WorldWideScience

Sample records for heat utilization system

  1. In situ heat treatment process utilizing a closed loop heating system

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  2. Designs for maximum utilization of district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.L.

    1978-01-23

    The sensitivities of district heating costs to various design parameters are explored. Some recent studies evaluating the economics of district heating are briefly summarized. The bases and methods for the cost and design sensitivity studies are outlined. Cost and design relationships are examined. These relationships are developed as part of a design study for a city with a population of 175,000. Use of a specific city as a basis for these studies shows the importance of site specific factors in the development of the best district heating design for the city. The problems of utilizing the delivered water are briefly reviewed. Some alternatives system designs are compared in terms of economics, energy efficiency, and their potential for widespread application. (MHR)

  3. Power systems utilizing the heat of produced formation fluid

    Science.gov (United States)

    Lambirth, Gene Richard [Houston, TX

    2011-01-11

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  4. Heat storage system utilizing phase change materials government rights

    Science.gov (United States)

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  5. Improving the performance of district heating systems by utilization of local heat boosters

    DEFF Research Database (Denmark)

    Falcone, A.; Dominkovic, D. F.; Pedersen, A. S.

    District Heating (DH) plays an important role into the Danish energy green transition towards the future sustainable energy systems. The new, 4 th generation district heating network, the so called Low Temperature District Heating (LTDH), tends to lower the supply temperature of the heat down to ...

  6. Device with Complex System for Heat Utilization and Reduction of Hazardous Air Emissions

    Directory of Open Access Journals (Sweden)

    O. Kascheeva

    2012-01-01

    Full Text Available Investigations concern heat utilization and reduction of hazardous emissions occurring in residential buildings and accompanying operation of a great number of industrial enterprises in particular heat and power objects, and firstly, heat-generating units of small power located in densely populated residential areas without centralized heat supply.The investigation target is to reduce cost of heat produced by independent system of building heat supply, reduction of air pollution  due to hazardous gas emissions and reduction of heat pollution of the environment as a result of building ventilation system operation, ventilation of their internal and external sewerage network and higher reliability of their operation.The target is achieved because the device with complex system for heat utilization and reduction of hazardous air emissions has additionally an assembly tank for mixing flue gases, ventilation emissions and atmospheric air, heat pump. Evaporation zone of the pump is a condensator of the gas mixture and its condensate zone contains a heat supply line for a heat consumer. The line is equipped with assembling  and distributing collectors, pipeline connecting the heat supply line with the system of direct and return delivery water from a boiler house, a separator for division of liquid and gaseous mixture phases, neutralizing devices for separate reduction of concentrations of hazardous and odorous substances being released in gaseous and liquid portions of the mixture, a pipeline for periodic supply of air with higher concentration of hazardous and odorous substances in the boiler furnace. The supplied air is obtained as a result of its passing through gas filters at their regeneration when their exchange capacity is exhausted.

  7. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Science.gov (United States)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  8. Design considerations for residential solar heating and cooling systems utilizing evacuated tube solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D. S.; Ward, J. C.

    1977-01-01

    As solar heating systems become a commercial reality, greater efforts are now being employed to incorporate solar cooling components in order to obtain a complete solar heating and cooling system, and thus take advantage of the cost-effectiveness of year-round use of the solar equipment. The solar heating and cooling system design presented incorporates design considerations which have been obtained from previous experimental efforts utilizing evacuated tube solar collectors. These advanced collectors are capable of significantly higher efficiencies, even at the higher temperatures required for solar cooling operation. Most of the considerations presented are based on the experience gained in the design and performance of the solar heating and cooling systems for CSU Solar Houses I through IV.

  9. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    Directory of Open Access Journals (Sweden)

    Piljae Im

    2018-01-01

    Full Text Available The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m2 new addition. This recycled water heat pump (RWHP system uses seven 105 kW (cooling capacity modular water-to-water heat pumps (WWHPs. Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW or 7 °C chilled water (CHW to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly, reduced CO2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.

  10. Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Thorsen, Jan Eric; Markussen, Wiebke Brix

    2017-01-01

    The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat...... and power (CHP) and central heat pumps (HPs). The analysis focussed on the characteristic heat demands of newly build multi-story buildings and the results were based on the ratio of the individual demands compared to the total. It was found that the optimal return temperature was dependent on the forward...

  11. Study on interim storage system to utilize waste heat from spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori [Tokyo Inst. of Tech. (Japan); Kurokawa, Hideaki; Kamiyama, Yoshinori; Yamanaka, Tsuneyasu

    1997-12-31

    Spent fuels amounting to about 30 tons a year are generated by a 1,000MWe-class light water reactor (LWR). However, the whole amount of spent fuels generated by LWRs cannot be reprocessed. From the viewpoint of energy resources, it is believed in Japan that fast breeder reactors will be introduced as commercial power reactors in the future. In that time, it admits of no doubt that the spent fuel will be a valuable energy resource. It is, therefore, an urgent problem in Japan to establish interim storage systems of spent fuels for LWRs to continue smoothly in operation. In this work, the spent fuel is treated not as unwanted waste but as a heat source. At first, various kinds of interim storage systems of spent fuel are examined from the viewpoint of the utilization of the waste heat, and a pool storage system is dealt with. Next, the possibility of the utilization of the waste heat are examined. Finally, a concept of the interim storage plant, which supplies the heat to a green house where flowers with high value added such as orchids are cultivated, is proposed as a demonstration plant. (author)

  12. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  13. Development of heat and mass balance analysis code in out-of-pile hydrogen production system for HTTR heat utilization system (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Inagaki, Yoshiyuki; Hayashi, Koji; Suyama, Kazumasa [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-03-01

    A heat and mass balance analysis code has been developed to examine test conditions, to investigate transient behavior etc. in the out-of-pile hydrogen production system for the HTTR heat utilization system. The code can analyze temperature, mass and pressure profiles of helium and process gases and behavior of the control system under both static state (case of steady operation) and dynamic state (case of transient operation). This report describes analytical methods, basic equations and constitution of the code, and how to make of the input data, estimate of the analytical results and so on. (author)

  14. Building energy system optimizations with utilization of waste heat from cogenerations by means of genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kayo, Genku [Department of Architecture, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Ooka, Ryozo [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2010-07-15

    Distributed energy systems based on cogeneration offer significant potential to save energy since they effectively utilize waste heat from power generators. However, unless there is an appropriate combination of machinery and operations, the planned performance cannot be achieved. Thus, it is quite difficult to determine the optimal combination of machinery and operations. For this, an optimal design approach is needed. In this study, a new optimal design method for building energy systems is proposed. There are an enormous variety of combinations with regard to energy supply and demand. This method designs the most efficient energy system by optimizing the operation of available systems with consideration for the optimal capacity of machinery in the systems. Optimization algorithms known as ''genetic algorithms'' (GAs) with the capacity to deal with non-linear optimization problems have been adopted in this optimization analysis. In this study, a single-building energy system is evaluated. The result shows that the proposed method is sufficiently capable of optimizing the design, and has the potential to be applied to very complex energy systems with appropriate improvements. (author)

  15. Efficiency of Passive Utilization of Ground “Cold” in Adaptive Geothermal Heat Pump Heating and Cooling Systems (AGHCS

    Directory of Open Access Journals (Sweden)

    Vasilyev G.P.

    2016-01-01

    Full Text Available This article deals with estimating a potential and efficiency of utilization of passive ground “cold” for cooling buildings in climatic conditions of Moscow (Russia. The article presents results of numerical analysis to assess the efficiency of reducing peak cooling loads of the building equipped with AGHCS, through the utilization of natural cold of wells for passive cooling and cold storage in summer at night (off-peak time with its subsequent consumption in the day time, both in passive mode, and with heat pumps. The conclusions of the article set out the basic principles of passive cooling in the design of AGHCS.

  16. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  17. Solar heat utilization for adsorption cooling device

    Science.gov (United States)

    Pilát, Peter; Patsch, Marek; Malcho, Milan

    2012-04-01

    This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  18. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  19. Absorption heat pump system

    Science.gov (United States)

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. Evaluation of Energy Saving Characteristics of a High-Efficient Cogeneration System Utilizing Gas Engine Exhaust Heat

    Science.gov (United States)

    Pak, Pyong Sik

    A high efficiency cogeneration system (CGS) utilizing high temperature exhaust gas from a gas engine is proposed. In the proposed CGS, saturated steam produced in the gas engine is superheated with a super heater utilizing regenerative burner and used to drive a steam turbine generator. The heat energy is supplied by extracting steam from the steam turbine and turbine outlet low-temperature steam. Both of the energy saving characteristics of the proposed CGS and a CGS constructed by using the original gas engine (GE-CGS) were investigated and compared, by taking a case where energy for office buildings was supplied by the conventional energy systems. It was shown that the proposed CGS has energy saving rate of 24.5%, higher than 1.83 times, compared with that of the original GE-CGS.

  1. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  2. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  3. Demonstration of a Solar Thermal Combined Heating, Cooling and Hot Water System Utilizing an Adsorption Chiller for DoD Installations

    Science.gov (United States)

    2013-12-01

    Monitored. Chiller auxiliary (air compressor/ dryer ) PM5601/2 0.22 kW Variable load, average when solar field not operating. Tank heaters PM5601/2...FINAL REPORT Demonstration of a Solar Thermal Combined Heating, Cooling and Hot Water System Utilizing an Adsorption Chiller for DoD...Demonstration of a Solar Thermal Combined Heating, Cooling and Hot Water System Utilizing an Adsorption Chiller for DoD 5b. GRANT NUMBER 5c

  4. Effect of the Metal Hydride Tank Structure on the Reaction Heat Recovery for the Totalized Hydrogen Energy Utilization System

    National Research Council Canada - National Science Library

    Maeda, Tetsuhiko; Nakano, Akihiro; Ito, Hiroshi; Motyka, Theodore; Perez-Berrios, Jose M; Greenway, Scott

    2013-01-01

    .... In this paper, a metal hydride tank (MHT) is chosen as hydrogen storage. In the MHT, the heating and cooling from adsorption/desorption processes is used to produced heated and chilled water for building ventilation systems...

  5. Outline of operation and control system and analytical investigation of transient behavior of an out-of-pile hydrogen production system for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hada, Kazuhiko; Nishihara, Tetsuo; Takeda, Tetsuaki; Haga, Katsuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Hino, Ryutaro

    1997-10-01

    The hydrogen production system by steam reforming of natural gas is to be constructed to demonstrate effectiveness of high-temperature nuclear heat utilization systems with the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test system is planned to investigate the system characteristics, to develop high-temperature components such as a reformer, a high-temperature isolation valve and so on, and to verify operation and control technologies and safety technology at accidents. This paper presents outline of operation and control systems and analytical review of transient behavior of the out-of-pile hydrogen production system. Main function of the operation and control systems is made not to give disturbance to the HTTR at transient state under start-up and stop operations. The operation modes are separated into two ones, namely normal and accident operation modes, and operation sequences are made for each operation mode. The normal operation sequence includes start-up, steady operation and stop of the out-of-pile system. The accident one deals with accident conditions at which supply of feed gas is stopped and helium gas is cooled passively by the steam generator. Transient behavior of the out-of-pile system was analyzed numerically according as the operation sequences. As the results, it was confirmed that the designed operation and control systems are adequate to the out-of-pile system. (author)

  6. EXPERIENCE OF UTILIZATION OF CAPACITY BANKS AND SCHEMES OF FREQUENCY REGULATION IN MUNICIPAL CENTRALIZED HEATING SYSTEM OF CHISINAU

    Directory of Open Access Journals (Sweden)

    CHERNEI M

    2013-04-01

    Full Text Available The current paper provides a brief summary of the district heating system of the municipality Chisinau, including heat power sources, heat distribution network, production and consumption development over the past two decades and other data. Also, the priority investment projects realized by JSC "Termocom" are being presented. The company had implemented an automated monitoring system for the heat power production, transportation and distribution. For many years, the company used bellows pipes with polyurethane insulation, ball valves and plate heat exchangers. 14 out of 21 district heating boiler stations were upgraded 10 were completely automated having as a result no further need in full-time duty personnel there. The experience gained in the implementation of capacity banks and frequency inverters, summarizing the benefits and achieved results, is also presented in the current paper. It is to be underlined that in 2011 the company achieved decrease in electricity consumption by about 30% in comparison with 2005.

  7. Solid waste utilization: incineration with heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Boegly, W.J. Jr.

    1978-04-01

    As a part of the Integrated Community Energy Systems (ICES) Program, Technology Evaluations, this evaluation considers the potential utilization of municipal solid wastes as an energy source by use of incineration with heat recovery. Subjects covered include costs, design data, inputs and outputs, and operational problems. Two generic types of heat recovery incinerators are evaluated. The first type, called a waterwall incinerator, is one in which heat is recovered directly from the furnace using water circulated through tubes imbedded in the furnace walls. This design normally is used for larger installations (>200 tons/day). The second type, a starved-air incinerator is used mainly in smaller sizes (<100 tons/day). Burning is performed in the incinerator, and heat recovery is obtained by the use of heat exchangers on the flue gases from the incinerator. Currently there are not many installations of either type in the United States; however, interest in this form of solid-waste handling appears to be increasing.

  8. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    Science.gov (United States)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  9. Performance evaluation of a ground-source heat pump system utilizing a flowing well and estimation of suitable areas for its installation in Aizu Basin, Japan

    Science.gov (United States)

    Shrestha, Gaurav; Uchida, Youhei; Kuronuma, Satoru; Yamaya, Mutsumi; Katsuragi, Masahiko; Kaneko, Shohei; Shibasaki, Naoaki; Yoshioka, Mayumi

    2017-08-01

    Development of a ground-source heat pump (GSHP) system with higher efficiency, and evaluation of its operating performance, is essential to expand the growth of GSHP systems in Japan. A closed-loop GSHP system was constructed utilizing a flowing (artesian) well as a ground heat exchanger (GHE). The system was demonstrated for space-heating and space-cooling of a room (area 126.7 m2) in an office building. The average coefficient of performance was found to be 4.5 for space-heating and 8.1 for space-cooling. The maximum heat exchange rate was 70.8 W/m for space-heating and 57.6 W/m for space-cooling. From these results, it was determined that a GSHP system with a flowing well as a GHE can result in higher performance. With this kind of highly efficient system, energy saving and cost reduction can be expected. In order to assess appropriate locations for the installation of similar kinds of GSHP systems in Aizu Basin, a suitability map showing the distribution of groundwater up-flowing areas was prepared based on the results of a regional-scale three-dimensional analytical model. Groundwater up-flowing areas are considered to be suitable because the flowing well can be constructed at these areas. Performance evaluation of the GSHP system utilizing the flowing well, in conjunction with the prepared suitability map for its installation, can assist in the promotion of GSHP systems in Japan.

  10. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  11. Absorption heat pump system

    Science.gov (United States)

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  12. Heat pump system

    Science.gov (United States)

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  13. Accumulation and subsequent utilization of waste heat

    Science.gov (United States)

    Koloničný, Jan; Richter, Aleš; Pavloková, Petra

    2016-06-01

    This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.

  14. Utilization of solar thermal energy in the mining industry: applied case solar thermal systems for hot water heating - Mining camps

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez Mena, Horacio [Portal Sustentable and Enerficaz (Chile)

    2010-07-01

    The paper gives an overview of how solar thermal energy can be used in the mining industry. This is done through a case study of solar thermal systems (STS) for hot water heating in mining camps in Chile. Solar thermal energy has various applications, such as heating and air conditioning. Solar radiation between 600 to 800w/m2 only can be used for solar thermal systems. Solar collectors can be of two types, flat plate or vacuum tube. Various techniques can be used to model solar thermal systems: Transol, RET screen, T-sol, Static model and F-chart. Chile has the great advantage of being one of the countries with the highest levels of solar radiation. Technical data for the solar collector and the heat pump used for the study are given. The collector performance was evaluated throughout the year and the actual results achieved were compared with those projected. The paper concludes that STS are a good source of renewable energy. They are efficient, cheap, and they have a small carbon footprint.

  15. ECOLO-HOUSE in the snowy town. Study of the ventilating function what the heat collecting system of the air duct utilizing attic has; Yukiguni ECOLO-HOUSE. Kison kaoku no yaneura wo riyoshita duct shunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H.; Hirosawa, K. [Yamagata University, Yamagata (Japan)

    1996-10-27

    Described in this paper is an air duct heat collecting system, forming a link in the chain of natural energy utilization, in an attic of a house actually in presence. When a sirocco fan (blowing air from an indoor induction duct into the room) at the base of the highblocked floor is turned, air is sucked through an air intake under the eaves into a heat collecting duct (constructed utilizing the tilt roof and rafter). Heat from the roof warmed by sunshine is absorbed by air in the heat collecting duct and is fed to the highblocked floor structure through a heat collecting room and the induction duct. This system functions quite effectively as a ventilating device. Dew condensation on the walls and floor and musty smell have been eliminated. This system is good enough as a heater even on chilly days in early spring when there is sunshine. In the time zone with the sun shining, the system collects 4{times}10{sup 4}kJ per day, exhibiting a heat collecting efficiency of 4%. The heat collecting duct was analyzed for thermal environment, and the heat flux of the collected heat was determined as Qk(W/m{sup 2}=0.1{times}I-1.3{Theta}d-{Theta}a). In this equation, I is the quantity of insolation (W/m{sup 2}), {Theta}d is the temperature in the heat collecting duct, and {Theta}a is the free air temperature. 2 refs., 8 figs.

  16. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

    Directory of Open Access Journals (Sweden)

    Lingfeng Shi

    2017-10-01

    Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

  17. Study on heat collector of the solar system utilizing outdoor air. Experimental results in cases of cold and warm regions; Gaiki donyushiki solar system no shunetsubu ni kansuru kenkyu. Kanreichi to ondanchi ni okeru shunetsu jikken to kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Komano, S.; Ebara, Y. [OM Solar Association, Shizuoka (Japan); Wada, H. [Wada Building Constructors Co. Ltd., Hokkaido (Japan)

    1996-10-27

    An experiment on heat collection was made in the heat collector of a solar system utilizing outdoor air in cold and warm regions. In this system, outdoor air is heated by the air circulation layer on the roof exposed to solar radiation. The heated air is supplied to the object space for heating and ventilation. In the experiment in a cold region, the heat collection characteristics can be adjusted by putting a baffle plate in the air duct according to the experiment of a glass heat collector. The heat collecting air layer on only the iron roof may leak or freeze in the region subject to coldness or heavy snowfall. Therefore, preheat forms the space of a garret, and the preheat temperature comparatively becomes low. The data in which the heat collection characteristics can be adjusted using only a glass heat collector is required corresponding to the regional situation. In the experiment in a warm region, an experiment was made inclusive of the preheat for which outdoor air is absorbed at the eaves. As a result, the heat collection characteristics of preheat were improved. Moreover, a heat collection temperature of about 60{degree}C was obtained on the heat collection surface including the preheat. 1 ref., 12 figs., 3 tabs.

  18. Ideal Heat Exchange System

    Science.gov (United States)

    Tsirlin, A. M.

    2017-09-01

    The requirements with which a heat exchange system should comply in order that at certain values of the total contact surface and heat load the entropy production in it should be minimal have been determined. It has been shown that this system can serve as a standard for real systems of irreversible heat exchange. We have found the conditions for physical realizability of a heat exchange system in which heat exchange occurs by a law linear with respect to the temperature difference between contacting flows. Analogous conditions are given without deriving for the case of heat exchange by the Fourier law.

  19. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    Energy Technology Data Exchange (ETDEWEB)

    Nydahl, J.E.; Carlson, B.O. [Univ. of Wyoming, Laramie, WY (United States)

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  20. Heating systems for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  1. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q.; Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  2. Ocean thermal energy conversion (OTEC) power system development utilizing advanced, high-performance heat transfer techniques. Volume 1. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-12

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC Demonstration Plant. In turn, this Demonstration Plant is to demonstrate, by 1984, the operation and performance of an ocean thermal power plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the Demonstration Plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibility studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report describes the full-size power system module, and summarizes the design parameters and associated costs for the Demonstration Plant module (prototype) and projects costs for commercial plants in production. The material presented is directed primarily toward the surface platform/ship basic reference hull designated for use during conceptual design; however, other containment vessels were considered during the design effort so that the optimum power system would not be unduly influenced or restricted. (WHK)

  3. Ground-source heat pump case studies and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  4. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  5. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  6. Municipal geothermal heat utilization plan for Glenwood Springs, Colorado

    Science.gov (United States)

    1980-12-01

    The results show that the use of geothermal heat is indeed feasible when compared to the cost of natural gas. The proposed system is composed of a wellhead plate heat exchanger which feeds a closed distribution loop of treated water circulated to the buildings which form the load. The base case system was designed to supply twice the demand created by the seven public buildings in order to take advantage of some economies of scale. To increase the utilization factor of the available geothermal energy, a peaking boiler which burns natural gas is recommended. Disposal of the cooled brine would be via underground injection.

  7. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  8. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  9. Utilization of waste heat from aluminium electrolytic cell

    Science.gov (United States)

    Nosek, Radovan; Gavlas, Stanislav; Lenhard, Richard; Malcho, Milan; Sedlak, Veroslav; Teie, Sebastian

    2017-12-01

    During the aluminium production, 50% of the supplied energy is consumed by the chemical process, and 50% of the supplied energy is lost in form of heat. Heat losses are necessary to maintain a frozen side ledge to protect the side walls, so extra heat has to be wasted. In order to increase the energy efficiency of the process, it is necessary to significantly lower the heat losses dissipated by the furnace's external surface. Goodtech Recovery Technology (GRT) has developed a technology based on the use of heat pipes for utilization energy from the waste heat produced in the electrolytic process. Construction of condenser plays important role for efficient operation of energy systems. The condensation part of the heat pipe is situated on top of the heating zone. The thermal oil is used as cooling medium in the condenser. This paper analyses the effect of different operation condition of thermal oil to thermal performance. From the collected results it is obvious that the larger mass flow and higher temperature cause better thermal performance and lower pressure drop.

  10. Technical and economic aspects of waste heat utilization

    Directory of Open Access Journals (Sweden)

    Smolen Slavomir

    2007-01-01

    Full Text Available The main aim of the following presentation is the comparison and evaluation of the conditions for waste heat utilization in Germany and in Poland. This paper presents synthetically the results of economic analysis of the different technical variants. The employment of heat pumps and other heat transformers, respectively, can reduce the energy consumption, but using of those technical possibilities depends mainly on the economic aspects. The main parameters of the financial calculations were the energy and equipment costs but beyond it a number of other factors were also considered and compared, for example calculation interests, profit tax level and similar. Four different technical alternatives were analyzed, it is using of absorption heat pump, compression heat pump, heat transformer (absorption, and a special combined system with gas motor to drive of heat pump compressor. The capital value as main result of the investigations is in Poland generally lower because of relatively high investment cost and lower energy prices compared to the situation in Germany and West Europe. The basis for the presented comparative analysis was an industrial project in Germany which effected in development of concepts for waste heat using. .

  11. Heat pump system

    Science.gov (United States)

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  12. Waste Heat Recapture from Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  13. Municipal geothermal heat utilization plan for Glenwood Springs, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-31

    A study has been made of the engineering and economic feasibility of utilizing the geothermal resource underlying Glenwood Springs Colorado, to heat a group of public buildings. The results have shown that the use of geothermal heat is indeed feasible when compared to the cost of natural gas. The proposed system is composed of a wellhead plate heat exchanger which feeds a closed distribution loop of treated water circulated to the buildings which form the load. The base case system was designed to supply twice the demand created by the seven public buildings in order to take advantage of some economies of scale. To increase the utilization factor of the available geothermal energy, a peaking boiler which burns natural gas is recommended. Disposal of the cooled brine would be via underground injection. Considerable study was done to examine the impact of reduced operating temperature on the existing heating systems. Several options to minimize this problem were identified. Economic analyses were completed to determine the present values of heat from the geothermal system and from the present natural gas over a 30 year projected system life. For the base case savings of over $1 million were shown. Sensitivities of the economics to capital cost, operating cost, system size and other parameters were calculated. For all reasonable assumptions, the geothermal system was cheaper. Financing alternatives were also examined. An extensive survey of all existing data on the geology of the study has led to the prediction of resource parameters. The wellhead temperature of produced fluid is suspected to lie between 140 and 180/sup 0/F (60 and 82/sup 0/C). Flowrates may be as high as 1000 gpm (3800 liters per minute) from a reservoir formation that is 300 ft (90 m) thick beginning about 500 ft (150 m) below the suggested drill site in the proposed Two Rivers Park.

  14. Possibilities of optimum fuel utilization. Utilization of the useful heat in gas-fired heat generators

    Energy Technology Data Exchange (ETDEWEB)

    Rado, L. (Ruhrgas A.G., Essen (Germany, F.R.))

    1976-06-01

    A report is given on a process which permits complete or at least substantial utilization of the upper calorific value of a fuel. This happens by cooling the exhaust gases in an additional appliance connected with the outlet side of the actual boiler, so that most of the sensible heat from the exhaust gases can be used. In addition, the condensation heat of the steam can be utilized by separating this steam contained in the exhaust gas. The lower part of the appliance is constructed as a condensation storage tank with an overflow. The exhaust gases leaving the heat generator are passed into the appliance and cooled in water trickling down in counter-current direction. With the aid of the research carried out and a calculation of economy, it is shown that, considering the present-day state of engineering, the additional appliance can profitably be introduced if the output of the heat generator for the apparatus is greater than 0.2 Gcal/h.

  15. Heating Systems Specialist.

    Science.gov (United States)

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice heating systems specialists. Training includes instruction in fundamentals and pipefitting; basic electricity; controls, troubleshooting, and oil burners; solid and gas fuel burners and warm air distribution systems; hot water…

  16. Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell.

    Science.gov (United States)

    Wu, Bin; Zhang, Xiangping; Shang, Dawei; Bao, Di; Zhang, Suojiang; Zheng, Tao

    2016-08-01

    A typical biogas system with three utilization pathways, i.e., biogas upgrading, biogas combined heat and power (CHP), biogas solid oxide fuel cells (SOFCs) were designed. It was assessed from the viewpoint of energy, environment and economy by using energy efficiency, green degree and net present value index respectively. The assessment considered the trade-off relationships among these indexes, which is more comprehensive than previous systematic evaluation work only included single or two of the pathway(s) by using one or two of the index(es). Assessment results indicated that biogas upgrading pathway has the highest systematic energy efficiency (46.5%) and shortest payback period (8.9year) with the green degree production is the lowest (9.29gd/day). While for biogas SOFC pathway, although the green degree production is the highest (21.77gd/day), the payback period is longer (14.5year) and the energy efficiency is 13.6% lower than the biogas upgrading pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nonlinear Aspects of Heat Pump Utilization

    Directory of Open Access Journals (Sweden)

    R. Najman

    2010-01-01

    Full Text Available This work attempts to answer the question: How much can we believe that the coefficient of performance provided by the manufacturer is correct, when a heat pump is required to face the real load coming from changes of temperature? The paper summarizes some basics of heat pump theory and describes the results of numerical models.

  18. Systems of Benevolent Utility Functions

    OpenAIRE

    Bergstrom, Ted

    1999-01-01

    Suppose that each person's utility depends on his or her own consumption as well as on the utilities of others. We consider the question of when a system of interdependent utility functions induces unique utility functions over allocations and identifies the class of transformations on interdependent utility functions that are equivalent in the sense of inducing the same preferences over allocations. We show that well-behaved systems of this kind can be studied by means of the theory of domin...

  19. Space Mission Utility and Requirements for a Heat Melt Compactor

    Science.gov (United States)

    Fisher, John W.; Lee, Jeffrey M.

    2016-01-01

    Management of waste on long-duration space missions is both a problem and an opportunity. Uncontained or unprocessed waste is a crew health hazard and a habitat storage problem. A Heat Melt Compactor (HMC) such as NASA has been developing is capable of processing space mission trash and converting it to useful products. The HMC is intended to process space mission trash to achieve a number of objectives including: volume reduction, biological safening and stabilization, water recovery, radiation shielding, and planetary protection. This paper explores the utility of the HMC to future space missions and how this translates into HMC system requirements.

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  1. Utilization of low temperature heat for environmentally friendly electricity production

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Elmegaard, Brian; Haglind, Fredrik

    2014-01-01

    The focus on reduction of fossil fuelled electricity generation has increased the attention on exploitation of low grade heat as the energy source for electricity producing power plants. Low grade heat is heat, which isavailable at a low temperature, e.g. from waste heat from marine diesel engines...... and industrial processes orfrom geothermal and solar heat sources. Utilization of such heat sources makes it possible to produce electricity with no additional burning of fossil fuel, and does therefore represent an environmentally friendly alternative to fossil fuel based electricity production. Utilization...... of low grade heat is not feasible with conventional steam Rankine cycles (steam engines) due to undesirable properties of steam. Instead the organic Rankine cycle is typically used, since it enables thechoice of a working fluid, e.g. hydrocarbons or refrigerants, with desirable properties. One of the key...

  2. Integration of thermal and food processing residuals into a system for commercial culture of freshwater shrimp. (power plant waste heat utilization in aquaculture). Volume II. Final report Jul 74--Oct 76

    Energy Technology Data Exchange (ETDEWEB)

    Eble, A.F.

    1977-01-01

    It has been demonstrated that all life-cycle stages of the tropical freshwater prawn, Macrobrachium rosenbergii, can be cultured successfully using waste-heat effluents of the Mercer Generating Station, Trenton, N.J. Further, high-density culture of the prawn is possible and practical. Rainbow trout (Salmo gairdneri) culture has also been successfully demonstrated utilizing the waste-heat discharges of an electric generating station. Efficient systems have been designed for intensive annual two-crop production. Postlarval prawns are grown in indoor heated nurseries in early spring, and placed in outdoor ponds in mid-May at sizes of 5 to 6cm and harvested in late October as 11 to 12cm adults. Experiments culturing the American eel (Anguilla rostrata) in waste-heat discharge waters of the generating system have been successful. Presented in Volume 2 is the research work conducted in this study. (Portions of this document are not fully legible)

  3. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel.......Both power production and heat pumps may benefit from the development as both technologies utilize a heat source. This makes it possible to cover the complete temperature range of low temperature sources. The development may contribute to significantly lower energy consumption in Danish industry and shipping...

  4. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    Science.gov (United States)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  5. Direct Heat Utilization of Geothermal Resources Worldwide 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2000-01-01

    Direct utilization of geothermal energy consists of various forms for heating and cooling instead of converting the energy for electric power generation. The geothermal resources that can be utilized are in the lower temperature range that are more wide-spread than the higher temperature resources used for electricity generation. The major areas of direct utilization are: heating of swimming pools and for balneology; space heating and cooling including district heating; agriculture applications (greenhouse heating and crop drying); aquaculture applications; industrial processing; and geothermal heat pumps. Direct utilization projects are reported in 72 countries with an installed capacity of 28,268 MWt and annual energy use of 273,372 TJ (75,943 GWh) reported in 2005. The equivalent annual savings in fuel oil amounts to 170 million barrels (25.4 million tonnes) and 24 million tonnes in carbon emissions to the atmosphere. Recent trends are to combined geothermal heat and power projects in order to maximize the use of the resource and improve the economics of the project. With the recent increases in fossil fuel prices, it is estimated that direct utilizations will more than double in the next 10 years.

  6. Utility Systems Operation: Optimisation ?Based Decision Making

    OpenAIRE

    2011-01-01

    Abstract Utility systems provide heat and power to industrial sites. The importance of operating these systems in an optimal way has increased significantly due to the unstable and in the long term rising prices of fossil fuels as well as the need for reducing the greenhouse gas emissions. This paper presents an analysis of the problem for supporting operator decision-making under conditions of variable steam demands from the production processes on an industrial site. An optimisat...

  7. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  8. Ventilation and Heat Recovering System

    Directory of Open Access Journals (Sweden)

    Olga Bancea

    2007-01-01

    Full Text Available Some aspects concerning the heat reducing for ventilation, achieved by using heat recovering components and a combined heating--ventilating system, assuring both comfort and human health are presented. The floor imbedded systems together with air outlets elements could fulfill all the aesthetically desires, as well as comfort and they are ideal for family houses.

  9. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  10. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Final report, March 1, 1979-September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.

    1984-09-01

    This final report documents the Navarro College geothermal use project, which is one of nineteen direct-use geothermal projects funded principally by DOE. The six-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessment; well drilling and completion; system design, construction, and monitoring; economic analysis; and public awareness programs. Some of the project conclusions are that: (1) the 130/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private sector economic incentives currently exist which encourage commercial development of this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, aquacultural and agricultural heating uses, and fruit and vegetable dehydration; (4) high maintenance costs arising from the geofluids' scaling and corrosion characteristics can be avoided through proper analysis and design.

  11. Heat pipe cooling system with sensible heat sink

    Science.gov (United States)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  12. Waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  13. District Heating System Using Heat Pump Installations and CHP

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2015-12-01

    Full Text Available The article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating puThe article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating pumps, evaporators heating and hot water. Heat pumps use carbon dioxide as refrigerant. During the transitional period of the year, and the summer heat pump for preparing hot-water supply system uses the heat of the surrounding air. The heat of the ambient air is used in the intermediate heat exchanger between the first and second stages of the heat pump to cool the gas after the first stage of the compressor of the heat pump.

  14. Solar heating system installed at Lynchburg, VA

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    A detailed design report for a retrofitted solar heating and cooling system for a 1780 square foot office building is presented. The system is composed of a 400 square foot flat plate collector, a 2,000 gallon storage tank, a gas auxiliary boiler, a duct distribution system utilizing a hot water duct coil and water-to-air heat pump, and a hot water preheater. The control system, data acquisition system, technical data, and maintenance procedure are discussed. Detailed specifications, circuits, and drawings for the components are included. (WHK)

  15. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  16. Utility-controlled customer-side thermal-energy-storage tests: heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Rizy, D.T.

    1982-02-01

    Customer-side thermal energy storage has been identified as a load-management option available to the electric utility industry. The tests described here are part of the US DOE national program for the research, development, and demonstration of electric load management using utility-controlled customer-side thermal energy storage for residential load management. Five heat storage tests are described in order to: collect reliable load-research data; delineate and solve installation problems; establish maintainability; determine customer and utility acceptance; and generate cost data to determine the potential of utility-controlled customer-side storage as a load-management option. The results are expected to assist the utility industry in making local load-management decisions and to assist DOE in establishing research and development priorities in load management. The utilities tested four types of heat storage systems: central ceramic brick; concrete slab; heat pump with storage; and pressurized hot water storage. Results of installing and operating the storage systems indicate that these residential heat storage systems are not fully commercial in their present state for use as a load-management option and the technology requires further development. Also, the numerous operational problems experienced by the utilities and high costs of installing and maintaining the storage equipment resulted in poor acceptance of the technology by the utilities and customers.

  17. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    Increasing the building energy efficiency in recent years results in noticeably reduction in their heating demand. Combined with the current trend for utilizing low temperature heat sources, it raises the necessity of introducing a new generation of district heating [DH] systems with lowered...

  18. Solar Heating Systems: Student Manual.

    Science.gov (United States)

    Green, Joanne; And Others

    This Student Manual for a Solar Heating System curriculum contains 22 units of instructional materials for students to use in a course or courses on solar heating systems (see note). For each unit (task), objectives, assignment sheets, laboratory assignments, information sheets, checkpoints (tests), and job sheets are provided. Materials are set…

  19. Solar Heating Systems: Instructor's Guide.

    Science.gov (United States)

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  20. Design and performance of a thermosiphon heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Mulaweh, H.I. [Department of Mechanical Engineering, Purdue University at Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805 (United States)

    2006-04-01

    The design and performance of a thermosiphon heat recovery system that recovers heat rejected from an air conditioner is described by presenting some experimental test data. This paper presents an experimental setup that was designed, developed, and constructed to help the undergraduate mechanical engineering students in understanding the basic heat transfer processes by utilizing real life applications such as using waste heat from a window type air conditioner to heat water for residential and commercial use. Heat recovery from an air conditioner by thermosiphon is attractive because it eliminates the need for a circulating pump. Results indicate that the design of the thermosiphon heat recovery system was a success. [Author].

  1. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  2. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  3. Business Opportunity Prospectus for Utilities in Solar Water Heating

    Energy Technology Data Exchange (ETDEWEB)

    Energy Alliance Group

    1999-06-30

    Faced with deregulation and increasingly aggressive competition, utilities are looking for new products and services to increase revenues, improve customer loyalty and retention, and establish barriers to market erosion. With open access now a reality, and retail wheeling just around the corner, business expansion via new products and services is now the central goal for most utilities in the United States. It may seem surprising that solar thermal energy as applied to heating domestic hot water - an idea that has been around for a long time - offers what utilities and their residential customers want most in a new product/service. This document not only explains how and why, it shows how to get into the business and succeed on a commercial scale.

  4. Investigation of failures in operation of heat networks of large heat supply systems

    Science.gov (United States)

    Rafalskaya, T. A.

    2017-04-01

    The effect of deviations in heat network parameters on operation of heating system and hot-water supply systems in buildings is examined. The consequences of a decrease in the water temperature in a heat network under extreme weather conditions in a range below the design ambient air temperature, the efficiency of disconnection of a hot water supply system (HWSS) heater in this period, and deviations in the normal heat supply in the transition period at relatively high outdoor temperatures are considered. The specific and scope of failures depend on the design-heating load to design hot water supply load ratio for the heat network. A mathematical model was developed, and numerical investigation was performed of modern schemes of heat points which are designed primarily for covering the hot water supply load and recovering the heating system heat output in case of low or no hot water consumption in HWSS. The performed calculations demonstrate that the heating system has no time to restore its heat output, thereby considerably reducing air temperature in the heated premises. The lower the ambient air temperature and the lower the ratio of the design loads for hot water supply and heating, the greater is this decrease. At the same time, in case of a sudden decrease in the outdoor temperature and an accident in the heat supply system, the heating system must be the priority consumer, since a heating failure not only decreases the thermal comfort of consumers but can cause emergency situations in local utility systems, such as a cold water supply system. Correction of failures in a heat supply system requires calculation of operating conditions of heat networks.

  5. Prototype solar heating and combined heating cooling systems

    Science.gov (United States)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  6. Heat recovery system series arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.; Minor, Eric N.

    2017-11-14

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluid circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.

  7. Low Temperature Heat Source Utilization Current and Advanced Technology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  8. EHMS: Exhaust Heat Management System

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, T.; Schmidt, M.; Weinbrenner, M.; Geskes, P. [Behr GmbH und Co. KG, Stuttgart (Germany)

    2006-07-01

    Pollutant concentrations in diesel engines are reduced by cooling of the recirculated exhaust. This reduces emissions and particulate matter. The cooler technology can also be used for heating the passenger compartment faster and more economically. The authors present a model ready for seral production, including an exhaust flap for bypass control for use as auxiliary heating system. Further applications in gasoline engines are pointed out. (orig.)

  9. Efficiency of utilization of heat of moisture from exhaust gases of heat HRSG of CCGT

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available The paper discusses the technology of utilizing the heat of exhaust gas moisture from heat recovery steam gases (HRSG of combined-cycle gas turbine (CCGT. Particular attention focused on the influence of the excess air factor on the trapping of the moisture of the exhaust gases, as in the HRSG of the CCGT its value varies over a wider range than in the steam boilers of the TPP. For the research, has been developed a mathematical model that allows to determine the volumes of combustion products and the amount of water vapor produced according to a given composition of the burned gas and determine the amount of moisture that will be obtained as a result of condensation at a given temperature of the flue gases at the outlet of the condensation heat exchanger (CHE. To calculate the efficiency of the HRSG taking into account the heat of condensation of moisture in the CHE an equation is derived.

  10. Heat-pump-centered integrated community energy systems: System development summary

    Science.gov (United States)

    Calm, J. M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service water heating, and other thermal services. Otherwise wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. More than one quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less scarce resources not practical in smaller, individual building systems. Seven studies performed for the system development phase are summarized.

  11. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  12. Heat pump having improved defrost system

    Science.gov (United States)

    Chen, Fang C.; Mei, Viung C.; Murphy, Richard W.

    1998-01-01

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  13. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    representation allows infeasible production. Using MIP or NLP optimisation, the number of operation hours and the total production of heat from HPs are significantly increased, as the HPs may be used to shave the load patterns of CHP units in significantly constrained energy systems. A MIP energy system model...

  14. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  15. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device

    Directory of Open Access Journals (Sweden)

    Lars Schiøtt Sørensen

    2013-08-01

    Full Text Available Global energy efficiency can be obtained in two ordinary ways. One way is to improve the energy production and supply side, and the other way is, in general, to reduce the consumption of energy in society. This paper has focus on the latter and especially the consumption of energy for heating and cooling our houses. There is a huge energy-saving potential in this area for reducing both the global climate problems as well as economy challenges. Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning and mechanical ventilation in the “warm countries” contribute to an enormous energy consumption and corresponding CO2 emission. In order to establish the best basis for upgrading the energy performance, it is important to make measurements of the heat losses at different places on a building facade, in order to optimize the energy performance. This paper presents a method for measuring the heat loss by utilizing a U-value meter. The U-value meter measures the heat transfer in the unit W/Km2 and has been used in several projects to upgrade the energy performance in temperate regions. The U-value meter was also utilized in an EUDP (Energy Technological Development and Demonstration Program focusing on renovation of houses from the 1960s and 1970s.

  16. Utilization of Porous Media for Condensing Heat Exchangers

    Science.gov (United States)

    Tuan, George C.

    2006-01-01

    The use of porous media as a mean of separating liquid condensate from the air stream in condensing heat exchangers has been explored in the past inside small plant growth chambers and in the Apollo Command Module. Both applications used a cooled porous media made of sintered stainless steel to cool and separate condensation from the air stream. However, the main issues with the utilization of porous media in the past have been the deterioration of the porous media over long duration, such as clogging and changes in surface wetting characteristics. In addition, for long duration usage, biofilm growth from microorganisms on the porous medial would also be an issue. In developing Porous Media Condensing Heat Exchangers (PMCHX) for future space applications, different porous materials and microbial growth control methods will need to be explored. This paper explores the work performed at JSC and GRC to evaluate different porous materials and microbial control methods to support the development of a Porous Media Condensing Heat Exchanger. It outlines the basic principles for designing a PMCHX and issues that were encountered and ways to resolve those issues. The PMCHX has potential of mass, volume, and power savings over current CHX and water separator technology and would be beneficial for long duration space missions.

  17. The thermoelectric generators use for waste heat utilization from cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Production often entails the formation of by-product which is waste heat. One of the equipment processing heat into electricity is a thermoelectric generator. Its operation is based on the principle of thermoelectric phenomenon, which is known as a Seebeck phenomenon. The simplicity of thermoelectric phenomena allows its use in various industries, in which the main waste product is in the form of heat with the temperature of several hundred degrees. The study analyses the possibility of the thermoelectric systems use for the waste heat utilization resulting in the cement production at the cement plant. The location and design of the thermoelectric system that could be implemented in cement plant is chosen. The analysis has been prepared in the IPSEpro software.

  18. Calcium bromide hydration for heat storage systems

    OpenAIRE

    Ai Niwa; Noriyuki Kobayashi

    2015-01-01

    A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the...

  19. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Annual report, January 1984-September 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.

    1984-09-01

    Progress is reported on a project to use the 130/sup 0/F geothermal resource in central Texas. The system for cascading geothermal energy through aquaculture and greenhouse systems was completed and the first shrimp harvest was held. (MHR)

  20. Theoretical and numerical analysis of a heat pump model utilizing Dufour effect

    Science.gov (United States)

    Hoshina, Minoru; Okuda, Koji

    2017-03-01

    A heat pump model utilizing the Dufour effect is proposed, and studied by numerical and theoretical analysis. Numerically, we perform MD simulations of this system and measure the cooling power and the coefficient of performance (COP) as figures of merit. Theoretically, we calculate the cooling power and the COP from the phenomenological equations describing this system by using the linear irreversible thermodynamics and compare the theoretical results with the MD results.

  1. Annual cycle solar energy utilization with seasonal storage. Part 7. Examination on design and control of the system partially recovering exhaust heat of heat pump; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 7. Bubuntekina hainetsu kaishu wo koryoshita baai no sekkei seigyoho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1996-10-27

    The capacity and performance of the existing system that recovers the overall heating and cooling exhaust heat completely into a seasonal storage tank and the system that discharges the exhaust heat slightly to the outside and recovers it partially were compared and investigated. The system uses a central single-duct discharge system as an air-conditioning system. A heat pump and a flat-plate solar collector installed on the roof of a building are used as the heat source. The seasonal storage tank in the ground just under the building is a cylindrical water tank of 5 m deep with the concrete used as body. The upper surface of a storage tank is heat-insulated by a stylo-platform of 200 mm, and the lower side surface by a stylo-platform of 100 mm. Calculation when the difference in temperature used in a seasonal storage tank is set to 35{degree}C and 25{degree}C was performed for the system that has two control methods. The overall exhaust heat recovery system is almost the same in energy performance as the partial exhaust heat recovery system. The partial exhaust heat recovery system is more advantageous on the economic side. 4 refs., 6 figs., 3 tabs.

  2. Celss nutrition system utilizing snails

    Science.gov (United States)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  3. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  4. Integrating photovoltaics into utility distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., San Jose, CA (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Electric utility distribution system impacts associated with the integration of distributed photovoltaic (PV) energy sources vary from site to site and utility to utility. The objective of this paper is to examine several utility- and site-specific conditions which may affect economic viability of distributed PV applications to utility systems. Assessment methodology compatible with technical and economic assessment techniques employed by utility engineers and planners is employed to determine PV benefits for seven different utility systems. The seven case studies are performed using utility system characteristics and assumptions obtained from appropriate utility personnel. The resulting site-specific distributed PV benefits increase nonsite-specific generation system benefits available to central station PV plants as much as 46%, for one utility located in the Southwest.

  5. Influence of Compressor Station Waste-Heat Recovery Section on Operational Efficiency of Gas Turbine Drive with Isobaric Heat Supply and Regenerative Heat Utilization

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available The possibility to utilize existing secondary energy resources for heat supply of an industrial enterprise has been proposed on the basis of the analysis on operation of compressor stations of a cross-country gas pipe-line. The paper considers an influence of waste heat recovery section on operational efficiency of gas turbine drive with regenerative heat utilization.

  6. Total utilization of energy: 100% efficiency. The total energy concept applied to gas-fired heat generators

    Energy Technology Data Exchange (ETDEWEB)

    Rado, L. (Ruhrgas A.G., Essen (F.R. Germany). Abt. E-F)

    1976-07-01

    Tests carried out by Ruhrgas AG with a Recitherm unit have shown that the total energy concept can also be applied to general space-heating applications using relatively simple equipment. The concept has been successfully used for many years in warming the water in swimming pools and can also be applied to further uses in heating. The tests carried out by Ruhrgas AG have shown that the efficiency of the Recitherm unit described varied between 91.3 and 91.9% depending on the load factor of the heat generator if heat utilization is related to the gross calorific value. If this amount of energy utilization is converted into the net calorific value as is generally done in evaluating heat generators, a theoretical efficiency of 101.2 and 101.9% is obtained depending on load factor. In the case of space-heating systems this gives savings in heat energy of about 14%.

  7. Biomass universal district heating systems

    Directory of Open Access Journals (Sweden)

    Soltero Victor Manuel

    2017-01-01

    Full Text Available In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.

  8. Biomass universal district heating systems

    Science.gov (United States)

    Soltero, Victor Manuel; Rodríguez-Artacho, Salvador; Velázquez, Ramón; Chacartegui, Ricardo

    2017-11-01

    In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.

  9. Utilization of geothermal heat in tropical fruit-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  10. Heat pump increases utilization of biogas; Varmepumpe gir mer biogas

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, Knut

    2009-07-01

    Heat recovery by means of an unique hybrid heat pump will lead to increased production of bio gas at Bekkelaget treatment plant. The heat pump is soon to be installed and will be operative in autumn. The heat pump fetch waste heat from the mouth of a sludge digestion tank. (AG)

  11. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa

    2015-12-01

    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  12. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  13. Utilization of Additive Manufacturing for Aerospace Heat Exchangers

    Science.gov (United States)

    2016-02-29

    viability of additive manufacturing for producin9 aerospace heat exchangers for naval air platforms . This report considers various heat exc...demonstration , aerospace heat exchangers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE UNCLASSIFIED... Aerospace Heat Exchangers Research Conducted for the Office of Naval Research Under the Enabling Additive Manufacturing Technologies for Industry

  14. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  15. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  16. Lighting system with heat distribution face plate

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  17. 14 CFR 27.859 - Heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heating systems. 27.859 Section 27.859... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Fire Protection § 27.859 Heating systems. (a) General. For each heating system that involves the passage of cabin air over, or close to, the exhaust...

  18. Heat pumping in nanomechanical systems

    Science.gov (United States)

    Arrachea, Liliana; Chamon, Claudio; Mucciolo, Eduardo; Capaz, Rodrigo

    2011-03-01

    We propose using phonon pumping mechanism to transfer heat from a cold to a hot body. The mechanism is based on inducing a traveling modulation of the acoustic phonon velocity along the medium connecting the two bodies. This phonon pumping can cool nanomechanical systems without the need for active feedback. We have derived an estimate of the lowest achievable temperature. We have also analyzed this mechanism in the framework of simple one-dimensional microscopic models, which can be exactly solved with non-equilibrium Green function techniques. J. S. Guggenheim Memorial Foundation.

  19. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    OpenAIRE

    Limberger, J.; Boxem, T.; Pluymaekers, Maarten; Bruhn, David; Manzella, Adelle; Calcagno, Philippe; Beekman, F.; Cloetingh, S.; van Wees, J.-D.

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a volumetric heat-in-place method to improve current global geothermal resource base estimates for direct heat applications. The amount of thermal energy stored within aquifers depends on the Earth's he...

  20. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization

    OpenAIRE

    Limberger, Jon; Boxem, Thijs; Pluymaekers, Maarten; Bruhn, D.F.; Manzella, Adele; Calcagno, Philippe; Beekman, Fred; Cloetingh, S.A.P.L.; van Wees, Jan Diederik

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a volumetric heat-in-place method to improve current global geothermal resource base estimates for direct heat applications. The amount of thermal energy stored within aquifers depends on the Earth's he...

  1. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  2. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, Joseph C.

    1997-01-01

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  3. Optimization in solar heating/photovoltaic systems

    Science.gov (United States)

    Vourazelis, Dimitrios G.

    1990-12-01

    This thesis is a design of an alternative system which may provide heating to the Naval Postgraduate School swimming pool. Particularly, it is a solar heating/photovoltaic system designed for a better efficiency and less cost of installation and maintenance. Principles of heat transfer, control and fluid dynamics theory are used for the determination of this heating system elements. The feasibility of its installation and use its analyzed.

  4. Optimization in solar heating/photovoltaic systems

    OpenAIRE

    Vourazelis, Dimitrios G.

    1990-01-01

    Approved for public release; distribution is unlimited. This thesis is a design of an alternative system which may provide heating to the Naval Postgraduate School swimming pool. Particularly, it is a solar heating/photovoltaic system designed for a better efficiency and less cost of installation and maintenance. Principles of heat transfer, control and fluid dynamics theory are used for the determination of this heating system elements. The feasibility of its installation and use is analy...

  5. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  6. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  7. Heat pipe heat rejection system. [for electrical batteries

    Science.gov (United States)

    Kroliczek, E. J.

    1976-01-01

    A prototype of a battery heat rejection system was developed which uses heat pipes for more efficient heat removal and for temperature control of the cells. The package consists of five thermal mock-ups of 100 amp-hr prismatic cells. Highly conductive spacers fabricated from honeycomb panels into which heat pipes are embedded transport the heat generated by the cells to the edge of the battery. From there it can be either rejected directly to a cold plate or the heat flow can be controlled by means of two variable conductance heat pipes. The thermal resistance between the interior of the cells and the directly attached cold plate was measured to be 0.08 F/Watt for the 5-cell battery. Compared to a conductive aluminum spacer of equal weight the honeycomb/heat pipe spacer has approximately one-fifth of the thermal resistance. In addition, the honeycomb/heat pipe spacer virtually eliminates temperature gradients along the cells.

  8. Stirling engine external heat system design with heat pipe heater

    Science.gov (United States)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  9. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  10. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  11. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, Jon; Boxem, Thijs; Pluymaekers, Maarten; Bruhn, D.F.; Manzella, Adele; Calcagno, Philippe; Beekman, Fred; Cloetingh, S.A.P.L.; van Wees, Jan Diederik

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  12. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; Wees, J.D. van

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  13. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, J.|info:eu-repo/dai/nl/371572037; Boxem, T.; Pluymaekers, Maarten; Bruhn, David; Manzella, Adelle; Calcagno, Philippe; Beekman, F.|info:eu-repo/dai/nl/123556856; Cloetingh, S.|info:eu-repo/dai/nl/069161836; van Wees, J.-D.

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  14. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  15. Fiscal 1997 survey report. Investigational study on the cascade utilization of thermal energy (cold heat and hot heat) (feasibility study by the off-line system); 1997 nendo chosa hokokusho. Netsu energy (reinetsu to onnetsu) no cascade riyo ni kansuru chosa kenkyu (off-line hoshiki ni yoru feasibility study)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper studied a system to effectively use unused and low-grade thermal energy (cold heat and hot heat) in the Tokyo-Yokohama seaside area. For transportation of thermal energy, the batch transportation, that is, off-line system was discussed which uses insulated tank loaded barges and railroad freight trains. Thermal energy supply sources are 1) 0.3 million kW class thermal power plant, and 2) LNG storage base of 3 million ton/year class. Thermal energy users are Tokyo (Haneda) Airport D.H.C. (District Heating/Cooling Co.), MM 21 D.H.C. and Shin-Kawasaki D.H.C. The cold heat energy supplied to these three is about 1.5 million Mcal/daytimes300 days/year, and the hot heat energy supplied is about 1.33 million Mcal/daytimes150 days/year. Cold heat is obtained from seawater after the LNG vaporization, and hot heat from heat extracted from thermal turbine. Subcooled ice was selected for cold heat medium, and PCM-120A for hot heat medium. For batch transportation, an STL heat storage system is used which transports plastic capsules sealed with heat medium. Oil saving of 62,000 tons/year and CO2 reduction of about 53,000 tons/year can be expected. 85 figs., 98 tabs.

  16. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    In this study, a typical office room with a radiant heating system and a mechanical ventilation system was selected as the research subject. Indoor temperature formulas for calculating the room heat loss (including transmission heat loss and ventilation heat loss) and heating capacity of the hybrid...... for calculating ventilation heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems. (C) 2015 Elsevier B.V. All rights reserved....... change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  17. Feasibility and design studies for heat recovery from a refrigeration system with a Canopus heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, S.C.; Singh, M. [Indian Inst. of Tech., New Delhi (India). Centre of Energy Studies

    1995-10-01

    This paper presents an investigation of the feasibility of heat recovery from the condenser of a vapour compression refrigeration (VCR) system through a Canopus heat exchanger (CHE) between the compressor and condenser components. The presence of the CHE makes it possible to recover the superheat of the discharged vapour and utilize it for increasing the temperature of the external fluid (water) removing heat from the condenser. The effects of the operating temperatures in the condenser and evaporator for different inlet water temperatures and mass flow rates on the heat recovery output and its distribution over the condenser and CHE (the fraction of the condenser heat available through the CHE), available outlet water temperature and heat recovery factor have all been studied and optimum operating parameters for feasible heat recovery have been ascertained. The parametric results obtained for different working fluids, such as R-22, R-12, R-717 and R-500, have been presented. It is found that, in general, a heat recovery factor of the order of 2.0 and 40% of condenser heat can be recovered through the Canopus heat exchanger for a typical set of operating conditions. (Author)

  18. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. A. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  19. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  20. Utility of spoken dialog systems

    CSIR Research Space (South Africa)

    Barnard, E

    2008-12-01

    Full Text Available The commercial successes of spoken dialog systems in the developed world provide encouragement for their use in the developing world, where speech could play a role in the dissemination of relevant information in local languages. We investigate...

  1. Space stations systems and utilization

    CERN Document Server

    Messerschmid, Ernst

    1999-01-01

    The design of space stations like the recently launched ISS is a highly complex and interdisciplinary task. This book describes component technologies, system integration, and the potential usage of space stations in general and of the ISS in particular. It so adresses students and engineers in space technology. Ernst Messerschmid holds the chair of space systems at the University of Stuttgart and was one of the first German astronauts.

  2. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  3. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  4. Control challenges in domestic heating systems

    DEFF Research Database (Denmark)

    Thybo, Honglian; Larsen, Lars F. S.; Weitzmann, Peter

    2007-01-01

    The objective of this paper is to analyze domestic heating applications and identify unfavorable building constructions and control challenges to be addressed by high performance heating control systems. Heating of domestic houses use a large amount of the total energy consumption in Scandinavia....... Hence the potential of reducing energy consumption by applying high performance control is vast. Indoor climate issues are becoming more in focus, which also leads to a demand for high performance heating systems. The paper presents an analysis of how the building elements of today's domestic houses...... with water based floor heating affect the control challenge. The analysis is documented with simulation results....

  5. Performance Analysis of Photovoltaic Water Heating System

    OpenAIRE

    Tomas Matuska; Borivoj Sourek

    2017-01-01

    Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized loa...

  6. Energy management systems : utility billing information management

    Energy Technology Data Exchange (ETDEWEB)

    Khandekar, S. [Ameresco Canada, Toronto, ON (Canada)

    2005-03-01

    This presentation discussed utility billing administration; its strengths, weaknesses, opportunities and threats (SWOT). Recommendations on the management of a utility billing system were presented: control of utility bills, sound auditing process and adequate reporting through analysis reports, summary reports, trend reports, benchmark reports, savings reports, and bill analysis reports. Several examples of the various types of reports were presented in graphical format. The importance of collecting and providing adequate information to enable sound decision making for economic reasons was noted. tabs., figs.

  7. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  8. Installation package for a Sunspot Cascade Solar Water Heating System

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  9. LPV Identification of a Heat Distribution System

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon

    2010-01-01

    This paper deals with incremental system identification of district heating systems to improve control performance. As long as various parameters, e.g. valve settings, are kept fixed, the dynamics of district heating systems can be approximated well by linear models; however, the dynamics change ...

  10. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  11. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  12. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  13. Improving Process Heating System Performance v3

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  14. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  15. Industrial applications study. Volume IV. Industrial plant surveys. Final report. [Waste heat recovery and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som; Steigelmann, William H.; Gajanana, Birur C.; Agarwal, Anil P.; Klock, Lawrence M.; Henderson, James M.; Calobrisi, Gary; Hedman, Bruce A.; Koluch, Michael; Biancardi, Frank; Bass, Robert; Landerman, Abraham; Peters, George; Limaye, Dilip; Price, Jeffrey; Farr, Janet

    1977-01-01

    An initial evaluation of the waste heat recovery and utilization potential in the manufacturing portion of the industrial sector is presented. The scope of this initial phase addressed the feasibility of obtaining in-depth energy information in the industrial sector. Within this phase, the methodology and approaches for data gathering and assessment were established. Using these approaches, energy use and waste heat profiles were developed at the 2-digit level; with this data, waste heat utilization technologies were evaluated. This study represents an important first step in the evaluation of waste heat recovery potential.

  16. Large Efficient Intelligent Heating Relay Station System

    Science.gov (United States)

    Wu, C. Z.; Wei, X. G.; Wu, M. Q.

    2017-12-01

    The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.

  17. An Efficient Heat Exchanger for In Situ Resource Utilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ resource utilization (ISRU) is essential for several of NASA's future flagship missions. Currently envisioned ISRU plants include production of oxygen from...

  18. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...... steam reforming reaction and steam must be generated. The dependence of the temperature profiles on conversion in shift reactors for gas purification is also significant. The optimum heat integration in the system is thus imperative in order to minimize the need for hot and cold utilities. A rigorous 1D......Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...

  19. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain/loss of ...

  20. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant h...

  1. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  2. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  3. Combined solar heat and power system with a latent heat storage - system simulations for an economic assessment

    Science.gov (United States)

    Zipf, Verena; Neuhäuser, Anton

    2016-05-01

    Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.

  4. Geothermal Direct-Heat Utilization Assistance - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Lund

    1999-07-14

    The Geo-Heat Center provided (1) direct-use technical assistance, (2) research, and (3) information dissemination on geothermal energy over an 8 1/2 year period. The center published a quarterly bulletin, developed a web site and maintained a technical library. Staff members made 145 oral presentations, published 170 technical papers, completed 28 applied research projects, and gave 108 tours of local geothermal installations to 500 persons.

  5. Demonstrations of electric heating systems. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Haapakoski, M.; Laitila, R.; Ruska, T.

    1998-07-01

    In 1991, Imatran Voima launched the Demonstration Project of Electric Heating Systems. The project investigated in detail the energy consumption, housing comfort and electric power output rates of approximately one hundred electrically heated single-family houses and updated the investment cost information of heating systems. The project implemented and monitored quality electric heating concepts that guarantee a high standard of housing comfort. The targets in the project provided with combinations of floor, ceiling and window heating systems totalled 33. Furthermore, the project included 42 targets provided with water-circulated floor or radiator heating systems and 22 houses that had moved from oil or district heating systems into electric heating. The number of metering years received in the energy consumption measurements totalled 339. During the course of the project, six partial reports, one master's thesis and three summary reports were published. This is the final report of the project. It deals in brief with the major results. The best electric heating concept, in terms of housing comfort, is a floor heating system using cables supplemented by ceiling and window heating. Thanks to the heating units installed in the structures, the operative temperature grows by about one degree in comparison with a corresponding target heated with radiators. A typical, room-specifically-heated 140 m{sup 2} house consumes a total of 24,000 kWh of energy per year. Of this amount, electric space heating accounts for 11,500 kWh, heating with wood for 1,500 kWh, heating of tap water for 4,000 kWh and household electricity for 7,000 kWh. In a house provided with a water-circulated electric heating system the total energy consumption is, owing to the adjustment and storage losses, about 10 % higher. Of the energy consumption in the house, most part takes place during the period of nighttime electricity. The nighttime load in a 24-hour period with very low temperatures

  6. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 2. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 2. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the chemical heat storage techniques and plant simulation, for R and D of the super heat pump energy accumulation system. For R and D of the chemical heat storage techniques, the R and D efforts are directed to the researches on the fundamental reactions and continuous exothermic reactions involved for the high temperature heat storage type (utilizing the metathesis reactions); researches on the physical properties, heat storage systems, solid-phase reactions, liquid-phase reactors, corrosion of the materials, and so on for the high temperature heat storage type (utilizing ammonia complex); collection of the data related to media and structural materials, tests of the elementary equipment for the absorption and hydration reactions, and so on for the high temperature heat storage type (chemical heat storage utilizing hydration); researches on the media properties and system performance, tests of equipment, and so on for the high temperature heat storage type (heat storage/heating utilizing solvation); researches on the heat storage media, heat storage techniques, corrosion of the materials, systems, and so on for the low temperature heat storage type (utilizing the hydration reactions by mixing solutes); and researches on the media, corrosion and elementary equipment, optimization of the system, and so on for the low temperature heat storage type (clathrate low temperature heat storage systems). (NEDO)

  7. System design and installation for RS600 programmable control system for solar heating and cooling

    Science.gov (United States)

    1978-01-01

    Procedures for installing, operating, and maintaining a programmable control system which utilizes a F8 microprocessor to perform all timing, control, and calculation functions in order to customize system performance to meet individual requirements for solar heating, combined heating and cooling, and/or hot water systems are described. The manual discusses user configuration and options, displays, theory of operation, trouble-shooting procedures, and warranty and assistance. Wiring lists, parts lists, drawings, and diagrams are included.

  8. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  9. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  10. Implementing Geothermal Plants in the Copenhagen District Heating System

    DEFF Research Database (Denmark)

    Jensen, Louise Overvad; Hallgreen, Christine Erikstrup; Larsen, Esben

    2003-01-01

    The possibility of implementing geothermal heating in the Copenhagen district-heating system is assessed. This is done by building up general knowledge on the geological factors that influence the development of useable geothermal resources, factors concerning the exploration and utilization...... of geothermal energy in Denmark as well as the Danish potential, which, in former investigations, has been found to be around 100.000 PJ annually, and the economical potential is less, about 15 PJ/year. Since a considerable amount of the Danish power supply is tied to weather and the demand for heating......, an increasing demand for flexibility has been raised. Implementing geothermal heating would improve the flexibility in the Eastern Danish power system. Based on this information, as well as, on the hourly values of the expected production and consumption in 2010 and 2020, a model of the Copenhagen power...

  11. Maximizing Resource Utilization in Video Streaming Systems

    Science.gov (United States)

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  12. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  13. Utilization of the PCM latent heat for energy savings in buildings

    Science.gov (United States)

    Fořt, Jan; Trník, Anton; Pavlík, Zbyšek

    2017-07-01

    Increase of the energy consumption for buildings operation creates a great challenge for sustainable development issues. Thermal energy storage systems present promising way to achieve this goal. The latent heat storage systems with high density of thermal storage via utilization of phase change materials (PCMs) enable to improve thermal comfort of buildings and reduce daily temperature fluctuations of interior climate. The presented study is focused on the evaluation of the effect of PCM admixture on thermal performance of a cement-lime plaster. On the basis of the experimentally accessed properties of newly developed plasters, computational modeling is carried out in order to rate the acquired thermal improvement. The calculated results show that incorporation of 24 mass% of paraffinic wax based PCM decreased the energy demand of approx. 14.6%.

  14. District Heating Systems Performance Analyses. Heat Energy Tariff

    Science.gov (United States)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  15. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...

  16. Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Balyk, Olexandr

    2014-01-01

    . A further expansion of district heating network in Denmark is assessed and penetration of heat savings is analysed in this context.If all heat saving measures, included in the model, are implemented, heat demand in Danish buildings in 2050 could be reduced by around 40%. Results show that it is cost...... levels of heat savings, which can be implemented by reducing heat transmission losses through building elements and by installing ventilation systems with heat recovery, in different future Danish heat and power system scenarios. Today almost 50% of heat demand in Denmark is covered by district heating...

  17. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  18. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  19. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral....... The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...... of the tank design’s influence on the thermal performance of the systems is possible. By means of the calculations design rules for the two heat storage types are proposed....

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

  1. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  2. The Analysis of Heat Exchangers Geometry in Thermoelectric Generators for Waste Heat Utilization

    Directory of Open Access Journals (Sweden)

    Borcuch Marcin

    2016-01-01

    Full Text Available The paper presents results of the analysis and comparison of the hot-side heat exchangers (HHXs dedicated for the thermoelectric generators (TEGs. Efficient operation of TEG depends on, i.a. proper design of the HHX. Six geometries of the heat exchangers’ cross-section have been investigated and analysed in view of heat transfer effectiveness (ηTH and pressure drop (ΔP. As an assumption, useful heat exchange surface has been set up as 2400 cm2, maintaining heat exchanger (HX length as 30 cm, which is enough for the placement of the 32 thermoelectric modules able to generate at least 160 W of the electrical power. The source of waste heat are flue gases, in the analysis approximate as an air. Cold-side heat exchanger (CHX has been simplified and calculated as a water flow around the casing of the HHX to achieve comparable results. As a base, circular profile has been presented. Numerical calculations provide results suggesting which shape is most suitable for specified application. Results could be the first guidelines for selecting and designing the HX for the TEG. Further investigation will focus on optimization of the chosen HX in view of increasing ηTH and minimizing ΔP.

  3. Heat pump system for summer houses if possible combined with solar heating; Varmepumpeanlaeg til fritidshus eventuelt i kombination med solvarme

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K.; Kildemoes, T.; Kristensen, Joern; Bjergen Jensen, T.

    2006-03-15

    Denmark has about 220.000 summer cottages and it is estimated that about 10% of these are for rental. The trend within summer cottages for rental is going towards more and more facilities and intensive rental, and as a consequence of this high energy consumption. A substantial part of the energy use is for heating, i.e. space heating, heating of indoor pool and domestic hot water. Contrary to the other building stock in Denmark summer cottages nearly always use electricity for heating. In the project it is found, that the average yearly electricity use of a summer cottage for rental with indoor pool is about 31.000 kWh. In the project typical energy consumption profiles have been set up from analyses of typical equipment and from simulation of space heat demands in Danish climate. Furthermore a number of heat delivery solutions with heat pumps and solar heating systems have been set up and the performance has been simulated and analysed. As a result of the analyses 2 prototype systems both consisting of an air to air heat pump for space heating and an air to water heat pump for the hot water, the spa and the pool heating has been installed and tested in two summer cottages. There is a good economy in the systems and these are therefore marketed by the project participants, Energi Danmark NRGi (energy utility) and Dansommer (cottage rental company). (au)

  4. Space shuttle heat pipe thermal control systems

    Science.gov (United States)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  5. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  6. Beyond Widgets -- Systems Incentive Programs for Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walter, Travis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-15

    Utility incentive programs remain one of the most significant means of deploying commercialized, but underutilized building technologies to scale. However, these programs have been largely limited to component-based products (e.g., lamps, RTUs). While some utilities do provide ‘custom’ incentive programs with whole building and system level technical assistance, these programs require deeper levels of analysis, resulting in higher program costs. This results in custom programs being restricted to utilities with greater resources, and are typically applied mainly to large or energy-intensive facilities, leaving much of the market without cost effective access and incentives for these solutions. In addition, with increasingly stringent energy codes, cost effective component-based solutions that achieve significant savings are dwindling. Building systems (e.g., integrated façade, HVAC and/or lighting solutions) can deliver higher savings that translate into large sector-wide savings if deployed at the scale of these programs. However, systems application poses a number of challenges – baseline energy use must be defined and measured; the metrics for energy and performance must be defined and tested against; in addition, system savings must be validated under well understood conditions. This paper presents a sample of findings of a project to develop validated utility incentive program packages for three specific integrated building systems, in collaboration with Xcel Energy (CO, MN), ComEd, and a consortium of California Public Owned Utilities (CA POUs) (Northern California Power Agency(NCPA) and the Southern California Public Power Authority(SCPPA)). Furthermore, these program packages consist of system specifications, system performance, M&V protocols, streamlined assessment methods, market assessment and implementation guidance.

  7. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2013-01-01

    and cooling our houses. There is a huge energy-saving potential in this area for reducing both the global climate problems as well as economy challenges. Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from...... and mechanical ventilation in the “warm countries” contribute to an enormous energy consumption and corresponding CO2 emission. In order to establish the best basis for upgrading the energy performance, it is important to make measurements of the heat losses at different places on a building facade, in order......Global energy efficiency can be obtained in two ordinary ways. One way is to improve the energy production and supply side, and the other way is, in general, to reduce the consumption of energy in society. This paper has focus on the latter and especially the consumption of energy for heating...

  8. A solar heating system with annual storage

    Science.gov (United States)

    Lazzari, F.; Raffellini, G.

    1981-07-01

    A solar heated house with long term storage capability, built in Trento, Italy, is described. The one story house was built from modular components and has a total heated volume of 1130 cu m. Flat plate solar collectors with a water-antifreeze medium are located beneath the lawn, and six cylindrical underground tanks holding 130 cu m of water heated by thermal energy from the collectors are situated under the garden. The house walls have an 8 cm cavity filled with 5 cm of formaldehyde foam, yielding a heat transmission (U) of 0.37 W/sq m/deg C. The roof and ceilings are insulated with fiberglass and concrete, producing U-values of 0.46 W/sq m/deg C and 0.57 W/sq m/deg C, respectively. Heat pumps using 6 kW move thermal energy between the house and the tanks. Direct hot water heating occurs in the summer, and direct home heating when the stored water temperature exceeds 32 C. A computer model was developed which traces the annual heat flow and it is shown that the system supplies all heating requirements for the house, with electrical requirements equal to 20 percent of the annual house needs.

  9. Some Problems of the Integration of Heat Pump Technology into a System of Combined Heat and Electricity Production

    Directory of Open Access Journals (Sweden)

    G. Böszörményi

    2001-01-01

    Full Text Available The closure of a part of the municipal combined heat and power (CHP plant of Košice city would result in the loss of 200 MW thermal output within a realtively short period of time. The long term development plan for the Košice district heating system concentrates on solving this problem. Taking into account the extremely high (90 % dependence of Slovakia on imported energy sources and the desirability of reducing the emission of pollutantst the alternative of supplying of 100 MW thermal output from geothermal sources is attractive. However the indices of economic efficiency for this alternative are unsatisfactory. Cogeneration of electricity and heat in a CHP plant, the most efficient way of supplying heat to Košice at the present time. If as planned, geothermal heat is fed directly into the district heating network the efficiency would be greatly reduced. An excellent solution of this problem would be a new conception, preferring the utilization of geothermal heat in support of a combined electricity and heat production process. The efficiency of geothermal energy utilization could be increased through a special heat pump. This paper deals with several aspects of the design of a heat pump to be integrated into the system of the CHP plant.

  10. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  11. Assessment of solar-assisted gas-fired heat pump systems

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  12. PREDICTIVE CONTROL SYSTEM SYNTHESIS OF DISTRICT HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dobrotin S.A.

    2011-08-01

    Full Text Available A combined system of building heating predictive control has been synthesized in the research. Following algorithms are described: adaptive algorithm of very short-term temperature forecast and algorithm of anticipatory control of heat supply to building heating taking into account different outside climate influence on elevations of a building.

  13. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  14. Prototype solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    A collection of quarterly reports from the AiResearch Manufacturing Company covering the period July 12, 1976, through December 31, 1977, is presented. AiResearch Manufacturing Company is developing eight prototype solar heating and cooling systems. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25 and 75-ton size units.

  15. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2015-04-01

    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  16. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  17. Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions

    Science.gov (United States)

    Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew

    2012-08-01

    A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained "noise" caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.

  18. Optimization of a waste heat utilization network in an eco-industrial park

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Song Hwa; Kim, Sang Hun; Yoon, Sung-Geun; Park, Sunwon [Department of Chemical and Bio-molecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea)

    2010-06-15

    Development of an eco-industrial park (EIP) has drawn attention as a promising approach seeking for the mutual benefit to the economy and environment. In recent years, the reduction of energy consumption has become a global necessity due to the high oil price and environmental regulations. In order to find energy strategies in an EIP, a framework to investigate waste heat of an industrial complex was proposed. A mathematical model was developed to synthesize a waste heat utilization network, including nearby companies and communities. A case study of an existing petro-chemical complex in Yeosu, South Korea showed that the total energy cost and the amount of waste heat of the region can be reduced by more than 88% and 82% from the present values, respectively, applying the suggested waste heat utilization networks. (author)

  19. Analyzing variables for district heating collaborations between energy utilities and industries

    Energy Technology Data Exchange (ETDEWEB)

    Thollander, P.; Svensson, I.L.; Trygg, L. [Department of Management and Engineering, Division of Energy Systems, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2010-09-15

    One vital means of raising energy efficiency is to introduce district heating in industry. The aim of this paper is to study factors which promote and inhibit district heating collaborations between industries and utilities. The human factors involved showed to affect district heating collaborations more than anything else does. Particularly risk, imperfect and asymmetric information, credibility and trust, inertia and values are adequate variables when explaining the establishment or failure of industry-energy utility collaborations, while heterogeneity, access to capital and hidden costs appear to be of lower importance. A key conclusion from this study is that in an industry-energy utility collaboration, it is essential to nurture the business relationship. In summary, successful collaboration depends more on the individuals and organizations involved in the relationship between the two parties than on the technology used in the collaboration. (author)

  20. Prototype solar heating and hot water systems

    Science.gov (United States)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  1. Advanced control for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market share of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.

  2. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

  3. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    Science.gov (United States)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  4. Energy conservation in fruit dehydrators utilizing recirculation of exhaust air and heat recovery heat exchangers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Groh, J E

    1977-12-01

    Dehydration of fruit in the United States is often done by means of a tunnel dehydrator utilizing large quantities of fossil fuel. Existing dehydrators have been designed to operate with maximum product through-put and with little regard for energy efficiency. Incorporating controlled recirculating air dampers and thermal energy recovery equipment on the exhaust air, calculations and preliminary tests show that the energy required in dehydration may be cut by up to 40%. During this work, one tunnel was modified and upgraded in a commercial 24-tunnel facility to demonstrate the potential savings. A primary element of this program, the heat recovery heat exchanger, operated below specifications. The manufacturer, Hughes Aircraft Company, has determined that the heat exchanger design was based on faulty data, and is constructing a second exchanger which can be installed and tested during a subsequent program.

  5. Energy conservation in fruit dehydrators utilizing recirculation of exhaust air and heat recovery heat exchangers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Groh, J E

    1978-02-01

    Dehydration of fruit in the United States is often done by means of a tunnel dehydrator utilizing large quantities of fossil fuel. Existing dehydrators have been designed to operate with maximum product through-put and with little regard for energy efficiency. Incorporating controlled recirculating air dampers and thermal energy recovery equipment on the exhaust air, calculations and preliminary tests show that the energy required in dehydration may be cut by up to 40 percent. During this work, one tunnel was modified and upgraded in a commercial 24-tunnel facility to demonstrate the potential savings. A primary element of this program, the heat recovery heat exchanger, operated below specifications. The manufacturer, Hughes Aircraft Company, has determined that the heat exchanger design was based on faulty data, and is constructing a second exchanger which can be installed and tested during a subsequent program.

  6. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  7. 46 CFR 154.178 - Contiguous hull structure: Heating system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for... the heating capacity to meet § 154.174(b)(2) or § 154.176(b)(2); (b) Have stand-by heating to provide...

  8. Performance Analysis of a Hybrid District Heating System

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Duic, Neven

    2015-01-01

    Hybridisation of district heating systems can contribute to more efficient heat generation through cogeneration power plants or through the share increase of renewable energy sources in total energy consumption while reducing negative aspects of particular energy source utilisation. In this work....... Several energy sources for heat production have been considered in 8 different simulation cases. Simulation results show that the heat production costs could be reduced with introduction of different energy systems into an existing district heating system. Renewable energy based district heating systems...... could contribute to heat production costs decrease in district heating systems up to 30% in comparison with highly efficient heat production technologies based on conventional fuels....

  9. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer in the combi......In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer...... in the combined solar heating/heat pump system type when the heat pump makes use of a horizontal ground source heat exchanger. The knowledge is gained by experimental investigations on a solar heating/heat pump system and forms the basis for improved marketed combined solar heating/heat pump systems....

  10. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    . In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  11. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  12. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    could reach up to 20% with utilisation of solar energy as supplement energy source in traditional fossil fuel based district heating systems. In this work, the performance of hybrid district energy system for a particular location will be analysed. For performance analysis, mathematical model...... more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...... sources that can complement each other on daily and yearly basis and reduce negative aspects of particular energy source utilisation. In district heating systems, hybridisation could be performed through utilisation of renewable and non-renewable energy sources. Potential of fuel and emission reduction...

  13. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  14. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  15. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model......, various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar...

  16. Public utility Rosenheim enlarge the capacity of district heating by means of return temperatures. District heating transmission stations with cascade; Stadtwerke Rosenheim erweitern FW-Kapazitaet durch niedrigere Ruecklauftemperaturen. Fernwaermeuebergabestation mit Kaskade

    Energy Technology Data Exchange (ETDEWEB)

    Bruehl, Goetz; Bielmeier, Reinhard; Neugebauer, Horst [Stadtwerke Rosenheim (Germany); Weinmann, Edwin [Planungsbuero Weinmann, Muenchen (Germany); Planungsbuero Weinmann, Wielenbach (Germany)

    2012-12-15

    In most cases heating systems, drinking water heaters and circulation heaters are connected in parallel. This arrangement often results in too high return temperatures. In order to keep down the return temperature all the year, the public utility Rosenheim developed a cascaded high-efficiency district heating transmission station in cooperation with two partners. Due to the series connection of the heat exchangers for the hot water circulation, the heating system and the drinking water heaters in continuous flow, not only permanently lower return temperatures are achieved, but also the consumption of the power of pumps is lowered as well as the hygiene requirements to drinking water is improved.

  17. Linear heating system for measurement of thermoluminescence ...

    Indian Academy of Sciences (India)

    A linear heating system is developed using a 8031/51 microcontroller for the measurement of thermoluminescence (TL) in alkali halides and other related compounds. This system also measures the temperature and the amount of light emitted by the sample for TL studies.

  18. Stochastic modelling of central heating systems

    DEFF Research Database (Denmark)

    Hansen, Lars Henrik

    1997-01-01

    and the degree Erhvervsforsker (a special Danish degree, equivalent to ``Industrial Ph.D.''). The thesis is mainly concerned with experimental design and system identification for individual components in water based central heating systems. The main contribution to this field is on the nonlinear dynamic...

  19. Further testing of solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Watson, M.

    2002-07-01

    In a study for the DTI, the Energy Monitoring Company compared the amount of energy which eight solar water heaters could generate. The systems were operated side by side over about six months. In one series of tests the systems were operated entirely as solar systems, and in another, auxiliary top-up heating was applied. The two systems were evaluated and the relative advantages/disadvantages discussed.

  20. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  1. House-internal heating systems; Husinterna vaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof; Wollerstrand, Janusz [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2005-07-01

    In this report the placement of the circulation-pump in of waterborne radiator systems, as well as their filling and deairation are investigated. The study was done by literature studies and interviews with consultants and companies active on the HVAC-market. It was concluded that different placements of the pump in relationship to the heat exchanger exist, and the arguments for the choice of placement are varying. The main explanation of the choice of placement is that it is based on experience/or by practical reasons. The most important factor influencing the placement of the pump found, was how the pump is situated in relation to the expansion-tank. To maintain pressure in the whole system the expansion-tank should be placed on the suction side of the pump without any intermediate pressure-dropping devices in between. This placement ensures overpressure in the whole radiator-system and reduces the risk of unwanted leak in of air. To avoid cavitation sufficient static pressure on the suction side of the pump is necessary. The pressure increases with the temperature, which must be taken into consideration if the pump is placed on the warm side of the heat-exchanger. From this point of view a placement in the return-pipe from the radiator-system is to be preferred. Before advices for HVAC-branch regarding placement of the circulation-pump in the heating systems can be implemented, it is of big importance to analyse and clearly specify the advantages and disadvantages of a certain placement of the pump. There is a need of directions to get house-internal systems to operate properly together with district heating system. This is especially important when older heating systems with burners and shunt valves are being connected. Filling and deairation of the radiator system is of great importance for the function of the system. A radiator-system with significant level of air remains is difficult to adjust and will not work properly. Air in the radiators leads to

  2. Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, J.W.; James, L.C.; Stevens, S.; Autry, A.N.; Nussbaum, M.; MacQueen, S.V.

    1983-06-22

    Our goal was to design and monitor a hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a micro-computer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Micro-computer hardware and computer programs were developed to make cost effective decisions between the various modes of operation. Although recent advances in micro-computer hardware make similar control systems more readily achievable utilizing standard components, attention to the decision making criteria will always be required.

  3. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions...... showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...

  4. Developing Multiple Diverse Potential Designs for Heat Transfer Utilizing Graph Based Evolutionary Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth Jr.

    2006-09-01

    This paper examines the use of graph based evolutionary algorithms (GBEAs) to find multiple acceptable solutions for heat transfer in engineering systems during the optimization process. GBEAs are a type of evolutionary algorithm (EA) in which a topology, or geography, is imposed on an evolving population of solutions. The rates at which solutions can spread within the population are controlled by the choice of topology. As in nature geography can be used to develop and sustain diversity within the solution population. Altering the choice of graph can create a more or less diverse population of potential solutions. The choice of graph can also affect the convergence rate for the EA and the number of mating events required for convergence. The engineering system examined in this paper is a biomass fueled cookstove used in developing nations for household cooking. In this cookstove wood is combusted in a small combustion chamber and the resulting hot gases are utilized to heat the stove’s cooking surface. The spatial temperature profile of the cooking surface is determined by a series of baffles that direct the flow of hot gases. The optimization goal is to find baffle configurations that provide an even temperature distribution on the cooking surface. Often in engineering, the goal of optimization is not to find the single optimum solution but rather to identify a number of good solutions that can be used as a starting point for detailed engineering design. Because of this a key aspect of evolutionary optimization is the diversity of the solutions found. The key conclusion in this paper is that GBEA’s can be used to create multiple good solutions needed to support engineering design.

  5. Initiative for local district heating. New chances for municipal utilities. Boundary conditions for the heat market; Initiative Nahwaerme. Neue Chancen fuer Stadtwerke. Rahmenbedingungen fuer den Waermemarkt

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Michael [K.Group GmbH, Muenchen (Germany). Bereich Nachhaltige Energieversorgung und Stadtentwicklung

    2009-06-15

    In the regulated market, municipal utilities are forced to find new fields of activity. The heat market offers good chances. For example, local district heating grids can be established, independent power generation can be encouraged, and new services can be offered which may increase customer loyalty. The district heating initiative of the Baden-Wuerttemberg Minister of the Environment was launched early in 2009 with the intention to offer valuable assistance to the municipal utilities. (orig.)

  6. Heat-Flux Gage thermophosphor system

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.

    1991-08-01

    This document describes the installation, hardware requirements, and application of the Heat-Flux Gage (Version 1.0) software package developed by the Oak Ridge National Laboratory, Applied Technology Division. The developed software is a single component of a thermographic phosphor-based temperature and heat-flux measurement system. The heat-flux transducer was developed by EG G Energy Measurements Systems and consists of a 1- by 1-in. polymethylpentene sheet coated on the front and back with a repeating thermographic phosphor pattern. The phosphor chosen for this application is gadolinium oxysulphide doped with terbium. This compound has a sensitive temperature response from 10 to 65.6{degree}C (50--150{degree}F) for the 415- and 490-nm spectral emission lines. 3 refs., 17 figs.

  7. Active heat exchange system development for latent heat thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    The selection and evaluation phase of a program to develop active heat exchange concepts for latent heat thermal energy storage systems applicable to the utility industry is described. An evaluation of suitable storage media with melting points in the temperature range of interest (250 to 400/sup 0/C) limited the candidates to molten salts from the chloride, hydroxide and nitrate families, based on high storage capacity, good corrosion characteristics and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24.5NaCl-55.0MgCl/sub 2/% by wt), with a nominal melting point of 385/sup 0/C. Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW/sub t/ storage for 6 hours). Two concepts were selected for hardware development: a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant heat transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  8. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  9. Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

    1977-05-01

    An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

  10. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field.

    Directory of Open Access Journals (Sweden)

    Masashi Suzuki

    Full Text Available We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.

  11. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  12. Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

    1996-07-01

    This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

  13. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  14. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  15. A Simplified Heat Pump Model for use in Solar Plus Heat Pump System Simulation Studies

    OpenAIRE

    Perers, Bengt; Anderssen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the he...

  16. Energy Renovation of Buildings Utilizing the U-value Meter, a New Heat Loss Measuring Device

    Directory of Open Access Journals (Sweden)

    Lars Schiøtt Sørensen

    2010-01-01

    Full Text Available A new device with the ability to measure heat loss from building facades is proposed. Yet to be commercially developed, the U-value Meter can be used as stand-alone apparatus, or in combination with thermographic-equipment. The U-value meter complements thermographs, which only reproduce surface temperature and not the heat loss distribution. There is need for a device that measures the heat loss in a quantitative manner. Convective as well as radiative heat losses are captured and measured with a five-layer thermal system. Heat losses are measured in the SI-unit W/m2K. The aim is to achieve more cost-effective building renovation, and provide a means to check the fulfillment of Building Regulation requirements with respect to stated U-values (heat transmission coefficients. In this way it should be possible to greatly reduce energy consumption of buildings.

  17. Inverse problem and variation method to optimize cascade heat exchange network in central heating system

    Science.gov (United States)

    Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin

    2017-12-01

    Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.

  18. A Steam Utility Network Model for the Evaluation of Heat Integration Retrofits – A Case Study of an Oil Refinery

    Directory of Open Access Journals (Sweden)

    Sofie Marton

    2017-12-01

    Full Text Available This paper presents a real industrial example in which the steam utility network of a refinery is modelled in order to evaluate potential Heat Integration retrofits proposed for the site. A refinery, typically, has flexibility to optimize the operating strategy for the steam system depending on the operation of the main processes. This paper presents a few examples of Heat Integration retrofit measures from a case study of a large oil refinery. In order to evaluate expected changes in fuel and electricity imports to the refinery after implementation of the proposed retrofits, a steam system model has been developed. The steam system model has been tested and validated with steady state data from three different operating scenarios and can be used to evaluate how changes to steam balances at different pressure levels would affect overall steam balances, generation of shaft power in turbines, and the consumption of fuel gas.

  19. Progress in Heat Watch Warning System Technology.

    Science.gov (United States)

    Sheridan, Scott C.; Kalkstein, Laurence S.

    2004-12-01

    Among all atmospheric hazards, heat is the most deadly. With such recent notable heat events as the Chicago Heat Wave of 1995, much effort has gone into redeveloping both the methods by which it is determined whether a day will be “oppressive,” as well as the mitigation plans that are implemented when an oppressive day is forecast to occur.This article describes the techniques that have been implemented in the development of new synoptic-based heat watch warning systems. These systems are presently running for over two dozen locations worldwide, including Chicago, Illinois; Toronto, Ontario, Canada; Rome, Italy; and Shanghai, China; with plans for continued expansion. Compared to traditional systems based on arbitrary thresholds of one or two meteorological variables, these new systems account for the local human response by focusing upon the identification of the weather conditions most strongly associated with historical increases in mortality. These systems must be constructed based on the premise that weather conditions associated with increased mortality show considerable variability on a spatial scale. In locales with consistently hot summers, weather/mortality relationships are weaker, and it is only the few hottest days each year that are associated with a response. In more temperate climates, relationships are stronger, and a greater percentage of days can be associated with an increase in mortality.Considering the ease of data transfer via the World-Wide Web, the development of these systems includes Internet file transfers and Web page creation as components. Forecasts of mortality and recommendations to call excessive-heat warnings are available to local meteorological forecasters, local health officials, and other civic authorities, who ultimately determine when warnings are called and when intervention plans are instituted.

  20. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    Science.gov (United States)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-01-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  1. Linear heating system for measurement of thermoluminescence ...

    Indian Academy of Sciences (India)

    Unknown

    scence intensity is monitored. The theory of TL usually assumes that the sample temperature varies linearly with time, although more general theories have been formu- lated and calculations made for non-linear heating system. Previous descriptions of apparatus for the measurement of TL have been published elsewhere ...

  2. Solar Heating Systems: Progress Checks & Tests Manual.

    Science.gov (United States)

    Green, Joanne; And Others

    This manual contains Progress Checks and Tests for use in a Solar Heating Systems curriculum (see note). It contains master copies of all Progress Checks and Unit Tests accompanying the curriculum, organized by unit. (The master copies are to be duplicated by each school so that adequate copies are available for student use in a self-paced student…

  3. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  4. Emergency heat removal system for a nuclear reactor

    Science.gov (United States)

    Dunckel, Thomas L.

    1976-01-01

    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  5. Heat pump centered integrated community energy systems. System development, Franklin Research Center interim report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, R E; Lorsch, H G; Werden, R G

    1979-02-01

    The concept of a heat pump centered integrated community energy system (HP-ICES) was explored based on a reference community located in the Northeast with a population of 10,000. Engineering and economic analyses were performed for the HP-ICES and for conventional heating/cooling systems. Sensitivity analyses were used to determine variations in results from changes in: community size; community energy density; waste heat utilization; energy cost escalation; maintenance and operating personnel; and central HP-ICES ownership. The effect of each of the critical parameters on the economic viability of HP-ICES is shown. Conditions of equal 20-year life cycle costs for HP-ICES and for conventional systems are given. If little or no waste heat is available from nearby industrial installations, high community energy density rates (corresponding to urban conditions) are required for economic viability of HP-ICES. If large amounts of waste heat are available, even relatively loosely built-up communities look promising provided the system is owned by the municipality. If the system is owned and operated by a shareholder-owned public utility, either the community energy density must be high, or large quantities of waste heat must be available, or electricity and oil costs must escalate rapidly during the life of the system to assure economic competitiveness with conventional systems. All HP-ICES use significantly less resource energy than conventional systems. For the baseline system analyzed, HP-ICES use 26% to 40% less resource energy than conventional systems during the heating season and 19% less energy during the peak cooling period. The annual resource energy saving for the HP-ICES is 22% to 34%. It is estimated that the HP-ICES concept is applicable to an average of 500 new communities to be constructed during the 1985--2000 period. The probable resource energy saving during that time period is 1.25 x 10/sup 15/ Btu.

  6. Numerical Investigation of Floor Heating Systems in Low Energy Houses

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Jensen, Claus Franceos

    2002-01-01

    In this paper an investigation of floor heating systems is performed with respect to heating demand and room temperature. Presently (2001) no commercially available building simulation programs that can be used to evaluate heating demand and thermal comfort in buildings with building integrated...... – a heavy system integrated into the concrete floor and a light system which is placed in heat transfer plates – have been investigated, using different supply temperatures to the floor heating system, and different control strategies. The aim of the study is to compare the two types of floor heating...... temperature of the floor of approximately 24 °C, even during the summer period where there is no heating demand. The results of the investigation show an increased heating demand when floor heating systems are compared to an ideal heating system. This larger heating demand is a consequence of imperfect...

  7. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    , the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...... the performance of the floor heating and the whole system. The exergy input to auxiliary components plays a significant role in the overall exergy performance of systems, and its effects become even more significant for low temperature heating systems....

  8. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...... is a tank in tank heat storage with domestic hot water in the inner tank and space heating water in the outer tank. The total tank volume is 750 liters and the solar collector area is 9 m2. The auxiliary energy supply system is based on electrical heating element(s)/heat pump and is different for all three...... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys...

  9. Experimental validation of a dynamic waste heat recovery system model for control purposes

    NARCIS (Netherlands)

    Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, J.; Jager, B. de; Steinbuch, M.

    2013-01-01

    This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for

  10. Formula study for plate heat exchanger in the central heating regulation of the indirect connection hot water heating system

    Directory of Open Access Journals (Sweden)

    Minghui CUI

    2016-10-01

    Full Text Available Plate heat exchanger has unique advantages and becomes dominant heat exchange equipment in heating engineering, but there is no heating regulation formula of plate exchanger applied in central heating regulation of indirect connection hot water heating. This paper analyzes the condition that the heating user's system adopts quality regulation method and the hot water network system adopts quality-flow regulation method, and obtains the regulation formulas of plate exchanger applied in central heating regulation of indirect connection hot water heating used for the above two systems. Empirical calculation shows that the formula can be applied to the quality regulation and the mass flow regulation of the different flow optimization adjustment coefficient, and it is an all-round formula.

  11. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    Science.gov (United States)

    Sekret, Robert; Nitkiewicz, Anna

    2014-03-01

    Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  12. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  13. Condensing Heat Exchanger Concept Developed for Space Systems

    Science.gov (United States)

    Hasan, Mohammad M.; Nayagam, Vedha

    2005-01-01

    The current system for moisture removal and humidity control for the space shuttles and the International Space Station uses a two-stage process. Water first condenses onto fins and is pulled through "slurper bars." These bars take in a two-phase mixture of air and water that is then separated by the rotary separator. A more efficient design would remove the water directly from the air without the need of an additional water separator downstream. For the Condensing Heat Exchanger for Space Systems (CHESS) project, researchers at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center are designing a condensing heat exchanger that utilizes capillary forces to collect and remove water and that can operate in varying gravitational conditions including microgravity, lunar gravity, and Martian gravity.

  14. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    Science.gov (United States)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  15. An innovative thermal management concept of waste heat utilization in space

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M.K. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1995-12-31

    This paper presents an innovative thermal management concept that utilizes the waste heat of electronics to meet both the heater power budget and the thermal requirements of the Far Ultraviolet Spectroscopic Explorer (FUSE) payload during the phase-B study at NASA Goddard Space Flight Center. The phase-B study included trade studies of different orbits. This paper is concerned with the highly elliptical orbit. The total heat dissipation of the electronics is 177.4 W, all at the mid-section of a 3.9-m tall graphite epoxy structure. The innovative thermal management concept uses constant conductance heat pipes to transport the waste heat to interior cold plates which radiate to the structure and aft end of the baffle tubes. It provides uniform temperature to the structure. Variable conductance heat pipes transport the excess waste heat to external radiators to maintain the structure at a constant temperature. This design minimizes the heater power for the graphite epoxy structure and reduces the heater power for the mirrors. The total heater power required at Sun angles in the 45{degree} to 105{degree} range is 58.5 W at a 45{degree} sun angle, 46 W at 90{degree} and 30.4 W at 105{degree}. The optical performance of the payload is optimum at these sun angles. It also provides temperature stability to the structure during science observation at sun angles of 20{degree} to 45{degree} and 105{degree} to 137{degree} when no heater power is available.

  16. The thermoelectric generators use for waste heat utilization from conventional power plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Full Text Available On the base of available data, it is estimated that the industrial approx. 20-50% of the energy is removed into the atmosphere as waste heat include in the form of hot flue gases, cooling water, the heat losses from the equipment hot surfaces or heated products. However, according to the data from the US market in 2010, in the form of waste heat is emitted more than 96 · 106 TJ annually (2.7 · 1010 MWh, means more than 57% of the produced energy. According to statistics, currently the energy production in the US amounts to approx. 26% of the world's energy production. Assuming the same indicators, the total annual amount of waste heat in the scale of the world equals 370 · 106 TJ (10.4 · 1010 MWh. One of the ways to increase the energy efficiency of manufacturing processes and reducing energy consumption and negative impacts to the environment is the use of waste energy [1,2,3] In this work it was investigated the possibilities of the waste heat utilization from conventional thermal power plant using thermoelectric generators, the operation of which is based on the Seebeck effect.

  17. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  18. Heat exchanger optimization for geothermal district heating systems: A fuel saving approach

    Energy Technology Data Exchange (ETDEWEB)

    Dagdas, Ahmet [Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul (Turkey)

    2007-05-15

    One of the most commonly used heating devices in geothermal systems is the heat exchanger. The output conditions of heat exchangers are based on several parameters. The heat transfer area is one of the most important parameters for heat exchangers in terms of economics. Although there are a lot of methods to optimize heat exchangers, the method described here is a fairly easy approach. In this paper, a counter flow heat exchanger of geothermal district heating system is considered and optimum design values, which provide maximum annual net profit, for the considered heating system are found according to fuel savings. Performance of the heat exchanger is also calculated. In the analysis, since some values are affected by local conditions, Turkey's conditions are considered. (author)

  19. Verification of structures for utilization of waste multicomponent electrolytic systems

    Directory of Open Access Journals (Sweden)

    Suljkanović Midhat

    2008-01-01

    Full Text Available Determination of process structure of thermal utilization of mineral mat­ters from waste streams, is a multi-variant problem. These processes are energy-intensive and it is very important to determine the process structures for realization of the required processes in the starting phases of process development. The structure of the process system, beside the system equilibrium, depends on vector parameters of the feed stream. In this work a newly developed methodology for determination of process variants of thermal utilization of mineral salts from a hypothetical three-component AX-BX-H2O system is presented. The methodology is created on starting synthesis problem for which a set of types of process units for realization process and type of desired crystal product is determined. The methodology includes process decomposition in two subsystems: concentration (saturation subsystem and crystallization subsystem. Concentration of feed stream is realized in isothermal conditions of water evaporation and crystallization process using various techniques: isothermal water evaporation, cooling of solution in vacuum and cooling of solution through contact surface. Determination of physical feasible processes is performed by simulation of the process superstructure in which each particular process structure is a special case of the created process superstructure. Realization of mentioned activity is provided by creating algorithms and programming software (process simulator in which the equation system of the superstructure mathematical model is solved for various variants of set of specified variables. The created methodology and possibilities of the created process simulator are presented in the illustrative case study of waste stream utilization of the NaCl-KCl-H2O system. In addition to this, for conditions of total heat integration of subsystems is demonstrated that a small change of salt concentration of feed stream can require transfer non

  20. Multiple utilization of energy in buildings. Utilization of waste heat at the Blood Transfusion Service; Energie im Gebaeude mehrfach nutzen. Abwaermenutzung beim Blutspendedienst Nord

    Energy Technology Data Exchange (ETDEWEB)

    Gaigalat, Jens

    2012-11-01

    For the Blood Transfusion Service North the German Red Cross (Berlin, Federal Republic of Germany) utilizes the waste heat from production facilities and laboratories for heating offices. By doing this, the VRV technology for the realization of this solution was used.

  1. Taylor dispersion and the optimization of residential geothermal heating systems

    Science.gov (United States)

    Townsend, Jessica; Ortan, Alexandra; Quenneville-Belair, Vincent; Tilley, B. S.

    2008-11-01

    Residential geothermal heating systems have been developed over the past few decades as an alternative to fossil-fuel based heating. These systems consist of tubing (2 cm radius, 1 km in length) buried below the ground surface through which a coolant flows. Tube length has a direct correlation to installation cost. The temperature of this fluid rises as it flows through the tubing, and the energy from this temperature difference is utilized to heat the residence. As a first model, we consider a single tube of fluid encased in an infinite medium of soil, with the goal to find the minimum length over which temperature variations occur. Through lubrication theory, we derive an evolution equation for the local soil temperature near the tubing. We find that Taylor dispersion of heat in the fluid and thermostat frequency dictate the minimum tubing length needed for successful operation in an insulated subsystem. Next, matched asymptotics is used to incorporate far-field temperature variations. Comparison of our model with experiment is presented.

  2. Utility advanced turbine systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  3. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  4. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 2. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaihatsu 1991 nendo seika hokokusho. 2. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the researches on the chemical heat storage systems, plant simulation techniques and combined systems, and international technical exchanges, for R and D of the super heat pump energy accumulation system. For the high temperature heat storage type (utilizing ammonia complexes), the initial research targets are almost attained, as a result of the designs of a chemical heat storage unit having heat storage capacity of 1,000 kWh. For the high temperature heat storage type (utilizing hydration reactions), a 25 Mcal-scale pilot partial test unit is operated, to study applicability of the practical materials and other operation-related themes. For the low temperature heat storage type (utilizing hydration reactions by solute mixing), a pilot system is operated, to attain heat recovery of 75% or more, heat storage density of 30 kcal/kg or more, and output temperature of 7 degrees C. For the low temperature heat storage type (utilizing clathrates), the evaluation tests by a pilot plant produce heat recovery of 93.2% and heat storage density of 32.0 kcal/kg. In addition, the R and D efforts are directed to, e.g., researches on plant simulation techniques and combined systems. (NEDO)

  5. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology

    Directory of Open Access Journals (Sweden)

    Fengchen Chen

    2018-01-01

    Full Text Available A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  6. Heat Exchanger for Motor Vehicle Cooling System

    OpenAIRE

    Thuliez, Jean-Luc; Chevroulet, Tristan; Stoll, Daniel

    1997-01-01

    Heat exchanger for a motor vehicle cooling system including a sleeve-like meter hermetically mounted on, and surrounding, a hollow tubular chassis meter of the vehicle. The sleeve is provided with inlets and outlets communicating with the space between the sleeve and the chassis meter and vehicle coolant flows through the inlet and outlet. Air, flowing over the outside surface of the sleeve and the inside surface of the chassis meter, cools the vehicle coolant. SMH - MCC Smart, car concepts (...

  7. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  8. Simulating Utilization of Waste Heat of Motor Vehicles -Based on Thermoelectric Generator

    OpenAIRE

    Piarah, Wahyu H.; Djafar, zuryati

    2016-01-01

    The main power source of motor vehicle is combustion engines which use fossil fuels (diesel, gasoline, pertamax etc.) as fuel. The total heat supplied to the engine in the form of fuel, 30-40% of fuel is converted into mechanical work, heat remaining is released through the exhaust pipe and the engine cooling system. The unused heat source in motor vehicles could potentially be used to generate electricity as a supplier of electricity needs in a vehicle. The technology used to convert the hea...

  9. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  10. EDL-G. Taking chances instead of just managing them. Requirements to be met by district heating utilities; EDL-G. Chancen gestalten statt verwalten. Anforderungen an Fernwaermeversorger

    Energy Technology Data Exchange (ETDEWEB)

    Hentschel, Nora; Schramm, Dirk [IfE Ingenieurbuero fuer Energiewirtschaft Dr.-Ing. Dirk Schramm (VBI) GmbH, Meiningen (Germany)

    2011-04-15

    The Energy Conservation Ordinance, the Heat-from-Renewables Act and, last but not least, the recent Energy Services Act present a challenge to district heating utilities. It is important for them to actively look out for new chances, e.g. construction of power generation systems on the basis of renewable energy sources and/or the development of energy efficiency based business models.

  11. Side-by-Side Testing of Water Heating Systems: Results from the 2013-2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States). Bulding America Partnership for Improved Residential Construction

    2017-07-12

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  12. The research of heating efficiency of different induction heating systems

    Directory of Open Access Journals (Sweden)

    Konesev Sergey

    2017-01-01

    Full Text Available Computer models of tape and coil inductors are described, and a comparison of the heating efficiency depending on various parameters is made. The developed computer model was made in the ELCUT 6.0. As a result of the simulation, data on the heating characteristics (depending on the various parameters of the heating elements are obtained. The average statistical data of a series of experiments with a tape inductor are given. It is shown that for the same parameters (values of inductance and number of wires, the tape version inductor heats up a pipe to a higher temperature (by 5.08% than the inductor in the coil version in 10 minutes.

  13. Prototype solar heating and combined heating and cooling systems

    Science.gov (United States)

    1978-01-01

    Designs were completed, hardware was received, and hardware was shipped to two sites. A change was made in the heat pump working fluid. Problem investigation of shroud coatings for the collector received emphasis.

  14. Large-scale heat pumps in sustainable energy systems: System and project perspectives

    Directory of Open Access Journals (Sweden)

    Blarke Morten B.

    2007-01-01

    Full Text Available This paper shows that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps (HP with existing combined heat and power (CHP plants, is critically sensitive to the operational mode of the HP vis-à-vis the operational coefficient of performance, mainly given by the temperature level of the heat source. When using ground source for low-temperature heat source, heat production costs increases by about 10%, while partial use of condensed flue gasses for low-temperature heat source results in an 8% cost reduction. Furthermore, the analysis shows that when a large-scale HP is integrated with an existing CHP plant, the projected spot market situation in The Nordic Power Exchange (Nord Pool towards 2025, which reflects a growing share of wind power and heat-supply constrained power generation electricity, further reduces the operational hours of the CHP unit over time, while increasing the operational hours of the HP unit. In result, an HP unit at half the heat production capacity as the CHP unit in combination with a heat-only boiler represents as a possibly financially feasible alternative to CHP operation, rather than a supplement to CHP unit operation. While such revised operational strategy would have impacts on policies to promote co-generation, these results indicate that the integration of large-scale HP may jeopardize efforts to promote co-generation. Policy instruments should be designed to promote the integration of HP with lower than half of the heating capacity of the CHP unit. Also it is found, that CHP-HP plant designs should allow for the utilization of heat recovered from the CHP unit’s flue gasses for both concurrent (CHP unit and HP unit and independent operation (HP unit only. For independent operation, the recovered heat is required to be stored. .

  15. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  16. Solar heating and cooling system installed at Leavenworth, Kansas

    Science.gov (United States)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  17. High temperature PEMFC and the possible utilization of the excess heat for fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Qingfeng; Pan, Chao; Vestboe, Andreas P.; Mortensen, Kasper; Nybo Petersen, Henrik; Lau Soerensen, Christian; Nedergaard Clausen, Thomas; Bjerrum, Niels J. [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Schramm, Jesper [Department of Mechanical Engineering, Building 404, Technical University of Denmark, DK-2800 Lyngby (Denmark)

    2007-07-15

    In this paper simple heat balances are calculated for systems with methanol and methane reformers in combination with a high temperature PEM fuel cell. In the methanol system at least 11.1% of the fuel energy can be saved by using the excess heat from the fuel cell for vaporization of water and methanol if the cell is operated at temperatures between 150 and 200 {sup circle} C. Similarly, in the methane system, 9.6% can be saved under equivalent conditions. Integration of a high temperature PEM fuel cell with a metal hydride system based on NaAlH{sub 4} is considered briefly with respect to desorption heat. Dead-end operation is studied, and stable performance is seen for 100 min at 150 {sup circle} C without purging. Finally, experiments are reported indicating that preheating of the air has no influence on the fuel cell performance at 150 or 200 {sup circle} C under moderate load. (author)

  18. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi

    2012-01-01

    Multilevel Flow Modeling (MFM) is a well recognized methodology for functional modeling of complex systems which primarily focuses on the representation of their goals and functions. It has been successfully used in industrial process, e.g. nuclear power plant, chemical plants etc. to facilitate...... i.e. supplying and transferring thermal energy, it is off interest to use MFM to investigate similarities and differences between different implementations. In this paper, three typical domestic European heating systems, which differ from each other in the number of temperature sensors and auxiliary...

  19. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  20. AUTOMATIC CONTROL SYSTEM OF HEAT PUMP STATION GAS COOLER AT THE WIDE RANGE OF HEAT LOAD

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2008-08-01

    Full Text Available There is examined the structure the of control system of gas cooler of heat pump station, which uses the carbon dioxide as the working fluid in the transctitical thermodynamical cycle. It is analiyed the structure of the complex: heat pump station – district heating system.

  1. Sophisticated plant engineering. New construction of a decoupling station. Waste heat is utilized for district heating; Anspruchsvoller Anlagenbau. Neubau einer Auskoppelstation. Abwaerme wird fuer Fernwaerme genutzt

    Energy Technology Data Exchange (ETDEWEB)

    Kulbatzki, Katrin [HSE Technik GmbH und Co. KG, Darmstadt (Germany)

    2012-07-15

    During a construction period of approximately six months, HSE Technik GmbH (Darmstadt, Federal Republic of Germany) has set up a complete district heating decoupling station with the associated equipment, piping as well as instrumentation and control technology for the waste incineration plant in Hamm (Westphalia) and put into operation. Thus, additionally to power generation the waste heat from combustion processes is utilized for district heating.

  2. Heat Saving Strategies in Sustainable Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Henrik Lund

    2014-06-01

    Full Text Available This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps.

  3. Utilization of a heat pump in pig breeding for energy saving and climate and ammonia control

    Energy Technology Data Exchange (ETDEWEB)

    Riva, Giovanni; Pedretti, Ester Foppa [Ancona Univ., Ancona (Italy); Fabbri, Claudio [Centro Ricerche Produzioni Animali, Reggio Emilia (Italy)

    2000-12-01

    The performance of three heating systems was analysed in closed-cycle pig farm (farrowing and weaning section). Three adjoining rooms were heated using one of the following systems: a reversible air to air heat pump (HP) for both heating and cooling; a standard liquid petroleum gas (LPG) boiler for heating coupled with mechanical ventilation for summer cooling; and natural ventilation with emergency convective heating. Their energy consumption and influence on production parameters were compared. Fifteen groups of sow and their litters were housed in succession in each room from the end of pregnancy through weaning (5 cycles). Temperature and humidity and production parameters (i.e. feed conversion index) were measured for each cycle and room. In the case of HP, the ammonia emissions produced in, and extracted from, the breeding room were also determined. The HP consistently maintained both temperature and humidity around optimal values (average 26.2degC and 64.2% relative humidity) and allowed primary energy savings of 11% compared with the LPG heater. The piglets weaned in the HP room showed better growth performance. Finally, the air processed by the HP contained less than half the ammonia concentrations recorded in the naturally ventilated room. (Author)

  4. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    Science.gov (United States)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  5. Prototype solar heating and combined heating and cooling systems. Quarterly report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-06

    The General Electric Company is developing eight prototype solar heating and combined heating and cooling systems. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  6. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    . CHP (combined heat and power) plants in Denmark will change their role from base load production to balancing the fluctuation in renewable energy supply, such as wind power and at the same time they have to change to renewable energy sources. Some solutions are already being planned by utilities......An energy supply based on 100% renewable energy in Denmark is the official goal for the Danish energy policy towards 2050. A smart energy system should be developed to integrate as much supply from fluctuating renewable sources and to utilise the scarce biomass resources as efficiently as possible...... are constructed to analyse how the different alternatives influences the energy system. The scenarios are analysed in the energy systems modelling tool EnergyPLAN both from a technical energy systems perspective and from a market economic analysis with focus on the electricity exchange potential of the scenarios...

  7. Submersible pumping system with heat transfer mechanism

    Science.gov (United States)

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  8. 40 CFR 63.104 - Heat exchange system requirements.

    Science.gov (United States)

    2010-07-01

    ... heat exchange system or at locations where the cooling water enters and exits each heat exchanger or any combination of heat exchangers. (i) For samples taken at the entrance and exit of recirculating... manufacturing process units. (iii) For samples taken at the entrance and exit of each heat exchanger or any...

  9. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  10. Reliability analysis of the combined district heating systems

    Science.gov (United States)

    Sharapov, V. I.; Orlov, M. E.; Kunin, M. V.

    2015-12-01

    Technologies that improve the reliability and efficiency of the combined district heating systems in urban areas are considered. The calculation method of reliability of the CHP combined district heating systems is proposed. The comparative estimation of the reliability of traditional and combined district heating systems is performed.

  11. Pilot projects for the utilization of biomass from paludiculture in integrated biomass heating systems in Mecklenburg-Western Pomerania; Pilotprojekte zur Nutzung von Biomasse aus Paludikultur in integrierten Biomasseheizwerken in Mecklenburg-Vorpommern

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Tobias [Greifswald Univ. (Germany). Inst. fuer Botanik und Landschaftsoekologie; Schroeder, Christian; Wichtmann, Wendelin

    2012-07-01

    The use of rewetted peatlands (paludiculture, Latin 'palus' = swamp) is a site-adapted alternative to conventional, drainage based use. Land use on wet peatlands opens up new, sustainable biomass potentials. The project, funded by the research fund MV, studies the production and use of pelletized biomass from paludiculture. An experimental pellet boiler will be integrated into the district heating plant of Greifswald. With reed-biomass from areas belonging to the city, the suitability of the biomass for continuous operation is being tested. For this purpose, the biomass will be pelletized in small scale in cooperation with a local farmer and on industrial scale in cooperation with the German Pellets GmbH. Different mono- and mixed pellet variants will be analyzed. Further on, biomass potential analyses are carried out and the pilot project is analysed in terms of environmental performance and economic viability. The demonstration project will examine the opportunities and challenges of using biomass from rewetted peatlands and develop markets. Part of another pilot project is the integration of a boiler for fen biomass into the district heating plant of Malchin. Thereby new distribution channels for local biomass from landscape conservation shall be assessed. The approval of the funding is necessary for the implementation of the projects. (orig.)

  12. Impact factors on the long-term sustainability of Borehole Heat Exchanger coupled Ground Source Heat Pump System

    Science.gov (United States)

    Shao, Haibing; Hein, Philipp; Görke, Uwe-Jens; Bucher, Anke; Kolditz, Olaf

    2016-04-01

    In recent years, Ground Source Heat Pump System (GSHPS) has been recognized as an efficient technology to utilize shallow geothermal energy. Along with its wide application, some GSHPS are experiencing a gradual decrease in Borehole Heat Exchanger (BHE) outflow temperatures and thus have to be turned off after couple of years' operation. A comprehensive numerical investigation was then performed to model the flow and heat transport processes in and around the BHE, together with the dynamic change of heat pump efficiency. The model parameters were based on the soil temperature and surface weather condition in the Leipzig area. Different scenarios were modelled for a service life of 30 years, to reveal the evolution of BHE outflow and surrounding soil temperatures. It is found that lateral groundwater flow and using BHE for cooling will be beneficial to the energy recovery, along with the efficiency improvement of the heat pump. In comparison to other factors, the soil heat capacity and thermal conductivity are considered to have minor impact on the long-term sustainability of the system. Furthermore, the application of thermally enhanced grout material will improve the sustainability and efficiency. In contrast, it is very likely that undersized systems and improper grouting are the causes of strong system degradation.

  13. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  14. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  15. Heat transfer augmentation of magnetohydrodynamics natural convection in L-shaped cavities utilizing nanofluids

    Directory of Open Access Journals (Sweden)

    Sourtiji Ehsan

    2012-01-01

    Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame­ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray­leigh numbers. The influence of the magnetic field has been also studied and de­duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.

  16. Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique

    Directory of Open Access Journals (Sweden)

    Younes Amini

    2015-09-01

    Full Text Available This research investigated the forced convection heat transfer by using the swirling impinging jets. This study focused on nozzles, which equipped with twisted tapes via a numerical approach. The computational domain created by utilizing the fully structured meshes, which had very high quality from the viewpoint of aspect ratio and skewness. The numerical simulations were performed at four different jet-to-plate distances (L/D of 2, 4, 6 and 8, four Reynolds numbers of 4000, 8000, 12,000 and 16,000, and also four different twist ratios (y/w of 3, 4, 5 and 6. The mesh-independent tests were conducted based upon the average Nusselt number. The obtained results revealed good agreement with the available experimental data from the open literature. It was observed that for jet-to-plate distances of L/D=6 and L/D=8, the heat transfer rate of swirling jets was more than regular jets, and heat transfer rate at higher Reynolds numbers increased due to the greater rate of momentum transfer. Besides, the calculation done for a pair of jets, and the results shown that using two jets, instead of one, could increase the rate of heat transfer in the same air flow rate.

  17. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  18. Electrochemical systems configured to harvest heat energy

    Science.gov (United States)

    Lee, Seok Woo; Yang, Yuan; Ghasemi, Hadi; Chen, Gang; Cui, Yi

    2017-01-31

    Electrochemical systems for harvesting heat energy, and associated electrochemical cells and methods, are generally described. The electrochemical cells can be configured, in certain cases, such that at least a portion of the regeneration of the first electrochemically active material is driven by a change in temperature of the electrochemical cell. The electrochemical cells can be configured to include a first electrochemically active material and a second electrochemically active material, and, in some cases, the absolute value of the difference between the first thermogalvanic coefficient of the first electrochemically active material and the second thermogalvanic coefficient of the second electrochemically active material is at least about 0.5 millivolts/Kelvin.

  19. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  20. Heat metering and billing service for gas utilities; Dienstleistung Heizkostenabrechnung fuer Gasversorgungsunternehmen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Data required for heat billing are acquired individually for each tenant, as is well known. On the other hand, landlords also have to divide the cost of waste water removal, freshwater supply, waste disposal, taxes etc. These costs are divided on the same basis as the heating cost. Public utilities may therefore offer a full-scale metering and billing service. [German] Die fuer die Heizkostenabrechnung relevanten Daten werden mieterbezogen erfasst. Neben den Kosten fuer Raumwaerme und Warmwasser hat der Vermieter aber je nach Ausgestaltung der Mietvertraege jaehrlich weitere Betriebskosten einer Liegenschaft, wie z.B. fuer Abwasser, Frischwasser, Muellentsorgung, Grundbesitzangaben etc., zu verteilen. Grundlage fuer diese Kostenverteilung sind die gleichen mieterbezogenen Daten, wie bei der Heizkostenabrechnung. Fuer das Energiedienstleistungsunternehmen bietet sich somit die Basis fuer weitere Dienstleistungen, indem sich nach Uebernahme der Heizkostenabrechnung in einem zweiten Schritt der Umfang der Dienstleistung auf den Gesamtbereich aller Hausnebenkosten ausdehnen laesst. (orig.)

  1. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes....... In this system, it is possible to have the high performance of the liquid/water heat pump but without the need to install tubes in the ground. The performance of the system with automated energy discharge over several months is evaluated....

  2. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    2014-01-01

    This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish...... governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new...... buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating...

  3. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    One of the important issues related to the implementation of future sustainable smart energy systems based on renewable energy sources is the heating of buildings. Especially, when it comes to long‐term investment in savings and heating infrastructures it is essential to identify long‐term least...... that a least‐cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps. Keywords: Energy Efficiency, Renewable energy, Heating strategy, Heat savings, District heating, Smart energy......‐cost strategies. With Denmark as a case, this paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used. Based on a concrete proposal to implement the Danish governmental long...

  4. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...... in the heating system. The heat storage was tested in a heat storage test facility. The most important characteristics of the heat storage were determined by means of the tests and recommendations for the design of the heat storage were given....

  5. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  6. Comparison of solar heat pump systems to conventional methods for residential heating, cooling, and water heating, volume 2

    Science.gov (United States)

    Hughes, P. J.; Morehouse, J. H.

    1980-04-01

    The series and parallel combined solar heat pump systems investigated are at best marginally competitive, on a 20 year life cycle cost basis, with conventional oil and electric furnace systems. The combined solar heat pump systems are not economically competitive with conventional gas furnace or stand alone heat pump systems for residential space heating, cooling and water heating. The combined solar heat pump systems do offer the potential for significant energy savings as compared to conventional furnace systems and the stand alone heat pump. The cost of that savings, however, is beyond that which the average consumer can be expected to pay. Barring unforeseen manufacturing process or materials breakthroughs, parallel systems prices are firm. The prices listed for series systems already include low cost site built collectors and an optimistic estimate of the liquid to air heat pump costs, and prices on other series system components are firm. A collector cost sensitivity analysis did not offer any encouraging directions towards significant systems cost reduction.

  7. Prototype solar heating and cooling systems, including potable hot water

    Science.gov (United States)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  8. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  9. Optimal Power Consumption in a Central Heating System with Geothermal Heat Pump

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2011-01-01

    Driving a ground source heat pump in a central heating system with the minimum power consumption is studied. The idea of control is based on the fact that, in a heat pump, the temperature of the forward water has a strong positive correlation with the consumed electric power by the compressor. Th...

  10. Diffuse Solar System Design and Utilization in Agriculture and ...

    African Journals Online (AJOL)

    Diffuse solar radiation is a component of total solar radiation that is good for low temperature grade heating. Since the portion of the scattered radiation from the sun, which consists of short and long waves, that reaches the earth is diffused, its utilization in Agriculture as this paper suggested, has multiple phase change ...

  11. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  12. 14 CFR 25.833 - Combustion heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.833 Combustion heating systems. Combustion heaters must be approved. Pressurization ...

  13. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  14. Screw engine used as an expander in ORC for low-potential heat utilization

    Science.gov (United States)

    Richter, Lukáš

    2017-09-01

    This paper deals with a screw motor that is used as an expander in an ORC (Organic Rankin Cycle) system, whose organic working substance allows the transformation of low-potential heat (waste heat, solar and geothermal energy) into electrical energy. The article describes the specific properties of an organic substance and a screw motor that must be considered when designing and assembling a complete power unit. Screw machines are not commonly used as expansion devices, so it is necessary to perform an analysis that makes it possible to adapt the screw machine to the expansion process in terms of profiling and design.

  15. Thermal Propulsion Capture System Heat Exchanger Design

    Science.gov (United States)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  16. Sunspaces for passive building heating: calculation models and utilization of empirical data

    OpenAIRE

    Passerini, Francesco

    2012-01-01

    The thesis deals with sunspaces, considered as a particular passive solar system. Solar systems exploit solar radiation in order to decrease the use of non-renewable energy sources. Therefore their importance is both environmental and economic. According to “The passive solar energy books” (1979) of Edward Mazria the difference between “active systems” and “passive systems” is that in the latter the heat flows happen without mechanical equipment. The present research focuses on the reduction ...

  17. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    OpenAIRE

    Bing Hu; Yuanshu Cao; Weibin Ma

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show th...

  18. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology interim report

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D W; Trammel, B C; Dixit, B S; McCurry, D C; Rindt, B A

    1979-02-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. The concept of an HP-WHR system is developed, the potential performance and economics of such a system is evaluated and the potential for application is examined. A thermodynamic performance analysis of a hypothetical system projects an overall system coefficient of performance (C.O.P.) of from 2.181 to 2.264 for wastewater temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the implementation of this system is projected to be 5.014 QUADS, or the energy equivalent of 687 millions tons of coal, from 1980 to the year 2000. Economic analysis shows the HP-WHR scheme to be cost-competitive, on the basis of a net present value life cycle cost comparison, with conventional residential and light commercial HVAC systems.

  19. Application of Predictive Control in District Heating Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1993-01-01

    . A district heating system is an example of a non-stationary system, and the model parameters have to be time varying. Hence, the classical predictive control theory has to be modified. Simulation experiments are performed in order to study the performance of modified predictive controllers. The systems ape......In district heating systems, and in particular if the heat production cakes place at a combined heat and power (CHP) plant, a reasonable control strategy is to keep the supply temperature from the district heating plant as low as possible. However, the control is subject to some restrictions...

  20. Coefficient of Performance Stabilisation in Ground Source Heat Pump Systems

    Directory of Open Access Journals (Sweden)

    Jerzy Wołoszyn

    2017-12-01

    Full Text Available The number of installations with ground source heat pumps is steadily increasing. As they involve high investment costs, they require deliberate action and analysis. Research on the influence of design, materials and operating parameters on their coefficient of performance becomes of great importance. In this article the authors propose a new ground source heat pump system with horizontal ground heat exchanger and subsurface irrigation system. In order to examine the possibility of applying the system, the influence of soil moisture content on the heat pump coefficient of performance was investigated in this research. Conducting research on the real object is extremely expensive, so it was decided to conduct simulation studies using the finite element method. The presented results of research confirm that the soil moisture content has the greatest impact on the heat pump system coefficient of performance. The developed ground source heat pump system with subsurface irrigation system allow to reduce the length of ground heat exchanger loop.

  1. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  2. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  3. CO2 as a heat pump working fluid for retrofitting hydronic heating systems in Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Enkemann, T.; Kruse, H. [FKW Research Center for Refrigeration and Heat Pumps, University of Hannover, Hannover (Germany); Oostendorp, P.A. [TNO Institute of Environmental Sciences, Energy Research and Process Innovation TNO-MEP, Apeldoorn (Netherlands)

    1998-12-31

    The use of heat pumps instead of conventional heating systems seems to be a promising way to reduce CO2 emissions contributing to the global warming impact in the field of space heating. Concerning the equipment of new buildings one can see a growing market for heat pumps in some cases due to governmental supporting measures. Since the number of existing buildings is much higher than the number of new buildings, the use of heat pumps should also be expanded to this market. Due to the design of the older systems with high supply temperatures of the hydronic heating system the application of existing heat pumps is limited. The transcritical process with CO2 seems to be promising for this application. Cycle calculations considering the typical design of existing heating systems were made to obtain information about the cycle characteristics and the energetic behavior of a CO2 heat pump in such a system. The calculations were done for an air to water heat pump since this type is better suited for all-purpose installation for retrofit. It was found that a control of the high side pressure of the heat pump cycle is recommended to achieve a high COP for all seasonary conditions of the heat sink and the heat source as well as for the behavior of the volumetric heating capacity. The use of an internal heat exchanger is however not recommended since the advantages concerning COP and the behavior of the volumetric heating capacity is negligible while it leads to significantly higher discharge temperatures. Seasonal performance factors (SPF) were estimated on the basis of cycle calculations. For a heating system with design supply and return temperatures of 70C and 50C a value of 2.8 was found. In order to optimize the heat pump performance, a modification of the usual design of the heating system is proposed. The temperature difference between supply and return should be enlarged by reducing the mass flow of the water in the existing hydronic system. Calculations show that

  4. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.; McCurry, D.C.; Rindt, B.A.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-water temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.

  5. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    The project “Solar/electric heating systems in the future energy system” was carried out in the period 2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project...... partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number...... of the project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating...

  6. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...... for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035...

  7. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Science.gov (United States)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  8. HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM

    Science.gov (United States)

    Johnson, E.F.

    1962-06-01

    This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)

  9. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    , the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...... on the outlet temperature of the gas cooler, the evaporation temperature and the efficiency of the compressor. General correlations for this optimal heat rejection pressure were derived based on cycle simulations. The correlations presented in this paper provide a basis for designing transcritical carbon...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems....

  10. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    DEFF Research Database (Denmark)

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt

    2016-01-01

    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers....... The analysis was based on using the energy model Balmorel to determine the optimum dispatch of HPs in the system. The potential heat sources in Copenhagen for use in HPs were determined based on data related to temperatures, flows, and hydrography at different locations, while respecting technical constraints...

  11. Heat transfer characteristics of various kinds of ground heat exchangers for ground source heat pump system

    Science.gov (United States)

    Miyara, A.; Kariya, K.; Ali, Md. H.; Selamat, S. B.; Jalaluddin

    2017-01-01

    Three kinds of vertical-type ground heat exchangers, U-tube; double-tube; multi-tube, and two kinds of horizontal-type ground heat exchangers, standing Slinky; reclined Slinky, were experimentally and numerically investigated in order to clarify their heat transfer characteristics. Experiments and simulations were carried out under two operation conditions which are continuous operation mode and discontinuous operation mode and effects of temperature recovery and thermal storage on the heat transfer rate were shown. Differences of the heat transfer rate between standing Slinky and reclined Slinky were also indicated.

  12. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  13. Absorption heat pumps in heating and cooling systems. Absorptiolaempoepumppu rakennusten laemmitys- ja jaeaehdytysjaerjestelmaessae

    Energy Technology Data Exchange (ETDEWEB)

    Aittomaeki, A.; Vaelimaeki, A.; Koepsi, M.

    1989-01-01

    The application of an absorption heat pumps as the heating and cooling system of an office building has been studied by means of a simulation model, designed for this application purpose. The effects of an absorption heat pump on emissions that are harmful to the environment depend on the fuel used. If the fuel is lightweight oil or gas, the sulphur and particle emissions diminish, but NO[sub x] and hydrocarbon emissions may increase as the combustion units become smaller. The use of an absorption heat pump reduces CFC emissions because other refrigerants are used in an absorption heat pump.

  14. Absorption heat pumps in heating and cooling systems; Absorptiolaempoepumppu rakennusten laemmitys- ja jaeaehdytysjaerjestelmaessae

    Energy Technology Data Exchange (ETDEWEB)

    Aittomaeki, A.; Vaelimaeki, A.; Koepsi, M.

    1989-12-31

    The application of an absorption heat pumps as the heating and cooling system of an office building has been studied by means of a simulation model, designed for this application purpose. The effects of an absorption heat pump on emissions that are harmful to the environment depend on the fuel used. If the fuel is lightweight oil or gas, the sulphur and particle emissions diminish, but NO{sub x} and hydrocarbon emissions may increase as the combustion units become smaller. The use of an absorption heat pump reduces CFC emissions because other refrigerants are used in an absorption heat pump.

  15. Binary blend of carbon dioxide and fluoro ethane as working fluid in transcritical heat pump systems

    Directory of Open Access Journals (Sweden)

    Zhang Xian-Ping

    2015-01-01

    Full Text Available As an eco-friendly working fluid, carbon dioxide or R744 is expected to substitute for the existing working fluids used in heat pump systems. It is, however, challenged by the much higher heat rejection pressure in transcritical cycle compared with the traditional subcritical cycle using freons. There exists a worldwide tendency to utilize blend refrigerants as alternatives. Therefore, a new binary blend R744/R161 in this research is proposed in order to decrease the heat rejection pressure. Meanwhile, on mixing R744 with R161, the flammability and explosivity of R161 can be suppressed because of the extinguishing effect of R744. A transcritical thermodynamic model is developed, and then the system performances of heat pump using R744/R161 blend are investigated and compared with those of pure R744 system under the same operation conditions. The variations of heat rejection pressure, heating coefficient of performance, unit volumetric heating capacity, discharge temperature of compressor and the mass fraction of R744/R161 are researched. The results show that R744/R161 mixture can reduce the heat rejection pressure of transcritical heat pump system.

  16. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  17. Research and development on super heat pump energy accumulation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This is the final report on research and development of super heat pump energy accumulation system, which has been carried out from FY 1985 to 1992. It describes outline of the research and development program, R and D results, final evaluation methodology, evaluation of the R and D, proposals for the commercialization, and so on. The super high performance compression heat pumps are technically evaluated for highly efficient type (for heating, and cooling and heating), high temperature type (utilizing high temperature heat source, and low temperature heat source), working fluids (alcohol-based and nonalcohol-based), stainless steel plate fin type heat exchanger, EHD heat exchanger, and so on. The other techniques evaluated include those for chemical heat storage, combined systems, plant simulation, and systemization. The evaluation works are also directed to the economic and environmental aspects. Finally, the R and D themes are proposed to leap over various hurdles, e.g., reliability and economic viability, for the eventual commercialization of the energy accumulation system. (NEDO)

  18. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-04-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  19. Development of platform to compare different wall heat transfer packages for system analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Gil; Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Shin, Sung Gil [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    System thermal hydraulic (STH) analysis code is used for analyzing and evaluating the safety of a designed nuclear system. The system thermal hydraulic analysis code typically solves mass, momentum and energy conservation equations for multiple phases with sets of selected empirical constitutive equations to close the problem. Several STH codes are utilized in academia, industry and regulators, such as MARS-KS, SPACE, RELAP5, COBRA-TF, TRACE, and so on. Each system thermal hydraulic code consists of different sets of governing equations and correlations. However, the packages and sets of correlations of each code are not compared quantitatively yet. Wall heat transfer mode transition maps of SPACE and MARS-KS have a little difference for the transition from wall nucleate heat transfer mode to wall film heat transfer mode. Both codes have the same heat transfer packages and correlations in most region except for wall film heat transfer mode. Most of heat transfer coefficients calculated for the range of selected variables of SPACE are the same with those of MARS-KS. For the intervals between 500K and 540K of wall temperature, MARS-KS selects the wall film heat transfer mode and Bromley correlation but SPACE select the wall nucleate heat transfer mode and Chen correlation. This is because the transition from nucleate boiling to film boiling of MARS-KS is earlier than SPACE. More detailed analysis of the heat transfer package and flow regime package will be followed in the near future.

  20. The exhaust heat management system; Das Abgaswaerme-Management

    Energy Technology Data Exchange (ETDEWEB)

    Geskes, P.; Strauss, T. [Behr GmbH und Co., Stuttgart (Germany)

    2006-10-15

    Behr uses EGR coolers in its Exhaust Heat Management System (EHMS) to obtain exhaust enthalpy, helping to heat up the vehicle cabin faster, or to reduce the power train warm-up phase. In today's DI diesel and DI gasoline engines, auxiliary heating is essential to ensure thermal comfort, since fuel-efficient vehicles no longer transmit sufficient heat to the coolant. By modifying the internal engine combustion, which produces much higher exhaust temperatures, auxiliary heating by th exhaust heat can provide extremely high thermal output in conjunction with just a slight increase in fuel consumption. (orig.)

  1. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  2. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  3. Heat pipe radiation cooling of advanced hypersonic propulsion system components

    Science.gov (United States)

    Martin, R. A.; Keddy, M.; Merrigan, M. A.; Silverstein, C. C.

    1991-01-01

    Heat transfer, heat pipe, and system studies were performed to assess the newly proposed heat pipe radiation cooling (HPRC) concept. With an HPRC system, heat is removed from the ramburner and nozzle of a hypersonic aircraft engine by a surrounding, high-temperature, heat pipe nacelle structure, transported to nearby external surfaces, and rejected to the environment by thermal radiation. With HPRC, the Mach number range available for using hydrocarbon fuels for aircraft operation extends into the Mach 4 to Mach 6 range, up from the current limit of about Mach 4. Heat transfer studies using a newly developed HPRC computer code determine cooling system and ramburner and nozzle temperatures, heat loads, and weights for a representative combined-cycle engine cruising at Mach 5 at 80,000 ft altitude. Heat pipe heat transport calculations, using the Los Alamos code HTPIPE, reveal that adequate heat trasport capability is available using molybdenum-lithium heat pipe technology. Results show that the HPRC system radiator area is limited in size to the ramburner-nozzle region of the engine nacelle; reasonable system weights are expected; hot section temperatures are consistent with advanced structural materials development goals; and system impact on engine performance is minimal.

  4. Geothermal energy systems. Exploration, development, and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Huenges, Ernst (ed.) [GeoForschungsZentrum Potsdam (Germany)

    2010-07-01

    Presenting boundary conditions for the economic and environmental utilization of geothermal technology, this is the first book to provide basic knowledge on the topic in such detail. The editor is the coordinator of the European Geothermic Research Initiative, while the authors are experts for the various geological situations in Europe with high temperature reservoirs in shallow and deep horizons. With its perspectives for R and D in geothermic technology concluding each chapter, this ready reference will be of great value to scientists and decision-makers in research and politics, as well as those giving courses in petroleum engineering, for example. (orig.)

  5. Solar heating and cooling systems design and development: quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-11

    This program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for single-family residences, multiple-family residences and commercial applications. This document describes the progress of the program during the fifth program quarter, 1 July 1977 to 30 September 1977.

  6. The thermoelectric generators use for waste heat utilization from cement plant

    OpenAIRE

    Sztekler Karol; Wojciechowski Krzysztof; Komorowski Maciej; Tarnowska Milena

    2017-01-01

    Nowadays, one of the major economic problems is the increasing energy consumption and the long-term forecasts electricity demand by 2050 will increase several times as compared to 1990. Hence also to reduce the emissions of harmful combustion products there are investments undertaken for inter alia renewable energy sources and seeks to make the most efficient manufacturing system by levelling eg. heat losses at various stages of production, eg. electricity or also another product. Producti...

  7. Calculation of heating systems for houses. [Gas heating]. Beregning af varmeanlaeg til parcelhuse

    Energy Technology Data Exchange (ETDEWEB)

    Savstrup Kristensen, L.

    1994-02-01

    Guidelines for calculations and dimensioning related to gas-fired heating systems for detached or terrace houses. Determination of heat losses, the size of boilers, hot water containers and radiators, pipe systems and the calculations of pressure loss are dealt with. (AB)

  8. Prototype solar heated hot water systems and double-walled heat exchangers. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    A collection of quarterly and monthly reports from Elcam, Inc., covering progress made from January 1, 1978, through September 30, 1978, is presented. Elcam, is developing two solar-heated hot water prototype systems and two heat exchangers. This effort consists of development, manufacture, installation, maintenance, problem resolution, and system evaluation.

  9. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    Science.gov (United States)

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.

  10. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  11. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  12. Utility Battery Storage Systems Program report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  13. Quantifying Systemic Efficiency using Exergy and Energy Analysis for Ground Source Heat Pumps: Domestic Space Conditioning and Water Heating Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL

    2017-01-01

    Although air temperatures over land surfaces show wide seasonal and daily variations, the ground, approximately 10 meters below the earth s surface, remains relatively stable in temperature thereby serving as an energy source or sink. Ground source heat pumps can heat, cool, and supply homes with hot water efficiently by utilizing the earth s renewable and essentially inexhaustible energy resources, saving fossil fuels, reducing greenhouse gas emissions, and lowering the environmental footprint. In this paper, evidence is shown that ground source heat pumps can provide up to 79%-87% of domestic hot water energy needs, and up to 77% of space heating needs with the ground s thermal energy resources. The case refers to a 12-month study conducted at a 253 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days and CDD of 723 C-days under simulated occupancy conditions. A single 94.5m vertical bore interfaced the heat pump with the ground. The research shows that this technology is capable of achieving US DOE targets of 25 % and 35% energy savings in HVAC, and in water heating, respectively by 2030. It is also a viable technology to meet greenhouse gas target emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources. The paper quantifies systemic efficiencies using Exergy analysis of the major components, clearly pointing areas for further improvement.

  14. Heat Rejection Concepts for Brayton Power Conversion Systems

    Science.gov (United States)

    Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James

    2005-01-01

    This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.

  15. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  16. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  17. An Interactive Energy System with Grid, Heating and Transportation Systems

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker

    : thermostatic loads (electric water heaters and heat pumps), loads for hydrogen generation (alkaline electrolyzers) and load for electric mobility (plug-in and vehicle-to-grid concepts). Many of these are considered domestic loads and they fulfill certain need to the household they belong. Depending on the user...... for stochastically evaluating the impact caused by thermostatic and plug-in electric vehicle loads in low voltage grids is introduced. Even though the actual systems seem to be overdesigned, sometimes their hosting capability may be poor for the integration levels expected. Finally, in the last stage...... of this research work the control of the demand response in LV networks is tackled. The hierarchical structure presented aims to control the operation of heat pumps and plug-in electric vehicles to satisfy technical and commercial aspects of LV grids. This strategy allows system operators to perform their energy...

  18. Solar-heating and cooling system design package

    Science.gov (United States)

    1980-01-01

    Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.

  19. Innovative system for delivery of low temperature district heating

    Directory of Open Access Journals (Sweden)

    Anton Ivanov Ianakiev

    2017-01-01

    Full Text Available An innovative Low Temperature District Heating (LTDH local network is developed in Nottingham, supported by REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the of the existing district heating system in Nottingham would be created to use low temperature heating for the first time in UK. The development is aimed to extract wasted (unused heat from existing district heating system and make it more efficient and profitable. Four maisonette blocks of 94 low-raised flats, at Nottingham demo site of the REMOURBAN project will be connected to this new LTDH system. The scheme will provide a primary supply of heat and hot water at approximately 50oC to 60oC. Innovated solutions have been put forward to overcome certain barriers, such as legionella related risks and peak loads during extreme heating seasons and occasional maintenance.

  20. Heat transfer in heated industrial premises with using radiant heating system

    Directory of Open Access Journals (Sweden)

    Nagornova Tatiana A.

    2017-01-01

    Full Text Available The results of mathematical modeling of heat transfer processes in a closed air volume surrounded by enclosing constructions, heated by supplying energy to the upper contour of gas infrared radiators are represented. Regimes of turbulent natural conjugate convection in the region bounded by solid walls are investigated. Two-dimensional nonstationary problem is solved in the framework of the Navier -Stokes equations for gas and thermal conductivity for solid walls. Nonstationary processes of heat propagation in course of time and essential heterogeneity of temperature fields and heat fluxes are established.

  1. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  2. Utilization of arbuscular mycorrhiza by system management

    OpenAIRE

    Kahiluoto, Helena; Vestberg, Mauritz

    2000-01-01

    Mycorrhiza is an ecosystem service which can be relied on and favoured, but also impaired or irreversibly lost depending on the production system. Arbuscular mycorrhiza (AM) deserves to be considered in development of sustainable farming systems as well as in breeding and soil quality assessment programmes serving sustainable agriculture. AM effectiveness in field soils can be assessed using a standardized bioassay.

  3. Solar heating system in Greve. Measurements of space- and water-heating by the system - annual report. [Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Soenderskov Joergensen, L.; Mikkelsen, S.E.; Kristensen, P.E.

    1980-07-01

    The experimental house in Greve was equipped with a solar heating system in 1978. The solar collector of 50.3 m/sup 2/ constructed on the south-western side of the roof was used together with storage tank of 5450 l in the attic to save 625 l of heating oil, covering 22% of the collected domestic heat demands.

  4. Integrated Baseline System (IBS) Version 1.03: Utilities guide

    Energy Technology Data Exchange (ETDEWEB)

    Burford, M.J.; Downing, T.R.; Pottier, M.C.; Schrank, E.E.; Williams, J.R.

    1993-01-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool that was developed under the direction of the Federal Emergency Management Agency (FEMA). This Utilities Guide explains how to operate utility programs that are supplied as a part of the IBS. These utility programs are chiefly for managing and manipulating various kinds of IBS data and system administration files. Many of the utilities are for creating, editing, converting, or displaying map data and other data that are related to geographic location.

  5. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  6. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers

  7. An experimental investigation devoted to determine heat transfer characteristics in a radiant ceiling heating system

    Science.gov (United States)

    Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai

    2017-08-01

    Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.

  8. An experimental investigation devoted to determine heat transfer characteristics in a radiant ceiling heating system

    Science.gov (United States)

    Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai

    2018-02-01

    Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.

  9. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  10. Increased Industrial District Heating use in a CHP System-Economic Consequences and Impacts on Global CO2 Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Difs, Kristina; Trygg, Louise [Linkoping University - Division of Energy Systems (Sweden)

    2009-07-01

    The use of district heating (DH) in industrial processes is relatively limited compared to other fuels and electricity. Hence, the industrial sector has great potential to convert from electricity and fossil fuels to DH. In addition, DH is mainly used for space heating and hot tap water, which makes the DH demand strongly seasonally dependent. By converting industrial processes like cooling, drying and industrial heating to DH, the heat load curve will be more evenly distributed throughout the year, thus utilizing the DH production resources better. This paper analyses how conversions from electricity or other fuels to district heating (DH) in industrial processes will affect an energy system. The effect of a more evenly distributed heat load profile is analysed with different policy instruments, fuel prices and electricity prices. In this study, three CHP plants acting as base load plants, which utilize different fuels (biofuel, waste and natural gas), are analysed. The result shows that when the use of district heating in industrial processes is increased it will lead to reduced system cost in both the biofueled and waste-incinerated combined heat and power system. Furthermore, when considering European electricity production in coal condensing and natural gas power plants, conversion to DH will also lead to possible reduced global CO2 emissions. Keywords: Combined heat and power, district heating, industrial heat load, heat load duration, energy efficiency audits.

  11. Optimal Placement of A Heat Pump in An Integrated Power and Heat Energy System

    DEFF Research Database (Denmark)

    Klyapovskiy, Sergey; You, Shi; Bindner, Henrik W.

    2017-01-01

    with the help of mathematical optimization that minimizes investments of both electric and heating utilities, achieving the reduction of the total investment. The optimization is performed in Matlab using built-in Genetic Algorithm function and Matpower software package for calculating power flow equations....

  12. Development of the local own power generation by means of cogeneration plants. District heating concepts of the public utilities Norderstedt; Ausbau der kommunalen Eigenstromerzeugung durch Blockheizkraftwerke. Fernwaermekonzept der Stadtwerke Norderstedt

    Energy Technology Data Exchange (ETDEWEB)

    Schellmann, Nico [Stadtwerke Norderstedt (Germany). Energiesysteme; Heimann, Martin [Kraftanlagen Hamburg GmbH, Hamburg (Germany). Umwelttechnik

    2012-03-15

    The public utilities Norderstedt (Federal Republic of Germany) increase their own power generation by means of the development of combined heat and power generation with cogeneration plants. This requires a comprehensive approach to generate heat and electricity supply and the acquisition of customers. In compliance with urban interests suitable sites for the installation of cogeneration plants have to be found. The public utilities Norderstedt have developed a standard solution that enables a realization of the system concept at each site.

  13. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  14. Solar heating system in Gentofte. Measurements of a system for space- and water heating. Year-report

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, S.E.; Soenderskov Joergensen, L.; Kristensen, P.E.

    1980-02-01

    A solar heating system was installed in 1978 in a house from 1937. The collector of 28 m/sup 2/ and a 2 m/sup 3/ storage tank were mounted in order to contribute to space- and water-heating. In the experimental period 1978-79 the solar heating system has contributed 11,5% of heating demand. The solar collector yielded 200 KWh/m/sup 2/ but storage tank heat losses were up to 55%, exceeding all previous calculations.

  15. Dynamic modeling and evaluation of solid oxide fuel cell - combined heat and power system operating strategies

    Science.gov (United States)

    Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott

    Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.

  16. Laboratory study of subjective perceptions to low temperature heating systems with exhaust ventilation in Nordic countries

    DEFF Research Database (Denmark)

    Jin, Quan; Simone, Angela; Olesen, Bjarne W.

    2017-01-01

    Given the global trends of rising energy demand and the increasing utilization of low-grade renewable energy, low-temperature heating systems can play key roles in improving building energy efficiency while providing a comfortable indoor environment. To meet the need to retrofit existing buildings...

  17. Laboratory study of subjective perceptions to low temperature heating systems with exhaust ventilation in Nordic countries

    DEFF Research Database (Denmark)

    Jin, Quan; Simone, Angela; Olesen, Bjarne W.

    2017-01-01

    Given the global trends of rising energy demand and the increasing utilization of low-grade renewable energy, low-temperature heating systems can play key roles in improving building energy efficiency while providing a comfortable indoor environment. To meet the need to retrofit existing building...

  18. Optimal Hierarchical Decision-Making for Heat Source Selection of District Heating Systems

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2014-01-01

    Full Text Available With the rapid development of China’s urbanization, the proportion between the heating consumption and the energy consumption of the whole society keeps rising in recent years. For a district heating system, the selection of the heat source makes significant impact on the energy efficiency and the pollutant emissions. By integrating the methods of the Analytic Hierarchy Process (AHP and the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE, a multiple-attribute decision-making scheme for the heat source selection of district heating systems is proposed in this paper. As a core part of this scheme, a comprehensive benefit index with hierarchical parallel structure is constructed. The economic benefit, environment benefit, and technical benefit can be reflected with a certain percentage in the comprehensive benefit index. To test the efficiency of the proposed scheme, a case study for a large-scale district heating system in Beijing is carried out, where five kinds of heat sources (water source heat pump, ground source heat pump, gas-fired boiler, coal-fired boiler, and oil-fired boiler are taken into account. The analysis and instructions for the final sorting result are also demonstrated.

  19. [Carbon monoxide poisoning by a heating system].

    Science.gov (United States)

    Dietz, Eric; Gehl, Axel; Friedrich, Peter; Kappus, Stefan; Petter, Franz; Maurer, Klaus; Püschel, Klaus

    2016-01-01

    A case of accidental carbon monoxide poisoning in several occupants of two neighboring residential buildings in Hamburg-Harburg (Germany) caused by a defective gas central heating system is described. Because of leaks in one of the residential buildings and the directly adjacent wall of the neighboring house, the gas could spread and accumulated in both residential buildings, which resulted in a highly dangerous situation. Exposure to the toxic gas caused mild to severe intoxication in 15 persons. Three victims died still at the site of the accident. Measures to protect the occupants were taken only with a great delay. As symptoms were unspecific, it was not realized that the various alarms given by persons involved in the accident were related to the same cause. In order to take appropriate measures in time it is indispensible to recognize, assess and check potential risks, which can be done by using carbon monoxide warning devices and performing immediate COHb measurements with special pulse oximeters on site. Moreover, the COHb content in the blood should be routinely determined in all patients admitted to an emergency department with unspecific symptoms.

  20. An Integrated Control System for Heating and Indoor Climate Applications

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh

    2012-01-01

    Low temperature hydronic heating and cooling systems connected to renewable energy sources have gained more attention in the recent decades. This is due to the growing public awareness of the adverse environmental impacts of energy generation using fossil fuel. Radiant hydronic sub-floor heating...... in terms of energy efficiency, associated energy cost and occupants’ thermal comfort is the main objective to be fulfilled via design of an integrated controller. We also proposed control strategies to manage energy consumption of the building to turn domestic heat demands into a flexible load in the smart...... which geothermal heat pump, solar driven heat pumps and the other types are categorized as renewable or renewable energy sources. In the present study, we investigated modeling and control of hydronic heat emitters integrated with a ground-source heat pump. Optimization of the system performance...

  1. The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households

    Directory of Open Access Journals (Sweden)

    Hyo-Jin Kim

    2017-08-01

    Full Text Available Koreans usually prefer the district heating system (DHS to the individual heating system (IHS because DHS can give them convenience and safety within their living environment. The Korean government thus plans to expand the DHS and requires information about the value that consumers place on the DHS over the IHS, which has not been dealt with in academic literature. This paper attempts to investigate Korean households’ willingness to pay (WTP for DHS over IHS, for residential heat (RH. To this end, the authors apply the dichotomous choice contingent valuation to assessing additional WTP for DHS using a survey of 1000 randomly selected households living in buildings with IHS. A mixture model is applied to deal with the zero WTP responses. The WTP distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The results show that the mean additional WTP for DHS-based RH over IHS-based RH is estimated to be KRW 5775 (USD 5.4 per Gcal. This value can be interpreted as the consumer’s convenience benefits of DHS over IHS, and amounts to approximately 6.0% of the average price: KRW 96,510 (USD 90.4 per Gcal in 2013, for IHS-based RH. This information is useful for evaluating changes to the method used for supplying RH from IHS to DHS.

  2. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  3. Valve Health Monitoring System Utilizing Smart Instrumentation

    Science.gov (United States)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  4. Photocell heat engine solar power systems

    Science.gov (United States)

    Taussig, R. T.; Vaidyanathan, T. S.; Hoverson, S.; Bruzzone, C.; Christiansen, W.

    1980-01-01

    A combined photocell heat engine concept is proposed for high efficiency solar energy conversion in space. In this concept the short wavelength portion of the solar spectrum is split by a dichroic filter and sent to a bank of photocells. The long wave-length remainder of the spectrum is used by the heat engine. This technique allows the photocells to operate with the minimum amount of waste heat, increasing their efficiency and reducing the amount of cooling required. The heat engine operates by direct absorption in a working fluid containing broadband absorber molecules or particulates. A window in the heat engine admits the long wave-lengths from the solar spectrum. The window may also reflect a portion of the internal gaseous reradiation spectrum (e.g., a heat mirror) to help reduce radiation losses. Flow-induced thermal gradients may also reduce reradiation losses in the case of optically thick working fluids. The efficiencies computed for the photocell heat engine solar energy converter can be as high as 42 percent.

  5. Survey of potential process-heat and reject-heat utilization at a Green River nuclear-energy center

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Sandquist, G.M.

    1982-03-01

    Potential uses of process heat and reject heat from a nuclear-energy center at Green River, Utah have been investigated. The remoteness of the Green River site would preclude many potential industrial uses for economical reasons such as transportation costs and lack of local markets. Water-consumption requirements would also have serious impact on some applications due to limitations imposed by other contractual agreements upon the water in the region. Several processes were identified which could be considered for the Green River site; including the use of heat to separate bitumens from tar sands, district heating, warming of greenhouses and soil, and the production of fish for game and commercial sales. The size of these industries would be limited and no single process or industry can be identified at this time which could use the full amount of low-temperature reject heat that would be generated at a NEC.

  6. Performance Analysis and Design of Liquid Based Solar Heating System

    OpenAIRE

    kerme, Esa; Kaneesamkandi, Zakariya

    2015-01-01

    Designing of a solar heating system involves appropriate sizing of different components based on predicted solar insolation and heating load demand. But, it is a complex problem due to unpredictable weather data components. A number of design methods are available for solar heating systems. In this paper, f-chart method has been used due to its simplified design procedure, analysis and low cost in selecting the sizes and type of solar collectors and in estimating the annual thermal performanc...

  7. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  8. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ostrum, Lee [Univ. of Idaho and Idaho Falls Center, Idaho Falls, ID (United States); Manic, Milos [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-09-28

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  9. An inexpensive economical solar heating system for homes

    Science.gov (United States)

    Allred, J. W.; Shinn, J. M., Jr.; Kirby, C. E.; Barringer, S. R.

    1976-01-01

    A low-cost solar home heating system to supplement existing warm-air heating systems is described. The report is written in three parts: (1) a brief background on solar heating, (2) experience with a demonstration system, and (3) information for the homeowner who wishes to construct such a system. Instructions are given for a solar heating installation in which the homeowner supplies all labor necessary to install off-the-shelf components estimated to cost $2,000. These components, which include solar collector, heat exchanger, water pump, storage tank, piping, and controls to make the system completely automatic, are available at local lumber yards, hardware stores, and plumbing supply stores, and are relatively simple to install. Manufacturers and prices of each component used and a rough cost analysis based on these prices are included. This report also gives performance data obtained from a demonstration system which was built and tested at the Langley Research Center.

  10. Performance analysis on utilization of sky radiation cooling energy for space cooling. Part 2; Hosha reikyaku riyo reibo system ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Marushima, S.; Saito, T. [Tohoku University, Sendai (Japan)

    1996-10-27

    Studies have been made about a heat accumulation tank type cooling system making use of radiation cooling that is a kind of natural energy. The daily operating cycle of the cooling system is described below. A heat pump air conditioner performs cooling during the daytime and the exhaust heat is stored in a latent heat accumulation tank; the heat is then used for the bath and tapwater in the evening; at night radiation cooling is utilized to remove the heat remnant in the tank for the solidification of the phase change material (PCM); the solidified PCM serves as the cold heat source for the heat pump air conditioner to perform cooling. The new system decelerates urban area warming because it emits the cooler-generated waste heat not into the atmosphere but into space taking advantage of radiation cooling. Again, the cooler-generated waste heat may be utilized for energy saving and power levelling. For the examination of nighttime radiation cooling characteristics, CaCl2-5H2O and Na2HPO4-12H2O were tested as the PCM. Water was used as the heating medium. In the case of a PCM high in latent heat capacity, some work has to be done for insuring sufficient heat exchange for it by, for instance, rendering the flow rate low. The coefficient of performance of the system discussed here is three times higher than that of the air-cooled type heat pump system. 8 refs., 5 figs., 4 tabs.

  11. Agent-based modelling of heating system adoption in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.

    2010-07-01

    Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)

  12. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the

  13. Optimization of Temperature Schedule Parameters on Heat Supply in Power-and-Heat Supply Systems

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2009-01-01

    Full Text Available The paper considers problems concerning optimization of a temperature schedule in the district heating systems with steam-turbine thermal power stations having average initial steam parameters. It has been shown in the paper that upkeeping of an optimum network water temperature permits to increase an energy efficiency of heat supply due to additional systematic saving of fuel. 

  14. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  15. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    District heating (DH) systems supplied by renewable energy sources are one of the main solutions for achieving a fossil-free heating sector in Denmark by 2035. To reach this goal, the medium temperature DH used until now needs to transform to a new concept reflecting the requirement for lower heat...... loss from DH networks required by the reduced heating demand of low-energy and refurbished buildings combined with the lower supply temperatures required by using renewable heat sources. Both these needs meet in the recently developed concept of low-temperature DH designed with supply....../return temperatures as low as 50°C/25°C and highly insulated pipes with reduced inner diameter. With this design, the heat loss from the DH networks can be reduced to one quarter of the value for traditional DH designed and operated for temperatures of 80°C/40°C. However, such low temperatures bring challenges...

  16. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    Science.gov (United States)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances.

  17. Solar heating system at Quitman County Bank, Marks, Mississippi

    Science.gov (United States)

    1980-01-01

    Information on the Solar Energy Heating System installed in a single story wood frame, cedar exterior, sloped roof building is presented. The system has on-site temperature and power measurements readouts. The 468 square feet of Solaron air flat plate collectors provide for 2,000 square feet of space heating, an estimated 60 percent of the heating load. Solar heated air is distributed to the 235 cubic foot rock storage box or to the load (space heating) by a 960 cubic feet per minute air handler unit. A 7.5 ton Carrier air-to-air heat pump with 15 kilowatts of electric booster strips serve as a back-up (auxiliary) to the solar system. Motorized dampers control the direction of airflow and back draft dampers prevent thermal siphoning of conditioned air.

  18. Assessment of the potential of solar thermal small power systems in small utilities

    Science.gov (United States)

    Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.

    1978-01-01

    The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.

  19. Performance testing and certification of small solar heating systems

    NARCIS (Netherlands)

    Pauschinger, Th.

    1996-01-01

    Performance testing and certification of solar heating systems are taking the step from research to practical use. This is shown by the increasing activities on this field on several European markets and, even more clearly, by the Draft European Standards (prEN) for solar heating systems, which will

  20. Optimal Design of Piping Systems for District Heating,

    Science.gov (United States)

    1995-08-01

    First, a method for determining the optimal size for a single pipe segment in a district heating system is developed. The method is general enough to...excessive throttling losses in the consumer’s control valves. The method developed here should be feasible for designing the piping networks for district ... heating systems of moderate size, and its major advantage is its flexibility. (MM)

  1. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  2. Motion Estimation System Utilizing Point Cloud Registration

    Science.gov (United States)

    Chen, Qi (Inventor)

    2016-01-01

    A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.

  3. Augmentation of Critical Heat Flux of High Velocity Liquid Jet Flow utilizing Flat-Narrow Rectangular Channel

    Science.gov (United States)

    Sakurai, Hisashi; Koizumi, Yasuo; Ohtake, Hiroyasu

    Sub-cooled flow boiling heat transfer experiments were performed for narrow-flat flow passages of 2 mm wide and 0.2 mm high. A heat transfer surface of 2 mm × 2 mm was placed at the just downstream of the flow channel outlet. A fast wall plane-jet was formed on the heat transfer surface and space for vapor generated on the heat transfer surface to leave freely form the plane jet was provided The experiments covered the flow rate from 5 m⁄s through 20 m⁄s and the inlet sub-cooling from 30 K through 70 K. Critical heat fluxes were greatly augmented about twice compared with those in the previous experiments where the heat transfer surface was located at the outlet end of the same flow channel as that in the present experiments. This has indicated that the present idea of the flow system is effective to enhance the critical heat flux. When the flow velocity was slower than 10 m⁄s, a large secondary bubble that was formed as a result of coalescence of many primary bubbles on the heat transfer surface covered the heat transfer surface. The large-coalesced bubble triggered the occurrence of the critical heat flux. When the flow velocity became faster than 10 m⁄s, the heat transfer surface was covered with many tiny-primary bubbles even at the critical heat flux condition. The critical heat fluxes in the present experiments were much larger than predictions of correlations. The triggering mechanism of the critical heat flux condition was proposed based on the observation mentioned above. It has two parts; for low flow velocity and for high flow velocity. The boundary is 10 m⁄s. In both cases, disappearance of a liquid film under the bubble due to evaporation is related to the appearance of the critical heat flux condition. The predicted critical heat fluxes were larger than that measured, however, qualitatively agreed well.

  4. Interconnecting Single-Phase Generation to the Utility Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, R.C.

    2001-12-05

    One potentially large source of underutilized distributed generation (DG) capacity exists in single-phase standby backup gensets on farms served from single-phase feeder laterals. Utilizing the excess capacity would require interconnecting to the utility system. Connecting single-phase gensets to the utility system presents some interesting technical issues that have not been previously investigated. This paper addresses several of the interconnection issues associated with this form of DG including voltage regulation, harmonics, overcurrent protection, and islanding. A significant amount of single-phase DG can be accommodated by the utility distribution system, but there are definite limitations due to the nature and location of the DG. These limitations may be more restrictive than is commonly assumed for three-phase DG installed on stronger parts of the electric distribution system.

  5. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  6. Utility-scale system preventive and failure-related maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, C.; Hutchinson, P.

    1995-11-01

    This paper describes the design and performance background on PVUSA utility-scale systems at Davis and Kerman, California, and reports on a preventative and failure-related maintenance approach and costs.

  7. Simulation Models to Size and Retrofit District Heating Systems

    Directory of Open Access Journals (Sweden)

    Kevin Sartor

    2017-12-01

    Full Text Available District heating networks are considered as convenient systems to supply heat to consumers while reducing CO 2 emissions and increasing renewable energies use. However, to make them as profitable as possible, they have to be developed, operated and sized carefully. In order to cope with these objectives, simulation tools are required to analyze several configuration schemes and control methods. Indeed, the most common problems are heat losses, the electric pump consumption and the peak heat demand while ensuring the comfort of the users. In this contribution, a dynamic simulation model of all the components of the network is described. It is dedicated to assess some energetic, environmental and economic indicators. Finally, the methodology is used on an existing application test case namely the district heating network of the University of Liège to study the pump control and minimize the district heating network heat losses.

  8. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  9. Solar heating system at Security State Bank, Starkville, Mississippi

    Science.gov (United States)

    1980-01-01

    The 312 square feet of Solaron flat plate air collectors provide for 788 square feet of space heating, an estimated 55 percent of the heating load. Solar heated air is distributed to the 96 cubic foot steel cylinder, which contains two inch diameter rocks. An air handler unit moves the air over the collector and into the steel cylinder. Four motorized dampers and two gravity dampers are also part of the system. A Solaron controller which has sensors located at the collectors, rock storage, and at the return air, automatically controls the system. Auxiliary heating energy is provided by electric resistance duct heaters.

  10. Preliminary design package for prototype solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  11. Contribution of domestic heating systems to smart grid control

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Meybodi, Soroush Afkhami

    2011-01-01

    . We have investigated how much power imbalance could be compensated, provided that a certain, yet user adjustable, level of residents' thermal comfort is satisfied. It is shown that the large heat capacity of the concrete floor alleviates undesired temperature fluctuations. Therefore, incorporating......How and to what extent, domestic heating systems can be helpful in regaining power balance in a smart grid, is the question to be answered in this paper. Our case study is an under-floor heating system supplied with a geothermal heat pump which is driven by electrical power from the grid. The idea...

  12. Preliminary design package for prototype solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is presented of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multiple-Family Residences (MFR), and commerical applications.

  13. Impacts of environmental and utility siting laws on community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Senew, M J; Shimamoto, G T; Seymour, D A; Santini, D J

    1978-02-01

    Community Energy Systems provide an interesting energy conservative alternative to the traditional trend of large, central, grid-connected power plant design. The small community energy system (generally smaller than 100 MW), provides for waste heat utilization and utility cogeneration significantly reducing a community's total energy demand. Developers of Community Energy Systems, unfortunately, are faced with a complex of environmental and siting regulations, most of which are aimed at regulating the development and design of large power-generating facilities. Aside from discouraging development of a potentially more economic and environmentally sound approach to power generation, air-pollution regulations discriminate against these smaller systems. Compliance with the many Federal, state and local regulations often make small energy systems uneconomical. This project studies the emissions associated with Community Energy Systems and reviews the Federal, state, and local laws that regulate their design.

  14. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    is performing well in spite of the fact that the solar collectors are far from being orientated optimally. The utilization of the solar radiation on the collectors is higher, 46% in the second year of operation, than for any other system earlier investigated in Denmark, 16%-34%. The reason for the good thermal...... performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes.......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...

  15. Solar hot water space heating system. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, T

    1979-08-13

    A retrofit solar heating system was installed on Madison Hall at Jordan College, Cedar Springs, Michigan. The system provides heating and domestic water preheating for a campus dormitory. Freeze protection is provided by a draindown system. The building and solar system, construction progress, and design changes are described. Included in appendices are: condensate trap design, structural analysis, pictures of installation, operating instructions, maintenance instructions, and as-built drawings. (MHR)

  16. Air and liquid solar heating system with heatpump, VP-SOL

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Jensen, Søren Østergaard

    1998-01-01

    For more than a year, measurements have been made on an air/fluid solar heating system with heat pump. The annual thermal performance of the system has been found and compared with simulations carried out by means of the simulation program KVIKSOL.The heat loss of the hot water tank is calculated...... be changed in such a way that the air is drawn through the solar collectors when the air temperature of the solar collectors is e.g. 5 K higher than the open air temperature.It has turned out that under the given conditions the system (compared to the simulations) performs as expected.If the heat pump...... is changed in such a way that it only heats the tank to max. 55ºC the net utilized solar energy of the system can be increased by approximately 30%.All things considered, it is estimated that the net utilized solar energy of the system can be increased by about 40% on condition that the proposed changes...

  17. Integrated Baseline System (IBS) Version 2.0: Utilities Guide

    Energy Technology Data Exchange (ETDEWEB)

    Burford, M.J.; Downing, T.R.; Williams, J.R. [Pacific Northwest Lab., Richland, WA (United States); Bower, J.C. [Bower Software Services, Kennewick, WA (United States)

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Utilities Guide explains how you can use the IBS utility programs to manage and manipulate various kinds of IBS data. These programs include utilities for creating, editing, and displaying maps and other data that are referenced to geographic location. The intended audience for this document are chiefly data managers but also system managers and some emergency management planners and analysts.

  18. Performance enhancement of a heat pump system with ice storage subcooler

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ming-Jer [Department of Electrical Engineering, Nan-Kai University of Technology, No.568 Chung Cheng Road, Tsao Tun, Nan Tou, Taiwan 54243 (China); Kuo, Yu-Fu; Cheng, Chiao-Hung; Chen, Sih-Li [Department of Mechanical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei, Taiwan 10617 (China); Shen, Chih-Chiu [Department of Mechanical Engineering, National Chung Hsing University, No.250, Kuo Kuang Road, Taichung, Taiwan 40227 (China)

    2010-03-15

    This article experimentally investigates the thermal performance of a heat pump system with an ice storage subcooler. The system supplies heating and cooling demands to two greenhouses with temperature ranging 308{proportional_to}323 K and 273{proportional_to}291 K respectively and utilizes an ice storage tank to subcool the condensed refrigerant, which can enhance the system coefficient of performance (COP). The ice storage tank charges for storing ice, when the cooling load is less than the nominal cooling capacity. While the cooling load is larger than the nominal cooling capacity, the ice storage tank discharges for subcooling. The results show that in the charge mode the heat pump COP of ice storage system is 12% higher than that without ice storage tank. Under the discharge mode, the ice storage system provides the refrigerator COP 15% higher than that without ice storage tank. (author)

  19. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2015-03-01

    Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

  20. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  1. Feasibility of drying system using waste heat as the heating source

    Science.gov (United States)

    Xie, M. N.; Shi, Y. L.; Chen, L. X.

    2016-08-01

    In this study, a wastewater heat pump system was proposed and its thermal performance was analyzed. The proposed system includes two evaporators: an air-source evaporator and a water-source evaporator. The air-source evaporator absorbs heat from the moist hot air which exhaust from the drying oven. The water-source evaporator absorbs heat from the waste water, while the waste water recovers heat from the mechanical energy, which was produced by cutting and polishing in stone production. The thermodynamic model was developed to evaluate the performance of the proposed system. The energetic analysis was carried out to investigate the influences of the temperature of fresh air. The results show significantly higher energy efficiency, compact-sized and energy-saving compared with the system which uses air as the heat source. Among the seven of alternative refrigerants (R152a, R123, R1234yf, R1234ze, R600a, R22 and R600) investigated, R123 was suggested to be used in this heat pump for its high heating efficiency, inflammable, very low ODP(Ozone Depletion Potential) and GWP(Global warming potential).

  2. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    OpenAIRE

    Y. Baradey; M. N. A. Hawlader; Ahmad Faris Ismail; Meftah Hrairi

    2015-01-01

    Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to rec...

  3. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  4. Dynamic modeling of а heating system using geothermal energy and storage tank

    Directory of Open Access Journals (Sweden)

    Milanović Predrag D.

    2012-01-01

    Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.

  5. Commercial high efficiency dehumidification systems using heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  6. Evaluation of a Passive Heat Exchanger Based Cooling System for Fuel Cell Applications

    Science.gov (United States)

    Colozza, Anthony J.; Burke, Kenneth A.

    2011-01-01

    Fuel cell cooling is conventionally performed with an actively controlled, dedicated coolant loop that exchanges heat with a separate external cooling loop. To simplify this system the concept of directly cooling a fuel cell utilizing a coolant loop with a regenerative heat exchanger to preheat the coolant entering the fuel cell with the coolant exiting the fuel cell was analyzed. The preheating is necessary to minimize the temperature difference across the fuel cell stack. This type of coolant system would minimize the controls needed on the coolant loop and provide a mostly passive means of cooling the fuel cell. The results indicate that an operating temperature of near or greater than 70 C is achievable with a heat exchanger effectiveness of around 90 percent. Of the heat exchanger types evaluated with the same type of fluid on the hot and cold side, a counter flow type heat exchanger would be required which has the possibility of achieving the required effectiveness. The number of heat transfer units required by the heat exchanger would be around 9 or greater. Although the analysis indicates the concept is feasible, the heat exchanger design would need to be developed and optimized for a specific fuel cell operation in order to achieve the high effectiveness value required.

  7. A new mobilized energy storage system for waste heat recovery: Case study in Aerla, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Weilong Wang; Jinyue Yan; Dahlquist, Erik (Maelardalen Univ., Vaesteraas (Sweden)). E-mail: weilong.wang@mdh.se; Jenny Nystroem (Eskilstuna Energi och Miljoe AB, Eskilstuna (Sweden))

    2009-07-01

    This paper introduces a new mobilized thermal energy storage (M-TES) for the recovery of industrial waste heat for distributed heat supply to the distributed users which have not been connected to the district heating network. In the M-TES system, phase-change materials (PCM) are used as the energy storage and carrier to transport the waste heat from the industrial site to the end users by a lorry. A technical feasibility and economic viability of M-TES has been conducted with the comparison of the district heating system as a reference. Thermal performance and cost impacts by different PCM materials have been analyzed compared, aiming at determining the optimum operation conditions. A case study is investigated by utilizing the waste heat from a combine heat and power (CHP) plant for the distributed users which are located at over 30 kilometers away from the plant. The results show that the M-TES may offer a competitive solution compared to building or extending the existing district heating network

  8. Standby Rates for Combined Heat and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Selecky, James [Brubaker & Associates, Inc., Chesterfield, MO (United States); Iverson, Kathryn [Brubaker & Associates, Inc., Chesterfield, MO (United States); Al-Jabir, Ali [Brubaker & Associates, Inc., Chesterfield, MO (United States); Garland, Patricia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

  9. District-heating system, La Grande, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

  10. Heat and mass transfer through spiral tubes in absorber of absorption heat pump system for waste heat recovery

    Directory of Open Access Journals (Sweden)

    Yoshinori Itaya

    2017-06-01

    Full Text Available Heat and mass transfer of a LiBr/water absorption heat pump system (AHP was experimentally studied during working a heating-up mode. The examination was performed for a single spiral tube, which was simulated for heat transfer tubes in an absorber. The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere, respectively. The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube. The steam absorption rate and/or heat generation rate in the liquid film are not constant along the tube. Hence the average convective heat transfer coefficient between the liquid film flowing down and the inside wall of the tube was determined based on a logarithmic mean temperature difference between the tube surface temperature and the film temperature at the maximum temperature location and the bottom. The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream. The coefficients showed opposite trend to the empirical correlation reported for laminar film flow on a straight smooth tube in a refrigeration mode in the past work. The fact can be caused due to a turbulent promotion effect of the liquid in a spiral tube.

  11. Electric heating systems - Measures and options for the reduction of electricity consumption; Elektroheizungen Massnahmen und Vorgehensoptionen zur Reduktion des Stromverbrauchs

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J.; Togni, G.

    2009-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at how electricity consumption for electrical heating systems can be reduced. The authors state that electric space heating consumes roughly 6% to 12% of Swiss electricity consumption, depending on the source of data. Important reduction potentials obtainable through the implementation of efficiency measures and substitution are well known. The results of two surveys on hardware installations and heating users' and utility companies' preferences are presented and discussed. The user survey yielded more than 900 evaluable answers. The main focus was on conditions considered necessary for changing a heating system. The utilities' survey was carried out by means of letters posted to 62 utilities, half of whom sent back evaluable answers. The main focus was on the number of dwellings supplied with electric space heating, current and past tariffs and utility activities to motivate customers to change their heating systems. The results showed that high investments necessary for a new heating system and additional thermal insulation of the building are the main obstacles for making changes. On the basis of the project's findings, a catalogue of measures was developed, whereby financial aspects and general conditions were taken into account.

  12. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as

  13. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  14. A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

    Directory of Open Access Journals (Sweden)

    Hirofumi Ohashi

    2013-01-01

    Full Text Available Japan Atomic Energy Agency has conducted a conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR for multiple heat applications, named HTR50S, with the reactor outlet coolant temperature of 750°C and 900°C. It is first-of-a-kind of the commercial plant or a demonstration plant of a small-sized HTGR system to be deployed in developing countries in the 2020s. The design concept of HTR50S is to satisfy the user requirements for multipurpose heat applications such as the district heating and process heat supply based on the steam turbine system and the demonstration of the power generation by helium gas turbine and the hydrogen production using the water splitting iodine-sulfur process, to upgrade its performance compared to that of HTTR without significant R&D utilizing the knowledge obtained by the HTTR design and operation, and to fulfill the high level of safety by utilizing the inherent features of HTGR and a passive decay heat removal system. The evaluation of technical feasibility shows that all design targets were satisfied by the design of each system and the preliminary safety analysis. This paper describes the conceptual design and the preliminary safety analysis of HTR50S.

  15. Lunar Dust on Heat Rejection System Surfaces: Problems and Prospects

    Science.gov (United States)

    Gaier, James R.; Jaworske, Donald A.

    2007-01-01

    Heat rejection from power systems will be necessary for human and robotic activity on the lunar surface. Functional operation of such heat rejection systems is at risk of degradation as a consequence of dust accumulation. The Apollo astronauts encountered marked degradation of performance in heat rejection systems for the lunar roving vehicle, science packages, and other components. Although ground testing of dust mitigation concepts in support of the Apollo mission identified mitigation tools, the brush concept adopted by the Apollo astronauts proved essentially ineffective. A better understanding of the issues associated with the impact of lunar dust on the functional performance of heat rejection systems and its removal is needed as planning gets underway for human and robotic missions to the Moon. Renewed emphasis must also be placed on ground testing of pristine and dust-covered heat rejection system surfaces to quantify degradation and address mitigation concepts. This paper presents a review of the degradation in performance of heat rejection systems encountered on the lunar surface to-date, and will discuss current activities underway to evaluate the durability of candidate heat rejection system surfaces and current dust mitigation concepts.

  16. Survey of industrial coal conversion equipment capabilities: heat recovery and utilization. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Gambill, W. R.; Reed, W. R.

    1978-07-01

    A scoping survey of the capabilities of industrial heat recovery equipment was conducted to determine their adaptability to proposed coal-conversion complexes. Major categories of heat exchangers included shell-and-tube, periodic-flow and rotary regenerators, heat pipe arrays, direct phase contactors, and steam and organic Rankine cycles for power generation from waste heat. Primary applications encompassed feed-effluent and other process stream interchangers, combustion air preheaters, and heat recovery steam generators (waste heat boiler-superheaters). It is concluded that the single area providing the greatest potential for extending US industrial heat-recovery equipment capabilities as related to coal-conversion processes is a research, development, and testing program to acquire more physical-property and heat-transfer data and more-reliable design correlations.

  17. Thermo-economic Optimization of Solar Assisted Heating and Cooling (SAHC System

    Directory of Open Access Journals (Sweden)

    A. Ghafoor

    2014-12-01

    Full Text Available The energy demand for cooling is continuously increasing due to growing thermal loads, changing architectural modes of building, and especially due to occupants indoor comfort requirements resulting higher electricity demand notably during peak load hours. This increasing electricity demand is resulting higher primary energy consumption and emission of green house gases (GHG due to electricity generation from fossil fuels. An exciting alternative to reduce the peak electricity consumption is the possible utilization of solar heat to run thermally driven cooling machines instead of vapor compression machines utilizing high amount of electricity. In order to widen the use of solar collectors, they should also be used to contribute for sanitary hot water production and space heating. Pakistan lying on solar belt has a huge potential to utilize solar thermal heat for heating and cooling requirement because cooling is dominant throughout the year and the enormous amount of radiation availability provides an opportunity to use it for solar thermal driven cooling systems. The sensitivity analysis of solar assisted heating and cooling system has been carried out under climatic conditions of Faisalabad (Pakistan and its economic feasibility has been calculated using maximization of NPV. Both storage size and collector area has been optimized using different economic boundary conditions. Results show that optimum area of collector lies between 0.26m2 to 0.36m2 of collector area per m2 of conditioned area for ieff values of 4.5% to 0.5%. The optimum area of collector increases by decreasing effective interest rate resulting higher solar fraction. The NPV was found to be negative for all ieff values which shows that some incentives/subsidies are needed to be provided to make the system cost beneficial. Results also show that solar fraction space heating varies between 87 and 100% during heating season and solar fraction cooling between 55 and 100% during

  18. Heat pipes for terrestrial applications in dehumidification systems

    Science.gov (United States)

    Khattar, Mukesh K.

    1988-01-01

    A novel application of heat pipes which greatly enhances dehumidification performance of air-conditioning systems is presented. When an air-to-air heat pipe heat exchanger is placed between the warm return air and cold supply air streams of an air conditioner, heat is efficiently transferred from the return air to the supply air. As the warm return air precools during this process, it moves closer to its dew-point temperature. Therefore, the cooling system works less to remove moisture. This paper discusses the concept, its benefits, the challenges of incorporating heat pipes in an air-conditioning system, and the preliminary results from a field demonstration of an industrial application.

  19. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 3. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements during fiscal 1998 on researching part of the energy transportation and storage technologies, energy supply and utilization technologies, environmental load reducing technologies, and optimal system design in the 'research on highly efficient and effective energy utilization technology'. With regard to energy transportation and storage technologies, researches and developments were performed on a vacuum adiabatic transportation piping system, surfactants used for high-density heat transportation and high-density latent heat transportation technologies. In the field of energy supply and utilization technologies, researches and developments were carried out on a heat supply system using high-performance heat pumps capable of using multiple kinds of fuels, and a compression and absorption type hybrid heat utilization system. For the environmental load reducing technologies, research and development were performed on a power saving heat pump system utilizing natural coolant. In researching the optimal system design technologies, overall adjustment was made on the element technologies, whereas technological discussions and site surveys were executed by the committees at the same time. The latest achievements accomplished to date was published in a book. (NEDO)

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

  1. On-line corrosion monitoring in geothermal district heating systems

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 lm/y. The reason is high pH (9.5), low-conductivity (200 lm/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold ground...

  2. Solar Heating System for Recreation Building at Scattergood School.

    Science.gov (United States)

    Scattergood School, West Branch, IA.

    This report describes the solar heating of two adjoining buildings, a gymnasium and a locker room, at a coeducational boarding school. Federal assistance was obtained from the Energy Research and Development Administration (ERDA) as part of the Solar Heating and Cooling Demonstration Program. The system uses a 2,500-square-foot array of…

  3. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    The pe1formance of the preliminary design is predicted by using either/chart method or by translate it simulation of solar heating system. Often, optimization is done off-line after correlating the annual contribution of solar energy to the heating load and collector area using simulation resu!ts by analytical methods. In this work ...

  4. Low exhaust temperature electrically heated particulate matter filter system

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  5. Heat pump for district cooling and heating at Oslo Airport, Gardermoen[Aquifer thermal energy systems (ATES)

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, Geir; Vangsnes, Geir

    2006-07-01

    At Gardermoen, one of the largest groundwater reservoirs in Norway is located. This aquifer is used for both heating and cooling of Gardermoen Airport. In the summer, ground water is pumped from cold wells and used for cooling before it is returned to the warm wells. In winter, this process is turned around, as ground water from the warm wells is used as heat source for the heat pump. The heat pump is mainly designed for cooling, and the design cooling demand is 9 MW. The district cooling water is pre-cooled by the ground water, and post cooled by the combined heat pump/refrigeration plant. The base heat load is covered by the heat pump. Additional heat is supplied from a heat energy central with bio fuels as well as oil heated and electrically heated boilers. During the last years, heat production from the heat pump was about 11 GWh/year, and the heat pump also provides about 8 GWh/year of the cooling demand. In addition, approximately 3 GWh/year cold is produced by direct heat exchange with ground water. Compared with a district heating system heated by fossil fuels, and a conventional refrigeration system for district cooling, the pay back period for the aquifer heat pump system is within a couple of years (author) (ml)

  6. Electrical Engineering. Electrical Utilization Systems. Design Manual-4.4.

    Science.gov (United States)

    1979-12-01

    calculations shall be clearly shown so that any changes that become necessary due to resiting or revisions during construction can be made efficiently. When...mechanical/ electrical systems such as lighting and heating , ventilating and air conditioning, and for multiple tenants within a building. d. Short

  7. Capacity utilization study for aviation security cargo inspection queuing system

    Science.gov (United States)

    Allgood, Glenn O.; Olama, Mohammed M.; Lake, Joe E.; Brumback, Daryl

    2010-04-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system's ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  8. Buying behaviour related to heating systems in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Decker, T.; Zapilko, M. (Straubing Center of Science, Straubing (Germany), Univ. of Applied Sciences Weibenstephan- Triesdorf), e-mail: t.decker@wz-straubing.de

    2010-07-01

    The decision for buying a heating system is a long-term one, as many different aspects have an influence on this choice which were analyzed in a Germany-wide, written survey. The respondents (only owners of a private house) has to answer questions about their attitude towards e.g. economic, convenience or ecological aspects related to heating systems and the respective combustibles. Using a multinomial logistic regression model the choice of the heating system is mainly explained by ecological attitudes and the estimation of different combustibles. (orig.)

  9. Optimal channel utilization and service protection in cellular communication systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk

    1997-01-01

    In mobile communications an efficient utilization of the channels is of great importance.In this paper we consider the basic principles for obtaining the maximum utilization, and we study strategies for obtaining these limits.In general a high degree of sharing is efficient, but requires service...... protection mechanisms for protecting services and subscriber groups.We study cellular systems with overlaid cells, and the effect of overlapping cells, and we show that by dynamic channel allocation we obtain a high utilization.The models are generalizations of the Erlang-B formula, and can be evaluated...

  10. Potentials of an integrated biomass utilization system: Estimation of carbon flow and energy consumption

    Science.gov (United States)

    Suzuki, Ryosuke; Nishimura, Motoki; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Yoichi; Daimon, Hiroyuki

    2017-10-01

    Utilization of sewage sludge using anaerobic digestion has been promoted for decades. However, it is still relatively uncommon especially in Japan. As an approach to promote the utilization of sewage sludge using anaerobic digestion, an integrated system that combines anaerobic digestion with greenhouse, composting and seaweed cultivation was proposed. Based on the concept of the integrated system, not only sewage sludge can be treated using anaerobic digestion that creates green energy, but also the by-products such as CO2 and heat produced during the process can be utilized for crops production. In this study, the potentials of such integrated system were discussed through the estimation of possible commercialized scale as well as comparison of energy consumption with conventional approach for sewage sludge treatment, which is the incineration. The estimation of possible commercialized scale was calculated based on the carbon flow of the system. Results showed that 25% of the current total electricity of the wastewater treatment plant can be covered by the energy produced using anaerobic digestion of sewage sludge. It was estimated that the total energy consumption of the integrated system was actually 14% lower when compared to incineration approach. In addition to the large amount of crops that can be produced, all in all this study aimed to be the showcase of the potentials of sewage sludge as a biomass by implementing the proposed integrated system. The extra values of producing crops through the utilization of CO2 and heat can serve as a stimulus to the public, which would surely lead to higher interest to implement the utilization of sewage sludge using anaerobic digestion.

  11. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  12. Open-cycle heat pumps for industrial waste-heat utilization. Project technical report, May 12, 1980-October 10, 1980. Phase I. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Open-Cycle Industrial Process Heat Pumps (IPHP) are potentially a cost-effective method of utilizing an industrial plant's waste heat. The objective of Phase I of the work was to determine the feasibility of an open-cycle industrial process heat pump. This was accomplished by the evaluation of four potential sites for the installation of open-cycle industrial process heat pump equipment. While it was the original plan to evaluate only three sites, the need for a fourth site became apparent upon completion of studies of the Amstar applications. On the basis of initial screening, it was decided to concentrate on the large waste stream at General Electric's NORYL facility (Selkirk, NY) and a smaller waste stream at the Schoeller Paper Company (Pulaski, NY). These two sites provided opportunities to exploit the features of the open-cyle IPHP without major site constraints. Site studies were conducted to obtain process information such as flow rates, process temperatures, dynamic behavior of the process streams, process control functions, and capacity/time schedules. Information relating to structure and utilities, floor loadings, physical space constraints, electric service, piping runs between equipment location, and waste water tapping points was gathered. These data were analyzed and resulted in the selection of two applications with acceptable thermodynamic performance.

  13. A Freezable Heat Exchanger for Space Suit Radiator Systems

    Science.gov (United States)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  14. Critical Uses of College Resources. Part I: Personnel Utilization System.

    Science.gov (United States)

    Vlahos, Mantha

    A Personnel Utilization System has been designed at Broward Community College, which combines payroll, personnel, course, and function information in order to determine the actual duties performed by personnel for the amount of remuneration received. Objectives of the system are (1) to define the tasks being performed by faculty, staff, and…

  15. A Systems Biology Approach to Heat Stress, Heat Injury and Heat Stroke

    Science.gov (United States)

    2015-01-01

    cardiomyocyte contraction define the variables of glycolysis, citric acid cycle, fatty acid oxidation, and oxidative phosphorylation needed to produce...heart, kidney, and liver failure are increased by 40% in Service members with a history of heat stroke [5, 6]. Indeed, there is an urgent need for...amino acid sequence [34, 35]. Even single point mutations can affect aggregation of a peptide or protein in its unfolded state [36]. Predictive

  16. Formula study for plate heat exchanger in the central heating regulation of the indirect connection hot water heating system

    National Research Council Canada - National Science Library

    Minghui CUI; Dezhi MENG; Chengming NI

    2016-01-01

    Plate heat exchanger has unique advantages and becomes dominant heat exchange equipment in heating engineering, but there is no heating regulation formula of plate exchanger applied in central heating...

  17. Radiative heat transfer in low-dimensional systems -- microscopic mode

    Science.gov (United States)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  18. Solar heating and cooling system design and development

    Science.gov (United States)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  19. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  20. Cerebral glucose utilization in transgenic mice overexpressing heat shock protein 70 is altered by dizocilpine.

    Science.gov (United States)

    Kelly, Stephen; Bieneman, Alison; Uney, James B; McCulloch, James

    2002-03-01

    Heat shock protein (HSP70), a member of the 70 kDa HSP superfamily, has been widely implicated in the cellular stress response to numerous insults. HSP70 may be a significant factor in cell survival following stresses such as cerebral ischaemia. The precise mechanisms by which HSP70 facilitates cell survival remain unclear. The aim of this study was to ascertain whether any differences in local cerebral glucose utilization (LCGU) existed between transgenic mice overexpressing HSP70 (HSP70 Tg) and wild- type littermate (WT) mice. LCGU was assessed using (14)C-2-deoxyglucose in HSP70 Tg and WT mice under basal conditions (intraperitoneal injection of saline) and during metabolic activation produced by NMDA receptor blockade (intraperitoneal injection of dizocilpine, 1 mg/kg). No significant alterations in LCGU were observed between saline injected HSP70 Tg and WT mice in any of the 35 brain regions analyzed. Dizocilpine injection produced significant heterogeneous alterations in LCGU in HSP70 Tg mice (24 of 35 brain regions) and in WT mice (22 of 35 brain regions) compared with saline injected mice. The distribution of altered LCGU produced by dizocilpine was similar in HSP70 Tg and WT mice. However in five brain regions, dizocilpine injected HSP70 Tg mice displayed significantly altered LCGU compared to dizocilpine injected WT mice (anterior thalamic nucleus +27%, dorsal CA1 stratum lacunosum molecularae +22%, dorsal CA1 stratum oriens + 14%, superior olivary body -26%, and the nucleus of the lateral lemniscus -16%). These data highlight that while overexpression of HSP70 transgene does not significantly alter LCGU in the basal state, mice overexpressing the HSP70 transgene respond differently to metabolic stress produced by NMDA receptor blockade in some important brain regions.

  1. Convective heat and mass transfer in rotating disk systems

    CERN Document Server

    Shevchuk, Igor V

    2009-01-01

    The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.

  2. Health Externalities and Heat savings in Energy System Modelling

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    and included in an energy system optimisation model. The performed analysis of the Danish heat and power sector concludes that accounting for spatial variation of health damage costs in heat and power system optimisation model has an effect on the optimal technology mix and distribution of energy plants among...... and technologies, more remote location of energy plants and by reducing energy consumption. Considerable technical potential for energy demand reduction exists, particularly in buildings. In countries with cold climate, such as Denmark, energy demand for heating of buildings accounts for a significant share...... of the total energy consumption. Due to the long lifetime of buildings, they are an important part of the futureenergy systems. However, energy system studies often treat energy consumption and energy savings in buildings exogenously. At the same time heat savings in buildings are usually examined separately...

  3. Phase Change Material Systems for High Temperature Heat Storage.

    Science.gov (United States)

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance.

  4. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  5. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2016-01-01

    Energy systems are becoming increasingly complex, integrating across traditionally separate sectors such as transportation, heating, cooling and electricity. Integration through the use of district heating is the main topic of this editorial introducing volume 10 of the International Journal...... of Sustainable Energy Planning and Management. The editorial and the volume presents work on district heating system scenarios in Austria, grid optimisation using genetic algorithms and finally design of energy scenarios for the Italian Alpine town Bressanone-Brixen from a smart energy approach. © 2016, Aalborg...

  6. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  7. Influence of System Variables on the Heating Characteristics of Water during Continuous Flow Microwave Heating

    Directory of Open Access Journals (Sweden)

    Hosahalli S. Ramaswamy

    2011-01-01

    Full Text Available A domestic microwave oven (1000 W was modified to permit the continuous flow of liquids run through a helical coil centrally located inside the oven cavity. Heating characteristics were evaluated by measuring inlet and outlet temperatures of coil as a function of system variables. The influence of number of turns, coil diameter, tube diameter, pitch and initial temperature were evaluated at different flow rates. The average residence time of water was computed by dividing the coil volume by the volumetric flow rate. The influence of Dean number was evaluated. Results from this study showed that (1 higher number of turns resulted in lower heating rate, lower temperature fluctuations, higher exit temperature and longer time to achieve temperature equilibrium; (2 larger tube or coil diameter gave larger coil volume causing the heating rate to decrease; (3 faster flow rates resulted in lower exit temperatures, lower temperature fluctuation, higher Dean number and slightly higher heating rate; (4 higher initial temperatures resulted in higher exit temperatures; (5 higher Dean number resulted in more uniform heating and slightly higher heating rate. Overall, the coil volume was the more dominant factor affecting heating rate as compared with flow rate and Dean number.

  8. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  9. Combined electric heating system for timber frame houses

    Directory of Open Access Journals (Sweden)

    Igor Yu. Shelekhov

    2017-06-01

    Full Text Available Introduction: The article presents an overview of the factors affecting the decrease in energy costs during the construction and operation of frame type buildings. The authors propose the methods to increase energy efficiency in heating of frame type buildings. Materials and Methods: The experiment was conducted in an individual residential building with a total area of 80 square meters. Two panels with an infrared heating element and thermoelectric temperature sensors were used. Signals from the sensors were registered by measuring instruments. The amount of the consumed energy was measured by the electric meter. Results: The article identifies the problem and researches of parameters of the combined electric heating system, mutual influence of the two heating devices which are made on the basis of the heating elements with a positive temperature coefficient of resistance. The authors considered the basic scenario, and change of microclimate parameters. They studied the changes of microclimate parameters in the penetration of cold airflows into the room through the opening, and when the temperature of the walls decreases. Discussion and Conclusions: The heating unit using the effect of self-regulation reduces the time for establishing the stationary regime. It helps to reduce the inertia of the heating system and to promote rapid recovery of the microclimate parameters, reducing energy costs and heat loss.

  10. “Walczak’s Pipes” in the Greenhouse Heating System

    Directory of Open Access Journals (Sweden)

    Kazimierz Rutkowski

    2016-01-01

    Full Text Available Diversified heating circuits inertia is particularly important by high variability of external conditions were the greenhouse is often overheated or large heat losses are noted. To meet these needs a new generation of heating pipes were used. They are hexagram-shaped pipes called “Walczak’s pipe”. Tubes of such shape have several times smaller volume in comparison with traditional heating pipes of the same outer diameter and higher stiffness. The preliminary assessment of the “Walczak’s pipe” installed in the greenhouse is highly positive. Compared with the traditional system it enables better heat management. In the first research stage, the thermal efficiency was defined in different ambient conditions at selected flow parameters and various water temperatures. With regard to the accepted flow values, it is notable that “Walczak’s pipe” has greater thermal efficiency per unit of power comparing with traditional tube. During the study, there was also a thermographic analysis of pipes’ surface performed and the heat flow distribution was determined. Analyzing the temperature distribution on the “Walczak’s pipe” remarkable are the areas with higher values ​​comparing with standard tube. It can be concluded that in the heating system with “Walczak’s pipe” energy transferred by radiation increases. This is particularly advantageous solution to use in greenhouses. It allows to obtain a higher leafs temperature with respect to the ambient temperature (vegetation heating. This parameter has a beneficial effect on the vegetative growth of cultivated plants.

  11. Radiant heat transfer network in the simulated protective clothing ; System under high heat flux

    NARCIS (Netherlands)

    Fukazawa, T.; Hartog, E.A. den; Daanen, H.A.M.; Penders-van Elk, N.; Tochihara, Y.; Havenith, G.

    2005-01-01

    A radiant network model was developed for design of the protective clothing system against solar and infrared radiative heat flux. A one-dimensional model was employed in the present study, because the aim of this study was to obtain precise temperature distribution through the system with use of a

  12. Generic Guide Specification for Geothermal Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, WKT

    2000-04-12

    The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required

  13. Regional Utilization of the Union Catalog of Medical Periodicals System

    Science.gov (United States)

    Sprinkle, Michael D.

    1969-01-01

    This paper describes regional utilization of the Union Catalog of Medical Periodicals system and data base in producing union lists outside Metropolitan New York, the area served by the Union Catalog. A basic introduction to the Medical Library Center of New York's UCMP system is set forth, demonstrating the system's value in the production of such medical and paramedical union lists throughout the country. Several applications are then described, showing how these union lists were produced. PMID:5789816

  14. Consulting report on the NASA technology utilization network system

    Science.gov (United States)

    Hlava, Marjorie M. K.

    1992-01-01

    The purposes of this consulting effort are: (1) to evaluate the existing management and production procedures and workflow as they each relate to the successful development, utilization, and implementation of the NASA Technology Utilization Network System (TUNS) database; (2) to identify, as requested by the NASA Project Monitor, the strengths, weaknesses, areas of bottlenecking, and previously unaddressed problem areas affecting TUNS; (3) to recommend changes or modifications of existing procedures as necessary in order to effect corrections for the overall benefit of NASA TUNS database production, implementation, and utilization; and (4) to recommend the addition of alternative procedures, routines, and activities that will consolidate and facilitate the production, implementation, and utilization of the NASA TUNS database.

  15. Aspects of forced convective heat transfer in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilty, K.; Chapman, D.S.; Mase, C.

    1978-07-01

    A knowledge of convective heat transfer is essential to understanding geothermal systems and other systems of moving groundwater. A simple, kinematic approach toward convective heat transfer is taken here. Concern is not with the cause of the groundwater motion but only with the fact that the water is moving and transferring heat. The mathematical basis of convective heat transfer is the energy equation which is a statement of the first law of thermodynamics. The general solution of this equation for a specific model of groundwater flow has to be done numerically. The numerical algorithm used here employs a finite difference approximation to the energy equation that uses central differences for the heat conduction terms and one-sided differences for the heat convection terms. Gauss--Seidel iteration is then used to solve the finite difference equation at each node of a non-uniform mesh. The Monroe and Red Hill hot springs, a small hydrothermal system in central Utah, provide an example to illustrate the application of convective heat transfer theory to a geophysical problem. Two important conclusions regarding small geothermal systems follow immediately from the results of this application. First, the most rapid temperature rise in the convecting part of a geothermal system is near the surface. Below this initially rapid temperature increase the temperature increases very slowly, and thus temperatures extrapolated from shallow boreholes can be seriously in error. Second, the temperatures and heat flows observed at Monroe and Red Hill, and probably at many other small geothermal areas, can easily result from moderate vertical groundwater velocities in faults and fracture zones in an area of normal heat flow.

  16. Comparison of heating systems in a residential building

    Energy Technology Data Exchange (ETDEWEB)

    Veken, J.; Peeters, L.; Hens, H. [Leuven Catholic Univ., Leuven (Belgium). Laboratory of Building Physics

    2005-07-01

    Low temperature radiators, high temperature radiators and floor heating systems were compared via a case study approach in order to assess the overall efficiency between heating systems. The case study investigated the influence of radiant heating on temperature control as well as the introduction of an outside temperature sensor, insulation around piping, different boiler types and temperature profiles, such as night set back. The simulations were conducted using a TRNSYS16-model of a typical terraced house and compared four types of heating systems including, high temperature radiators, low temperature radiators, and two systems with floor heating in the day zone and temperature radiators in the night zone but differing in their floor capacity. The case study also investigated the influence of controlling the operative or air bulb temperature and the introduction of a condensing boiler possibly combined with a variable boiler exhaust temperature. It was concluded that floor heating systems do not outperform radiators, and only when coupled to condensing boilers, they consume less energy than the high temperature radiator system. Low temperature radiators perform best in all cases. 8 refs., 5 tabs., 6 figs.

  17. Energy Renovation of Buildings Utilizing the U-value Meter, a New Heat Loss Measuring Device

    OpenAIRE

    Lars Schiøtt Sørensen

    2010-01-01

    A new device with the ability to measure heat loss from building facades is proposed. Yet to be commercially developed, the U-value Meter can be used as stand-alone apparatus, or in combination with thermographic-equipment. The U-value meter complements thermographs, which only reproduce surface temperature and not the heat loss distribution. There is need for a device that measures the heat loss in a quantitative manner. Convective as well as radiative heat losses are captured and measured w...

  18. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

  19. Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Kong, Weiqiang

    2016-01-01

    unit was tested with 116.3 kg SAT with 0.5% Xanthan rubber as a thickening agent and 4.4% graphite powder. The heat exchange capacity rate during charge was significantly lower for the unit with SAT and Xanthan rubber compared to the unit with SAT and extra water. This was due to less convection...... in the thickened phase change material after melting. The heat content in the fully charged state and the heat released after solidification of the supercooled SAT mixtures at ambient temperature was higher for the unit with the thickened SAT mixture. The heat discharged after solidification of the supercooled SAT...

  20. Comparison of solar heat pump systems to conventional methods for residential heating, cooling, and water heating. Volume 1: Executive Summary

    Science.gov (United States)

    Hughes, P. J.; Morehouse, J. H.

    1980-04-01

    Since the purpose of space conditioning equipment is to provide thermal comfort, models were formulated to force this requirement on all systems. The thermal performance maps (fraction of the load met with free energy versus collector area) presented include the effects of the comfort requirement and of parasitic energy consumption for blower and pump operation. Economic comparisons were made after sizing collectors and storage for the combined solar heat pump systems in a manner which was sensitive to climate as well as to the thermal and economic characteristics of each particular system. This, combined with life cycle cost analysis, allows collector cost goals to be established which, if met, will allow combined solar heat pump systems to compete with conventional alternatives.

  1. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  2. Monogroove heat pipe development for the space constructible radiator system

    Science.gov (United States)

    Alario, J.; Brown, R.; Kosson, R.

    1983-06-01

    A high-capacity, high-reliability space radiator is needed in order to satisfy the future heat rejection requirements of large space platforms or space stations. The Space Constructible Radiator (SCR) system is being developed to fill this need. The most important component of the SCR system is the high-capacity monogroove heat pipe which theoretically has a heat transport capacity of 12,700 W-m to 25,400 W-m. This performance represents a better than two order of magnitude increase in transport capacity over currently existing heat pipes. The present investigation is concerned with testing developments which occurred in connection with the monogroove heat pipe during the last two years. A short description of the SCR system is presented, and results are provided for two series of tests which were run on a 15.7-m long heat pipe. The first test series included both performance and diagnostic tests, which pointed to some design modifications which were necessary. The second test series, run on the modified heat pipe, showed improved performance.

  3. Performance of active solar space-heating systems, 1980-1981 heating season

    Energy Technology Data Exchange (ETDEWEB)

    Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

    1981-01-01

    Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

  4. Utilizing expert systems for satellite monitoring and control

    Science.gov (United States)

    Hughes, Peter M.

    1991-01-01

    Spacecraft analysts in the spacecraft control center for the Cosmic Background Explorer (COBE) satellite are currently utilizing a fault-isolation expert system developed to assist in the isolation and correction of faults in the communications link. This system, the communication link expert assistance resource (CLEAR), monitors real time spacecraft and ground systems performance parameters in search of configuration discrepancies and communications link problems. If such a discrepancy or problem is isolated, CLEAR alerts the analyst and provides advice on how to resolve the problem swiftly and effectively. The CLEAR system is the first real time expert system to be used in the operational environment of a satellite control center at the NASA Goddard Space Flight Center. Clear has not only demonstrated the utility and potential of an expert system in the demanding environment of a satellite control center, but also has revealed many of the pitfalls and deficiencies of development of expert systems. One of the lessons learned from this and other initial expert system projects is that prototypes can often be developed quite rapidly, but operational expert systems require considerable effort. Development is generally a slow, tedious process that typically requires the special skills of trained programmers. Due to the success of CLEAR and several other systems in the control center domain, a large number of expert systems will certainly be developed to support control center operations during the early 1990's. To facilitate the development of these systems, a project was initiated to develop an integrated, domain-specific tool, the generic spacecraft analyst assistent (GenSAA), that alows the spacecraft analysts to rapidly create simple expert systems themselves. By providing a highly graphical point-and-select method of system development, GenSAA allows the analyst to utilize and/or modify previously developed rule bases and system components; thus, facilitating

  5. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  6. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, PA

    2003-01-01

    In Denmark, the integration of wind power is affected by a large amount of cogeneration of heat and power. With ancillary services supplied by large-scale condensation and combined heat and power (CHP) plants, a certain degree of large-scale generation is required regardless of momentary wind input....... A lowered district heating demand and thereby lowered CHP-bound electricity generation would appear to increase the possibility of integration wind power but due to the ancillary services supplied by CHP plants, the situation is in fact the opposite. Heat savings may not be technically feasible......, if a certain production is required regardless of whether over-all electricity generation is sufficient. This article analyses this and although heat savings do have a negative impact on the amount of wind power the system may integrate a given moment in certain cases, associated fuel savings are notable...

  7. Assessment of retrofit automatic vent dampers for residential heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, D.L.; Wilson, R.P. Jr.; Ashley, L.E.; Butterfield, J.F.

    1977-11-01

    Automatic vent dampers are devices installed in the exhaust vent of a central heating system which prohibit the chimney flow of warm air from the dwelling space and from within the furnace when the heating system is not operating. An investigation of the effect of thermally actuated or electrically actuated dampers on home energy conservation, their cost, and safety is described. Eleven heating system types in 2 geographic regions were used in this study. It was determined that good quality, safe electrically actuated dampers are available in the U.S. and that thermally actuated units will be available soon; an average savings of approximately 8% in home heating cost could be achieved by using automatic dampers with suitable furnace systems in regions with a heating season of more than 4000 degree-days; the cost of the automatic dampers is from $65 to $140 with a payback period of 3 to 4 1/2 y; and, with the average heating system, vent damper retrofit alone is not as an attractive energy conservation option as combined vent damper, intermittent ignition device retrofit, and reduced gas orifice. (LCL)

  8. Multifunctional absorption technology in district heating systems; Absorptionsteknik med multifunktion i fjaerrvaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Viktoria; Setterwall, Fredrik

    2010-05-15

    systems. b. future RandD efforts regarding the adaptation of absorption cooling to district heating systems should be possible with collaboration of utilities, manufacturers, and research institutes. Within the project, the study of absorption technology as heat pump (AHP) concludes that the technology is well adapted to district heating systems (as compared to Absorption Cooling) and rather widely used in upgrading of waste heat, industrial scale. In the absorption heat transformer (AHT), one part heat is supplied at a medium temperature (e.g., district heating supply) one half part is delivered at a higher temperature (e.g., steam 3-10 bars) while the rest is rejected to a heat sink at low temperature. Calculations herein show how it is possible to for example use 85 deg C district heating water to convert it to 130 deg C steam. Due to corrosion aspects, the technology is limited to about 150 deg C when using water/lithium bromide as the working fluid. A preliminary cost-evaluation considers the use of AHT-technology for an installation delivering 10000 tonne steam per year. The results show the obtained cost of steam production to be promising as long as the cost of heat is low (see figure following this paragraph). The cost is less sensitive to the investment cost of AHT technology because of the large number of operating hours expected. Since the investment cost is not too influential, it could be interesting to further develop double lift concepts utilizing new working fluids which avoid the limiting temperatures feasible with water/lithium bromide

  9. Balance-of-plant options for the Heat-Pipe Power System

    Energy Technology Data Exchange (ETDEWEB)

    Berte, M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Engineering Dept.; Capell, B. [Michigan Univ., Ann Arbor, MI (United States). Nuclear Engineering Dept.

    1997-09-01

    The Heat-Pipe Power System (HPS) is a near-term, low-cost space fission power system with the potential for utilizing various option for balance-of-plant options. The following options have been studied: a low-power thermoelectric design (14-kWe output), a small Brayton cycle system (60--75 kWe), and a large Brayton cycle system (250 kWe). These systems were analyzed on a preliminary basis, including mass, volume, and structure calculations. These analyses have shown that the HPS system can provide power outputs from 10--250 kWe with specific powers of {approximately} 14 W/kg for a 14-kWe model to {approximately} 100 W/kg for a 250-kWe model. The system designs considered in this study utilize a common component base to permit easy expansion and development.

  10. FY 1988 Report on research and development of super heat pump energy accumulation system. Part 1; 1988 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    Summarized in detail herein are the 1988 R and D results of the super high performance compression heat pumps and elementary equipment/media, for R and D of the super heat pump energy accumulation system. For R and D of the heat pumps, the R and D efforts are directed to manufacture, on a trial basis, and installation of the bench plant, and preparation of the basic plan for the pilot system for the highly efficient type (for heating only); to researches on the screw compressor, bench plant operation, heat exchanger, and so on for the highly efficient type (for cooling and heating); to development of the compressor with which a screw type expander is integrated at the low-temperature side, evaporator and so on, test runs of the bench plant, researches on the control methods, and so on for the high temperature type (utilization low temperature heat source); and to manufacture, on a trial basis, of the high-speed reciprocating compressor and steam supercharger, and tests for demonstrating their performance for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, the R and D efforts are directed to the evaporator and EHD condenser for the mixed working fluids, heat exchanger, working fluids (alcohol-based and nonalcohol-based), and so on. (NEDO)

  11. Prototype solar heating and cooling systems. Monthly progress reports

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    This report is a collection of monthly status reports from the AiResearch Manufacturing Company, who is developing eight prototype solar heating and cooling systems under NASA Contract NAS8-32091. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  12. Heat recovery from wastewater systems; Waermerueckgewinnung aus Abwassersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, O.

    2004-07-01

    Wastewater contains large amounts of heat energy which can be recovered by means of a heat pump and a heat exchanger installed in the sewer system. Practical problems, which may arise and have been investigated in this research project, are the reduction of the heat transfer efficiency due to heat exchanger fouling and the reduction of the nitrification capacity of downstream wastewater treatment plants due to lower wastewater temperatures. A mathematical model was developed by which the decrease of the wastewater temperature in the treatment plant influent can be determined as a function of the amount of heat energy gathered from the wastewater in the sewer system. By this model the variation in time and space of the wastewater temperature in a sewer pipe is calculated for given hydraulics, geometry and environmental conditions. By analysis of data from a large wastewater treatment plant and simulations with a calibrated model, the effect of lowered influent temperatures on nitrification safety, total nitrogen removal efficiency and ammonium effluent concentrations could be quantified. A procedure is suggested by which the reserve nitrification capacity of an existing treatment plant and the increase of the ammonium effluent concentration resulting from a permanent decrease of the wastewater influent temperature can be estimated. By experiments with a pilot scale heat exchanger in a small wastewater channel, the significance of parameters known to have an effect on fouling was investigated and measures to reduce fouling were tested. The measures tested included controlled variation of the wastewater flow velocity (flushing), coatings and finish of the heat exchanger surface and obstacles mounted on the surface. The best results were obtained by regular short term increases of the flow velocity. By this measure, the efficiency of the fouled heat exchanger, which on the average was 60% of the efficiency of the clean heat exchanger, could repeatedly be raised to an

  13. Energy reduction in buildings in temperate and tropic regions utilizing a heat loss measuring device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2012-01-01

    for heating up, and cooling down our houses. There is a huge energy saving potential on this area reducing both the World climate problems and economy challenges as well. Heating of buildings in Denmark counts for approximately 40% of the entire national energy consume. Of this reason a reduction of heat...... losses from building envelopes are of great impor­tance in order to reach the Bologna CO2-emission reduction goals. Energy renovation of buildings is a topic of huge focus around the world these years. Not only expenses for heating in the tempered and arctic regions are of importance, but also expenses...... to ACMV in the "warm countries" contribute to an enormous energy consumption and corresponding CO2 emission. In order to establish the best basis for energy renovation, it is important to have measures of the heat losses on a building façade, for optimizing the energy renovation. This paper will present...

  14. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  15. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only......The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... research, main focus is put on individual heat pumps in the residential sector and the possibilities for flexible operation, using the heat storage options available. Extensive model development is performed that significantly improves the possibilities for analysing individual heat pumps and heat storages...

  16. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  17. Load Prediction in District Heating Systems; Lastprognoser foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Kvarnstroem, Johan; Dotzauer, Erik; Gollvik, Lena; Andersson, Cari

    2007-12-15

    To produce heat and power is costly. Therefore it is important for the district heating companies to plan and optimize the production. The principal procedure is to first construct a prediction of the heat demand, and then, given the demand prediction, plan the production. Due to the complexity of the problem, the need for mathematical models is obvious. The common way to predict the heat demand is to use one single load curve for the whole district heating network. This has obvious drawbacks. With only one curve it is difficult to consider e.g. restrictions in distribution capacity and the dynamics in the network. The standard approach is also to base the predictions on delivered heat from the production plants. During the last few years it has become more common to measure the load directly at the consumer sites. This gives new opportunities for the construction of load predictions. Another type of information that is not exploited today is the fact that the consumption patterns differ for different categories of consumers. For example, the load profiles for a residential house and an office diverge. An alternative approach is then to consider this in the load prediction algorithm. The aim with current project is to investigate alternative methods for prediction of district heating demand. Focus is on how to exploit measurements from the consumer sites. Also the possibility to make predictions using physical models is discussed. Numerical results based on data from the district heating systems in Stockholm owned by Fortum are presented

  18. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Ramanathan, V.; Weast, T. E.; Ananth, K. P.

    1980-01-01

    The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.

  19. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  20. Abstraction of Continuous Dynamical Systems Utilizing Lyapunov Functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafal

    2010-01-01

    of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse...