WorldWideScience

Sample records for heat transport term

  1. Interpretation of heat and density pulse measurements in JET in terms of coupled transport

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; O'Rourke, J.; Sips, A.C.C.; Lopes Cardozo, N.J.

    1990-01-01

    The perturbations of electron density and temperature profiles in a tokamak following a sawtooth collapse are considered. An analytic model for the interpretation of such perturbations is presented. It is shown that the perturbation can be decomposed into two contributions, which are eigenmodes of the linearised coupled diffusion equations for particle and energy. The approximations made in the analytical treatment are checked using computer simulations. Measurements of heat and density pulses in Joint European Torus are used to illustrate the power of the new approach. It is shown that using the coupled equations, an improved description of the heat and density pulses is obtained. The analysis yields the four diffusion coefficients in the linearised transport matrix. The non-zero off-diagonal elements explain certain salient features of the measurements, notably a marked decrease of the local density which occurs during the maximum of the temperature pulse. (author)

  2. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  3. Active transport and heat.

    Science.gov (United States)

    Tait, Peter W

    2011-07-01

    Increasing heat may impede peoples' ability to be active outdoors thus limiting active transport options. Co-benefits from mitigation of and adaptation to global warming should not be assumed but need to be actively designed into strategies.

  4. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  5. Heat transport system

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acts as a pneumatic spring for the system. This system is suitable for use in a nuclear-powered artificial heart

  6. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  7. Changes in chemical quality indices during long-term storage of palm-olein oil under heated storage and transport-type conditions

    CSIR Research Space (South Africa)

    Van der Merwe, GH

    2004-01-15

    Full Text Available of Food and Agriculture J Sci Food Agric 84:52?58 (online: 2003) DOI: 10.1002/jsfa.1609 Changes in chemical quality indices during long-term storage of palm-olein oil under heated storage and transport-type conditions Gretel H van der Merwe,1asteriskmath... Lourens M du Plessis1 and John RN Taylor2 1CSIR Bio/Chemtek, PO Box 395, Pretoria 0001, South Africa 2Department of Food Science, University of Pretoria, Pretoria 0002, South Africa Abstract: Six quality indices, namely free fatty acids (FFA), peroxide...

  8. The adjoint space in heat transport theory

    International Nuclear Information System (INIS)

    Dam, H. van; Hoogenboom, J.E.

    1980-01-01

    The mathematical concept of adjoint operators is applied to the heat transport equation and an adjoint equation is defined with a detector function as source term. The physical meaning of the solutions for the latter equation is outlined together with an application in the field of perturbation analysis. (author)

  9. Heat transport the cold way

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A novel system for long-distance heat transport is being born in the 'Kernforschungsanlage Juelich' with the project being called 'Nukleare Fernenergie' (nuclear district energy). The project is also known as 'EVA/ADAM' [EVA = Einzelrohr-Versuchs-Anlage (single tube test facility); ADAM = Anlage mit Drei Adiabaten Methanisierungsreaktoren (plant provided with three adiabate methanising reactors)] and is based in principle on transport of energy in chemical bond within a closed loop. In the 60ies already this development was discussed both in the 'Kernforschungsanlage Juelich' and in the 'Rheinische Braunkohlenwerke' independent of each other. In 1975 these two organizations concluded a co-operation contract. (orig.) [de

  10. Numerical analysis for long-term stability of disposal facility considering thermal and hydraulic effect. Uncoupled analysis for long-term deformation of rock and buffer material and for transport of heat and water

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsumi; Hasegawa, Takuma

    2004-01-01

    For the early realization of HLW geological repository and for its rational and economical design and safety assessment, it is important to evaluate the stability of repository facilities in deep underground, where high temperature, earth pressure and underground water flow affect the stability. This report discusses the numerical approaches that are useful for attaining these objectives. One of the efficient approaches is to develop models capable of simulating coupled thermo-hydro-mechanical (T-H-M) processes. Several T-H-M coupled simulation codes have been proposed and the international cooperative research project DECOVALEX has been held from 1991 in order to develop and validate the T-H-M coupled simulations. But mechanical models adopted in these simulation codes are too simple to be applied to the evaluation of long-term interaction of materials that show nonlinear mechanical behavior (especially in the case that surrounding rock is soft sedimentary rock). Before simulating the long-term and coupled phenomena, uncoupled simulations for four phenomena (creep behavior of surrounding rock mass, consolidation and deformation behavior of buffer material, transport of water, and transport of heat) are conducted using various parameters and boundary condition sets. From the results of those simulations, following conclusions are obtained: (1) swelling property of buffer material is important to evaluate mechanical behavior of barrier materials, (2) hydraulic properties of natural barrier can be more important than that of buffer material because suction effect of buffer material is so strong that transport of water in the buffer material is fast, (3) change of thermal properties and filling of gaps caused by water saturation of buffer material have a strong effect on the temperature field. On the next stage, we will develop a T-H-M coupled simulation code to evaluate the mechanical interaction between barrier materials based on the above study. (author)

  11. TOUGH, Unsaturated Groundwater Transport and Heat Transport Simulation

    International Nuclear Information System (INIS)

    Pruess, K.A.; Cooper, C.; Osnes, J.D.

    1992-01-01

    1 - Description of program or function: A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO 2 ; water, air; water, air with vapour pressure lowering, and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH (Transport of Unsaturated Groundwater and Heat) is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent transitions between liquid and vapor. TOUGH takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy's law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase absorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat. 2 - Method of solution: All

  12. Particle and heat transport in Tokamaks

    International Nuclear Information System (INIS)

    Chatelier, M.

    1984-01-01

    A limitation to performances of tokamaks is heat transport through magnetic surfaces. Principles of ''classical'' or ''neoclassical'' transport -i.e. transport due to particle and heat fluxes due to Coulomb scattering of charged particle in a magnetic field- are exposed. It is shown that beside this classical effect, ''anomalous'' transport occurs; it is associated to the existence of fluctuating electric or magnetic fields which can appear in the plasma as a result of charge and current perturbations. Tearing modes and drift wave instabilities are taken as typical examples. Experimental features are presented which show that ions behave approximately in a classical way whereas electrons are strongly anomalous [fr

  13. Poloidal profiles and transport during turbulent heating

    International Nuclear Information System (INIS)

    Mascheroni, P.L.

    1977-01-01

    The current penetration stage of a turbulently heated tokamak is modeled. The basic formulae are written in slab geometry since the dominant anomalous transport has a characteristic frequency much larger than the bounce frequency. Thus, the basic framework is provided by the Maxwell and fluid equations, with classical and anomalous transport. Quasi-neutrality is used. It is shown that the anomalous collision frequency dominates the anomalous viscosity and thermal conductivity, and that the convective wave transport can be neglected. For these numerical estimates, the leading term in the quasi-linear series is used. During the current penetration stage the distribution function for the particles will depart from a single Maxwellian type. Hence, the first objective was to numerically compare calculated poloidal magnetic field profiles with measured, published poloidal profiles. The poloidal magnetic field has been calculated using a code which handles the anomalous collision frequency self-consistently. The agreement is good, and it is concluded that the current penetration stage can be satisfactorily described by this model

  14. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  15. Theory of ion heat transport in tokamaks

    International Nuclear Information System (INIS)

    Gott, Y.V.; Yurchenko, E.I.

    1987-01-01

    Experiments which have been carried out in several tokamaks to determine the ion thermal conductivity show that it is several times the value predicted by the neoclassical theory. A possible explanation for this discrepancy is proposed. When the finite width of a banana is taken into account, there are substantial increases in the heat fluxes which stem from the important contribution of superthermal ions to the transport. If the electron diffusive flux is zero, a systematic account of the ions with E>T leads to an ion heat flux with a finite banana width which is two to four times the neoclassical prediction. The effect of the anomalous nature of the electron flux on the ion heat transport is analyzed. An expression is derived for calculating the ion heat transport over the entire range of collision rates

  16. Progress in understanding heat transport at JET

    International Nuclear Information System (INIS)

    Mantica, P.; Garbet, X.; Angioni, C.

    2005-01-01

    This paper reports recent progress in understanding heat transport mechanisms either in conventional or advanced tokamak scenarios in JET. A key experimental tool has been the use of perturbative transport techniques, both by ICH power modulation and by edge cold pulses. The availability of such results has allowed careful comparison with theoretical modelling using 1D empirical or physics based transport models, 3D fluid turbulence simulations or gyrokinetic stability analysis. In conventional L- and H-mode plasmas the issue of temperature profile stiffness has been addressed. JET results are consistent with the concept of a critical inverse temperature gradient length above which transport is enhanced by the onset of turbulence. A threshold value R/L Te ∼5 has been found for the onset of stiff electron transport, while the level of electron stiffness appears to vary strongly with plasma parameters, in particular with the ratio of electron and ion heating: electrons become stiffer when ions are strongly heated, resulting in larger R/L Ti values. This behaviour has also been found theoretically, although quantitatively weaker than in experiments. In plasmas characterized by Internal Transport Barriers (ITB), the properties of heat transport inside the ITB layer and the ITB formation mechanisms have been investigated. The plasma current profile is found to play a major role in ITB formation. The effect of negative magnetic shear on electron and ion stabilization is demonstrated both experimentally and theoretically using turbulence codes. The role of rational magnetic surfaces in ITB triggering is well assessed experimentally, but still lacks a convincing theoretical explanation. Attempts to trigger an ITB by externally induced magnetic reconnection using saddle coils have shown that MHD islands in general do not produce a sufficient variation of ExB flow shear to lead to ITB formation. First results of perturbative transport in ITBs show that the ITB is a narrow

  17. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  18. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  19. ECRH and electron heat transport in tokamaks

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Dumont, R.J.

    2003-01-01

    It has been observed during the ECRH experiments in tokamaks that the shape of the electron temperature profile in stationary regimes is not very sensitive to the ECRH power deposition i.e. the temperature profile remains peaked at the center even though the ECRH power deposition is off-axis. Various models have been invoked for the interpretation of this profile resilience phenomenon: the inward heat pinch, the critical temperature gradient, the Self-Organized Criticality, etc. Except the pinch effect, all of these models need a specific form of the diffusivity in the heat transport equation. In this work, our approach is to solve a simplified time-dependent heat transport equation analytically in cylindrical geometry. The features of this analytical solution are analyzed, in particular the relationship between the temperature profile resilience and the Eigenmode of the physical system with respect to the heat transport phenomenon. Finally, applications of this analytical solution for the determination of the transport coefficient and the polarization of the EC waves are presented. It has been shown that the solution of the simplified transport equation in a finite cylinder is a Fourier-Bessel series. This series represents in fact a decomposition of the heat source in Eigenmode, which are characterized by the Bessel functions of order 0. The physical interpretation of the Eigenmodes is the following: when the heat source is given by a Bessel function of order 0, the temperature profile has exactly the same form as the source at every time. At the beginning of the power injection, the effectiveness of the temperature response is the same for each Eigenmode, and the response in temperature, having the same form as the source, is local. Conversely, in the later phase of the evolution, the effectiveness of the temperature response for each Eigenmode is different: the higher the order, the lower the effectiveness. In this case the response in temperature appears as

  20. Magnetic-field asymmetry of nonlinear thermoelectric and heat transport

    International Nuclear Information System (INIS)

    Hwang, Sun-Yong; Sánchez, David; López, Rosa; Lee, Minchul

    2013-01-01

    Nonlinear transport coefficients do not obey, in general, reciprocity relations. We here discuss the magnetic-field asymmetries that arise in thermoelectric and heat transport of mesoscopic systems. Based on a scattering theory of weakly nonlinear transport, we analyze the leading-order symmetry parameters in terms of the screening potential response to either voltage or temperature shifts. We apply our general results to a quantum Hall antidot system. Interestingly, we find that certain symmetry parameters show a dependence on the measurement configuration. (paper)

  1. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  2. Short-term fluid, heat, and solute transport in deep 'georeservoirs' likely to become 'EGS': some challenges to ICDP hydrogeologists who might like using artificial tracers

    Science.gov (United States)

    Ghergut, Julia; Behrens, Horst; Huenges, Ernst; Rose, Peter; Sauter, Martin

    2014-05-01

    -georeservoir characterization and/or short- to mid-term process monitoring during reservoir operation: - if those tests have been successful to a certain extent, it was primarily owing to ascertainedly conservative tracer transport behavior; - if those tests have been of limited success, it was because of lack of reactive tracer species with well-defined, and reasonable properties (reasonable means: sensitive to 'something', but not to 'everything' that may 'happen' within the target georeservoir). If the artificial-tracer-based quantification of deep-georeservoir hydrogeology and of induced (short- to mid-term) transport processes therein is to become a task for some future ICDP projects, they will need to effectively address this dilemma. Further, if EGS, and especially the petrothermal type shall be on the agenda, then SW tests will be 'unavoidable'. Finally, if the most is to be made out of a SW test, then tailored reactive tracer pairs (Tomich et al. 1973, Ghergut et al. 2013) are a must: not just reactive, not just retarded, but: conservative alongside with reactive, and with contrasting retardation behavior between product and reactant. Selected references: Harms U, Koeberl C, Zoback M, eds (2005) Continental Scientific Drilling: A Decade of Progress, and Challenges for the Future. Springer, 366 pp. Harms U, Wiersberg T (2013) Conference on ICDP's New Science Plan. Scientific Drilling, 15: 77. Huenges E, Jung R (2004) Technologies for the Utilisation of Enhanced Geothermal Systems (www.bgr.de/ veransta/renewables_2004/presentations_DGP/Block1Introduction_pdf/2_Huenges_Jung.pdf) Jung R (2013) EGS - Goodbye or Back to the Future. Chapter 5, dx.doi.org/10.5772/56458 (www.intechopen.com/ books/effective-and-sustainable-hydraulic-fracturing) Moeck I (2013) Classification of geothermal plays according to geological habitats. IGA Academy Report 0101-2013 (www.geothermal-energy.org/iga_service_gmbh/projects/ifc_project/workshop_izmir.html) Robinson B A (1985) Non-reactive and chemically

  3. Integral representation of nonlinear heat transport

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Mima, K.; Haines, M.G.

    1985-07-01

    The electron distribution function in a plasma with steep temperature gradient is obtained from a Fokker-Planck equation by Green's function method. The formula describes the nonlocal effects on thermal transport over the range, λ e /L e /L → 0. As an example, the heat wave is analyzed numerically by the integral formula and it is found that the previous simulation results are well reproduced. (author)

  4. One-Loop Operation of Primary Heat Transport System in MONJU During Heat Transport System Modifications

    International Nuclear Information System (INIS)

    Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.

    2006-01-01

    MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)

  5. Studies of heat transport to forced-flow He II

    International Nuclear Information System (INIS)

    Dresner, L.; Kashani, A.; Van Sciver, S.W.

    1985-01-01

    Analytical and experimental studies of heat transport to forced-flow He II are reported. The work is pertinent to the transfer of He II in space. An analytical model has been developed that establishes a condition for two-phase flow to occur in the transfer line. This condition sets an allowable limit to the heat leak into the transfer line. Experimental measurements of pressure drop and flow meter performances indicate that turbulent He II can be analyzed in terms of classical pressure drop correlations

  6. Heat and Moisture transport of socks

    Science.gov (United States)

    Komárková, P.; Glombíková, V.; Havelka, A.

    2017-10-01

    Investigating the liquid moisture transport and thermal properties is essential for understanding physiological comfort of clothes. This study reports on an experimental investigation of moisture management transport and thermal transport on the physiological comfort of commercially available socks. There are subjective evaluation and objective measurements. Subjective evaluation of the physiological comfort of socks is based on individual sensory perception of probands during and after physical exertion. Objective measurements were performed according to standardized methods using Moisture Management tester for measuring the humidity parameters and C-term TCi analyzer for thermal conductivity and thermal effusivity. The obtained values of liquid moisture transport and thermal properties were related to the material composition and structure of the tested socks. In summary, these results show that objective measurement corresponds with probands feelings.

  7. First-principles simulations of heat transport

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  8. Monju secondary heat transport system sodium leak

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Hiroi, Hiroshi; Usami, Shin; Iwata, Koji.

    1996-01-01

    On December 8, 1995, the sodium leakage from the secondary heat transport system (SHTS) occurred in the piping room of the reactor auxiliary building in Monju. The secondary sodium leaked through a temperature sensor, due to the breakaway of the tip of the well tube of the sensor installed near the outlet of the intermediate heat exchanger (IHX) in the C loop of SHTS. The reactor core remained cooled and thus, from the viewpoint of radiological hazards, the safety of the reactor was secured. There were no adverse effects for operating personnel or the surrounding environment. The cause of the well tube failure is considered to result from high cycle fatigue due to flow induced vibrations. Delay in draining the sodium from the leaking loop increased the consequential effects from sodium combustion products. (author)

  9. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  10. Heat transport in an anharmonic crystal

    Science.gov (United States)

    Acharya, Shiladitya; Mukherjee, Krishnendu

    2018-04-01

    We study transport of heat in an ordered, anharmonic crystal in the form of slab geometry in three dimensions. Apart from attaching baths of Langevin type to two extreme surfaces, we also attach baths of same type to the intermediate surfaces of the slab. Since the crystal is uninsulated, it exchanges energy with the intermediate heat baths. We find that both Fourier’s law of heat conduction and the Newton’s law of cooling hold to leading order in anharmonic coupling. The leading behavior of the temperature profile is exponentially falling from high to low temperature surface of the slab. As the anharmonicity increases, profiles fall more below the harmonic one in the log plot. In the thermodynamic limit thermal conductivity remains independent of the environment temperature and its leading order anharmonic contribution is linearly proportional to the temperature change between the two extreme surfaces of the slab. A fast crossover from one-dimensional (1D) to three-dimensional (3D) behavior of the thermal conductivity is observed in the system.

  11. Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, H.; Itoi, R.; Fujii, J. [Kyushu University, Fukuoka (Japan). Faculty of Engineering, Department of Earth Resources Engineering; Uchida, Y. [Geological Survey of Japan, Tsukuba (Japan)

    2005-06-01

    In order to predict the long-term performance of large-scale ground-coupled heat pump (GCHP) systems, it is necessary to take into consideration well-to-well interference, especially in the presence of groundwater flow. A mass and heat transport model was developed to simulate the behavior of this type of system in the Akita Plain, northern Japan. The model was used to investigate different operational schemes and to maximize the heat extraction rate from the GCHP system. (author)

  12. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  13. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation. [ECRH (Electron Cyclotron Resonance Heating)

    Energy Technology Data Exchange (ETDEWEB)

    Erckmann, V; Gasparino, U; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)) (and others)

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a[<=]18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T[sub e] modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs.

  14. Possible role of oceanic heat transport in early Eocene climate

    Science.gov (United States)

    Sloan, L. C.; Walker, J. C.; Moore, T. C. Jr

    1995-01-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  15. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  16. Upgrading primary heat transport pump seals

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Rhodes, D.; McInnes, D.

    1995-01-01

    Changes in the operating environment at the Bruce-A Nuclear Generating Station created the need for an upgraded Primary Heat Transport Pump (PHTP) seal. In particular, the requirement for low pressure running during more frequent start-ups exposed a weakness of the CAN2 seal and reduced its reliability. The primary concern at Bruce-A was the rotation of the CAN2 No. 2 stators in their holders. The introduction of low pressure running exacerbated this problem, giving rapid wear of the stator back face, overheating, and thermocracking. In addition, the resulting increase in friction between the stator and its holder increased stationary-side hysteresis and thereby changed the seal characteristic to the point where interseal pressure oscillations became prevalent. The resultant increased hysteresis also led to hard rubbing of the seal faces during temperature transients. An upgraded seal was required for improved reliability to avoid forced outages and to reduce maintenance costs. This paper describes this upgraded 'replacement seal' and its performance history. In spite of the 'teething' problems detailed in this paper, there have been no forced outages due to the replacement seal, and in the words of a seal maintenance worker at Bruce-A, 'it allows me to go home and sleep at night instead of worrying about seal failures.' (author)

  17. Intense radiative heat transport across a nano-scale gap

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Ghafari, Amin; Bogy, David B.

    2016-01-01

    In this paper, we analyze the radiative heat transport in layered structures. The analysis is based on our prior description of the spectrum of thermally excited waves in systems with a heat flux. The developed method correctly predicts results for all known special cases for both large and closing gaps. Numerical examples demonstrate the applicability of our approach to the calculation of the radiative heat transport coefficient across various layered structures.

  18. Heat and Mass Transport in Heat Pipe Wick Structures

    OpenAIRE

    Iverson, B. D.; Davis, T. W.; Garimella, S V; North, M. T.; Kang, S.

    2007-01-01

    Anovel experimental approach is developed for characterizing the performance of heat pipe wick structures. This approach simulates the actual operation of wick structures in a heat pipe. Open, partially submerged, sintered copper wicks of varying pore size are studied under the partially saturated conditions found in normal heat pipe operation. A vertical wick orientation, where the capillary lift is in opposition to gravity, is selected to test the wicks under the most demanding conditions. ...

  19. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  20. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, Campus Box 600, University of Colorado, Boulder, CO 80303 (United States); Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Smolarkiewicz, Piotr K. [European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX (United Kingdom); Rast, Mark P., E-mail: Jean-Francois.Cossette@lasp.colorado.edu, E-mail: paulchar@astro.umontreal.ca, E-mail: smolar@ecmwf.int, E-mail: Mark.Rast@lasp.colorado.edu [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, Campus Box 391, University of Colorado, Boulder, CO 80303 (United States)

    2017-05-20

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.

  1. SEAWAT-based simulation of axisymmetric heat transport.

    Science.gov (United States)

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  2. Optimal wall spacing for heat transport in thermal convection

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, Olga [Max Planck Institute for Dynamics and Self-Organization, Goettingen (Germany)

    2016-11-01

    The simulation of RB flow for Ra up to 1 x 10{sup 10} is computationally expensive in terms of computing power and hard disk storage. Thus, we gratefully acknowledge the computational resources supported by Leibniz-Rechenzentrum Munich. Compared to Γ=1 situation, a new physical picture of heat transport is identified here at Γ{sub opt} for any explored Ra. Therefore, a detailed comparison between Γ=1 and Γ=Γ{sub opt} is valuable for our further research, for example, their vertical temperature and velocity profiles. Additionally, we plan to compare the fluid with different Pr under geometrical confinement, which are computationally expensive for the situations of Pr<<1 and Pr>>1.

  3. Some factors affecting radiative heat transport in PWR cores

    International Nuclear Information System (INIS)

    Hall, A.N.

    1989-04-01

    This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO 2 . It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO 2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 2200 0 C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)

  4. Thaw flow control for liquid heat transport systems

    Science.gov (United States)

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  5. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation

    International Nuclear Information System (INIS)

    Erckmann, V.; Gasparino, U.; Giannone, L.

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a≤18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T e modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs

  6. Consequences of nonlinear heat transport laws on expected plasma profiles

    International Nuclear Information System (INIS)

    Lackner, K.

    1987-03-01

    The expected variation of plasma pressure profiles against changes in power deposition is investigated by using a simple linear heat transport law as well as a quadratic one. Applying the quadratic transport law it can be shown that the stiffening of the resulting profiles is sufficient to understand the experimentally measured phenomenon of 'profile consistence' without further assumptions of nonlocal effects. (orig.) [de

  7. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  8. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  9. Heat transport in bubbling turbulent convection

    NARCIS (Netherlands)

    Lakkaraju, R.; Stevens, Richard Johannes Antonius Maria; Oresta, P.; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to

  10. Long-distance heat transport by hot water

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.

    1990-01-01

    From the analysis of the centralized heat supply in the GDR energy-economical and ecological indispensable developments of long-distance heat systems in conurbation are derived. The heat extraction from a nuclear power plant combined with long- distance hot-water transport over about 110 kilometres is investigated and presented as a possibility to perspective base load heat demands for the district around Dresden. By help of industrial-economic, hydraulic and thermic evaluations of first design variants of the transit system the acceptance of this ecologic and energetic preferred solution is proved and requirements for its realization are shown

  11. Heat transport modeling of the dot spectroscopy platform on NIF

    Science.gov (United States)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.

    2018-04-01

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.

  12. Heat transport and surface heat transfer with helium in rotating channels

    International Nuclear Information System (INIS)

    Schnapper, C.

    1978-06-01

    Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de

  13. Passive heat transport in advanced CANDU containment

    International Nuclear Information System (INIS)

    Krause, M.; Mathew, P.M.

    1994-01-01

    A passive CANDU containment design has been proposed to provide the necessary heat removal following a postulated accident to maintain containment integrity. To study its feasibility and to optimize the design, multi-dimensional containment modelling may be required. This paper presents a comparison of two CFD codes, GOTHIC and PHOENICS, for multi-dimensional containment analysis and gives pressure transient predictions from a lumped-parameter and a three-dimensional GOTHIC model for a modified CANDU-3 containment. GOTHIC proved suitable for multidimensional post-accident containment analysis, as shown by the good agreement with pressure transient predictions from PHOENICS. GOTHIC is, therefore, recommended for passive CANDU containment modelling. (author)

  14. Variational principles in terms of entransy for heat transfer

    International Nuclear Information System (INIS)

    Xu, Mingtian

    2012-01-01

    A variational principle for heat conduction is formulated which results in the steady state heat conduction equation established from the Fourier law. Furthermore based on the thermodynamics in terms of entransy a more general functional is defined for incompressible fluids. We show that extremizing this functional gives rise to the state described by the Navier-Stokes-Fourier equations with vanishing substantive derivatives of the temperature and velocity field. In this sense one may conclude that this variational principle is consistent with the Navier-Stokes-Fourier equations. Therefore the variational principle developed in the present work demonstrates a great advantage over the minimum entropy production principle. -- Highlights: ► A variational principle for heat transfer of incompressible fluid is established in terms of entransy. ► For pure heat conduction the variational principle leads to the classical steady state heat conduction equation. ► For heat convection the variational principle is consistent with the Navier-Stokes-Fourier equations.

  15. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  16. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  17. Heat transport in bubbling turbulent convection.

    Science.gov (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  18. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  19. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  20. The heat and moisture transport properties of wet porous media

    International Nuclear Information System (INIS)

    Wang, B.X.; Fang, Z.H.; Yu, W.P.

    1989-01-01

    Existing methods for determining heat and moisture transport properties in porous media are briefly reviewed, and their merits and deficiencies are discussed. Emphasis is placed on research in developing new transient methods undertaken in China during the recent years. An attempt has been made to relate the coefficients in the heat and mass transfer equations with inherent properties of the liquid and matrix and then to predict these coefficients based on limited measurements

  1. Stable solutions of nonlocal electron heat transport equations

    International Nuclear Information System (INIS)

    Prasad, M.K.; Kershaw, D.S.

    1991-01-01

    Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution

  2. Electron heat transport studies using transient phenomena in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jacchia, A.; Angioni, C.; Manini, A.; Ryter, F.; Apostoliceanu, M.; Conway, G.; Fahrbach, H.-U.; Kirov, K.K.; Leuterer, F.; Reich, M.; Sutttrop, W.; Cirant, S.; Mantica, P.; De Luca, F.; Weiland, J.

    2005-01-01

    Experiments in tokamaks suggest that a critical gradient length may cause the resilient behavior of T e profiles, in the absence of ITBs. This agrees in general with ITG/TEM turbulence physics. Experiments in ASDEX Upgrade using modulation techniques with ECH and/or cold pulses demonstrate the existence of a threshold in R/L Te when T e >T i and T e ≤T i . For T e >T i linear stability analyses indicate that electron heat transport is dominated by TEM modes. They agree in the value of the threshold (both T e and n e ) and for the electron heat transport increase above the threshold. The stabilization of TEM modes by collisions yielded by gyro-kinetic calculations, which suggests a transition from TEM to ITG dominated transport at high collisionality, is experimentally demonstrated by comparing heat pulse and steady-state diffusivities. For the T e ∼T i discharges above the threshold the resilience, normalized by T e 3/2 , is similar to that of the TEM dominated cases, despite very different conditions. The heat pinch predicted by fluid modeling of ITG/TEM turbulence is investigated by perturbative transport in off-axis ECH-heated discharges. (author)

  3. Electron heat transport in stochastic magnetic layer

    International Nuclear Information System (INIS)

    Becoulet, M.; Ghendrih, Ph.; Capes, H.; Grosman, A.

    1999-06-01

    Progress in the theoretical understanding of the local behaviour of the temperature field in ergodic layer was done in the framework of quasi-linear approach but this quasi-linear theory was not complete since the resonant modes coupling (due to stochasticity) was neglected. The stochastic properties of the magnetic field in the ergodic zone are now taken into account by a non-linear coupling of the temperature modes. The three-dimension heat transfer modelling in the ergodic-divertor configuration is performed by quasi-linear (ERGOT1) and non-linear (ERGOT2) numerical codes. The formalism and theoretical basis of both codes are presented. The most important effect that can be simulated with non-linear code is the averaged temperature profile flattening that occurs in the ergodic zone and the barrier creation that appears near the separatrix during divertor operation. (A.C.)

  4. Miniature Heat Transport System for Spacecraft Thermal Control

    Science.gov (United States)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  5. Study of the electron heat transport in Tore-Supra tokamak

    International Nuclear Information System (INIS)

    Harauchamps, E.

    2004-01-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  6. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  7. Transport properties and specific heat of UTe and USb

    International Nuclear Information System (INIS)

    Ochiai, A.; Suzuki, Y.; Shikama, T.; Suzuki, K.; Hotta, E.; Haga, Y.; Suzuki, T.

    1994-01-01

    Uranium monochalcogenides and monopnictides crystallize in the NaCl-type structure and exhibit ferromagnetic and antiferromagnetic order, respectively. These series reveal interesting properties such as Kondo behavior of UTe. However, such interesting properties are much sample dependent. We grew single crystals of USb and UTe with high purity using the Bridgman technique, and measured transport properties and specific heat. ((orig.))

  8. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  9. FFTF Heat Transport System (HTS) component and system design

    International Nuclear Information System (INIS)

    Young, M.W.; Edwards, P.A.

    1980-01-01

    The FFTF Heat Transport Systems and Components designs have been completed and successfully tested at isothermal conditions up to 427 0 C (800 0 F). General performance has been as predicted in the design analyses. Operational flexibility and reliability have been outstanding throughout the test program. The components and systems have been demonstrated ready to support reactor powered operation testing planned later in 1980

  10. Nuclear transport of heat shock proteins in stressed cells

    International Nuclear Information System (INIS)

    Chughtai, Zahoor Saeed

    2001-01-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or β-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-β-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single β-importin gene. With this assay I have identified Nmd5p as a β-importin required to concentrate Star-β-galactosidase in nuclei of stationary phase cells. (author)

  11. Nuclear transport of heat shock proteins in stressed cells

    Energy Technology Data Exchange (ETDEWEB)

    Chughtai, Zahoor Saeed

    2001-07-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or {beta}-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-{beta}-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single {beta}-importin gene. With this assay I have identified Nmd5p as a {beta}-importin required to concentrate Star-{beta}-galactosidase in nuclei of stationary phase cells. (author)

  12. Magnus: A New Resistive MHD Code with Heat Flow Terms

    Science.gov (United States)

    Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-07-01

    We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.

  13. Latent heat transport and microlayer evaporation in nucleate boiling

    International Nuclear Information System (INIS)

    Jawurek, H.H.

    1977-08-01

    Part 1 of this work provides a broad overview and, where possible, a quantitative assessment of the complex physical processes which together constitute the mechanism of nucleate boiling heat transfer. It is shown that under a wide range of conditions the primary surface-to-liquid heat flows within an area of bubble influence are so redistributed as to manifest themselves predominantly as latent heat transport, that is, as vaporisation into attached bubbles. Part 2 deals in greater detail with one of the component processes of latent heat transport, namely microlayer evaporation. A literature review reveals the need for synchronised records of microlayer geometry versus time and of normal bubble growth and departure. An apparatus developed to provide such records is described. High-speed cine interference photography from beneath and through a transparent heating surface provided details of microlayer geometry and an image reflection system synchronised these records with the bubble profile views. Results are given for methanol and ethanol boiling at sub-atmospheric pressures and at various heat fluxes and bulk subcoolings. In all cases it is found that microlayers were of sub-micron thickness, that microlayer thinning was restricted to the inner layer edge (with the thickness elsewhere remaining constant or increasing with time) and that the contribution of this visible evaporation to the total vapour flow into bubbles was negligible. The observation of thickening towards the outer microlayer edge, however, demonstrates that a liquid replenishment flow occurred simultaneously with the evaporation process

  14. Perturbative Heat Transport Experiments on TJ-II

    International Nuclear Information System (INIS)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-01-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs

  15. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  16. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  17. Electron heat transport in shaped TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y; Pochelon, A; Bottino, A; Coda, S; Ryter, F; Sauter, O; Behn, R; Goodman, T P; Henderson, M A; Karpushov, A; Porte, L; Zhuang, G

    2005-01-01

    Electron heat transport experiments are performed in L-mode discharges at various plasma triangularities, using radially localized electron cyclotron heating to vary independently both the electron temperature T e and the normalized electron temperature gradient R/L T e over a large range. Local gyro-fluid (GLF23) and global collisionless gyro-kinetic (LORB5) linear simulations show that, in the present experiments, trapped electron mode (TEM) is the most unstable mode. Experimentally, the electron heat diffusivity χ e is shown to decrease with increasing collisionality, and no dependence of χ e on R/L T e is observed at high R/L T e values. These two observations are consistent with the predictions of TEM simulations, which supports the fact that TEM plays a crucial role in electron heat transport. In addition, over the broad range of positive and negative triangularities investigated, the electron heat diffusivity is observed to decrease with decreasing plasma triangularity, leading to a strong increase of plasma confinement at negative triangularity

  18. Mobile heat accumulators for lorry or train transport?; Mobile Waermespeicher fuer den LKW- oder Zugtransport?

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-07-01

    Where heat grids cannot be laid for geographic reasons, mobile heat accumulators may be appropriate. The mobile heat accumulators are transported by lorry or train between the heat source and the heat sink. The waste heat can be decoupled from biogas plants, waste incineration plants or industrial sites. Existing road or rail networks can be used for transportation. Decisive factors to achieve low heat production costs are: free waste heat, large and continuous heat quantities as well as a short distance between the heat source and the heat sink. (orig.)

  19. Study of heat transfer and particle transport in Tore Supra and HL-2A tokamaks

    International Nuclear Information System (INIS)

    Song, S.

    2011-12-01

    This thesis reports on experimental studies of heat and particles transport performed on 2 large tokamaks: Tore Supra (based at CEA/Cadarache, France) and HL-2A (based at the Southwestern Institute of Physics, Chengdu, China). The modulated source is the Electron Cyclotron Resonance Heating (ECRH) for the heat pinch and density pump-out studies, while the non-local transport experiments use the Supersonic Molecular Beam Injection (SMBI) as source of modulation. The emphasis is put on the inward heat pinch. In the off-axis ECRH modulation experiments on Tore Supra with low frequency (1 Hz), strong heat inward transport has been observed, in particular for low density. Two transport models have been applied in order to analyze the experimental behavior. The first one is the linear pinch model (LPM) and the second one is an empirical model based on micro-instabilities theory, named Critical Gradient Model (CGM). Good agreement has been found for all harmonics between the experimental data and the simulation using LPM. On the other hand, good agreement has not been achieved using CGM. The density pump-out with large particles and energy losses during ECRH is commonly observed in tokamaks. A new dynamic approach using the modulation technique has been used in HL-2A for analyzing the transient phase of the density pump-out. A correlation between the turbulence increase and the density pump-out has been found. The non-local transport phenomenon, characterized by a fast transient process compared to the normal diffusive response to the perturbation is observed. Both phenomena, i.e., pump-out and non-locality, show as simultaneous variation of density and temperature. This can be an inspiration for the usage of a transport matrix which considers the density and temperature evolution together. Simulations with a simple transport matrix, with non-diagonal terms coupling temperature and density qualitatively reproduce the non-local and pump-out effects qualitatively

  20. Local and Nonlocal Parallel Heat Transport in General Magnetic Fields

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Chacon, L.

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  1. Heat Transport in Gapped Spin-Chain Systems

    International Nuclear Information System (INIS)

    Shimshoni, E.

    2006-01-01

    Full Text: We study the contribution of magnetic excitations to the heat transport in gapped spin-chain systems. These systems are characterized by a substantially enhanced heat conductivity, which can be traced back to the existence of weakly violated conservation laws. We focus particularly on the behavior of clean two-leg spin ladder compounds, where one-dimensional exotic spin excitations are coupled to three-dimensional phonons. We show that the contributions of the two types of heat carriers can not be easily disentangled. Depending on the ratios of spin gaps and the Debye energy, the heat conductivity can be either exponentially increasing or exponentially decreasing as a function of temperature (T). In addition, the magnetic contribution to the total heat conductivity may be either positive or negative. We discuss its T-dependence in various possible regimes, and note that in most regimes it is dominated by spin-phonon drag: the two types of heat carriers have almost the

  2. Heating and transport in TFTR D-T plasmas

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Scott, S.D.

    1994-01-01

    The confinement and heating of supershot plasmas are significantly enhanced with tritium beam injection relative to deuterium injection in TFTR. The global energy confinement and local thermal transport are analyzed for deuterium and tritium fueled plasmas to quantify their dependence on the average mass of the hydrogenic ions. The radial profiles of the deuterium and tritium densities are determined from the DT fusion neutron emission profile

  3. Design to nullify activity movement in heat transport systems

    International Nuclear Information System (INIS)

    Hemmings, R.L.; Barber, D.

    1975-01-01

    This article describes the methods by which designers can reduce the adverse effects of system corrosion and the resultant activation of the corrosion products in heat transport systems. The presentation will cover: a) choice of materials; b) assessment of the need of components; c) control of system chemistry; d) factors considered in sizing HTS purification systems; i) control of activation and fission products; ii) decontamination. (author)

  4. A new treatment of the heat transport equation with a transport barrier and applications to ECRH experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X.L.; Giruzzi, A.G.; Bouquey, F.; Clary, J.; Darbos, C.; Lennholm, M.; Magne, R.; Segui, J.L. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Clemencon, A. [MIT, Electrochemical Energy Laboratory, Cambridge, MA (United States); Guivarch, C. [Ecole Nationale des Ponts et Chaussees, 77 - Marne-la-Vallee (France)

    2004-07-01

    An exact analytical solution of the electron heat diffusion equation in a cylinder has been found with a step-like diffusion coefficient, plus a monomial increase in the radial direction and a constant damping term. This model is sufficiently general to describe heat diffusion in the presence of a critical gradient threshold or a transport barrier, superimposed to the usual trend of increasing heat diffusivity from the plasma core to the edge. This type of representation allows us to see some well-known properties of heat transport phenomena in a different light. For instance, it has been shown that the contributions of the Eigenmodes to the time dependent solution grow at speeds that depend on the Eigenmode order i.e. at the beginning of the heating phase all the Eigenmodes are equally involved, whereas at the end only the lower order ones are left. This implies, e.g., that high frequency modulation experiments provide a characterization of transport phenomena that is intrinsically different with respect to power balance analysis of a stationary phase. It is particularly useful to analyse power switch on/off events and whenever high frequency modulations are not technically feasible. Low-frequency (1-2 Hz) ECRH modulation experiments have been performed on Tore Supra. A large jump (a factor of 8) in the heat diffusivity has been clearly identified at the ECRH power deposition layer. The amplitude and phase of several harmonics of the Fourier transform of the modulated temperature, as well as the time evolution of the modulated temperature have been reproduced by the analytical solution. The jump is found to be much weaker at lower ECRH power (one gyrotron)

  5. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  6. Heat transport modelling in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2009-02-01

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

  7. Climate in the Absence of Ocean Heat Transport

    Science.gov (United States)

    Rose, B. E. J.

    2015-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.

  8. Turbulent transport regimes and the SOL heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2014-10-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks, and for seeking possible mitigation schemes. Simulation and theory results using reduced edge/SOL turbulence models have produced SOL widths and scalings in reasonable accord with experiments in many cases. In this work, we attempt to qualitatively and conceptually understand various regimes of edge/SOL turbulence and the role of turbulent transport in establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. Recent SOLT turbulence code results are employed to understand the roles of these considerations and to develop analytical scalings. We find a heat flux width scaling with major radius R that is generally positive, consistent with older results reviewed in. The possible relationship of turbulence mechanisms to the heuristic drift mechanism is considered, together with implications for future experiments. Work supported by US DOE grant DE-FG02-97ER54392.

  9. Comparison of temperature estimates from heat transport model and electrical resistivity tomography during a shallow heat injection and storage experiment

    OpenAIRE

    Hermans, Thomas; Daoudi, Moubarak; Vandenbohede, Alexander; Robert, Tanguy; Caterina, David; Nguyen, Frédéric

    2012-01-01

    Groundwater resources are increasingly used around the world as geothermal systems. Understanding physical processes and quantification of parameters determining heat transport in porous media is therefore important. Geophysical methods may be useful in order to yield additional information with greater coverage than conventional wells. We report a heat transport study during a shallow heat injection and storage field test. Heated water (about 50°C) was injected for 6 days at the rate of 80 l...

  10. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  11. Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes

    International Nuclear Information System (INIS)

    Deconinck, T.; Mahadevan, S.; Raja, L.L.

    2009-01-01

    The fluid (continuum) approach is commonly used for simulation of plasma phenomena in electrical discharges at moderate to high pressures (>10's mTorr). The description comprises governing equations for charged and neutral species transport and energy equations for electrons and the heavy species, coupled to equations for the electromagnetic fields. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species (ion) energy equations. Proper numerical discretization of this term is necessary for accurate description of discharge energetics; however, discretization of this term poses a special problem in the case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each cell. We propose a method for the numerical discretization of the Joule heating term using a cell-centered finite volume approach on unstructured meshes with closed convex cells. The Joule heating term is computed by evaluating both the electric field and the species flux at the cell center. The dot product of these two vector quantities is computed to obtain the Joule heating source term. We compare two methods to evaluate the species flux at the cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at the face centers. The other recomputes the flux at the cell center using the common drift-diffusion approximation. The reconstructed flux scheme is the most stable method and yields reasonably accurate results on coarse meshes.

  12. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  13. Changes in the properties of superalloys by long term heating

    International Nuclear Information System (INIS)

    Susukida, H.; Tsuji, I.; Kawai, H.

    1976-01-01

    A laboratory study was conducted in order to determine the effect of long term heating (max. 10000h at 850 0 and 950 0 C) on the microstructure, tensile properties, hardness and stress rupture properties of four kinds of superalloys. These superalloys are two kinds of solid solution hardened Ni-base superalloys Hastelloy X and Inconel 617 and two kinds of dispersion strengthened Ni-base superalloys TD-Ni and TD-NiCr. The result of the study can be summarized as follows: (1) Solid solution hardened superalloys: Many precipitates were observed in the grains and on the grain boundaries after 100 hours of heating, and the precipitates became coarse-grained by over 1000 hours of heating. This tendency was remarkable when they were heated at 950 0 C. With the change of their microstructure, their mechanical properties also changed, particularly their tensile ductility decreased remarkably. (2) Dispersion strengthened superalloys: Their microstructure and mechanical properties were almost unchanged by long term heating. (3) The authors proposed ''solid solution hardening value'' in order to grasp quantitatively the solid solution hardening which has been discussed by the content of each element hitherto. (auth.)

  14. Catalytic heat exchangers - a long-term evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik A. [CATATOR AB, Lund (Sweden)

    2003-10-01

    A long-term evaluation concerning catalytic heat exchangers (CHEs) has been performed. The idea concerning CHEs was originally described in a number of reports issued by Catator almost a decade ago. The general idea with CHEs is to combust a fuel with a catalyst inside a heat exchanger to enable an effective heat transfer. The first design approaches demonstrated the function and the possibilities with CHEs but were defective concerning the heat exchanger design. Consequently, a heat exchanger company (SWEP International AB), which was specialised on brazed plate-type heat exchangers, joined the continued development project. Indeed, the new design approach containing Catator's wire-mesh catalysts and SWEP's plate-type heat exchangers enabled us to improve the concept considerably. The new design complied with a number of relevant technical demands, e.g.: Simplicity; Compactness and integration (few parts); High thermal efficiency; Low pressure drop; Excellent emissions; High turn-down ratio; Reasonable production cost. Spurred by the technical progresses, the importance of a long-term test under realistic conditions was clear. A long-term evaluation was initialised at Sydkraft Gas premises in Aastorp. The CHE was installed on a specially designed rig to enable accelerated testing with respect to the number of transients. The rig was operated continuously for 5000 hours and emission mapping was carried out at certain time intervals. Following some problems during the initial phase of the long-term evaluation, which unfortunately also delayed the project, the results indicated very stable conditions of operation. The emissions have been rather constant during the course of the test and we cannot see any tendencies to decreased performances. Indeed, the test verifies the function, operability and reliability of the CHE-concept. Apart from domestic boilers we foresee a number of interesting and relevant applications in heating and process technology. Since

  15. Three dimensional heat transport modeling in Vossoroca reservoir

    Science.gov (United States)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to

  16. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  17. Parallel heat transport in integrable and chaotic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  18. Study on a neon cryogenic oscillating heat pipe with long heat transport distance

    Science.gov (United States)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2017-12-01

    An experimental study is carried out to study the heat transfer characteristics of a cryogenic oscillating heat pipe (OHP) with long heat transport distance. The OHP is made up of a capillary tube with an inner diameter of 1.0 mm and an outer diameter of 2.0 mm. The working fluid is neon, and the length of the adiabatic section is 480 mm. Tests are performed with the different heat inputs, liquid filling ratios and condenser temperature. For the cryogenic OHP with a liquid filling ratio of 30.7% at the condenser temperature of 28 K, the effective thermal conductivity is 3466-30,854 W/m K, and the maximum transfer power is 35.60 W. With the increment of the heat input, the effective thermal conductivity of the cryogenic OHP increases at the liquid filling ratios of 30.7% and 38.5%, while it first increases and then decreases at the liquid filling ratios of 15.2% and 23.3%. Moreover, the effective thermal conductivity increases with decreasing liquid filling ratio at the small heat input, and the maximum transfer power first increases and then decreases with increasing liquid filling ratio. Finally, it is found that the thermal performance of the cryogenic OHP can be improved by increasing the condenser temperature.

  19. Electron heat transport analysis of low-collisionality plasmas in the neoclassical-transport-optimized configuration of LHD

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu

    2002-01-01

    Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)

  20. Fission products transport in CANDU Primary Heat Transport System in a severe accident

    International Nuclear Information System (INIS)

    Constantin, M.; Rizoiu, A.; Turcu, I.; Negut, Gh.

    2005-01-01

    Full text: The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) System by using the ASTEC code (Accident Source Term Evaluation Code). The complexity of the data required by ASTEC and the complexity of CANDU PHT were strong motivation to begin with a simplified geometry in order to avoid the introducing of unmanageable errors at the level of input deck. Thus only 1/4 of the PHT circuit was simulated, an simplified FPs inventory and some simplifications in the feeders geometry were also used. The circuit consists of 95 horizontal fuel channels connected to 95 horizontal out-feeders, then through vertical feeders to the outlet-header (a big pipe that collects the water from feeders); the circuit continues from the outlet-header with a riser and then with the steam generator and a pump. After this pump, the circuit was broken; in this point the FPs are transferred to the containment. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU NPP loss of coolant accident sequence. Temperature and pressure conditions in the time of the accident were calculated by CATHENA code and the source term of FPs introduced into the PHT was estimated by ORIGEN code. The results consist of mass distributions in the nodes of the circuit and the mass transfer to the containment through the break for different species (FPs and chemical species). The study is completed by sensitivity analysis for the parameters with important uncertainties. (authors)

  1. Cascade: a review of heat transport and plant design issues

    International Nuclear Information System (INIS)

    Murray, K.A.; McDowell, M.W.

    1984-01-01

    A conceptual heat transfer loop for Cascade, a centrifugal-action solid-breeder reaction chamber, has been investigated and results are presented. The Cascade concept, a double-cone-shaped reaction chamber, rotates along its horizontal axis. Solid Li 2 O or other lithium-ceramic granules are injected tangentially through each end of the chamber. The granules cascade axially from the smaller radii at the ends to the larger radius at the center, where they are ejected into a stationary granule catcher. Heat and tritium are then removed from the granules and the granules are reinjected into the chamber. A 50% dense Li 2 O granule throughput of 2.8 m 3 /s is transferred from the reaction chamber to the steam generators via continuous bucket elevators. The granules then fall by gravity through 4 vertical steam generators. The entire transport system is maintained at the same vacuum conditions present inside the reaction chamber

  2. Heat transport inventory monitoring for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Hussein, E.; Luxat, J.C.

    1984-01-01

    A computer-based D 2 O coolant inventory monitoring system proposed for implementation on the digital computer controllers at Ontario Hydro's CANDU generating units is discussed. By monitoring process parameters and utilizing probabilistically-based decision algorithms, timely indication of any significant loss of D 2 O inventory will be provided to the operator. The monitoring is performed in a co-ordinated manner such that D 2 O losses from either the heat transport system or the inventory control system can be detected. (orig.)

  3. Safety studies on heat transport and afterheat removal for GCR accident conditions

    International Nuclear Information System (INIS)

    Hishida, Makoto

    1996-01-01

    The IAEA coordinated an international research program on 'Heat Transport and Afterheat Removal for GCRs under Accident Conditions (CRP-3)'. America, China, France, Germany, Japan, Netherlands and Russia participate the program. Final goal of the program is to show clearly to the world one of the most important salient features of the HTGR, that is the HTGR reactor can be cooled down by passive measures without causing any damage to the nuclear reactor system even in accidental conditions, and to make clear the boundaries (or restrictions) for the passive cooling regime. The first 5 year term of the coordinate program started in 1993 and established a goal to improve common knowledge for decay heat removal and to improve our tools, like computer codes and analytical models for the prediction of the performance of decay heat removal system. We are now performing benchmark problems for these purposes. The present efforts are concentrated on the benchmark for the passive heat removal performance outside the reactor vessel, partly because we have two different type of the HTGR in the world, the pebble bed type and the block type reactor. They have quite different heat dissipation behavior inside the reactor vessel. However, they have quite similar residual heat removal process outside the reactor vessel. For the first step of the international cooperation, we selected the common problem. After finishing the present benchmark we are planning to proceed to tackle the inside heat removal problem. (J.P.N.)

  4. A simulation of heat transfer during billet transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A.; Glogovac, B. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering; Zak, B. T. [Terming d.o.o., Ljubljana (Slovenia)

    2002-07-01

    This paper presents a simulation model for billet cooling during the billet's transport from the reheating furnace to the rolling mill. During the transport, the billet is exposed to radiation, convection and conduction. Due to the rectangular shape of the billet, the three-dimensional finite-difference model could be applied to calculate the heat conduction inside the billet. The billets are reheated in a gas-fired walking-beam furnace and are exposed to scaling. The model takes into account the effect of the thin oxide scale. We proved that the scale significantly affects the temperature distribution in the billet and should not be neglected. The model was verified by using a thermal camera. (author)

  5. Signal mediators at induction of heat resistance of wheat plantlets by short-term heating

    Directory of Open Access Journals (Sweden)

    Yu. V. Karpets

    2015-12-01

    Full Text Available The effects of functional interplay of calcium ions, reactive oxygen species (ROS and nitric oxide (NO in the cells of wheat plantlets roots (Triticum aestivum L. at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 °С during 1 minute have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium, lanthanum chloride (blocker of calcium channels of various types and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C. The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate and NO-synthase (NG-nitro-L-arginine methyl ester – L-NAME, and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea. These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets’ heat resistance, invoked by hardening heating. The conclusion on calcium’s role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made.

  6. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  7. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  8. Policies and initiatives for carbon neutrality in nordic heating and transport systems

    DEFF Research Database (Denmark)

    Muller, Jakob Glarbo; Wu, Qiuwei; Ostergaard, Jacob

    2012-01-01

    Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the propagation of heat pumps while the focus within transport systems is initiatives regarding electric vehicles (EVs). It is found that conversion...... to heat pumps in the Nordic region rely on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans...... for the future heating and transport systems with the ambition of realizing carbon neutrality....

  9. Fluid description of particle transport in hf heated magnetized plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1980-01-01

    Particle fluxes averaged over high-frequency oscillations are analyzed. The collisional effects and the kinetic mechanisms of energy absorption are included. Spatial dependences of both the high-frequency and the (quasi-)steady electromagnetic fields are arbitrary. The equations governing the fluxes are deduced from the moments of the averaged kinetic equation. Explicit expressions for steady state fluxes are given in terms of electromagnetic field quantities. The results can also be applied to anomalous transport phenomena in weakly turbulent plasmas. (author)

  10. Currents and fluctuations of quantum heat transport in harmonic chains

    International Nuclear Information System (INIS)

    Motz, T; Ankerhold, J; Stockburger, J T

    2017-01-01

    Heat transport in open quantum systems is particularly susceptible to the modeling of system–reservoir interactions. It thus requires us to consistently treat the coupling between a quantum system and its environment. While perturbative approaches are successfully used in fields like quantum optics and quantum information, they reveal deficiencies—typically in the context of thermodynamics, when it is essential to respect additional criteria such as fluctuation-dissipation theorems. We use a non-perturbative approach for quantum dissipative dynamics based on a stochastic Liouville–von Neumann equation to provide a very general and extremely efficient formalism for heat currents and their correlations in open harmonic chains. Specific results are derived not only for first- but also for second-order moments, which requires us to account for both real and imaginary parts of bath–bath correlation functions. Spatiotemporal patterns are compared with weak coupling calculations. The regime of stronger system–reservoir couplings gives rise to an intimate interplay between reservoir fluctuations and heat transfer far from equilibrium. (paper)

  11. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  12. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  13. Three-dimensional model of heat transport during In Situ Vitrification with melting and cool down

    International Nuclear Information System (INIS)

    Hawkes, G.L.

    1993-01-01

    A potential technology for permanent remediation of buried wastes is the In Situ Vitrification (ISV) process. This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable, glasslike material that encapsulates and immobilizes buried wastes. The magnitude of the resulting electrical resistance heating is sufficient to cause soil melting. As the molten region grows, surface heat losses cause the soil near the surface to re solidify. This paper presents numerical results obtained by considering heat transport and melting when solving the conservation of mass and energy equations using finite element methods. A local heat source is calculated by solving the electric field equation and calculating a Joule Heat source term. The model considered is a three-dimensional model of the electrodes and surrounding soil. Also included in the model is subsidence; where the surface of the melted soil subsides due to the change in density when the soil melts. A power vs. time profile is implemented for typical ISV experiments. The model agrees well with experimental data for melt volume and melt shape

  14. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  15. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  16. Study of the electron heat transport in Tore-Supra tokamak; Etude du transport de la chaleur electronique dans le Tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Harauchamps, E

    2004-07-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  17. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  18. Photothermal heating in metal-embedded microtools for material transport

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2016-01-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer...... as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control...... and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an opticallyfabricated and actuated microtool. As proof of concept, we demonstrate loading...

  19. Development of CANDU 6 Primary Heat Transport System Modeling Program

    International Nuclear Information System (INIS)

    Seo, Hyung-beom; Kim, Sung-min; Park, Joong-woo; Kim, Kwang-su; Ko, Dae-hack; Han, Bong-seob

    2007-01-01

    NUCIRC is a steady-state thermal-hydraulic code used for design and performance analyses of CANDU Heat Transport System. The code is used to build PHT model in Wolsong NPP and to calculate channel flow distribution. Wolsong NPP has to calculate channel flow distribution and quality of coolant at the ROH header after every outage by OPP (Operating Policy and Principal). PHT modeling work is time consuming which need a lot of operation experience and specialty. It is very difficult to build PHT model as plant operator in two weeks which is obligate for plant operation after every outage. That is why Wolsong NPP develop NUMODEL (NUcirc MODELing) with many-years experience and a know-how of using NUCIRC code. NUMODEL is computer program which is used to create PHT model based on utilizing NUCIRC code

  20. Periodic inspection for safety of CANDU heat transport piping systems

    International Nuclear Information System (INIS)

    Ellyin, F.

    1979-10-01

    Periodic inspection of heat transport and emergency core cooling piping systems is intended to maintain an adequate level of safety throughout the life of the plant, and to protect plant personnel and the public from the consequences of a failure and release of fission products. This report outlines a rational approach to the periodic inspection based on a fully probabilistic model. It demonstrates the methodology based on theoretical treatment and experimental data whereby the strength of a pressurized pipe or vessel containing a defect could be evaluated. It also shows how the extension of the defect at various lifetimes could be predicted. These relationships are prerequisite for the probabilistic formulation and analysis for the periodic inspection of piping systems

  1. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    International Nuclear Information System (INIS)

    Dou, Nicholas G.; Minnich, Austin J.

    2016-01-01

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials

  2. Heat and momentum transport scalings in vertical convection

    Science.gov (United States)

    Shishkina, Olga

    2016-11-01

    For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr > 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  3. Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels

    Science.gov (United States)

    Xia, Ke-Qing; Zhang, Lu

    2017-11-01

    We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).

  4. Tokamak electron heat transport by direct numerical simulation of small scale turbulence

    International Nuclear Information System (INIS)

    Labit, B.

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure β or the normalized Larmor radius, ρ * . The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters β and ρ * . The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand, the crucial role of the

  5. Climate in the absence of ocean heat transport

    Science.gov (United States)

    Rose, B. E. J.

    2017-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify the absolute climatic impact of OHT using the state-of-the-art CESM simulations by comparing a realistic control climate against a slab ocean simulation in which OHT is disabled. The absence of OHT leads to a massive expansion of sea ice into the subtropics in both hemispheres, and a 24 K global cooling. Analysis of the transient simulation after setting the OHT to zero reveals a global cooling process fueled by a runaway sea ice albedo feedback. This process is eventually self-limiting in the cold climate due to a combination of subtropical cloud feedbacks and surface wind effects that are both connected to a massive spin-up of the atmospheric Hadley circulation. A parameter sensitivity study shows that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is rather uncertain. These simulations provide a graphic illustration of how the intimate coupling between sea ice and ocean circulation governs the present-day climate, and by extension, highlight the importance of modeling ocean - sea ice interaction with high fidelity.

  6. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density gradient control to suppress heavy impurity accumulation. (author)

  7. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density control to suppress heavy impurity accumulation. (author)

  8. ALPHA - The long-term passive decay heat removal and aerosol retention program

    International Nuclear Information System (INIS)

    Guentay, S.; Varadi, G.; Dreier, J.

    1996-01-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs

  9. ALPHA - The long-term passive decay heat removal and aerosol retention program

    Energy Technology Data Exchange (ETDEWEB)

    Guentay, S; Varadi, G; Dreier, J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs.

  10. Transport at a crossroads. TERM 2008: indicators tracking transport and environment in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The TERM (Transport and Environment Reporting Mechanism) 2008 report examines performance of the transport sector vis-a-vis environmental performance and concludes that there are plenty of options for synenergies between different policy initiatives but also risk of measures counteracting each other. -Although there is growing awareness of to the transport sector's disproportionate impact on the environment, the report shows that there is little evidence of improved performance or a shift to sustainable transport across Europe. In particular: 1) freight transport has continued to grow; 2) passenger travel by road and air has continued to increase; 3) greenhouse gas emissions increased between 1990 and 2006; 4) air quality is still a problem across Europe despite continued reductions in air pollutant emissions from vehicles; and 5) transport noise levels are affecting the quality of life and health if EU citizens. (ln)

  11. ELECTRON TEMPERATURE FLUCTUATIONS AND CROSS-FIELD HEAT TRANSPORT IN THE EDGE OF DIII-D

    International Nuclear Information System (INIS)

    RUDAKOV, DL; BOEDO, JA; MOYER, RA; KRASENINNIKOV, S; MAHDAVI, MA; McKEE, GR; PORTER, GD; STANGEBY, PC; WATKINS, JG; WEST, WP; WHYTE, DG.

    2003-01-01

    OAK-B135 The fluctuating E x B velocity due to electrostatic turbulence is widely accepted as a major contributor to the anomalous cross-field transport of particles and heat in the tokamak edge and scrape-off layer (SOL) plasmas. This has been confirmed by direct measurements of the turbulent E x B transport in a number of experiments. Correlated fluctuations of the plasma radial velocity v r , density n, and temperature T e result in time-average fluxes of particles and heat given by (for electrons): Equation 1--Λ r ES = r > = 1/B varφ θ ; Equation 2--Q r ES = e (tilde v) r > ∼ 3/2 kT e Λ r ES + 3 n e /2 B varφ e (tilde E) θ > Q conv + Q cond . The first term in Equation 2 is referred to as convective and the second term as conductive heat flux. Experimental determination of fluxes given by Equations 1 and 2 requires simultaneous measurements of the density, temperature and poloidal electric field fluctuations with high spatial and temporal resolution. Langmuir probes provide most readily available (if not the only) tool for such measurements. However, fast measurements of electron temperature using probes are non-trivial and are not always performed. Thus, the contribution of the T e fluctuations to the turbulent fluxes is usually neglected. Here they report results of the studies of T e fluctuations and their effect on the cross-field transport in the SOL of DIII-D

  12. Heat transport analysis in a district heating and snow melting system in Sapporo and Ishikari, Hokkaido applying waste heat from GTHTR300

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Kamiji, Yu; Terada, Atsuhiko; Yan Xing; Inagaki, Yoshiyuki; Murata, Tetsuya; Mori, Michitsugu

    2015-01-01

    A district heating and snow melting system utilizing waste heat from Gas Turbine High temperature Gas Reactor of 300 MW_e (GTHTR300), a heat-electricity cogeneration design of high temperature gas-cooled reactor, was analyzed. Application areas are set in Sapporo and Ishikari, the heavy snowfall cities in Northern Japan. The heat transport analyses are carried out by modeling the components in the system; pipelines of the secondary water loops between GTHTR300s and heat demand district and heat exchangers to transport the heat from the secondary water loops to the tertiary loops in the district. Double pipe for the secondary loops are advantageous for less heat loss and smaller excavation area. On the other hand, these pipes has disadvantage of more electricity consumption for pumping. Most of the heat demand in the month of maximum requirement can be supplied by 2 GTHTR300s and delivered by 9 secondary loops and around 5000 heat exchangers. Closer location of GTHTR300 site to the heat demand district is largely advantageous economically. Less decrease of the distance from 40 km to 20 km made the heat loss half and cost of the heat transfer system 22% smaller. (author)

  13. Latent heat increases storage capacity. Heat transport by truck; Latente warmte vergroot opslagcapaciteit. Warmtetransport per vrachtauto is soms heel slim

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.

    2012-11-15

    The project-group Biomass CHP (combined production of heat and power) organized a tour with a workshop in Dortmund, Germany, September 26, 2012, on storage and transport of heat and biogas. There are several projects in Germany involving road transport of heat by means of containers. A swimming pool in Dortmund already is using this option since 2008. Waste heat from a CHP-installation for landfill gas is collected from a waste dump [Dutch] De projectgroep Biomassa en WKK organiseerde 26 September een excursie met workshop in Dortmund over opslag en transport van warmte en biogas. Er zijn in Duitsland al meerdere projecten waarbij warmte per container over de weg wordt vervoerd. Een Dortmunds zwembad werkt hier al sinds 2008 mee. De restwarmte van een wkk op stortgas wordt opgehaald bij een afvalstortplaats.

  14. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Science.gov (United States)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  15. A review on transportation of heat energy over long distance. Exploratory development

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q.; Wang, R.Z. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Luo, L.; Sauce, G. [LOCIE, Polytech' Savoie, Campus Scientifique, Savoie Technolac, 73376 Le Bourget-Du-Lac cedex (France)

    2009-08-15

    This paper presents a review on transportation of heat energy over long distance. For the transportation of high-temperature heat energy, the chemical catalytic reversible reaction is almost the only way available, and there are several reactions have been studied. For the relatively low-temperature heat energy, which exists widely as waste heat, there are mainly five researching aspects at present: chemical reversible reactions, phase change thermal energy storage and transportation, hydrogen-absorbing alloys, solid-gas adsorption and liquid-gas absorption. The basic principles and the characteristics of these methods are discussed. (author)

  16. Design capability of CANDU heat transport pump shafts against cracking

    International Nuclear Information System (INIS)

    Kumar, A.N.; Sheikh, Z.B.; Padgett, A.

    1993-01-01

    During 1986 three different Light Water Reactors (LWR's) in the U.S. reported either a cracked or fractured shaft on one or more of their reactor coolant (RC) pumps. The RC pumps for all these stations were supplied by Byron Jackson (BJ) Pump Company. A majority of CANDU heat transport (HT) pumps (equivalent of RC pumps) are supplied by BJ Pump Company and are similar in design to RC pumps. Hence the failure of these RC pumps in the U.S. utilities caused concern regarding the relevance of these failures to the BJ supplied CANDU HT pumps (HTP). This paper presents the results of AECL assessment to establish the capability of the HT pump shaft against cracking. Two methods were used for assessment: (a) detailed comparative design review of the HTP and RCP shafts; (b) semi-empirical analysis of the HTP shafts. The results of the AECL assessment showed significant differences in detailed design, materials, assembly and fits of various components and the control of operating parameters between the HT and RC pumps. It was concluded that because of these differences the failures similar to RC pump shafts are not likely to appear in HT pump shafts. This conclusion is further reinforced by about 140,000 hours of operating history of the longest running HT pump of comparable size to RC Pumps, without failures

  17. Strain dependence of the heat transport properties of graphene nanoribbons

    International Nuclear Information System (INIS)

    Emmeline Yeo, Pei Shan; Loh, Kian Ping; Gan, Chee Kwan

    2012-01-01

    Using a combination of accurate density-functional theory and a nonequilibrium Green’s function method, we calculate the ballistic thermal conductance characteristics of tensile-strained armchair (AGNR) and zigzag (ZGNR) edge graphene nanoribbons, with widths between 3 and 50 Å. The optimized lateral lattice constants for AGNRs of different widths display a three-family behavior when the ribbons are grouped according to N modulo 3, where N represents the number of carbon atoms across the width of the ribbon. Two lowest-frequency out-of-plane acoustic modes play a decisive role in increasing the thermal conductance of AGNR-N at low temperatures. At high temperatures the effect of tensile strain is to reduce the thermal conductance of AGNR-N and ZGNR-N. These results could be explained by the changes in force constants in the in-plane and out-of-plane directions with the application of strain. This fundamental atomistic understanding of the heat transport in graphene nanoribbons paves a way to effect changes in their thermal properties via strain at various temperatures. (paper)

  18. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...

  19. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  20. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    International Nuclear Information System (INIS)

    Nicolai, Ph.; Busquet, M.; Schurtz, G.

    2000-01-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  1. Results from transient transport experiments in Rijnhuizen tokamak project: Heat convection, transport barriers and 'non-local' effects

    International Nuclear Information System (INIS)

    Mantica, P.; Gorini, G.; Hogeweij, G.M.D.; Kloe, J. de; Lopez Cardozo, N.J.; Schilham, A.M.R.

    2001-01-01

    An overview of experimental transport studies performed on the Rijnhuizen Tokamak Project (RTP) using transient transport techniques in both Ohmic and ECH dominated plasmas is presented. Modulated Electron Cyclotron Heating (ECH) and oblique pellet injection (OPI) have been used to induce electron temperature (T e ) perturbations at different radial locations. These were used to probe the electron transport barriers observed near low order rational magnetic surfaces in ECH dominated steady-state RTP plasmas. Layers of inward electron heat convection in off-axis ECH plasmas were detected with modulated ECH. This suggests that RTP electron transport barriers consist of heat pinch layers rather than layers of low thermal diffusivity. In a different set of experiments, OPI triggered a transient rise of the core T e due to an increase of the T e gradient in the 1< q<2 region. These transient transport barriers were probed with modulated ECH and found to be due to a transient drop of the electron heat diffusivity, except for off-axis ECH plasmas, where a transient inward pinch is also observed. Transient transport studies in RTP could not solve this puzzling interplay between heat diffusion and convection in determining an electron transport barrier. They nevertheless provided challenging experimental evidence both for theoretical modelling and for future experiments. (author)

  2. Heat and damp transport in cavity bricks. Waerme- und Feuchtetransport in Hochlochziegeln

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, M

    1987-11-19

    The aim of this work is a systematic measurement of the structural effect of cavity bricks on the thermal insulation and thermal storage values depending on the material values of the bricks and the mortar. The arrangement and orientation of the hollow spaces and their dimensions should be varied. Brick shapes with socalled handle slots, which give more convenient handling, and with mortar pockets instead of mortar gaps, should be taken into account in the investigation. Special attention should be paid to the heat transport mechanism in the hollow spaces, where thermal conduction, thermal radiation and convection heat transport are superimposed on one another. The second main aim of the work is the calculation of the coupled heat and damp transport in hollow bricks. The heat and damp transport is described by a coupled system of differential equations, where the decisive transport coefficients should be shown as a function of the variables determining the transport processes. (orig./MM).

  3. Systems with a constant heat flux with applications to radiative heat transport across nanoscale gaps and layers

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2018-06-01

    We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.

  4. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  5. Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system

    International Nuclear Information System (INIS)

    Neves, S.F.; Couto, S.; Campos, J.B.L.M.; Mayor, T.S.

    2015-01-01

    The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment, and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on

  6. Primary heat transport pump trip by ground fault (deterioration of insulation in the cable quick disconnect)

    International Nuclear Information System (INIS)

    Chun, C.-Y.

    1991-01-01

    At 08:29 Sept. 1, 1988, Wolsong unit 1 was operating at 100% full power when a primary heat transport pump was suddenly tripped by breaker trip due to ground fault in the power distribution connector assembly. Soon after the pump trip, the reactor was shut down automatically on low heat transport flow. Operators tried to restart the pump twice but failed. A field operator reported to the shift supervisor that he found an electrical spark and smoke at the vicinity of the pump when the pump started to run. Inspection showed that a power distribution connector assembly for making fast and easy power connections to the PHT pump motor, 3312-PM2, was damaged severely by thermal shock. Particularly, broken parts of the insulating plug flew away across the boiler room and dropped to the floor. Direct causes of the failure were bad contact and deterioration of integrity along the creep paths between the insulating plug and the connector housing. The failed connector assembly had been used for more than 7 years. Its status had been checked infrequently during the in-service period. The standard torque value was not applied to the installation of connectors. Therefore, we concluded that long term inservice in combinations of application of improper torque value induced failure of insulation. This paper describes the scenarios, causes of the event and corrective actions to prevent recurrence of this event. (author)

  7. Primary heat transport pump trip by ground fault (deterioration of insulation in the cable quick disconnect)

    Energy Technology Data Exchange (ETDEWEB)

    Chun, C -Y [Wolsong Nuclear Power Plant, Korea Electric Power Corporation, Wolsong (Korea, Republic of)

    1991-04-01

    At 08:29 Sept. 1, 1988, Wolsong unit 1 was operating at 100% full power when a primary heat transport pump was suddenly tripped by breaker trip due to ground fault in the power distribution connector assembly. Soon after the pump trip, the reactor was shut down automatically on low heat transport flow. Operators tried to restart the pump twice but failed. A field operator reported to the shift supervisor that he found an electrical spark and smoke at the vicinity of the pump when the pump started to run. Inspection showed that a power distribution connector assembly for making fast and easy power connections to the PHT pump motor, 3312-PM2, was damaged severely by thermal shock. Particularly, broken parts of the insulating plug flew away across the boiler room and dropped to the floor. Direct causes of the failure were bad contact and deterioration of integrity along the creep paths between the insulating plug and the connector housing. The failed connector assembly had been used for more than 7 years. Its status had been checked infrequently during the in-service period. The standard torque value was not applied to the installation of connectors. Therefore, we concluded that long term inservice in combinations of application of improper torque value induced failure of insulation. This paper describes the scenarios, causes of the event and corrective actions to prevent recurrence of this event. (author)

  8. Acoustic characterization of a CANDU primary heat transport pump at the blade-passing frequency

    International Nuclear Information System (INIS)

    Rzentkowski, G.; Zbroja, S.

    2000-01-01

    In this paper, we examine the acoustics of a single-stage, double-volute CANDU heat transport pump based on a full-scale experimental investigation. We estimate the strength of source variables (acoustic pressure and velocity) and establish the pump characteristics as an acoustic source at the blade-passing frequency. We conduct this analysis by first assessing the resonance effects in the test loop, and then decomposing the measured signal into the components associated with pump action and loop acoustics with the use of a simple pump model. The pump model is based on a linear superposition of pressure wave transmission and excitation. The results of this analysis indicate that the pump source variables are nearly free of acoustic resonance effects in the test loop. The source pressure and velocity are each estimated at approximately 10 kPa (zero-to-peak). The results also indicate that the pump may act as both a pressure and a velocity source. At the loop resonance, the pump acoustic behavior is exclusively governed by the pressure term. This observation leads to the conclusion that the maximum amplification of pressure pulsations in a reactor heat transport system may be predicted by modeling the pump as a pressure source. (orig.)

  9. Modelling of activity transport in primary heat transport (PHT) system of Indian PHWRs

    International Nuclear Information System (INIS)

    Markandeya, S.G.; Pujari, P.K.; Gandhi, H.C.; Venkateswaran, G.; Narasimhan, S.V.; Krishnarao, K.S.; Mathur, P.K.; Venkat Raj, V.

    2000-01-01

    Nuclear Power plants (NPPs) are designed and built with the aim of minimising the occupational exposure to the operational and maintenance staff. Despite the use of prudently selected materials of construction with high corrosion resistance and adopting very stringent water chemistry controls during operation the build-up of activity in the Primary Heat Transport (PHT) systems of NPPs has been found to be unavoidable. The Indian Pressurised Heavy Water Reactors (PHWRs) are no exception to this. To enable advance planning of maintenance work and the decontamination schedules, it is necessary to perform the off-site calculations to predict the activity buildup in the PHT circuits of the NPPs. A computer code ANUCRUD is under development for predicting the corrosion product and activity transport behaviour in the PHT circuits of Indian PHWRs. The present paper briefly describes some of the salient features of the code ANUCRUD. As a first attempt, preliminary calculations for predicting corrosion product crud concentration buildup in the PHT circuit of the 220 MWe Indian PHWR have been carried out using the code. The findings of these studies are discussed in the paper. Finally, the further improvements proposed to be carried out in the code are also brought out in the paper. (author)

  10. Ballistic near-field heat transport in dense many-body systems

    Science.gov (United States)

    Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe

    2018-01-01

    Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.

  11. Modeling Coupled Water and Heat Transport in the Root Zone of Winter Wheat under Non-Isothermal Conditions

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-04-01

    Full Text Available Temperature is an integral part of soil quality in terms of moisture content; coupling between water and heat can render a soil fertile, and plays a role in water conservation. Although it is widely recognized that both water and heat transport are fundamental factors in the quantification of soil mass and energy balance, their computation is still limited in most models or practical applications in the root zone under non-isothermal conditions. This research was conducted to: (a implement a fully coupled mathematical model that contains the full coupled process of soil water and heat transport with plants focused on the influence of temperature gradient on soil water redistribution and on the influence of change in soil water movement on soil heat flux transport; (b verify the mathematical model with detailed field monitoring data; and (c analyze the accuracy of the model. Results show the high accuracy of the model in predicting the actual changes in soil water content and temperature as a function of time and soil depth. Moreover, the model can accurately reflect changes in soil moisture and heat transfer in different periods. With only a few empirical parameters, the proposed model will serve as guide in the field of surface irrigation.

  12. Minimization of transport and distribution cost for district heating study of particular cases

    International Nuclear Information System (INIS)

    Barreau, A.; Caizergues, R.; Moret Bailly, J.

    1977-01-01

    The transport and distribution of hot pressurized water involve different sets of criteria: transport networks, heat distribution networks, storages. The minimization of transport cost is studied together with the distribution of thermal energy. The same parameters are introduced into these programs. The same method is used for rate of flow calculations, but mathematical methods of pipe diameter calculation are different. Some transport and distribution networks are studied with the corresponding computed programs: 52 branches networks-27 terminations; 287 branches networks-148 terminations

  13. Changing storm track diffusivity and the upper limit to poleward latent heat transport

    Science.gov (United States)

    Caballero, R.

    2010-12-01

    Poleward atmospheric energy transport plays a key role in the climate system by helping set the mean equator-pole temperature gradient. The mechanisms controlling the response of poleward heat flux to climate change are still poorly understood. Recent work shows that midlatitude poleward latent heat flux in atmospheric GCMs generally increases as the climate warms but reaches an upper limit at sufficiently high temperature and decreases with further warming. The reasons for this non-monotonic behavior have remained unclear. Simple arguments suggests that the latent heat flux Fl should scale as Fl ˜ vref qs, where vref is a typical meridional velocity in the baroclinic zone and qs is saturation humidity. While vref decreases with temperature, qs increases much more rapidly, so this scaling implies monotonically increasing moisture flux. We study this problem using a series of simulations employing NCAR’s CAM3 GCM coupled to a slab-ocean aquaplanet and spanning a wide range of atmospheric CO2 concentrations. We find that a modified scaling, Fl ˜ vref2 qs, describes the changes in moisture flux much more accurately. Using Lagrangian trajectory analysis, we explain the success of this scaling in terms of changes in the mixing length, which contracts proportionally to vref.

  14. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  15. Subcooled He II heat transport in the channel with abrupt contractions/enlargements

    International Nuclear Information System (INIS)

    Maekawa, R.; Iwamoto, A.; Hamaguchi, S.; Mito, T.

    2002-01-01

    Heat transport mechanisms for subcooled He II in the channel with abrupt contractions and/or enlargements have been investigated under steady state conditions. The channel, made of G-10, contains various contraction geometries to simulate the cooling channel of a superconducting magnet. In other words, contractions are periodically placed along the channel to simulate the spacers within the magnet winding. A copper block heater inputs the heat to the channel from one end, while the other end is open to the He II bath. Temperature profiles were measured with temperature sensors embedded in the channel as a function of heat input. Calculations were performed using a simple one-dimensional turbulent heat transport equation and with geometric factor consideration. The effects on heat transport mechanisms in He II caused by abrupt change of channel geometry and size are discussed

  16. Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    International Nuclear Information System (INIS)

    Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D

    2013-01-01

    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)

  17. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation

    Science.gov (United States)

    Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris

    2018-01-01

    Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.

  18. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    in sand-gravel material, the storage media is to be water satured. In this case, handling of such material on site is rather complex. The conduction is highly dependent on the thermal properties of the storage media and so is the overall thermal performance of a storage applying such media. For sandy...... out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction...

  19. Formation of core transport barrier and CH-Mode by ion Bernstein wave heating in PBX-M

    International Nuclear Information System (INIS)

    Ono, M.; Bell, R.; Bernabei, S.; Gettelfinger, G.; Hatcher, R.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Manickam, J.

    1995-01-01

    Observation of core transport barrier formation (for particles, ion and electron energies, and toroidal momentum) by ion Bernstein wave heating (IBWH) in PBX-M plasma is reported. The formation of a transport barrier leads to a strong peaking and significant increase of the core pressure (70%) and toroidal momentum (20%), and has been termed the core-high confinement mode (CH-Mode). This formation of a transport barrier is consistent, in terms of the expected barrier location as well as the required threshold power, with a theoretical model based on the poloidal sheared flow generation by the ion Bernstein wave power. The use of ion Bernstein wave (IBW) induced sheared flow as a tool to control plasma pressure and bootstrap current profiles shows a favorable scaling for the use in future reactor grade tokamak plasmas

  20. Laying the foundations for greener transport - TERM 2011: transport indicators tracking progress towards environmental targets in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vicente, A

    2011-11-15

    For the first time ever the European Commissions is proposing a greenhouse gas emissions target for transport. But how is transport going to provide the services that our society needs while minimising its environmental impacts? This is the theme for the Transport White Paper launched in 2011. TERM 2011 and future reports aim to deliver an annual assessment on progress towards these targets by introducing the Transport and Environment Reporting Mechanism Core Set of Indicators (TERM-CSI). TERM 2011 provides also the baseline to which progress will be checked against, covering most of the environmental areas, including energy consumption, emissions, noise and transport demand. In addition, this report shows latest data and discuss on the different aspects that can contribute the most to minimise transport impacts. TERM 2011 applies the avoid-shift-improve (ASI) approach, introduced in the previous TERM report, analysing ways to optimise transport demand, obtain a more sustainable modal split or use the best technology available. (Author)

  1. Heating and active control of profiles and transport by IBW in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping; Wan Baonian; Li Jiangang

    2003-01-01

    Significant progress on Ion Bernstein Wave (IBW) heating and control of profiles has been obtained in HT-7. Both on-axis and off-axis electron heating with global peaked and local steep electron pressure profiles were realized if the position of the resonant layer was selected to be plasma far from the plasma edge region. Reduction of electron heat transport has been observed from sawtooth heat pulse propagation. Improvement of both particle and energy confinement was slight in the on-axis and considerable in the off-axis heating cases. The improved confinement in off-axis heating mode may be due to the extension of the high performance plasma volume caused by IBW. These studies demonstrate that IBWs are potentially a tool for active control of plasma profiles and transport. (author)

  2. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  3. STACE: Source Term Analyses for Containment Evaluations of transport casks

    International Nuclear Information System (INIS)

    Seager, K.D.; Gianoulakis, S.E.; Barrett, P.R.; Rashid, Y.R.; Reardon, P.C.

    1992-01-01

    Following the guidance of ANSI N14.5, the STACE methodology provides a technically defensible means for estimating maximum permissible leakage rates. These containment criteria attempt to reflect the true radiological hazard by performing a detailed examination of the spent fuel, CRUD, and residual contamination contributions to the releasable source term. The evaluation of the spent fuel contribution to the source term has been modeled fairly accurately using the STACE methodology. The structural model predicts the cask drop load history, the mechanical response of the fuel assembly, and the probability of cladding breach. These data are then used to predict the amount of fission gas, volatile species, and fuel fines that are releasable from the cask. There are some areas where data are sparse or lacking (e.g., the quantity and size distribution of fuel rod breaches) in which experimental validation is planned. The CRUD spallation fraction is the major area where no quantitative data has been found; therefore, this also requires experimental validation. In the interim, STACE conservatively assumes a 100% spallation fraction for computing the releasable activity. The source term methodology also conservatively assumes that there is 1 Ci of residual contamination available for release in the transport cask. However, residual contamination is still by far the smallest contributor to the source term activity

  4. Mobile heat storage containers and their transport by rail or road

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-10-15

    Mobile heat storage containers are capable of making a contribution to the meaningful use of energy which is needed for use at a location other than where it originates. The study presented in this report outlines the technology of mobile heat storage and analyses an example of its transport by rail or road. (orig.)

  5. Process for the transport of heat energy released by a nuclear reactor

    International Nuclear Information System (INIS)

    Nuernberg, H.W.; Wolff, G.

    1978-01-01

    The heat produced in a nuclear reactor is converted into latent chemical binding energy. The heat can be released again below 400 0 C by recombination after transport by decomposition of ethane or propane into ethylene or propylene and hydrogen. (TK) [de

  6. Diffusive heat transport across magnetic islands and stochastic layers in tokamaks

    International Nuclear Information System (INIS)

    Hoelzl, Matthias

    2010-01-01

    Heat transport in tokamak plasmas with magnetic islands and ergodic field lines was simulated at realistic plasma parameters in realistic tokamak geometries. This requires the treatment of anisotropic heat diffusion, which is more efficient along magnetic field lines by up to ten orders of magnitude than perpendicular to them. Comparisons with analytical predictions and experimental measurements allow to determine the stability properties of neoclassical tearing modes as well as the experimental heat diffusion anisotropy.

  7. Heat transport as torsional responses and Keldysh formalism in a curved spacetime

    OpenAIRE

    Shitade, Atsuo

    2013-01-01

    We revisit a theory of heat transport in the light of a gauge theory of gravity and find the proper heat current with a corresponding gauge field, which yields the natural definitions of the heat magnetization and the Kubo-formula contribution to the thermal conductivity as torsional responses. We also develop a general framework for calculating gravitational responses by combining the Keldysh and Cartan formalisms. By using this framework, we explicitly calculate these two quantities and rep...

  8. Laboratory Testing of Solar Combi System with Compact Long Term PCM Heat Storage

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Englmair, Gerald; Dannemand, Mark

    2016-01-01

    To enable the transition from fossil fuels as a primary heat source for domestic hot water preparation and space heating solar thermal energy has great potential. The heat from the sun has the disadvantage that it is not always available when there is a demand. To solve this mismatch a thermal...... seasonal storage can be used to store excess heat from the summer to the winter when the demand is higher than the supply. Installing a long term thermal storage in a one family house it needs to be compact and sensible heat storages are not suitable. A latent heat storage with a phase change material (PCM...

  9. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  10. A study on shear behavior of R/C beams subjected to long-term heating

    International Nuclear Information System (INIS)

    Maruta, M.; Yamazaki, M.

    1993-01-01

    In nuclear power plants, many structural members are subjected to long term heating. There are few experimental data available on the behavior especially in shear of reinforced concrete (R/C) members subjected to long term heating. This paper describes a study aimed at experimentally determining the shear behavior of R/C members in nuclear power plant facilities following sustained heating at high temperatures

  11. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.

    Science.gov (United States)

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw

    2006-01-01

    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  12. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    Science.gov (United States)

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  13. Short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    This paper presents a method for forecasting the load for space heating in a single-family house. The forecasting model is built using data from sixteen houses located in Sønderborg, Denmark, combined with local climate measurements and weather forecasts. Every hour the hourly heat load for each...... house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation and wind speed. A computationally efficient recursive least squares scheme is used. The models are optimized to fit the individual...... noise and that practically all correlation to the climate variables are removed. Furthermore, the results show that the forecasting errors mainly are related to: unpredictable high frequency variations in the heat load signal (predominant only for some houses), shifts in resident behavior patterns...

  14. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  15. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  16. Heating and active control of profiles and transport by IBW in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping

    2002-01-01

    By a series of technical improvements and intensive RF boronization, significant progresses on the IBW heating and control of profiles and transport has been obtained since last IAEA meeting. Both on-axis and off-axis electron heating with global peaked and local steeped electron pressure profile was realized if the resonant layer is in plasma far from the edge region. Maximum increment of electron temperature was about 2 keV at power of 200 kW. The heating factor reached 9.4 eV x 10 13 cm -3 /kW. Reduction of local electron heat transport around resonant layer has been observed. Significant improvement of particle confinement by a factor of 2-4 with very peaked density profile was obtained if 5/2-deuterium resonant layer is located at the plasma edge. Global transport and edge poloidal velocity shear can been controlled by IBW. (author)

  17. Characteristics of nonlocally-coupled transition of the heat transport in LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Ida, K.; Tanaka, K.; Tokuzawa, T.; Itoh, K.; Shimozuma, T.; Kubo, S.; Tsuchiya, H.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Yamada, H.; Inagaki, S.

    2010-01-01

    A comparison of characteristics between a nonlocal transport phenomenon and an electron internal transport barrier (ITB) in the Large Helical Device is performed with a transient transport analysis and from the viewpoint of a dynamic behavior of transport state. The electron ITB is characterized by a jump of electron temperature gradient. In contrast, the transient transport analysis indicates the nonlocal transport phenomenon is characterized by a jump of electron heat flux. And seen from the viewpoint of the dynamic behavior of transport state, the physical mechanism of the appearance of the nonlocal transport phenomenon is found to be qualitatively different from that of the formation of the electron ITB. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    International Nuclear Information System (INIS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; Takenaga, H.; Isayama, A.; Takizuka, T.; Kamada, Y.; Miura, Y.

    2005-01-01

    Transient transport experiments are performed in plasmas with and without Internal Transport Barrier (ITB) on LHD and JT-60U. The dependence of χ e on electron temperature, T e , and electron temperature gradient, ∇T e , is analyzed by an empirical non-linear heat transport model. In plasmas without ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation. The χ e depends on T e and ∇T e in JT-60U, while the ∇T e dependence is weak in LHD. Inside the ITB region, there is no or weak ∇T e dependence both in LHD and JT-60U. A cold pulse growing driven by the negative T e dependence of χ e is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U). (author)

  19. Study of Heat Flux Threshold and Perturbation Effect on Transport Barrier Formation Based on Bifurcation Model

    International Nuclear Information System (INIS)

    Chatthong, B.; Onjun, T.; Imbeaux, F.; Sarazin, Y.; Strugarek, A.; Picha, R.; Poolyarat, N.

    2011-06-01

    Full text: Formation of transport barrier in fusion plasma is studied using a simple one-field bistable S-curve bifurcation model. This model is characterized by an S-line with two stable branches corresponding to the low (L) and high (H) confinement modes, connected by an unstable branch. Assumptions used in this model are such that the reduction in anomalous transport is caused by v E velocity shear effect and also this velocity shear is proportional to pressure gradient. In this study, analytical and numerical approaches are used to obtain necessary conditions for transport barrier formation, i.e. the ratio of anomalous over neoclassical coefficients and heat flux thresholds which must be exceeded. Several profiles of heat sources are considered in this work including constant, Gaussian, and hyperbolic tangent forms. Moreover, the effect of perturbation in heat flux is investigated with respect to transport barrier formation

  20. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  1. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  2. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1995-01-01

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  3. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  4. Long-Term Heating to Improve Receiver Performance

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    2017-06-27

    The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overall power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in the hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.

  5. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    Science.gov (United States)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  6. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    Science.gov (United States)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  7. The role of large‐scale heat pumps for short term integration of renewable energy

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth

    2011-01-01

    technologies is focusing on natural working fluid hydrocarbons, ammonia, and carbon dioxide. Large-scale heat pumps are crucial for integrating 50% wind power as anticipated to be installed in Denmark in 2020, along with other measures. Also in the longer term heat pumps can contribute to the minimization...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium......In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...

  8. Nonlinear charge transport in bipolar semiconductors due to electron heating

    International Nuclear Information System (INIS)

    Molina-Valdovinos, S.; Gurevich, Yu.G.

    2016-01-01

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  9. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  10. Long-term variabilities of meridional geostrophic volumn transport in North Pacific Ocean

    Science.gov (United States)

    Zhou, H.; Yuan, D.; Dewar, W. K.

    2016-02-01

    The meridional geostrophic volumn transport (MGVT) by the ocean plays a very important role in the climatic water mass and heat balance because of its large heat capacity which enables the oceans to store the large amount of radiation received in the summer and to release it in winter. Better understanding of the role of the oceans in climate variability is essential to assess the likely range of future climate fluctuations. In the last century the North Pacific Ocean experienced considerable climate variability, especially on decadal time scale. Some studies have shown that the North Pacific Ocean is the origin of North Pacific multidecadal variability (Latif and Barnett, 1994; Barnett et al., 1999). These fluctuations were associated with large anomalies in sea level, temperature, storminess and rainfall, the heat transport and other extremes are changing as well. If the MGVT of the ocean is well-determined, it can be used as a test of the validity of numerical, global climate models. In this paper, we investigate the long-term variability of the MGVT in North Pacific ocean based on 55 years long global ocean heat and salt content data (Levitus et al., 2012). Very clear inter-decadal variations can be seen in tropical , subtropical and subpolar regions of North Pacific Ocean. There are very consistent variations between the MGVT anomalies and the inter-decadal pacific oscillation (IPO) index in the tropical gyre with cold phase of IPO corresponding to negative MGVT anomalies and warm phase corresponding to positive MGVT anomalies. The subtropical gyre shows more complex variations, and the subpolar gyre shows a negative MGVT anomaly before late 1970's and a positive anomaly after that time. The geostrophic velocities of North Pacific Ocean show significantly different anomalies during the two IPO cold phases of 1955-1976 and 1999 to present, which suggests a different mechanism of the two cold phases. The long term variations of Sverdrup transport compares well

  11. Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation

    KAUST Repository

    Salama, Amgad

    2015-02-01

    The problem of heat transfer from a central heating element pressed between two clad plates to cooling channels adjacent and outboard of the plates is investigated numerically. The aim of this work is to highlight the role of thermal conductivity anisotropy of the heating element and/or the encompassing plates on thermal energy transport to the fluid passing through the two channels. When the medium is anisotropic with respect to thermal conductivity; energy transport to the neighboring channels is no longer symmetric. This asymmetry in energy fluxes influence heat transfer to the coolant resulting in different patterns of temperature fields. In particular, it is found that the temperature fields are skewed towards the principal direction of anisotropy. In addition, the heat flux distributions along the edges of the heating element are also different as a manifestation of thermal conductivity anisotropy. Furthermore, the peak temperature at the channel walls change location and magnitude depending on the principal direction of anisotropy. Based on scaling arguments, it is found that, the ratio of width to the height of the heating system is a key parameter which can suggest when one may ignore the effect of the cross-diagonal terms of the full conductivity tensor. To account for anisotropy in thermal conductivity, the method of multipoint flux approximation (MPFA) is employed. Using this technique, it is possible to find a finite difference stencil which can handle full thermal conductivity tensor and in the same time enjoys the simplicity of finite difference approximation. Although the finite difference stencil based on MPFA is quite complex, in this work we apply the recently introduced experimenting field approach which construct the global problem automatically.

  12. Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ya; Zhu, Jie, E-mail: zhujie@iet.cn; Tang, Da-Wei

    2015-02-06

    In this paper, non-equilibrium molecular dynamics simulations were performed to investigate the heat transport between a vertically aligned single-walled carbon nanotube (SWNT) and Si substrate, to find out the influence of temperature and system sizes, including diameter and length of SWNT and measurements of substrate. Results revealed that high temperature hindered heat transport in SWNT itself but was a beneficial stimulus for heat transport at interface of SWNT and Si. Furthermore, the system sizes strongly affected the peaks in vibrational density of states of Si, which led to interfacial thermal conductance dependent on system sizes. - Highlights: • NEMD is performed to simulate the heat transport from SWNT to Si substrate. • We analyze both interfacial thermal conductance and thermal conductivity of SWNT. • High temperature is a beneficial stimulus for heat transport at the interface. • Interfacial thermal conductance strongly depends on the sizes of SWNT and substrate. • We calculate VDOS of C and Si atoms to analyze phonon couplings between them.

  13. Creatine biosynthesis and transport by the term human placenta.

    Science.gov (United States)

    Ellery, Stacey J; Della Gatta, Paul A; Bruce, Clinton R; Kowalski, Greg M; Davies-Tuck, Miranda; Mockler, Joanne C; Murthi, Padma; Walker, David W; Snow, Rod J; Dickinson, Hayley

    2017-04-01

    Creatine is an amino acid derivative that is involved in preserving ATP homeostasis. Previous studies suggest an important role for the creatine kinase circuit for placental ATP turnover. Creatine is obtained from both the diet and endogenous synthesis, usually along the renal-hepatic axis. However, some tissues with a high-energy demand have an inherent capacity to synthesise creatine. In this study, we determined if the term human placenta has the enzymatic machinary to synthesise creatine. Eleven placentae were collected following elective term caesarean section. Samples from the 4 quadrants of each placenta were either fixed in formalin or frozen. qPCR was used to determine the mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (SLC6A8). Protein expression of AGAT and GAMT was quantified by Western blot, and observations of cell localisation of AGAT, GAMT and SLC6A8 made with immunohistochemistry. Synthesis of guanidinoacetate (GAA; creatine precursor) and creatine in placental homogenates was determined via GC-MS and HPLC, respectively. AGAT, GAMT and SLC6A8 mRNA and protein were detected in the human placenta. AGAT staining was identified in stromal and endothelial cells of the fetal capillaries. GAMT and SLC6A8 staining was localised to the syncytiotrophoblast of the fetal villi. Ex vivo, tissue homogenates produce both GAA (4.6 nmol mg protein -1 h -1 ) and creatine (52.8 nmol mg protein -1 h -1 ). The term human placenta has the capacity to synthesise creatine. These data present a new understanding of placental energy metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria

    Science.gov (United States)

    Rock, Gerhard; Kupfersberger, Hans

    2018-02-01

    For the shallow Westliches Leibnitzer feld aquifer (45 km2) we applied the recently developed methodology by Kupfersberger et al. (2017a) to derive the thermal upper boundary for a 3D heat transport model from observed air temperatures. We distinguished between land uses of grass and agriculture, sealed surfaces, forest and water bodies. To represent the heat flux from heated buildings and the mixture between different land surfaces in urban areas we ran the 1D vertical heat conduction module SoilTemp which is coupled to the heat transport model (using FEFLOW) on a time step basis. Over a simulation period of 23 years the comparison between measured and observed groundwater temperatures yielded NSE values ranging from 0.41 to 0.92 including readings at different depths. The model results showed that the thermal input signals lead to distinctly different vertical groundwater temperature distributions. To overcome the influence of specific warm or cold years we introduced the computation of an annual averaged groundwater temperature profile. With respect to the use of groundwater cooling or heating facilities we evaluated the application of vertically averaged statistical groundwater temperature distributions compared to the use of temperature distributions at selected dates. We concluded that the heat transport model serves well as an aquifer scale management tool to optimize the use of the shallow subsurface for thermal purposes and to analyze the impacts of corresponding measures on groundwater temperatures.

  15. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    Science.gov (United States)

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  16. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  17. Analysis of heat transfer and contaminant transport in fume hoods

    International Nuclear Information System (INIS)

    Pathanjali, C.; Rahman, M.M.

    1996-01-01

    The paper presents the analysis of three-dimensional flow patterns and the associated heat and mass transfer mechanisms in a fume hood enclosure. The flow enters the hood through the front window opening (positive x-direction) and leaves the cupboard through an opening on the top of the hood (positive z-direction). The flow was assumed to be fully turbulent. The flow pattern for different sash openings were studied. The flow pattern around an object located at the bottom of the hood was studied for different locations of the object. It was found that air entering the hood proceeds directly to the back wall, impinges it and turns upward toward the top wall and exits through the outlet. The flow finds its way around any object forming a recirculating region at its training surface. With an increase in the sash opening, the velocity becomes higher and the fluid traces the path to the outlet more quickly. The volume occupied by recirculating flow decreases with increase in sash opening. Both temperature and concentration were found to be maximum near the source and gradually decreased as the heated air or gaseous contaminant entrained with incoming air. The local concentration decreased with increase in sash opening area. The results will be very useful to design experiments with optimum sash opening providing adequate disposal of contaminants with minimum use of conditioned air inside the room

  18. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  19. Numerical simulation of the transport phenomena due to sudden heating in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lei, S.Y.; Zheng, G.Y.; Wang, B.X.; Yang, R.G.; Xia, C.M.

    1997-07-01

    Such process as wet porous media suddenly heated by hot fluids frequently occurs in nature and in industrial applications. The three-variable simulation model was developed to predict violent transport phenomena due to sudden heating in porous media. Two sets of independent variables were applied to different regions in porous media in the simulation. For the wet zone, temperature, wet saturation and air pressure were used as the independent variables. For the dry zone, the independent variables were temperature, vapor pressure and air pressure. The model simulated two complicated transport processes in wet unsaturated porous media which is suddenly heated by melting metal or boiling water. The effect of the gas pressure is also investigated on the overall transport phenomena.

  20. Short term post-partum heat stress in dairy cows

    Science.gov (United States)

    Fuquay, J. W.; Chapin, L. T.; Brown, W. H.

    1980-06-01

    Since many dairy cows calve during late summer, the objective was to determine if heat stress immediately post-partum would (1) alter metabolism, thus, increasing susceptibility to metabolic disorders, (2) affect lactation and/or (3) affect reproduction. Forty four cows, calving during late summer, were paired with one member of each pair stressed (HS) for the first 10 post-partum days in a hot barn. Controls (CC) were kept in a cooled section of the barn. Plasma drawn weekly for 7 weeks was analyzed in an autoanalyzer for calcium, inor. phosphorus, protein, glucose and cholesterol and by radioimmunoassay for cortisol and progesterone. Ovaries and uteri were palpated weekly. Rectal temperatures were significant higher for HS during the first 10 post-partum days. No significant effects on plasma constituents were observed during the 10-day treatment period. For the 7-week period, glucose and cholesterol were lower in HS, as were cyclic peaks of progesterone and cortisol. Both calcium and inorganic phosphorus remained clinically low for the 7 weeks, but no treatment effects were seen. Uteri of HS involuted more rapidly than the CC. Treatment did not affect reproductive efficiency. Lactation milk yields did not differ, but milk fat percent was lower in HS. Heat stress immediately post-partum altered lipid metabolism, but the animal's compensatory mechanisms prevented reduction in milk production or reproductive efficiency.

  1. The influence of meridional ice transport on Europa's ocean stratification and heat content

    Science.gov (United States)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  2. EFFECTIVENESS ANALYSIS OF CAMPUS HEAT SUPPLY SYSTEM OF DNIPROPETROVSK NATIONAL UNIVERSITY OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2014-03-01

    Full Text Available Purpose. Heat consumption for heating and hot water supply of housing and industrial facilities is an essential part of heat energy consumption. Prerequisite for development of energy saving measures in existing heating systems is their preliminary examination. The investigation results of campus heating system of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan are presented in the article. On the basis of the analysis it is proposed to take the energy saving measures and assess their effectiveness. Methodology. Analysis of the consumption structure of thermal energy for heating domestic and hot water supply was fulfilled. The real costs of heat supply during the calendar year and the normative costs were compared. Findings. The recording expenditures data of thermal energy for heating supply of residential buildings and dormitories in 2012 were analyzed. The comparison of actual performance with specific regulations was performed. This comparison revealed problems, whose solution will help the efficient use of thermal energy. Originality. For the first time the impact of climate conditions, features of schemes and designs of heating systems on the effective use of thermal energy were analyzed. It was studied the contribution of each component. Practical value. Based on the analysis of thermal energy consumption it was developed a list of possible energy saving measures that can be implemented in the system of heat and power facilities. It was evaluated the fuel and energy resources saving.

  3. Long-term Energy Efficiency Improvement for Transport, Technology Assessments

    NARCIS (Netherlands)

    Van Binsbergen, A.J.; Erkens, A.; Hamel, B.

    1994-01-01

    In part one of this report, general transport and transport-flow measures are described. By using other modes of transport than road-vehicles, it is possible to save energy. An advanced park-and-ride system can lead to a 27% reduction in energy use per passengerkilometre; in 2040 at most 10% of the

  4. Solar-energy heats a transportation test center--Pueblo, Colorado

    Science.gov (United States)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  5. A predictive transport modeling code for ICRF-heated tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hwang, D.Q.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3. Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5

  6. Computational study of heat transport in compositionally disordered binary crystals

    International Nuclear Information System (INIS)

    Lyver, John W.; Blaisten-Barojas, Estela

    2006-01-01

    The thermal conductivity of compositionally disordered binary crystals with atoms interacting through Lennard-Jones potentials has been studied as a function of temperature. The two species in the crystal differ in mass, hard-core atomic diameter, well depth and relative concentration. The isobaric Monte Carlo was used to equilibrate the samples at near-zero pressure. The isoenergy molecular dynamics combined with the Green-Kubo approach was taken to calculate the heat current time-dependent autocorrelation function and determine the lattice thermal conductivity of the sample. The inverse temperature dependence of the lattice thermal conductivity was shown to fail at low temperatures when the atomic diameters of the two species differ. Instead, the thermal conductivity was nearly a constant across temperatures for species with different atomic diameters. Overall, it is shown that there is a dramatic decrease of the lattice thermal conductivity with increasing atomic radii ratio between species and a moderate decrease due to mass disorder

  7. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    International Nuclear Information System (INIS)

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable open-quotes Integrated Research Experimentclose quotes (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, open-quotes the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenologyclose quotes. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well

  8. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  9. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Science.gov (United States)

    Gomez-Heredia, C. L.; Macias, J.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J. J.

    2017-01-01

    Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen's number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrheat transport.

  10. Required momentum, heat, and mass transport experiments for liquid-metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Sze, D.K.; Abdou, M.A.

    1986-01-01

    Through the effects on fluid flow, many aspects of blanket behavior are affected by magnetohydrodynamic (MHD) effects, including pressure drop, heat transfer, mass transfer, and structural behavior. In this paper, a set of experiments is examined that could be performed in order to reduce the uncertainties in the highly related set of issues dealing with momentum, heat, and mass transport under the influence of a strong magnetic field (i.e., magnetic transport phenomena). By improving our basic understanding and by providing direct experimental data on blanket behavior, these experiments will lead to improved designs and an accurate assessment of the attractiveness of liquid-metal blankets

  11. Flexibility analysis of main primary heat transport system : Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rastogi, S.K.

    1975-01-01

    The paper presents flexibility analysis problem of main primary heat transport system and the approximate analysis that has been made to estimate the loads coming on major equipments. The primary heat transport system for Narora Atomic Power Project is adopting vertical steam generators and pumps equally divided on either side of the reactor with inter-connecting pipes and feeders. Since the system is mainly spring supported with movement of a few points in certain direction defined but no anchorage, it represents a good problem for flexibility analysis which can only be solved in one step by developing a good computer programme. (author)

  12. Design considerations for CRBRP heat transport system piping operating at elevated temperatures

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1979-01-01

    The heat transport system sodium piping for the Clinch River Breeder Reactor Plant (CRBRP) within the reactor containment building must withstand high temperatures for long periods of time. Each phase of the mechanical design process of the piping system is influenced by elevated temperature considerations which include material thermal creep effects, ratchetting caused by rapid temperature transients and stress relaxation, and material degradation effects. The structural design philosophy taken to design the CRBRP piping operating in a high temperature environment is described. The resulting design of the heat transport system piping is presented along with a discussion of special features that resulted from the elevated temperature considerations

  13. Safe transport of spent fuels after long-term storage

    International Nuclear Information System (INIS)

    Aritomi, M.; Takeda, T.; Ozaki, S.

    2004-01-01

    Considering the scarcity of energy resources in Japan, a nuclear energy policy pertaining to the spent fuel storage has been adopted. The nuclear energy policy sets the rules that spent fuels generated from LWRs shall be reprocessed and that plutonium and unburnt uranium shall be recovered and reused. For this purpose, a reprocessing plant, which has a reprocessing capability of 800 ton/yr, is under construction at Rokkasho Village. However, it is anticipated that the start of its operation will be delayed. In addition, the amount of spent fuels generated from nuclear power plants exceeds its reprocessing capability. Therefore, the establishment of storage technology for spent fuels becomes an urgent problem in Japan in order to continue smoothly the LWR operations. In this paper, the background of nuclear power generation in Japan is introduced at first. Next, the policy of spent fuel storage in Japan and circumstances surrounding the spent fuels in Japan are mentioned. Furthermore, the major subjects for discussions to settle and improve 'Standard for Safety Design and Inspection of Metal Casks for Spent Fuel Interim Storage Facility' in Atomic Energy Society of Japan are discussed, such as the integrity of fuel cladding, basket, shielding material and metal gasket for the long term storage for achieving safe transport of spent fuels after the storage. Finally, solutions to the unsolved subject in establishing the spent fuel interim storage technologies ase introduced accordingly

  14. Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; El-Amin, Mohamed

    2015-01-01

    anisotropy of the heating element and/or the encompassing plates on thermal energy transport to the fluid passing through the two channels. When the medium is anisotropic with respect to thermal conductivity; energy transport to the neighboring channels

  15. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory's site scale model of Yucca Mountain to model two-dimensional, vadose zone 14 C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  16. An alternative treatment of heat flow for charge transport in semiconductor devices

    International Nuclear Information System (INIS)

    Grupen, Matt

    2009-01-01

    A unique thermodynamic model of Fermi gases suitable for semiconductor device simulation is presented. Like other models, such as drift diffusion and hydrodynamics, it employs moments of the Boltzmann transport equation derived using the Fermi-Dirac distribution function. However, unlike other approaches, it replaces the concept of an electron thermal conductivity with the heat capacity of an ideal Fermi gas to determine heat flow. The model is used to simulate a field-effect transistor and show that the external current-voltage characteristics are strong functions of the state space available to the heated Fermi distribution.

  17. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  18. Heat pulse analysis in JET and relation to local energy transport models

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.

    1989-01-01

    The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs

  19. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  20. A closer look at urban transport. TERM 2013: transport indicators tracking progress towards environmental targets in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vicente, A.

    2013-12-01

    The EEA works in the transport area to assess the impacts of the sector on the human health and the environment. This work also allows the EEA to monitor the progress of integrating transport and environmental policies, and informing the EU, EEA member countries and the public about such progress. This is achieved by the production of relevant indicators that track progress towards policy targets for transport related to the environment, as well as through the elaboration of periodic assessments that cover all transport modes and the impacts of transport on the environment. The annual TERM report aims to enable policymakers to gauge the progress of those policies aiming to improve the environmental performance of the transport system as a whole. TERM 2013, has two distinct parts. Part A provides an annual assessment of the EU's transport and environment policies based on the TERM-CSI, a selection of 12 indicators from the broader set of EEA transport indicators to enabling monitoring of the most important aspects of transport. Part B focuses on urban transport and its effects on the environment. (LN)

  1. Extension of ANISN and DOT 3.5 transport computer codes to calculate heat generation by radiation and temperature distribution in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The ANISN and DOT 3.5 codes solve the transport equation using the discrete ordinate method, in one and two-dimensions, respectively. The objectives of the study were to modify these two codes, frequently used in reactor shielding problems, to include nuclear heating calculations due to the interaction of neutrons and gamma-rays with matter. In order to etermine the temperature distribution, a numerical algorithm was developed using the finite difference method to solve the heat conduction equation, in one and two-dimensions, considering the nuclear heating from neutron and gamma-rays, as the source term. (Author) [pt

  2. Moment approach to neoclassical flows, currents and transport in auxiliary heated tokamaks

    International Nuclear Information System (INIS)

    Kim, Yil Bong.

    1988-02-01

    The moment approach is utilized to derive the full complement of neoclassical transport processes in auxiliary heated tokamaks. The effects of auxiliary heating [neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH)] considered arise from the collisional interaction between the background plasma species and the fast-ion-tail species. From a known fast ion distribution function we evaluate the parallel (to the magnetic field) momentum and heat flow inputs to the background plasma. Then, through the momentum and heat flow balance equations, we can determine the induced parallel flows (and current) and radial transpot fluxes in ''equilibrium'' (on the time scale much longer than the collisional relaxation time, i.e., t >> 1ν/sub ii/). In addition to the fast-ion-induced current, the total neoclassical current includes the boostap current, which is driven by the pressure and temperature gradients, the Pfirsch-Schlueter current which is required for charge neutrality, and the neoclassical (including trapped particle effects) Spitzer current due to the parallel electric field. The radial transport fluxes also include off-diagonal compnents in the transport matrix which correspond to the Ware (neoclassical) pinch due to the inductive applied electric field an the fast-ion-induced radial fluxes, in addition to the usual pressure- and temperature-gradient-driven fluxes (particle diffusion and heat conduction). Once the tranport coefficient are completely determined, the radial fluxes and the heat fluxes can be substituted into the density and energy evolution equations to provide a complete description of ''equilibrium'' (δδt << ν/sub ii/) neoclassical transport processes in a plasma. 47 refs., 14 figs

  3. The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core

    Science.gov (United States)

    Davies, C. J.; Mound, J. E.

    2017-12-01

    Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.

  4. Study of heat transport in structured soil under grass cover. Dual-continuum approach

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Dohnal, M.; Tesař, Miroslav; Vogel, T.

    2011-01-01

    Roč. 13, - (2011), s. 7414 ISSN 1607-7962. [European Geosciences Union General Assembly 2011. 03.04.2011-08.04.2011, Vienna] R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : water and heat transport * model S1D * Sumava Mts. Subject RIV: DA - Hydrology ; Limnology

  5. Studies of Electron Transport and Isochoric Heating and Their Applicability to Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Amiranoff, F; Andersen, C; Batani, D; Baton, S D; Cowan, T; Fisch, N; Freeman, R; Gremillet, L; Hall, T; Hatchett, S; Hill, J; King, J; Kodama, R; Koch, J; Koenig, M; Lasinski, B; Langdon, B; MacKinnon, A; Martinolli, E; Norreys, P; Parks, P; Perrelli-Cippo, E; Rabec Le Gloahec, M; Rosenbluth, M; Rousseaux, C; Santon, J J; Scianitti, F; Snavely, R; Tabak, M; Tanaka, K; Town, R; Tsutumi, T; Stephens, R

    2003-01-01

    Experimental measurements of electron transport and isochoric heating in 100 J, 1 ps laser irradiation of solid A1 targets are presented. Modeling with a hybrid PIC code is compared with the data and good agreement is obtained using a heuristic model for the electron injection. The relevance for fast ignition is discussed

  6. Numerical modeling of coupled water flow and heat transport in soil and snow

    Science.gov (United States)

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  7. Near-term viability of solar heat applications for the federal sector

    Science.gov (United States)

    Williams, T. A.

    1991-12-01

    Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100 C currently exist within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100 to 350 C) heat demands that could be met with parabolic trough systems. Federal facilities have several features relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long term planning horizon with well defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies that are different from those of other sectors, and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds.

  8. Thermal transport in low dimensions from statistical physics to nanoscale heat transfer

    CERN Document Server

    2016-01-01

    Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of na...

  9. Heat transport in the quasi-single-helicity islands of EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Drake, J.

    2009-03-01

    The heat transport inside the magnetic island generated in a quasi-single-helicity regime of a reversed-field pinch device is studied by using a numerical code that simulates the electron temperature and the soft x-ray emissivity. The heat diffusivity χe inside the island is determined by matching the simulated signals with the experimental ones. Inside the island, χe turns out to be from one to two orders of magnitude lower than the diffusivity in the surrounding plasma, where the magnetic field is stochastic. Furthermore, the heat transport properties inside the island are studied in correlation with the plasma current and with the amplitude of the magnetic fluctuations.

  10. Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation

    International Nuclear Information System (INIS)

    Kovac, D.; Otto, G.; Hobler, G.

    2005-01-01

    In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature

  11. [The design of heat dissipation of the field low temperature box for storage and transportation].

    Science.gov (United States)

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  12. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Mantica, P.; Coffey, I.; Dux, R.

    2003-01-01

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  13. The Role of Ocean and Atmospheric Heat Transport in the Arctic Amplification

    Science.gov (United States)

    Vargas Martes, R. M.; Kwon, Y. O.; Furey, H. H.

    2017-12-01

    Observational data and climate model projections have suggested that the Arctic region is warming around twice faster than the rest of the globe, which has been referred as the Arctic Amplification (AA). While the local feedbacks, e.g. sea ice-albedo feedback, are often suggested as the primary driver of AA by previous studies, the role of meridional heat transport by ocean and atmosphere is less clear. This study uses the Community Earth System Model version 1 Large Ensemble simulation (CESM1-LE) to seek deeper understanding of the role meridional oceanic and atmospheric heat transports play in AA. The simulation consists of 40 ensemble members with the same physics and external forcing using a single fully coupled climate model. Each ensemble member spans two time periods; the historical period from 1920 to 2005 using the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical forcing and the future period from 2006 to 2100 using the CMIP5 Representative Concentration Pathways 8.5 (RCP8.5) scenario. Each of the ensemble members are initialized with slightly different air temperatures. As the CESM1-LE uses a single model unlike the CMIP5 multi-model ensemble, the internal variability and the externally forced components can be separated more clearly. The projections are calculated by comparing the period 2081-2100 relative to the time period 2001-2020. The CESM1-LE projects an AA of 2.5-2.8 times faster than the global average, which is within the range of those from the CMIP5 multi-model ensemble. However, the spread of AA from the CESM1-LE, which is attributed to the internal variability, is 2-3 times smaller than that of the CMIP5 ensemble, which may also include the inter-model differences. CESM1LE projects a decrease in the atmospheric heat transport into the Arctic and an increase in the oceanic heat transport. The atmospheric heat transport is further decomposed into moisture transport and dry static energy transport. Also, the oceanic heat

  14. A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air.

    Science.gov (United States)

    Wissler, Eugene H; Havenith, George

    2009-03-01

    Overall resistances for heat and vapor transport in a multilayer garment depend on the properties of individual layers and the thickness of any air space between layers. Under uncomplicated, steady-state conditions, thermal and mass fluxes are uniform within the garment, and the rate of transport is simply computed as the overall temperature or water concentration difference divided by the appropriate resistance. However, that simple computation is not valid under cool ambient conditions when the vapor permeability of the garment is low, and condensation occurs within the garment. Several recent studies have measured heat and vapor transport when condensation occurs within the garment (Richards et al. in Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002; Havenith et al. in J Appl Physiol 104:142-149, 2008). In addition to measuring cooling rates for ensembles when the skin was either wet or dry, both studies employed a flat-plate apparatus to measure resistances of individual layers. Those data provide information required to define the properties of an ensemble in terms of its individual layers. We have extended the work of previous investigators by developing a rather simple technique for analyzing heat and water vapor transport when condensation occurs within a garment. Computed results agree well with experimental results reported by Richards et al. (Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002) and Havenith et al. (J Appl Physiol 104:142-149, 2008). We discuss application of the method to human subjects for whom the rate of sweat secretion, instead of the partial pressure of water on the skin, is specified. Analysis of a more complicated five-layer system studied by Yoo and Kim (Text Res J 78:189-197, 2008) required an iterative computation based on principles defined in this paper.

  15. Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Pochelon, A.; Behn, R.; Bottino, A.; Bortolon, A.; Coda, S.; Karpushov, A.; Sauter, O.; Zhuang, G.

    2007-01-01

    The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of -0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated

  16. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  17. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    International Nuclear Information System (INIS)

    Li, Yunyun; Li, Nianbei; Hänggi, Peter; Li, Baowen; Liu, Sha

    2015-01-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  18. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    Science.gov (United States)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  19. Heat Transport as a Probe of Superconducting Gap Structure

    International Nuclear Information System (INIS)

    Petrovic, C.; Shakeripour, H.; Taillefer, L.

    2009-01-01

    The structure of the superconducting gap provides important clues on the symmetry of the order parameter and the pairing mechanism. The presence of nodes in the gap function imposed by symmetry implies an unconventional order parameter, other than s-wave. Here we show how measurements of the thermal conductivity at very low temperature can be used to determine whether such nodes are present in a particular superconductor, and shed light on their nature and location. We focus on the residual linear term at T → 0. A finite value in zero magnetic field is strong evidence for symmetry-imposed nodes, and the dependence on impurity scattering can distinguish between a line of nodes or point nodes. Application of a magnetic field probes the low-energy quasiparticle excitations, whether associated with nodes or with a small value of the gap on some part of the Fermi surface, as in a multi-band superconductor. We frame our discussion around archetypal materials: Nb for s-wave, Tl 2 Ba 2 CuO 6+δ for d-wave, Sr 2 RuO 4 for p-wave, and NbSe 2 for multi-band superconductivity. In that framework, we discuss three heavy-fermion superconductors: CeIrIn 5 , CeCoIn 5 and UPt 3 .

  20. A practical nonlocal model for heat transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Nicolaie, Ph.D.; Feugeas, J.-L.A.; Schurtz, G.P.

    2006-01-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaie, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case

  1. A practical nonlocal model for heat transport in magnetized laser plasmas

    Science.gov (United States)

    Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.

    2006-03-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.

  2. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  3. A continuum self organized critically model of turbulent heat transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tangri, V; Das, A; Kaw, P; Singh, R [Institute for Plasma Research, Gandhinagar (India)

    2003-09-01

    Based on the now well known and experimentally observed critical gradient length (R/L{sub Te} = RT/{nabla}T) in tokamaks, we present a continuum one dimensional model for explaining self organized heat transport in tokamaks. Key parameters of this model include a novel hysteresis parameter which ensures that the switch of heat transport coefficient {chi} upwards and downwards takes place at two different values of R/L{sub Te}. Extensive numerical simulations of this model reproduce many features of present day tokamaks such as submarginal temperature profiles, intermittent transport events, 1/f scaling of the frequency spectra, propagating fronts, etc. This model utilises a minimal set of phenomenological parameters, which may be determined from experiments and/or simulations. Analytical and physical understanding of the observed features has also been attempted. (author)

  4. Modeling coupled thermal, flow, transport and geochemical processes controlling near field long-term evolution

    International Nuclear Information System (INIS)

    Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.

    2005-01-01

    Full text of publication follows: Bentonite is planned for use as a buffer material in the Swedish nuclear waste disposal concept (KBS-3). Upon emplacement, the buffer is expected to experience a complex set of coupled processes involving heating, re-saturation, reaction and transport of groundwater imbibed from the host rock. The effect of these processes may eventually lead to changes in desirable physical and rheological properties of the buffer, but these processes are not well understood. In this paper, a new quantitative model is evaluated to help improve our understanding of the long-term performance of buffer materials. This is an extension of a previous study [1] that involved simple thermal and chemical models applied to a fully saturated buffer. The thermal model in the present study uses heating histories for spent fuel in a single waste package [2]. The model uses repository dimensions, such as borehole and tunnel spacings [2], which affect the temperature distribution around the waste package. At the time of emplacement, bentonite is partially saturated with water having a different composition than the host-rock groundwater. The present model simulates water imbibition from the host rock into the bentonite under capillary and hydraulic pressure gradients. The associated chemical reactions and solute transport are simulated using Aespoe water composition [3]. The initial mineralogy of bentonite is assumed to be dominated by Na-smectite with much smaller amounts of anhydrite and calcite. Na-smectite dissolution is assumed to be kinetically-controlled while all other reactions are assumed to be at equilibrium controlled. All equilibrium and kinetic constants are temperature dependent. The modeling tool used is TOUGHREACT, developed by Lawrence Berkeley National Laboratory [4]. TOUGHREACT is a numerical model that is well suited for near-field simulations because it accounts for feedback between porosity and permeability changes from mineral

  5. The contribution of transport to air quality. TERM 2012: transport indicators tracking progress towards environmental targets in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vicente, A.; Pastorello, C.; Foltescu, V.L. [and others

    2012-11-15

    TERM 2012 (Transport and Environment Reporting Mechanism) presents the most relevant and up to date information on the main issues regarding transport and environment in Europe, particularly in areas with specific policy targets such as greenhouse gas emissions and energy consumption, transport demand levels, noise and other issues. It also offers an overview of the transport sector's impact on air pollutant emissions and air quality. It discusses the contributions made by all modes of transport to direct air pollutant emissions and also to 'secondary' air pollutants formed in the atmosphere. Alongside the recently published Air quality in Europe - 2012 report, TERM 2012 aims to inform the European Commission's review of the Thematic Strategy on Air Pollution. (Author)

  6. Study of electronic heat transport in plasma through diagnosis based on modulated electron cyclotron heating; Etudes de transport de la chaleur electronique par injection modulee d'ondes a la frequence cyclotronique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Clemencon, A.; Guivarch, C

    2003-07-01

    In order to make nuclear fusion energetically profitable, it is crucial to heat and confine the plasma efficiently. Studying the behavior of the heat diffusion coefficient is a key issue in this matter. The use of modulated electron cyclotron heating as a diagnostic has suggested the existence of a transport barrier under certain plasma conditions. We have determined the solution to the heat transport equation, for several heat diffusion coefficient profiles. By comparing the analytical solutions with experimental data; we are able to study the heat diffusion coefficient profile. Thus, in certain experiments, we can confirm that the heat diffusion coefficient switches from low to high values at the radius where the electron cyclotron heat deposition is made. (authors)

  7. Long-term heat storage in calcium sulfoaluminate cement (CSA) based concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Josef P.; Winnefeld, Frank [Empa Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland). Lab. for Concrete and Construction Chemistry

    2011-07-01

    in (long-term) storage of process heat. Any temperature source above about 80 C may be used.

  8. Fission products distributions in Candu primary heat transport and Candu containment systems during a severe accident

    International Nuclear Information System (INIS)

    Constantin, Marin; Rizoiu, Andrei

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code (Accident Source Term Evaluation Code). The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivations to begin with a simplified geometry in order to avoid the introducing of unmanageable errors at the level of input deck. Thus only 1/4 of the PHT circuit was simulated and a simplified FPs inventory, some simplifications in the feeders geometry and containment were used. The circuit consists of 95 horizontal fuel channels connected to 95 horizontal out-feeders, then through vertical feeders to the outlet-header (a big pipe that collects the water from feeders); the circuit continues from the outlet-header with a riser and then with the steam generator and a pump. After this pump, the circuit was broken; in this point the FPs are transferred to the containment. The containment model consists of 4 rooms connected between by 6 links. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU NPP loss of coolant accident sequence. Temperature and pressure conditions in the time of the accident were calculated by the CATHENA code and the source term of FPs introduced into the PHT was estimated by the ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species are obtained by using SOPHAEROS module of ASTEC code. The distributions into the containment are obtained by the CPA module of ASTEC code (thermalhydraulics calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts and

  9. Magnetic flux tubes and transport of heat in the convection zone of the sun

    International Nuclear Information System (INIS)

    Spruit, H.C.

    1977-01-01

    This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations

  10. Increased Heat Transport in Ultra-hot Jupiter Atmospheres through H2 Dissociation and Recombination

    Science.gov (United States)

    Bell, Taylor J.; Cowan, Nicolas B.

    2018-04-01

    A new class of exoplanets is beginning to emerge: planets with dayside atmospheres that resemble stellar atmospheres as most of their molecular constituents dissociate. The effects of the dissociation of these species will be varied and must be carefully accounted for. Here we take the first steps toward understanding the consequences of dissociation and recombination of molecular hydrogen (H2) on atmospheric heat recirculation. Using a simple energy balance model with eastward winds, we demonstrate that H2 dissociation/recombination can significantly increase the day–night heat transport on ultra-hot Jupiters (UHJs): gas giant exoplanets where significant H2 dissociation occurs. The atomic hydrogen from the highly irradiated daysides of UHJs will transport some of the energy deposited on the dayside toward the nightside of the planet where the H atoms recombine into H2; this mechanism bears similarities to latent heat. Given a fixed wind speed, this will act to increase the heat recirculation efficiency; alternatively, a measured heat recirculation efficiency will require slower wind speeds after accounting for H2 dissociation/recombination.

  11. Possible biphasic sweating response during short-term heat acclimation protocol for tropical natives.

    Science.gov (United States)

    Magalhães, Flávio de Castro; Machado-Moreira, Christiano Antônio; Vimieiro-Gomes, Ana Carolina; Silami-Garcia, Emerson; Lima, Nilo Resende Viana; Rodrigues, Luiz Oswaldo Carneiro

    2006-05-01

    The aim of the present study was to evaluate the sweat loss response during short-term heat acclimation in tropical natives. Six healthy young male subjects, inhabitants of a tropical region, were heat acclimated by means of nine days of one-hour heat-exercise treatments (40+/-0 degrees C and 32+/-1% relative humidity; 50% (.)VO(2peak) on a cycle ergometer). On days 1 to 9 of heat acclimation whole-body sweat loss was calculated by body weight variation corrected for body surface area. On days 1 and 9 rectal temperature (T(re)) and heart rate (HR) were measured continuously, and rating of perceived exertion (RPE) every 4 minutes. Heat acclimation was confirmed by reduced HR (day 1 rest: 77+/-5 b.min(-1); day 9 rest: 68+/-3 b.min(-1); day 1 final exercise: 161+/-15 b.min(-1); day 9 final exercise: 145+/-11 b.min(-1), p0.05) of the protocol. These findings are consistent with the heat acclimation induced adaptations and suggest a biphasic sweat response (an increase in the sweat rate in the middle of the protocol followed by return to initial values by the end of it) during short-term heat acclimation in tropical natives.

  12. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  13. Passive cooling during transport of asphyxiated term newborns

    Science.gov (United States)

    O’Reilly, Deirdre; Labrecque, Michelle; O’Melia, Michael; Bacic, Janine; Hansen, Anne; Soul, Janet S

    2014-01-01

    Objective To evaluate the efficacy and safety of passive cooling during transport of asphyxiated newborns. Study Design Retrospective medical record review of newborns with perinatal asphyxia transported for hypothermia between July 2007 and June 2010. Results Forty-three newborns were transported, 27 of whom were passively cooled. Twenty (74%) passively cooled newborns arrived with axillary temperature between 32.5 and 34.5 °C. One newborn (4%) arrived with a subtherapeutic temperature, and 6 (22%) had temperatures >34.5 °C. Time from birth to hypothermia was significantly shorter among passively cooled newborns compared with newborns not cooled (215 vs. 327 minutes, pencephalopathy results in significantly earlier achievement of effective therapeutic hypothermia without significant adverse events. PMID:23154670

  14. Finite speed heat transport in a quantum spin chain after quenched local cooling

    Science.gov (United States)

    Fries, Pascal; Hinrichsen, Haye

    2017-04-01

    We study the dynamics of an initially thermalized spin chain in the quantum XY-model, after sudden coupling to a heat bath of lower temperature at one end of the chain. In the semi-classical limit we see an exponential decay of the system-bath heatflux by exact solution of the reduced dynamics. In the full quantum description however, we numerically find the heatflux to reach intermediate plateaus where it is approximately constant—a phenomenon that we attribute to the finite speed of heat transport via spin waves.

  15. The heat transport system and plant design for the HYLIFE-2 fusion reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-01-01

    HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs

  16. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  17. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems

    International Nuclear Information System (INIS)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał; Piotrowski, Robert

    2016-01-01

    Highlights: • New method for long distance heat transportation system effectivity evaluation. • Decision model formulation which reflects time and spatial structure of the problem. • Multi-criteria and complex approach to solving the decision-making problem. • Solver based on simulation-optimization approach with two-phase optimization method. • Sensitivity analysis of the optimization procedure elements. - Abstract: Cogeneration or Combined Heat and Power (CHP) for power plants is a method of putting to use waste heat which would be otherwise released to the environment. This allows the increase in thermodynamic efficiency of the plant and can be a source of environmental friendly heat for District Heating (DH). In the paper CHP for Nuclear Power Plant (NPP) is analyzed with the focus on heat transportation. A method for effectivity and feasibility evaluation of the long distance, high power Heat Transportation System (HTS) between the NPP and the DH network is proposed. As a part of the method the multi-criteria decision-making problem, having the structure of the mathematical programming problem, for optimized selection of design and operating parameters of the HTS is formulated. The constraints for this problem include a static model of HTS, that allows considerations of system lifetime, time variability and spatial topology. Thereby variation of annual heat demand within the DH area, variability of ground temperature, insulation and pipe aging and/or terrain elevation profile can be taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. In general, the analyzed optimization problem is multi-criteria, hybrid and nonlinear. The two-phase optimization based on optimization-simulation framework is proposed to solve the decision-making problem. The solver introduces a number of assumptions concerning the optimization process. Methods for problem decomposition

  18. Integral analysis of debris material and heat transport in reactor vessel lower plenum

    International Nuclear Information System (INIS)

    Suh, K.Y.; Henry, R.E.

    1994-01-01

    An integral, fast-running, two-region model has been developed to characterize the debris material and heat transport in the reactor lower plenum under severe accident conditions. The debris bed is segregated into the oxidic pool and an overlying metallic layer. Debris crusts can develop on three surfaces: the top of the molten pool, the RPV wall, and the internal structures. To account for the decay heat generation, the crust temperature profile is assumed to be parabolic. The oxidic debris pool is homogeneously mixed and has the same material composition, and hence the same thermophysical properties, as the crusts, while the metallic constituents are assumed to rise to the top of the debris pool. Steady-state relationships are used to describe the heat transfer rates, with the assessment of solid or liquid state, and the liquid superheat in the pool being based on the average debris temperature. Natural convection heat transfer from the molten debris pool to the upper, lower and embedded crusts is calculated based on the pool Rayleigh number with the conduction heat transfer from the crusts being determined by the crust temperature profile. The downward heat flux is transferred to the lowest part of the RPV lower head through a crust-to-RPV contact resistance. The sideward heat flux is transferred to the upper regions of the RPV lower head as well as to the internal structures. The upward heat flux goes to the metal layer, water, or available heat sink structures above. Quenching due to water ingression is modeled separately from the energy transfer through the crust. The RPV wall temperature distribution and the primary system pressure are utilized to estimate challenges to the RPV integrity. ((orig.))

  19. Electron thermal energy transport research based on dynamical relationship between heat flux and temperature gradient

    International Nuclear Information System (INIS)

    Notake, Takashi; Inagaki, Shigeru; Tamura, Naoki

    2008-01-01

    In the nuclear fusion plasmas, both of thermal energy and particle transport governed by turbulent flow are anomalously enhanced more than neoclassical levels. Thus, to clarify a relationship between the turbulent flow and the anomalous transports has been the most worthwhile work. There are experimental results that the turbulent flow induces various phenomena on transport processes such as non-linearity, transition, hysteresis, multi-branches and non-locality. We are approaching these complicated problems by analyzing not conventional power balance but these phenomena directly. They are recognized as dynamical trajectories in the flux and gradient space and must be a clue to comprehend a physical mechanism of arcane anomalous transport. Especially, to elucidate the mechanism for electron thermal energy transport is critical in the fusion plasma researches because the burning plasmas will be sustained by alpha-particle heating. In large helical device, the dynamical relationships between electron thermal energy fluxes and electron temperature gradients are investigated by using modulated electron cyclotron resonance heating and modern electron cyclotron emission diagnostic systems. Some trajectories such as hysteresis loop or line segments with steep slope which represent non-linear property are observed in the experiment. (author)

  20. Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway

    International Nuclear Information System (INIS)

    Assefa Hagos, Dejene; Gebremedhin, Alemayehu; Folsland Bolkesjø, Torjus

    2015-01-01

    The objective of this paper is to identify the most valuable sector for the use of bioenergy in a flexible energy system in order to meet the energy policy objectives of Inland Norway. A reference system was used to construct alternative systems in the heating and transport sectors. The alternative system in the heating sector is based on heat pumps and bio-heat boilers while the alternative systems in the transport sector are based on three different pathways: bio-dimethyl ether, hydrogen fuel cell vehicles and battery electric vehicles. The alternative systems were compared with the reference system after a business-economic optimisation had been made using an energy system analysis tool. The results show that the excess electricity availability due to increased energy efficiency measures hampers the competitiveness and penetration of bio-heating over heat pumps in the heating sector. Indeed, the synergy effect of using bio-dimethyl ether in the transport sector for an increased share of renewable energy sources is much higher than that of the hydrogen fuel cell vehicle and battery electric vehicle pathways. The study also revealed that increasing renewable energy production would increase the renewable energy share more than what would be achieved by an increase in energy efficiency. -- Highlights: •Bio-heating is less competitive over heat pump for low quality heat production. •Renewable energy production meets policy objectives better than system efficiency. •Bioenergy is more valuable in the transport sector than the heating sector

  1. Long term energy demand projections for croatian transport sector

    DEFF Research Database (Denmark)

    Puksec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    Transport sector in Croatia represents one of the largest consumers of energy today with a share of almost one third of final energy demand. That is why improving energy efficiency and implementing different mechanisms that would lead to energy savings in this sector would be relevant. Through th...

  2. Forecasting long-term energy demand of Croatian transport sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Krajačić, Goran; Lulić, Zoran

    2013-01-01

    predictions for the Croatian transport sector are presented. Special emphasis is given to different influencing mechanisms, both legal and financial. The energy demand predictions presented in this paper are based on an end-use simulation model developed and tested with Croatia as a case study. The model...

  3. Long-term financial transportation rights : An experiment

    NARCIS (Netherlands)

    Henze, B.; Noussair, C.N.; Willems, Bert; Kristainsen, T.; Rosellon, J.

    2013-01-01

    One challenge facing operators of network infrastructure, such as gas pipelines and electricity grids, is that large new investments in capacity must be undertaken as overall demand increases. In the European Union alone, roughly 200 Billion Euro must be invested in the energy transport networks

  4. Thermal transport of carbon nanotubes and graphene under optical and electrical heating measured by Raman spectroscopy

    Science.gov (United States)

    Hsu, I.-Kai

    This thesis presents systematic studies of thermal transport in individual single walled carbon nanotubes (SWCNTs) and graphene by optical and electrical approaches using Raman spectroscopy. In the work presented from Chapter 2 to Chapter 6, individual suspended CNTs are preferentially measured in order to explore their intrinsic thermal properties. Moreover, the Raman thermometry is developed to detect the temperature of the carbon nanotube (CNT). A parabolic temperature profile is observed in the suspended region of the CNT while a heating laser scans across it, providing a direct evidence of diffusive thermal transport in an individual suspended CNT. Based on the curvature of the temperature profile, we can solve for the ratio of thermal contact resistance to the thermal resistance of the CNT, which spans the range from 0.02 to 17. The influence of thermal contact resistance on the thermal transport in an individual suspended CNT is also studied. The Raman thermometry is carried out in the center of a CNT, while its contact length is successively shortened by an atomic force microscope (AFM) tip cutting technique. By investigating the dependence of the CNT temperature on its thermal contact length, the temperature of a CNT is found to increase dramatically as the contact length is made shorter. This work reveals the importance of manipulating the CNT thermal contact length when adopting CNT as a thermal management material. In using a focused laser to induce heating in a suspended CNT, one open question that remains unanswered is how many of the incident photons are absorbed by the CNT of interest. To address this question, micro-fabricated platinum thermometers, together with micro-Raman spectroscopy are used to quantify the optical absorption of an individual CNT. The absorbed power in the CNT is equal to the power detected by two thermometers at the end of the CNT. Our result shows that the optical absorption lies in the range between 0.03 to 0.44%. In

  5. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    International Nuclear Information System (INIS)

    Peters, M.

    1996-01-01

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity χ to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.)

  6. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M

    1996-01-16

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).

  7. Conceptual design of heat transport systems and components of PFBR-NSSS

    International Nuclear Information System (INIS)

    Chetal, S.C.; Bhoje, S.B.; Kale, R.D.; Rao, A.S.L.K.; Mitra, T.K.; Selvaraj, A.; Sethi, V.K.; Sundaramoorthy, T.R.; Balasubramaniyan, V.; Vaidyanathan, G.

    1996-01-01

    The production of electrical power from sodium cooled fast reactors in the present power scenario in India demands emphasis on plant economics consistent with safety. Number of heat transport systems/components and the design of principal heat transport components viz sodium pumps, IHX and steam generators play significant role in the plant capital cost and capacity factor. The paper discusses the basis of selection of 2 primary pumps, 4 IHX, 2 secondary loops, 2 secondary pumps and 8 steam generators for the 500 MWe Prototype Fast Breeder Reactor (PFBR), which is now in design stage. The principal design features of primary pump, IHX and steam generator have been selected based on design simplicity, ease of manufacture and utilization of established designs. The paper also describes the conceptual design of above mentioned three components. (author). 3 figs, 2 tabs

  8. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  9. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  10. Heat and Fission Product Transport in a Molten U-Zr-O Pool With Crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2002-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry and the change of pool geometry during the numerical calculation was neglected. Results of the numerical calculation revealed that the peak temperature of the molten pool significantly decreased and most of the volatile fission products were released from the molten pool during the accident. (authors)

  11. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    OpenAIRE

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie Keith; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2009-01-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were valida...

  12. Performance of the FFTF heat transport system during cycles 1 and 2

    International Nuclear Information System (INIS)

    Burke, T.M.; Yunker, W.H.; Cramer, E.R.

    1983-01-01

    From April 1982 through May 1983, the Fast Flux Test Facility (FFTF) completed its first two full cycles of operation. This experience has provided significant information relative to the performance of the Main Heat Transport System (MHTS). While in general, the MHTS performance has been extremely good, there have been a few unanticipated events and trends which could very well influence the design and/or operation of further LMFBR plants. The performance of the major MHTS components is discussed

  13. Material and fabrication considerations for the CANDU-PHWR heat transport system

    International Nuclear Information System (INIS)

    Filipovic, A.; Price, E.G.; Barber, D.; Nickerson, J.

    1987-03-01

    CANDU PHWR nuclear systems have used carbon steel material for over 25 years. The accumulated operating experience of over 200 reactor years has proven this unique AECL approach to be both technically and economically attractive. This paper discusses design, material and fabrication considerations for out-reactor heat transport system major components. The contribution of this unique choice of materials and equipment to the outstanding CANDU performance is briefly covered

  14. Heat transport and afterheat removal for gas cooled reactors under accident conditions

    International Nuclear Information System (INIS)

    2001-01-01

    The Co-ordinated Research Project (CRP) on Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions was organized within the framework of the International Working Group on Gas Cooled Reactors (IWGGCR). This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs) and supports the conduct of these activities. Advanced GCR designs currently being developed are predicted to achieve a high degree of safety through reliance on inherent safety features. Such design features should permit the technical demonstration of exceptional public protection with significantly reduced emergency planning requirements. For advanced GCRs, this predicted high degree of safety largely derives from the ability of the ceramic coated fuel particles to retain the fission products under normal and accident conditions, the safe neutron physics behaviour of the core, the chemical stability of the core and the ability of the design to dissipate decay heat by natural heat transport mechanisms without reaching excessive temperatures. Prior to licensing and commercial deployment of advanced GCRs, these features must first be demonstrated under experimental conditions representing realistic reactor conditions, and the methods used to predict the performance of the fuel and reactor must be validated against these experimental data. Within this CRP, the participants addressed the inherent mechanisms for removal of decay heat from GCRs under accident conditions. The objective of this CRP was to establish sufficient experimental data at realistic conditions and validated analytical tools to confirm the predicted safe thermal response of advance gas cooled reactors during accidents. The scope includes experimental and analytical investigations of heat transport by natural convection conduction and thermal

  15. Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

    2005-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various

  16. Analysis of simulation methodology for calculation of the heat of transport for vacancy thermodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, William C.; Schelling, Patrick K., E-mail: patrick.schelling@ucf.edu [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)

    2014-07-14

    Computation of the heat of transport Q{sub a}{sup *} in monatomic crystalline solids is investigated using the methodology first developed by Gillan [J. Phys. C: Solid State Phys. 11, 4469 (1978)] and further developed by Grout and coworkers [Philos. Mag. Lett. 74, 217 (1996)], referred to as the Grout-Gillan method. In the case of pair potentials, the hopping of a vacancy results in a heat wave that persists for up to 10 ps, consistent with previous studies. This leads to generally positive values for Q{sub a}{sup *} which can be quite large and are strongly dependent on the specific details of the pair potential. By contrast, when the interactions are described using the embedded atom model, there is no evidence of a heat wave, and Q{sub a}{sup *} is found to be negative. This demonstrates that the dynamics of vacancy hopping depends strongly on the details of the empirical potential. However, the results obtained here are in strong disagreement with experiment. Arguments are presented which demonstrate that there is a fundamental error made in the Grout-Gillan method due to the fact that the ensemble of states only includes successful atom hops and hence does not represent an equilibrium ensemble. This places the interpretation of the quantity computed in the Grout-Gillan method as the heat of transport in doubt. It is demonstrated that trajectories which do not yield hopping events are nevertheless relevant to computation of the heat of transport Q{sub a}{sup *}.

  17. MAGNUM-2D, Heat Transport and Groundwater Flow in Fractured Porous Media

    International Nuclear Information System (INIS)

    Langford, D.W.; Baca, R.G.

    2001-01-01

    1 - Description of program or function: MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water-rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and inter- connecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, non- isothermal Darcy flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER post-processor interpolates non-regularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH post-processor plots flow paths and computes the corresponding travel times. 2 - Method of solution: MAGNUM2

  18. Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation

    Science.gov (United States)

    Olsrud, Johan Karl Otto

    1998-12-01

    Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was

  19. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Science.gov (United States)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  20. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    Science.gov (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  1. Turbulent transport regimes and the scrape-off layer heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  2. Turbulent transport regimes and the scrape-off layer heat flux width

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-01-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments

  3. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns

    Science.gov (United States)

    W. J. Massman

    2012-01-01

    Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the...

  4. A novel TRNSYS type for short-term borehole heat exchanger simulation: B2G model

    International Nuclear Information System (INIS)

    De Rosa, Mattia; Ruiz-Calvo, Félix; Corberán, José M.; Montagud, Carla; Tagliafico, Luca A.

    2015-01-01

    Highlights: • A novel dynamic borehole heat exchanger model is presented. • Theoretical approach for model parameters calculation is described. • The short-term model is validated against experimental data of a real GSHP. • Strong dynamic conditions due to the ON–OFF regulation are investigated. - Abstract: Models of ground source heat pump (GSHP) systems are used as an aid for the correct design and optimization of the system. For this purpose, it is necessary to develop models which correctly reproduce the dynamic thermal behavior of each component in a short-term basis. Since the borehole heat exchanger (BHE) is one of the main components, special attention should be paid to ensuring a good accuracy on the prediction of the short-term response of the boreholes. The BHE models found in literature which are suitable for short-term simulations usually present high computational costs. In this work, a novel TRNSYS type implementing a borehole-to-ground (B2G) model, developed for modeling the short-term dynamic performance of a BHE with low computational cost, is presented. The model has been validated against experimental data from a GSHP system located at Universitat Politècnica de València, Spain. Validation results show the ability of the model to reproduce the short-term behavior of the borehole, both for a step-test and under normal operating conditions

  5. Influence of transport on EBW heating efficiency in magnetic confinement devices

    International Nuclear Information System (INIS)

    Cappa, A.; Castejon, F.; Lopez-Bruna, D.; Tereshchenko, M.

    2007-01-01

    The main advantage of the heating performed by electron Bernstein waves (EBW) in the O-X-B1 regime (O mode injection that is converted into X mode, which is converted in Bernstein wave, strongly absorbed close to the cyclotron resonance layer at first harmonic) is that there is no cut-off density. Therefore, this heating system can work without upper density limit, still having all the advantages of electron cyclotron resonance heating (ECRH), which is localised in phase space due to its resonant nature. The heating efficiency of Bernstein waves depends on the fraction of waves that is transformed from O to X mode at the O mode cut off layer, then on the fraction of power converted into Bernstein waves at the upper hybrid resonance layer and, finally, on the final position of the absorption in the plasma. All these factors are related to the density profile, since the positions of the cut off and of the upper hybrid resonance layers depend on the actual plasma density profile. Besides, the absorption profile depends also on the temperature profile. Moreover, it is possible to observe that the former layers only appear for high enough plasma density, than can be obtained by gas puffing, as has been observed in the simulations performed for TJ-II stellarator. For such reasons, particle transport is basic for understanding and guaranteeing EBW heating. In this work, TJ-II plasmas are taken as a case example in order to simulate the full evolution of a plasma discharge that is created and heated by ECRH in a first step and finally is heated using EBW. The evolution of the discharge is simulated using the transport code ASTRA and the sequence of the discharge is as follows: O mode is launched on a steady state plasma with density lower than the O mode cut-off. Then a gas puff is injected in order to increase the plasma density over the level in which EBW heating is efficient because O mode cut off and upper hybrid layer appear. EBW ray tracing calculations are performed

  6. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Science.gov (United States)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to

  7. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    Science.gov (United States)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  8. Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.

    Science.gov (United States)

    Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T

    2012-07-01

    Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of short-term exercise-heat acclimation on ventilatory and cerebral blood flow responses to passive heating at rest in humans.

    Science.gov (United States)

    Fujii, Naoto; Tsuji, Bun; Honda, Yasushi; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-09-01

    Hyperthermia induces hyperventilation and cerebral hypoperfusion in resting humans. We tested the hypothesis that short-term exercise-heat acclimation would alleviate those effects. Twenty healthy male subjects were divided into two groups that performed exercise training in the heat (TR-HEAT, n = 10) or cold (TR-COLD, n = 10). Before and after the training, the subjects in both groups participated in passive-heat tests at rest. Training was performed at 37°C (TR-HEAT) or 10°C (TR-COLD) and entailed four 20-min bouts of cycling at 50% peak oxygen uptake separated by 10-min recoveries daily for 6 consecutive days. After TR-HEAT, esophageal temperature was lowered when measured before and during passive heating, as was the esophageal temperature threshold for cutaneous active vasodilation, whereas plasma volume was increased (all P heat acclimation were not all induced by TR-COLD (all P > 0.05). TR-HEAT had no significant effect on passive heating-induced increases in minute ventilation, even when evaluated as the esophageal temperature threshold for increases in minute ventilation and the slope relating minute ventilation to esophageal temperature (all P > 0.05). By contrast, TR-HEAT attenuated the passive heating-induced reduction in the cerebral vascular conductance index (middle cerebral artery mean blood velocity/mean arterial pressure) (all P heating (all P > 0.05). These data suggest that in resting heated humans, short-term heat acclimation achieved through moderate-intensity exercise training (i.e., 50% peak oxygen uptake) in the heat does not influence hyperthermia-induced hyperventilation, but it does potentially attenuate cerebral hypoperfusion. Copyright © 2015 the American Physiological Society.

  10. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  11. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  12. STACE: source term analyses for containment evaluations of transport casks

    International Nuclear Information System (INIS)

    Seager, K.D.; Gianoulakis, S.E.; Barrett, P.R.; Rashid, Y.R.; Reardon, P.C.

    1993-01-01

    STACE evaluates the calculated fuel rod response against failure criteria based on the cladding residual ductility and fracture properties as functions of irradiation and thermal environments. The fuel rod gap inventory contains three forms of releasable RAM: (1) gaseous, e.g., 85 Kr, (2) volatiles, e.g., 134 Cs and 137 Cs, and (3) actinides associated with fuel fines. The quantities of these products are limited to that contained within the fuel-cladding gap region and associated interconnected voids. Cladding pinhole failure will also result in the ejection of about 0.003 percent of the fuel, in the form of fines, into the cask cavity. Significant attenuation of the aerosol concentration in the transport cask can occur, depending upon the residence time of the aerosol in the cask compared with its rate of escape from the cask into the environment. (J.P.N.)

  13. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  14. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  15. Heat balance structure of canopies at extreme precipitation in view of long-term records

    International Nuclear Information System (INIS)

    Bubnowska, J.; Gąsiorek, E.; Łabędzki, L.; Musiał, E.

    2005-01-01

    Increasing frequency of extreme weather conditions is attributed to the global variations in climate. Heat balance of substrate is one of the processes affecting the climate. Variations of heat balance in spring wheat during the growing seasons (April-August) and in potatoes during the growing seasons (May-September) with maximal and minimal precipitation are confronted here with long term changes of the balance. Two regions Wroclaw-Swojec (1964-2000) and Bydgoszcz (1945-2003) were involved in the study [pl

  16. EFFECT OF SANDSTONE ANISOTROPY ON ITS HEAT AND MOISTURE TRANSPORT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Jan Fořt

    2015-09-01

    Full Text Available Each type of natural stone has its own geological history, formation conditions, different chemical and mineralogical composition, which influence its possible anisotropy. Knowledge in the natural stones anisotropy represents crucial information for the process of stone quarrying, its correct usage and arrangement in building applications. Because of anisotropy, many natural stones exhibit different heat and moisture transport properties in various directions. The main goal of this study is to analyse several anisotropy indices and their effect on heat transport and capillary absorption. For the experimental determination of the anisotropy effect, five types of sandstone coming from different operating quarries in the Czech Republic are chosen. These materials are often used for restoration of culture heritage monuments as well as for other building applications where they are used as facing slabs, facade panels, decoration stones, paving, etc. For basic characterization of studied materials, determination of their bulk density, matrix density and total open porosity is done. Chemical composition of particular sandstones is analysed by X-Ray Fluorescence. Anisotropy is examined by the non-destructive measurement of velocity of ultrasonic wave propagation. On the basis of ultrasound testing data, the relative anisotropy, total anisotropy and anisotropy coefficient are calculated. Then, the measurement of thermal conductivity and thermal diffusivity in various directions of samples orientation is carried out. The obtained results reveal significant differences between the parameters characterizing the heat transport in various directions, whereas these values are in accordance with the indices of anisotropy. Capillary water transport is described by water absorption coefficient measured using a sorption experiment, which is performed for distilled water and 1M NaCl water solution.  The measured data confirm the effect of anisotropy which is

  17. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Directory of Open Access Journals (Sweden)

    C. L. Gomez-Heredia

    2017-01-01

    Full Text Available Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen’s number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrheat transport.

  18. Coupling between particle and heat transport during power modulation experiments in Tore Supra

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Artaud, J.F.; Bouquey, F.; Bremond, S.; Clary, J.; Darbos, C.; Eury, S.P.; Lennholm, M.; Magne, R.; Segui, J.L.

    2004-01-01

    Power modulations are a powerful tool often used to investigate heat transport processes in tokamaks. In some situations, this could also be an interesting method for the investigation of the particle transport due to the anomalous pinch. Low frequency (∼ 1 Hz) power modulation experiments, using both electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH), have been performed in the Tore Supra tokamak. Strong coupling has been observed between the temperature and density modulations during the low frequency ECRH and ICRH modulation experiments. It has been shown that mechanisms as outgassing, Ware pinch effect, curvature driven pinch are not likely to be responsible for this density modulation. Because of its dependence on temperature or temperature gradient, the thermodiffusion is a serious candidate to be the driving source for this density modulation. This analysis shows that low frequency power modulation experiments have a great potential for the investigation of the anomalous particle pinch in tokamaks. Future plans will include the use of more precise density profile measurements using X-mode reflectometry

  19. Study on a non-powered heat transporting system; Mudoryoku netsu hanso system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y [Kanto Gakuin University, Yokohama (Japan)

    1997-11-25

    This paper proposes a non-powered heat transportation (HT) system. The system is composed of an evaporator, condenser, receiver, switching chamber (SC) and 3 check valves which are connected with each other by vapor and liquid tubes. Condensed liquid supercooled in the condenser exists in the receiver forming a saturated condition at a concerned temperature, and condensed liquid is lifted up from the condenser to the receiver by pressure difference between the evaporator and receiver. Generally evaporation pressure is higher by pressure difference between liquid levels in the condenser and receiver. The lifted up amount of condensed liquid increases with evaporation pressure, resulting in an increase in heating surface area of the condenser and amount of condensed liquid. A proper evaporator pressure is thus retained by reduction of evaporation pressure. SC is connected with the receiver and evaporator, and switches high- and low-pressure valves by motion of an inner float to transport heat from the evaporator to condenser. Reverse HT is possible as normal latent HT by installing a bypass. Some problems are also described. 2 refs., 8 figs.

  20. Coupling between particle and heat transport during power modulation experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X.L.; Giruzzi, G.; Artaud, J.F.; Bouquey, F.; Bremond, S.; Clary, J.; Darbos, C.; Eury, S.P.; Lennholm, M.; Magne, R.; Segui, J.L

    2004-07-01

    Power modulations are a powerful tool often used to investigate heat transport processes in tokamaks. In some situations, this could also be an interesting method for the investigation of the particle transport due to the anomalous pinch. Low frequency ({approx} 1 Hz) power modulation experiments, using both electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH), have been performed in the Tore Supra tokamak. Strong coupling has been observed between the temperature and density modulations during the low frequency ECRH and ICRH modulation experiments. It has been shown that mechanisms as outgassing, Ware pinch effect, curvature driven pinch are not likely to be responsible for this density modulation. Because of its dependence on temperature or temperature gradient, the thermodiffusion is a serious candidate to be the driving source for this density modulation. This analysis shows that low frequency power modulation experiments have a great potential for the investigation of the anomalous particle pinch in tokamaks. Future plans will include the use of more precise density profile measurements using X-mode reflectometry.

  1. Low frequency turbulence, particle and heat transport in the Wisconsin levitated octupole

    International Nuclear Information System (INIS)

    Garner, H.R.

    1982-01-01

    Low frequency turbulence in the drift frequency range and its relation to the observed particle transport in the Wisconsin Levitated Octupole has been studied with a microwave scattering apparatus. The experimental parameters were T/sub e/ approx. T/sub i/ 13 cm -3 , 200 G < B/sub p-average/ < 1.25 kG. The effect of shear on the transport was studied by the addition of a small toroidal field. By matching experimentally measured density profiles to those given by numerical solutions of the transport equations, diffusion coefficients were obtained. Time dependent density fluctuation spectra were measured with an 8 mm microwave scattering diagnostic to correlate the drift wave portion of the spectrum with the observed diffusion. The density fluctuation spectrum of low frequency (1 kHz < ω < 6 MHz) turbulence was measured for several values of perpendicular wavenumber, k/sub perpendicular to/. Electron heat transport was studied by fitting experimentally measured electron temperature profiles to those predicted by numerical solutions of electron energy transport equation

  2. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  3. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    Science.gov (United States)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  4. Mitigation of strontium and ruthenium release in the CANDU primary heat transport system

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, J

    1998-03-01

    In certain severe accident scenarios, low-volatility fission products can appear to contribute significantly to dose, if treated with undue conservatism. Hence a survey was performed, to see if factors that may mitigate release of strontium and ruthenium could be incorporated into safety analyses, to cover parameters such as location in the fuel matrix under normal operating conditions, release from fuel, transport and deposition in the primary heat transport system and chemistry. In addition chemical equilibrium calculations were performed to investigate the volatility of strontium and ruthenium in the presence of uranium and important fission products. Strontium is very soluble in the U0{sub 2} fuel, up to 12 atom %, and hence release is improbable, particularly under oxidizing conditions until volatilization of the fuel matrix itself occurs. Ruthenium, however, can be released at low temperatures, but only under oxidizing conditions. These may occur during a fuel-handling accident or as a result of an end-fitting failure. Under these conditions, the primary heat transport system cannot be credited for retention. The volatile form of ruthenium, RuO{sub 4}(g), is thermally unstable above 381 K and decomposes to RuO{sub 2}(s) and O{sub 2}(g) upon contact with surfaces, a factor that is likely to minimize the release of ruthenium into the environment. (author)

  5. Mitigation of strontium and ruthenium release in the CANDU primary heat transport system

    International Nuclear Information System (INIS)

    McFarlane, J.

    1998-03-01

    In certain severe accident scenarios, low-volatility fission products can appear to contribute significantly to dose, if treated with undue conservatism. Hence a survey was performed, to see if factors that may mitigate release of strontium and ruthenium could be incorporated into safety analyses, to cover parameters such as location in the fuel matrix under normal operating conditions, release from fuel, transport and deposition in the primary heat transport system and chemistry. In addition chemical equilibrium calculations were performed to investigate the volatility of strontium and ruthenium in the presence of uranium and important fission products. Strontium is very soluble in the U0 2 fuel, up to 12 atom %, and hence release is improbable, particularly under oxidizing conditions until volatilization of the fuel matrix itself occurs. Ruthenium, however, can be released at low temperatures, but only under oxidizing conditions. These may occur during a fuel-handling accident or as a result of an end-fitting failure. Under these conditions, the primary heat transport system cannot be credited for retention. The volatile form of ruthenium, RuO 4 (g), is thermally unstable above 381 K and decomposes to RuO 2 (s) and O 2 (g) upon contact with surfaces, a factor that is likely to minimize the release of ruthenium into the environment. (author)

  6. Analysis of near-term spent fuel transportation hardware requirements and transportation costs

    International Nuclear Information System (INIS)

    Daling, P.M.; Engel, R.L.

    1983-01-01

    A computer model was developed to quantify the transportation hardware requirements and transportation costs associated with shipping spent fuel in the commercial nucler fuel cycle in the near future. Results from this study indicate that alternative spent fuel shipping systems (consolidated or disassembled fuel elements and new casks designed for older fuel) will significantly reduce the transportation hardware requirements and costs for shipping spent fuel in the commercial nuclear fuel cycle, if there is no significant change in their operating/handling characteristics. It was also found that a more modest cost reduction results from increasing the fraction of spent fuel shipped by truck from 25% to 50%. Larger transportation cost reductions could be realized with further increases in the truck shipping fraction. Using the given set of assumptions, it was found that the existing spent fuel cask fleet size is generally adequate to perform the needed transportation services until a fuel reprocessing plant (FRP) begins to receive fuel (assumed in 1987). Once the FRP opens, up to 7 additional truck systems and 16 additional rail systems are required at the reference truck shipping fraction of 25%. For the 50% truck shipping fraction, 17 additional truck systems and 9 additional rail systems are required. If consolidated fuel only is shipped (25% by truck), 5 additional rail casks are required and the current truck cask fleet is more than adequate until at least 1995. Changes in assumptions could affect the results. Transportation costs for a federal interim storage program could total about $25M if the FRP begins receiving fuel in 1987 or about $95M if the FRP is delayed until 1989. This is due to an increased utilization of federal interim storage facility from 350 MTU for the reference scenario to about 750 MTU if reprocessing is delayed by two years

  7. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    OpenAIRE

    Li, Xian-Xiang; Koh, Tieh-Yong; Britter, Rex E; Norford, Leslie Keith; Entekhabi, Dara

    2010-01-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street ca...

  8. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    Science.gov (United States)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  9. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    Science.gov (United States)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  10. Autonomous distributed temperature sensing for long-term heated applications in remote areas

    Directory of Open Access Journals (Sweden)

    A.-M. Kurth

    2013-02-01

    Full Text Available Distributed temperature sensing (DTS is a fiber-optical method enabling simultaneous temperature measurements over long distances. Electrical resistance heating of the metallic components of the fiber-optic cable provides information on the thermal characteristics of the cable's environment, providing valuable insight into processes occurring in the surrounding medium, such as groundwater–surface water interactions, dam stability or soil moisture. Until now, heated applications required direct handling of the DTS instrument by a researcher, rendering long-term investigations in remote areas impractical due to the often difficult and time-consuming access to the field site. Remote control and automation of the DTS instrument and heating processes, however, resolve the issue with difficult access. The data can also be remotely accessed and stored on a central database. The power supply can be grid independent, although significant infrastructure investment is required here due to high power consumption during heated applications. Solar energy must be sufficient even in worst case scenarios, e.g. during long periods of intense cloud cover, to prevent system failure due to energy shortage. In combination with storage batteries and a low heating frequency, e.g. once per day or once per week (depending on the season and the solar radiation on site, issues of high power consumption may be resolved. Safety regulations dictate adequate shielding and ground-fault protection, to safeguard animals and humans from electricity and laser sources. In this paper the autonomous DTS system is presented to allow research with heated applications of DTS in remote areas for long-term investigations of temperature distributions in the environment.

  11. 48 CFR 47.205 - Availability of term contracts and basic ordering agreements for transportation or for...

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION Contracts for Transportation or for Transportation-Related Services 47.205 Availability of term... is generally more economical and efficient for most agencies to make use of term contracts and basic... on behalf of other activities and agencies. For instance, GSA awards term contracts for services such...

  12. Events leading to foreign material being left in the primary heat transport system

    International Nuclear Information System (INIS)

    Groom, S.H.; Benton, A.J.

    1996-01-01

    On October 6,1995, following an extensive maintenance outage which had included boiler primary side cleaning, a Primary Heat Transport (PHT) system pump run was started in preparation for ultrasonic feeder flow measurements. Wooden debris in the system resulted in failure of the shaft seals of the PHT Pump 1. The subsequent investigation and assessment of this event provided an understanding of both the pump shaft failure mechanism and the origin of the debris in the PHT system. The pump shaft failed as a result of friction-generated heat resulting from contact between the rotating shaft and the stationary seal housing. This contact was initiated by mechanical and hydraulic imbalance in the pump impeller caused by wooden debris lodged in the impeller. The origin of the wooden debris was a temporary plywood cover which was inadvertently left in a boiler following maintenance. This cover moved from the boiler to the pump impeller when the PHT pumps were started. The cover was not accounted for and verified as being removed prior to boiler closure, although a visual inspection was conducted. A detailed institutional process for component accounting and verification of removal of materials did not exist at the time of this event. Details of the methods used to establish alternative heat sinks, provide debris recovery facilities and to assess the fitness for duty of the heat transport system and fuel channels prior to reactor startup are discussed in detail elsewhere. This report will concentrate on the events leading up to and following the events which ultimately resulted in failure of the PHT pump shaft

  13. Stochastic Impact Assessment of the Heating and Transportation Systems Electrification on LV grids

    DEFF Research Database (Denmark)

    Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte; Chen, Zhe

    2014-01-01

    According to the new energy policy agreements, a conceptual and technological re-structuration of the Danish energy sector is expected. One of the key points for its successful implementation is the partial electrification of the heating and transportation systems. This fact, which reflects an en....... As a case study, a typical Danish low voltage grid is considered. The results obtained, using DIgSILENT PowerFactory, show that sometimes the hosting capability of these networks may be poor for the integration levels expected....

  14. Practical examples of how knowledge management is addressed in Point Lepreau heat transport ageing management programs

    International Nuclear Information System (INIS)

    Slade, J.; Gendron, T.; Greenlaw, G.

    2009-01-01

    In the mid-1990s, New Brunswick Power Nuclear implemented a Management System Process Model at the Point Lepreau Generating Station that provides the basic elements of a knowledge management program. As noted by the IAEA, the challenge facing the nuclear industry now is to make improvements in knowledge management in areas that are more difficult to implement. Two of these areas are: increasing the value of existing knowledge, and converting tacit knowledge to explicit knowledge (knowledge acquisition). This paper describes some practical examples of knowledge management improvements in the Point Lepreau heat transport system ageing management program. (author)

  15. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures

    Science.gov (United States)

    Savin, Alexander V.; Kosevich, Yuriy A.; Cantarero, Andres

    2012-08-01

    We present a detailed description of semiquantum molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination of temperature in quantum lattice systems, to which the equipartition limit is not applied. We show that one can determine the temperature of such a system from the measured power spectrum and temperature- and relaxation-rate-independent density of vibrational (phonon) states. We simulate the specific heat and heat transport in carbon nanotubes, as well as the heat transport in molecular nanoribbons with perfect (atomically smooth) and rough (porous) edges, and in nanoribbons with strongly anharmonic periodic interatomic potentials. We show that the effects of quantum statistics of phonons are essential for the carbon nanotube in the whole temperature range T<500K, in which the values of the specific heat and thermal conductivity of the nanotube are considerably less than that obtained within the description based on classical statistics of phonons. This conclusion is also applicable to other carbon-based materials and systems with high Debye temperature like graphene, graphene nanoribbons, fullerene, diamond, diamond nanowires, etc. We show that the existence of rough edges and quantum statistics of phonons change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the nanoribbon with perfect edges and classical phonon dynamics and statistics. The semiquantum molecular

  16. Impact of Wireless Power Transfer in Transportation: Future Transportation Enabler, or Near Term Distraction

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Jones, Perry T [ORNL

    2014-01-01

    While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to the energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.

  17. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  18. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tokuzawa, T.

    2006-10-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the Large Helical Device (LHD) show a significant rise of core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport is dominated. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay of the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase in collisionality in the core plasma and the decrease in electron temperature gradient scale length in the outer region of the plasma. (author)

  19. SWIFT, 3-D Fluid Flow, Heat Transfer, Decay Chain Transport in Geological Media

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Reeves, M.

    2003-01-01

    1 - Description of problem or function: SWIFT solves the coupled or individual equations governing fluid flow, heat transport, brine displacement, and radionuclide displacement in geologic media. Fluid flow may be transient or steady-state. One, two, or three dimensions are available and transport of radionuclides chains is possible. 4. Method of solution: Finite differencing is used to discretize the partial differential equations in space and time. The user may choose centered or backward spatial differencing, coupled with either central or backward temporal differencing. The matrix equations may be solved iteratively (two line successive-over-relaxation) or directly (special matrix banding and Gaussian elimination). 5. Restrictions on the complexity of the problem: On the CDC7600 in direct solution mode, the maximum number of grid blocks allowed is approximately 1400

  20. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tanaka, K.; Michael, C.; Tokuzawa, T.; Shimozuma, T.; Kubo, S.; Sakamoto, R.; Ida, K.; Itoh, K.; Kalinina, D.; Sudo, S.; Nagayama, Y.; Kawahata, K.; Komori, A.

    2007-01-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the large helical device (LHD) show a significant rise in core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport dominates. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay in the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase both in the collisionality in the core plasma and the electron temperature gradient scale length in the outer region of the plasma

  1. Waste heat recovery for transport trucks using thermally regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, A.; Wechsler, D.; Whitney, R.; Jessop, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; Davis, B.R. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Carbon emissions associated with transportation can be reduced by increasing the fuel efficiency of transport trucks. This can be achieved with thermally regenerative fuel cells that transform the waste heat from the engine block into electricity. In order to operate such a fuel cell, one needs a fluid which rapidly, reversibly, and selectively undergoes dehydrogenation. Potential fluids have been screened for their ability to dehydrogenate and then rehydrogenate at the appropriate temperatures. An examination of the thermodynamics, kinetics, and selectivities of these processes have shown that the challenge involving hydrogenolysis at high temperature must be addressed. This paper discussed the economics of thermally regenerative fuel cells and the advantages and disadvantages of the identified fluids, and of such systems in general.

  2. Online short-term forecast of greenhouse heat load using a weather forecast service

    DEFF Research Database (Denmark)

    Vogler-Finck, P. J.C.; Bacher, P.; Madsen, Henrik

    2017-01-01

    the performance of recursive least squares for predicting the heat load of individual greenhouses in an online manner. Predictor inputs (weekly curves terms and weather forecast inputs) are selected in an automated manner using a forward selection approach. Historical load measurements from 5 Danish greenhouses...... mean square error of the prediction was within 8–20% of the peak load for the set of consumers over the 8 months period considered....

  3. Enhanced short-term sensitization of facial compared with limb heat pain.

    Science.gov (United States)

    Schmidt, Katharina; Schunke, Odette; Forkmann, Katarina; Bingel, Ulrike

    2015-08-01

    Habituation and sensitization are important features of individual sensitivity to repetitive noxious stimulation and have been investigated in numerous studies. However, it is unclear whether these phenomena vary depending on the site of stimulation. Here we compared short-term and long-term effects of painful heat stimulation on the forehead and limb using an established longitudinal heat pain paradigm performed over 8 consecutive days in 36 healthy volunteers. Participants were randomized into 2 groups; participants received repetitive heat pain stimulation either on the left volar forearm or on the left side of the forehead. Our data show a comparable degree of habituation over the course of 8 days in both groups. However, participants in the trigeminal stimulation group exhibited stronger within-session sensitization (indexed by a higher within-session increase in pain intensity ratings) than those who received the forearm stimulation. Furthermore, over the course of the experiment we found a correlation between habituation and anxiety, showing less habituation in participants with higher trait anxiety scores. Our findings are in line with somatotopic differences in response to painful stimulation and a higher proneness of trigeminal pain to sensitization processes, which might be explained by the biological relevance of the head and facial area for vital functions. The contribution of this sensitivity to the development and maintenance of clinical facial pain and headache disorders warrants further investigation. This study uses psychophysical methods to evaluate the differences in long-term habituation and short-term sensitization to heat pain between the trigeminal and spinal systems. We found stronger sensitization for trigeminal compared with nociceptive stimuli on the forearm. The contribution of this sensitivity to clinical pain states warrants further investigation. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars

    Science.gov (United States)

    Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.

    2018-03-01

    Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.

  5. The effect of local heat on term neonates pain intensity during heel-blood sampling

    Directory of Open Access Journals (Sweden)

    R. GHobadi Mohebi

    2017-04-01

    Full Text Available Aims: Newborns are more sensitive to pain than adults and are more susceptible to the long-term complications of pain. So, it is necessary to use procedures for reducing pain in newborns. The aim of this study was to determine the effect of local heat on the pain intensity of heel-blood sampling in the term newborns. Material & Methods: In this randomized controlled clinical trial study, in 2012, 63 healthy 3 to 5-day newborns who were referred to Shahid Delkhah Health Center in Ferdows were selected by random sampling method and randomly divided into 3 groups (21 people in each group: test (heat, placebo (sound and control. The pain intensity of newborns before, during and after heel-blood sampling was evaluated. The data collection tools were demographic questionnaire and Neonatal Infant Pain Scale (NIPS. Data were analyzed by SPSS 14.5 software and chi-square test, one-way ANOVA, Tukey's post hoc test, and ANOVA with repeated observations. Finding: The mean pain intensity in the three groups was not significantly different before intervention (p=0.86, but the mean pain intensity was lower in the test group than in the other two groups (p=0.006. After heel-blood sampling, the mean pain intensity was the least in the test group and was the most in the control group (p<0.001. Conclusion: Local heat during and after heel blood sampling decreases pain intensity in the term newborns.

  6. An Assessment of Transport Property Estimation Methods for Ammonia–Water Mixtures and Their Influence on Heat Exchanger Size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2015-01-01

    Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia–water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental...... of ammonia–water mixtures. Firstly, the different methods are introduced and compared at various temperatures and pressures. Secondly, their individual influence on the required heat exchanger size (surface area) is investigated. For this purpose, two case studies related to the use of the Kalina cycle...... the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler....

  7. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    Science.gov (United States)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  8. Numerical Simulation of Density-Driven Flow and Heat Transport Processes in Porous Media Using the Network Method

    Directory of Open Access Journals (Sweden)

    Manuel Cánovas

    2017-09-01

    Full Text Available Density-driven flow and heat transport processes in 2-D porous media scenarios are governed by coupled, non-linear, partial differential equations that normally have to be solved numerically. In the present work, a model based on the network method simulation is designed and applied to simulate these processes, providing steady state patterns that demonstrate its computational power and reliability. The design is relatively simple and needs very few rules. Two applications in which heat is transported by natural convection in confined and saturated media are studied: slender boxes heated from below (a kind of Bénard problem and partially heated horizontal plates in rectangular domains (the Elder problem. The streamfunction and temperature patterns show that the results are coherent with those of other authors: steady state patterns and heat transfer depend both on the Rayleigh number and on the characteristic Darcy velocity derived from the values of the hydrological, thermal and geometrical parameters of the problems.

  9. Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates

    Directory of Open Access Journals (Sweden)

    V. Romanova

    2006-01-01

    Full Text Available Using an atmospheric general circulation model of intermediate complexity coupled to a sea ice – slab ocean model, we perform a number of sensitivity experiments under present-day orbital conditions and geographical distribution to assess the possibility that land albedo, atmospheric CO2, orography and oceanic heat transport may cause an ice-covered Earth. Changing only one boundary or initial condition, the model produces solutions with at least some ice-free oceans in the low latitudes. Using some combination of these forcing parameters, a full Earth's glaciation is obtained. We find that the most significant factor leading to an ice-covered Earth is the high land albedo in combination with initial temperatures set equal to the freezing point. Oceanic heat transport and orography play only a minor role for the climate state. Extremely low concentrations of CO2 also appear to be insufficient to provoke a runaway ice-albedo feedback, but the strong deviations in surface air temperatures in the Northern Hemisphere point to the existence of a strong nonlinearity in the system. Finally, we argue that the initial condition determines whether the system can go into a completely ice covered state, indicating multiple equilibria, a feature known from simple energy balance models.

  10. Reactive transport modelling of a heating and radiation experiment in the Boom clay (Belgium)

    International Nuclear Information System (INIS)

    Montenegro, L.; Samper, J.; Delgado, J.

    2003-01-01

    Most countries around the world consider Deep Geological Repositories (DGR) as the most safe option for the final disposal of high level radioactive waste (HLW). DGR is based on adopting a system of multiple barriers between the HLW and the biosphere. Underground laboratories provide information about the behaviour of these barriers at real conditions. Here we present a reactive transport model for the CERBERUS experiment performed at the HADES underground laboratory at Mol (Belgium) in order to characterize the thermal (T), hydrodynamic (H) and geochemical (G) behaviour of the Boon clay. This experiment is unique because it addresses the combined effect of heat and radiation produced by the storage of HLW in a DGR. Reactive transport models which are solved with CORE, are used to perform quantitative predictions of Boom clay thermo-hydro-geochemical (THG) behaviour. Numerical results indicate that heat and radiation cause a slight oxidation near of the radioactive source, pyrite dissolution, a pH decrease and slight changes in the pore water chemical composition of the Boom clay. (Author) 33 refs

  11. Current & Heat Transport in Graphene Nanoribbons: Role of Non-Equilibrium Phonons

    Science.gov (United States)

    Pennington, Gary; Finkenstadt, Daniel

    2010-03-01

    The conducting channel of a graphitic nanoscale device is expected to experience a larger degree of thermal isolation when compared to traditional inversion channels of electronic devices. This leads to enhanced non-equilibrium phonon populations which are likely to adversely affect the mobility of graphene-based nanoribbons due to enhanced phonon scattering. Recent reports indicating the importance of carrier scattering with substrate surface polar optical phonons in carbon nanotubes^1 and graphene^2,3 show that this mechanism may allow enhanced heat removal from the nanoribbon channel. To investigate the effects of hot phonon populations on current and heat conduction, we solve the graphene nanoribbon multiband Boltzmann transport equation. Monte Carlo transport techniques are used since phonon populations may be tracked and updated temporally.^4 The electronic structure is solved using the NRL Tight-Binding method,^5 where carriers are scattered by confined acoustic, optical, edge and substrate polar optical phonons. [1] S. V. Rotkin et al., Nano Lett. 9, 1850 (2009). [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008). [3] V. Perebeinos and P. Avouris, arXiv:0910.4665v1 [cond-mat.mes-hall] (2009). [4] P. Lugli et al., Appl. Phys. Lett. 50, 1251 (1987). [5] D. Finkenstadt, G. Pennington & M.J. Mehl, Phys. Rev. B 76, 121405(R) (2007).

  12. Gyrokinetic analyses of core heat transport in JT-60U plasmas with different toroidal rotation direction

    International Nuclear Information System (INIS)

    Narita, Emi; Fukuda, Takeshi; Honda, Mitsuru; Hayashi, Nobuhiko; Urano, Hajime; Ide, Shunsuke

    2015-01-01

    Tokamak plasmas with an internal transport barrier (ITB) are capable of maintaining improved confinement performance. The ITBs formed in plasmas with the weak magnetic shear and the weak radial electric field shear are often observed to be modest. In these ITB plasmas, it has been found that the electron temperature ITB is steeper when toroidal rotation is in a co-direction with respect to the plasma current than when toroidal rotation is in a counter-direction. To clarify the relationship between the direction of toroidal rotation and heat transport in the ITB region, we examine dominant instabilities using the flux-tube gyrokinetic code GS2. The linear calculations show a difference in the real frequencies; the counter-rotation case has a more trapped electron mode than the co-rotation case. In addition, the nonlinear calculations show that with this difference, the ratio of the electron heat diffusivity χ_e to the ion's χ_i is higher for the counter-rotation case than for the co-rotation case. The difference in χ_e /χ_i agrees with the experiment. We also find that the effect of the difference in the flow shear between the two cases due to the toroidal rotation direction on the linear growth rate is not significant. (author)

  13. Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection

    International Nuclear Information System (INIS)

    Grooms, Ian; Whitehead, Jared P

    2015-01-01

    The heat transport in rotating Rayleigh–Bénard convection is considered in the limit of rapid rotation (small Ekman number E) and strong thermal forcing (large Rayleigh number Ra). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is Ra ≲ E −8/5 . A rigorous bound on heat transport of Nu ⩽ 20.56Ra 3 E 4 is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. Nu ≲ Ra 3 is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer. The derived upper bound is consistent with, although significantly higher than the observed behaviour in simulations of the reduced equations, which find at most Nu ∼ Ra 2 E 8/3 . (paper)

  14. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  15. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Directory of Open Access Journals (Sweden)

    Ternovykh Mikhail

    2017-01-01

    Full Text Available Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  16. Long term performance of a solar floor and hot water heating house; Taiyonetsu yukadanbo kyuto jutaku no choki seino

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Outlined herein are measured energy consumption followed for 12 years for a totally electrified solar house with a floor-heating and hot-water heating system. In the solar system, hot water generated by the solar collector is sent, via a surge tank, to a living room, dining room and study to heat their concrete floors, and recycled back to the collector after heating the heat-storage tank for hot water supply. The collector is of plate type, consisting of 6 units, each with a white glass sheet as the heat-collecting membrane for selectively absorbing heat. Its total heat-collecting area is 11.4m{sup 2}. Long-term performance of the solar system installed for floor and hot-water heating in a totally electrified solar house, is analyzed by the measured results collected for 12 years. The house consumes secondary energy of 11.7MWh/year on the average, which is approximately 20% lower that that required for a house of the equivalent size. The solar system has been operated smoothly, to supply 46 and 35% of the required heat for hot-water and floor heating. It is however estimated that annual heat loss reaches 34% in the hot-water heating system, including that in the electric hot-water generator, and prevention of heat loss is one of the major themes for the future system designs. 4 refs., 5 figs.

  17. Short-term heat acclimation improves the determinants of endurance performance and 5-km running performance in the heat.

    Science.gov (United States)

    James, Carl A; Richardson, Alan J; Watt, Peter W; Willmott, Ashley G B; Gibson, Oliver R; Maxwell, Neil S

    2017-03-01

    This study investigated the effect of 5 days of controlled short-term heat acclimation (STHA) on the determinants of endurance performance and 5-km performance in runners, relative to the impairment afforded by moderate heat stress. A control group (CON), matched for total work and power output (2.7 W·kg -1 ), differentiated thermal and exercise contributions of STHA on exercise performance. Seventeen participants (10 STHA, 7 CON) completed graded exercise tests (GXTs) in cool (13 °C, 50% relative humidity (RH), pre-training) and hot conditions (32 °C, 60% RH, pre- and post-training), as well as 5-km time trials (TTs) in the heat, pre- and post-training. STHA reduced resting (p = 0.01) and exercising (p = 0.04) core temperature alongside a smaller change in thermal sensation (p = 0.04). Both groups improved the lactate threshold (LT, p = 0.021), lactate turnpoint (LTP, p = 0.005) and velocity at maximal oxygen consumption (vV̇O 2max ; p = 0.031) similarly. Statistical differences between training methods were observed in TT performance (STHA, -6.2(5.5)%; CON, -0.6(1.7)%, p = 0.029) and total running time during the GXT (STHA, +20.8(12.7)%; CON, +9.8(1.2)%, p = 0.006). There were large mean differences in change in maximal oxygen consumption between STHA +4.0(2.2) mL·kg -1 ·min -1 (7.3(4.0)%) and CON +1.9(3.7) mL·kg -1 ·min -1 (3.8(7.2)%). Running economy (RE) deteriorated following both training programmes (p = 0.008). Similarly, RE was impaired in the cool GXT, relative to the hot GXT (p = 0.004). STHA improved endurance running performance in comparison with work-matched normothermic training, despite equality of adaptation for typical determinants of performance (LT, LTP, vV̇O 2max ). Accordingly, these data highlight the ergogenic effect of STHA, potentially via greater improvements in maximal oxygen consumption and specific thermoregulatory and associated thermal perception adaptations absent in normothermic training.

  18. The effect of centrifugal buoyancy on the heat transport in rotating Rayleigh-Bénard convection

    Science.gov (United States)

    Horn, Susanne; Aurnou, Jonathan

    2017-11-01

    In a rapidly rotating and differentially heated fluid, the centrifugal acceleration can play a similar role to that of gravity in generating convective motion. However, in the paradigm system of rotating Rayleigh-Bénard convection, centrifugal buoyancy is typically not considered in theoretical studies and, thus, usually undesired in laboratory experiments, despite being unavoidable. How centrifugal buoyancy affects the turbulent flow, including the heat transport, is still largely unknown, in particular, when it can be considered negligible. We study this problem by means of direct numerical simulations. Unlike in experiments, we are able to systematically vary the Froude number Fr (ratio of centrifugal to gravitational acceleration) and the Rossby number Ro (dimensionless rotation rate) independently, and even set each to zero exactly. We show that the centrifugal acceleration simultaneously leads to contending phenomena, e.g. reflected by an increase and a decrease of the center temperature, or a suppression and an enhancement of the heat transfer efficiency. Which one prevails as net effect strongly depends on the combination of Fr and Ro. Furthermore, we discuss implications for experiments of rapidly rotating convection. SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under Grant HO 5890/1-1, JA by the NSF Geophysics Program.

  19. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  20. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    International Nuclear Information System (INIS)

    Ostrum, Lee; Manic, Milos

    2017-01-01

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  1. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    International Nuclear Information System (INIS)

    Matsubara, Hiroki; Kikugawa, Gota; Ohara, Taku; Bessho, Takeshi; Yamashita, Seiji

    2015-01-01

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T c ) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs

  2. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Hiroki, E-mail: matsubara@microheat.ifs.tohoku.ac.jp; Kikugawa, Gota; Ohara, Taku [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Bessho, Takeshi; Yamashita, Seiji [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  3. Transport of laser accelerated proton beams and isochoric heating of matter

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C; Gregori, G; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Makita, M

    2010-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  4. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  5. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ostrum, Lee [Univ. of Idaho and Idaho Falls Center, Idaho Falls, ID (United States); Manic, Milos [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-09-28

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  6. Influence of fission product transport on delayed neutron precursors and decay heat sources in LMFBR accidents

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1981-01-01

    A method is presented for studying the influence of fission product transpot on delayed neutron precursors and decay heat sources during Liquid Metal Fast Breeder Reactor (LMFBR) unprotected accidents. The model represents the LMFBR core as a closed homogeneous cell. Thermodynamic phase equilibrium theory is used to predict fission product mobility. Reactor kinetics behavior is analyzed by an extension of point kinetics theory. Group dependent delayed neutron precursor and decay heat source retention factors, which represent the fraction of each group retained in the fuel, are developed to link the kinetics and thermodynamics analysis. Application of the method to a highly simplified model of an unprotected loss-of-flow accident shows a time delay on the order of 10 ms is introduced in the predisassembly power history if fission product motion is considered when compared to the traditional transient solution. The post-transient influence of fission product transport calculated by the present model is a 24 percent reduction in the decay heat level in the fuel material which is similar to traditional approximations. Isotopes of the noble gases, Kr and Xe, and the elements I and Br are shown to be very mobile and are responsible for a major part of the observed effects. Isotopes of the elements Cs, Se, Rb, and Te were found to be moderately mobile and contribute to a lesser extent to the observed phenomena. These results obtained from the application of the described model confirm the initial hypothesis that sufficient fission product transport can occur to influence a transient. For these reasons, it is concluded that extension of this model into a multi-cell transient analysis code is warranted

  7. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens

    Science.gov (United States)

    Habashy, Walid S.; Milfort, Marie C.; Fuller, Alberta L.; Attia, Youssef A.; Rekaya, Romdhane; Aggrey, Samuel E.

    2017-12-01

    The aim of this study was to investigate the effect of heat stress (HS) on digestibility of protein and fat and the expression of nutrient transporters in broilers. Forty-eight male Cobb500 chicks were used in this study. At day 14, birds were randomly divided into two groups and kept under either constant normal temperature (25 °C) or high temperature (35 °C) in individual cages. Five birds per treatment at 1 and 12 days post-treatment were euthanized, and Pectoralis major ( P. major) and ileum were sampled for gene expression analysis. At day 33, ileal contents were collected and used for digestibility analysis. The total consumption and retention of protein and fat were significantly lower in the HS group compared to the control group. Meanwhile, the retention of crude protein per BWG was significantly higher in the HS group compared to the control group. In P. major and ileum tissues at day 1, transporters FATP1 and SGLT1 were down-regulated in the HS group. Meanwhile, FABP1 and PepT1 were down-regulated only in the ileum of the HS group. The converse was shown in P. major. The nutrient transporter FABP1 at day 12 post-HS was down-regulated in the P. major and ileum, but GLUT1 and PepT2 were down-regulated only in the ileum, and PepT1 was down-regulated only in the P. major compared with the control group. These changes in nutrient transporters suggest that high ambient temperature might change the ileum and P. major lipids, glucose, and oligopeptide transporters.

  8. Isotope distributions in primary heat transport and containment systems during a severe accident in CANDU type reactor

    International Nuclear Information System (INIS)

    Constantin, M.

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code. The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivation to begin with a simplified model. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU loss of coolant accident sequence (CATHENA code results). The source term of FPs introduced into the PHT was estimated by ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species were obtained by using SOPHAEROS module. The distributions within the containment are obtained by the CPA module (thermalhydraulic calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts of the containment and different hosts. (authors)

  9. The impact of short-term heat storage on the ice-albedo feedback loop

    Science.gov (United States)

    Polashenski, C.; Wright, N.; Perovich, D. K.; Song, A.; Deeb, E. J.

    2016-12-01

    The partitioning of solar energy in the ice-ocean-atmosphere environment is a powerful control over Arctic sea ice mass balance. Ongoing transitions of the sea ice toward a younger, thinner state are enhancing absorption of solar energy and contributing to further declines in sea ice in a classic ice-albedo feedback. Here we investigate the solar energy balance over shorter timescales. In particular, we are concerned with short term delays in the transfer of absorbed solar energy to the ice caused by heat storage in the upper ocean. By delaying the realization of ice melt, and hence albedo decline, heat storage processes effectively retard the intra-season ice-albedo feedback. We seek to quantify the impact and variability of such intra-season storage delays on full season energy absorption. We use in-situ data collected from Arctic Observing Network (AON) sea ice sites, synthesized with the results of imagery processed from high resolution optical satellites, and basin-scale remote sensing products to approach the topic. AON buoys are used to monitor the storage and flux of heat, while satellite imagery allows us to quantify the evolution of surrounding ice conditions and predict the aggregate scale solar absorption. We use several test sites as illustrative cases and demonstrate that temporary heat storage can have substantial impacts on seasonal energy absorption and ice loss. A companion to this work is presented by N. Wright at this meeting.

  10. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses.

    Science.gov (United States)

    Marín-Guirao, Lazaro; Ruiz, Juan M; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-27

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species' ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  11. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses

    Science.gov (United States)

    Marín-Guirao, Lazaro; Ruiz, Juan M.; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-01

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species’ ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  12. Changing transport processes in the stratosphere by radiative heating of sulfate aerosols

    Directory of Open Access Journals (Sweden)

    U. Niemeier

    2017-12-01

    Full Text Available The injection of sulfur dioxide (SO2 into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. Sulfate aerosol scatters solar radiation and absorbs infrared radiation, which warms the stratospheric sulfur layer. Simulations with the general circulation model ECHAM5-HAM, including aerosol microphysics, show consequences of this warming, including changes of the quasi-biennial oscillation (QBO in the tropics. The QBO slows down after an injection of 4 Tg(S yr−1 and completely shuts down after an injection of 8 Tg(S yr−1. Transport of species in the tropics and sub-tropics depends on the phase of the QBO. Consequently, the heated aerosol layer not only impacts the oscillation of the QBO but also the meridional transport of the sulfate aerosols. The stronger the injection, the stronger the heating and the simulated impact on the QBO and equatorial wind systems. With increasing injection rate the velocity of the equatorial jet streams increases, and the less sulfate is transported out of the tropics. This reduces the global distribution of sulfate and decreases the radiative forcing efficiency of the aerosol layer by 10 to 14 % compared to simulations with low vertical resolution and without generated QBO. Increasing the height of the injection increases the radiative forcing only for injection rates below 10 Tg(S yr−1 (8–18 %, a much smaller value than the 50 % calculated previously. Stronger injection rates at higher levels even result in smaller forcing than the injections at lower levels.

  13. Long-term trends of heat stress and energy use implications in subtropical climates

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Joseph C.; Wan, Kevin K.W.; Wong, S.L.; Lam, Tony N.T. [Building Energy Research Group, Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China)

    2010-02-15

    Past and future trends of human comfort in terms of heat and cold stresses under the local subtropical climates using measured meteorological data as well as predictions from general climate models were investigated. Summer discomfort showed an increasing trend (and winter discomfort a decreasing trend) over the past 41 years from 1968 to 2008. Monthly mean minimum and maximum temperatures and moisture content predictions from a general climate model (MIROC3.2-H) were used to determine summer and winter discomfort for future years (2009-2100) based on two emissions scenarios B1 and A1B (low and medium forcing). The 92-year (2009-2100) mean cold stress would be reduced from the 41-year (1968-2008) mean value of 8.7 to about three for both emissions scenarios. The 92-year mean heat stress would be 115.9 and 120.6 for B1 and A1B, respectively, representing 31.6% and 36.9% increase over the 1968-2008 long-term average of 88.1. These suggest that the already small winter heating requirement in subtropical Hong Kong would become even more insignificant in future years, whereas the increasing trend of summer discomfort would result in more cooling demand in the built environment. (author)

  14. The relationship between turbulence measurements and transport in different heating regimes in TFTR

    International Nuclear Information System (INIS)

    Bretz, N.L.; Mazzucato, E.; Nazikian, R.; Paul, S.F.; Hammett, G.; Rewoldt, G.; Tang, W.M.; Zarnstorff, M.C.

    1992-01-01

    The scaling of broad band density fluctuations in the confinement zone of TFTR measured by microwave scattering, beam emission spectroscopy (BES), and reflectometry show a relationship between these fluctuations and energy transport measured from power balance calculations. In L-mode plasmas scattering and BES indicates that the density fluctuation level, δn 2 , in the confinement zone for 0.2 aux and I p in a way that is consistent with variations in energy transport. Fluctuation levels measured with all systems increase strongly toward the edge in all heating regimes following increases in energy transport coefficients. Measurements using BES have shown that poloidal and radial correlation lengths in the confinement zone of L-mode and supershot plasmas fall in the range of 1 to 2 cm. with a wave structure which has k max ∼ 1 cm -1 (k perpendicular ps ∼ 0.2) in the poloidal direction and k max approaching zero in the radial direction. A simple estimate of the diffusion coefficient based on a measured radial correlation length and correlation time indicates good agreement with power balance calculations. Similar estimates using reflectometry give radial coherence lengths at 10 to 20 kHz in low density ohmic and supershot plasmas of between I and 2 cm

  15. Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Loomis, H.

    2015-06-01

    Transformations, Inc. has extensive experience building their high performance housing at a variety of Massachusetts locations, in both a production and custom home setting. The majority of their construction uses mini-split heat pumps (MSHPs) for space conditioning. This research covered the long-term performance of MSHPs in Zone 5A; it is the culmination of up to 3 years' worth of monitoring in a set of eight houses. This research examined electricity use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point) heating systems in high-performance housing, and the impact of open-door/closed-door status on temperature distributions. The use of simplified space conditioning distribution (through use of MSHPs) provides significant first cost savings, which are used to offset the increased investment in the building enclosure.

  16. Visualisation of heat transfer in unsteady laminar flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Steenhoven, van A.A.

    2011-01-01

    Heat transfer in fluid flows traditionally is examined in terms of temperature fields and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by

  17. Influence of low-order rational magnetic surfaces on heat transport in TJ-II heliac ECRH plasmas

    International Nuclear Information System (INIS)

    Castejon, F.; Lopez-Bruna, D.; Estrada, T.; Ascasibar, E.; Zurro, B.; Baciero, A.

    2004-01-01

    We study the effect of low-order rational surfaces on electron heat transport in plasmas confined in the TJ-II stellarator (Alejaldre et al 1990 Fusion Technol. 17 131) and heated by electron cyclotron waves. Enhancement of core electron heat confinement is observed when the rational surface is placed in the vicinity of the power deposition zone, either by performing a magnetic configuration scan or by inducing Ohmic current in a single discharge. The key to improving heat confinement seems to be a locally strong positive radial electric field, which is made possible by a synergistic effect between enhanced electron heat fluxes through radial positions around low-order rationals and pump out mechanisms in the heat deposition zone. (author)

  18. What is the most energy efficient route for biogas utilization: Heat, electricity or transport?

    International Nuclear Information System (INIS)

    Hakawati, Rawan; Smyth, Beatrice M.; McCullough, Geoffrey; De Rosa, Fabio; Rooney, David

    2017-01-01

    Highlights: •The paper developed an assessment tool for analyzing biogas utilization routes. •The LCA methodology was used to allow a uniform assessment of the biogas system. •“% energy efficiency” was used as the functional unit for assessment. •49 biogas-to-energy routes were assessed based on their final useful energy form. •The framework aids policy makers in the decision process for biogas exploitation. -- Abstract: Biogas is a renewable energy source that can be used either directly or through various pathways (e.g. upgrading to bio-methane, use in a fuel cell or conversion to liquid fuels) for heat, electricity generation or mechanical energy for transport. However, although there are various options for biogas utilization, there is limited guidance in the literature on the selection of the optimum route, and comparison between studies is difficult due to the use of different analytical frameworks. The aim of this paper was to fill that knowledge gap and to develop a consistent framework for analysing biogas-to-energy exploitation routes. The paper evaluated 49 biogas-to-energy routes using a consistent life cycle analysis method focusing on energy efficiency as the chosen crtierion. Energy efficiencies varied between 8% and 54% for electricity generation; 16% and 83% for heat; 18% and 90% for electricity and heat; and 4% and 18% for transport. Direct use of biogas has the highest efficiencies, but the use of this fuel is typically limited to sites co-located with the anaerobic digestion facility, limiting available markets and applications. Liquid fuels have the advantage of versatility, but the results show consistently low efficiencies across all routes and applications. The energy efficiency of bio-methane routes competes well with biogas and comes with the advantage that it is more easily transported and used in a wide variety of applications. The results were also compared with fossil fuels and discussed in the context of national

  19. Theoretical analysis of oscillatory terms in lattice heat-current time correlation functions and their contributions to thermal conductivity

    Science.gov (United States)

    Pereverzev, Andrey; Sewell, Tommy

    2018-03-01

    Lattice heat-current time correlation functions for insulators and semiconductors obtained using molecular dynamics (MD) simulations exhibit features of both pure exponential decay and oscillatory-exponential decay. For some materials the oscillatory terms contribute significantly to the lattice heat conductivity calculated from the correlation functions. However, the origin of the oscillatory terms is not well understood, and their contribution to the heat conductivity is accounted for by fitting them to empirical functions. Here, a translationally invariant expression for the heat current in terms of creation and annihilation operators is derived. By using this full phonon-picture definition of the heat current and applying the relaxation-time approximation we explain, at least in part, the origin of the oscillatory terms in the lattice heat-current correlation function. We discuss the relationship between the crystal Hamiltonian and the magnitude of the oscillatory terms. A solvable one-dimensional model is used to illustrate the potential importance of terms that are omitted in the commonly used phonon-picture expression for the heat current. While the derivations are fully quantum mechanical, classical-limit expressions are provided that enable direct contact with classical quantities obtainable from MD.

  20. Influence of Aerosol Heating on the Stratospheric Transport of the Mt. Pinatubo Eruption

    Science.gov (United States)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.

    2011-01-01

    On June 15th, 1991 the eruption of Mt. Pinatubo (15.1 deg. N, 120.3 Deg. E) in the Philippines injected about 20 Tg of sulfur dioxide in the stratosphere, which was transformed into sulfuric acid aerosol. The large perturbation of the background aerosol caused an increase in temperature in the lower stratosphere of 2-3 K. Even though stratospheric winds climatological]y tend to hinder the air mixing between the two hemispheres, observations have shown that a large part of the SO2 emitted by Mt. Pinatubo have been transported from the Northern to the Southern Hemisphere. We simulate the eruption of Mt. Pinatubo with the Goddard Earth Observing System (GEOS) version 5 global climate model, coupled to the aerosol module GOCART and the stratospheric chemistry module StratChem, to investigate the influence of the eruption of Mt. Pinatubo on the stratospheric transport pattern. We perform two ensembles of simulations: the first ensemble consists of runs without coupling between aerosol and radiation. In these simulations the plume of aerosols is treated as a passive tracer and the atmosphere is unperturbed. In the second ensemble of simulations aerosols and radiation are coupled. We show that the set of runs with interactive aerosol produces a larger cross-equatorial transport of the Pinatubo cloud. In our simulations the local heating perturbation caused by the sudden injection of volcanic aerosol changes the pattern of the stratospheric winds causing more intrusion of air from the Northern into the Southern Hemisphere. Furthermore, we perform simulations changing the injection height of the cloud, and study the transport of the plume resulting from the different scenarios. Comparisons of model results with SAGE II and AVHRR satellite observations will be shown.

  1. The influence of flood frequency, riparian vegetation and threshold on long-term river transport capacity

    Science.gov (United States)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe

    2016-04-01

    Climate fluctuations at geological timescales control the capacity of rivers to transport sediment with consequences on geochemical cycles, sedimentary basins dynamics and sedimentation/tectonics interactions. While the impact of differential friction generated by riparian vegetation has been studied for individual flood events, its impact on the long-term sediment transport capacity of rivers, modulated by the frequency of floods remains unknown. Here, we investigate this effect on a simplified river-floodplain configuration obeying observed hydraulic scaling laws. We numerically integrate the full-frequency magnitude distribution of discharge events and its impact on the transport capacity of bedload and suspended material for various level of vegetation-linked differential friction. We demonstrate that riparian vegetation by acting as a virtual confinement of the flow i) increases significantly the instantaneous transport capacity of the river independently of the transport mode and ii) increases the long term bedload transport rates as a function of discharge variability. Our results expose the dominance of flood frequency rather than riparian vegetation on the long term sediment transport capacity. Therefore, flood frequency has to be considered when evaluating long-term bedload transport capacity while floodplain vegetation is important only in high discharge variability regimes. By comparing the transport capacity of unconfined alluvial rivers and confined bedrock gorges, we demonstrate that the latter always presents the highest long term transport capacity at equivalent width and slope. The loss of confinement at the transition between bedrock and alluvial river must be compensated by a widening or a steepening of the alluvial channel to avoid infinite storage. Because steepening is never observed in natural system, we compute the alluvial widening factor value that varies between 3 to 11 times the width of the bedrock channel depending on riparian

  2. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    Science.gov (United States)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  3. Razjašnjenje definisanja transportnog lanca / Clarification of a term transport chain

    Directory of Open Access Journals (Sweden)

    Aleksandar B. Cakić

    2010-01-01

    Full Text Available U radu je pregledno prikazano na koji način se u savremenoj naučnoj praksi definiše pojam transportnog lanca i njegova optimizacija. Radi pojašnjenja dato je poređenje sa logističkim i snabdevačkim lancem, i definisane su razlike i sličnosti u ovim pojmovima radi razgraničenja različitog definisanja pojmova. Takođe, upoređeni su pojmovi optimizacije transportnih i optimizacije logističkih lanaca i danas vrlo prisutnog pojma upravljanja snabdevačkim lancima - supply chain management (SCM. / INTRODUCTION This paper describes a few different approaches to define the terms 'transport chain' and 'supply chain' aiming at their clarification. TERM TRANSPORT CHAIN The author gives a survey of 'transport' definitions from international, civilian and military, and national literature. Then he gives his definition of a transport chain as a sequence of overall operations, necessary for exchange of goods in time and space within the framework of goods flow during transit from the source to the consumption point. The transport chain is connected neither with the limits of production organizations, particular industrial branches nor other structures of national economy. Transport chains also exist in the Army of Serbia (AS. Optimization of transport chains during peace time has a goal to enable easy and fast selection of an optimal transportation chain. DIFFERENCES AND SIMILARITIES IN DEFINING THE TERMS OF LOGISTIC, SUPPLY AND TRANSPORT CHAIN Modern authors define differently the terms which generally represent similar processes and activities while having almost an identical function. These terms are logistic chain, supply chain and transport chain. For better clarification, these terms are compared herein. Term supply chain The terms supply and supply chain dominate in world literature, as well as supply chain management (SCM, as a specific scientific field. This field is subject to special attention due to its importance in decision

  4. A minimization procedure for estimating the power deposition and heat transport from the temperature response to auxiliary power modulation

    International Nuclear Information System (INIS)

    Eester, Dirk van

    2004-01-01

    A method commonly used for determining where externally launched power is absorbed inside a tokamak plasma is to examine the temperature response to modulation of the launched power. Strictly speaking, this response merely provides a first good guess of the actual power deposition rather than the deposition profile itself: not only local heat sources but also heat losses and heat wave propagation affect the temperature response at a given position. Making use of this, at first sight non-desirable, effect modulation becomes a useful tool for conducting transport studies. In this paper a minimization method based on a simple conduction-convection model is proposed for deducing the power deposition and transport characteristics from the experimentally measured (electron) energy density response to a modulation of the auxiliary heating power. An L-mode JET example illustrates the potential of the technique

  5. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    Science.gov (United States)

    Jungclaus, Johann; Moreno-Chamarro, Eduardo; Lohmann, Katja

    2016-04-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  6. Assessment of alternate ion exchange resins for improved antimony removal from the primary heat transport system

    Energy Technology Data Exchange (ETDEWEB)

    Burany, R.; Suryanarayan, S.; Husain, A. [Kinectrics, Inc., Toronto, ON (Canada)

    2015-07-01

    Radiation fields around the CANDU heat transport system are a major contributor to worker dose during inspection, maintenance and refurbishment activities. While Co-60 is typically the dominant contributor to radiation fields in CANDU reactors, Sb-124, an activation product of antimony, is also a significant contributor, accounting for 5-20% of the radiation fields. The goal of this research project was to investigate resins for improved removal of antimony under both oxidizing and reducing conditions.Several candidate resins were tested and short-listed through a sequence of iterative testing. The results of the laboratory testing have identified potential candidates for improved antimony removal. Further testing is required to ensure compatibility with existing station resin specifications. (author)

  7. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-05

    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  8. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  9. Analysis of data obtained in two-phase flow tests of primary heat transport pumps

    International Nuclear Information System (INIS)

    Currie, T.C.

    1986-06-01

    This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended

  10. Primary heat transport pump mechanical seal replacement strategy for Pickering B

    International Nuclear Information System (INIS)

    Chacinsi, V.

    1995-01-01

    Pickering Nuclear Generating Station is a CANDU PHWR eight unit station located on Lake Ontario. The station is divided into Pickering A (Units 1 to 4) and Pickering B (Units 5 to 8). Pickering B is the focus of this paper. Each unit is rated at 540 MWe. The Primary Heat Transport (PHT) system, which is used to cool the fuel, is divided into four quadrants. Each quadrant has four vertical Byron Jackson PHT main circulation pumps. Three pumps in each quadrant are required for normal operation, leaving one pump in each quadrant as a spare. Each Pickering PHT pump has a Byron Jackson Type SU two stage mechanical seal. The typical pressure breakdown across the seal is 8.7-4.5-1.0 MPa. Certain features of seal operation and the PHT system which influence seal replacement are discussed below. (author)

  11. Magnetic heat transport in Sr{sub 2}IrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Takagi, Hidenori [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Buechner, Bernd; Hess, Christian [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2015-07-01

    The layered perovskite Sr{sub 2}IrO{sub 4} is a 5d transition metal oxide with an enhanced spin-orbit coupling leading to a Mott insulating ground state with J{sub eff}=(1)/(2). It exhibits canted antiferromagnetism below T{sub N}=240 K with an antiferromagnetic coupling constant of about J=0.1 eV. Thermal conductivity measurements along the ab plane of a Sr{sub 2}IrO{sub 4} single crystal provide evidence for a contribution of magnons (below T{sub N}) to the thermal conductivity, similar to that of the isostructural 2D S=(1)/(2) Heisenberg antiferromagnet La{sub 2}CuO{sub 4}, where a significant magnonic contribution to the heat transport is known.

  12. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    Science.gov (United States)

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    Science.gov (United States)

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. © 2016 John Wiley & Sons Ltd.

  14. Long-term effects of multiple borehole heat exchangers; Langzeiteffekt von Mehrfach-Erdwaermesonden

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D. [Scuola universitaria professionale della Svizzera italiana (SUPSI), Dipartimento delle costruzioni e del territorio (DCT), Laboratorio di energia, ecologia ed economia LEEE, Canobbio (Switzerland); Kohl, T.; Meguel, T. [Geoenergie c/o GeoWatt, Zuerich (Switzerland); Brenni, R. [Eidgenoessische Technische Hochschule (ETH), Institut fuer Geophysik, Zuerich (Switzerland)

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the mutual influence of borehole heat exchangers (BHE) used for ground-coupled heat pump systems over longer periods of time (tens to hundreds of years) using simulation programmes. A comparison is made between the two programmes SBM (used in 'g-function' mode) and FRACTure (using finite elements) that were used in the first phase of the project to simulate the mutual effects between three BHEs. The authors consider that the programmes, which use completely different algorithms, both provide reliable results when used to simulate BHE systems. The results of the second phase of the project, where the 'g-function' concept was used to calculate the long-term influence of two and three-borehole configurations, are presented in graphical form. Calculations made for varying thermal conductivity, borehole depth and spacing, time periods and heat extraction rates are presented, whereby local groundwater flows are not taken into account.

  15. Compact Representation for Specific Heat of Interacting Fermion Systems in Terms of Fully Renormalized Matsubara Green Function

    OpenAIRE

    Miyake, Kazumasa; Tsuruta, Atsushi

    2015-01-01

    On the basis of the Luttinger-Ward formalism for the thermodynamic potential, the specific heat of single-component interacting fermion systems with fixed chemical potential is compactly expressed in terms of the fully renormalized Matsubara Green function.

  16. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mix

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Francesca M.; Kessel, Charles E. [Princeton Plasma Physics laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  17. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mixa)

    Science.gov (United States)

    Poli, Francesca M.; Kessel, Charles E.

    2013-05-01

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  18. Thermal conductivity and heat transport properties of nitrogen-doped graphene.

    Science.gov (United States)

    Goharshadi, Elaheh K; Mahdizadeh, Sayyed Jalil

    2015-11-01

    In the present study, the thermal conductivity (TC) and heat transport properties of nitrogen doped graphene (N-graphene) were investigated as a function of temperature (107-400K) and N-doped concentration (0.0-7.0%) using equilibrium molecular dynamics simulation based on Green-Kubo method. According to the results, a drastic decline in TC of graphene observed at very low N-doped concentration (0.5 and 1.0%). Substitution of just 1.0% of carbon atoms with nitrogens causes a 77.2, 65.4, 59.2, and 53.7% reduction in TC at 107, 200, 300, and 400K, respectively. The values of TC of N-graphene at different temperatures approach to each other as N-doped concentration increases. The results also indicate that TC of N-graphene is much less sensitive to temperature compared with pristine graphene and the sensitivity decreases as N-doped concentration increases. The phonon-phonon scattering relaxation times and the phonon mean free path of phonons were also calculated. The contribution of high frequency optical phonons for pristine graphene and N-graphene with 7.0% N-doped concentration is 0-2% and 4-8%, respectively. These findings imply that it is potentially feasible to control heat transfer on the nanoscale when designing N-graphene based thermal devices. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  20. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    2001-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 =53 cm, a l =22 cm - circular limiter configuration, B t ≤0.7T, I p ≤175 kA, ≤6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r=0.5a and r=0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0 % and β N of 2 were achieved. The β N limit achieved is 'soft' (nondisruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  1. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    1999-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 = 53 cm, a l = 22 cm - circular limiter configuration, B t ≤ 0.7 T, I p ≤ 175 kA, ≤ 6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r = 0.5a and r = 0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0% and β N of 2 were achieved. The β N limit achieved is 'soft' (non-disruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  2. Microwave-mediated heat transport in a quantum dot attached to leads

    International Nuclear Information System (INIS)

    Chi Feng; Dubi, Yonatan

    2012-01-01

    The thermoelectric effect in a quantum dot (QD) attached to two leads in the presence of microwave fields is studied by using the Keldysh nonequilibrium Green function technique. When the microwave is applied only on the QD and in the linear response regime, the main peaks in the thermoelectric figure of merit and the thermopower are found to decrease, with the emergence of a set of photon-induced peaks. Under this condition the microwave field cannot generate heat current or electrical bias voltage. Surprisingly, when the microwave field is applied only to one (bright) lead and not to the other (dark) lead or the QD, heat flows mostly from the dark to the bright lead, almost irrespective of the direction of the thermal gradient. We attribute this effect to microwave-induced opening of additional transport channels below the Fermi energy. The microwave field can change both the magnitude and the sign of the electrical bias voltage induced by the temperature gradient. (paper)

  3. Modeling of radiation heat transport in complex ladder-like structures placed in rectangular enclosures

    International Nuclear Information System (INIS)

    Unal, C.; Bohl, W.R.; Pasamehmetoglu, K.O.

    1999-01-01

    Complex ladder-like structures recently have been considered as the target design for accelerator applications. The decay heat, during a postulated beyond design-basis loss-of-coolant accident in the target where all normal and emergency cooling fails, is removed mainly by radiation heat transfer. Modeling of the radiation transport in complex ladder-like structures has several challenges and limitations when the standard net-radiation model is used. This paper proposes a simplified lumped, or 'hot-rung' model, that considers the worst elements and utilizes the standard net-radiation method. The net-radiation model would under-predict structure temperatures if surfaces were subject to non-uniform radiosity. The proposed model was assessed to suggest corrections to account for the non-uniform radiosity. The non-uniform radiosity effect causes the proposed hot-rung model to under-predict the center-rung temperatures by ∼4-74 C when all parametrics, including temperatures up to 1500 C, were considered. These temperatures are small. The proposed model predicted that an important effect of decreasing the emissivity was smoothing of non-isothermal effects. The radiosity effects are more pronounced when there are strong temperature gradients. Uniform rung temperatures tend to decrease the radiosity effects. We concluded that a relatively simple model that is conservative with respect to radiosity effects could be developed. (orig.)

  4. Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system

    International Nuclear Information System (INIS)

    Teng, Fei; Aunedi, Marko; Strbac, Goran

    2016-01-01

    Highlights: • The economic and environmental benefits of smart EVs/HPs are quantified. • This paper implements an advanced stochastic analytical framework. • Operating patterns and potential flexibility of EVs/HPs are sourced from UK trials. • A comprehensive set of case studies across UK future scenarios are carried out. - Abstract: This paper presents an advanced stochastic analytical framework to quantify the benefits of smart electric vehicles (EVs) and heat pumps (HPs) on the carbon emission and the integration cost of renewable energy sources (RES) in the future UK electricity system. The typical operating patterns of EVs/HPs as well as the potential flexibility to perform demand shifting and frequency response are sourced from recent UK trials. A comprehensive range of case studies across several future UK scenarios suggest that smart EVs/HPs could deliver measurable carbon reductions by enabling a more efficient operation of the electricity system, while at the same time making the integration of electrified transport and heating demand significantly less carbon intensive. The second set of case studies establish that smart EVs/HPs have significant potential to support cost-efficient RES integration by reducing: (a) RES balancing cost, (b) cost of required back-up generation capacity, and (c) cost of additional low-carbon capacity required to offset lower fuel efficiency and curtailed RES output while achieving the same emission target. Frequency response provision from EVs/HPs could significantly enhance both the carbon benefit and the RES integration benefit of smart EVs/HPs.

  5. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    Science.gov (United States)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  6. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  7. In the wake of liberalisation: long-term developments in the EU air transport market

    NARCIS (Netherlands)

    Burghouwt, G.; de Wit, J.G.

    2015-01-01

    Using a 24-year analysis period (1990-2013), a new perspective is offered on long-term first- and second-order developments following liberalisation of the intra-EU air transport market. The focus of the analysis is on supply-side issues, such as airline output, structure of supply, yields, business

  8. Short-term responses of Dutch vacationers to a sharp increase in transport costs

    NARCIS (Netherlands)

    van Cranenburgh, S.

    2016-01-01

    This paper investigates vacationers’ short-term responses to a sharp increase in transport costs. It aims to (1) acquire an understanding of the relative popularity of the different types of responses among vacationers and (2) explore whether there are distinct market segments of vacationers that

  9. Visualisation of heat transfer in laminar flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Steenhoven, van A.A.

    2009-01-01

    Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients at non-adiabatic walls. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the

  10. Prediction of long-term precipitate evolution in austenitic heat-resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jae-Hyeok; Jung, Woo-Sang; Cho, Young Whan [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials/Devices Div.; Kozeschnik, Ernst [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology

    2010-07-01

    Numerical prediction of the long-term precipitate evolution in five different austenitic heat-resistant stainless steels, NF709, Super304H, Sanicro25, CF8C-PLUS and HTUPS has been carried out. MX and M{sub 23}C{sub 6} are predicted to remain as major precipitates during long-term aging in these steels. The addition of 3 wt% Cu produces very fine Cu-rich precipitates during aging in Super304H and Sanicro25. It is found that the amount of Z phase start to increase remarkably between 1,000 and 10,000 hours of aging at the expense of MX precipitates in the steels containing a high nitrogen content. However, the growth rate of Z phase is relatively slow and its average size reaches at most a few tens of nanometers after 100,000 hours of aging at 700 C, compared with 9-12% Cr ferritic/martensitic heat-resistant steels. The predicted precipitation sequence and precipitate size during aging are in general agreement with experimental observations. (orig.)

  11. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  12. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass

    OpenAIRE

    Delucchi, Mark; Lipman, Timothy

    2003-01-01

    An Appendix to the Report, “A Lifecycle Emissions Model (LEM): Lifecycle Emissions From Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materialsâ€

  13. Local Agenda 21. Settlement pattern and energy for transportation and heating

    International Nuclear Information System (INIS)

    Orderud, Geir Inge

    1998-01-01

    This document deals with Local Agenda 21 (LA21) and the relationship between settlement pattern and the consumption of energy in transportation and heating of houses. Local Agenda 21 originates from the Earth Summit held in Rio in 1992 and draws up the strategies by which the local communities should participate in realizing the recommendations of the summit. So far much of the research around LA21 has examined how well the individual countries that ratified the Rio document have fulfilled the recommendations of Article 28 on local responsibility. From the point of view of research, however, the challenge is rather to investigate the conditions for realizing the broad participation of the people. From the administrative point of view, the important issue is the relationship between the representative channels and the direct participation of local people in the decision processes, as well as the delegation of decision-making authority from national to regional or local level. One recommendation in Agenda 21 is to emit less greenhouse gases. In this connection, a central issue is transportation, which is affected by the settlement pattern. A denser settlement within an urban area is supposed to reduce the transportation and the use of private cars. Thus the local development and area policy is a topic of current interest in the study of how LA21 works locally, especially so because sparsely built-up areas with single family houses are considered as the good way of living. Densely populated urban areas may conflict with the need for arable land and green space. LA 21 and the settlement pattern are both parts of a larger social environment and it is important know these relationships when local measures and actions are analysed. The possibility of a sustainable development must be assessed in relation to the fact that more power is gathered in the global flow of capital. 26 refs

  14. Zeff measurements and low-Z impurity transport for NBI and ICRF heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Amano, T.; Kawahata, K.; Kaneko, O.

    1988-12-01

    A visible bremsstrahlung detector array system for Z eff measurements and a charge exchange recombination spectroscopy (CXRS) system for fully ionized impurity profile measurements were installed on JIPP TII-U to study impurity transport for NBI and ICRF heated plasma. More impurities are sputtered by ICRF heating than by NBI and/or ohmic heatings. The carbon contribution to Z eff is 80-90 % for NBI heated plasmas, and 60 % for NBI + ICRF heated plasmas. With a carbon coating of vacuum vessel, the Z eff value decreases 2.4 to 1.7 and the carbon contribution to Z eff increases up to 80-90 %. We obtain the diffusion coefficient D a = 1.0 m 2 /s and the convective velocity V a (a) = 13 m/s at the plasma edge for carbon impurity from the radial profile and time evolution of fully ionized carbon after the ICRF pulse is turned on. (author)

  15. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2007-01-01

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  16. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

    2007-01-01

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO 2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  17. Effect of short-term heat acclimation training on kinetics of lactate removal following maximal exercise.

    Science.gov (United States)

    Dileo, Tsavis D; Powell, Jeffrey B; Kang, Hyoung K; Roberge, Raymond J; Coca, Aitor; Kim, Jung-Hyun

    2016-01-01

    Heat acclimation (HA) evokes numerous physiological adaptations, improves heat tolerance and has also been shown to enhance lactate (LA) responses during exercise, similar to that seen with endurance training. The purpose of this study was to examine whether HA improves the body's ability to remove LA during recovery following maximal exercise. Ten healthy men completed two trials of maximal treadmill exercise (pre- and post-HA) separated by 5 days of HA. Each day of HA consisted of two 45 minute periods of cycling at ~50% VO2max separated by a 15min rest period in an environmental chamber (T(db) 45° C, RH 20%). In pre-/post-HA trials, venous blood was collected during 60 minutes of recovery to determine LA concentrations and removal kinetics (A2: amplitude and y2: velocity constant) using bi-exponential curve fitting. Physiological adaptation to heat was significantly developed during HA, as evidenced by end-exercise T(re) (DAY1 vs. 5) (38.89±0.56 vs. 38.66±0.44° C), T(sk) (38.07±0.51 vs. 37.66±0.48° C), HR (175.0±9.9 vs. 165.0±18.5 beats·min(-1)), and sweat rate (1.24 ±.26 vs. 1.47 ±0.27 L·min(-1)) (PLA concentrations (LA(0min): 8.78±1.08 vs. 8.69±1.23; LA(peak): 10.97±1.77 vs. 10.95±1.46; and La(60min); 2.88±0.82 vs. 2.96±0.93 mmol·L(-1)) or removal kinetics (A2: -13.05±7.05 vs -15.59±7.90 mmol.L(-1) and y2: 0.02±0.01 vs. 0.03±.01 min(-1)). The present study concluded that, while effective in inducing thermo-physiological adaptations to heat stress, short-term HA does not improve the body's ability to remove LA following maximal exercise. Therefore, athletes and workers seeking faster LA recovery from intense physical activity may not benefit from short-term HA.

  18. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    International Nuclear Information System (INIS)

    Chang, C.S.; Hammett, G.W.; Goldston, R.J.

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs

  19. Results from a CFD reference study into the modelling of heat and smoke transport by different CFD-practitioners

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Lemaire, A.D.; Plas, van der M.

    2009-01-01

    The paper describes results from a reference study that focuses on the application of the Computational Fluid Dynamics (CFD-) technique for heat and smoke transport in practice. Goal of the study is to obtain insight into the amount and causes of the spread of CFD-results when applied by different

  20. Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, R C [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM/FZJ, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Baranov, Y [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Garbet, X [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Hawkes, N [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Peeters, A G [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Challis, C [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Baar, M de [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Giroud, C [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Joffrin, E [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Mantsinen, M [Helsinki University of Technology, Association-EURATOM Tekes, FIN-02015 HUT (Finland); Mazon, D [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Meister, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Zastrow, K-D [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2003-09-01

    In ASDEX Upgrade and JET, the ion temperature profiles can be described by R/L{sub Ti} which exhibits only little variations, both locally, when comparing different discharges, and radially over a wide range of the poloidal cross-section. Considering a change of the local ion heat flux of more than a factor of two, this behaviour indicates some degree of profile stiffness. In JET, covering a large ion temperature range from 1 to 25 keV, the normalized ion temperature gradient, R/L{sub Ti}, shows a dependence on the electron to ion temperature ratio or toroidal rotational shear. In particular, in hot ion plasmas, produced predominantly by neutral beam heating at low densities, in which large T{sub i}/T{sub e} is coupled to strong toroidal rotation, the effect of the two quantities cannot be distinguished. Both in ASDEX Upgrade and JET, plasmas with internal transport barriers (ITBs), including the PEP mode in JET, are characterized by a significant increase of R/L{sub Ti} above the value of L- and H-mode plasmas. In agreement with previous ASDEX Upgrade results, no increase of the ion heat transport in reversed magnetic shear ITB plasmas is found in JET when raising the electron heating. Evidence is presented that magnetic shear directly influences R/L{sub Ti}, namely decreasing the ion heat transport when going from weakly positive to negative magnetic shear.

  1. Effects of the Ponderomotive Terms in the Thermal Transport on the Hydrodynamic Flow in Inertial Confinement Fusion Experiments

    Science.gov (United States)

    Goncharov, V. N.; Li, G.

    2004-11-01

    Electron thermal transport is significantly modified by the laser-induced electric fields near the turning point and at the critical surface. It is shown that such modifications lead to an additional limitation in the heat flux in laser-produced plasmas. Furthermore, the ponderomotive terms in the heat flux lead to a steepening in the electron-density profile, which is shown to be a larger effect than the profile modification due to the ponderomotive force [W.L. Kruer, The Physics of Laser--Plasma Interactions, Frontiers in Physics, Vol. 73, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988)]. To take into account the nonlocal effects, the delocalization model developed in Ref. 2 [G.P. Schurtz, Ph.D. Nicolaï, and M. Busquet, Phys. Plasmas 7, 4238 (2000).] has been applied to conditions relevant to ICF experiments. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  2. Magnetic Field Enhancement of Heat Transport in the 2D Heisenberg Antiferromagnet K_2V_3O_8

    Science.gov (United States)

    Sales, B. C.; Lumsden, M. D.; Nagler, S. E.; Mandrus, D.; Jin, R.

    2002-03-01

    The thermal conductivity and heat capacity of single crystals of the spin 1/2 quasi-2D Heisenberg antiferromagnet K_2V_3O8 have been measured from 1.9 to 300 K in magnetic fields from 0 to 8T. The data are consistent with resonant scattering of phonons by magnons near the zone boundary and heat transport by long wavelength magnons. The magnon heat transport only occurs after the small anisotropic gap at k=0 is closed by the application of a magnetic field. The low temperature thermal conductivity increases linearly with magnetic field after the gap has been closed. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under Contract No. DE-AC05-00R22725.

  3. Influence of high burnup on the decay heat power of spent fuel at long-term storage

    International Nuclear Information System (INIS)

    Bergelson, B.; Gerasimov, A.; Tikhomirov, G.

    2005-01-01

    Development and application of advanced fuel with higher burnup is now in practice of NPP with light water reactors in an increasing number of countries. High burnup allows to decrease significantly consumption of uranium. However, spent fuel of this type contains increased amount of high active actinides and fission products in comparison with spent fuel of common-type burnup. Therefore extended time of storage, improved cooling system of the storage facility will be required along with more strong radiation protection during storage, transportation and processing. Calculated data on decay heat power of spent uranium fuel of light water VVER-1000 type reactor are discussed in the paper. Long-term storage of discharged fuel during 100000 years is considered. Calculations were made for burnups of 40-70 MW d/kg. In the initial 50-year period of storage, power of fission products is much higher than that of actinides. Power of gamma-radiation is mainly due to fission products. During subsequent storage power of fission products quickly decreases, the main contribution to the power is given by actinides rather than by fission products. (author)

  4. Revisiting the Energy Budget of WASP-43b: Enhanced Day–Night Heat Transport

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Dylan; Cowan, Nicolas B. [Department of Physics, McGill University, 3600 rue University, Montréal, QC H3A 2T8 (Canada)

    2017-11-01

    The large day–night temperature contrast of WASP-43b has so far eluded explanation. We revisit the energy budget of this planet by considering the impact of reflected light on dayside measurements and the physicality of implied nightside temperatures. Previous analyses of the infrared eclipses of WASP-43b have assumed reflected light from the planet is negligible and can be ignored. We develop a phenomenological eclipse model including reflected light, thermal emission, and water absorption, and we use it to fit published Hubble and Spitzer eclipse data. We infer a near-infrared geometric albedo of 24% ± 1% and a cooler dayside temperature of 1483 ± 10 K. Additionally, we perform light curve inversion on the three published orbital phase curves of WASP-43b and find that each suggests unphysical, negative flux on the nightside. By requiring non-negative brightnesses at all longitudes, we correct the unphysical parts of the maps and obtain a much hotter nightside effective temperature of 1076 ± 11 K. The cooler dayside and hotter nightside suggest a heat recirculation efficiency of 51% for WASP-43b, essentially the same as for HD 209458b, another hot Jupiter with nearly the same temperature. Our analysis therefore reaffirms the trend that planets with lower irradiation temperatures have more efficient day–night heat transport. Moreover, we note that (1) reflected light may be significant for many near-IR eclipse measurements of hot Jupiters, and (2) phase curves should be fit with physically possible longitudinal brightness profiles—it is insufficient to only require that the disk-integrated light curve be non-negative.

  5. Weak oceanic heat transport as a cause of the instability of glacial climates

    Energy Technology Data Exchange (ETDEWEB)

    Colin de Verdiere, Alain [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans, Alain Colin de Verdiere, Brest 3 (France); Te Raa, L. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands); Netherlands Organisation for Applied Scientific Research TNO, The Hague (Netherlands)

    2010-12-15

    The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean - atmosphere - sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard - Oeschger events, may be internal instabilities of the climate system

  6. Exact harmonic solutions to Guyer-Krumhansl-type equation and application to heat transport in thin films

    Science.gov (United States)

    Zhukovsky, K.; Oskolkov, D.

    2018-03-01

    A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.

  7. Effect of Ponderomotive Terms on Heat Flux in Laser-Produced Plasmas

    Science.gov (United States)

    Li, G.

    2005-10-01

    A laser electromagnetic field introduces ponderomotive termsootnotetextV. N. Goncharov and G. Li, Phys. Plasmas 11, 5680 (2004). in the heat flux in a plasma. To account for the nonlocal effects in the ponderomotive terms, first, the kinetic equation coupled with the Maxwell equations is numerically solved for the isotropic part of the electron distribution function. Such an equation includes self-consistent electromagnetic fields and laser absorption through the inverse bremsstrahlung. Then, the anisotropic part is found by solving a simplified Fokker--Planck equation. Using the distribution function, the electric current and heat flux are obtained and substituted into the hydrocode LILAC to simulate ICF implosions. The simulation results are compared against the existing nonlocal electron conduction modelsootnotetextG. P. Schurtz, P. D. Nicola"i, and M. Busquet, Phys. Plasmas 9, 4238 (2000). and Fokker--Planck simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  8. Development of suitability maps for ground-coupled heat pump systems using groundwater and heat transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hikari; Itoi, Ryuichi [Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Inatomi, Tadasuke [YBM Co. Ltd., Kishiyama 589-10 Kitahata, Karatsu 847-1211 (Japan); Uchida, Youhei [Geological Survey of Japan, AIST Tsukuba Central 7, Tsukuba 305-8567 (Japan)

    2007-10-15

    The thermophysical properties of subsurface materials (soils, sediments and rocks) and groundwater flow strongly affect the heat exchange rates of ground heat exchangers (GHEs). These rates can be maximized and the installation costs of the ground-coupled heat pump (GCHP) systems reduced by developing suitability maps based on local geological and hydrological information. Such maps were generated for the Chikushi Plain (western Japan) using field-survey data and a numerical modeling study. First, a field-wide groundwater model was developed for the area and the results matched against measured groundwater levels and vertical temperature profiles. Single GHE models were then constructed to simulate the heat exchange performance at different locations in the plain. Finally, suitability maps for GCHP systems were prepared using the results from the single GHE models. Variations in the heat exchange rates of over 40% revealed by the map were ascribed to differences in the GHE locations, confirming how important it is to use appropriate thermophysical data when designing GCHP systems. (author)

  9. Advances in Large-Scale Solar Heating and Long Term Storage in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    According to (the) information from the European Large-Scale Solar Heating Network, (See http://www.hvac.chalmers.se/cshp/), the area of installed solar collectors for large-scale application is in Europe, approximately 8 mill m2, corresponding to about 4000 MW thermal power. The 11 plants...... the last 10 years and the corresponding cost per collector area for the final installed plant is kept constant, even so the solar production is increased. Unfortunately large-scale seasonal storage was not able to keep up with the advances in solar technology, at least for pit water and gravel storage...... of the total 51 plants are equipped with long-term storage. In Denmark, 7 plants are installed, comprising of approx. 18,000-m2 collector area with new plants planned. The development of these plants and the involved technologies will be presented in this paper, with a focus on the improvements for Danish...

  10. Associations between serotonin transporter gene polymorphisms and heat pain perception in adults with chronic pain

    Science.gov (United States)

    2013-01-01

    Background The triallelic serotonin transporter gene linked polymorphic region (5-HTTLPR) has been associated with alterations in thermal pain perception. The primary aim of this study was to investigate the associations between heat pain (HP) perception and the triallelic 5-HTTLPR in a large cohort of adults with chronic pain. Methods The cohort included 277 adults with chronic pain who met inclusion criteria, and were consecutively admitted to an outpatient pain rehabilitation program from March 2009 through March 2010. Individuals were genotyped for the triallelic 5-HTTLPR (including rs25531) and categorized as high, intermediate, or low expressors of the serotonin transporter. Standardized measures of HP perception were obtained using a validated quantitative sensory test method of levels. Results The distribution of the high, intermediate, and low expressing genotypes was 61 (22%), 149 (54%) and 67 (24%), respectively. The Hardy-Weinberg P-value was 0.204 which indicated no departure from equilibrium. A significant effect of genotype was observed for values of HP threshold (P = 0.029). Individual group comparisons showed that values of HP threshold were significantly greater in the intermediate compared to the high expressing group (P = 0.009) but not the low expressing group (P > 0.1). In a multiple variable linear regression model, the intermediate group (P = 0.034) and male sex (P = 0.021) were associated with significantly greater values of HP 0.5, but no significant genotype-by-sex interaction effect was observed. Conclusions In this study that involved adults with chronic pain, the intermediate triallelic 5-HTTLPR expressing group, but not the low expressing group, was associated with greater HP thresholds compared to the high expressing group. PMID:23895108

  11. Impact of electro-magnetic stabilization, small- scale turbulence and multi-scale interactions on heat transport in JET

    Science.gov (United States)

    Mantica, Paola

    2016-10-01

    Heat transport experiments in JET, based on ICRH heat flux scans and temperature modulation, have confirmed the importance of two transport mechanisms that are often neglected in modeling experimental results, but are crucial to reach agreement between theory and experiment and may be significant in ITER. The first mechanism is the stabilizing effect of the total pressure gradient (including fast ions) on ITG driven ion heat transport. Such stabilization is found in non-linear gyro-kinetic electro-magnetic simulations using GENE and GYRO, and is the explanation for the observed loss of ion stiffness in the core of high NBI-power JET plasmas. The effect was recently observed also in JET plasmas with dominant ICRH heating and small rotation, due to ICRH fast ions, which is promising for ITER. Such mechanism dominates over ExB flow shear in the core and needs to be included in quasi-linear models to increase their ability to capture the relevant physics. The second mechanism is the capability of small- scale ETG instabilities to carry a significant fraction of electron heat. A decrease in Te peaking is observed when decreasing Zeff Te/Ti, which cannot be ascribed to TEMs but is in line with ETGs. Non-linear GENE single-scale simulations of ETGs and ITG/TEMs show that the ITG/TEM electron heat flux is not enough to match experiment. TEM stiffness is also much lower than measured. In the ETG single scale simulations the external flow shear is used to saturate the ETG streamers. Multi-scale simulations are ongoing, in which the ion zonal flows are the main saturating mechanism for ETGs. These costly simulations should provide the final answer on the importance of ETG-driven electron heat flux in JET. with JET contributors [F.Romanelli, Proc.25thIAEA FEC]. Supported by EUROfusion Grant 633053.

  12. A preliminary design study of a pool-type FBR 'ARES' eliminating intermediate heat transport systems

    International Nuclear Information System (INIS)

    Ueda, N.; Nishi, Y.; Kinoshita, I.; Yoshida, K.

    2001-01-01

    An innovative reactor concept 'ARES' (Advanced Reactor Eliminating Secondary system) is proposed to aim at reducing the construction cost of a liquid metal cooled fast breeder reactor (LMFBR). This concept is developed to show the ultimate cost down potential of LMFBR's at their commercial stage. The electrical output is 1500 MW, while the thermal output is 3900 MW. Main components of the primary cooling system are four electromagnetic pumps (EMP) and eight double-wall-tube steam generators (SG). Both of them are installed in a reactor vessel like pool type LMFBR's. An intermediate heat transport system which a previous LMFBR has it eliminated, main components of which are intermediate heat exchangers (IHX), secondary pumps and secondary piping. Further, a high reliable SG could decrease the occurrence of water leak accidents and reduce the related mitigation systems. In this study, structure concept, approach to embody a high reliable SG and accidents analyses are carried out. Flow path configuration is mainly discussed in investigation of the structure concept. In case of a water leak accident in a SG, the fault SG must be isolated to prevent a reaction production from flowing into the core. The measure to cut both inlet and outlet coolant flow paths by siphon-break mechanism is adopted to be consistent with the decay heat removal operation. The safety design approach of the double-wall-tube SG is investigated to limit the accident occurrence below 10 -7 (1/ry). A tube-to-tube weld is excluded from the reference design, because the welding process is too difficult and complicated to prevent adhesion of the double-wall-tube effectively. The reliability of the tube-to-tube-sheet was evaluated as 10 -10 (1/hr) for an inner tube and 10 -9 (1/hr) for an outer tube with reference to the failure experience of previous SG's. The failure must be detected within 60 to 120 minutes. Finally, a seamless U tube type of double-wall-tube SG is adopted. Transient events due to

  13. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  14. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  15. Technology data for energy plants. Individual heating plants and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The present technology catalogue is published in co-operation between the Danish Energy Agency and Energinet.dk and includes technology descriptions for a number of technologies for individual heat production and energy transport. The primary objective of the technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for the work with energy planning and the development of the energy sector, including future outlooks, scenario analyses and technical/economic analyses. The technology catalogue is thus a valuable tool in connection with energy planning and assessment of climate projects and for evaluating the development opportunities for the energy sector's many technologies, which can be used for the preparation of different support programmes for energy research and development. The publication of the technology catalogue should also be viewed in the light of renewed focus on strategic energy planning in municipalities etc. In that respect, the technology catalogue is considered to be an important tool for the municipalities in their planning efforts. (LN)

  16. Development Characteristics of Velocity Transports in An Isothermal Heated Drag-Reducing Surfactant Solution Flow

    Science.gov (United States)

    Zhang, Hongxia; Wang, Dezhong; Chen, Hanping; Wang, Yanping

    2007-06-01

    The development characteristics, turbulence transports for stresses and kinetic energy of a cetyltrimethyl ammonium chloride (CTAC) surfactant solution for a two-dimensional channel flow have been experimentally investigated. Time mean velocity and fluctuating velocity are measured using a Phase Doppler Anemometry (PDA) at the Reynolds number 1.78×104 and isothermal heated temperature 31°C. Although mean velocity profiles at three cross sections show that the fluid is almost fully developed, the peak location of fluctuating intensity for the CTAC solution is slightly away from the wall downstream from the fluid and the peak location of fluctuating intensity is observed at far away from the wall than that of water. The location where the velocity gradient has its maximum, the fluctuating intensity does not get the high value. The elastic shear stress contribution to the total shear stress is 15 percents to 36 percents and it gets to the maximum near to the wall. The surfactant elastic shear stress is almost a liner function of the height of the channel, which means that the elastic stress contribution of the different cross locations is approximately the same. The fluctuating surfactant stress work is negative and the fluctuating elastic shear stresses produce rather than dissipate kinetic energy.

  17. Magnons coherent transmission and its heat transport at ultrathin insulating ferromagnetic nanojunctions

    Directory of Open Access Journals (Sweden)

    Ghantous M. Abou

    2012-06-01

    Full Text Available A model calculation is presented for the magnons coherent transmission and corresponding heat transport at magnetic insulating nanojunctions. The system consists of a ferromagnetically ordered ultrathin insulating junction between two semi-infinite ferromagnetically ordered leads. Spin dynamics are analyzed using the equations of motion for the spin precession displacements, valid for the range of temperatures of interest. Coherent scattering cross-sections at the junction boundary are calculated using the phase field matching theory, for all the incidence angles on the boundary from the lead bands, for arbitrary angles of incidence, at variable temperatures, and for different nano thicknesses of the ultrathin junction. The model is general; it is applied in particular to the Fe/Gd/Fe system with a sandwiched ferromagnetic Gd junction. It yields also the thermal conductivity due to the magnons coherent transmission between the two leads when these are maintained at slightly different temperatures. The calculation is carried out for state of the art values of the exchange constants, and elucidates the relation between the coherent scattering transmission of magnons and their thermal conductivity, for different thicknesses.

  18. Impacts of Wind Stress Changes on the Global Heat Transport, Baroclinic Instability, and the Thermohaline Circulation

    Directory of Open Access Journals (Sweden)

    Jeferson Prietsch Machado

    2016-01-01

    Full Text Available The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO. The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.

  19. Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance--Part II, Friction, heating, and torque.

    Science.gov (United States)

    Davidson, J A; Schwartz, G; Lynch, G; Gir, S

    1988-04-01

    In Part I, (J.A. Davidson and G. Schwartz, "Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance--Part I, A review," J. Biomed. Mater. Res., 21, 000-000 (1987) it was shown that lubrication of the artificial hip joint was complex and that long-term performance is governed by the combined wear, creep, and to a lesser extent, oxidation degradation of the articulating materials. Importantly, it was shown that a tendency for heating exists during articulation in the hip joint and that elevated temperatures can increase the wear, creep, and oxidation degradation rate of UHMWPE. The present study was performed to examine closely the propensity to generate heat during articulation in a hip joint simulator. The systems investigated were polished Co-Cr-Mo alloy articulating against UHMWPE, polished alumina ceramic against UHMWPE, and polished alumina against itself. Frictional torque was also evaluated for each system at various levels of applied loads. A walking load history was used in both the frictional heating and torque tests. The majority of tests were performed with 5 mL of water lubricant. However, the effect of various concentrations of hyaluronic acid was also evaluated. Results showed frictional heating to occur in all three systems, reaching an equilibrium after roughly 30 min articulation time. Ceramic systems showed reduced levels of heating compared to the cobalt alloy-UHMWPE system. The level of frictional torque for each system ranked similar to their respective tendencies to generate heat. Hyaluronic acid had little effect, while dry conditions and the presence of small quantities of bone cement powder in water lubricant significantly increased frictional torque.

  20. Transport and Application of Heat-Activated Persulfate for In-situ Chemical Oxidation of Residual Trichloroethylene

    Science.gov (United States)

    Quig, L.; Johnson, G. R.

    2015-12-01

    Persulfate ISCO has been shown to treat a wide range of contaminants. While persulfate ISCO can be tailored to site and pollutant specific characteristics (e.g., activation via energy or catalysis), thermal activation of persulfate is particularly promising as it can be easily controlled and requires no additional reagents. A mechanistic study of the physical and chemical processes controlling the effectiveness of this remedial approach is not well documented in the literature with much therein focused on reactions in batch systems. The purpose of this research was twofold. Initial studies characterized the overall transport behavior of unactivated and thermally-activated persulfate (20, 60, and 90°C) in one-dimensional soil column systems. Finally, experiments were conducted to investigate persulfate ISCO as a remedial approach for residual-phase trichloroethylene (TCE). At all activation temperatures investigated, persulfate exhibited ideal transport behavior in miscible displacement experiments. Moment analysis of persulfate ion breakthrough curves indicated negligible interaction of persulfate with the natural sandy material. Persulfate ISCO for residual-phase TCE was characterized at two flow rates, 0.2 mL/min and 0.5 mL/min, resulting in two degrees of persulfate activation, 39.5% and 24.6%, respectively. Both ISCO soil column systems showed an initial, long-term plateau in effluent TCE concentrations indicating steady-state dissolution of pure phase TCE. Observed effluent concentrations decreased after 75 and 100 pore volumes (normalized for the measured residual NAPL fraction) compared to 110 pore volumes in the control study. Pseudo first-order reaction rate constants for the decreasing TCE concentrations equaled 0.063/hr and 0.083/hr, respectively, compared to 0.041/hr for the control. Moment analysis of the complete dissolution of TCE in the persulfate/activated persulfate remediation systems indicated approximately 33% oxidation of TCE mass present. By

  1. Critical temperature gradient length signatures in heat wave propagation across internal transport barriers in the Joint European Torus

    International Nuclear Information System (INIS)

    Casati, Alessandro; Mantica, P.; Eester, D. van; Hawkes, N.; De Vries, P.; Imbeaux, F.; Joffrin, E.; Marinoni, A.; Ryter, F.; Salmi, A.; Tala, T.

    2007-01-01

    New results on electron heat wave propagation using ion cyclotron resonance heating power modulation in the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)] plasmas characterized by internal transport barriers (ITBs) are presented. The heat wave generated outside the ITB, and traveling across it, always experiences a strong damping in the ITB layer, demonstrating a low level of transport and loss of stiffness. In some cases, however, the heat wave is strongly inflated in the region just outside the ITB, showing features of convective-like behavior. In other cases, a second maximum in the perturbation amplitude is generated close to the ITB foot. Such peculiar types of behavior can be explained on the basis of the existence of a critical temperature gradient length for the onset of turbulent transport. Convective-like features appear close to the threshold (i.e., just outside the ITB foot) when the value of the threshold is sufficiently high, with a good match with the theoretical predictions for the trapped electron mode threshold. The appearance of a second maximum is due to the oscillation of the temperature profile across the threshold in the case of a weak ITB. Simulations with an empirical critical gradient length model and with the theory based GLF23 [R. E. Waltz et al., Phys. Plasmas, 4, 2482 (1997)] model are presented. The difference with respect to previous results of cold pulse propagation across JET ITBs is also discussed

  2. Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation

    International Nuclear Information System (INIS)

    Tabuchi, Yuichiro; Shiomi, Takeshi; Aoki, Osamu; Kubo, Norio; Shinohara, Kazuhiko

    2010-01-01

    Key challenges to the acceptance of polymer electrolyte membrane fuel cells (PEMFCs) for automobiles are the cost reduction and improvement in its power density for compactness. In order to get the solution, the further improvement in a fuel cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFCs has considerable effects on the cell performance. In this study, the impact of heat and water transport on the cell performance under high current density was investigated by experimental evaluation of liquid water distribution and numerical validation. Liquid water distribution in MEA between rib and channel area is evaluated by neutron radiography. In order to neglect the effect of liquid water in gas channels and reactant species concentration distribution in the flow direction, the differential cell was used in this study. Experimental results suggested that liquid water under the channel was dramatically changed with rib/channel width. From the numerical study, it is found that the change of liquid water distribution was significantly affected by temperature distribution in MEA between rib and channel area. In addition, not only heat transport but also water transport through the membrane also significantly affected the cell performance under high current density operation.

  3. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    Science.gov (United States)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  4. Heat insulating structure for use in transporting and handling gas of high temperature and pressure

    International Nuclear Information System (INIS)

    Mathusima, T.; Sato, T.; Uenishi, A.

    1980-01-01

    A heat insulating structure is described that has a heat-resistant tube disposed in a tubular cylindrical body and defining a passage for a high temperature gas, a heat insulating material disposed between the tube and the tubular cylindrical body and adapted to prevent the heat possessed by the gas from being transmitted to the tubular cylindrical body, and a spring adapted to bias the heat insulating material toward the inner surface of the tubular cylindrical body, so as to prevent the formation of a bypass passage for the gas including the gap between the tubular cylindrical body and the heat insulating material. The heat insulating material consists of a plurality of fibrous heat insulating materials mainly consisting of bulky fibrous materials and a plurality of shaped fibrous heat insulating materials. These fibrous heat insulating materials and the shaped fibrous heat insulating materials are arranged alternatingly and independently in the axial direction. In each of the bulky fibrous heat insulating material, disposed is a spring for biasing the shaped fibrous heat insulating material in the axial direction

  5. Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain).

    Science.gov (United States)

    Arroyo, Virginia; Díaz, Julio; Ortiz, Cristina; Carmona, Rocío; Sáez, Marc; Linares, Cristina

    2016-02-01

    these, heat temperatures at Lag 1 (RR: 1.055; 95% CI:( (1.018 1.092)) on preterm births in Madrid City during the studied period. In the model adjusted for preterm births, similar RR was obtained for the same environmental variables. Especially PM2.5, diurnal noise levels and O3 have a short-term impact on total births and heat temperatures on preterm births in Madrid City during the studied period. Our results suggest that, given the widespread exposure of the population to the environmental factors analyzed and the possible effects on long-term health associated to low birth weight. There is a clear need to minimize this exposure through the decrease of air pollution and noise levels and through the behavior modification of the mothers. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    Directory of Open Access Journals (Sweden)

    Miroslav M Živković

    2010-01-01

    Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions

  7. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    Science.gov (United States)

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  8. Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface

    Science.gov (United States)

    Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.

    2018-02-01

    Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.

  9. Heat and mass transport during microwave heating of mashed potato in domestic oven--model development, validation, and sensitivity analysis.

    Science.gov (United States)

    Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan

    2014-10-01

    A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable

  10. Electronic contributions to the transport properties and specific heat of solid UO2: an empirical, self-consistent analysis

    International Nuclear Information System (INIS)

    Hyland, G.J.; Ralph, J.

    1982-07-01

    From an empirical, self-consistent analysis of new high temperature data on the thermo-electric Seebeck coefficient and d.c. electrical conductivity, the value of the free energy controlling the equilibrium of the thermally induced reaction, 2U 4+ reversible U 3+ + U 5+ is determined (treating the U 3+ and U 5+ as small polarons) and used to calculate the contribution of the process to the high temperature thermal conductivity and specific heat of UO 2 . It is found that the transport properties can be completely accounted for in this way, but not the anomalous rise in specific heat - the origin of which remains obscure. (U.K.)

  11. Radio-frequency heating and neutral atom transport in a fluid-magnetohydrodynamic treatment of burning tokamak plasmas

    International Nuclear Information System (INIS)

    Conn, R.W.; Mau, T.K.; Prinja, A.K.

    1983-01-01

    A physical model for the space and time evolution of the primary parameters of ordinary and burning tokamak plasmas is described by employing a fluid plasma treatment coupled to a magnetohydrodynamic equilibrium description, the solution to the appropriate Maxwell equations, and the solution of the linear transport equation describing neutral atom transport in plasmas. The specific problems of plasma heating by ion cyclotron radiofrequency (ICRF) waves and neutral atom transport in the plasma edge and in complicated geometrical components such as divertor channels or pumped limiter structures are analyzed. A theoretical, onedimensional slab model of ICRF heating at ω = 2ω/SUB cD/ is developed and applied to determine the space-time response of tokamak plasmas. Generally, strong single-pass absorption is found for high-density, high (β) plasmas using a low k 11 spectrum (0.05 to 0.1 cm -1 ) although for (β > 1%, electron Landau damping becomes important. Deterministic and Monte Carlo methods to solve the neutral atom transport problem are described. Specific application to determine the spectrum of neutral atoms emerging from the duct of a pump limiter shows it to be hard (mean energy > 20 eV), indicating very incomplete energy thermalization. Uncertainties are identified in the overall problem of dynamic burning plasma analysis caused by the complexity of the problem itself and by uncertainties in fundamental areas such as plasma transport coefficients, stability, and plasma edge physics

  12. Long-term developments in the transport sector -- comparing biofuel and hydrogen roadmaps

    Energy Technology Data Exchange (ETDEWEB)

    Uyterlinde, M.A.; Londo, M.; Godfroij, P.; Jeeninga, H.

    2007-07-01

    In view of climate change and declining oil reserves, alternative fuels for transport receive increasing attention. Two promising options are biofuels, of which the market penetration has already started, and hydrogen, which, when used in fuel cell cars, could lead to zero-emission vehicles. This paper draws on the results of two ongoing EU projects in which roadmaps are being developed for respectively biofuels and hydrogen . The most important potential conflict lies in competition for biomass as a feedstock. In this context, the hydrogen-fuel cell route has the advantage of a higher efficiency (in terms of km driven per ha or tonne biomass) than biofuels. Furthermore, hydrogen is more flexible in feedstock, since it can also be produced in a climate-friendly way from fossil resources such as coal. Synergy between biofuels and hydrogen is in gasification technology. This technology is required both for biomass-to-liquids, one of the more promising biofuels, and for hydrogen production from biomass and/or coal. Our analysis indicates that the transportation sector will need both options in the long term: while hydrogen may become dominant for passenger cars, greening of long-distance heavy duty transport will become dependent on a bio-based diesel substitute. (auth)

  13. Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue.

    Science.gov (United States)

    Bozkaya, F; Atli, M O; Guzeloglu, A; Kayis, S A; Yildirim, M E; Kurar, E; Yilmaz, R; Aydilek, N

    2017-08-01

    The aim was to investigate the effects of long-term heat stress and dietary restriction on the expression of certain genes involving in steroidogenic pathway and small heat-shock proteins (sHSPs) in rat testis. Sprague Dawley rats (n = 24) were equally divided into four groups. Group I and II were kept at an ambient temperature of 22°C, while Groups III and IV were reared at 38°C for 9 weeks. Feed was freely available for Group I and Group III, while Group II and Group IV were fed 60% of the diet consumed by their ad libitum counterparts. At the end of 9 weeks, testicles were collected under euthanasia. Total RNA was isolated from testis tissue samples. Expression profiles of the genes encoding androgen-binding protein, follicle-stimulating hormone receptor, androgen receptor, luteinising hormone receptor, steroidogenic acute regulatory protein (StAR), cyclooxygenase-2 and sHSP genes were assessed at mRNA levels using qPCR. Long-term heat stress decreased the expression of StAR and HspB10 genes while dietary restriction upregulated StAR gene expression. The results suggested that long-term heat stress negatively affected the expression of StAR and HspB10 genes and the dietary restriction was able to reverse negative effect of heat stress on the expression of StAR gene in rat testis. © 2016 Blackwell Verlag GmbH.

  14. Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term

    Science.gov (United States)

    Shen, B.-W.

    2015-12-01

    In this study, a six-dimensional Lorenz model (6DLM) is derived, based on a recent study using a five-dimensional (5-D) Lorenz model (LM), in order to examine the impact of an additional mode and its accompanying heating term on solution stability. The new mode added to improve the representation of the streamfunction is referred to as a secondary streamfunction mode, while the two additional modes, which appear in both the 6DLM and 5DLM but not in the original LM, are referred to as secondary temperature modes. Two energy conservation relationships of the 6DLM are first derived in the dissipationless limit. The impact of three additional modes on solution stability is examined by comparing numerical solutions and ensemble Lyapunov exponents of the 6DLM and 5DLM as well as the original LM. For the onset of chaos, the critical value of the normalized Rayleigh number (rc) is determined to be 41.1. The critical value is larger than that in the 3DLM (rc ~ 24.74), but slightly smaller than the one in the 5DLM (rc ~ 42.9). A stability analysis and numerical experiments obtained using generalized LMs, with or without simplifications, suggest the following: (1) negative nonlinear feedback in association with the secondary temperature modes, as first identified using the 5DLM, plays a dominant role in providing feedback for improving the solution's stability of the 6DLM, (2) the additional heating term in association with the secondary streamfunction mode may destabilize the solution, and (3) overall feedback due to the secondary streamfunction mode is much smaller than the feedback due to the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different roles for small-scale processes (i.e., stabilization vs. destabilization), consistent with the following statement by Lorenz (1972): "If the flap of a butterfly's wings can be instrumental in generating a tornado, it can

  15. Tensile and fracture properties of primary heat transport system piping material

    International Nuclear Information System (INIS)

    Singh, P.K.; Chattopadhyay, J.; Kushwaha, H.S.

    1997-07-01

    The fracture mechanics calculations in leak-before-break analysis of nuclear piping system require material tensile data and fracture resistance properties in the form of J-R curve. There are large variations in fracture parameters due to variation in chemical composition and process used in making the steel components. Keeping this in view, a comprehensive program has been planned to generate the material data base for primary heat transport system piping using the specimens machined from actual pipes used in service. The material under study are SA333 Gr.6 (base as well as weld) and SA350 LF2 (base). Since the operating temperatures of 500 MWe Indian PHWR PHT system piping range from 260 degC to 304 degC the test temperature chosen are 28 degC, 200 degC, 250 degC and 300 degC. Tensile and compact tension specimens have been fabricated from actual pipe according to ASTM standard. Fracture toughness of base metal has been observed to be higher compared to weld metal in SA333 Gr.6 material for the temperature under consideration. Fracture toughness has been observed to be higher for LC orientation (notch in circumferential direction) compared to CL orientation (notch is in longitudinal direction) for the temperature range under study. Fracture toughness value decreases with increase in temperature for the materials under study. Finally, chemical analysis has been carried out to investigate the reason for high toughness of the material. It has been concluded that low percentage of carbon and nitrogen, low inclusion rating and fine grain size has enhanced the fracture toughness value

  16. Thermal hydraulic studies for passive heat transport systems relevant to advanced reactors

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Sharma, M.; Borgohain, A.; Srivastava, A.K.; Pilkhwal, D.S.; Maheshwari, N.K.

    2014-01-01

    Nuclear is the only non-green house gas generating power source that can replace fossil fuels and can be commercially deployed in large scale. However, the enormous developmental efforts and safety upgrades during the past six decades have somewhat eroded the economic competitiveness of water-cooled reactors which form the mainstay of the current nuclear power programme. Further, the introduction of the supercritical Rankine cycle and the gas turbine based advanced fuel cycles have enhanced the efficiency of fossil fired power plants (FPP) thereby reducing its greenhouse gas emissions. The ongoing development of ultra-supercritical and advanced ultra-supercritical turbines aims to further reduce the greenhouse gas emissions and economic competitiveness of FPPs. In the backdrop of these developments, the nuclear industry also initiated development of advanced nuclear power plants (NPP) with improved efficiency, sustainability and enhanced safety as the main goals. A review of the advanced reactor concepts being investigated currently reveals that excepting the SCWR, all other concepts use coolants other than water. The coolants used are lead, lead bismuth eutectic, liquid sodium, molten salts, helium and supercritical water. Besides, some of these are employing passive systems to transport heat from the core under normal operating conditions. In view of this, a study is in progress at BARC to examine the performance of simple passive systems using SC CO 2 , SCW, LBE and molten salts as the coolant. This paper deals with some of the recent results of these studies. The study focuses on the steady state, transient and stability behaviour of the passive systems with these coolants. (author)

  17. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-08-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  18. Ab-initio quantum transport simulation of self-heating in single-layer 2-D materials

    Science.gov (United States)

    Stieger, Christian; Szabo, Aron; Bunjaku, Teutë; Luisier, Mathieu

    2017-07-01

    Through advanced quantum mechanical simulations combining electron transport and phonon transport from first-principles, self-heating effects are investigated in n-type transistors with single-layer MoS2, WS2, and black phosphorus as channel materials. The selected 2-D crystals all exhibit different phonon-limited mobility values, as well as electron and phonon properties, which have a direct influence on the increase in their lattice temperature and on the power dissipated inside their channel as a function of the applied gate voltage and electrical current magnitude. This computational study reveals (i) that self-heating plays a much more important role in 2-D materials than in Si nanowires, (ii) that it could severely limit the performance of 2-D devices at high current densities, and (iii) that black phosphorus appears less sensitive to this phenomenon than transition metal dichalcogenides.

  19. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  20. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2018-02-01

    Within this work, acoustic streaming in an air-filled cylindrical resonator with walls supporting a temperature gradient is studied by means of numerical simulations. A set of equations based on successive approximations is derived from the Navier-Stokes equations. The equations take into account the acoustic-streaming-driven convective heat transport; as time-averaged secondary-field quantities are directly calculated, the equations are much easier to integrate than the original fluid-dynamics equations. The model equations are implemented and integrated employing commercial software COMSOL Multiphysics. Numerical calculations are conducted for the case of a resonator with a wall-temperature gradient corresponding to the action of a thermoacoustic effect. It is shown that due to the convective heat transport, the streaming profile is considerably distorted even in the case of weak wall-temperature gradients. The numerical results are consistent with available experimental data.

  1. Simulation of the fusion materials irradiation test facility lithium and heat transport systems for abnormal events study

    International Nuclear Information System (INIS)

    Carlson, W.F.; Elyashar, N.N.

    1981-01-01

    A digital computer model of Fusion Materials Irradiation Test Facility's heat transport system has been developed. The model utilizes a set of coupled differential equations to simulate the dynamic behavior of the primary and secondary heat transport loop systems. The model has been used to investigate the stability of the proposed control schemes for lithium temperature and flow rate and for an extensive study of equipment failures and malfunction analysis. It was determined that certain equipment failures and malfunctions in the primary loop require a response from the control system within less than one second of the occurrence of the failure. The effects of equipment failures in the secondary loop were found to be less dramatic than the equivalent failures in the primary loop. The failures in the secondary loop generally required control action in time frames of the order of minutes

  2. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  3. JOYO MK-III modification work on heat transport system. Working plan and plant control

    International Nuclear Information System (INIS)

    Isozaki, K.; Ichige, S.; Ohshima, J.

    2002-07-01

    The MK-III project to improve the irradiation capability of the experimental fast reactor JOYO have been in underway since 1987. The increase of fast neutron flux and the enlargement of that field increase the reactor thermal rate from 100 MWt to 140 MWt. To increase cooling capacity of heat transport system, intermediate heat exchangers (IHXs), dump heat exchangers (DHXs), piping connecting to IHXs and DHXs, main motors on primary and secondary main circulation pumps were replaced. The replacement of these large components was carried out under following hard conditions. 1) Limitation of work space, 2) Fuel subassembly and molten sodium in the reactor vessel, 3) high radiation circumstances for primary cooling system, 4) treatment of radioactive sodium (radioactive sodium and corrosion product such as 60 Co, 54 Mn). There are little experiences of this kind of work in the world. Therefore the organization, working plan and safety management points were carefully examined and established, based on the previous experience of JOYO operation and maintenance, research and development results of safety treatment of sodium, experience of previous work on sodium facilities. Followings results were obtained and effectiveness was confirmed in the work. (1) Development of most suitable working plan derived from elements and full size mock up experiments, reduction of exposure time by workers training, reduction of radiation dose by installation of temporal radiation shielding were useful to reduce radiation dose. The usage of seal bag was useful to prevent the contamination spreading over. (2) The usage of seal bag, oxygen concentration monitoring in the seal bag, nitrogen concentration monitoring in the cooling system cover gas, low pressure control of cover gas were useful to reduce the inflow of oxygen to cooling system. (3) The bite cutting method for piping in air and press down cutting by roller cutter in the seal bag to prevent inflow of cutting piece, stopper

  4. Characterisation of girth pipe weld for primary heat transport system of pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Singh, P.K.; Vaze, K.K.; Kushwaha, H.S.

    2002-01-01

    The weld and heat affected zone (HAZ) associated with the girth weld are most vulnerable regions of the piping system. The different regions of the weld joint such as the weld metal, HAZ and base metal lead to heterogeneous mechanical and metallurgical properties of the joints. Due to their different metallurgical and mechanical properties, the amounts of damage produced in these regions are different when the component is subjected to service condition. Thus, it is imperative to know the characteristics of these regions of a pipe weld in order to identify the weakest zone for safe designing of high energy piping components. In view of this necessity the present study has been planned to carry out complete characterisation of the weld joint of SA 333 Gr.6 steel pipe, in terms of its metallurgical, mechanical and fracture properties. The mechanical and fracture mechanics properties of the base metal, weld deposit and HAZ have been compared and correlated with reference to their microstructures. Weld joints of SA 333 Gr.6 steel pipe have been prepared by using GTAW root pass and SMAW filling of V-grove as per recommended welding procedure specifications (WPS) conforming to ASME Sec IX commonly used to fabricate nuclear piping system components. The emphasis of the study is to characterise base, weld and HAZ of the pipe weld in terms of chemical, metallurgical, mechanical and fracture mechanics properties. The fracture toughness behaviour of the welds and HAZ has been characterised by J-integral parameters. The fatigue crack growth rate has been characterised by Paris Law. Stretched zone width (SZW) has been measured under SEM to evaluate initiation fracture toughness. The estimated initiation fracture toughness based on SZW and blunting line given by EGF recommendation have been compared. The fracture mechanics properties of base, weld and HAZ has been determined and compared. The fracture mechanics properties of the weld and HAZ have been correlated to their

  5. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires

    Czech Academy of Sciences Publication Activity Database

    Rusticucci, M.; Kyselý, Jan; Almeira, G.; Lhotka, Ondřej

    2016-01-01

    Roč. 124, č. 3 (2016), s. 679-689 ISSN 0177-798X R&D Projects: GA MŠk 7AMB15AR001 Institutional support: RVO:68378289 Keywords : heat waves * long-term variability * climate extremes Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.640, year: 2016 http://link.springer.com/article/10.1007%2Fs00704-015-1445-7

  6. Realistic integration of sorption processes in transport codes for long-term safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Fluegge, Judith; Britz, Susan; Schneider, Anke [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Brendler, Vinzenz; Stockmann, Madlen; Schikora, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Lampe, Michael [Frankfurt Univ. (Germany). Goethe Center for Scientific Computing

    2012-09-15

    One important aspect in long-term safety assessment is related to radionuclide transport in geologic formations. In order to assess its consequences over assessment periods of one million years numerical models describing flow and transport are applied. Sorption on mineral surfaces is the most relevant process retarding radionuclide transport. On the one hand an increased transport time might cause a decrease in radionuclide concentration by radioactive decay. On the other hand it might increase concentrations of dose-relevant daughter nuclides in decay chains. In order to treat the radionuclide sorption processes in natural systems close to reality the so-called smart K{sub d}-concept is implemented into the transport program r{sup 3}t, which is applied to large model areas and very long time scales in long-term safety assessment. In the first stage this approach is developed for a typical sedimentary system covering rock salt and clay formations in Northern Germany. The smart K{sub d}-values are based on mechanistic surface complexation models (SCM), varying in time and space and de-pending on the actual geochemical conditions, which might change in the future e. g. due to the impact of climate changes. The concept developed and introduced here is based on a feasible treatment of the most relevant geochemical parameters in the transport code as well as on a matrix of smart K{sub d}-values calculated in dependence on these parameters. The implementation of the concept comprises the selection of relevant elements and minerals to be considered, an experimental program to fill data gaps of the thermody-namic sorption database, an uncertainty and sensitivity analysis to identify the most important environmental parameters influencing sorption of long-term relevant radionu-clides, the creation of a matrix with K{sub d}-values dependent on the selected environmental parameters, and the development and realisation of the conceptual model for treatment of temporal and

  7. A way to visualise heat transfer in 3D unsteady flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.

    2009-01-01

    Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by

  8. Investigation of Nuclide Importance to Functional Requirements Related to Transport and Long-Term Storage of LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Broadhead, B.L.

    1995-01-01

    The radionuclide characteristics of light-water-reactor (LWR) spent fuel play key roles in the design and licensing activities for radioactive waste transportation systems, interim storage facilities, and the final repository site. Several areas of analysis require detailed information concerning the time-dependent behavior of radioactive nuclides including (1) neutron/gamma-ray sources for shielding studies, (2) fissile/absorber concentrations for criticality safety determinations, (3) residual decay heat predictions for thermal considerations, and (4) curie and/or radiological toxicity levels for materials assumed to be released into the ground/environment after long periods of time. The crucial nature of the radionuclide predictions over both short and long periods of time has resulted in an increased emphasis on thorough validation for radionuclide generation/depletion codes. Current radionuclide generation/depletion codes have the capability to follow the evolution of some 1600 isotopes during both irradiation and decay time periods. Of these, typically only 10 to 20 nuclides dominate contributions to each analysis area. Thus a quantitative ranking of nuclides over various time periods is desired for each of the analysis areas of shielding, criticality, heat transfer, and environmental dose (radiological toxicity). These rankings should allow for validation and data improvement efforts to be focused only on the most important nuclides. This study investigates the relative importances of the various actinide, fission-product, and light-element isotopes associated with LWR spent fuel with respect to five analysis areas: criticality safety (absorption fractions), shielding (dose rate fractions), curies (fractional curies levels), decay heat (fraction of total watts), and radiological toxicity (fraction of potential committed effective dose equivalent). These rankings are presented for up to six different burnup/enrichment scenarios and at decay times from 2 to

  9. Heat treatment of long term serviced Cr – Mo cast steel

    Directory of Open Access Journals (Sweden)

    G. Golanski

    2010-01-01

    Full Text Available The paper presents results of research on the influence of heat treatment on the structure and properties of L20HM cast steel after long term operation at elevated temperature. Investigated cast steel was taken out from an outer frame of a steam turbine serviced for 167 424 hours at the temp. of 535 oC and pressure 12.75 MPa. In post-operating condition the investigated cast steel was characterized by mechanical properties below the required minimum and by high brittleness. Performed research on the influence of austenitizing parameters has revealed that the range of austenitizing temperatures for the examined cast steel: Ac3 + 30 ÷ 60 oC ensures obtaining of a fine austenite grain, homogeneous in size. It has been proved that tempering of bainititc – ferritic structure above 680 ÷ 690 oC causes an increase of impact energy along with a decrease of mechanical properties below the required minimum. Moreover, it has been noticed that applying of under-annealing instead of tempering, after full-annealing, guarantees the required impact energy of KV > 27J, with the mechanical properties similar to those after service.

  10. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong

    2002-03-01

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  11. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  12. Time-dependent photon heat transport through a mesoscopic Josephson device

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wen-Ting; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn

    2017-02-15

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  13. Time-dependent photon heat transport through a mesoscopic Josephson device

    International Nuclear Information System (INIS)

    Lu, Wen-Ting; Zhao, Hong-Kang

    2017-01-01

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  14. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems

    International Nuclear Information System (INIS)

    Saraswat, Amit; Bhattacharjee, Rajdeep; Verma, Ankit; Das, Malay K.; Khandekar, Sameer

    2017-01-01

    Thermal energy storage in general, and phase-change materials (PCMs) in particular, have been a major topic of research for the last thirty years. Due to their favorable thermo-dynamical characteristics, such as high density, specific heat and latent heat of fusion, PCMs are usually employed as working fluids for thermal storage. However, low thermal conductivities of organic PCMs have posed a continuous challenge in its large scale deployment. This study focuses on experimental and numerical investigation of the melting process of industrial grade paraffin wax inside a semi-cylindrical enclosure with a heating strip attached axially along the center of semi-cylinder. During the first part of the study, the solid-liquid interface location, the liquid flow patterns in the melt pool, and the spatial and temporal variation of PCM temperature were recorded. For numerical simulation of the system, open source library OpenFOAM® was used in order to solve the coupled Navier-Stokes and energy equations in the considered system. It is seen that the enthalpy-porosity technique implemented on OpenFOAM® is reasonably well suited for handling melting/solidification problems and can be employed for system level design. Next, to overcome the inherent thermal limitations of PCM storage material, the study further explored the potential of coupling the existing heat source with copper-water heat pipes, so as to help augment the rate of heat dissipation within the medium by increasing the effective system-level thermal conductivity. Integration of heat pipes led to enhanced transport, and hence, a substantial decrease in the total required melting time. The study provides a framework for designing of large systems with integration of heat pipes with PCM based thermal storage systems.

  15. A New Scheme for Considering Soil Water-Heat Transport Coupling Based on Community Land Model: Model Description and Preliminary Validation

    Science.gov (United States)

    Wang, Chenghai; Yang, Kai

    2018-04-01

    Land surface models (LSMs) have developed significantly over the past few decades, with the result that most LSMs can generally reproduce the characteristics of the land surface. However, LSMs fail to reproduce some details of soil water and heat transport during seasonal transition periods because they neglect the effects of interactions between water movement and heat transfer in the soil. Such effects are critical for a complete understanding of water-heat transport within a soil thermohydraulic regime. In this study, a fully coupled water-heat transport scheme (FCS) is incorporated into the Community Land Model (version 4.5) to replaces its original isothermal scheme, which is more complete in theory. Observational data from five sites are used to validate the performance of the FCS. The simulation results at both single-point and global scale show that the FCS improved the simulation of soil moisture and temperature. FCS better reproduced the characteristics of drier and colder surface layers in arid regions by considering the diffusion of soil water vapor, which is a nonnegligible process in soil, especially for soil surface layers, while its effects in cold regions are generally inverse. It also accounted for the sensible heat fluxes caused by liquid water flow, which can contribute to heat transfer in both surface and deep layers. The FCS affects the estimation of surface sensible heat (SH) and latent heat (LH) and provides the details of soil heat and water transportation, which benefits to understand the inner physical process of soil water-heat migration.

  16. The role of nuclear techniques in the long-term prediction of radionuclide transport

    International Nuclear Information System (INIS)

    Airey, P.L.; Duerden, P.

    1985-01-01

    Problems associated with the long-term prediction of the migration of radionuclides, and the role of natural analogues in reducing the inherent uncertainties are discussed. Particular reference is made to the evaluation of uranium ore bodies in the Alligator Rivers region, Northern Territory, as analogues of high-level radioactive waste repositories. A range of nuclear techniques has been used to identify the role of colloids, of alpha recoil and of mineralogy in transport. Specific mention is made of a method being developed which enables models of the migration of solute through fractured rock to be assessed via a combination of alpha track, fission track and PIXE/PIGME techniques

  17. Interaction Between Short-Term Heat Pretreatment and Avermectin On 2nd Instar Larvae of Diamondback Moth, Plutella Xylostella (Linn)

    Science.gov (United States)

    Gu, Xiaojun; Tian, Sufen; Wang, Dehui; Gao, Fei

    2009-01-01

    Based on the cooperative virulence index (c.f.), the interaction effect between short-term heat pretreatment and avermectin on 2nd instar larvae of diamondback moth (DBM), Plutella xylostella (Linnaeus), was assessed. The results suggested that the interaction results between short-term heat pretreatment and avermectin on the tested insects varied with temperature level as well as its duration and avermectin concentration. Interaction between heat pretreatment at 30°C and avermectin mainly resulted in addition. Meanwhile, pretreatment at 35°C for 2 or 4 h could antagonize the toxicity of avermectin at lower concentrations, which indicated a hormetic effect occurred. The results indicate that cooperative virulence index (c.f.) may be adopted in hormetic effect assessment. PMID:19809544

  18. INDUCTION HEATING IN HISTORY AND DEVELOPMENT. APPLICATION IN MODERN TRANSPORT REPAIRING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yu. Batyhin

    2017-06-01

    Full Text Available The technologies used in repair of vehicles were analyzed in the given paper. The shortcomings of the mechanical repair methods in question can be solved by using induction heating. Analysis of the stages of development and implementation of induction heating in industries showed effective performance of this technology and its opportunities for further improvement. An alternative repair technique, which consists in using induction heating, was proposed.

  19. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  20. Sauna exposure immediately prior to short-term heat acclimation accelerates phenotypic adaptation in females.

    Science.gov (United States)

    Mee, Jessica A; Peters, Sophie; Doust, Jonathan H; Maxwell, Neil S

    2018-02-01

    Investigate whether a sauna exposure prior to short-term heat acclimation (HA) accelerates phenotypic adaptation in females. Randomised, repeated measures, cross-over trial. Nine females performed two 5-d HA interventions (controlled hyperthermia T re ≥38.5°C), separated by 7-wk, during the follicular phase of the menstrual cycle confirmed by plasma concentrations of 17-β estradiol and progesterone. Prior to each 90-min HA session participants sat for 20-min in either a temperate environment (20°C, 40% RH; HA temp ) wearing shorts and sports bra or a hot environment (50°C, 30% RH) wearing a sauna suit to replicate sauna conditions (HA sauna ). Participants performed a running heat tolerance test (RHTT) 24-h pre and 24-h post HA. Mean heart rate (HR) (85±4 vs. 68±5 bpm, p≤0.001), sweat rate (0.4±0.2 vs. 0.0±0.0Lh -1 , p≤0.001), and thermal sensation (6±0 vs. 5±1, p=0.050) were higher during the sauna compared to temperate exposure. Resting rectal temperature (T re ) (-0.28±0.16°C), peak T re (-0.42±0.22°C), resting HR (-10±4 bpm), peak HR (-12±7 bpm), T re at sweating onset (-0.29±0.17°C) (p≤0.001), thermal sensation (-0.5±0.5; p=0.002), and perceived exertion (-3±2; p≤0.001) reduced during the RHTT, following HA sauna ; but not HA temp . Plasma volume expansion was greater following HA sauna (HA sauna , 9±7%; HA temp , 1±5%; p=0.013). Sweat rate (p≤0.001) increased and sweat NaCl (p=0.006) reduced during the RHTT following HA sauna and HA temp . This novel strategy initiated HA with an attenuation of thermoregulatory, cardiovascular, and perceptual strain in females due to a measurably greater strain in the sauna compared to temperate exposure when adopted prior to STHA. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Heat transport and solar transmission through a window system with low-emitting coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, B; Ribbing, C G

    1977-12-01

    Heat transfer processes through a double-glazed window system are examined. Network calculations show the good insulation properties of a double-glazed window system including at least one low-emitting film. When the insolation is taken into consideration, absorption in the panes change the heat-balance and a heat-transfer coefficient can not be defined. The thermal and optical properties of windows with low-emitting metallic films are investigated. These windows depress the heat-losses but show a relatively low solar transmission. They are suitable for reducing intense sunlight during the summer period, together with good thermal insulation during periods with low insolation.

  2. Heat stroke during long-term clozapine treatment: should we be concerned about hot weather?

    OpenAIRE

    Hoffmann, Maurício Scopel; Oliveira, Lucas Mendes; Lobato, Maria Inês Rodrigues; Belmonte-de-Abreu, Paulo

    2016-01-01

    Objective To describe the case of a patient with schizophrenia on clozapine treatment who had an episode of heat stroke. Case description During a heat wave in January and February 2014, a patient with schizophrenia who was on treatment with clozapine was initially referred for differential diagnose between systemic infection and neuroleptic malignant syndrome, but was finally diagnosed with heat stroke and treated with control of body temperature and hydration. Comments This report aims to...

  3. Analysis of an underground electric heating system with short-term energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, B.H. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

    1994-12-31

    The principal commercially active heat storage application in which concrete is used as the storage medium is in the use of subfloor electric heaters embedded in a layer of sand. The resistance heaters are energized when utility offpeak rates are in effect. The sand bed and the concrete floor are then heated to some predetermined temperature, and the floor releases heat slowly and remains warm during the subsequent period of high demand. Analysis of the slab-heating system for varying design parameters, such as the depth of the placement of the heaters, the sand properties, the energy input, and the insulation thickness, was considered. The system was also optimized based on life-cycle costs. The suitability of using this system for heating a warehouse in four representative cities in the United States was also considered The response of the system was found to be greatly influenced by the depth of the placement of the heaters, the sand`s moisture content, and the heating strategy. Optimum insulation levels were determined for the prototypical building in all four of the representative cities. Because of the difficulty of controlling the energy release from the heating mats, this system may not be suitable for heating residential and office buildings but may be more appropriate for heating maintenance and storage facilities.

  4. A study on shear behavior of reinforced concrete beams subjected to long-term heating

    International Nuclear Information System (INIS)

    Maruta, M.; Yamazaki, M.; Miyashita, T.

    1995-01-01

    A study has been undertaken to determine the shear behavior of reinforced concrete members in nuclear power plant facilities following sustained heating to high temperatures. A total of nine specimens was tested. The parameters of the tests were (1) heating temperature (65, 90 and 175 C) and (2) heating period (1, 3, 6 or 12 months). Different combinations of these parameters were employed, and the shear strength deterioration rate was evaluated. The test results were confirmed by a non-linear finite element analysis. The relationship between the concrete compressive strengths, which varied from heating face to upper portion, and the shear strength in specimens was evaluated. (orig.)

  5. Heat and Water Transport in Soils and Across the Soil-Atmosphere Interface: Comparison of Model Concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Smits, Kathleen; Mosthaf, Klaus

    Evaporation from the soil surface represents a water flow and transport process in a porous medium that is coupled with free air flow and with heat fluxes in the system. We give an overview of different model concepts that are used to describe this process. These range from non-isothermal two......-phase flow two-component transport in the porous medium that is coupled with one-phase flow two-component transport in the free air to isothermal water flow in the porous with upper boundary conditions defined by a potential evaporation flux when available energy and transfer to the free air flow...... models were found. The effect of vapor flow in the porous medium on cumulative evaporation could be evaluated using the desorptivity, Sevap, which represents a weighted average of liquid and vapor diffusivity over the range of soil water contents between the soil surface water content and the initial...

  6. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    International Nuclear Information System (INIS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-01-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification

  7. Impurity transport studies by means of tracer-encapsulated solid pellet injection in neutral beam heated plasmas on LHD

    International Nuclear Information System (INIS)

    Tamura, N; Sudo, S; Khlopenkov, K V; Kato, S; Sergeev, V Yu; Muto, S; Sato, K; Funaba, H; Tanaka, K; Tokuzawa, T; Yamada, I; Narihara, K; Nakamura, Y; Kawahata, K; Ohyabu, N; Motojima, O

    2003-01-01

    The quantitative properties of impurity transport in large helical device (LHD) plasmas heated by neutral beam injection have been investigated by means of tracer-encapsulated solid pellet (TESPEL) injection. In the case of a titanium (Ti) tracer, the behaviour of the emission lines from the highly ionized Ti impurity, Ti Kα(E He-like ∼ 4.7 keV) and Ti XIX (λ = 16.959 nm), has been observed clearly by a soft x-ray pulse height analyzer and a vacuum ultraviolet spectrometer, respectively. A fairly longer decay time of the Ti Kα emission lines is obtained above the value of a line-averaged electron density, 3.0x10 19 m -3 . The dependence of the behaviour of the Ti tracer impurity on the line-averaged electron density below the value of that, 3.5x10 19 m -3 is in qualitative agreement with the characteristics obtained from the observation of the behaviour of an intrinsic metallic impurity in neutral beam heated plasmas on LHD. In order to estimate the properties of the Ti impurity transport quantitatively, the one-dimensional impurity transport code, MIST has been used. As a result of the transport analysis with the MIST code, even an small inward convection should be necessary to account for the experimental results with the value of the line-averaged electron density, 3.5x10 19 m -3 . In order to examine the experimentally obtained transport coefficients, neoclassical analysis with respect to the radial impurity flux has been performed. The inferred rise of the inward convection cannot be explained solely by neoclassical impurity transport. Therefore, in order to account for the inward convection, the effect of a radial electric field and/or some other effect must be taken into account additionally

  8. The effect of heat and mass transfer on the cellular plastic insulation and the long-term aging

    Energy Technology Data Exchange (ETDEWEB)

    Fan Youchen [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1997-12-31

    To produce environmental-friendly products, foamed plastic industries are facing the challenge to replace the traditional blowing agents chlorofluorocarbons (CFCs) with zero ozone depletion potential (ODP) alternatives. After a series of studies were completed, more understandings and new findings have been achieved with respect to the rigid closed-cell cellular plastic insulations or foamed plastic insulations (FPIs). The mechanism of heat transfer within the FPIs was examined. A new formula for calculating the solid polymer matrix thermal conductivity has been deduced based on the law of energy conservation and Fourier equation of heat conduction. All the parameters involved in this formula can be easily measured. By comparing the simulation results with measurements, the Brokaw equation is recommended for the prediction of the thermal conductivity of a cell-gas mixture. The foamed plastic deformation was also discussed. A new model has been established for predicting the elastic modulus of the foamed plastics. In comparison to the published measurements, it was found that the new model gives fairly good results. A diffusion chamber has been designed and constructed for measuring the gaseous transport properties within the FPIs. To overcome the difficulties of the traditional method, a new measurement procedure and post test data treatment have been suggested. The measurement accuracy is equivalent to the traditional method with an exception of much short time being required. The diffusion coefficients of CO{sub 2}, O{sub 2}, and N{sub 2} within five n-pentane/CO{sub 2} based polyurethane (PUR) foams have been obtained from the diffusion chamber tests. Measurements showed that the relationship between the gaseous diffusion coefficients within FPIs and temperature follows the Arrhenius type. No identical relationship between diffusion coefficients and foam density was reached. To predict the long-term aging property of CFC-free foamed plastic insulations, a two

  9. Developing a long-term global tourism transport model using a behavioural approach: implications for sustainable tourism policy making.

    NARCIS (Netherlands)

    Peeters, P.M.

    2013-01-01

    This paper explores the creation and use of a long-term global tourism transport model for private and public sector tourism policy makers. Given that technology is unlikely to reduce tourism transport's impact on climate change sufficiently to avoid serious dangers, behavioural change is necessary.

  10. Lithium Hideout and Return in the CANDU Heat Transport System during Shutdown and Start-up

    International Nuclear Information System (INIS)

    Qiu, L.; Snaglewski, A.P.

    2012-09-01

    Lithium hydroxide is used to control the pH a (pH apparent) of the Heat Transport System (HTS) coolant in CANDU R reactors. The recommended range of the lithium concentration in the coolant is between 0.38 ppm (5.5x10 -5 m) and 0.60 ppm (8.7x10 -5 m) to minimize carbon steel corrosion in the HTS and magnetite deposition in the core during normal operation; this corresponds to pH a values between 10.2 and 10.4. Similar pH a and lithium concentrations should be maintained during shutdown and start-up. However, maintaining the pH a of the HTS coolant within specification during shutdown and start-up has been difficult for some CANDU stations, especially when the HTS is taken to a Low Level Drain State (LLDS), because of lithium hideout and return. This paper presents the results from lithium adsorption and desorption studies on iron oxides under relevant shutdown and start-up chemistry conditions performed to elucidate the mechanisms of the observed lithium hideout and return. The results show that lithium hideout and return are driven largely by changes in the solubility of magnetite as the HTS coolant chemistry changes during shutdown; changes in lithium concentration were inversely correlated with the solubility of magnetite. When the HTS system is de-pressurized and drained to a low coolant level, the ingress of air rapidly oxidizes the dissolved Fe (II) in the coolant, 2Fe +2 + 1 / 2 O 2 + 3 H 2 = 2FEOOH + 4 H + , resulting in the formation of lepidocrocite or maghemite, which have much lower solubilities but larger surface areas than does magnetite. The large surface area of the Fe (III) oxides can adsorb significant quantities of lithium from the coolant, leading to lithium hideout and a pH a decrease. During start-up, the chemistry of the coolant changes from oxidizing to reducing, and lepidocrocite and other Fe (III) oxides are reduced to Fe (II), gradually dissolving as their solubility increases with increasing temperature. The adsorbed lithium is released

  11. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.

  12. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    International Nuclear Information System (INIS)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.

    1997-01-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300 degrees C. Two important observations of the experiments are - appreciable drop in maximum load at 300 degrees C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis

  13. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2017-01-01

    Full Text Available This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-cooled lithium-lead has the highest total decay heat at longer decay times in comparison to the helium-cooled design which has the lowest total decay heat. In addition, major nuclides were identified for water-cooled lithium-lead in W armour, Eurofer, and LiPb. In addition, great attention has been dedicated to the analysis of the decay heat and activity both from the different water-cooled lithium-lead blanket modules for the entire reactor and from each water-cooled lithium-lead blanket module separately. The neutron induced activation and decay heat at shutdown were calculated by the FISPACT code, using the neutron flux densities and spectra that were provided by the preceding MCNP neutron transport calculations.

  14. Evaluation of Energy Efficient Options to Heat Ohio Department of Transportation (ODOT) Maintenance Facilities

    Science.gov (United States)

    2018-01-01

    This project was initiated by the ODOT District 2 staff who were looking for more efficient ways to heat and operate their maintenance facilities. This especially applied to the idea of using radiant floor heating as an alternative to todays stand...

  15. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  16. Fluid and heat transport at the Torres del Paine laccolith (Patagonia/Chile)

    International Nuclear Information System (INIS)

    Putliz, B; Baumgartner, L.P; Oberhansli, R; Diamond, L; Altenberger, U

    2001-01-01

    The 12 Ma old Torres del Paine laccolith (TPL) is part of a chain of isolated Miocene plutons and subvolcanic rocks which intruded the foothills of the southern Andes of Chile and Argentina (Halpern, 1973; Michael, 1984). The 12x12 km big laccolith, an I-type granite, intruded mudstones, sandstones, carbonates and conglomerates of the Cretaceous Cerro Torre and Punta Barrosa formation (Wilson, 1991) creating a well defined, but small contact aureole of 200-400m width. The TPL contains abundant textural evidence of fluid exsolution and eutectic crystallisation. It hence represents a good example for the transport of large quantities of magmatic aqueous fluids to the uppermost level of the crust. The pluton is well exposed and its rugged topography allows the investigation of the roof, the lateral rims and the base of the intrusion. Field and textural observations, phase petrological constraints, oxygen isotope and fluid inclusion data are used to unravel mechanism and patterns of fluid and heat transport in the intrusion and the contact aureole. The Torres del Paine Intrusives form a calcalkaline suite, ranging from gabbros through diorites to leucogranites. The intrusive body has the general shape of a laccolith (Skarmeta and Castelli, 1997). Gabbroic and dioritic rocks are only exposed at the lower levels. Granites are clearly predominant - the main body of the laccolith is composed of a fine to medium grained biotite-orthoclase granite. The TPL is remarkable for its abundance of miarolitic cavities. Locally, at the margins of the pluton, a microgranitic phase is found with up to 15% of cavities. While some miaroles are isolated, others are interconnected, forming tube-like structures. Open miaroles contain euhedral crystals of quartz and feldspar. Other important phases are biotite, tourmaline, fayalite and late chlorite and carbonate. Individual crystals are typically between < 1cm up to a few cm in length. Some miaroles are completely filled with coarse quartz

  17. Meeting Czechoslovak demands for heat in long-term prospective, especially with regard to nuclear sources

    International Nuclear Information System (INIS)

    Klail, M.

    1988-01-01

    The development was studied of heat demand in the CSSR till the year 2030. The ratio of centralized and decentralized heat supply is currently 60 to 40; in the future a slight increase is expected in the decentralized type of heat supply, mainly as a result of more intensive use of natural gas. In 2030, 710 PU of centralized heat should be produced. A decisive element in meeting the demand will be a growing proportion of combined production of electric power and heat by nuclear power plants. The installed capacity of the nuclear power plants in 2030 should range between 23 and 41 thousand MW, the production of electric power in these plants should be 193 to 238 TWh/y. 109 territorial areas potentially suitable for use of heat from nuclear sources were selected. They were included in 19 regions of which 9 should in the year 2010 be linked to heat supply from nuclear power plants that will be in operation. It is expected that in the year 2030, nuclear sources will supply 250 PU of centralized heat. (Z.M.). 2 tabs., 14 refs

  18. Evaluating work/recovery schedules in terms of whole body heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, S.G. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories; Stapleton, J.M.; Kenny, G.P. [Ottawa Univ., Ottawa, ON (Canada). School of Human Kinetics, Human and Environmental Physiology Research Unit; Allen, C. [Vale Inco, Copper Cliff, ON (Canada)

    2010-07-01

    This paper reported on heat stress related research aimed at better managing the heat exposure of underground miners. The potential for underground miners to experience heat stress or strain is increasing due to greater mining depth; mechanization, and a trend towards larger diesel equipment; an aging workforce; an increasing amount of personal protective equipment worn to prevent injuries (that has led to most of the miner's body being covered) and increases in the surface climate that are superimposed through the underground workplace. This paper focused on research involving metabolic heat storage and the possibility of heat strain from elevated core temperatures. It targeted work/recovery cycles and the recovery strategies between work bouts. The first study examined the cumulative change in body heat content for a moderate metabolic rate and increasing the recovery allocation as per the TLV screening criteria to offset an increase in the wet bulb globe temperature (WBGT). The second study examined strategies that could be used between work bouts and how they affect the thermoregulatory system, heat generation or losses and net cumulative heat storage. The calorimeter based work suggested that a miner's clothing may be improved to promote evaporative cooling, and that work recovery regimes could be modified to maximize recovery. 10 refs., 1 tab., 6 figs.

  19. Using Reactive Transport Modeling to Evaluate the Source Term at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen

    2001-12-19

    The conventional approach of source-term evaluation for performance assessment of nuclear waste repositories uses speciation-solubility modeling tools and assumes pure phases of radioelements control their solubility. This assumption may not reflect reality, as most radioelements (except for U) may not form their own pure phases. As a result, solubility limits predicted using the conventional approach are several orders of magnitude higher then the concentrations of radioelements measured in spent fuel dissolution experiments. This paper presents the author's attempt of using a non-conventional approach to evaluate source term of radionuclide release for Yucca Mountain. Based on the general reactive-transport code AREST-CT, a model for spent fuel dissolution and secondary phase precipitation has been constructed. The model accounts for both equilibrium and kinetic reactions. Its predictions have been compared against laboratory experiments and natural analogues. It is found that without calibrations, the simulated results match laboratory and field observations very well in many aspects. More important is the fact that no contradictions between them have been found. This provides confidence in the predictive power of the model. Based on the concept of Np incorporated into uranyl minerals, the model not only predicts a lower Np source-term than that given by conventional Np solubility models, but also produces results which are consistent with laboratory measurements and observations. Moreover, two hypotheses, whether Np enters tertiary uranyl minerals or not, have been tested by comparing model predictions against laboratory observations, the results favor the former. It is concluded that this non-conventional approach of source term evaluation not only eliminates over-conservatism in conventional solubility approach to some extent, but also gives a realistic representation of the system of interest, which is a prerequisite for truly understanding the long-term

  20. Using Reactive Transport Modeling to Evaluate the Source Term at Yucca Mountain

    International Nuclear Information System (INIS)

    Y. Chen

    2001-01-01

    The conventional approach of source-term evaluation for performance assessment of nuclear waste repositories uses speciation-solubility modeling tools and assumes pure phases of radioelements control their solubility. This assumption may not reflect reality, as most radioelements (except for U) may not form their own pure phases. As a result, solubility limits predicted using the conventional approach are several orders of magnitude higher then the concentrations of radioelements measured in spent fuel dissolution experiments. This paper presents the author's attempt of using a non-conventional approach to evaluate source term of radionuclide release for Yucca Mountain. Based on the general reactive-transport code AREST-CT, a model for spent fuel dissolution and secondary phase precipitation has been constructed. The model accounts for both equilibrium and kinetic reactions. Its predictions have been compared against laboratory experiments and natural analogues. It is found that without calibrations, the simulated results match laboratory and field observations very well in many aspects. More important is the fact that no contradictions between them have been found. This provides confidence in the predictive power of the model. Based on the concept of Np incorporated into uranyl minerals, the model not only predicts a lower Np source-term than that given by conventional Np solubility models, but also produces results which are consistent with laboratory measurements and observations. Moreover, two hypotheses, whether Np enters tertiary uranyl minerals or not, have been tested by comparing model predictions against laboratory observations, the results favor the former. It is concluded that this non-conventional approach of source term evaluation not only eliminates over-conservatism in conventional solubility approach to some extent, but also gives a realistic representation of the system of interest, which is a prerequisite for truly understanding the long-term

  1. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    Science.gov (United States)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  2. Assessment of the Long Term Trends in Extreme Heat Events and the Associated Health Impacts in the United States

    Science.gov (United States)

    Bell, J.; Rennie, J.; Kunkel, K.; Herring, S.; Cullen, H. M.

    2017-12-01

    Land surface air temperature products have been essential for monitoring the evolution of the climate system. Before a temperature dataset is included in such reports, it is important that non-climatic influences be removed or changed so the dataset is considered homogenous. These inhomogeneities include changes in station location, instrumentation and observing practices. While many homogenized products exist on the monthly time scale, few daily products exist, due to the complication of removing breakpoints that are truly inhomogeneous rather than solely by chance (for example, sharp changes due to synoptic conditions). Recently, a sub monthly homogenized dataset has been developed using data and software provided by NOAA's National Centers for Environmental Information (NCEI). Homogeneous daily data are useful for identification and attribution of extreme heat events over a period of time. Projections of increasing temperatures are expected to result in corresponding increases in the frequency, duration, and intensity of extreme heat events. It is also established that extreme heat events can have significant public health impacts, including short-term increases in mortality and morbidity. In addition, it can exacerbate chronic health conditions in vulnerable populations, including renal and cardiovascular issues. To understand how heat events impact a specific population, it will be important to connect observations on the duration and intensity of extreme heat events with health impacts data including insurance claims and hospital admissions data. This presentation will explain the methodology to identify extreme heat events, provide a climatology of heat event onset, length and severity, and explore a case study of an anomalous heat event with available health data.

  3. Tokamak electron heat transport by direct numerical simulation of small scale turbulence; Transport de chaleur electronique dans un tokamak par simulation numerique directe d'une turbulence de petite echelle

    Energy Technology Data Exchange (ETDEWEB)

    Labit, B

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure {beta} or the normalized Larmor radius, {rho}{sub *}. The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters {beta} and {rho}{sub *}. The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand

  4. Cooperative program to analyze heat and particle transport at high beta in DIII-D

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1990-01-01

    The objective is to collaborate with the General Atomics staff and the LLNL staff at General Atomics in the analysis of transport data from DIII-D. The Berkeley effort is integrated into the ongoing efforts at GA to help expedite progress in the fundamental understanding of transport phenomena in tokamaks

  5. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Nutt, Mark; Shuler, James

    2012-01-01

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  6. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Murakami, M.; Batchelor, D.B.; Bush, C.E.

    1994-01-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium heating of D-T supershot plasmas with tritium concentrations ranging from 6%--40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3 He /n e > 10%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation showed that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated (OH) target plasma in TFIR

  7. The Examination of The Main Transportation Arteries of Konya In Terms of Landscape Architecture Design Criteria

    Directory of Open Access Journals (Sweden)

    Sertaç Güngör

    2017-04-01

    Full Text Available Ensuring comfort of use and security of pedestrians, which are the main users of urban green spaces, and the determination of their needs are important since local authorities are guiding for new pedestrian zone studies in the Konya city. Because of the problems caused by the upper structure, the necessary care is not given in terms of transportation comfort, pedestrian safety, vehicle security, plant design and ergonomic / antropemetric standards. The pedestrian way and refuge landscape designs have an important position and amount among open green areas on the scale of Konya. However, it was identified that the applications conducted were inadequate in terms of aesthetic and functional characteristics and were not suitable for the urban landscape design principles, in general, and the standards of urban afforestation of the streets. In this study, the current situation of 3 main streets of Konya used most intensely was examined in terms of landscape design criteria and some suggestions were made by attempting to identify the improvement works that should be performed by the publ