohol amine, the rich absorption liquid enters regeneration system. The removal rate of hydrogen sulfide and organic sulfides of the process is close to 100% and the recovery rate of NH3 is 60% -90% , the recovery rate of oil vapor is higher than 95% , and the oil vapor concentration in the purified gas is less than 25 g/cm3, and the emission concentrations (kg/h) of H2S, NH3, methyl mercaptan, dimethyl sulfide and dimethyl disulfide are all below (GB 14544-93) "Emission Standards for Odor Pollutants".%酸性水罐区是炼油厂最大的污水罐区,排放气中含有高浓度H2S,NH3,有机硫化物、油气、水蒸气和空气,直接排放导致空气恶臭污染严重且浪费油气资源.采用来水脱气罐、罐顶气连通管网、减少罐内气相空间体积、将排水高峰安排在夜间等措施,可减排气体50%以上.采用罐内气相空间惰性气保护,可防止硫化亚铁自燃引发火灾事故.罐区排放气采用“低温粗柴油吸收-碱液吸收”工艺,粗柴油来自催化裂化分馏塔或常压塔,富吸收油进加氢装置处理;采用

  3. TO THE SUBJECT OF DEVELOPMENT OF POWER SUPPLY PROCESS FOR INDUSTRIAL HEAT TECHNOLOGIES AND HEAT SUPPLY SYSTEMS IN BELARUS

    Directory of Open Access Journals (Sweden)

    B. M. Khrоustalev

    2014-01-01

    Full Text Available Considers the current key energy problem – the rational and efficient use of energy resources, and the possibility of its solution, based on the concept of intensive energy conservation. As a result, the way of primary energy consumption reduction in Belarus is provided. The initial situation in the frame of program of further improvement of energy consumption until 2030 is estimated. It is shown, that for Belarus the first place in energy saving measures takes the efficiency improvement of natural gas consumption, what allows reducing the investment and saving energy resources.The possibility of usage of waste energy flows of medium-and low-temperature from industrial and municipal enterprises are discussed. To realize the described possibilities, some changes of heat supply system of enterprises and plants are required. Changes in heat supply system of the industrial enterprises, related with usage of low-temperature waste energy flows in a thermal energy generation process for heating, require the installation of additional equipment in existing heat energy supply system, such as absorption heat pumps, which are easily joint and successfully work at boiler Houses as well as at CHP. The numerous examples of fuel consumption reduction via heat industrial waste and sewage usage are shown in this article. It must be emphasized, that such an expansion of energy-saving framework not only reduce the primary energy consumption by heat generating sources, but also significantly improves the conditions of the Belarusian electrical grid operation under the conditions of nuclear power plant commissioning. The existing technical framework, that ensured the proposed changes, is also taking into account.

  4. Low Cost High Performance Generator Technology Program. Volume 5. Heat pipe topical, appendices

    Energy Technology Data Exchange (ETDEWEB)

    1975-07-01

    Work performed by Dynatherm Corporation for Teledyne Isotopes during a program entitled ''Heat Pipe Fabrication, Associated Technical Support and Reporting'' is reported. The program was initiated on November 29, 1972; the main objectives were accomplished with the delivery of the heat pipes for the HPG. Life testing of selected heat pipe specimens is continuing to and beyond the present date. The program consisted of the following tasks: Heat Pipe Development of Process Definition; Prototype Heat Pipes for Fin Segment Test; HPG Heat Pipe Fabrication and Testing; Controlled Heat Pipe Life Test; and Heat Pipe Film Coefficient Determination. (TFD)

  5. MicroVent (part III)

    DEFF Research Database (Denmark)

    Dreau, Jerome Le; Heiselberg, Per Kvols; Jensen, Rasmus Lund

    This study aims at using the InVentilate unit in the cooling case, without heat recovery. It results in a relatively low inlet air temperature. Different solutions have been tested to decrease the risk of draught in the occupied zone: ‐ Using a mixer (2 designs) ‐ Using an inlet grille ‐ Using an...

  6. Increasing utilisation of district heating through absorption cooling technology; Oekat fjaerrvaermeutnyttjande med hjaelp av absorptionstekniken

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik; Ingvarsson, Paul; Zinko, Heimo

    2010-10-15

    The purpose of the research project presented in this report was to find ways to return a lower temperature from the generator of the chillers in a supply/return connection. The initial target is 40 deg C. Ideally, the absorption chiller and possible ulterior uses of the remaining heat in the heat carrier (the water flowing through the generator) should be as close as possible to a pure heat load. The hot-water driven absorption chillers used today to produce cooling in DH networks are exclusively so-called single-effect (Sweden) chillers with water and lithium bromide as working pair. This study aims at raising as much as possible the upper bounds on the absorption chiller capacity that may be connected to a DH network, by lowering the temperature at the outlet. To this end, several approaches have been used: - A search for alternative designs of the absorption chiller, focusing on commercially available and tested technology, both those yielding a large temperature decrease over the generator and those that may be operated at lower temperatures than the conventional solutions; - An examination of the impact of further uses of the remaining heat on temperature in the return line. larger. Smaller units are considered only if they can be used to illustrate a principle. As a complement to this investigation, a few other issues have been treated: - What temperature levels should a system actually be designed for? - The LAVA method to calculate the impact of supply and return temperatures in the DH network on the economics of power production is presented; - Interesting technical solutions using desiccant-aided evaporative cooling are shortly described; - The modern developments in the field of working pairs (refrigerant and absorbent) are reviewed. Assumptions made here are that there is a significant demand for cooling, and that the demand is large enough to justify operating the cogeneration plant at a load level exceeding its lowest acceptable part load rather than

  7. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    Directory of Open Access Journals (Sweden)

    C. Lauritano

    2015-03-01

    Full Text Available Submarine volcanic vents are being used as natural laboratories to assess the effects of CO2 on marine organisms and communities, as this gas is the main component of emissions. Seagrasses should positively react to increased dissolved carbon, but in vicinity of volcanic vents there may be toxic substances, that can have indirect effects on seagrasses. Here we analysed the expression of 35 stress-related genes in the Mediterranean keystone seagrass species P. oceanica in the vicinity of submerged volcanic vents located in the Islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR was used to characterize the expression levels of genes. Fifty one per cent of genes analysed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls both in Ischia and Panarea locations, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The expression levels of genes involved in free radical detoxification indicate that, in contrast with Ischia, P. oceanica at the Panarea vent face stressors that result in the production of reactive oxygen species triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. Overall, our study reveals that P. oceanica is generally under higher stress in the vicinity of the vents at Panarea than at Ischia, possibly resulting from environmental and evolutionary differences existing between the two volcanic sites. This is the first study analysing gene responses in marine plants living near natural CO2 vents and our results call for a careful consideration of factors, other than CO2 and acidification, that can cause stress to seagrasses and other organisms near volcanic vents.

  8. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    Science.gov (United States)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  9. Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James

    2017-01-01

    The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one

  10. Field measurements to demonstrate new technology for heat pump systems; Faeltmaetningar foer att demonstrera ny teknik foer vaermepumpsystem

    Energy Technology Data Exchange (ETDEWEB)

    Tiljander, Pia; Haglund Stignor, Caroline; Lidbom, Peter; Viktorsson, Magnus; Lindahl, Markus; Axell, Monica

    2010-09-15

    Within the frames of this project there are ongoing measurements of five different heat pump facilities used for heating houses and tap water in one-family houses. The measurements started in the first part of 2010 and are supposed to go on for one year. The final result together with analysis and discussions will be presented in a report that will be published in summer 2011. The purpose of the measurements is to present the potential for heat pump technology in order to raise the acceptance of the technology and through raised acceptance increase the implementation of the technology in new markets. The project also has its purpose in usage of the results and conclusions as basic data and guidelines for constructors and assembling fitters. The project is not intended to grade individual heat pumps from various suppliers in regard to efficiency. A field study does not adapt well for comparison between different heat pumps since there are too many variables (outdoor climate, usage pattern, construction of the building, installation solution, kind of heat pump system) that affect the performance of the heating system. Results from field studies should therefore never be used for comparison. This kind of work should be carried out in a laboratory where variables that affect the result can be controlled. The project started with a mapping of the Swedish heat pump market in order to obtain a base when choosing the different heat pump facilities that should be included in the field study. The selection was made together with the heat pump manufacturers with focus on selecting the best possible technology and to include different technologies. Another important criterion for the selection was to find households that agreed to participate in the study. Included in the study are two buildings with geothermal heating, one with geothermal heating combined with solar panels, one brine/water heat pump connected to a ground storage combined with solar panels and one building

  11. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  12. Safety Injection System Filling Using Dynamic Venting

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Je; Kim, Wong Bae; Huh, Jin; Lee, Joo Hee; Im, In Young; Kim, Eun kee [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2015-05-15

    In the APR+, the water-level elevation of the in-containment refueling water storage tank (IRWST) is lower than the highest piping of the SIS. Since the gravity filling of water from IRWST cannot fill all SIS piping, an SIP or an SCP test line is newly provided in order to allow the dynamic venting of the SIS. NEI 09-10 Revision 1a-A has concluded that use of dynamic venting is an effective means to remove gas from local high points and traps in piping when correctly based on the dynamic flow rate, void volume, Floude number, and the system water volume. In this study, feasibility of the dynamic vent is investigated. The work presented in this study evaluates the SIS and the SCS filling using the dynamic venting which is supposed to be applied to the APR+. The main ideas are as follows; 1. Dynamic venting using SIPs for the APR+ is not appropriate on the basis of 12 inches in diameter and with the flow rate, 1,460 gpm. 2. Because the high point of the SIS and the SCS is located at the piping that the two systems are sharing, the accumulated gas at the highest point can be removed by using the SCPs, and the dimension of the new piping will be determined by its length of them and the number of elbows. The calculated results are shown in Table 2. 3. The applicability of the dynamic venting methods using the SCPs that are mentioned above should be evaluated in the aspect of the system operation after the piping arrangements are settled in the APR+. The assessments to determine the pump operation time are also required.

  13. Testing Geyser Models using Down-vent Data

    Science.gov (United States)

    Wang, C.; Munoz, C.; Ingebritsen, S.; King, E.

    2013-12-01

    Geysers are often studied as an analogue to magmatic volcanoes because both involve the transfer of mass and energy that leads to eruption. Several conceptual models have been proposed to explain geyser eruption, but no definitive test has been performed largely due to scarcity of down-vent data. In this study we compare simulated time histories of pressure and temperature against published data for the Old Faithful geyser in the Yellowstone National Park and new down-vent measurements from geysers in the El Tatio geyser field of northern Chile. We test two major types of geyser models by comparing simulated and field results. In the chamber model, the geyser system is approximated as a fissure-like conduit connected to a subsurface chamber of water and steam. Heat supplied to the chamber causes water to boil and drives geyser eruptions. Here the Navier-Stokes equation is used to simulate the flow of water and steam. In the fracture-zone model, the geyser system is approximated as a saturated fracture zone of high permeability and compressibility, surrounded by rock matrix of relatively low permeability and compressibility. Heat supply from below causes pore water to boil and drives geyser eruption. Here a two-phase form of Darcy's law is assumed to describe the flow of water and steam (Ingebritsen and Rojstaczer, 1993). Both models can produce P-T time histories qualitatively similar to field results, but the simulations are sensitive to assumed parameters. Results from the chamber model are sensitive to the heat supplied to the system and to the width of the conduit, while results from the fracture-zone model are most sensitive to the permeability of the fracture zone and the adjacent wall rocks. Detailed comparison between field and simulated results, such as the phase lag between changes of pressure and temperature, may help to resolve which model might be more realistic.

  14. Vents et nuages la physique du ciel

    CERN Document Server

    2013-01-01

    Les nuages et les vents sont au cœur des attentions des climatologues et des météorologues. Les premiers s’intéressent à leurs interactions avec le réchauffement climatique. Les seconds cherchent à prédire le temps qu’il fera demain, mais aussi les manifestations extrêmes (tornades, orages, cyclones…). Un numéro pour rester le nez au vent et la tête dans les nuages !

  15. Composition of gases vented from a condenser

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, R.N.

    1980-08-01

    Designers of systems that involve condensers often need to predict the amount of process vapor that accompanies the noncondensable gases that are vented from the condensers. An approximation is given that appears to provide, in many cases, reasonably accurate values for the mole ratio of process vapor to noncondensable gases in the vented mixture. The approximation is particularly applicable to flash and direct-contact power systems for geothermal brines and ocean thermal energy conversion (OTEC). More regorous relationships are available for exceptional cases.

  16. Direct torus venting analysis for Chinshan BWR-4 plant with MARK-I containment

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2017-03-15

    Highlights: • Study the effectiveness of Direct Torus Venting System (DTVS) during extended SBO of 24 h for Chinshan MARK-I plant. • Containment response is analyzed by GOTHIC based on boundary conditions from RETRAN calculation. • Analyses are performed with and without DTVS, respectively. • Suppression pool is sub-divided and thermal stratification is observed. - Abstract: The Chinshan plant, owned by Taiwan Power Company, has twin units of BWR-4 reactor and MARK-I containment. Both units have been operating at rated core thermal power of 1840 MWt. The existing Direct Torus Venting System (DTVS) is the main system used for venting the containment during the extended station blackout event. The purpose of this paper is to study the effects of the DTVS venting on the response of the containment pressure and temperature. The reactor is depressurized by manually opening the safety relief valves (SRVs) during the SBO, which causes the mass and energy to be discharged into and heat up the suppression pool. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The DTVS model is established in the GOTHIC model based on the venting size, venting piping loss, venting initiation time, and venting source. The lumped volume model, 1-D coarse-mesh model, and 3-D coarse-mesh model are considered in the torus volume. The calculation is first done without DTVS venting to establish a reference basis. Then a case with DTVS available is performed. Comparison of the two cases shows that the existing DTVS design is effective in mitigating the severity of the containment pressure and temperature transients. The results also show that the 1-D coarse-mesh model may not be appropriate since a

  17. The application of masonry chimney venting tables for oil-fired appliances

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Strasser, J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    This paper presents an overview of the results of work in developing a set of rational guidelines for the venting of modern oil-fired appliances. The activities included the continued development and completion of the Oil-Heat Vent Analysis Program (OHVAP), Version 1.0 and the interpretation of nearly 2,000 runs in preparing recommendations for presentation in table form. These results are presented in the form of venting tables for the installation of chimney vent systems for mid- and high-efficiency oil-fired heating appliances using masonry chimneys. A brief description of OHVAP is given as well as a discussion of what the program does. Recommendations based on the results of OHVAP are presented in the form of five tables spanning oil-fired appliance Steady state Efficiencies (Eff{sub ss}) of 80% to 88%. The assumptions used in the calculations and examples of the computed results are presented as well as a discussion of the rationale for masonry chimney system treatment. Working examples are given with suggested diagnostic approaches for application of the table recommendations.

  18. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  19. Milestone Report:3.2.2.26 Appliances, HVAC & Water Heating R&D-Select Sorption Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Moonis Raza [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The purpose of this report is to select a sorption technology based on recent work completed on characterizing working pairs for both absorption and adsorption technologies based on Global Warming Potential (GWP) of less than 100 (relative to carbon dioxide, 100-year atmospheric life span) and zero Ozone Depletion Potential (ODP). From a total of eighty-three potential working pairs (absorption technology), there were only two candidate working pairs for the absorption technology, and 8 potential working pairs for adsorption technology. After screening these ten potential candidates on the basis of sizes of the desorber, absorber/adsorber, evaporator, condenser, and rectifier (where applicable), the ORNL-Georgia Tech study concluded that best working pairs are NH3-H2O for the most compact system in terms of heat transfer equipment surface area, and NH3-LiNO3 and MeOH-[mmin][DMP] where efficiency is most important. Based on a single-stage absorption and adsorption modeling using the Engineering Equation Solver (EES), the performance of both sorption systems was evaluated from known heat transfer correlations, and thermos-physical properties. Based on these results, the technology chosen is absorption technology. The selected technology is absorption for the reasons cited in Section 4.

  20. 污水源热泵技术应用%The sewage-source heat pump technology application

    Institute of Scientific and Technical Information of China (English)

    张永清; 那威

    2016-01-01

    This paper introduced the typical sewage-source heat pump system engineering at home and abroad,analyzed the advantages and dis-advantages of sewage-source heat pump system,and elaborated four principles promotion of sewage-source heat pump technology,conducive to the popularization and application and continuous development of the technology in our country.%对国内外典型的污水源热泵系统工程进行了介绍,分析了污水源热泵系统的优缺点,并阐述了推广污水源热泵技术应遵循的四项原则,有利于该技术在我国的推广应用与不断发展。

  1. Application of fluidized-bed technology to the recovery of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Grogan, P.J.; Evans, A.R.

    1979-08-01

    The fluidized-bed, waste-heat boiler (FBWHB) may represent a significant opportunity for industrial energy conservation. The applications of FBWHBs to the recovery of heat from waste streams are examined. Compared to other waste-heat recovery units, FBWHBs can transfer more heat per unit volume and are physically smaller - an important consideration for retrofit and construction costs. A detailed discussion of fluidized beds, including their application in waste-heat recovery and the factors affecting FBWHB design is presented. Design methodology is discussed along with a preliminary engineering design for recovering heat from a waste-gas stream, a typical FBWHB application.

  2. COVIS Detects Interconnections Between Atmospheric, Oceanic and Geologic systems at a Deep Sea Hydrothermal Vent

    Science.gov (United States)

    Bemis, K. G.; Xu, G.; Lee, R.

    2015-12-01

    COVIS (Cabled Observatory Vent Imaging Sonar) is an innovative sonar system designed to quantitatively monitor focused and diffuse flows from deep-sea hydrothermal vent clusters. From 9/2010 to 9/2015, COVIS was connected to the NEPTUNE observatory at Grotto vent in the Main Endeavour Field, JdFR. COVIS monitored plumes and diffuse discharge by transmitting high-frequency (200-400 kHz), pulsed acoustic waves and recording the backscattered signals to yield time series of plume heat and volume transports, plume bending, and diffuse flow area. Temporal variations indicate the rate of hydrothermal plume mixing with the ambient seawater increases with the magnitude of ocean currents. Such current-driven entrainment links the dynamics of a deep-sea hydrothermal plume with oceanic and atmospheric processes. We estimate the direction and relative amplitude of the local bottom currents from the bending angles of the plumes. A comparison with currents from an ADCP (~80 m south of Grotto) reveals significant complexity in the mean bottom flow structure within a hydrothermal vent field. Diffuse flow area, temperature, and faunal densities vary periodically reflecting some combination of tidal pressure and current interactions. The heat transport time series suggests the heat source driving the plume remained relatively steady for 41 months. Local seismic data reveals that increased heat transport in 2000 followed seismic events in 1999 and 2000 and the steady heat flux from 10/2011 to 2/2015 coincided with quiescent seismicity. Such a correlation points to the close linkage of a seafloor hydrothermal system with geological processes. These findings demonstrate the intimate interconnections of seafloor hydrothermal systems with processes spanning the Earth's interior to the sea surface. Further, they (and the time-series acquired by COVIS) testify to the effectiveness and robustness of employing an acoustic-imaging sonar for long-term monitoring of a seafloor hydrothermal

  3. Computer controlled vent and pressurization system

    Science.gov (United States)

    Cieslewicz, E. J.

    1975-01-01

    The Centaur space launch vehicle airborne computer, which was primarily used to perform guidance, navigation, and sequencing tasks, was further used to monitor and control inflight pressurization and venting of the cryogenic propellant tanks. Computer software flexibility also provided a failure detection and correction capability necessary to adopt and operate redundant hardware techniques and enhance the overall vehicle reliability.

  4. Light at deep-sea hydrothermal vents

    Science.gov (United States)

    Van Dover, Cindy Lee; Reynolds, George T.; Chave, Alan D.; Tyson, J. Anthony

    Ambient light spectral data were acquired at two deep-sea hydrothermal vents with a temperature of ˜350°C: the Hole-to-Hell site on the East Pacific Rise at 9°N and the Snake-Pit site on the Mid-Atlantic Ridge. Measurements were made with a simple, multi-channel photometer which simultaneously detected light in four 100 nm-wide bands over the wavelength range of 650-1050 nm. Most of the light detected is near-infrared (750-1050 nm), but there is a 19x greater photon flux than expected from thermal radiation alone at shorter wavelengths (650-750 nm) at the Hole-to-Hell vent. At Snake Pit, more light in the 750-850 nm band was observed 10 cm above the orifice where the temperature was 50-100°C than at the 351°C vent opening. These data suggest the presence of non-thermal light sources in the vent environment. Some possible non-thermal mechanisms are identified, but further data will be required to resolve them.

  5. 46 CFR 151.15-6 - Venting piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Venting piping. 151.15-6 Section 151.15-6 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Tanks § 151.15-6 Venting piping. (a) The back pressure in the relief... condensate which may accumulate in the vent piping. (b)...

  6. 14 CFR 34.11 - Standard for fuel venting emissions.

    Science.gov (United States)

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 34.11 Standard for fuel venting emissions. (a) No... discharge to the atmosphere of fuel drained from fuel nozzle manifolds after engines are shut down and...

  7. 46 CFR 153.358 - Venting system flow capacity.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Venting system flow capacity. 153.358 Section 153.358 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any...

  8. 40 CFR 63.983 - Closed vent systems.

    Science.gov (United States)

    2010-07-01

    ... inspections for visible, audible, or olfactory indications of leaks. (ii) If the closed vent system is... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Closed vent systems. 63.983 Section 63... Emission Standards for Closed Vent Systems, Control Devices, Recovery Devices and Routing to a Fuel...

  9. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Pedersen, Rolf B; Rapp, Hans Tore; Thorseth, Ingunn H; Lilley, Marvin D; Barriga, Fernando J A S; Baumberger, Tamara; Flesland, Kristin; Fonseca, Rita; Früh-Green, Gretchen L; Jorgensen, Steffen L

    2010-11-23

    The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific.

  10. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  11. The role of heat pump technologies in the design of future sustainable energy systems

    DEFF Research Database (Denmark)

    Blarke, Morten Boje; Lund, Henrik

    2005-01-01

    In this paper, it is shown that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps with existing CHP units, is critically sensitive to the operational mode...... of the heat pump vis-à-vis the operational coefficient of performance (COP), which is set by the temperature level of the heat source. When using only ambient air as the heat source, the total heat production costs increases by about 10%, while the partial use of condensed flue gas from the CHP unit as a heat...... source results in an 8% cost reduction. Furthermore, the operational analysis shows that when a large-scale heat pump is integrated with an existing CHP unit, the projected spot market situation in Nord Pool, which reflects a growing share of wind power and heat-bound power generation electricity...

  12. Commissioning of filtered containment venting test loop Java plus

    Energy Technology Data Exchange (ETDEWEB)

    Beiseigel, A.; El-Rharbaoui, F.; Wich, M.

    2013-07-01

    AREVA GmbH operates a unique Thermal-hydraulic platform in Germany, France and USA. It is recognized as a test body according to ISO 17025. The Deutsche Akkreditierungsstelle GmbH (DAkkS - German Society for Accreditation) has also certified the Thermal-hydraulic platform as an independent inspection body Type C according to ISO 17020. A part of this platform is the Component Laboratory located in Karlstein, Germany which is in operation for more than 50 years. The testing activities cover a wide range as: Critical Heat Flux Tests, Valve Testing and LOCA Qualification of safety related components. Since 2012 the component Qualification Karlstein reactivated their testing scope for Filtered Containment Venting System (FCVS) Tests which is to our knowledge the largest (mass flow and volume) dedicated FCVS test facility.

  13. Outline of HybVent

    DEFF Research Database (Denmark)

    Heiselberg, Per

    ventilation and passive cooling are sustainable, energy-efficient and clean technologies as far as they cah be controlled, (that is if well modelled and understood). They are well accepted by occupants and should therefore be encouraged wherever possible. Unfortunately, the design of energy......In well thermally insulated office buildings, which are more and more frequent in lEA countries, ventilation (and cooling) account for more than 50% of the energy requirement, and a well-controlled and energy-efficient ventilation system is a prerequisite to low energy consumption. Natural......-efficient ventilation systems in office buildings is often turned into a question of using either natural ventilation and passive cooling or mechanical ventilation and cooling. This prevents a widespread use of sustainable _ technologies because a certain performance cannot be guaranteed under all conditions. In fact...

  14. Analysis of the impact of heat pump technology on the Irish energy system to the year 2000. Energy case study series: No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Brady, J.

    1977-09-15

    An analysis of the impact of existing and new heat pump technology on the Irish energy system to the year 2000 was undertaken. The methodology used involved the measurement of the potential impact against a base Reference Energy System for various heat pump strategies. A short analysis of the implementation rates and their effect on technology impact was also carried out.

  15. Studies on Effective Utilization of SOFC Exhaust Heat Using Thermoelectric Power Generation Technology

    Science.gov (United States)

    Terayama, Takeshi; Nagata, Susumu; Tanaka, Yohei; Momma, Akihiko; Kato, Tohru; Kunii, Masaru; Yamamoto, Atsushi

    2013-07-01

    Solid oxide fuel cells (SOFCs) are being researched around the world. In Japan, a compact SOFC system with rated alternative current (AC) power of 700 W has become available on the market, since the base load electricity demand for a standard home is said to be less than 700 W AC. To improve the generating efficiency of SOFC systems in the 700-W class, we focused on thermoelectric generation (TEG) technology, since there are a lot of temperature gradients in the system. Analysis based on simulations indicated the possibility of introducing thermoelectric generation at the air preheater, steam generator, and exhaust outlet. Among these options, incorporating a TEG heat exchanger comprising multiple CoSb3/SiGe-based TEG modules into the air preheater had potential to produce additional output of 37.5 W and an improvement in generating efficiency from 46% to 48.5%. Furthermore, by introducing thermoelectric generation at the other two locations, an increase in maximum output of more than 50 W and generating efficiency of 50% can be anticipated.

  16. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    Science.gov (United States)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  17. Preliminary assessment of a hysteroscopic fallopian tube heat and biomaterial technology for permanent female sterilization

    Science.gov (United States)

    Divakar, Prajan; Trembly, B. Stuart; Moodie, Karen L.; Hoopes, P. Jack; Wegst, Ulrike G. K.

    2017-02-01

    Recent failures in hysteroscopic female sterilization procedures have brought into question the implantation of nonresorbable metal devices into the fallopian tubes due to long-term risks such as migration, fragmentation, and tubal perforation. The goal of this study is to assess whether a porous, biodegradable implant can be deposited into the fallopian tube lumen with or without a local mild heat treatment to generate a safe and permanent fallopian tube occlusion/sterilization event. The technologies investigated included freeze-cast collagen-based scaffolds and magnetic nanoparticle (MNP) based scaffolds. In vitro assessment of iron oxide MNP-based scaffolds was performed to determine the absorption rate density (ARD); subsequent computational modeling quantified the thermal in vivo steady state temperature as a function of tubal radius for treatment planning. For collagen-based scaffolds, in vivo testing was performed to study the biocompatibility in a mouse flank model, followed by implantation into an in vivo anestrus feline uterine horn (animal model for the fallopian tube). Biological responses were studied histopathologically. Uterine horn patency was assessed via radiographic imaging. Preliminary studies suggest the MNP-impregnated scaffold and a safe, noninvasive AMF excitation field have potential to generate a sufficient focal fallopian tube thermal dose to create a fibrotic healing event and ultimately, permanent tubal occlusion.

  18. Study on the urban heat island effect based on quantitative remote sensing technology

    Science.gov (United States)

    Nie, Yunju; Tong, Chengzhuo; Cheng, Penggen; Chen, Xiaoyong; Zhou, Mengyu

    2015-12-01

    In recent years, the effect of urban heat island (UHI) is increasingly obvious with moving forward in further urbanization process, which has become one of the prominent issues of environment. The image data of Nanchang city supplied by Landsat 5 Thematic Mapper (TM) in September 2006 is used in this paper, and the land surface temperature (LST) over the same period has been retrieved by using a mono-window algorithm based on remote sensing technology. The classification of LST is subsequently fulfilled by the method of proper density cutting. Characteristics of intensity and spatial distribution of UHI effect in Nanchang, as well as its relationships with land use type and vegetation coverage degree (VCD) are discussed in detail. The result shows that the phenomena of UHI are significantly presented in urban area with an inhomogeneous distribution, and the degree of influence of UHI depends on types of land uses. The intensity of UHI effect has a significant negative linear correlation with normalized difference vegetation index (NDVI). It is deduced that suitably optimizing land use types and raising VCR are obvious and effective ways to reduce UHI.

  19. Application of Heating Technology for Heat Transfer Oil in Veneer Dryer%导热油加热技术在单板干燥机上的应用

    Institute of Scientific and Technical Information of China (English)

    吕继文; 浦卫清; 纪建伟; 章文达

    2014-01-01

    通过BG134辊筒式单板干燥机热耗量计算、导热油炉选择、供热管线布置和换热器设计,介绍导热油加热技术在辊筒式单板干燥机上的应用,为胶合板生产技术改造和增产节能提供参考。%This article introduced the heating technology for heat transfer oils in roler veneer drying via heat consumption of roler veneer dryer BG134. This national key technology promotion project chose heat oil oven management for heating pipes and design of heat exchanger. It provided theoretical support for optimizing technology of veneer production line and increased capacity with lower consumption.

  20. Heat pumps and technological innovation: Civil use in 80's (2nd part)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici)

    1990-10-01

    Absorption heat pumps have rapidly spread as prototypes in machines used over the year with an excellent power performance. Developments concerning engines are also interesting, mainly in the light of a fresh interest for the Stirling. Research in the field of substances is considerable, both to find more suitable substances from a thermodynamic point of view and to replace chlorofluorocarbons which endanger the ozone layer. Important developments have also occurred in the recovery of heat build-ups in the ground and in roofs as sources for heat pumps, whereas, in some countries, more attention is paid to the use of heat pumps for district heating.

  1. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J.S.; Fisher, A.T. [Univ. of California, Santa Cruz, CA (United States); Langseth, M.; Jin, W.; Iturrino, G. [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Davis, E. [Geological Survey of Canada, Sidney, British Columbia (Canada). Pacific Geoscience Centre

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  2. Solar technology assessment project. Volume 3: Active space heating and hot water supply with solar energy

    Science.gov (United States)

    Karaki, S.; Loef, G. O. G.

    1981-04-01

    Several types of solar water heaters are described and assessed. These include thermosiphon water heaters and pump circulation water heaters. Auxiliary water heating is briefly discussed, and new and retrofit systems are compared. Liquid-based space heating systems and solar air heaters are described and assessed, auxiliary space heating are discussed, and new and retrofit solar space heating systems are compared. The status of flat plate collectors, evacuated tube collectors, and thermal storage systems is examined. Systems improvements, reliability, durability and maintenance are discussed. The economic assessment of space and water heating systems includes a comparison of new systems costs with conventional fuels, and sales history and projections. The variety of participants in the solar industry and users of solar heat is discussed, and various incentives and barriers to solar heating are examined. Several policy implications are discussed, and specific government actions are recommended.

  3. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  4. Comparison of Technological Options for Distributed Generation-Combined Heat and Power in Rajasthan State of India

    Directory of Open Access Journals (Sweden)

    Ram Kumar Agrawal

    2013-01-01

    Full Text Available Distributed generation (DG of electricity is expected to become more important in the future electricity generation system. This paper reviews the different technological options available for DG. DG offers a number of potential benefits. The ability to use the waste heat from fuel-operated DG, known as combined heat and power (CHP, offers both reduced costs and significant reductions of CO2 emissions. The overall efficiency of DG-CHP system can approach 90 percent, a significant improvement over the 30 to 35 percent electric grid efficiency and 50 to 90 percent industrial boiler efficiency when separate production is used. The costs of generation of electricity from six key DG-CHP technologies; gas engines, diesel engines, biodiesel CI engines, microturbines, gas turbines, and fuel cells, are calculated. The cost of generation is dependent on the load factor and the discount rate. It is found that annualized life cycle cost (ALCC of the DG-CHP technologies is approximately half that of the DG technologies without CHP. Considering the ALCC of different DG-CHP technologies, the gas I.C. engine CHP is the most effective for most of the cases but biodiesel CI engine CHP seems to be a promising DG-CHP technology in near future for Rajasthan state due to renewable nature of the fuel.

  5. Biodiversity and biogeography of hydrothermal vent species in the western Pacific: a biological perspective of TAIGA project

    Science.gov (United States)

    Seo, M.; Watanabe, H.; Nakamura, M.; Sasaki, T.; Ogura, T.; Yahagi, T.; Takahashi, Y.; Ishibashi, J.; Kojima, S.

    2012-12-01

    Deep-sea hydrothermal vents are scientifically interesting environments where strong interactions of geology, chemistry, and biology can be observed. The hydrothermal vents are geologically controlled in association with magmatic activities while diversity of chemicals (such as hydrogen sulfide) contained in hydrothermal fluid is controlled by geochemical interaction between heated seawater and surrounding rocks. In addition to those geological and chemical characters of hydrothermal vents, high biomasses of chemosynthetic community have been known around many vents since the first discovery in the 1970s. To understand the unique system and diversity of biological communities associated with vents is highly valuable in geological, chemical, and biological sciences. As an activity of the research project "TAIGA (Trans-crustal Advection & In-situ bio-geochemical processes of Global sub-seafloor Aquifer)" (Representative: Tetsuro Urabe, Department of Earth & Planetary Science, the University of Tokyo), we analyzed population structures and connectivity as well as larval ecology of various hydrothermal vent species in the Okinawa Trough and the Mariana Trough in an attempt to estimate faunal transitional history associated with hydrothermal activities. The specimens analyzed in the present study were collected by R/V Yokosuka with manned submersible Shinkai6500 and R/V Natsushima with ROV Hyper-Dolphin during YK10-11 and NT11-20 cruises, respectively. In the Mariana Trough (YK10-11), benthic and planktonic faunas were investigated by multiple sampling and use of plankton samplers in three hydrothermal vents (Snail, Archaean, and Urashima-Pika fields). Faunal compositions were then compared as well as size compositions and genetic diversities of major vent species among local populations. In the Okinawa Trough (NT11-20), multiple quantitative sampling was made with simultaneous environmental measurements at more than two sites in five hydrothermal vents (Minami

  6. Environmental Technology Verification Report - Electric Power and Heat Production Using Renewable Biogas at Patterson Farms

    Science.gov (United States)

    The U.S. EPA operates the Environmental Technology Verification program to facilitate the deployment of innovative technologies through performance verification and information dissemination. A technology area of interest is distributed electrical power generation, particularly w...

  7. Environmental Technology Verification Report - Electric Power and Heat Production Using Renewable Biogas at Patterson Farms

    Science.gov (United States)

    The U.S. EPA operates the Environmental Technology Verification program to facilitate the deployment of innovative technologies through performance verification and information dissemination. A technology area of interest is distributed electrical power generation, particularly w...

  8. Technology of latent-heat recovery for boiler system; Boira ni okeru sennetsu kaishu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, T. [Tokyo Gas Co. Ltd. (Japan)

    1996-08-01

    The boiler has reached the highest degree of completion among combustion equipment and is highly efficient. In order to enhance its efficiency further, it is ordinary to recover the retention heat of the combustion exhaust gas, but due to the problem of low temperature corrosion caused by the sulfur content in fuel resulted from a temperature drop of the exhaust gas, heat recovery has been done not sufficiently. In this article, an example is introduced to plan the betterment of efficiency by application of a latent heat recovering economizer to a sugar manufactory and a report is made on the energy saving effect by recovering the latent heat and a study on the quality of the material for the latent heat reclaimer. The above latent heat reclaimer is a system which takes advantage of the feature of the natural gas reportedly having no sulfur content, brings down the temperature at the outlet of a heat exchanger of the boiler exhaust gas to below the dew point, thereby recovers the condensed latent heat of the vapor in the exhaust gas and utilizes it for heating up the boiler feed water. In this example, the line of an already installed boiler has been partially modified and only a latent heat reclaimer has been installed newly. The increase of efficiency has been as high as 5.28%. 5 figs., 5 tabs.

  9. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Science.gov (United States)

    Wajs, Jan; Mikielewicz, Dariusz; Fornalik-Wajs, Elżbieta; Bajor, Michał

    2015-12-01

    A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  10. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Directory of Open Access Journals (Sweden)

    Wajs Jan

    2015-12-01

    Full Text Available A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  11. Effect of Radio Frequency Heating on Yoghurt, I: Technological Applicability, Shelf-Life and Sensorial Quality

    Science.gov (United States)

    Siefarth, Caroline; Tran, Thi Bich Thao; Mittermaier, Peter; Pfeiffer, Thomas; Buettner, Andrea

    2014-01-01

    This first part of a two-part study focuses on the technical feasibility of applying radio frequency (RF) heating at different temperatures (58, 65 and 72 °C) to a stirred yoghurt gel after culturing. For comparison, a convectional (CV) heating process was also applied. The aim was to increase the yoghurt shelf-life, by preventing post-acidification and the growth of yeasts and molds. At the same time, the viability of lactic acid bacteria (LAB) was investigated in view of existing legal regulations for yoghurts. Additionally, the yoghurt color, aroma and taste profiles were evaluated. It was found that the application of RF heating was effective for the rapid attainment of homogenous temperatures of 58 and 65 °C, respectively. For RF heating at 72 °C, it was not possible to establish a stable heating regime, since in some cases, there was significant overheating followed by strong contraction of the yoghurt curd and whey separation. Hence, it was decided not to continue with the RF heating series at 72 °C. In the case of CV heating, heat transfer limitations were observed, and prolonged heating was required. Nevertheless, we showed that yeasts and molds survived neither the RF nor CV heat treatment. LAB were found not to survive the CV treatment, but these beneficial microorganisms were still present in reduced numbers after RF heating to 58 and 65 °C. This important observation is most likely related to the mildness of RF treatment. While post-acidification was not observed on yoghurt storage, slight color changes occurred after heat treatment. The flavor and taste profiles were shown to be similar to the reference product. Furthermore, a trained sensory panel was not able to distinguish between, for example, the reference yoghurt and the RF 65 °C sample by triangular testing (α = 5%), showing the potential of novel strategies for further improvements of heat-treated yoghurt. PMID:28234322

  12. Effect of Radio Frequency Heating on Yoghurt, I: Technological Applicability, Shelf-Life and Sensorial Quality

    Directory of Open Access Journals (Sweden)

    Caroline Siefarth

    2014-05-01

    Full Text Available This first part of a two-part study focuses on the technical feasibility of applying radio frequency (RF heating at different temperatures (58, 65 and 72 °C to a stirred yoghurt gel after culturing. For comparison, a convectional (CV heating process was also applied. The aim was to increase the yoghurt shelf-life, by preventing post-acidification and the growth of yeasts and molds. At the same time, the viability of lactic acid bacteria (LAB was investigated in view of existing legal regulations for yoghurts. Additionally, the yoghurt color, aroma and taste profiles were evaluated. It was found that the application of RF heating was effective for the rapid attainment of homogenous temperatures of 58 and 65 °C, respectively. For RF heating at 72 °C, it was not possible to establish a stable heating regime, since in some cases, there was significant overheating followed by strong contraction of the yoghurt curd and whey separation. Hence, it was decided not to continue with the RF heating series at 72 °C. In the case of CV heating, heat transfer limitations were observed, and prolonged heating was required. Nevertheless, we showed that yeasts and molds survived neither the RF nor CV heat treatment. LAB were found not to survive the CV treatment, but these beneficial microorganisms were still present in reduced numbers after RF heating to 58 and 65 °C. This important observation is most likely related to the mildness of RF treatment. While post-acidification was not observed on yoghurt storage, slight color changes occurred after heat treatment. The flavor and taste profiles were shown to be similar to the reference product. Furthermore, a trained sensory panel was not able to distinguish between, for example, the reference yoghurt and the RF 65 °C sample by triangular testing (α = 5%, showing the potential of novel strategies for further improvements of heat-treated yoghurt.

  13. Effect of Radio Frequency Heating on Yoghurt, I: Technological Applicability, Shelf-Life and Sensorial Quality.

    Science.gov (United States)

    Siefarth, Caroline; Tran, Thi Bich Thao; Mittermaier, Peter; Pfeiffer, Thomas; Buettner, Andrea

    2014-05-15

    This first part of a two-part study focuses on the technical feasibility of applying radio frequency (RF) heating at different temperatures (58, 65 and 72 °C) to a stirred yoghurt gel after culturing. For comparison, a convectional (CV) heating process was also applied. The aim was to increase the yoghurt shelf-life, by preventing post-acidification and the growth of yeasts and molds. At the same time, the viability of lactic acid bacteria (LAB) was investigated in view of existing legal regulations for yoghurts. Additionally, the yoghurt color, aroma and taste profiles were evaluated. It was found that the application of RF heating was effective for the rapid attainment of homogenous temperatures of 58 and 65 °C, respectively. For RF heating at 72 °C, it was not possible to establish a stable heating regime, since in some cases, there was significant overheating followed by strong contraction of the yoghurt curd and whey separation. Hence, it was decided not to continue with the RF heating series at 72 °C. In the case of CV heating, heat transfer limitations were observed, and prolonged heating was required. Nevertheless, we showed that yeasts and molds survived neither the RF nor CV heat treatment. LAB were found not to survive the CV treatment, but these beneficial microorganisms were still present in reduced numbers after RF heating to 58 and 65 °C. This important observation is most likely related to the mildness of RF treatment. While post-acidification was not observed on yoghurt storage, slight color changes occurred after heat treatment. The flavor and taste profiles were shown to be similar to the reference product. Furthermore, a trained sensory panel was not able to distinguish between, for example, the reference yoghurt and the RF 65 °C sample by triangular testing (α = 5%), showing the potential of novel strategies for further improvements of heat-treated yoghurt.

  14. Technology Being Developed at Lawrence Berkeley National Laboratory: Ultra-Low- Emission Combustion Technologies for Heat and Power Generation

    Science.gov (United States)

    Cheng, Robert K.

    2001-01-01

    The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.

  15. 40 CFR 63.116 - Process vent provisions-performance test methods and procedures to determine compliance.

    Science.gov (United States)

    2010-07-01

    ... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer...) of this section is used. (1) A boiler or process heater with a design heat input capacity of 44... introduced with the combustion air or as a secondary fuel into a boiler or process heater with a...

  16. 40 CFR 63.117 - Process vent provisions-reporting and recordkeeping requirements for group and TRE determinations...

    Science.gov (United States)

    2010-07-01

    ... Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process... boiler or process heater. (iv) For a boiler or process heater with a design heat input capacity of less... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process vent provisions-reporting...

  17. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  18. Completion of Hot Test on Engineering Application Research of Heat-pump Evaporation Technology Dealing With Low Level Radioactive Liquid Waste

    Institute of Scientific and Technical Information of China (English)

    YAN; Xiao; YANG; Xue-feng; CHE; Jian-ye; ZHAO; Da-peng; SHEN; Zheng; YANG; Xiu-hua; QI; Zhi-qiang; ZHANG; Qiang

    2013-01-01

    The heat-pump evaporation technology is an efficient energy conservation waste liquid treatment technology by way of recycling and reusing of waste heat.The key technology is to retrieve the second steam coming from the evaporator,and to superheated steam by mean of increasing pressure at rising temperature in the steam compressor.And then the superheated steam needs to be returned to the

  19. Amine Swingbed Payload Technology Demonstration

    Science.gov (United States)

    Sweterlitsch, Jeffrey

    2014-01-01

    The Amine Swingbed is an amine-based, vacuum-regenerated adsorption technology for removing carbon dioxide and humidity from a habitable spacecraft environment, and is the baseline technology for the Orion Program’s Multi-Purpose Crew Vehicle (MPCV). It uses a pair of interleaved-layer beds filled with SA9T, the amine sorbent, and a linear multiball valve rotates 270° back and forth to control the flow of air and vacuum to adsorbing and desorbing beds. One bed adsorbs CO2 and H2O from cabin air while the other bed is exposed to vacuum for regeneration by venting the CO2 and H2O. The two beds are thermally linked, so no additional heating or cooling is required. The technology can be applied to habitable environments where recycling CO2 and H2O is not required such as short duration missions.

  20. Economic assessment of geothermal direct heat technology: A review of five DOE demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Hederman, William F. Jr.; Cohen, Laura A.

    1981-06-01

    In this report the cost of using low temperature geothermal energy resources for direct heating applications is compared to the costs associated with conventional heating fuels. The projects compared all involved replacing conventional fuels (e.g., natural gas and fuel oils) with geothermal energy in existing heating systems. The cost of using geothermal energy in existing systems was also compared with the cost of new coal-fired equipment.

  1. Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Ibarra-Bahena

    2014-02-01

    Full Text Available The absorber is a major component of absorption cycle systems, and its performance directly impacts the overall size and energy supplies of these devices. Absorption cooling and heating cycles have different absorber design requirements: in absorption cooling systems, the absorber works close to ambient temperature, therefore, the mass transfer is the most important phenomenon in order to reduce the generator size; on the other hand, in heat transformer absorption systems, is important to recover the heat delivered by exothermic reactions produced in the absorber. In this paper a review of the main experimental results of different absorber designs reported in absorption heat pump cycles is presented.

  2. Provisions for containment venting in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, J.G.

    1997-08-01

    In this short paper an overlook is given of the systems developed in Germany for filtered containment venting and their implementation in nuclear power plants. More information on the development can be found in the Proceedings of the DOE/NRC Aircleaning Conferences. In Germany, 28.8 % of the electric energy is produced by 19 nuclear power reactors. No new power reactor is expected to be built at least within the next ten years, but France and Germany cooperate in the development of a future European Power Reactor (ERP). This reactor type will be fitted with a core catcher and passive cooling in order to avoid serious consequences of a hypothetical core meltdown accident so that provisions for containment venting are not required. 3 refs., 6 figs., 1 tab.

  3. INFLUENCE OF ORGANIZATIONAL AND TECHNOLOGICAL SOLUTIONS TO TECHNICAL AND ECONOMICAL INDICATORS IN PROJECT OF HEAT INSULATION FACADES

    Directory of Open Access Journals (Sweden)

    BABIJ I. N. Cand. Sc. (Tech., Associate Professor,

    2016-09-01

    Full Text Available Summary. Raising of problem. The article dedicated to the solution important problems of choosing rational technical and economic indicators of the duration and cost the process heat insulation facades of buildings by means of experimental and statistical modeling organizational and technological solutions. For this we used the results of numerical experiment, theory a shorthand experiment planning and contemporary computer programs. Purpose. We used experimentally-statistical modeling to establish the impact of organizational and technological solutions for heat insulation of facades by hinged ventilated systems on technical and economic parameters of the project, such as duration and cost. Conclusion. We investigated depending duration assembly jobs and manufacturing cost on the value and combination of variable factors experimental and statistical modeling of construction processes and results patterns of change in studied parameters.

  4. Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle

    Directory of Open Access Journals (Sweden)

    Legros Arnaud

    2014-08-01

    Full Text Available The purpose of this article was to compare different waste heat recovery system technologies designed for automotive applications. A complete literature review is done and results in two comparative graphs. In the second part, simulation models are built and calibrated in order to assess the fuel consumption reduction that can be achieved on a real driving cycle. The strength of this article is that the models are calibrated using actual data. Finally, those simulations results are analyzed and the Rankine cycle and turbocompound are the two most profitable solutions. However the simulations of the turbocompound shows its limitations because the impact on the exhaust pressure drop is not taken into account in the assessment of the car fuel consumption. Fuel reduction of up to 6% could be achieved, depending on the driving cycle and the waste heat recovery technology.

  5. Effect of T6 Heat Treatment Parameters on Technological Quality of the AlSi7Mg Alloy

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2016-12-01

    Full Text Available Very well-known advantages of aluminum alloys, such as low mass, good mechanical properties, corrosion resistance, machining-ability, high recycling potential and low cost are considered as a driving force for their development, i.e. implementation in new applications as early as in stage of structural design, as well as in development of new technological solutions. Mechanical and technological properties of the castings made from the 3xx.x group of alloys depend mainly on correctly performed processes of melting and casting, design of a mould and cast element, and a possible heat treatment.

  6. Detection and location of leaks in district heating steam systems: Survey and review of current technology and practices

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D.S.; Raptis, A.C.; Lanham, R.N.

    1992-03-01

    This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.

  7. Technology Solutions Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This case study describes the construction of a new test home that demonstrates current best practices for the mixed-humid climate, including a high performance ground source heat pump for heating and cooling, a building envelope featuring advanced air sealing details and low-density spray foam insulation, and glazing that exceeds ENERGY STAR requirements.

  8. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  9. Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF

    Science.gov (United States)

    Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.

    2017-08-01

    The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.

  10. Psychological factors in the diffusion of sustainable technology: a study of Norwegian households' adoption of wood pellet heating

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya; Kloeckner, Christian A.

    2010-07-01

    Full text: This paper aims to understand the determinants of the adoption of wood pellet technology for home heating to identify possible strategies towards the slow diffusion of wood pellet in Norway. A mail survey of 737 Norwegian households was conducted in 2008, involving wood pellet adopters and non wood pellet adopters as respondents. An integrated model combining psychological factors (such as intentions, attitudes, perceived behavioral control, habits and norms), perceived wood pellet heating characteristics, and ecological and basic values is applied to predict the installation of a wood pellet stove retrospectively. Results from a path analysis gain empirical support for the proposed integrated model. Wood pellet heating adoption is mainly predicted by a deliberate decision process starting with the evaluation of heating system characteristics, mediated by attitudes and intentions. Perceived behavioural control and habits pose relevant barriers to the adoption process. The influence of norms and values are indirect and only minor in the given market conditions. The most important heating system characteristics in the analysis were perceived functional reliability and perceived installation and maintenance costs. Possible intervention strategies to speed up wood pellet adoption in Norway are discussed in the last part of the paper. (Author)

  11. Ecology of deep-sea hydrothermal vent communities: A review

    Science.gov (United States)

    Lutz, Richard A.; Kennish, Michael J.

    1993-08-01

    Studies of the many active and inactive hydrothermal vents found during the past 15 years have radically altered views of biological and geological processes in the deep sea. The biological communities occupying the vast and relatively stable soft bottom habitats of the deep sea are characterized by low population densities, high species diversity, and low biomass. In contrast, those inhabiting the generally unstable conditions of hydrothermal vent environments exhibit high densities and biomass, low species diversity, rapid growth rates, and high metabolic rates. Biological processes, such as rates of metabolism and growth, in vent organisms are comparable to those observed in organisms from shallow-water ecosystems. An abundant energy source is provided by chemosynthetic bacteria that constitute the primary producers sustaining the lush communities at the hydrothermal sites. Fluxes in vent flow and fluid chemistry cause changes in growth rates, reproduction, mortality, and/or colonization of vent fauna, leading to temporal and spatial variation of the vent communities. Vent populations that cannot adapt to modified flow rates are adversely affected, as is evidenced by high mortality or lower rates of colonization, growth, or reproduction. Substantial changes in biota have been witnessed at several vents, and successional cycles have been proposed for the Galapagos vent fields. Dramatic temporal and spatial variations in vent community structure may also relate to variations in larval dispersal and chance recruitment, as well as biotic interactions.

  12. Study of the technology of heat pipe on prevention wildfire of coal gangue hill

    Science.gov (United States)

    Deng, Jun; Li, Bei; Ding, Ximei; Ma, Li

    2017-04-01

    Self-ignitable coal gangue hill (CGH) is one kind of special combustion system, which has the characteristics of low self-ignite point, large heat storage, and easy reignition. The currently industrial fire extinguishing methods, such as inhibiting tendency of coal self-ignition, loessial overburden, and cement grouting, had unsatisfied effects for dispersing the heat out in time. Correspondingly, the CGH will lead reignition more frequently with the passage of time. The high underground temperature of CGH threatens the process of ecological and vegetation construction. Therefore, the elimination of high temperature is a vital issue to be solved urgently for habitat restoration. To achieve the ultimately ecological management goal of self-ignitable CGH - extinguishing the fire completely and never reignited, it is crucial to break the heat accumulation. Heat-pipe (HP) has a character of high efficient heat transfer capacity for eliminating the continuously high temperature in CGH. An experimental system was designed to test the heat transfer performance of HP for preventing and extinguishing the spontaneous combustion of coal gangue. Based on the heat transfer theory, the resistance network of the coal-HP heat removal system was analyzed for studying the cooling effect of HP. The experimental results show that the HP can accelerate the heat release in coal gangue pile. The coal temperature could be controlled at 59.6 ˚ C with HP in 7 h and the highest cooling value is 39.4 % with HP in 150 h, which can effectively cool the temperatures of high temperature zones. As a powerful heat transfer components, as soon as HPs were inserted into the CGH with a reasonable distance, it can completely play a vital role in inhibiting the coal self-ignition process.

  13. Interface oscillation of subcooled flow boiling in locally heated microchannels

    Science.gov (United States)

    Liu, J. T.; Peng, X. F.

    2009-02-01

    An investigation was conducted to understand flow boiling of subcooled de-ionized water in locally heated parallel microchannels. High-speed visualization technology was employed to visually observe the transient phase change process in an individual microchannel. Signal analysis method was employed in studying the interface movement and phase change process. The phase change at locally heated condition was different from those at entirely heated condition where elongated bubble(s) stayed quasi-stable for a long time without venting out. Diversified and intensive interface oscillation was observed occurring on both of the upstream and downstream bubble caps. Evaporation and condensation modes were characterized with distinguished oscillation frequencies. The film-driven oscillations of both evaporating and condensing interfaces generally operated at higher frequencies than the oscillations driven by nucleation or dropwise condensation.

  14. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem

  15. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  16. Technology Solutions Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68°F) than day (73° F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  17. Experimental study on waste heat recovery from an IC engine using thermoelectric technology

    Directory of Open Access Journals (Sweden)

    Kumar Ramesh C.

    2011-01-01

    Full Text Available A major part of the heat supplied in an IC engine is not realized as work output, but dumped into the atmosphere as waste heat. If this waste heat energy is tapped and converted into usable energy, the overall efficiency of the engine can be improved. The percentage of energy rejected to the environment through exhaust gas which can be potentially recovered is approximately 30-40% of the energy supplied by the fuel depending on engine load. Thermoelectric modules (TEM which are used as Thermoelectric generators (TEG are solid state devices that are used to convert thermal energy from a temperature gradient to electrical energy and it works on basic principle of Seebeck effect. This paper demonstrates the potential of thermoelectric generation. A detailed experimental work was carried to study the performance of TEG under various engine operating conditions. A heat exchanger with 18 TEG modules was designed and tested in the engine test rig. Thermoelectric modules were selected according to the temperature difference between exhaust gases side and the engine coolant side. Various designs of the heat exchangers were modeled using CAD and analysis was done using a CFD code which is commercially available to study the flow & heat transfer characteristics. From the simulated results it was found that rectangular shaped heat exchanger met our requirements and also satisfied the space and weight constraint. A rectangular heat exchanger was fabricated and the thermo electric modules were incorporated on the heat exchanger for performance analysis. The study also revealed that energy can be tapped efficiently from the engine exhaust and in near future TEG can reduce the size of the alternator or eliminate them in automobiles.

  18. Microbial Characterization of Solid-Wastes Treated with Heat Melt Compaction Technology

    Science.gov (United States)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6

  19. Thermal Protection System Materials (TPSM): Heat Shield for Extreme Entry Environment Technology (HEEET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Heatshield for Extreme Entry Environ­ment Technology (HEEET) project seeks to mature a game changing Woven Ther­mal Protection System (TPS) technology to...

  20. Hybrid Cooling Loop Technology for Robust High Heat Flux Cooling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a hybrid cooling loop and cold plate technology for space systems thermal management. The proposed...

  1. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    Science.gov (United States)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  2. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Science.gov (United States)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  3. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-01

    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  4. Better Duct Systems for Home Heating and Cooling; Building Technologies Program (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Duct systems used in forced-air space-conditioning systems are a vital element in home energy efficiency. How well a system works makes a big difference in the cost and the effectiveness of heating and cooling a home.

  5. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  6. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  7. Assessment of existing and prospective piping technology for district-heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Oliker, I.

    1979-09-01

    Data on design features and operational experience of 40 hot water and steam district-heating networks with an overall heat capacity of 18,000 MWt have been collected, systematized, and analyzed. Piping networks located in Canada, Denmark, Finland, France, Italy, Japan, Netherlands, Sweden, USA, USSR, and West Germany have been analyzed and the data assembled. The data bank and analysis of the operational experience design features of hot water and steam district-heating networks are provided in Sections 2 and 3. In Section 4 the piping installation design is optimized in order to reduce costs wherever possible, without jeopardizing overall system efficiency, reliability or service life, and employing a mixture of typical US and European district-heating practices. The status of prospective non-metallic piping materials is presented in Section 5. The following materials have been investigated: fiberglass reinforced plastic, cross-linked polyethylene, polybutylene, prestressed concrete, polymer concrete, and asbestos-cement piping. (MCW)

  8. Building heating : New avenues to explore; Chauffage de batiments : De nouvelles pistes a explorer

    Energy Technology Data Exchange (ETDEWEB)

    Cordeau, P.

    2001-09-01

    surfaces. No vents or auxiliary equipment is required, and it still allows for the installation of regulating devices. Heat recovery from exhaust air, waste water and hot gases represents an interesting alternative for a better energy management of the building. It can be accomplished by using equipment such as water coolers, refrigeration systems or refrigeration compressors. The Electrochemical Technologies and Electrotechnologies Laboratory (Laboratoire des technologies electrochimiques et des electrotechnologies) is finalizing an energy analysis on a new method of recovering heat with an integrated condenser-heat reclaimer and a heat recovery system equipped with a heat pump designed to meet the needs of food markets. It is recommended to contact an Hydro-Quebec representative who could assist in the determination of the right heating system to meet the needs. 1 tab.

  9. Too Much of a Good Thing ? Radioisotope Power Conversion Technology and `Waste' Heat in the Titan Environment

    Science.gov (United States)

    Lorenz, Ralph

    Unlike most solar system surface environments, Titan has an atmosphere that is both cold and dense. This means heat transfer to and from a vehicle is determined by convection, rather than by radiation which dominates on Earth and Mars. With surface temperatures near 94K, batteries and systems require heating to operate. Solar power is impractical, so a spacecraft intended to operate for longer than a few hours on Titan must have a radioisotope power source (RPS). Such sources convert heat from Plutonium decay into electricity, with an efficiency that varies from about 5% for thermoelectric systems to 20% for engine cycles such as Stirling. For vehicles with 100-200W electrical power, the 500-4000 W ‘waste’ heat in the Titan environment can be valuable in that it can be exploited to maintain thermal conditions inside the vehicle. The generally benign Titan environment, and the outstanding scientific and popular interest in its exploration, has attracted a number of mission concepts including a lander for Titan’s equatorial dunefields, light gas and hot air (‘Montgolfière’) balloons, airplanes, and capsules that float on its polar seas (e.g. the proposed Titan Mare Explorer.) However, the choice of conversion technology is key to the success of these different platforms. Waste heat can perturb meteorological measurements in several ways. First by creating a warm air plume (an effect observed on Viking and Curiosity.) Second, rain or seaspray falling onto hot radiator surfaces can evaporate causing a local enhancement of methane humidity. Third, sufficiently strong heating could perturb local winds. Similar effects, and the potential generation of effervescence or even fog, may result for capsules floating in liquid hydrocarbons. For landers and drifting buoys, these perturbations may significantly degrade environmental measurements, or at least demand tall meteorology masts, for the higher waste heat output of thermoelectric systems, and a Stirling system

  10. Optimal design of a Thermodynamic Vent System for cryogenic propellant storage

    Science.gov (United States)

    Mer, Samuel; Fernandez, David; Thibault, Jean-Paul; Corre, Christophe

    2016-12-01

    Future operations in space exploration require to store cryogenic liquids for long duration. Residual heat loads, due to heat conduction in the launcher structure or solar radiation, induce cryogenic propellant vaporization and tank self-pressurization. The Thermodynamic Vent System (TVS) permits to control self-pressurization using the following procedure: a fraction of liquid propellant is removed from the tank by a pump, cooled down by a heat exchanger and re-injected inside the tank as a jet or a spray. As no natural heat sink is available in space, the cold source is created by removing another fraction of liquid propellant which is expanded in a Joule-Thomson valve and vented to space. The sub-cooled injection is followed by vapor condensation and liquid bath destratification due to mixing. In this work, an optimization method is applied to an extended homogeneous thermodynamic model to design a TVS system maximizing the storage duration under various heat load and tank size assumptions.

  11. Optimal technology choice and investment timing: A stochastic model of industrial cogeneration vs. heat-only production

    Energy Technology Data Exchange (ETDEWEB)

    Wickart, Marcel [Centre for Energy Policy and Economics (CEPE), Department of Management, Technology, and Economics, ETH Zurich, Zurichbergstrasse 18 (ZUE E), 8032 Zurich (Switzerland); Madlener, Reinhard [Centre for Energy Policy and Economics (CEPE), Department of Management, Technology, and Economics, ETH Zurich, Zurichbergstrasse 18 (ZUE E), 8032 Zurich (Switzerland) and DIW Berlin, Department of Information Society and Competition, Koenigin-Luise-Strasse 5, 14195 Berlin (Germany)]. E-mail: rmadlener@ethz.ch

    2007-07-15

    In this paper we develop an economic model that explains the decision-making problem under uncertainty of an industrial firm that wants to invest in a process technology. More specifically, the decision is between making an irreversible investment in a combined heat-and-power production (cogeneration) system, or to invest in a conventional heat-only generation system (steam boiler) and to purchase all electricity from the grid. In our model we include the main economic and technical variables of the investment decision process. We also account for the risk and uncertainty inherent in volatile energy prices that can greatly affect the valuation of the investment project. The dynamic stochastic model presented allows us to simultaneously determine the optimal technology choice and investment timing. We apply the theoretical model and illustrate our main findings with a numerical example that is based on realistic cost values for industrial oil- or gas-fired cogeneration and heat-only generation in Switzerland. We also briefly discuss expected effects of a CO{sub 2} tax on the investment decision.

  12. 基于VB技术的管壳式换热器传热计算系统开发%Development of heat transfer calculation system of tube shell heat exchanger based on VB technology

    Institute of Scientific and Technical Information of China (English)

    冯婕; 朱小军

    2016-01-01

    VB technology development shell and tube heat exchanger computing systems,is an innovative theory and practice,to improve computational efficiency of heat transfer heat exchanger has a great significance.This paper analyzes the Heat Exchanger computing systems,as well as technology in the VB Shell and Tube Heat Exchanger computing systems development.%运用VB技术开发管壳式换热器传热计算系统,是一种理论上和实践上的创新,对提高我国的换热器传热计算效率具有重要的意义。本文主要分析了换热器的传热计算系统,以及VB技术在管壳式换热器传热计算系统开发中的应用。

  13. Waste Heat Recovery Technology for the Flue Gas of Hot Rolling Heating Furnace%热轧加热炉烟气余热回收利用技术

    Institute of Scientific and Technical Information of China (English)

    刘伟

    2014-01-01

    介绍一种热轧加热炉烟气余热回收利用技术的系统流程、工艺设计方案、主要参数及经济效益。利用这套技术将加热炉烟气潜在余热进行梯级高效利用,并通过生产实践证明,达到了理想的应用效果。%The systematic process, technological design, main parameters and economic benefits of the waste heat recovery technology for the flue gas of hot rolling heating furnace are introduced.Potential waste heat from the heating furnace flue gas was efficiently utilized in a cascade model through adopting the technology, the ideal effect of which has been proved by production practice.

  14. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  15. A Design Tool for Clothing Applications: Wind Resistant Fabric Layers and Permeable Vents

    Directory of Open Access Journals (Sweden)

    Phillip Gibson

    2014-01-01

    Full Text Available A computational clothing design tool is used to examine the effects of different clothing design features upon performance. Computational predictions of total heat and mass transfer coefficients of the clothing design tool showed good agreement with experimental measurements obtained using a sweating thermal manikin for four different clothing systems, as well as for the unclothed bare manikin. The specific clothing design features examined in this work are the size and placement of air-permeable fabric vents in a protective suit composed primarily of a fabric-laminated polymer film layer. The air-permeable vents were shown to provide additional ventilation and to significantly decrease both the total thermal insulation and the water vapor resistance of the protective suit.

  16. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    Science.gov (United States)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  17. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    Science.gov (United States)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  18. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  19. Geothermal Research at the Geo-Heat Center Oregon Institute of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    1997-01-01

    The Geo-Heat Center was established in 1975 to provide information and technical services for geothermal energy direct-use and development--mainly utilizing low- and moderate-temperature resources (<150oC). The Center is funded by the Geothermal Division of the U.S. Department of Energy (USDOE). Our main functions are (1) technical assistance, (2) resource information, (3) advising and referrals, (4) speaker’s bureau, (5) tours of geothermal systems, (6) publications, (7) research, and (8) stocking a geothermal library. During 1997, the Geo-Heat Center staff provided assistance to 761 individuals, companies and municipalities--up to eight hours of technical assistance can be provided free of charge. Staff members have also participated in numerous international geothermal direct-use projects. The Center has developed a “Geothermal Direct Use Engineering and Design Guidebook” and publishes a free “Quarterly Bulletin” on geothermal direct-use projects and research. The Geo-Heat Center also has a website (http://www.oit.edu/~geoheat). Several of these direct-use research projects are discussed in the paper, including: a) Downhole Heat Exchangers, b) A Cost Comparison of Commercial Ground- Source Heat Pump Systems, c) A Spreadsheet for Geothermal Energy Cost Evaluation, d) Utilization of Silica Waste from Geothermal Power Production, e) Fossil Fuel-Fired Peak Heating for Geothermal Greenhouses, f) Selected Cost Considerations for the Geothermal District Heating in Existing Single-Family Residential Areas, and g) Collocated Resources Inventory of Wells and Hot Springs in the Western U.S.

  20. On the Technology of Ground Source Heat Pump%浅谈地源热泵技术

    Institute of Scientific and Technical Information of China (English)

    屈东升

    2012-01-01

    The concept of ground source heat pump technology is described. The working principle and classification, the composition of ground source heat pump is introduced. The characteristics and actual application of ground source heat pump is analyzed. It is pointed out that the ground source heat pump which is a renewable energy has broad developing and applying prospects in energy saving and exhaustion-reducing, environmental protection, sustainable development in our country.%阐述地源热泵技术的概念。介绍地源热泵系统的组成部分、工作原理和分类,分析地源热泵系统的特点和实际应用情况。提出地源热泵这种可再生能源在我国节能降耗、生态环保、可持续发展中具有广阔的发展和应用前景。

  1. El destí en el vent

    OpenAIRE

    2015-01-01

    El projecte de final de grau consisteix en la realització d'un producte audiovisual d'entreteniment. S'ha produït un curtmetratge creatiu utilitzant la tècnica d'animació stop motion. El vídeo narra, a través de dos fulls de paper, un relat inventat que parla de l'amor impossible, "El destí en el vent". El proyecto de fin de grado consiste en la realización de un producto audiovisual de entretenimiento. Se ha producido un cortometraje creativo utilizando la técnica de animación stop mot...

  2. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  3. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  4. Development trend analysis of heat pump technology at home and abroad%国际热泵技术发展趋势分析

    Institute of Scientific and Technical Information of China (English)

    杨灵艳; 徐伟; 朱清宇; 肖龙

    2012-01-01

    综述了由国际能源组织热泵中心主办的第10届国际热泵大会的相关内容,认为当前热泵技术已进入循环促进、良性发展的阶段.总结分析了当前热泵技术发展的热点,包括地源热泵系统的地埋管换热器、复合式系统、系统能效研究,空气源热泵的低温应用、除霜、能效研究以及新型制冷剂和热泵机组的研究等,同时预测了未来国际热泵技术的发展趋势.%Reviews the contents of the 10th international heat pump conference hosted by the International Energy Agency (IEA) Heat Pump Centre. Considers that the heat pump technology has entered into a stage of circulating acceleration and sound development. Summarizes the current foci in heat pump technology researches, including the ground heat exchanger, combined system and energy efficiency of ground-source heat pump systems, the low temperature application, defrosting and energy efficiency of air-source heat pump systems, and the development of new refrigerants and heat pump units. Forecasts the future development trend of heat pump technology.

  5. Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.

    Science.gov (United States)

    Weigand, B; Semmler, K; von Wolfersdorf, J

    2001-05-01

    The present review paper, although far from being complete, aims to give an overview about the present state of the art in the field of heat transfer technology for internal cooling of gas turbine blades. After showing some typical modern cooled blades, the different methods to enhance heat transfer in the internal passages of air-cooled blades are discussed. The complicated flows occurring in bends are described in detail, because of their increasing importance for modern cooling designs. A short review about testing of cooling design elements is given, showing the interaction of the different cooling features as well. The special focus of the present review has been put on the cooling of blades for heavy-duty gas turbines, which show several differences compared to aero-engine blades.

  6. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources for both terrestrial and space...

  7. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  8. Concept for a cyclonic spray scrubber as a fission product removal system for filtered containment venting

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, Luke S., E-mail: Luke.Lebel@cnl.ca; Piro, Markus H., E-mail: Markus.Piro@cnl.ca; MacCoy, Reilly, E-mail: Reilly.MacCoy@cnl.ca; Clouthier, Anthony, E-mail: Tony.Clouthier@cnl.ca; Chin, Yu-Shan, E-mail: Sammy.Chin@cnl.ca

    2016-02-15

    Graphical abstract: - Highlights: • A new cyclonic spray scrubber concept for filtered containment venting is presented. • Mechanistic particle removal model paired with discrete particle CFD simulations. • Calculations predict that very high decontamination factors can be achieved. - Abstract: The application of a cyclonic spray scrubber as a technology for filtered containment venting is proposed in this paper. This study has paired a mechanistic model for the kinetic particle coagulation of with Euler–Lagrange discrete particle simulations in order to predict particle decontamination factors. The continuous phase behavior has been investigated using computational fluid dynamics simulations together with phase Doppler anemometry measurements. Calculations show that spray scrubbing of radionuclide-bearing aerosols could be very effective, and predict that decontamination factors can be in excess of 10{sup 6} for micron sized particles and excess of 10{sup 3} for submicron particles. In the wake of the accident at the Fukushima Daiichi Nuclear Power Plant, filtered containment venting is being viewed as an increasingly important severe accident mitigation technology. Cyclonic spray scrubbing could be implemented as a passive technology for decontaminating containment gases in an emergency prior to their discharge to the atmosphere, and is a novel approach for this application.

  9. Integration of solar installations in heating technology; Integration der Solaranlage in die Heizungstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H. [Solvis Energiesysteme GmbH und Co KG, Braunschweig (Germany)

    1998-06-01

    Future heating systems must be geared to the task of providing the comfort of warm rooms and warm water while giving due consideration to the consequences this has for the environment. The present paper discusses the development of heating energy demand, the integration and adjustment of the heating circuit for solar energy, and the dimensioning and layout of a solar installation for water warming. It also deals with the testing of solar buffer storages. [Deutsch] Wie kann der Komfort warmer Raeume und warmem Wassers erreicht werden und welche Konsquenzen hat das fuer die Umwelt, dies sind die Kriterien an denen sich die Waermeversorgung der Zukunft orientieren muss. Die Entwicklung des Heizenergiebedarfs, die Einbindung und Abstimmung des Heizkrieses fuer Solarenergie sowie die Dimensionierung und Auslegung einer Solaranlage zur Warmwassererw armung werden erlaeutert. Ein weiterer Punkt betrifft den Test von Solarpufferspeichern.

  10. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

  11. Development of a technology of completely prefabricated heat-isolating facade panels; Fassadendaemm- und Sanierungstechnik mit vorgefertigten Komplettplatten

    Energy Technology Data Exchange (ETDEWEB)

    Reyer, E.; Bamberger, C.; Sieder, M. [Fakultaet fuer Bauingenieurwesen, Inst. fuer Konstruktiven Ingenieurbau, Ruhr-Univ. Bochum, Bochum (Germany)

    2003-02-01

    Due to rising prices of energy, worldwide efforts to reduce the CO{sub 2}-emission and sustainable use of decreasing energy resources, the reduction of - for our buildings required - heat energy is getting more and more important. So the ministry of urban development and house building, culture and sport (MSWKS) of the federal state Nordrhein-Westfalen promoted the research project ''Development of a technology of completely prefabricated heat-isolating facade panels - called complete panel''. In the context of this research project an innovative technology of facade insulation and renovation was developed. The Complete-Panel-technology is based on completely in factory prefabricated (therefore the designation ''Complete Panel'') facade panels with high heat insulation for the use in new and old house building facades. The craftsmanlike application of ''Complete Panels'' depends on a plug-in technology based on a bar-shaped fasteners at the wall. As main advantages offers the Complete-Panel-technology high production quality, low construction time and low restrictions on the occupant during the redevelopment measure of the frontage of the buildings. This summary of indicates the essential aspects of the Complete-Panel-technology. (orig.) [German] Aufgrund steigender Energiepreise, weltweiter Bestrebungen zur Reduzierung des CO{sub 2}-Ausstosses und zum nachhaltigen Umgang mit den begrenzten Energieressourcen gewinnt die Reduzierung des Heizenergiebedarfs unserer Gebaeude staendig an Bedeutung. Vor diesem Hintergrund foerderte das Ministerium fuer Staedtebau und Wohnen, Kultur und Sport (MSWKS) des Landes Nordrhein-Westfalen das Forschungsvorhaben Entwicklung einer Fassadendaemm- und Sanierungstechnik mit vorgefertigten Komplettplatten. Im Rahmen dieses Forschungsvorhabens wurde eine innovative Fassadendaemm- und Sanierungstechnik auf der Basis werkseitig voellig vorgefertigter (daher die Bezeichnung &apos

  12. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andrew [Oregon State Univ., Corvallis, OR (United States). Nuclear Engineering and Radiation Health Physics; Matthews, Topher [Oregon State Univ., Corvallis, OR (United States); Lenhof, Renae [Oregon State Univ., Corvallis, OR (United States); Deason, Wesley [Oregon State Univ., Corvallis, OR (United States); Harter, Jackson [Oregon State Univ., Corvallis, OR (United States)

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  13. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, Wayne R. [Sentech, Inc.

    2010-07-01

    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  14. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akers, Ronald R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morrison, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-07

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those created using a resistive heated nozzle.

  15. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  16. Heating technology: Listen to where the music is playing; Heiztechnik: Hier spielt die Musik

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-12-31

    The choice between an oil-fired and a gas-fired heating system is often not a matter of task but simply of which energy carrier happens to be available. The present article therefore provides information in equal depth on both types of heating system and explains their respective strong and weak points. In this context it also discusses possible future developments. (orig.) [Deutsch] Ueber die Anschaffung einer oel- oder gasbefeuerten Heizung entscheidet haeufig nicht die persoenliche Sympathie, sondern schlicht und ergreifend die Verfuegbarkeit des Energietraegers. Wir wollen Sie deshalb gleichermassen ausfuehrlich ueber beide Heizsysteme informieren und dabei die jeweiligen Staerken und Schwaechen herausarbeiten und einen Blick in die Zukunft werfen. (orig.)

  17. 钢渣处理与余热回收技术的分析%Analysis of steel slag treatment technology and waste heat recovery technology

    Institute of Scientific and Technical Information of China (English)

    张宇; 张健; 张天有; 刘银梅; 韩自博

    2014-01-01

    the-steel-slag-treatment-and-waste-heat-recovery-technology-and-device-in-China-and-abroad-were-listed,-compared-and-analyzed-through-a-large-number-of-examples.Through-analysis-and-comparison,it-shows-that-the-heat-in-molten-slag-could-be-recycled-and-re-used-through-different-steel-slag-processing-combined-with-scientific,-economic,reasonable-waste-heat-recovery-technology,and-could-get-remarkable-achievements.At-the-same-time,it-was-pointed-out-that-due-to-the-inherent-characteristics-and-physicochemical-conditions-of-steel-slag,many-waste-heat-recovery-problems-need-researcher’s-continuing-research-to-solve.Finally,the-prospect-of-steel-slag-waste-heat-recovery-were-discussed-and-suggested-that-the-government-and-related-fields-should-give-enough-attention-and-sup-port-for-field-of-steel-slag-waste-recovery.%对国外和中国钢渣处理的余热回收技术和余热回收装置应用案例进行了大量地列举、系统地比较和分析。通过比较和分析表明:熔融钢渣中的余热可以通过各种不同的钢渣处理工艺,结合科学、经济、合理的热能回收技术将余热加以回收和利用,其成果十分显著。同时,指出了由于受钢渣固有特性和物化条件的制约,目前钢渣余热资源的回收存在着许多问题,有待于钢铁行业和热能开发领域的研究者继续探讨和解决。最后,对钢渣余热回收的前景进行了展望,建议政府和相关领域予以足够地重视和支持。

  18. The geothermal potential of the Campania volcanic district and new heat exchanger technologies for exploitation of highly urbanised areas.

    Science.gov (United States)

    Carlino, S.; Somma, R.; Troiano, A.; Di Giuseppe, M. G.; Troise, C.; De Natale, G.

    2012-04-01

    The geothermal research in Campania region (Italy), started since the 1930, and continued until the '80 by the SAFEN, ENEL and AGIP companies. Such exploration activity highlighted that most of the volcanic districts of the Campania Region have a very high geothermal gradient and heat flow. In particular, inside the Campi Flegrei caldera and at Ischia island the geothermal gradient measured inside the deep wells reaches temperatures above 100° C between few tens and few hundreds of metres of depth, while the heat flow varies between 120-160 mWm-2 at Agnano and Mofete (Campi Flegrei main drill sites) to more than 500 mWm-2 at Ischia island (south-western sector). A general review of the available literature data (temperature at depth, stratigraphic sections, logs etc.) of the deep wells (down to 3 km b.s.l.) allowed us to quantify the geothermal potential (thermal and electric) of such district. The geothermal potential is about 6 GWy for the Campi Flegrei (Mofete and S. Vito sectors) and 11 GWy for the Ischia island (south-western sector) showing a geothermal reservoir with water and vapour dominant respectively. This results in strong potential interest for economic exploitation of the geothermal resource, both in the range of low-medium enthalpy at few hundreds of meters depth and of high enthalpy at depths of 1-2 km. In this study we try to model the effectiveness of new technologies of boreholes heat exchangers, which would allow to avoid fluid withdrawal, then strongly decreasing the environmental impact. The proposed technology consists of a double-pipe placed in a borehole heat exchange that can work coupled with an ORC. The two pipes, one inside the other, are located in the well in order to transfer the thermal energy to the working fluid during the descent in the external pipe and then go back through the internal pipe properly isolated. We propose a complete design of the borehole heat exchangers. The design activity is performed on a theoretical basis

  19. MAVEN Contamination Venting and Outgassing Analysis

    Science.gov (United States)

    Petro, Elaine M.; Hughes, David W.; Secunda, Mark S.; Chen, Philip T.; Morrissey, James R.; Riegle, Catherine A.

    2014-01-01

    Mars Atmosphere and Volatile EvolutioN (MAVEN) is the first mission to focus its study on the Mars upper atmosphere. MAVEN will study the evolution of the Mars atmosphere and climate, by examining the conduit through which the atmosphere has to pass as it is lost to the upper atmosphere. An analysis was performed for the MAVEN mission to address two distinct concerns. The first goal of the analysis was to perform an outgassing study to determine where species outgassed from spacecraft materials would redistribute to and how much of the released material might accumulate on sensitive surfaces. The second portion of the analysis serves to predict what effect, if any, Mars atmospheric gases trapped within the spacecraft could have on instrument measurements when re-released through vents. The re-release of atmospheric gases is of interest to this mission because vented gases from a higher pressure spacecraft interior could bias instrument measurements of the Mars atmosphere depending on the flow rates and directions.

  20. EDITORIAL: Special section on the physics and technology of plasma heating by ICRF power

    Science.gov (United States)

    Noterdaeme, Jean-Marie; Van Eester, Dirk

    2006-07-01

    This special section brings together much of what is currently at the forefront of ion cyclotron resonance frequency (ICRF) research. Which theories are people working on? Where is progress being made? What results are being obtained? The present Nuclear Fusion section on ICRF is not—and was explicitly meant not to be—an overview or review of ICRF systems, research achievements or theories. It is more a snapshot of the leading edge of the investigations. It is based, in part, on presentations to the 16th Topical Conference on RF Power in Plasmas, Park City, Utah, USA, April 2005. The forefront of ICRF research currently being actively pursued covers a wide range of topics: theoretical, experimental and technological. As can be expected, most of the papers in this section have direct relevance to ITER. Elements that will be important in ITER, and that are being addressed and developed in the papers, are the presence of fast particles with their influence on wave propagation and damping, the non-linear mechanisms in the edge—in particular close to the wave launcher—and steady-state aspects. Specific ITER components as well as RF scenarios are studied. Continued efforts to improve the analytical description of wave damping and absorption and the availability of gradually more powerful computers led to significant progress in incorporating the effect of particles with non-thermal velocity distributions—the presence of which has already become significant in present-day machines due to massive RF and/or NBI heating which forces the particles away from thermo-dynamical equilibrium (Brambilla et al, Jaeger et al). The exact role that RF-created and fusion-born fast particles will play is still a matter of lively debate. As shown in the papers by Choi et al and Pinsker et al, the presence of energetic particles is a significant factor in the wave absorption, even at high harmonics. Accounting for the actual magnetic topology allows the capture of RF induced

  1. Technology Solutions Case Study: Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and R. Aldrich

    2015-09-01

    To better understand and characterize heating performance, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven ASHPs across the northeast United States during the winter of 2013–2014.

  2. Environmental Technology Verification Report: Climate Energy freewatt™ Micro-Combined Heat and Power System

    Science.gov (United States)

    The EPA GHG Center collaborated with the New York State Energy Research and Development Authority (NYSERDA) to evaluate the performance of the Climate Energy freewatt Micro-Combined Heat and Power System. The system is a reciprocating internal combustion (IC) engine distributed e...

  3. Thermal management through in-board heat pipes manufactured using printed circuit board multilayer technology

    NARCIS (Netherlands)

    Wits, Wessel Willems; Legtenberg, R.; Legtenberg, Rob; Mannak, Jan; van Zalk, Bas; Aripin, A.

    2006-01-01

    A novel, integrated approach in thermal management of electronic products, based on two-phase cooling, is presented. A flat miniature heat pipe, integrated inside the laminated structure of a printed circuit board (PCB) has been developed, based on mainstream PCB fabrication processes. Hot spots on

  4. Environmental Technology Verification Report: Climate Energy freewatt™ Micro-Combined Heat and Power System

    Science.gov (United States)

    The EPA GHG Center collaborated with the New York State Energy Research and Development Authority (NYSERDA) to evaluate the performance of the Climate Energy freewatt Micro-Combined Heat and Power System. The system is a reciprocating internal combustion (IC) engine distributed e...

  5. 46 CFR 56.50-85 - Tank-vent piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Tank-vent piping. 56.50-85 Section 56.50-85 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-85 Tank-vent piping. (a) This...

  6. Hydrogen Vent Ground Umbilical Quick Disconnect - Flight Seal Advanced Development

    Science.gov (United States)

    Girard, Doug; Jankowski, Fred; Minich, Mark C.; Yu, Weiping

    2012-01-01

    This project is a team effort between NASA Engineering (NE) and Team QNA Engineering personnel to provide support for the Umbilical Systems Development project which is funded by Advanced Exploration Systems (AES) and 21st Century Launch Complex. Specifically, this project seeks to develop a new interface between the PPBE baselined Legacy SSP LH2 Vent Arm QD probe and SLS vent seal.

  7. Antarctic marine biodiversity and deep-sea hydrothermal vents.

    Science.gov (United States)

    Chown, Steven L

    2012-01-01

    The diversity of many marine benthic groups is unlike that of most other taxa. Rather than declining from the tropics to the poles, much of the benthos shows high diversity in the Southern Ocean. Moreover, many species are unique to the Antarctic region. Recent work has shown that this is also true of the communities of Antarctic deep-sea hydrothermal vents. Vent ecosystems have been documented from many sites across the globe, associated with the thermally and chemically variable habitats found around these, typically high temperature, streams that are rich in reduced compounds and polymetallic sulphides. The animal communities of the East Scotia Ridge vent ecosystems are very different to those elsewhere, though the microbiota, which form the basis of vent food webs, show less differentiation. Much of the biological significance of deep-sea hydrothermal vents lies in their biodiversity, the diverse biochemistry of their bacteria, the remarkable symbioses among many of the marine animals and these bacteria, and the prospects that investigations of these systems hold for understanding the conditions that may have led to the first appearance of life. The discovery of diverse and unusual Antarctic hydrothermal vent ecosystems provides opportunities for new understanding in these fields. Moreover, the Antarctic vents south of 60°S benefit from automatic conservation under the Convention on the Conservation of Antarctic Marine Living Resources and the Antarctic Treaty. Other deep-sea hydrothermal vents located in international waters are not protected and may be threatened by growing interests in deep-sea mining.

  8. An authoritative global database for active submarine hydrothermal vent fields

    Science.gov (United States)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  9. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?

    Science.gov (United States)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.

    2015-11-01

    In nearly four decades since the discovery of deep-sea vents, one-third of the length of global oceanic spreading ridges has been surveyed for hydrothermal activity. Active submarine vent fields are now known along the boundaries of 46 out of 52 recognized tectonic plates. Hydrothermal survey efforts over the most recent decade were sparked by national and commercial interests in the mineral resource potential of seafloor hydrothermal deposits, as well as by academic research. Here we incorporate recent data for back-arc spreading centers and ultraslow- and slow-spreading mid-ocean ridges (MORs) to revise a linear equation relating the frequency of vent fields along oceanic spreading ridges to spreading rate. We apply this equation globally to predict a total number of vent fields on spreading ridges, which suggests that ~900 vent fields remain to be discovered. Almost half of these undiscovered vent fields (comparable to the total of all vent fields discovered during 35 years of research) are likely to occur at MORs with full spreading rates less than 60 mm/yr. We then apply the equation regionally to predict where these hydrothermal vents may be discovered with respect to plate boundaries and national jurisdiction, with the majority expected to occur outside of states' exclusive economic zones. We hope that these predictions will prove useful to the community in the future, in helping to shape continuing ridge-crest exploration.

  10. Application of the Waste Heat Recovery Technology in FPSO%余热回收利用技术在 FPSO 中的应用

    Institute of Scientific and Technical Information of China (English)

    牛欢; 马永涛

    2015-01-01

    结合中海油FPSO余热回收利用改造经验,介绍烟气余热回收利用技术特点,分析中海油FPSO上能源消耗情况,以及烟气余热回收技术在FPSO上实施的可行性,认为FPSO发电机组余热回收利用前景广阔.%In terms of the experiences of waste heat recovery and utilization for FPSO in CNOOC, the technical features of the waste heat recovery and utilization technology of flue gas are introduced.The energy consumption of CNOOC FPSO is ana-lyzed, as well as the feasibility of the flue gas heat recovery technology in FPSO.It is concluded that applying the waste heat re-covery and utilization technology of the generator set in FPSO has vast prospects.

  11. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  12. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  13. Sustainable learning of heating? Domestication of energy technology in passive houses; Uthaalligt laerande om vaermen? Domesticering av energiteknik i passivhus

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, Charlotta (Linkoeping Univ., Linkoeping (Sweden). Dept. of Technology and Social Change)

    2009-10-15

    The aim of this project is to investigate the domestication in private homes of energy technology developed to reduce energy use and improve energy efficiency. The main theoretical concept used in the thesis is 'domestication'. It is used to describe how new technology is integrated into the everyday life of users. Domestication of energy technology is studied as a learning process and is theoretically based on a socio cultural learning perspective. A case study was made of how the energy concept in passive houses (and its related technologies) is domesticated in the daily life of householders. The indoor heat is generated from solar irradiation, human bodies, and people's use of appliances and lighting. The study comprises 20 apartments in passive houses (terrace style), built in 2001 which are located in Lindaas. In the autumn of 2002, 22 informants from 16 households were interviewed, and in the spring of 2005, 21 informants from 15 households. Four main research questions are posed. The first research question is related to two different stages and contexts of the domestication process. The first stage concerns the purchasing of the passive house and focuses on the period before the householders moved in. The second stage focuses on indoor temperature - and concerns how the energy concept is incorporated into the daily activities of the household. common experience in the re-evaluating zone was that the indoor temperature in the home initially felt strange and abnormal, but as time passed it was perceived as normal. This process also leads to a re-evaluation of the households' participation in the comfort practice of the passive house. It is a gradual adjustment and a changed view of the resources that are available. The two remaining research questions deal with the technical heating system of the passive houses. It mainly concerns an air heating system, with a 900 W integrated heater in the air supply. The third research question

  14. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  15. Natural Gas Venting on the Northern Cascadia Margin

    Science.gov (United States)

    Scherwath, M.; Riedel, M.; Roemer, M.; Paull, C. K.; Spence, G.; Veloso, M.

    2016-12-01

    Over the past decades, hundreds of natural gas vents have been observed along the Northern Cascadia Margin in the Northeast Pacific, and we present a summary of these observations from offshore Vancouver Island, BC, Canada. We have gathered observed locations and analyzed original data from published literature as well as research cruises and fishing sonar from various archives. By far the highest accumulation of gas vent locations appear both shallow (100-200 m) and concentrated towards the mouth of the Juan de Fuca Strait, however these observations are naturally biased toward the distribution of the observation footprints. Normalized observations confirm the shallow high concentrations of gas vents but also establish some deeper sections of focused venting activity. We will speculate about the reasons behind the distribution, focus on specific examples, extrapolate for rough margin flux rate ranges and comment on short-comings and future directions for margin-wide gas vent studies.

  16. Validation testing of radioactive waste drum filter vents

    Energy Technology Data Exchange (ETDEWEB)

    Weber, L.D. [Pall Corp., Port Washington, NY (United States); Rahimi, R.S. [Pall Corp., Cortland, NY (United States); Edling, D. [Edling & Associates, Inc., Russel Springs, KY (United States)

    1997-08-01

    The minimum requirements for Drum Filter Vents (DFVs) can be met by demonstrating conformance with the Waste Isolation Pilot Plant (WIPP) Trupact II Safety Assessment Report (SAR), and conformance with U.S. Federal shipping regulations 49 CFR 178.350, DOT Spec 7A, for Type A packages. These together address a number of safety related performance parameters such as hydrogen diffusivity, flow related pressure drop, filtration efficiency and, separately, mechanical stability and the ability to prevent liquid water in-leakage. In order to make all metal DFV technology (including metallic filter medium) available to DOE sites, Pall launched a product development program to validate an all metal design to meet these requirements. Numerous problems experienced by DOE sites in the past came to light during this development program. They led us to explore enhancements to DFV design and performance testing addressing these difficulties and concerns. The result is a patented all metal DFV certified to all applicable regulatory requirements, which for the first time solves operational and health safety problems reported by DOE site personnel but not addressed by previous DFV`s. The new technology facilitates operations (such as manual, automated and semi-automated drum handling/redrumming), sampling, on-site storage, and shipping. At the same time, it upgrades filtration efficiency in configurations documented to maintain filter efficiency following mechanical stress. 2 refs., 2 figs., 10 tabs.

  17. Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing

    Energy Technology Data Exchange (ETDEWEB)

    Kolo, Daniel [Johnson Controls, Inc., Glendale, WI (United States)

    2016-08-15

    The activities funded by this grant helped educate and inform approximately six thousand individuals who participated in guided tours of the geothermal chiller plant at Johnson Controls Corporate Headquarters in Glendale, Wisconsin over the three year term of the project. In addition to those who took the formal tour, thousands more were exposed to hands-on learning at the self-service video kiosks located in the headquarters building and augmented reality tablet app that allowed for self-guided tours. The tours, video, and app focused on the advantages of geothermal heat pump chillers, including energy savings and environmental impact. The overall tour and collateral also demonstrated the practical application of this technology and how it can be designed into a system that includes many other sustainable technologies without sacrificing comfort or health of building occupants Among tour participants were nearly 1,000 individuals, representing 130 organizations identified as potential purchasers of geothermal heat pump chillers. In addition to these commercial clients, tours were well attended by engineering, facilities, and business trade groups. This has also been a popular tour for groups from Universities around the Midwest and K-12 schools from Wisconsin and Northern Illinois A sequence of operations was put into place to control the chillers and they have been tuned and maintained to optimize the benefit from the geothermal water loop. Data on incoming and outgoing water temperature and flow from the geothermal field was logged and sent to DOE monthly during the grant period to demonstrate energy savings.

  18. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.; McCurry, D.C.; Rindt, B.A.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-water temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.

  19. Low Maintenance Water Treatment for Heating and Cooling Systems: Review of Technologies and Guidelines for Implementation

    Science.gov (United States)

    2007-09-01

    by oxidizing bio- cides. Also, the relatively new phosphonate, manganese/aminophosphonic acid ( MAPA ) has shown some promise as a copper corrosion...Headquarters, U.S. Army Corps of Engineers HVAC heating, ventilating, and air conditioning IWC International Water Conference MAPA manganese/aminophosphonic...aninophosphonic acid ( MAPA ) Y Y Mercaptobenzothiazole (MBT) N Y Molybdate Y N Nitrite N Y Orthophosphate Y N Phosphonocarboxylic acid (POCA) Y N

  20. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  1. Technology Solutions Case Study: Calculating Design Heating Loads for Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, the Consortium for Advanced Residential Buildings team monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  2. Differences in recovery between deep-sea hydrothermal vent and vent-proximate communities after a volcanic eruption

    NARCIS (Netherlands)

    Gollner, S.; Govenar, B.; Martinez Arbizu, P.; Mills, S.; Le Bris, N.; Weinbauer, M.; Shank, T.M.; Bright, M.

    2015-01-01

    Deep-sea hydrothermal vents and the surrounding basalt seafloor are subject to major natural disturbance events such as volcanic eruptions. In the near future, anthropogenic disturbance in the form of deep-sea mining could also significantly affect the faunal communities of hydrothermal vents. In th

  3. A NOVEL APPROACH TO DRUM VENTING AND DRUM MONITORINGe/pj

    Energy Technology Data Exchange (ETDEWEB)

    Ohl, P.C.; Farwick, C.C.; Douglas, D.G.; Cruz, E.J.

    2003-02-27

    This paper describes the details and specifications associated with drum venting and drum monitoring technologies, and discusses the maturity of in-place systems and current applications. Each year, unventilated drums pressurize and develop bulges and/or breaches that can result in potentially hazardous explosions, posing undesirable hazards to workers and the environment. Drum venting is accomplished by the safe and simple installation of ventilated lids at the time of packaging, or by the inherently risky in-situ ventilation (depressurization) of ''bulged'' drums. Drum monitoring employs either a Magnetically Coupled Pressure Gauge (MCPG) Patent Pending and/or a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. Through patented magnetic sensor coupling, these devices enable the noninvasive and remote monitoring of the potentially hazardous materials and/or spent nuclear fuel that is contained in 55-gal drums and associated steel overpack containers.

  4. A NOVEL APPROACH TO DRUM VENTING AND DRUM MONITORINGe/pj

    Energy Technology Data Exchange (ETDEWEB)

    Ohl, P.C.; Farwick, C.C.; Douglas, D.G.; Cruz, E.J.

    2003-02-27

    This paper describes the details and specifications associated with drum venting and drum monitoring technologies, and discusses the maturity of in-place systems and current applications. Each year, unventilated drums pressurize and develop bulges and/or breaches that can result in potentially hazardous explosions, posing undesirable hazards to workers and the environment. Drum venting is accomplished by the safe and simple installation of ventilated lids at the time of packaging, or by the inherently risky in-situ ventilation (depressurization) of ''bulged'' drums. Drum monitoring employs either a Magnetically Coupled Pressure Gauge (MCPG) Patent Pending and/or a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. Through patented magnetic sensor coupling, these devices enable the noninvasive and remote monitoring of the potentially hazardous materials and/or spent nuclear fuel that is contained in 55-gal drums and associated steel overpack containers.

  5. Similarities in the chemistry of shallow submarine hydrothermal vents

    Energy Technology Data Exchange (ETDEWEB)

    Prol-Ledesma, R.M. [UNAM, Mexico City (Mexico). Instituto de Geofisica

    2003-12-01

    Shallow submarine hydrothermal activity has been observed in Western Mexico related to extensional tectonic faults. Hydrothermal vents occur at Punta Banda on the Pacific coast of Baja California, at Bahia Concepcion on the eastern coast of Baja California, and in Punta Mita on the Pacific coast of central Mexico. Submarine discharge of geothermal fluids is located at depths varying between 5 and 30 m. Water and gas discharge at temperatures between 40 and more than 100{sup o}C. The composition of the thermal end-member can be calculated for Mg=0 using the chemistry data of the water samples. A linear regression of the concentration values vs magnesium content is used to determine the concentration of the end-member thermal water. The chemical composition of the thermal end-member indicates that the water is more dilute than seawater and enriched in Ca, Mn, Ba, I, Cs, B, Li, Rb, Sr and Si. The results show that the water chemistry is similar in these coastal hydrothermal systems. The thermal water is probably of meteoric origin, penetrating through the extensional faults, and heated by the high geothermal gradient. The components in the thermal water are contributed by the deep strata. (author)

  6. 公众对供暖的观念误区及热泵技术未来趋势的分析%Analysis of Mistaken Ideas of the Public on Heating and Future Trend of Heat Pump Technology

    Institute of Scientific and Technical Information of China (English)

    尹畅昱; 付祥钊; 王勇

    2014-01-01

    Through the survey of southern heating, it was found that the public misunderstood the concept of new energy on the home heating and made the wrong selection on the home heating equipment. Through the analysis of the official channels and social channels, using a large number of facts and applied psychology knowledge, the reason of the mistaken ideas and the deep patterns revealed by the ideas were analyzed. This paper also referred to two home heating technologies, including joule heat technology and heat pump technology based on reverse carnot cycle; by comparing this two technologies on the theory and real application, the responsibility and opportunity of heat pump technology were analyzed.%通过南方集中供暖的问卷调查发现民众对家庭供暖中新能源这一概念存在观念误读,在家庭取暖方式上存在选择误区。本文通过对官方渠道、社会渠道的宣传剖析,采用大量事实,应用心理学知识分析了观念误区的成因和所揭示的深层次规律。在分析中引出家庭取暖的两大技术--焦耳热技术和基于逆卡诺循环的热泵技术;通过对比两者在原理上、实际运用上的不同,分析了热泵技术的时代责任和机遇。

  7. Geothermic Potential Assessment of hydrothermal vents of Township Barranca De Upia - Meta - Colombia

    Science.gov (United States)

    Chica, J.; Chicangana, G.; Eco Energy Research Group

    2013-05-01

    Hydrothermal vents have been traditionally exploited in Colombia as a source of tourism revenue such as pools and saunas. Leaving aside its high potential for geothermal power generation in applications like heating, drying, cooling, extensive use in crops, livestock, electricity generation and more. Currently the use given to this natural resource in the town of Barranca de Upia in Meta department, central Colombia, is like Wellness Centre. However, the geothermal gradient for the area where hydrothermal vents occur, indicates that the water emerges at temperatures above 70 ° C (Alfaro et al., 2003), which opens a window of opportunity to assess their geothermal potential, in order to know the actual energy potential of the region as an option of augmenting their development. this research is the analysis of information gathered from databases in gravimetry and magnetometry of the study area and the temperatures measured in wells derived from the oil industry. Based on that information, a numerical analysis of the data will be performed in order to establish a model to parameterize the energy potential of the study area and identify possible uses of the energy contained by the hydrothermal vents.

  8. Global depression in gene expression as a response to rapid thermal changes in vent mussels.

    Science.gov (United States)

    Boutet, Isabelle; Tanguy, Arnaud; Le Guen, Dominique; Piccino, Patrice; Hourdez, Stéphane; Legendre, Pierre; Jollivet, Didier

    2009-09-07

    Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to the alternation of oxic/anoxic phases. In this context, we focused on the short-term adaptive response of mussels to temperature change at a molecular level. The mRNA expression of 23 genes involved in various cell functions of the vent mussel Bathymodiolus azoricus was followed after heat shocks for either 30 or 120 min, at 25 and 30 degrees C over a 48 h recovery period at 5 degrees C. Mussels were genotyped at 10 enzyme loci to explore a relationship between natural genetic variation, gene expression and temperature adaptation. Results indicate that the mussel response to increasing temperature is a depression in gene expression, such a response being genotypically correlated at least for the Pgm-1 locus. This suggests that an increase in temperature could be a signal triggering anaerobiosis for B. azoricus or this latter alternatively behaves more like a 'cold' stenotherm species, an attribute more related to its phylogenetic history, a cold seeps/wood fall origin.

  9. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  10. The NOAA/PMEL Vents Program - 1983 to 2013: A History of Deep-Sea Volcanic and Hydrothermal Exploration and Research

    Science.gov (United States)

    Hammond, S. R.; Baker, E. T.; Embley, R. W.

    2015-12-01

    Inspiration for the Vents program arose from two serendipitous events: the discovery of seafloor spreading-center hydrothermal venting on the Galápagos Rift in 1977, and NOAA's deployment of the first US civilian research multibeam bathymetric sonar on the NOAA Ship Surveyor in 1979. Multibeam mapping in the NE Pacific revealed an unprecedented and revolutionary perspective of the Gorda and Juan de Fuca spreading centers, thus stimulating a successful exploration for volcanic and hydrothermal activity at numerous locations along both. After the 1986 discovery of the first "megaplume,", quickly recognized as the water column manifestation of a deep submarine volcanic eruption, the Vents program embarked on a multi-decadal effort to discover and understand local-, regional-, and, ultimately, global-scale physical, chemical, and biological ocean environmental impacts of submarine volcanism and hydrothermal venting. The Vents program made scores of scientific discoveries, many of which owed their success to the program's equally innovative and productive technological prowess. These discoveries were documented in hundreds of peer-reviewed papers by Vents researchers and their colleagues around the world. An emblematic success was the internationally recognized, first-ever detection, location, and study of an active deep volcanic eruption in 1993. To continue the Vents mission and further enhance its effectiveness in marine science and technology innovation, the program was reorganized in 2014 into two distinct, but closely linked, programs: Earth-Oceans Interactions and Acoustics. Both are currently engaged in expeditions and projects that maintain the Vents tradition of pioneering ocean exploration and research.

  11. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  12. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  13. Non-destructive Assessment of Relief Marking Parameters of Heat Shrinkable Installation Parts for Aviation Technology

    Directory of Open Access Journals (Sweden)

    Kondratov Aleksandr P.

    2017-01-01

    Full Text Available The article explains a new method of relief marking of heat-shrinkable tubing and sleeves made of polymer materials with “shape memory effect.” Method of instrument evaluation of relief marking stereometry of installation parts for aviation equipment, made of polyvinyl chloride, polyethyleneterephthalate and polystyrene was developed and the results were explained. Parameters of pin-point relief marking and compliance of point forms to the Braille font standard were determined with the use of the non-destructive method based on the color of interference pattern with precision of 0.02 mm.

  14. BodyHeat Encounter: Performing Technology in Pedagogical Spaces of Surveillance/Intimacy

    Science.gov (United States)

    Fels, Lynn; Ricketts, Kathryn

    2015-01-01

    What occurs when videographer and performer encounter each other through the lens of a camera? This collaborative performative inquiry focuses on embodiment and emergent narrative as realized through an encounter between technology and the visceral body--a relational body that smells, touches, sees, hears and feels the emergent world through…

  15. Assessing the Impact of Heat Rejection Technology on CSP Plant Revenue: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Kutscher, C. F.

    2010-10-01

    This paper explores the impact of cooling technology on revenue for hybrid-cooled plants with varying wet cooling penetration for four representative locations in the American Southwest. The impact of ACC design-point initial temperature difference (ITD - the difference between the condensing steam temperature and ambient dry-bulb) is also included in the analysis.

  16. 污水源热泵技术研究现状及分析%Research status and analysis of sewage-source heat pump technology

    Institute of Scientific and Technical Information of China (English)

    孙春锦; 吴荣华; 孙源渊; 郑记莘

    2015-01-01

    Plugging and fouling are key challenges need to be addressed in sewage-source heat pump technology.At present,pre-filter and unblocked heat exchange technology are applied to solve plugging problem.Summarizes and analyses the research status of sewage-source heat pump technology.Compares the advantages and disadvantages between pre-filter and unblocked heat exchange technology,which provides a reference for the development and application of sewage-source heat pump technology.%堵塞和污垢是污水源热泵技术应用需要解决的关键难题。目前主要采用前置过滤技术和疏导式换热技术解决堵塞问题。总结并分析了污水源热泵技术的研究现状,比较了前置过滤技术和疏导式换热技术的优缺点,为污水源热泵技术的发展与应用提供参考。

  17. Application of electro-technology in heating industrial processes; Aplicacion de electrotecnologia en procesos industriales de calentamiento

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Milla, Guillermo [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    The electro-technologies are systems and equipment that use electricity to produce and to process consumer goods. Also they can be used in industrial processes such as drying, heating, heat treatment and smelting. These technologies have demonstrated that electricity can not only be used for lighting system, motor operation or electrolysis, but that can also be applied in many industrial processes and allow the reduction of production costs to increase the productivity as well as to improve the safety and conditions at work. Combined to the former, the electro technologies offer other additional advantages such as facilitating the automation, robotization and computerized supervision of industrial production. The great variety of these technologies and their ample application fields makes difficult a presentation of them showing their advantages in the energy efficiency field and with respect to the added value of the product to be finished, as well as its impact to the environment when diminishing the polluting agents to the atmosphere. The present article mentions diverse types of electro technologies, doing emphasis in those dedicated to provide heat impulse due to the impact that, by their application, can produce in the electrical system and to the deduction of polluting agents to the environment. Table 1 shows the diverse rank of industries that can use electro technologies. The table of the type of industries that can use electro technologies is shown, as well as the evaluation of these. [Spanish] Las electrotecnologias son sistemas y equipos que utilizan electricidad para producir y procesar bienes de consumo. Tambien pueden ser usados en procesos industriales tales como secado, calentamiento, tratamiento con calor y fundicion. Estas tecnologias han demostrado que la electricidad no solo se puede usar para alumbrado, alimentacion de motores o electrolisis, sino que puede aplicarse en muchos procesos industriales y permitir la reduccion de costos de

  18. Fluid geochemistry of cold seeps and hydrothermal vents in the Guaymas Basin, Gulf of California

    Science.gov (United States)

    Hensen, Christian; Geilert, Sonja; Scholz, Florian; Schmidt, Mark; Liebetrau, Volker; Kipfer, Rolf; Sarkar, Sudipta; Doll, Mechthild

    2017-04-01

    In this study, we present geochemical data from pore fluids and gases that were sampled at cold seeps and hydrothermal vents in the Guaymas Basin during Sonne cruise 241. The Guaymas Basin is a unique environment where magma intrudes into thick sequences of organic-rich sediments, thereby maturing host rocks and releasing large amounts of hydrocarbons. Geochemical measurements performed on samples from a recently discovered high-temperature vent field (Berndt et al., 2016) clearly support this paradigm. 3He/4He ratios agree with that of excess He from the southern part of the Guaymas Basin (Lupton, 1979) and suggest the same general MORB source, while isotopic data of hydrocarbon gases largely indicate a thermogenic, sedimentary source. Heat flow measurements performed in the vicinity of the smoker site are extremely high, exceeding 10 W/m2, indicating that hydrocarbon gas production (mainly CH4) is related to contact heating due to magmatic activity near the hydrothermal vents. Cold seeps are located up to some tens of kilometres off the rift axis and are typically characterized by chemosynthetic fauna assemblages at the seafloor. The occurrence of the seeps has also been related to sill intrusions. Seismic records typically show evidence for sediment mobilization in the deeper subsurface and blanked zones due to gas accumulations directly beneath the seeps. Despite these visual and geophysical indications for deep-sourced heat-driven fluid flow, pore water data are not indicative for geochemical reactions taking place at elevated temperatures. Major dissolved constituents do not show strong deviations from seawater and dissolved methane is typically of biogenic origin. In addition, heat flow values do not deviate from regional averages, and hence, these findings contradict the existing hypothesis of a sill-driven mechanism responsible for the formation of seafloor seepage sites. A preliminary interpretation is that fluid and gas mobilisation from sill activity

  19. Inventory of future power and heat production technologies; Inventering av framtidens el- och vaermeproduktionstekniker

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, Clas (Vattenfall Research and Development AB, Stockholm (Sweden))

    2008-12-15

    The overall vision of the project has been to produce likely development scenarios for various electricity and heat generation techniques, to indicate the possibilities provided by their implementation, and to give an indication of when implementation could be effected. The aim has been to identify possible technical advances in electricity and district heating generation techniques from a 2020 and 2030 time perspective. As a basic scenario, the project chose SwedEnergy's analysis of how the European Commission's aims for reducing carbon dioxide emissions and increasing renewable energy and energy efficiencies could be implemented in Sweden. Based on results, the project's findings regarding potentially competitive techniques are as follows: Capacity increases in Swedish nuclear power plants and a further two Finnish nuclear reactors mean that there will be no need for new large-scale electricity generation for base load in the Nordic region until it becomes necessary to replace existing nuclear power plants. The most attractive alternatives are as follows: Nuclear power could prove to be the most competitive alternative, especially if fuel prices rise and/or technically neutral climate-related control measures continue to be in place. If new nuclear power is not accepted in Sweden, the most attractive alternative would appear to be large fossil fuel fired plants equipped with CCS. According to the analyses in Elforsk's 'Roadmap' project, the EU's aims for carbon dioxide reduction and renewable energy, signify that almost all new power capacity erected in the Nordic area in the next two decades will be renewable. The most attractive alternatives for Sweden are as follows: Environmentally-adapted hydropower appears to be the most competitive alternative. Its potential is however restricted by demands that there should be minimal - if any - encroachments on landscape and nature, and by ecological concerns arising from the EU

  20. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  1. Measurement of the velocity field behind the automotive vent

    Directory of Open Access Journals (Sweden)

    Jedelský Jan

    2012-04-01

    Full Text Available Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  2. Measurement of the velocity field behind the automotive vent

    Science.gov (United States)

    Ležovič, Tomáš; Lízal, František; Jedelský, Jan; Jícha, Miroslav

    2012-04-01

    Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA) was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  3. Explosive Venting Technology for Cook-Off Response Mitigation

    Science.gov (United States)

    2010-07-01

    endplate blew off 188.3 PAX-28 Go 6.4 Explode, HE boiled out, body banana peeled 177.8 PAX-28 No go 7.6 Burn, HE boiled out of fixture, smoking, then burn...stacks of three using a closed bomb inside a SCO oven. Two of these tests were bare pellet tests. One stack of three was tested in an ultem shell ...another was tested in an aluminum shell . Figure 26 shows the pellet configuration, confinement, and test set-up. Testing was conducted at 3.3°C/hr. All

  4. Field tests-low input, side-wall vented boiler

    Energy Technology Data Exchange (ETDEWEB)

    Litzke, W.L.; Butcher, T.A.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    The Fan Atomized Burner (FAB) was developed at Brookhaven National Laboratory as part of the Oil Heat Combustion Equipment Technology Program to provide a practical low-firing rate technology leading to new, high efficiency oil-fired appliances. The development of the burner design and results of application testing have been presented in prior oil heat conferences over the past several years. This information is also summarized in a more comprehensive BNL report. The first field trial of a prototype unit was initiated during the 1994-95 heating season. This paper presents the results of the second year of testing, during the 1995-96 heating season. The field tests enable the demonstration of the reliability and performance of the FAB under practical, typical operating conditions. Another important objective of the field test was to demonstrate that the low input is adequate to satisfy the heating and hot water demands of the household. During the first field trial it was shown that at a maximum input rate of 0.4 gph (55,000 Btu/hr) the burner was able to heat a home with over 2,000 square feet of conditioned living space and provide adequate supply of domestic hot water for a family of six. The test is located in Long Island, NY.

  5. Application of Heat Pump Technology in Waste Heat Recovery of Oilfield Sewage%热泵技术在回收油田污水余热资源中的应用

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The low-grade heat energy of oilfield sewage can be recycled by heat pump technology. Part of the low-temperature heat energy can be applied in the other section needing heat in oil field, which solves the waste problem of sewage waste heat. In this article, application of the heat pump system in Daqing, Kongdian and Shengli oil fields was summarized, and the current situation of development of heat pump system and heat exchanger was discussed, which could provide certain reference for the implementation of similar energy-saving renovation project in the future.%热泵技术可以将油田污水中的低品位热能进行回收,以一小部分能量为代价,将这部分低温热能应用于油田中其他需要热的环节,解决了油田污水余热的浪费问题。总结了大庆、孔店、胜利等油田对热泵系统的应用情况,及热泵系统和换热器的发展现状,对油田今后实施同类节能改造项目具有一定的借鉴意义。

  6. Combat Ration Network for Technology Implementation (CORANET II) Knurled Seal Heat Bar

    Science.gov (United States)

    2010-08-01

    Canavan Mr. Henderikus B. Bruins Rutgers, The State University of New Jersey The Center for Advanced Food Technology School of Enviromental and...the packaging specification for the use of a knurled seal bar. Although the results from Project 2004 were positive, a number of issues were...to produce pouches with the altered pattern. The seal plate caused perforations at the seal area. Analysis of pouches revealed the issues and the

  7. Application of the Terrestrial Heat Recycling Technology in Highway Repair%高速公路维修就地热再生技术应用探讨

    Institute of Scientific and Technical Information of China (English)

    张俊豪

    2014-01-01

    把就地热再生技术应用在施工现场中,可以保证工程质量,控制施工成本。本文主要介绍了就地热再生技术的原理和优势、沥青路热再生技术在施工中的应用、热再生配比、高速公路施工的重难点。%The application of terrestrial heat recycling techn- ology in construction site can ensure the engineering quality and control construction cost. This paper mainly introduced the principles and the advantages of the terrestrial heat recycling technology and the terrestrial heat recycling technology in asp- halt road construction, the ratio of regenerated heat and di- fficulties and stresses in highway construction.

  8. Visualization of the air flow behind the automotive benchmark vent

    Science.gov (United States)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  9. A Review of Flaring and Venting at UK Offshore Oilfields

    OpenAIRE

    Stewart, Jamie R

    2014-01-01

    This study aims to re-address the issue of flaring and venting of reproduced gases in carbon dioxide enhanced oil recovery (CO2EOR) projects. Whilst a number of studies have not recognised the impact of flaring/venting in CO2EOR developments, a study completed at Scottish Carbon Capture and Storage (SCCS) “Carbon Accounting for Carbon Dioxide Enhanced Oil Recovery” highlighted the significant control that flaring/venting of reproduced gases may have on a projects life cycle greenhouse gas emi...

  10. Visualization of the air flow behind the automotive benchmark vent

    Directory of Open Access Journals (Sweden)

    Pech Ondrej

    2015-01-01

    Full Text Available Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  11. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    Science.gov (United States)

    Lauritano, C.; Ruocco, M.; Dattolo, E.; Buia, M. C.; Silva, J.; Santos, R.; Olivé, I.; Costa, M. M.; Procaccini, G.

    2015-07-01

    Submarine volcanic vents are being used as natural laboratories to assess the effects of increased ocean acidity and carbon dioxide (CO2) concentration on marine organisms and communities. However, in the vicinity of volcanic vents other factors in addition to CO2, which is the main gaseous component of the emissions, may directly or indirectly confound the biota responses to high CO2. Here we used for the first time the expression of antioxidant and stress-related genes of the seagrass Posidonia oceanica to assess the stress levels of the species. Our hypothesis is that unknown factors are causing metabolic stress that may confound the putative effects attributed to CO2 enrichment only. We analyzed the expression of 35 antioxidant and stress-related genes of P. oceanica in the vicinity of submerged volcanic vents located in the islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize gene expression patterns. Fifty-one percent of genes analyzed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls at both Ischia and Panarea, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The up-regulation of genes involved in the free radical detoxification response (e.g., CAPX, SODCP and GR) indicates that, in contrast with Ischia, P. oceanica at the Panarea site faces stressors that result in the production of reactive oxygen species, triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. These proteins are activated to adjust stress-accumulated misfolded proteins and prevent their aggregation as a response to some stressors, not necessarily high temperature. This is the first

  12. Des Vents et des Jets Astrophysiques

    Science.gov (United States)

    Sauty, C.

    well expected result from the theory. Although, collimation may be conical, paraboloidal or cylindrical (Part 4), cylindrical collimation is the more likely to occur. The shape of outflows may then be used as a tool to predict physical conditions on the flows or on their source. L'éjection continue de plasma autour d'objets massifs est un phénomène largement répandu en astrophysique, que ce soit sous la forme du vent solaire, de vents stellaires, de jets d'étoiles en formation, de jets stellaires autour d'objets compacts ou de jets extra-galactiques. Cette zoologie diversifiée fait pourtant l'objet d'un commun effort de modélisation. Le but de cette revue est d'abord de présenter qualitativement le développement, depuis leur origine, des diverses théories de vents (Partie 1) et l'inter disciplinarité dans ce domaine. Il s'agit d'une énumération, plus ou moins exhaustive, des idées proposées pour expliquer l'accélération et la morphologie des vents et des jets, accompagnée d'une présentation sommaire des aspects observationnels. Cette partie s'abstient de tout aspect faisant appel au formalisme mathématique. Ces écoulements peuvent être décrits, au moins partiellement, en résolvant les équations magnétohydrodynamiques, axisymétriques et stationnaires. Ce formalisme, à la base de la plupart des théories, est exposé dans la Partie 2. Il permet d'introduire quantitativement les intégrales premières qu'un tel système possède. Ces dernières sont amenées à jouer un rôle important dans la compréhension des phénomènes d'accélération ou de collimation, en particulier le taux de perte de masse, le taux de perte de moment angulaire ou l'énergie du rotateur magnétique. La difficulté de modélisation réside dans l'existence de points critiques, propres aux équations non linéaires, qu'il faut franchir. La nature physique et la localisation de ces points critiques fait l'objet d'un débat important car ils sont la clef de voute de la r

  13. Metabolic responses and "omics" technologies for elucidating the effects of heat stress in dairy cows

    Science.gov (United States)

    Min, Li; Zhao, Shengguo; Tian, He; Zhou, Xu; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi

    2016-11-01

    Heat stress (HS) negatively affects various industries that rely on animal husbandry, particularly the dairy industry. A better understanding of metabolic responses in HS dairy cows is necessary to elucidate the physiological mechanisms of HS and offer a new perspective for future research. In this paper, we review the current knowledge of responses of body metabolism (lipid, carbohydrate, and protein), endocrine profiles, and bovine mammary epithelial cells during HS. Furthermore, we summarize the metabolomics and proteomics data that have revealed the metabolite profiles and differentially expressed proteins that are a feature of HS in dairy cows. Analysis of metabolic changes and "omics" data demonstrated that HS is characterized by reduced lipolysis, increased glycolysis, and catabolism of amino acids in dairy cows. Here, analysis of the impairment of immune function during HS and of the inflammation that arises after long-term HS might suggest new strategies to ameliorate the effects of HS in dairy production.

  14. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Messmer, Craig S. [Unico, Inc., Arnold, MO (United States)

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series. Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.

  15. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    Science.gov (United States)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank

  16. The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment

    Energy Technology Data Exchange (ETDEWEB)

    Bucalossi, J., E-mail: jerome.bucalossi@cea.fr; Missirlian, M.; Moreau, P.; Samaille, F.; Tsitrone, E.; Houtte, D. van; Batal, T.; Bourdelle, C.; Chantant, M.; Corre, Y.; Courtois, X.; Delpech, L.; Doceul, L.; Douai, D.; Dougnac, H.; Faïsse, F.; Fenzi, C.; Ferlay, F.; Firdaouss, M.; Gargiulo, L.; and others

    2014-10-15

    The WEST project recently launched at Cadarache consists in transforming Tore Supra in an X-point divertor configuration while extending its long pulse capability, in order to test the ITER divertor technology. The implementation of a full tungsten actively cooled divertor with plasma facing unit representative of ITER divertor targets will allow addressing risks both in terms of industrial-scale manufacturing and operation of such components. Relevant plasma scenarios are foreseen for extensive testing under high heat load in the 10–20 MW/m{sup 2} range and ITER-like fluences (1000 s pulses). Plasma facing unit monitoring and development of protection strategies will be key elements of the WEST program. WEST is scheduled to enter into operation in 2016, and will provide a key facility to prepare and be prepared for ITER.

  17. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats

    Directory of Open Access Journals (Sweden)

    Gregory J Dick

    2013-05-01

    Full Text Available Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1 mediation of plume biogeochemistry, (2 dispersal of seafloor hydrothermal vent microbes between vents sites, (3 as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (biogeochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones, cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in oxygen minimum zones (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria and hydrocarbon-rich environments (methanotrophs. Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales.

  18. Improved thermodynamic modelling of the no-vent fill process and correlation with experimental data

    Science.gov (United States)

    Taylor, W. J.; Chato, D. J.

    1991-06-01

    The United States plans to establish a permanent manned presence in space and to explore the Solar System have created the need to efficiently handle large quantities of subcritical cryogenic fluids, particularly propellants such as liquid hydrogen and liquid oxygen, in low- to zero-gravity environments. One of the key technologies to be developed for fluid handling is the ability to transfer the cryogens between storage and spacecraft tanks. The no-vent fill method has been identified as one way to perform this transfer. In order to understand how to apply this method, a model of the no-vent fill process is being developed and correlated with experimental data. The verified models then can be used to design and analyze configurations for tankage and subcritical fluid depots. This paper discusses the development of an improved macroscopic thermodynamic model of the no-vent fill process and correlates the analytical results from the computer program implementation of the model with experimental results for two different test tanks at NASA Lewis Research Center.

  19. A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell

    Science.gov (United States)

    Coman, Paul T.; Rayman, Sean; White, Ralph E.

    2016-03-01

    This paper presents a mathematical model built for analyzing the intricate thermal behavior of a 18650 LCO (Lithium Cobalt Oxide) battery cell during thermal runaway when venting of the electrolyte and contents of the jelly roll (ejecta) is considered. The model consists of different ODEs (Ordinary Differential Equations) describing reaction rates and electrochemical reactions, as well as the isentropic flow equations for describing electrolyte venting. The results are validated against experimental findings from Golubkov et al. [1] [Andrey W. Golubkov, David Fuchs, Julian Wagner, Helmar Wiltsche, Christoph Stangl, Gisela Fauler, Gernot Voitice Alexander Thaler and Viktor Hacker, RSC Advances, 4:3633-3642, 2014] for two cases - with flow and without flow. The results show that if the isentropic flow equations are not included in the model, the thermal runaway is triggered prematurely at the point where venting should occur. This shows that the heat dissipation due to ejection of electrolyte and jelly roll contents has a significant contribution. When the flow equations are included, the model shows good agreement with the experiment and therefore proving the importance of including venting.

  20. Research on Heat Recovery Technology for Reducing the Energy Consumption of Dedicated Ventilation Systems: An Application to the Operating Model of a Laboratory

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2016-01-01

    Full Text Available In this research, the application of heat pipes in the air handler dedicated to decoupling dehumidification from cooling to reduce energy consumption was simulated and investigated by simulations and experimental studies. The cooling load profiles and heat pipes with effectiveness of 0.45 and 0.6, respectively, were evaluated in achieving the desired space conditions and calculated hour by hour. The results demonstrated that for all examined cases, a heat pipe heat exchanger (HPHX can be used to save over 80% of the energy during the hours of operation of air conditioning. The overall energy reduction rate was from 3.2% to 4.5% under air conditioning system conditions. It was found that the energy saving potential of a laboratory was higher than for other kinds of buildings. Therefore, the dedicated ventilation system combined with heat recovery technology can be efficiently applied to buildings, especially for laboratories in subtropical areas.

  1. Comparative Analysis of Technology of Waste Heat Recovery Systems of Engine%发动机废气余热利用技术的对比分析

    Institute of Scientific and Technical Information of China (English)

    马俊达; 卢小锐; 黎苏; 郑清平

    2012-01-01

    分析了目前汽车余热利用技术的现状和余热回收系统的特征,展示了各种余热回收系统的基本结构。、分别对余热制冷技术和余热发电技术的系统参数和结构特征进行了对比。根据两种技术存在的共同问题,提出了推动余热利用发展的关键技术。%The existing situation of the techniques used in vehicles about recycling the exhaust energy is analyzed. The paper introduces the characteristics of waste heat recovery systems, and shows the basic structure of waste heat recovery system. For waste heat refrigeration technology and waste heat electric-power generation technology, their parameters and characteristics of the systems are compared respectively. According to two kinds of technologies in a common problem, the key technologies of waste heat recovery are put forward.

  2. Analysis on the construction technology of heat exchanger of Ground-Source Heat Pump(GSHP) system%土壤源热泵换热器施工工艺分析

    Institute of Scientific and Technical Information of China (English)

    王祁生

    2011-01-01

    以实际工程为背景,研究了土壤源热泵技术的工作原理,详细阐述了土壤源热泵换热器施工工艺和操作要点以及注意事项,旨在推广土壤源热泵技术的应用,实现节能环保目标。%Taking actual engineering as the background,it studies the working principle of Ground-Source Heat Pump technology,describes the cosntruciton technology and operation points and attentions of heat exchanger of Ground-Source Heat Pump,with a view to promot

  3. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.L. (ed.)

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  4. 40 CFR 63.172 - Standards: Closed-vent systems and control devices.

    Science.gov (United States)

    2010-07-01

    ... olfactory indications of leaks. (2) If the vapor collection system or closed-vent system is constructed of... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Closed-vent systems and... Standards: Closed-vent systems and control devices. (a) Owners or operators of closed-vent systems...

  5. 太阳能与热泵技术在原油加热系统的应用%Application of solar energy and heat pump technology in oil heating system

    Institute of Scientific and Technical Information of China (English)

    裴峻峰; 陈广敏

    2012-01-01

    Oil or gas-fired heaters used to heat crude oil will result in energy waste and environmental pollution. A high-temperature heat pump which takes the solar energy and heat from re-injected water heat exchange as the low-temperature heat source and electric heater as the alternative heat source can be used for the cyclic heating of crude oil gathering, saving energy and reducing emissions, thereby. Mathematical models of solar thermal collectors and high-temperature water source heat pumps are respectively set up using Matlab's Simulink simulation technology, and then field running parameters are inputted for simulation. Based on these simulations, researchers can predict the running conditions of solar and heat pumps' joint heating systems, and make an economical efficiency comparison between simulation running results and other heating systems. Results indicate that solar energy and high-temperature heat pump joint heating systems can produce heating temperatures up to 75℃ , a heating coefficient of 3.5, and annual running costs of 40.23×l04 RMB less than those of electric boilers. The investment can be recovered within 14 months, characterizing a significant economy.%利用燃油、燃气加热炉加热原油会造成能源浪费和环境污染,以太阳能和回注水热交换所获热量为高温水源热泵的低温热源,以电加热器为备用热源,用于集输原油的循环加热,可以达到节能减排的目的.分别建立了太阳能集热器和高温水源热泵的数学模型,采用Matlab中的Simulink仿真技术建模,输入现场运行参数进行仿真,通过模拟仿真预测太阳能与热泵联合供热系统的运行情况,并将模拟运行结果与其他供热系统进行经济性比较.结果表明:太阳能与高温热泵联合供热系统的制热温度达75℃,制热系数达3.5,年运行费用较电锅炉加热节省40.23×104元,增加的投资14个月即可收回,经济效益比较显著.

  6. Inventory of future power and heat production technologies. Partial report Energy combines; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energikombinat

    Energy Technology Data Exchange (ETDEWEB)

    Thunman, Henrik; Lind, Fredrik; Johnsson, Filip (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2008-12-15

    This report treats different ways to produce various upgraded biofuels from lignocellulosic materials in so called polygeneration processes. Furthermore the different upgrading technologies are also investigated with respect to co-production of heat and power. The processes investigated are linked to production of - bio pellets (or lignin pellets), dried, grinded and compressed biomass (or lignin); - torrified bio pellets, dried, grinded, heat treated and compressed biomass; - bio-oils or pyrolytic oils, liquefied biomass with crude oil quality; - ethanol via hydrolysis (process where the biomass is divided into sugars and lignin) followed by fermentation; - methane via hydrolysis and fermentation; - methane via indirect gasification and methane via indirect or suspension gasification, - DME (dimethyl ether) via indirect or suspension gasification; - methanol via indirect or suspension gasification; - DME and methanol via methane produced via indirect gasification. Lignocellulosic biomasses are, for example, forest residues or biomass that can be cultivated on degraded lands. The result from this report shows that it is only the production of bio pellets that is fully commercially available today. For all the other polygeneration processes investigated the production of bio-oil and torrified bio pellets stands out from the other processes investigated, as it is the market for the product that holds back the introduction of the technology. For the other technologies one or several components are still not commercialized and the challenges for these technologies are described in the report. Summarizing the efficiencies for the different processes, the processes that produces biofuels for stationary applications, bio pellets, torrified bio pellets and bio-oil, show the highest efficiencies. Accounted for the co-generated power, efficiencies up to 90 % based on ingoing lower heating values of the dry substance fed to the process could be achieved. For the processes

  7. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  8. Calculation and analysis of hydrogen volume concentrations in the vent pipe rigid proposed for NPP-L V; Calculo y analisis de concentraciones volumetricas de hidrogeno en el tubo de venteo rigido propuesto para la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A. M.; Xolocostli M, V. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez M, R.; Filio L, C. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Royl, P., E-mail: armando.gomez@inin.gob.mx [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz I, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    In 2012 was modeled of primary and secondary container of the nuclear power plant of Laguna Verde (NPP-L V) for the CFD Gas-Flow code. These models were used to calculate hydrogen volume concentrations run release the reactor building in case of a severe accident. The results showed that the venting would produce detonation conditions in the venting level (level 33) and flammability at ground level of reload. One of the solutions to avoid reaching critical concentrations (flammable or detonable) inside the reactor building and thus safeguard the contentions is to make a rigid venting. The rigid vent is a pipe connected to the primary container could go to the level 33 of the secondary container and style fireplace climb to the top of the reactor building. The analysis of hydrogen transport inside the vent pipe can be influenced by various environmental criteria and factors vent, so a logical consequence of the 2012 analysis is the analysis of the gases transport within said pipe to define vent ideal conditions. For these evaluations the vent pipe was modeled with a fine mesh of 32 radial interior nodes and a coarse mesh of 4 radial interior nodes. With three-dimensional models were realized calculations that allow observing the influence of heat transfer in the long term, i.e. a complete analysis of exhaust (approx. 700 seconds). However, the most interesting results focus on the first milliseconds, when the H{sub 2} coming from the atmosphere of the primary container faces the air in the vent pipe. These first milliseconds besides allowing evaluating the detonation criteria in great detail in the different tubular sections similarly allow evaluating the pressure wave that occurs in the pipe and that at some point slows to the fluid on the last tubular section and could produce a detonation inside the pipe. Results are presented for venting fixed conditions, showing possible detonations into the pipe. (Author)

  9. Real-time Characterization of Submarine Hydrothermal Vents with an In-situ Mass Spectrometer Operating Aboard a Human Occupied Submersible

    Science.gov (United States)

    Camilli, R.; Sakellariou, D.; Foley, B.; Anagnostou, C.; Goudreau, J.; Bingham, B.; Eustice, R.; Mallios, A.; Katsaros, K.

    2006-12-01

    Mapping and characterization of submarine hydrothermal vents have historically been limited to rudimentary in- situ tools such as temperature probes and backscatter sensors. We present results from an investigation of hydrothermal vents in the Aegean Sea using the Gemini in-situ mass spectrometer operating aboard the HCMR Thetis submersible. The Thetis-Gemini system conducted a series of dive missions to locate and characterize hydrothermal vent activity in the Hellenic back arc system near the Greek island of Milos and in the Santorini caldera. Data from these dives provide a novel way to characterize the water chemistry of hydrothermal vents in real-time. We present results from the mass spectrometer as well as ship-based geologic and gas chromatographic analysis of rock and water samples. Data from ship-based analysis clearly agree with the hydrothermal vent geochemistry as identified by the mass spectrometer. This new technological capability enables rapid and detailed analysis of hydrothermal vents as well as identification of other seafloor seep structures such as cold seeps that were previously unobservable.

  10. Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents

    Science.gov (United States)

    Conrad, P. G.; Lane, A. L.; Bhartia, R.; Hug, W. H.

    2004-01-01

    We have developed a non-contact, optical life detection instrument that can detect organic chemical biosignatures in a number of different environments, including dry land, shallow aqueous, deep marine or in ice. Hence, the instrument is appropriate as a biosignature survey tool both for Mars exploration or in situ experiments in an ice-covered ocean such as one might wish to explore on Europa. Here, we report the results we obtained on an expedition aboard the Russian oceanographic vessel Akademik Mstislav Keldysh to hydrothermal vent sites in the Pacific Ocean using our life detection instrument MCDUVE, a multichannel, deep ultraviolet excitation fluorescence detector. MCDUVE detected organic material distribution on rocks near the vent, as well as direct detection of organisms, both microbial and microscopic. We also were able to detect organic material issuing directly from vent chimneys, measure the organic signature of the water column as we ascended, and passively observe the emission of light directly from some vents.

  11. 基于VSP2的放热反应失控紧急泄放特性%Characteristics of emergency venting on exothermic reaction runaway based on VSP2

    Institute of Scientific and Technical Information of China (English)

    喻健良; 闫兴清; 孟庭宇; 谢传欣

    2013-01-01

    基于VSP2绝热量热仪,通过增加泄放物收集罐、快速响应气动阀及泄放孔板,开展了放热反应失控泄放实验,详细探讨了输入热功率、初始填充率、泄放压力、泄放直径以及反应物发泡性对泄放能力及泄放物质量的影响.结果表明:二相流泄放能力随输入热功率增大而降低,随初始填充率增大先增大后减小,随泄放压力增大先快速降低后缓慢增加,随泄放直径增大而增大.泄放物质量随输入热功率、初始填充率、泄放压力和泄放直径的增大而增大.发泡性材料能显著降低泄放装置的泄放能力,但能增大泄放物质量.%Through the addition of effluent container,rapid response pneumatic valve and orifice based on VSP2 (Vent Sizing Package 2),the blowdown tests of exothermic reaction runaway were conducted.The impact of heating power,initial fill rate,venting pressure,venting diameter and the reactant foaming property on the venting capacity and the effluent mass were investigated.The results indicate that the venting capacity decreases with the increase of heating power,and increases then falls with the rise of fill rate.In addition,the vent capacity decreases rapidly then increases slowly with the increase of venting pressure.Larger venting diameter leads to larger venting capacity.The effluent mass increases with the rise of heating power,fill rate,venting pressure and venting diameter.Foamy reactants can greatly decrease the venting capacity whereas increase the effluent mass.

  12. Antarctic marine biodiversity and deep-sea hydrothermal vents.

    Directory of Open Access Journals (Sweden)

    Steven L Chown

    2012-01-01

    Full Text Available The diversity of many marine benthic groups is unlike that of most other taxa. Rather than declining from the tropics to the poles, much of the benthos shows high diversity in the Southern Ocean. Moreover, many species are unique to the Antarctic region. Recent work has shown that this is also true of the communities of Antarctic deep-sea hydrothermal vents. Vent ecosystems have been documented from many sites across the globe, associated with the thermally and chemically variable habitats found around these, typically high temperature, streams that are rich in reduced compounds and polymetallic sulphides. The animal communities of the East Scotia Ridge vent ecosystems are very different to those elsewhere, though the microbiota, which form the basis of vent food webs, show less differentiation. Much of the biological significance of deep-sea hydrothermal vents lies in their biodiversity, the diverse biochemistry of their bacteria, the remarkable symbioses among many of the marine animals and these bacteria, and the prospects that investigations of these systems hold for understanding the conditions that may have led to the first appearance of life. The discovery of diverse and unusual Antarctic hydrothermal vent ecosystems provides opportunities for new understanding in these fields. Moreover, the Antarctic vents south of 60°S benefit from automatic conservation under the Convention on the Conservation of Antarctic Marine Living Resources and the Antarctic Treaty. Other deep-sea hydrothermal vents located in international waters are not protected and may be threatened by growing interests in deep-sea mining.

  13. 吸收式热泵用于热电联产改造新技术%The Co-production of New Technology Transformation of Usage of Absorption Hot-pump to Recycle Waste Heat in Heat Power Plant

    Institute of Scientific and Technical Information of China (English)

    茹毅; 王飞

    2012-01-01

    热电厂的循环冷却水系统存在大量的低位热能。热泵系统具有将低位热能提升为高位热能的能力。本文即是根据山西某热电厂的节能改造方案介绍了利用吸收式热泵系统回收电厂冷凝余热用于集中供热的新技术;并对新型供热系统做出能效和经济性评价,认为新技术应用具有经济和环境的双重效益,有广阔发展前景。%There is a large number of low level heat energy in the circulating cooling water system of thermal power plant.Heat pump system has the ability to improve the heat energy level from low order into high order.This article introduced the new technology,application to central heating,of usage of absorption high temperature heat pump system for recycling waste heat of condensation which based on the energy-saving reform plan of one heat-power plant in Shanxi province.Based on the new central heating systems the energy efficiency and economic evaluation be giving in this paper.Through the analysis shows that the application of new technology has the double effect in economic efficiency and environmental protection that has broad prospects for development.

  14. Experimental Study of Effect of Vents in Thermal Ventilation

    Institute of Scientific and Technical Information of China (English)

    LIU Dong; LIU Xiao-yu; ZHUANG Jiang-ting; SHEN Hui

    2009-01-01

    The effects of vents on thermal ventilation to save energy in the cold roUing workshop of Baosteel were investigated.According to the scale modeling theory,a small chamber was established.The details about construction of experiment On thermal ventilation and the preparation and arrangement of apparatus were dis-cussed,and then the effects of vents on thermal ventilation were studied through experiments,which includes the temperature distribution,the volume of ventilation,the temperature difference between inlets and outlets,the neutral plane,and the effective thermal coefficient of thermal natural ventilation.Based on this,the effects of natural ventilation based on varied area of inlets and oudets and those of vents on one side and on different sides were compared.According to the experiments,the area of inlet vents and outlet vents affect the tempera-ture distribution in chamber, and their effects on ventilation volume are difierent,but the effects of vents in sin-gle side or different sides aare the same under the condition that only thermal ventilation is considered.

  15. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps.

    Science.gov (United States)

    Borda, Elizabeth; Kudenov, Jerry D; Chevaldonné, Pierre; Blake, James A; Desbruyères, Daniel; Fabri, Marie-Claire; Hourdez, Stéphane; Pleijel, Fredrik; Shank, Timothy M; Wilson, Nerida G; Schulze, Anja; Rouse, Greg W

    2013-11-07

    Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time.

  16. To Determination of Heating Speed of Surface Element of Module Industrial Furnace Recuperator of High-Temperature Heat Technologies at Engineering and Automotive and Tractor Plants

    Directory of Open Access Journals (Sweden)

    V. V. Shidlovsky

    2010-01-01

    Full Text Available The paper contains an analysis of thermal stressed state of a cast-iron recuperator element wall in the case when a cast-iron needle recuperator operates in the state of  elasticity and elastic-plasticity.Heating speed evaluation of  heat-exchange surface at furnace start-up is given in the paper. 

  17. Payload bay atmospheric vent airflow testing at the Vibration and Acoustic Test Facility

    Science.gov (United States)

    Johnston, James D., Jr.

    1988-01-01

    Several concerns related to venting the Space Shuttle Orbiter payload bay during launch led to laboratory experiments with a flight-type vent box installed in the wall of a subsonic wind tunnel. This report describes the test setups and procedures used to acquire data for characterization of airflow through the vent box and acoustic tones radiated from the vent-box cavity. A flexible boundary-layer spoiler which reduced the vent-tone amplitude is described.

  18. 76 FR 43941 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Science.gov (United States)

    2011-07-22

    ... living space. Products intended for use as a heater are often shipped with or designed to be easily.... Specifically, DOE is proposing to change to the definition of ``vented hearth heater,'' a type of direct heating equipment, to clarify the scope of the current exclusion for those vented hearth heaters that are...

  19. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    Science.gov (United States)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  20. Technologies for production of electricity and heat in Sweden. Wind energy in perspective of international development

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik

    2008-12-15

    The development of the wind energy technology has been very successful from the 1970s and up till now. Initially there was a battle between wind turbine concepts, but the commercial winner today is the three-bladed horizontal axis, upwind, electricity producing and grid connected wind turbine with availability on mature markets somewhere around 99%. An important contributor to the growth of the European market for wind energy technology has been EU framework legislation combined with legislation at the national level. The binding target for renewable energy in Sweden is proposed to be 49% of the final energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment cost of 1.230 Euro/kW with a typically variation from approximately 1000 Euro/kW to approximately 1400 Euro/kW. The calculated costs per kWh wind generated power range from approximately 7-10 cEuro/kWh at sites with low average wind speeds to approximately 5-6.5 cEuro/kWh at good coastal positions, with an average of approximately 7cEuro/kWh at a medium wind site. Offshore costs are largely dependent on weather and wave conditions, water depth, and distance to the

  1. Technology of large-sized heat-insulating elements for energetic redevelopment of facades; Grosselement-Daemmtechnik (GeDt) zur energetischen Fassadensanierung

    Energy Technology Data Exchange (ETDEWEB)

    Reyer, E. [Ingenieurgesellschaft Gathmann, Reyer, und Teilhaber mbH (IGRT), Bochum (Germany); Sieder, M. [Schweitzer GmbH - Beratende Ingenieure, Saarbrucken (Germany); Bamberger, C.; Schild, K. [Bochum Univ., Bochum (Germany). Baukonstruktionen und Bauphysik; Voelkner, S. [Rockwool International A/S, Hedehusene (Denmark). Group Development and Application

    2004-07-01

    Sustainable reduction of heating energy - required for our buildings - can be reached by additional insulation of existing old building facades. Sometimes homeowners interest about the heat-insulating redevelopment of their building facades seemed to be quite small, because of longer construction times and restrictions by scaffolding, noise and pollution often concerned with conventional technologies. New impulses for the realization of additional redevelopment measures can be given by innovative, time-saving and less disturbing redevelopment technologies - like the following described. So the federal ministry for economy and technology and 4 industry partners promoted the research project 'Energetic redevelopment of facades with industrial prefabrication technologies' at the University of Bochum (Institute of constructional civil engineering). In the context of this research project all essentials of the technology of large-sized heat-insulating elements for sustainable heating energy saving redevelopment of facades were developed. This technology is based on large-sized heat-insulating elements (height of about 2,80 m and length up to 8 m) considering aspects of structural analysis, physics relating to construction and assembling elements. For the application of the large-sized elements at building facades two fixing systems were created and tested - one based on dot-shaped fixings, the other on bar-shaped fixings. To ensure the prefabrication of those large-sized redevelopment elements and their exact assembling the development of a contactless surveying and marking out system was necessary - separately realized at the University of Bochum (area of geodetics). Large size and system-specific implementation details of the redevelopment elements mentioned above caused the development of suitable tools for assembling and transporting elements. (orig.)

  2. Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough

    Science.gov (United States)

    Webber, Alexander P.; Roberts, Stephen; Murton, Bramley J.; Hodgkinson, Matthew R. S.

    2015-09-01

    The Beebe Vent Field (BVF) is the world's deepest known hydrothermal system, at 4960 m below sea level. Located on the Mid-Cayman Spreading Centre, Caribbean, the BVF hosts high temperature (˜401°C) "black smoker" vents that build Cu, Zn and Au-rich sulfide mounds and chimneys. The BVF is highly gold-rich, with Au values up to 93 ppm and an average Au:Ag ratio of 0.15. Gold precipitation is directly associated with diffuse flow through "beehive" chimneys. Significant mass-wasting of sulfide material at the BVF, accompanied by changes in metal content, results in metaliferous talus and sediment deposits. Situated on very thin (2-3 km thick) oceanic crust, at an ultraslow spreading centre, the hydrothermal system circulates fluids to a depth of ˜1.8 km in a basement that is likely to include a mixture of both mafic and ultramafic lithologies. We suggest hydrothermal interaction with chalcophile-bearing sulfides in the mantle rocks, together with precipitation of Au in beehive chimney structures, has resulted in the formation of a Au-rich volcanogenic massive sulfide (VMS) deposit. With its spatial distribution of deposit materials and metal contents, the BVF represents a modern day analogue for basalt hosted, Au-rich VMS systems.

  3. Overview of the Shell and Tube Heat Exchangers about Heat Transfer Enhancement Technology%管壳式换热器强化传热技术概述

    Institute of Scientific and Technical Information of China (English)

    齐洪洋; 高磊; 张莹莹; 周辰琳

    2012-01-01

    The research progress of shell and tube heat exchanger were summarized. The development, structural improvement and heat transfer enhancement of the heat exchangers were introduced through three aspects,e. g. tube pass,shell pass and the whole tub bundle etc. Compared with the traditional seg-mental baffle heat exchanger, various types of heat exchangers' characteristics about heat transfer enhancement were epitomized. At last,the studying directions of heat exchangers were pointed out.%总结了近年来国内外新型管壳式换热器的研究进展,从管程、壳程、管束三方面介绍了管壳式换热器的发展历程、结构改进及强化传热机理,并与普通弓形折流板换热器进行对比,概括了各式换热器的强化传热特点.最后指出了换热器的研究方向.

  4. 工业过程余热回收利用技术研究进展%Review of Waste Heat Utilization Technologies for Industry Processes

    Institute of Scientific and Technical Information of China (English)

    冯惠生; 徐菲菲; 刘叶凤; 单纯

    2012-01-01

    This paper reviewed the characteristics and applications of waste heat recovery technologies such as heat transfer utilization, refrigeration and heat pump, power generation by organic Rankine cycle (ORC) system and Kalina cycle. The thermodynamic principle and research method existing in the recovery of waste heats were carried out. The dissemination of ORC system and Kalina cycle system are necessary for increasing the effective of waste heat utilization. Meanwhile, refrigeration and heat pump technologies should be combined with specific industry process, application of simulation to the design also should be enhanced.%概述了余热利用的热交换技术、余热制冷制热技术、低温有机朗肯循环及Kaliana循环余热发电技术的应用,并对其热力学原理以及研究方法进行了分析.认为研究推广低温有机朗肯循环及Kalina循环等低温余热发电技术对提高余热利用率更加有效,余热制冷制热技术的应用必须与工艺过程相结合,加强计算机模拟在制冷过程的设计中的应用.

  5. 水源热泵技术在铀矿山应用的探讨%Discussion on application of water source heat pump technology to uranium mines

    Institute of Scientific and Technical Information of China (English)

    安强

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines.%探讨水源热泵机组在回收铀矿山废热中的应用,介绍其回收废热的几种形式,同时分析其在铀矿山应用存在的问题.研究分析表明,水源热泵在铀矿山具有广阔的应用前景,是改变矿山现有冷热源结构的一条理想出路.

  6. Technology and Equipment of Waste Heat Recovery in Dryer Section of Paper Machine%纸机干燥部余热回收技术与设备

    Institute of Scientific and Technical Information of China (English)

    张秀文

    2012-01-01

    Some waste heat recovery technology and equipment used in dryer section of paper machine at home and abroad were introduced in this paper.%介绍一些国际、国内余热回收技术和设备,供同行分析、研究和借鉴.

  7. Major transitions in evolution linked to thermal gradients above hydrothermal vents

    CERN Document Server

    Muller, Anthonie W J

    2012-01-01

    The emergence of the main divisions of today's life: (1) unicellular prokaryotes, (2) unicellular eukaryotes, (3) multicellular eukaryotes, and (4) metazoans, are examples of the--still unexplained--major transitions in evolution. Regarding the origin of life, I have proposed that primordial life functioned as heat engine (thermosynthesis) while thermally cycled in convecting volcanic hot springs. Here I argue for a role of thermal gradients above submarine hydrothermal vents (SHV) in several major transitions. The last decade has witnessed the emergence of phononics, a novel discipline in physics based on controlled heat transport in thermal gradients. It builds thermal analogs to electronic devices: the thermal diode, the thermal transistor, the thermal switch, the thermal amplifier, the thermal memory--the thermal computer has been proposed. Encouraged by (1) the many similarities between microtubules (MT) and carbon nanotubes, which have a very high thermal conductivity, and (2) the recent discovery of a ...

  8. 40 CFR Table 7 to Subpart Jjj of... - Group 1 Batch Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping, and...

    Science.gov (United States)

    2010-07-01

    ... Aggregate Batch Vent Streams-Monitoring, Recordkeeping, and Reporting Requirements 7 Table 7 to Subpart JJJ... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 7 Table 7 to Subpart JJJ of Part 63—Group 1 Batch Process Vents and Aggregate Batch Vent Streams...

  9. 我国工业余热回收利用技术综述%An Overview of Domestic Technologies for Waste Heat Utilization

    Institute of Scientific and Technical Information of China (English)

    连红奎; 李艳; 束光阳子; 顾春伟

    2011-01-01

    节能减排主要依靠工业领域,工业余热利用是重要内容.本文从余热利用过程能量转换情况角度,概述了国内用于余热利用的热交换技术、热功转换余热发电技术及余热制冷制热技术及其设备的技术特点及应用概况,分析了工业余热利用中的存在的问题,认为需进一步推广余热锅妒及低温汽轮机余热发电技术,提高中高温余热的利用率,需要强化研究并掌握有机朗肯循环等300℃以下低温余热发电技术,积极向工程应用推广,提高低品位余热利用率.%Waste heat recovery in industry is indispensable in saving energy, lowering energy consumption and reducing pollutants. This paper overviewed the characteristics and applications of waste heat recovery technologies in China such as heat transfer utilization, power generation technologies, refrigeration and heat pump. The dissemination of waste heat boiler and power generation technologies is necessary for increasing the ratio of midium/high temperature waste heat utilization; meanwhile Organic Rankine Cycle system is an effective solution to the low temperature waste heat recovery and the development is a pressing need.

  10. Results from measurements on the PV-VENT systems at Lundebjerg[DENMARK

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.

    2001-05-01

    The objective of the PV-VENT project was research, development, and tests in the following areas: 1. Develop and illustrate different ways of architectural integration of solar energy systems with combined PV power production and pre-heating of ventilation air in buildings, 2. Investigate the potential in pre-heating fresh air to the building by cooling the PV-panels with the fresh air and further to determine how much this cooling will increase the electrical performance of the PV-panels, 3. Develop and test air to air heat exchangers with an efficiency of 80% or above, 4. Develop and test fans and ventilation systems with an overall fan power demand of about 35 W, 5. Develop and test a direct coupling of the PV-panels to the fans in order to avoid the losses in an inverter, 6. Develop and test different ventilation systems utilizing the abovementioned features. Three different ways of integrating PV-panels with pre-heating of fresh air to the building have been demonstrated in Lundebjerg: a large PV-gable with amorphous PV-panels, a PV-facade with polycrystalline (c-Si) PV-panels and solar ventilation chimneys with polycrystalline (c-Si) PV-panels. Especially the latter feature, the solar ventilation chimney is a new and interesting concept as it allows for increased PV areas although the orientation of the building is not optimal for utilization of solar energy, as was the case in Lundebjerg. It is believed that the PV-VENT project has added important information and experience to the field of combining PV and ventilation systems. Information and experience that future systems of this type may benefit from. Several of the components from the project are believed to be able to contribute to set the standards for future PV and ventilation systems. Several of the components from the project is today commercial available and are used in ordinary building projects. (BA)

  11. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood.

    Science.gov (United States)

    Gündüz, Gökhan; Korkut, Süleyman; Korkut, Derya Sevim

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood were examined. Samples obtained from Yenice-Zonguldak Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for varying durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. The mechanical properties of heat-treated and control samples were tested, and compression strength, and Janka-hardness were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p=0.05) between physical and technological properties, and surface roughness parameters (Ra, Rz, Ry, Rq) for three temperatures and three durations of heat treatment. Based on the findings in this study, the results showed that density, swelling, compression strength, Janka-hardness and surface roughness values decreased with increasing treatment temperature and treatment times. Increase in temperature and duration further diminished technological strength values of the wood specimens. Camiyani Black Pine wood could be utilized by using proper heat treatment techniques without any losses in strength values in areas where working, stability, and surface smoothness, such as in window frames, are important factors.

  12. Experimental Study on Fundamental Phenomena of Nucleate-Boiling by Using Heat Transfer Surface with Artificial Cavities Created by MEMS Technology

    Science.gov (United States)

    Sato, Takato; Koizumi, Yasuo; Ohtake, Hiroyasu

    Pool nucleate boiling heat transfer experiments were performed for water by using a well-controlled and -defined heat transfer surfaces in the range of the surface heat flux of ˜ 4.54×104 W⁄m2. One or three cavities were created on a mirror-finished silicon plate of 0.525 mm thickness by utilizing the Micro-Electro Mechanical Systems (MEMS) technology. In present experiments, the cavities were arranged in a straight line. The silicon plate was placed facing up at the bottom of the test container filled with distilled water. The back side of the silicon plate was irradiated by a laser beam to heat up the test heat transfer surface. The back side temperature was measured with a radiation thermometer. A boiling state was recorded with a high speed video camera. Thermal interaction between neighboring cavities became weak as the cavity spacing became wide and it disappeared when S⁄Lc = 1.6 in present experimental range. Four bubble coalescence patterns; vertical, horizontal and declining coalescence and vertical lift (no coalescence), were confirmed. When S⁄Lc ≥ 1.6, horizontal and declining coalescence disappeared. When the cavity spacing was narrow, hydraulic interaction between neighboring cavities played an important role in heat transfer. It became less important as the cavity spacing became wide. When S⁄Lc ≥ 1.2, the hydraulic interaction between neighboring cavities became negligible and phase change heat transfer took a main part.

  13. Infrared heating

    Science.gov (United States)

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  14. 蒸发末效汁汽废热加热蔗汁的新工艺研究%Study on The New Technology of Waste Heat from the Last Effect Steam of Evaporation Heating the Cane Juice

    Institute of Scientific and Technical Information of China (English)

    罗英极

    2011-01-01

    This paper proposes a new technology of using waste heat from the last effect stream of evaporation to heat the cane juice.Using the direct injection heat exchanger,the thermal energy of the last effect steam of evaporation is absorbed by water.And then using the hot water absorbed thermal energy to heating the cane juice through the plate heat exchanger.When the temperature of the last effect stream maintains about 70 ℃,the tempreture of the water can be improved from 35 ℃ to 65 ℃,and the cane juice will be heated from 25 ℃ to 60 ℃ by the hot water.It satisfies the demand of the first heating temperature of the cane juice.In addition,the paper have analyzed the benefit for the new technology.According to a cane mills handling the cane 10 000 t a day,the new technology can save the bagasse 25 229 t/a in a milling season,namely saving the cost of fuel 12.61 millions yuan.The technology is to achieve the effect of energy saving and emission reduction,and the benefits are remarkable.%提出了蒸发末效汁汽废热加热蔗汁的新工艺。通过喷射式直接换热器,用水吸收蒸发末效汁汽的热能,然后采用板式换热器,利用吸收了热能的热水来加热蔗汁。如果把蒸发末效汁汽温度控制到70℃,汁汽可以将水的温度从30℃提升到65℃,热水可将蔗汁的温度从25℃提升到60℃,满足了蔗汁一次加热的温度要求。此外还对新工艺进行了效益分析,对于日榨10 000 t甘蔗的糖厂,一个榨季可节约蔗渣25 229 t/a,即节约燃料费1 261万元人民币。工艺达到了节能减排的效果,且效益显著。

  15. Upstream petroleum industry flaring and venting report : industry performance for year ending December 31, 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The Energy Resources Conservation Board (ERCB) has developed recommendations for a flaring and venting management framework for the province of Alberta. This report fulfilled the ERCB's information mandate regarding flaring and venting as part of a commitment made in Directive 060 for upstream petroleum industry flaring, incineration, and venting to make flaring and venting data more accessible. It included data on upstream petroleum industry flaring and venting with particular reference to solution gas conserved, flared and vented, from 1996 to 2008; solution gas flaring and venting performance; flaring from all upstream oil and gas sources, from 2000 to 2008; venting from all upstream oil and gas sources, from 2000 to 2008; solution gas flaring and venting maps; and solution gas emissions ranking of operators for 2007. The report also provided a summary of flaring and venting from various oil and gas industry sources, such as well tests, gas plants, gas gathering systems, transmission lines, and batteries. Ranking of companies was established based on solution gas flared plus vented; solution gas flared; and solution gas vented from crude oil and bitumen batteries. The data used in the preparation of this report was submitted by companies. The report revealed that considerable progress has been made in the reduction of flaring and venting volumes for all upstream oil and gas sources. The reduction can be attributed to the decline in new conventional oil production. It can also be correlated to the decline in volumes of solution gas formerly being flared, and now being vented. Solution gas vented in 2008 was 40.7 per cent less than the 2000 venting baseline. However, in 2008, there was a 25.9 per cent increase in venting from crude bitumen batteries which can be correlated to the increase in crude bitumen production. The ERCB is continuing to work with the Clean Air Strategic Alliance to examine options to further address solution gas venting. tabs., figs.

  16. 紫薯电热加温育苗技术%Seedling Technology of Purple Sweet Potato using Electric Heating

    Institute of Scientific and Technical Information of China (English)

    陈相波; 张萍; 魏伟; 龚礼萍; 欧阳昌东

    2014-01-01

    紫薯发芽难、发芽慢,造成紫薯种植中低产、低效。采用电热加温育苗,提早紫薯播种育苗,可有效解决薯块发芽难问题,提高紫薯发芽率以及育苗产率。早播促早发,早发促早栽,早栽促丰产、高效。%It was difficult for purple sweet potato to germinate and sprout quickly which caused the low output and efficiency in its plantation. The application of seedling technology by electric heating solved the problem effectively, which could speed up the process of sprouting for purple sweet potato seeds, and could improve its sprouting rate and seedling rate. In a word, early sowing shortened the sprouting time, then the seeding can be planted early to ensure the high yield and efficiency.

  17. Three pipe technology for simultaneous heating and cooling. Energy efficient heating and air conditioning of an official building; Dreirohrtechnik fuer zeitgleiches Heizen und Kuehlen. Energieeffiziente Heizung und Klimatisierung eines Buerohauses

    Energy Technology Data Exchange (ETDEWEB)

    Timm, Juergen [Dithmarscher Kaeltetechnik GmbH, Marne (Germany)

    2011-09-15

    The new office building of the shipping company Strahlmann at the North Sea/Baltic Sea Canal in Brunsbuettel was equipped with heating systems as well as air conditioning systems according to the state of the art. The building has three office floors, two stacked storeys as well as a basement garage. When designing and engineering a system the advanced technology was considered in order to take account the environmental issues associated with long-term energy costs savings.

  18. Heat pump concepts for nZEB Technology developments, design tools and testing of heat pump systems for nZEB in the USA: Country report IEA HPT Annex 40 Task 2, Task 3 and Task 4 of the USA

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Payne, W. Vance [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Ling, Jiazhen [Univ. of Maryland, College Park, MD (United States); Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States)

    2015-12-01

    The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage for several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.

  19. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  20. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment.

    Science.gov (United States)

    Klinar, Dušan

    2016-04-01

    Biochar as a soil amendment and carbon sink becomes in last period one of the vast, interesting product of slow pyrolysis. Simplest and most used industrial process arrangement is a production of biochar and heat at the same time. Proposed mass and heat balance model consist of heat consumers (heat demand side) and heat generation-supply side. Direct burning of all generated uncondensed volatiles from biomass provides heat. Calculation of the mass and heat balance of both sides reveals the internal distribution of masses and energy inside process streams and units. Thermodynamic calculations verified not only the concept but also numerical range of the results. The comparisons with recent published scientific and vendors data prove its general applicability and reliability. The model opens the possibility for process efficiency innovations. Finally, the model was adapted to give more investors favorable results and support techno-economic assessments entirely.

  1. CHP Technologies

    Science.gov (United States)

    Learn about CHP technologies, including reciprocating engines, combustion turbines, steam turbines, microturbines, fuel cells, and waste heat to power. Access the Catalog of CHP Technologies and the Biomass CHP Catalog of Technologies.

  2. 316L stainless steel silver plated plate vacuum heat treatment technology%316L不锈钢镀银板的真空热处理工艺

    Institute of Scientific and Technical Information of China (English)

    王红涛

    2012-01-01

      本文分别通过探讨真空环境下热处理温度和热处理时间对316L不锈钢镀银板性能的影响,从而确定316L不锈钢镀银板的最佳真空热处理工艺。%  This paper through the study of the vacuum heat treatment temperature on properties of 316L stainless steel silver plate, so as to determine the optimal 316L stainless steel silver plated vacuum heat treatment technology.

  3. Vent Control as a Means of Enhancing Airbag Performance

    Directory of Open Access Journals (Sweden)

    Richard E. Zimmermann

    2002-01-01

    Full Text Available Typical automotive airbag systems have a fixed area vent for exiting gasses. The US Army Cockpit Airbag System (CABS is unvented to prolong the period during which the system can provide occupant protection during extended helicopter crash scenarios. In each application, system performance may be enhanced by providing a controlled vent area. This paper describes work conducted under a Phase I SBIR program sponsored by the NASA Langley Research Center. The work was focused on eventual inflatable restraint system applications in general aviation aircraft, and showed that appropriate vent control offers many enhancements. Two series of tests conducted during Phase I showed that inflatable restraint system size and weight can be reduced without degrading performance, injury potential in an out of position situation (OOPS deployment can be reduced, and peak bag pressures can be reduced (at any temperature during normal operation.

  4. In Brief: Volcanic vents found in deep Caribbean waters

    Science.gov (United States)

    Showstack, Randy

    2010-04-01

    Scientists surveying the Cayman Trough in the Caribbean Sea have discovered the world's deepest undersea volcanic vents, or “black smokers,” the National Oceanography Center (NOC) in Southampton, UK, announced on 11 April. The vents were found at a depth of 5000 meters, about 800 meters deeper than any previously discovered. Jon Copley, a marine biologist at the University of Southampton's School of Ocean and Earth Science, said, “Seeing the world's deepest black-smoker vents looming out of the darkness was awe-inspiring.” Geochemist Doug Connelly of NOC, principal scientist of the expedition, noted, “We hope our discovery will yield new insights into biogeochemically important elements in one of the most extreme naturally occurring environments on our planet.” Researchers used an NOC-developed Autosub6000 robot submarine, which was remotely controlled from the Royal Research Ship James Cook. For more information, visit http://www.thesearethevoyages.net/.

  5. New Construction and New Technologe of New Type Heat Treatment Furnace%热处理炉的新结构与新技术

    Institute of Scientific and Technical Information of China (English)

    董元

    2001-01-01

    Assembly technology for big blocks of full refractory fiber andlight type steel construction are adopted in the new type furnace.The furnace body has the advantages of light weight,good heat insulation,easy installation and long use life.The developed automatic adjustable high speed burners has the advantages of burning process under control,high outlet speed,sufficient burning,forced circulation of gas in furnace and new heat supply method about large energy concentrate heat supply,strengthening convection heat transfer and pulse type heat supply is made.The developed technology of central exhaust,pressure automatic controlling in furnace,full seal of furnace body can control heat current in furnace effectively.New controlling method of heat current in furnace is made and the uniformity of temperature field in furnace is increased.The heat treatment technical curve could be calculated,operated,displayed and stored by means of the computer automatic control system.So the whole procedure is under control and high precision heat treatment is achieved.Varies of new type furnace such as movable furnace body assembly type,local assemble taking apart type,loading on truck type are developed.Different type of furnace could be selected according to different technical request,different size of work-piece and different installation site.Great breakthrough has been made in heat treatment furnace technology in China.Obvious effect is achieved in aspect of increasing precision of heat treatment,energy conservation and environmental protection.The integrative technology of new type furnace has caught up with and even exceeded the foreign advanced level.But the status of heat treatment furnace applications nowadays is rather behindhand.Application of new technology should be greatly pushed.%新型热处理炉研制了全纤维炉衬结构、高速调温自控烧嘴和计算机自动控温系统;大能量集中供热、强化对流传热、脉冲式控制供热等技术,建

  6. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  7. 渔船动力余热制冷技术%Refrigeration Technology Utilizing Engine Waste Heat in Fishing Vessels

    Institute of Scientific and Technical Information of China (English)

    陈少杰; 陈光明

    2014-01-01

    Ice and compression refrigeration are normally used to preserve caught fish on fishing vessels.At the same time, waste heat dissipated in hot exhaust gas on fishing vessels is rejected to the atmosphere.Utilizing the vast amount of the waste energy for refrigeration is both economical and energy saving.Three kinds of heat driven refrigeration cycles as adsorption, absorption and ejection are introduced in this paper.Advantages and disadvantages of the three cycles are analyzed based on the working condition of ice making on fishing ves_sels.Emphases have been made on the feasibility of transforming the existing compression refrigeration cycle on fishing vessels by ejection technology.The result shows that 54.5﹪ of fuel for refrigeration system can be saved after combining ejection and compression cycle and the transforming cost can be recovered in 1 year.%渔船通常需要带冰或使用压缩式制冷来满足渔获冷藏保鲜的需要,而渔船发动机尾气中有大量的热能被排放到环境中去,利用渔船发动机尾气余热制冷是一种既经济又节能的好方法。本文介绍了吸附式﹑吸收式和喷射式三种热能驱动的制冷循环,并针对渔船制冰工况对这三种循环在渔船中应用的优缺点进行了分析;重点讨论了使用喷射式制冷技术对渔船现有压缩式制冷系统进行改造的可行性。研究结果表明,将喷射制冷与压缩制冷结合,可减少渔船制冷系统燃料消耗54.5﹪,在1年内即可收回改造成本。

  8. 太阳能供暖与制蒸馏水综合应用技术%Comprehensive application technology of solar energy heating and distilled water system

    Institute of Scientific and Technical Information of China (English)

    任胜义; 宋秀静

    2012-01-01

    在非供暖期,为了维护太阳能供暖系统的完好,避免太阳能集热器因干烧导致损坏,提出了一种太阳能供暖与制蒸馏水综合应用技术方案.通过对太阳能集热供暖设施进行技术改造,使太阳能集热装置在冬季用于建筑供暖,在非供暖期用于制蒸馏水,提高了太阳能集热系统的利用率.%During the non-heating period, in order to avoid the problem that the solar collectors are damaged due to the dry burning and maintain the integrity of the solar heating system, an integrated solution of applied technique is achieved to develop a solar heating system as well as a distilled water system. Through the technological innovation of the solar collector and heating facilities, the solar collector device can be used for building heating in winter and used for water distilling during non -heating period to improve the utilization of the solar collector system.

  9. 热泵技术应用与电力市场开拓%Application of Heat Pump Technology and Exploitation of Power Market

    Institute of Scientific and Technical Information of China (English)

    杜雅飞; 马俊方; 潘美容

    2015-01-01

    文章从热泵技术原理、分类以及山西地区热泵应用自然条件和现状出发,选取应用案例对热泵和城市集中供暖的经济性进行比较,说明其在节能减排、经济性方面的优势,指出供电公司在热泵推广应用中可做的工作。%From the principle and classification of heat pump technology and the natural conditions and present situation of the application of heat pump in Shanxi area, this article compares economics of the heat pump and urban central heating with the application case to show the advantages of heat pump in the energy saving and emission reduction and the economics, and points out the work in the popularization and application of heat pump in power supply company.

  10. New technology of waste heat recovery from gas primary cooler%煤气初冷器余热回收新技术

    Institute of Scientific and Technical Information of China (English)

    祝仰勇; 宁述芹; 王健; 梁荣华

    2014-01-01

    开发了初冷器余热回收利用新技术。通过热泵机组,夏季回收初冷器上段循环水余热制取低温水,冬季回收初冷器中段循环水余热加热采暖水,实现了初冷器余热的综合利用,降低了能耗,改善了环境。%This paper introduced a new technology of waste heat recovery from gas primary cooler,by which chilled water can be prepared by recovering the waste heat from the upper stage circulating water of the primary cooler in summer and heating water can be heated up by recovering the waste heat from the medium stage circulating water of the primary cooler in winter so that the waste heat from the gas primary cooler can be fully utilized,energy consumption can be saved and environment can be improved.

  11. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  12. Numerical Study on Pressure Drop Factor in the Vent-Cap of CDQ Shaft

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Yanhui Feng; Xinxin Zhang

    2008-01-01

    In CDQ (Coke Dry Quenching) shaft, the vent-cap with complex structure is installed in the cone-shaped funnel under the cooling chamber. It acts to introduce cooling gas and support the descending coke in the chamber. The designing and installation of vent-cap aim to get relatively uniform gas distribution, to reduce the temperature fluctuation of cokes at outlet and realize stable operation of CDQ apparatus. In this paper, the turbulent flow of gas in vent-cap of 1:7 scale CDQ experimental shaft is numerically simulated by using CFD (Computational Fluid Dynamics) software, CFX. The velocity field, the outlet flux distribution and the pressure drop factor of each outlet under three kinds of vent-cap (called high vent-cap, low vent-cap and elliptic vent-cap) are analysed and compared. The results turn out that the pressure drop factor of elliptic vent-cap is larger than the other two vent-caps, and that the pressure drop factors of high vent-cap and low vent-cap almost have the same value.While for a specified vent-cap, the pressure drop factor with pressing brick is larger than that without pressing brick. The work in this paper is valuable for the designing of vent-cap for large-acale CDQ shaft.

  13. Analysis on Venting Time of Rarefaction Wave Gun

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-ze; ZHANG Xiao-bing; YUAN Yax-iong

    2008-01-01

    Based on the operation principle of rarefaction wave gun, the selection and calculation methods for venting opportune moment are invastigated. Considering property of the rarefaction wave, taking the center of muzzle section as initial calculation point, supposing that at the moment projectile arrives to the muzzle, the rarefaction wave arrives to the base of projectile, the rarefaction wave velocity along the barrel can be obtained by fitting calculation of the interior ballis-tic data of the same closed gun and reverse deduction. And then, the optimal venting time can be found out correctly based on the rarefaction wave velocity.

  14. Modeling of interaction of multiple vent pipes in a pressure suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Timperi, A.; Chauhan, M.; Paettikangas, T.; Niemi, J. (VTT Technical Research Centre of Finland (Finland))

    2012-04-15

    Calculations of direct-contact condensation in the pressure suppression pool have been performed. Partial pressure model for the condensation of pure vapor is used for the condensation, which makes possible modeling of the condensation of pure vapor. The heat and mass transfer during condensation is studied in detail for experiment PAR-10 in the PPOOLEX facility. The rapid collapse of a steam bubble in PPOOLEX experiment COL-01 has been analyzed with the new Eulerian model of Abaqus. By observing the collapse behavior, the pressure variation inside the bubble was fitted with the experiment. The effect of system size on the pressure peak was also examined; these results can be used for studying more thoroughly the scaling of the experimental results to full-scale in future. The desynchronization of chugging events in the two vent experiment PAR-10 was studied. The statistical distribution of desynchronization was determined from the measured pressure data and compared to results obtained in a seven vent pipe experiment found from literature. The response of BWR containment during desynchronized chugging events and with varying speeds of sound was numerically computed using direct time integration and modal dynamics procedure available in Abaqus. (Author)

  15. Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Isfahani, RN; Fazeli, A; Bigham, S; Moghaddam, S

    2014-01-01

    The physics of water desorption from a lithium bromide (LiBr) solution flow through an array of microchannels capped by a porous membrane is studied. The membrane allows the vapor to exit the flow and retains the liquid. Effects of different parameters such as wall temperature, solution and vapor pressures, and solution mass flux on the desorption rate were studied. Two different mechanisms of desorption are analyzed. These mechanisms consisted of: (1) direct diffusion of water molecules out of the solution and their subsequent flow through the membrane and (2) formation of water vapor bubbles within the solution and their venting through the membrane. Direct diffusion was the dominant desorption mode at low surface temperatures and its magnitude was directly related to the vapor pressure, the solution concentration, and the heated wall temperature. Desorption at the boiling regime was predominantly controlled by the solution flow pressure and mass flux. Microscale visualization studies suggested that at a critical mass flux, some bubbles are carried out of the desorber through the solution microchannels rather than being vented through the membrane. Overall, an order of magnitude higher desorption rate compare to a previous study on a membrane-based desorber was achieved. Published by Elsevier Ltd.

  16. Heat integrated separation technology for separating mixed alcohol based on the MVR heat-pump distillation%基于MVR热泵精馏的混合醇热集成分离工艺

    Institute of Scientific and Technical Information of China (English)

    杨德明; 谭建凯; 王颖; 蒋宇; 高晓新

    2015-01-01

    机械蒸汽再压缩(MVR)热泵技术是把低品位的蒸汽通过压缩转变为高品位的蒸汽,循环用于热源的供热以减少能耗。而热集成技术则是合理的匹配冷热物流的换热,以提高物流的有效能利用率。鉴于精馏过程的高能耗和低热力学效率,本文以四元混合醇的分离为研究对象,把基于MVR热泵技术的热集成精馏工艺应用于该体系的分离,提出并研究了该体系带热集成与不带热集成各种MVR精馏工艺;以能耗和年总费用(TAC)为评价指标,采用Aspen Plus软件对各分离工艺进行模拟与优化,确定各分离工艺的操作参数与设备参数。研究结果表明,与常规顺序分离工艺相比,MVR精馏工艺节约能耗50%以上,节约年总费用约61%。带热集成MVR精馏工艺与不带热集成 MVR 精馏工艺相比,在能耗和年总费用方面,优势相当,但前者热力学效率提高了约9.5%。%The low grade steam is transformed into a high grade steam through the compression by mechanical vapor recompression(MVR) heat pump technology,and the high grade steam is cyclic utilized for heat source to reduce energy consumption. The heat integration technology is reasonable to match the heat exchange of cold and hot logistics to improve the effective energy utilization of logistics. In view of the high energy consumption and low mechanical efficiency of the distillation process,heat integrated separation technology based on the MVR heat-pump distillation was applied to separate the four mixed alcohol system in this research,and the MVR heat-pump distillation process with and without heat integration were proposed. Based on the minimum total annual cost(TAC) and energy consumption,simulations for the each kind of distillation process were performed by Aspen Plus software,and the optimal operating parameters and plant parameters were determined. The simulation results showed that the MVR heat

  17. 地源热泵技术的推广与应用%The Promotion and Application of Ground Source Heat Pump Technology

    Institute of Scientific and Technical Information of China (English)

    张斌; 张力; 田忠春

    2013-01-01

      阐述了地源热泵的发展历程、工作原理、地源热泵种类和技术特点,例举了地源热泵技术在工程中的应用实例,分析了目前存在的需要注意的问题,对地源热泵技术的发展前景进行了展望。%In this text, several problems on the ground source heat pump are researched, such as its development history, principle of operation, the kind of ground source heat pump, technical characteristics and application examples of engineering technology. The paper also analyses the current problems and look further into the future of ground source heat pump.

  18. Tubular Ridge Surfaces with Intensified Heat Exchange and Technology of Their Manufacturing for Air Coolers of Fuel and Energy Complex

    Directory of Open Access Journals (Sweden)

    V. Кuntysh

    2013-01-01

    Full Text Available The paper presents designs of bimetallic ridge pipes (BRP with spirally-wound aluminium KLM-edges for heat exchange air coolers. Heat exchange BRP differ from the applied ones in heat-transfer coefficient which is higher by 10–15 %, extended temperature of applicability up to 320 °С for a cooled heat carrier at the pipe input, higher thermal reliability at alternating thermal burdens, current consumption for their manufacturing which is less by 1.8–2.5-fold, aluminium consumption which is less up to 1.8-fold, manufacturability in batch production,  availability high-production equipment.

  19. 地源热泵技术的概念及应用%The Concept and Application of Ground Source Heat Pump Technology

    Institute of Scientific and Technical Information of China (English)

    程应欣

    2014-01-01

    Ground source heat pump is a new air conditioning heating method which features high efficiency, energy saving and environmental protection. The application of ground source heat pump technology facilitates the solvement of two major problems: energy crisis and environmental pol ution and thus brings opportunity of sustainable development of China. The development of ground source heat pump in China has a vast prospect. This paper starts with the origin of ground source heat pump, and then combines with analysis of its development both in China and abroad so as to put forward opinions and sug-gestions for the development of ground source heat pump technology in China.%地源热泵是一种集高效、节能、环保、有利于可持续发展于一身的新型空调采暖方式,地源热泵技术的应用有利于解决能源危机和环境污染这两个困扰中国发展的重大问题,进而为中国的可持续发展带来了契机,地源热泵在中国有广阔的发展前景。从地源热泵的由来入手,结合国内外地源热泵发展情况的分析,得出地源热泵的特点,从而为中国发展地源热泵技术提出了意见和建议。

  20. 双空心杆内循环热采技术应用%Application of double hollow pumping rod heating technology

    Institute of Scientific and Technical Information of China (English)

    苗彦平; 李金永; 刘治河; 李高峰; 王军; 黄威; 刘鸿达

    2009-01-01

    Double hollow pumping rod heating technology was applied by putting heated pure water into inner channel and returning from outer channel, which improved the crude oil tempreture, prevented paraffin deposit, decreased crude oil viscosity and enhanced the flow properties. The pure water was heated by heat tracing wate or casing pipe gas or solar collector etc. This technology can achieve cleanuping paraffin and decreasing crud oil viscosity. It has a good r refrence for similar oil well producing.%针对采油三厂部分油井含蜡量高、黏度高,油井生产困难,维护难度大的问题引进双空心杆内循环热采技术,热载体纯净水加热后从双空心杆内管进入外管返回,达到提高油管内原油温度,防止油管内壁结蜡,降低原油黏度,改变流动性的目的.可利用油井伴热水、套管气、太阳能等多种热源,对双空心杆热载体加热,在密闭的系统实现井筒升温清防蜡及降黏作用,保证油井的正常生产,对类似油井的开采具有借鉴意义.