WorldWideScience

Sample records for heat shock-induced apoptosis

  1. Heat Shock Protein 90 Inhibitor (17-AAG) Induces Apoptosis and Decreases Cell Migration/Motility of Keloid Fibroblasts.

    Science.gov (United States)

    Yun, In Sik; Lee, Mi Hee; Rah, Dong Kyun; Lew, Dae Hyun; Park, Jong-Chul; Lee, Won Jai

    2015-07-01

    The regulation of apoptosis, proliferation, and migration of fibroblasts is altered in keloids. The 90-kDa heat shock protein (heat shock protein 90) is known to play a key role in such regulation. Therefore, the authors investigated whether the inhibition of heat shock protein 90 in keloid fibroblasts could induce apoptosis and attenuate keloid fibroblast proliferation and migration. The authors evaluated heat shock protein 90 expression in keloid tissues with immunohistochemistry. The authors used cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and annexin V/propidium iodide staining for apoptosis, a wound healing model and cell tracking system to assess cell migration, and Akt Western blotting analysis in keloid fibroblasts after inhibition of heat shock protein 90 with 17-allylaminodemethoxygeldanamycin (17-AAG). The expression of heat shock protein 90 in keloid tissues was significantly increased compared with normal tissues. The 17-AAG-treated keloid fibroblasts showed significantly decreased proliferation, promotion of apoptosis, and decreased expression of Akt. Furthermore, a dose-dependent decrease in cell migration was noted after 17-AAG treatment of keloid fibroblasts. The 17-AAG-treated keloid fibroblasts had less directionality to the wound center and migrated a shorter distance. The authors confirmed that the inhibition of heat shock protein 90 in keloid fibroblasts could promote apoptosis and attenuate proliferation and migration of keloid fibroblasts. Therefore, the authors think that the inhibition of heat shock protein 90 is a key factor in the regulation of biological processes in keloids. With further preclinical study, the authors will be able to apply these results clinically for keloid treatment.

  2. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  3. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster.

    Science.gov (United States)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J; Nielsen, Mark; Hussain, Saber M; Rowe, John J

    2010-02-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 microg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J.; Nielsen, Mark; Hussain, Saber M.; Rowe, John J.

    2010-01-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 μg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity.

  5. The role of heat shock protein 90 in the regulation of tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Belkina, M V; Maroshkina, A N

    2011-02-01

    Programmed death of Jurkat tumor cells was studied under conditions of culturing with 17-AAG selective inhibitor of heat shock protein with a molecular weight of 90 kDa and etoposide. Apoptosis realization was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Activity of caspase-3 was evaluated spectrophotometrically. Inhibition of heat shock protein with a molecular weight of 90 kDa activated the apoptotic program in Jurkat tumor cells and etoposide-induced apoptosis. The heat shock protein with a molecular weight of 90 kDa acted as apoptosis inhibitor in tumor cells.

  6. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  7. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells.

    Science.gov (United States)

    Davis, Angela L; Qiao, Shuxi; Lesson, Jessica L; Rojo de la Vega, Montserrat; Park, Sophia L; Seanez, Carol M; Gokhale, Vijay; Cabello, Christopher M; Wondrak, Georg T

    2015-01-16

    Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. © 2015 by The

  8. The heat shock protein 90 inhibitor 17-AAG suppresses growth and induces apoptosis in human cholangiocarcinoma cells.

    Science.gov (United States)

    Zhang, Jianjun; Zheng, Zhichao; Zhao, Yan; Zhang, Tao; Gu, Xiaohu; Yang, Wei

    2013-11-01

    The aim of this study was to investigate the effects of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (HSP90) inhibitor, on the proliferation, cell cycle, and apoptosis of human cholangiocarcinoma (CCA) cells. Cell proliferation and cell cycle distribution were measured by the MTT assay and flow cytometry analysis, respectively. Induction of apoptosis was determined by flow cytometry and Hoechst staining. The expressions of cleaved poly ADP-ribose polymerase (PARP), Bcl-2, Survivin, and Cyclin B1 were detected by Western blot analysis. The activity of caspase-3 was also examined. We found that 17-AAG inhibited cell growth and induced G2/M cell cycle arrest and apoptosis in CCA cells together with the down-regulation of Bcl-2, Survivin and Cyclin B1, and the up-regulation of cleaved PARP. Moreover, increased caspase-3 activity was also observed in CCA cells treated with 17-AAG. In conclusion, our data suggest that the inhibition of HSP90 function by 17-AAG may provide a promising therapeutic strategy for the treatment of human CCA.

  9. Role of heat shock proteins in cell apoptosis

    Directory of Open Access Journals (Sweden)

    Arleta Kaźmierczuk

    2010-06-01

    Full Text Available Apoptosis is, apart from necrosis and autophagy, one of the possible cell death mechanisms eliminating needless, not normal or infected cells. This process ensures quantitative and qualitative cell control of organisms. Apoptosis is tightly regulated, it requires both activation of a large number of genes and energy input. Up-to-date two main apoptotic pathways have been recognized – external/receptor and internal, processed with the participation of mitochondria. Heat shock proteins HSPs, the molecules known from their chaperone activity and molecular conservatism, play essential functions in the course of apoptosis. Among that proteins family, i.e. HSP100, 90, 70, 60, 40 and small molecular (sHSP, there are agents mainly protective against programmed cell death. However, in some conditions some of these proteins may promote apoptosis. This review describes different key apoptotic proteins interacting with main members of HSP family and the consequence of these events for cell survival or apoptosis.

  10. Heat Shock Protein 70 Neutralizes Apoptosis-Inducing Factor

    Directory of Open Access Journals (Sweden)

    Guido Kroemer

    2001-01-01

    Full Text Available Programmed cell death (apoptosis is the physiological process responsible for the demise of superfluous, aged, damaged, mutated, and ectopic cells. Its normal function is essential both for embryonic development and for maintenance of adult tissue homeostasis. Deficient apoptosis participates in cancerogenesis, whereas excessive apoptosis leads to unwarranted cell loss accounting for disparate diseases including neurodegeneration and AIDS. One critical step in the process of apoptosis consists in the permeabilization of mitochondrial membranes, leading to the release of proteins which normally are secluded behind the outer mitochondrial membrane[1]. For example, cytochrome c, which is normally confined to the mitochondrial intermembrane space, is liberated from mitochondria and interacts with a cytosolic protein, Apaf-1, causing its oligomerization and constitution of the so-called apoptosome, a protein complex which activates a specific class of cysteine proteases, the caspases[2]. Another example concerns the so-called apoptosis-inducing factor (AIF, another mitochondrial intermembrane protein which can translocate to the nucleus where it induces chromatin condensation and DNA fragmentation[3].

  11. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... Heat shock transcription factors regulate heat induced cell death in a rat ... the synthesis of heat shock proteins (Hsps) which is strictly regulated by ... The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA ...

  12. Critical role of heat shock protein 27 in bufalin-induced apoptosis in human osteosarcomas: a proteomic-based research.

    Directory of Open Access Journals (Sweden)

    Xian-biao Xie

    Full Text Available Bufalin is the primary component of the traditional Chinese herb "Chan Su". Evidence suggests that this compound possesses potent anti-tumor activities, although the exact molecular mechanism(s is unknown. Our previous study showed that bufalin inhibited growth of human osteosarcoma cell lines U2OS and U2OS/MTX300 in culture. Therefore, this study aims to further clarify the in vitro and in vivo anti-osteosarcoma effects of bufalin and its molecular mechanism of action. We found bufalin inhibited both methotrexate (MTX sensitive and resistant human osteosarcoma cell growth and induced G2/M arrest and apoptosis. Using a comparative proteomics approach, 24 differentially expressed proteins following bufalin treatment were identified. In particular, the level of an anti-apoptotic protein, heat shock protein 27 (Hsp27, decreased remarkably. The down-regulation of Hsp27 and alterations of its partner signaling molecules (the decrease in p-Akt, nuclear NF-κB p65, and co-immunoprecipitated cytochrome c/Hsp27 were validated. Hsp27 over-expression protected against bufalin-induced apoptosis, reversed the dephosphorylation of Akt and preserved the level of nuclear NF-κB p65 and co-immunoprecipitated Hsp27/cytochrome c. Moreover, bufalin inhibited MTX-resistant osteosarcoma xenograft growth, and a down-regulation of Hsp27 in vivo was observed. Taken together, bufalin exerted potent anti-osteosarcoma effects in vitro and in vivo, even in MTX resistant osteosarcoma cells. The down-regulation of Hsp27 played a critical role in bufalin-induced apoptosis in osteosarcoma cells. Bufalin may have merit to be a potential chemotherapeutic agent for osteosarcoma, particularly in MTX-resistant groups.

  13. The role of heat shock protein (HSP as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture

    Directory of Open Access Journals (Sweden)

    Sri Wigati Mardi Mulyani

    2014-03-01

    Full Text Available Background: The concept of stem cell therapy is one of the new hope as a medical therapy on salivary gland defect. However, the lack of viability of the transplanted stem cells survival rate led to the decrease of effectiveness of stem cell therapy. The underlying assumption in the decrease of viability and function of stem cells is an increase of apoptosis incidence. It suggests that the microenvironment in the area of damaged tissues is not conducive to support stem cell viability. One of the microenvironment is the hypoxia condition. Several scientific journals revealed that the administration of hypoxic cell culture can result in stress cells but on the other hand the stress condition of the cells also stimulates heat shock protein 27 (HSP 27 as antiapoptosis through inhibition of caspase 9. Purpose: The purpose of this study was to examine the role of heat shock protein 27 as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture. Methods: Stem cell culture was performed in hypoxic conditions (O2 1% and measured the resistance to apoptosis through HSP 27 and caspase 9 expression of bone marrow mesenchymal stem cells by using immunoflorecence and real time PCR. Results: The result of study showed that preconditioning hypoxia could inhibit apoptosis through increasing HSP 27 and decreasing level of caspase 9. Conclusion: The study suggested that hypoxic precondition could reduce apoptosis by increasing amount of heat shock protein 27 and decreasing caspase 9.Latar belakang: Konsep terapi stem cell merupakan salah satu harapan baru sebagai terapi medis kelainan kelenjar ludah. Namun, rendahnya viabilitas stem cell yang ditransplantasikan menyebabkan penurunan efektivitas terapi. Asumsi yang mendasari rendahnya viabilitas dan fungsi stem cell adalah tingginya kejadian apoptosis. Hal ini menunjukkan bahwa lingkungan mikro di daerah jaringan yang rusak tidak kondusif untuk mendukung viabilitas stem cell. Salah satu lingkungan

  14. Mechanical analysis of a heat-shock induced developmental defect

    Science.gov (United States)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  15. Tempo enhances heat-induced apoptosis by mitochondrial targeting of Bax

    International Nuclear Information System (INIS)

    Zhao, Q.-L.; Fujiwara, Y.; Kondo, T.

    2003-01-01

    A stable membrane-permeable nitroxide, Tempo, exerts an SOD-like antioxidant activity against ROS. Reportedly, Tempo inhibits ROS-induced thymocyte apoptosis, while 10 mM Tempo activates JNK1 to induce apoptosis in breast cancer cells. We have observed that nontoxic 5 mM Tempo enhances suboptimal hyperthermia (44 deg C/10 min)-induced apoptosis in U937 cells. Here we report the enhancing mechanism, focusing on activation and targeting of Bax to mitochondria and cytochrome c release. Methods: U937 cells were treated with either Tempo (5 mM, 37 deg C/10 min), heating (44 deg C/10 min), or Tempo-plus-heating, washed and incubated for various times up to 6 h, until assessing apoptosis, mitochondrial potential (ΔΨ>), and amount of superoxide by flow cytometry using Annexin V-FITC/PI, TMRM, and dihydroethidium, respectively. Bax, Bcl-2 and Bcl-XL, and cytochrome c were detected by western blotting, activated Bax was by immunoprecipitation, and ATP was by a luciferase assay. Bax targeting to and cytochrome c release from mitochorndria were also detected immunocytochemically under fluorescent microscopy. Results and Discussion: Treatment of U937 cells with 5 mM Tempo for 10 min at 37 deg C or suboptimal heating (44 deg C/ 10 min) alone did not induce apoptosis. The combined treatment with 5 mM Tempo and 44 deg C for 10 min dramatically induced ∼90% apoptosis in 6 h, as did the 44 deg C/30 min heating. During the enhanced apoptosis, cytochrome c release progressed. Although signals of Bcl-2, Bcl-XL and Bax in cell lysates were not altered, Bax was specifically activated and translocated to mitochondria after the combined treatment. Further, loss of ΔΨ>and decreases in superoxide and ATP progressed after the combined treatment, suggesting that the treatment may disturb mitochondrial electron transport. Thus, Tempo sensitizes the heat-induced apoptosis through (1) targeting of Bax to mitochondria and releasing cytochrome c, and (2) mitochondrial dysfunction

  16. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  17. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  18. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  19. Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro.

    Science.gov (United States)

    Zhang, Xiao-Hui; Wu, Hong; Tang, Shu; Li, Qiao-Ning; Xu, Jiao; Zhang, Miao; Su, Ya-Nan; Yin, Bin; Zhao, Qi-Ling; Kemper, Nicole; Hartung, Joerg; Bao, En-Dong

    2017-06-30

    To determine heat-shock protein (Hsp)90 expression is connected with cellular apoptotic response to heat stress and its mechanism, chicken ( Gallus gallus ) primary myocardial cells were treated with the Hsp90 promoter, aspirin, and its inhibitor, geldanamycin (GA), before heat stress. Cellular viability, heat-stressed apoptosis and reactive oxygen species level under different treatments were measured, and the expression of key proteins of the signaling pathway related to Hsp90 and their colocalization with Hsp90 were detected. The results showed that aspirin treatment increased the expression of protein kinase B (Akt), the signal transducer and activator of transcription (STAT)-3 and p-IKKα/β and the colocalization of Akt and STAT-3 with Hsp90 during heat stress, which was accompanied by improved viability and low apoptosis. GA significantly inhibited Akt expression and p-IKKα/β level, but not STAT-3 quantity, while the colocalization of Akt and STAT-3 with Hsp90 was weakened, followed by lower cell viability and higher apoptosis. Aspirin after GA treatment partially improved the stress response and apoptosis rate of tested cells caused by the recovery of Akt expression and colocalization, rather than the level of STAT-3 (including its co-localization with Hsp90) and p-IKKα/β. Therefore, Hsp90 expression has a positive effect on cellular capacity to resist heat-stressed injury and apoptosis. Moreover, inhibition of Hsp90 before stress partially attenuated its positive effects.

  20. Influence of radiation-induced apoptosis on development brain in molecular regulation

    International Nuclear Information System (INIS)

    Gu Guixiong

    2000-01-01

    An outline of current status on the influence of radiation on the development brain was given. Some genes as immediate early gene, Bcl-2 family, p53, heat shock protein and AT gene play an important regulation role in ionizing radiation-induced development brain cells apoptosis. And such biological factor as nerve growth factor, interleukin-1, tumor necrosis factor, basic fibroblast growth factor, transforming growth factor and so on have a vital protection function against ionizing radiation-induced cells apoptosis

  1. Effect of sequential heat and cold shocks on nuclear phenotypes of the blood-sucking insect, Panstrongylus megistus (Burmeister (Hemiptera, Reduviidae

    Directory of Open Access Journals (Sweden)

    Garcia Simone L

    2002-01-01

    Full Text Available Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion or death (apoptosis, necrosis responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h or cold (5 or 0°C, 1 h shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature. As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.

  2. Heat shock proteins of higher plants

    International Nuclear Information System (INIS)

    Key, J.L.; Lin, C.Y.; Chen, Y.M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperture of soybean seedling tissue is increased from 28 0 C (normal) to about 40 0 C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, heat shock proteins, is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO 4 gels; a more complex pattern is observed on two-dimensional gels. when the tissue is returned to 28 0 C after 4 hr at 40 0 C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A) + RNAs isolated from tissued grown at 28 and 40 0 C shows that the heat shock proteins are translated from a ndw set of mRNAs induced at 40 0 C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5 0 C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila

  3. Heat shock protection against cold stress of Drosophila melanogaster

    OpenAIRE

    Burton, Vicky; Mitchell, Herschel K.; Young, Patricia; Petersen, Nancy S.

    1988-01-01

    Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

  4. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    Science.gov (United States)

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells

    International Nuclear Information System (INIS)

    Santoro, M.G.; Garaci, E.; Amici, C.

    1989-01-01

    Prostaglandins (PGs)A 1 and J 2 were found to potently suppress the proliferation of human K562 erythroleukemia cells and to induce the synthesis of a 74-kDa protein (p74) that was identified as a heat shock protein related to the major 70-kDa heat shock protein group. p74 synthesis was stimulated at doses of PGA 1 and PGJ 2 that inhibited cell replication, and its accumulation ceased upon removal of the PG-induced proliferation block. PGs that did not affect K562 cell replication did not induce p74 synthesis. p74 was found to be localized mainly in the cytoplasm of PG-treated cells, but moderate amounts were found also in dense areas of the nucleus after PGJ 2 treatment. p74 was not necessarily associated with cytotoxicity or with inhibition of cell protein synthesis. The results described support the hypothesis that synthesis of the 70-kDa heat shock proteins is associated with changes in cell proliferation. The observation that PGs can induce the synthesis of heat shock proteins expands our understanding of the mechanism of action of these compounds whose regulatory role is well known in many physiological phenomena, including the control of fever production

  6. Hyperthermia-induced apoptosis

    NARCIS (Netherlands)

    Nijhuis, E.H.A.

    2008-01-01

    This thesis describes a number of studies that investigated several aspects of heat-induced apoptosis in human lymphoid malignancies. Cells harbour both pro- and anti-apoptotic proteins and the balance between these proteins determines whether a cell is susceptible to undergo apoptosis. In this

  7. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-01-01

    Full Text Available Objectives. Elevated plasma homocysteine (Hcy could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27, a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS, and mitochondrial membrane potential (MMP of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO level, increase of endothelin-1 (ET-1, intracellular adhesion molecule-1 (ICAM-1, vascular cellular adhesion molecule-1 (VCAM-1, and monocyte chemoattractant protein-1 (MCP-1 levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  8. Initiation but no execution - modulation of peripheral blood lymphocyte apoptosis in rheumatoid arthritis - a potential role for heat shock protein 70

    Directory of Open Access Journals (Sweden)

    Chuturgoon Anil A

    2011-11-01

    Full Text Available Abstract Background Rheumatoid arthritis (RA is a chronic autoimmune disease, which causes synovial damage. Persistence of lymphocyte infiltrates in the rheumatoid synovium has been attributed to abnormal apoptosis. While not comprehensively investigated, perturbations in peripheral blood lymphocyte (PBL apoptosis may also be involved in perpetuation of autoimmune processes in RA. Methods We investigated total, CD4+ and CD19+ PBL apoptosis in our study cohort by monitoring the translocation of phosphatidylserine using the Annexin-V assay. To examine the role of death receptor mediated apoptosis as well as activation-induced-cell-death (AICD, PBLs were labeled with CD95/Fas and CD69 markers and enumerated by flow cytometry. Proteolytic activity of initiator and executioner caspases was determined by luminometry. DNA fragmentation assays were used to examine whether apoptotic signals were transduced to the nucleus. Quantitative PCR arrays were used to investigate apoptotic pathways associated with RA-PBLs. Since heat-shock-protein-70 (HSP70 is an inducible protein which modulates apoptotic signals, we determined HSP70 levels by intra-cellular flow cytometry and western blots. Results The RA-PBLs showed signs of elevated apoptosis whilst in circulation. These include increases in the loss of plasma membrane asymmetry, indicated by increased externalization of phosphatidylserine (especially in B-lymphocytes. RA-PBLs showed a bias to CD95/Fas mediated apoptotic pathways, but low levels of the CD69 marker suggested that this was not associated with immune activation. Although downstream markers of apoptosis such as caspase-3/7 activity, were increased, no DNA fragmentation was observed in RA-PBLs. Interestingly, elevated levels of apoptosis did not correlate with absolute lymphocyte counts in RA patients. Levels of HSP70 were highly elevated in RA-PBLs compared to controls. Conclusion The results suggest that while apoptosis may be initiated in RA

  9. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  10. Apoptosis induced by cold shock in vitro is dependent on cell growth phase.

    Science.gov (United States)

    Soloff, B L; Nagle, W A; Moss, A J; Henle, K J; Crawford, J T

    1987-06-15

    Chinese hamster V79 fibroblast cells were exposed to brief periods of cold but non-freezing temperatures at different points on the population growth curve. Upon rewarming, cells at the transition from logarithmic to stationary growth exhibited apoptosis (programmed cell death). Cells in other stages of growth, or after reentry into logarithmic growth by refeeding, did not exhibit apoptosis. Apoptosis was expressed by marked cytoplasmic blebbing, by a characteristic non-random fragmentation of DNA into nucleosomal-sized pieces, and by loss of colony-forming ability. The data suggest that cold shock served as a stimulus for susceptible cells to undergo apoptosis. Thus, the experiments describe a new in vitro system for studying the mechanisms of apoptosis.

  11. Circulating antibodies to inducible heat shock protein 70 in patients with uveitis

    NARCIS (Netherlands)

    de Smet, M. D.; Ramadan, A.

    2001-01-01

    Heat shock proteins with molecular weight 70 kDa (hsp70) are highly conserved immunogenic intracellular molecules. There are two main subtypes: one is expressed constitutively (hsc70), while the other is induced under stressful conditions (ihsp70). Using an ELISA directed against recombinant human

  12. Cellular stress induces cancer stem-like cells through expression of DNAJB8 by activation of heat shock factor 1.

    Science.gov (United States)

    Kusumoto, Hiroki; Hirohashi, Yoshihiko; Nishizawa, Satoshi; Yamashita, Masamichi; Yasuda, Kazuyo; Murai, Aiko; Takaya, Akari; Mori, Takashi; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Kondo, Toru; Sato, Noriyuki; Hara, Isao; Torigoe, Toshihiko

    2018-03-01

    In a previous study, we found that DNAJB8, a heat shock protein (HSP) 40 family member is expressed in kidney cancer stem-like cells (CSC)/cancer-initiating cells (CIC) and that it has a role in the maintenance of kidney CSC/CIC. Heat shock factor (HSF) 1 is a key transcription factor for responses to stress including heat shock, and it induces HSP family expression through activation by phosphorylation. In the present study, we therefore examined whether heat shock (HS) induces CSC/CIC. We treated the human kidney cancer cell line ACHN with HS, and found that HS increased side population (SP) cells. Western blot analysis and qRT-PCR showed that HS increased the expression of DNAJB8 and SOX2. Gene knockdown experiments using siRNAs showed that the increase in SOX2 expression and SP cell ratio depends on DNAJB8 and that the increase in DNAJB8 and SOX2 depend on HSF1. Furthermore, treatment with a mammalian target of rapamycin (mTOR) inhibitor, temsirolimus, decreased the expression of DNAJB8 and SOX2 and the ratio of SP cells. Taken together, the results indicate that heat shock induces DNAJB8 by activation of HSF1 and induces cancer stem-like cells. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation.

    Science.gov (United States)

    Hu, Xianwen; Wang, Jingxian; Zhang, Li; Zhang, Qiquan; Duan, Xiaowen; Zhang, Ye

    2018-06-02

    Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS. Copyright © 2018. Published by Elsevier B.V.

  14. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    Science.gov (United States)

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  15. The heat shock protein 90 inhibitor, 17-AAG, attenuates thioacetamide induced liver fibrosis in mice.

    Science.gov (United States)

    Abu-Elsaad, Nashwa M; Serrya, Marwa S; El-Karef, Amr M; Ibrahim, Tarek M

    2016-04-01

    Heat shock protein 90 (Hsp90) is proposed to be involved in liver disorders. This study was conducted to test effect of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90, on attenuating thioacetamide induced liver fibrosis in vivo. Four groups of Swiss albino male mice (CD-1 strain) were used as follows: control group; thioacetamide group (received 100mg/kg thioacetamide, ip injection, 3 times/week for 8 weeks); thioacetamide plus 17-AAG groups (received 100mg/kg thioacetamide, ip injection, 3 times/week for 8 weeks plus 25 or 50mg/kg 17-AAG, ip injection, 5 days/week along the last 4 weeks). Fibrosis was quantified by measuring hydroxyproline level and by morphometry and oxidative stress biomarkers were assigned. Relative hepatic mRNA expressions of α-smooth muscle actin (α-SMA), collagen-1-alpha-1 (Col1A1) and tissue inhibitor metalloproteinase-1 (TIMP-1) mRNAs were measured by RT-PCR. Levels of the apoptotic markers caspase-3, factor related apoptosis (Fas) and Hsp-90 were assigned in tissue homogenate. 17-AAG (50mg/kg) significantly decreased fibrosis percentage significantly (pAAG (50mg/kg) compared to other groups. The Hsp90 inhibitor, 17-AAG, can attenuate thioacetamide hepatotoxicity through oxidative stress counterbalance, reducing stellate cells activity and inducing apoptosis. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. N-acetylcysteine reduces the renal oxidative stress and apoptosis induced by hemorrhagic shock.

    Science.gov (United States)

    Moreira, Miriam Aparecida; Irigoyen, Maria Claudia; Saad, Karen Ruggeri; Saad, Paulo Fernandes; Koike, Marcia Kiyomi; Montero, Edna Frasson de Souza; Martins, José Luiz

    2016-06-01

    Renal ischemia/reperfusion injury induced by hemorrhagic shock (HS) and subsequent fluid resuscitation is a common cause of acute renal failure. The objective of this study was to evaluate the effect of combining N-acetylcysteine (NAC) with fluid resuscitation on renal injury in rats that underwent HS. Two groups of male Wistar rats were induced to controlled HS at 35 mm Hg mean arterial pressure for 60 min. After this period, the HS and fluid resuscitation (HS/R) group was resuscitated with lactate containing 50% of the blood that was withdrawn. The HS/R + NAC group was resuscitated with Ringer's lactate combined with 150 mg/kg of NAC and blood. The sham group animals were catheterized but were not subjected to shock. All animals were kept under anesthesia and euthanized after 120 min of fluid resuscitation or observation. Animals treated with NAC presented attenuation of histologic lesions, reduced oxidative stress, and apoptosis markers when compared with animals from the HS/R group. The serum creatinine was similar in all the groups. NAC is a promising drug for combining with fluid resuscitation to attenuate the kidney injury associated with HS. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter

    2003-01-01

    Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  18. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    Science.gov (United States)

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  19. Role of hippocampal dentate gyrus neurons in the protective effects of heat shock factor 1 on working memory

    Institute of Scientific and Technical Information of China (English)

    Min Peng; Xiongzhao Zhu; Ming Cheng; Xiangyi Chen; Shuqiao Yao

    2011-01-01

    Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis.Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.

  20. Heat-shock-induced enhanced reactivation of UV-irradiated Herpesvirus

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.D.; Zurlo, J.; Penn, A.L.

    1985-09-01

    The objective of this study was to compare the ability of heat shock (HS) with that of another type of cellular stress, UV irradiation, to cause the induction of enhanced viral reactivation, a process that may represent an SOS-type repair process in mammalian cells. These results indicate that, like UV irradiation, HS at levels inhibitory to cell growth induced enhanced viral reactivation in Vero cells. The results also suggest that at least two proteins in the HS protein family are not necessary for this response to occur. (Auth.). 27 refs.; 5 figs.

  1. Induction of Heat Shock Protein 70 Ameliorates Ultraviolet-Induced Photokeratitis in Mice

    Directory of Open Access Journals (Sweden)

    Yukihiro Horie

    2013-01-01

    Full Text Available Acute ultraviolet (UV B exposure causes photokeratitis and induces apoptosis in corneal cells. Geranylgeranylacetone (GGA is an acyclic polyisoprenoid that induces expression of heat shock protein (HSP70, a soluble intracellular chaperone protein expressed in various tissues, protecting cells against stress conditions. We examined whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice. C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse and UVB-exposed (400 mJ/cm2, GGA-untreated UVB-exposed (400 mJ/cm2, GGA-treated (500 mg/kg/mouse but not exposed and naive controls. Eyeballs were collected 24 h after irradiation, and corneas were stained with hematoxylin and eosin (H&E and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL. HSP70, reactive oxygen species (ROS production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and protein kinase B (Akt expression were also evaluated. Irradiated corneal epithelium was significantly thicker in the eyes of mice treated with GGA compared with those given the vehicle alone (p < 0.01. Significantly fewer TUNEL-positive cells were observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01. Corneal HSP70 levels were significantly elevated in corneas of mice treated with GGA (p < 0.05. ROS signal was not affected by GGA. NF-κB activation was reduced but phospho-(Ser/Ther Akt substrate expression was increased in corneas after irradiation when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated UV-induced corneal damage through the reduced NF-κB activation and possibly increased Akt phosphorilation.

  2. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  3. Simple, economical heat-shock devices for zebrafish housing racks.

    Science.gov (United States)

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  4. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins

    International Nuclear Information System (INIS)

    Tsuji, Takayuki; Kato, Akihiko; Yasuda, Hideo; Miyaji, Takehiko; Luo, Jinghui; Sakao, Yukitoshi; Ito, Hideaki; Fujigaki, Yoshihide; Hishida, Akira

    2009-01-01

    Dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, affords protection against cisplatin (CDDP)-induced acute renal failure (ARF). Since the suppression of oxidative stress and the enhancement of heat shock proteins (HSPs) are both reported to protect against CDDP-induced renal damage, we tested whether increased HSP expression is involved in the underlying mechanisms of the DMTU-induced renal protection. We examined the effect of DMTU treatment on the expression of HSPs in the kidney until day 5 following a single injection of CDDP (5 mg/kg BW). DMTU significantly inhibited the CDDP-induced increments of serum creatinine, the number of 8-hydroxyl-2'-deoxyguanosine (8-OHdG)- and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive tubular cells, and tubular damage score (p < 0.05). CDDP significantly increased renal abundances of HO-1, HSP60, HSP72 and HSP90 at days 1, 3, and 5. DMTU significantly augmented only the expression of HSP60 expression mainly in the cytoplasm of the proximal tubular cells at days 1 and 3 in CDDP-induced ARF. DMTU also inhibited the CDDP-induced increment of Bax, a pro-apoptotic protein, in the fraction of organelles/membranes at day 3. The findings suggest that DMTU may afford protection against CDDP-induced ARF, partially through the early induction of cytoplasmic HSP60, thereby preventing the Bax-mediated apoptosis in renal tubular cells

  6. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    Science.gov (United States)

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  7. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    Science.gov (United States)

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  8. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    Science.gov (United States)

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  9. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    International Nuclear Information System (INIS)

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-01-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation

  10. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    Science.gov (United States)

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  11. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards.

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Matsuura, Yuki; Wu, Fangxu; Oshibe, Namiko; Takaki, Eiichi; Katiyar, Arpit; Akashi, Hiroshi; Makino, Takashi; Kawata, Masakado; Nakai, Akira

    2017-01-01

    Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.

  12. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    Science.gov (United States)

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Synthesis and thermotolerance of heat shock proteins in Campylobacter jejuni

    International Nuclear Information System (INIS)

    Kim, C.K.; Kim, H.O.; Lee, K.J.

    1991-01-01

    The heat shock responses of Campylobacter jejuni were studied by examination of their survival rates and synthesis of heat shock proteins. When C. jejuni cells were treated at the sublethal temperatures of 48C° for 30 minutes, most of the cells maintained their viabilities and synthesized the heat shock proteins of 90, 73, and 66 kD in molecular weight. By the method of two-dimensional electrophoresis, the heat shock proteins of C. jejuni were identified to be Hsp90, Hsp73, and Hsp66. During the heat shock at 48C°, the heat shock proteins were induced from about 5 minutes after the heat shock treatment. Their synthesis was continued upto 30 minutes, but remarkably retarded after 50 minutes. When C. jejune cells were heat shocked at 51C° for 30 minutes, the survival rates of the cells were decreased by about 10 3 fold and synthesis of heat shock proteins and normal proteins was also generally retarded. The cells exposed to 55C° for 30 minutes died off by more than 10 5 cells and the new protein synthesis was not observed. But when C. jejuni cells were heat-shocked at the sublethal temperature of 48C° for 15 to 20 minutes and then were exposed at the lethal temperature of 55C° for 30 minutes, their viabilities were higher than those exposed at 55C° for 30 minutes without pre-heat shock at 48C°. Therefore, the heat shock proteins synthesized at the sublethal temperature of 48C° in C. jejuni were thought to be responsible for thermotolerance. However, when C. jejuni cells heat-shocked at various ranges of sublethal and lethal temperatures were placed back to the optimum temperature of 42C°, the multiplication patterns of the cells pretreated at different temperatures were not much different each other

  14. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride.

    Science.gov (United States)

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-09-01

    Acute fluoride (F - ) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F - induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F - -intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F - for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F - -intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F - -treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F - -induced heart failure.

  15. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    Directory of Open Access Journals (Sweden)

    Yoko Igarashi

    Full Text Available Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1 plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  16. Apoptosis induced by low-intensity ultrasound in vitro: Alteration of protein profile and potential molecular mechanism

    Science.gov (United States)

    Feng, Yi; Wan, Mingxi

    2017-03-01

    To analyze the potential mechanism related to the apoptosis induced by low intensity focused ultrasound, comparative proteomic method was introduced in the study. After ultrasound irradiation (3.0 W/cm2, 1 minute, 6 hours incubation post-irradiation), the human SMMC-7721 hepatocarcinoma cells were stained by trypan blue to detect the morphologic changes, and then the percentage of early apoptosis were tested by the flow cytometry with double staining of FITC-labelled Annexin V/Propidium iodide. Two-dimensional SDS polyacrylamide gel electrophoresis was used to get the protein profile and some proteins differently expressed after ultrasound irradiation were identified by MALDI-TOF mass spectrometry. It's proved early apoptosis of cells were induced by low intentisy focused ultrasound. After ultrasound irradiation, the expressing characteristics of several proteins changed, in which protein p53 and heat shock proteins are associated with apoptosis initiation. It is suggested that the low-intensity ultrasound-induced apoptotic cancer therapy has the potential application via understanding its relevant molecular signaling and key proteins. Moreover, the comparative proteomic method is proved to be useful to supply information about the protein expression to analyze the metabolic processes related to bio-effects of biomedical ultrasound.

  17. Induction of heat-shock proteins and phagocytic function of chicken macrophage following in vitro heat exposure

    International Nuclear Information System (INIS)

    Miller, L.; Qureshi, M.A.

    1992-01-01

    The protein profiles and phagocytic ability of Sephadex-elicited chicken peritoneal macrophages were examined following heat-shock exposure. Macrophage cultures were exposed to various temperatures, time exposures and recovery periods. Densitometric analysis of SDS-PAGE autoradiographs revealed that heat-induced macrophages synthesized three major (23, 70 and 90 kD) heat-shock proteins (HSPs). The optimal temperature and time for induction of these HSPs was 45-46 degrees C for 1 h, with a variable recovery period for each HSP. Macrophages exposed to 45 degrees C for 30 and 60 min were significantly depressed in phagocytosis of uncoated sheep erythrocytes (SE) under 45 degrees C incubation conditions. However, phagocytosis of antibody-coated SE was not affected when compared to 41 degrees C control cultures. Macrophages allowed to recover at 41 degrees C following heat-shock exhibited no alterations in their phagocytic ability for either antibody-coated or uncoated SE. This study suggests that heat shock induces three major HSPs in chicken peritoneal macrophages in addition to maintaining their Fc-mediated phagocytic function while significantly depressing their nonspecific phagocytosis

  18. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per

    2014-01-01

    respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping...... and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat...... shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions...

  19. A Rice CaMBP Gene is Induced in Organ-Specific Manner by Both Chilling and Heat-Shock Treatments

    Directory of Open Access Journals (Sweden)

    Jia WAN

    2008-09-01

    Full Text Available A rice CaMBP gene, OsCaMBP (AB363406, was isolated from a chilling treated rice using the fluorescent differential display (FDD screening method. Its cDNA sequence (2094 bp contains an opening reading frame (ORF encoding a 569 amino acids protein (63.2 kD. OsCaMBP has the typical structural features of the CaMBP family, including the conserved IQ calmodulin-binding motif at the N-terminus. Homology analysis revealed 38.25%–47.28% identities of OsCaMBP with other CaMBPs in plants. RT-PCR analysis showed that the expression of OsCaMBP was remarkably inducible under the chilling (8°C and heat-shock (42°C treatments. OsCaMBP was undetectable under the normal conditions, and induced under the chilling treatment for 1 h, as well as the heat-shock treatment for 15 min, suggesting that the gene plays important roles in the signaling pathway in rice under both chilling and heat-shock stresses.

  20. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Treger, J M; McEntee, K

    1999-02-01

    Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression.

  1. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Shen, Hai-Ying; He, Jin-Cai; Wang, Yumei; Huang, Qing-Yuan; Chen, Jiang-Fan

    2005-12-02

    As key molecular chaperone proteins, heat shock proteins (HSPs) represent an important cellular protective mechanism against neuronal cell death in various models of neurological disorders. In this study, we investigated the effect as well as the molecular mechanism of geldanamycin (GA), an inhibitor of Hsp90, on 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a mouse model of Parkinson disease. Neurochemical analysis showed that pretreatment with GA (via intracerebral ventricular injection 24 h prior to MPTP treatment) increased residual dopamine content and tyrosine hydroxylase immunoreactivity in the striatum 24 h after MPTP treatment. To dissect out the molecular mechanism underlying this neuroprotection, we showed that the GA-mediated protection against MPTP was associated with a reduction of cytosolic Hsp90 and an increase in Hsp70, with no significant changes in Hsp40 and Hsp25 levels. Furthermore, in parallel with the induction of Hsp70, striatal nuclear HSF1 levels and HSF1 binding to heat shock element sites in the Hsp70 promoter were significantly enhanced by the GA pretreatment. Together these results suggested that the molecular cascade leading to the induction of Hsp70 is critical to the neuroprotection afforded by GA against MPTP-induced neurotoxicity in the brain and that pharmacological inhibition of Hsp90 may represent a potential therapeutic strategy for Parkinson disease.

  2. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  3. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2014-01-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate......-treated flies. Several hsp70 probe sets were up-regulated 1.7–2-fold in the mildly stressed flies weeks after the last heat treatment (P shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We...... conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life....

  4. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  5. 2'-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression.

    Science.gov (United States)

    Nguyen, Hai-Anh; Kim, Soo-A

    2017-01-01

    BAG3, a member of BAG co-chaperone family, is induced by stressful stimuli such as heat shock and heavy metals. Through interaction with various binding partners, BAG3 is thought to play a role in cellular adaptive responses against stressful conditions in normal and neoplastic cells. 2'-Hydroxycinnamaldehyde (HCA) is a natural derivative of cinnamaldehyde and has antitumor activity in various cancer cells. In the present study, for the first time, we identified that HCA induced BAG3 expression and BAG3-mediated apoptosis in cancer cells. The apoptotic cell death induced by HCA was demonstrated by caspase-7, -9 and PARP activation, and confirmed by Annexin V staining in both SW480 and SW620 colon cancer cells. Notably, both the mRNA and protein levels of BAG3 were largely induced by HCA in a dose- and time-dependent manner. By showing transcription factor HSF1 activation, we demonstrated that HCA induces the expression of BAG3 through HSF1 activation. More importantly, knockdown of BAG3 expression using siRNA largely inhibited HCA-induced apoptosis, suggesting that BAG3 is actively involved in HCA-induced cancer cell death. Considering the importance of the stress response mechanism in cancer progression, our results strongly suggest that BAG3 could be a potential target for anticancer therapy.

  6. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation

    International Nuclear Information System (INIS)

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J.

    2006-01-01

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). α-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and αB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are ∼2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by ∼80% in a culture model while αB-crystallin reduces toxicity by ∼20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model

  7. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein].

    Science.gov (United States)

    Miyakoshi, Junji; Matsubara, Eri; Narita, Eijiro; Koyama, Shin; Shimizu, Yoko; Kawai, Shuichi

    2018-01-01

     In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.

  8. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock

    International Nuclear Information System (INIS)

    Eckey-Kaltenbach, H.; Kiefer, E.; Grosskopf, E.; Ernst, D.; Sandermann, H. Jr

    1997-01-01

    Parsley (Petroselinum (crispum L.) is known to respond to pathogen attack by the synthesis of furanocoumarins and to UV irradiation by the synthesis of flavone glycosides whereas ozone treatment results in the induction of both pathways. A cDNA library from parsley plants was differentially screened using labelled reverse-transcribed poly(A)+ RNA isolated from ozone-treated parsley plants. This resulted in the isolation of 13 independent cDNA clones representing ozone-induced genes and of 11 cDNA clones representing ozone-repressed genes. DNA sequencing of several clones resulted in the identification of pathogenesis-related protein 1-3 (PR1-3), of a new member of PR1 cDNAs (PRI-4) and of a small heat shock protein (sHSP). Northern blot analyses showed a transient induction of the three mRNA species after ozone fumigation. In contrast, heat shock treatment of parsley plants resulted in an increase of sHSP mRNA whereas no increase for transcripts of PR1-3 and PR1-4 could be observed. This is the first characterized sHSP cDNA clone for plants induced by heat shock, as well as by oxidative stress caused by ozone. (author)

  9. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells.

    Science.gov (United States)

    Kim, Young Min; Hwang, Jin-Taek; Kwak, Dong Wook; Lee, Yun Kyung; Park, Ock Jin

    2007-01-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is activated during ATP-depleting metabolic states, such as hypoxia, heat shock, oxidative stress, and exercise. As a highly conserved heterotrimeric kinase that functions as a major metabolic switch to maintain energy homeostasis, AMPK has been shown to exert as an intrinsic regulator of mammalian cell cycle. Moreover, AMPK cascade has emerged as an important pathway implicated in cancer control. In this article, we have investigated the effects of capsaicin on apoptosis in relation to AMPK activation in colon cancer cell. Capsaicin-induced apoptosis was revealed by the presence of nucleobodies in the capsaicin-treated HT-29 colon cancer cells. Concomitantly, the activation of AMPK and the increased expression of the inactive form of acetyl-CoA carboxylase (ACC) were detected in capsaicin-treated colon cancer cells. We showed that both capsaicin and 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an AMPK activator possess the AMPK-activating capacity as well as apoptosis-inducing properties. Evidence of the association between AMPK activation and the increased apoptosis in HT-29 colon cancer cells by capsaicin treatment, and further findings of the correlation of the activated AMPK and the elevated apoptosis by cotreatment of AICAR and capsaicin support AMPK as an important component of apoptosis, as well as a possible target of cancer control.

  10. Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia

    NARCIS (Netherlands)

    Sakabe, Masao; Shiroshita-Takeshita, Akiko; Maguy, Ange; Brundel, Bianca J. J. M.; Fujiki, Akira; Inoue, Hiroshi; Nattel, Stanley

    2008-01-01

    Aims Heat shock proteins (HSPs) are a set of endogenous cytoprotective factors activated by various pathological conditions. This study addressed the effects of geranylgeranylacetone (GGA), an orally active HSP inducer, on the atrial fibrillation (AF) substrate associated with acute atria( ischaemia

  11. A DOUBLE KNOCKOUT; A NOVEL APPROACH TO UNDERSTANDING STRESS-INDUCIBLE 70 KDA HEAT SHOCK PROTEINS (HSP70S) ON DEVELOPMENT AND REPRODUCTION

    Science.gov (United States)

    Heat and chemical toxicants which disrupt spermatogenesis and cause male infertility are thought to induce the expression of Hsp70-1 and 70-3, the major inducible heat shock proteins of the 70kDa family. Previous studies from several laboratories including our own have characteri...

  12. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    International Nuclear Information System (INIS)

    Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylides, C.

    1998-01-01

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  13. Comparison of the heat shock response induced by conventional heating and two methods of delivery of pulsed radiofrequency energy

    International Nuclear Information System (INIS)

    Laurence, J.A.; University of Sydney, NSW; McKenzie, D.R.; Veas, L.; French, P.W.

    2002-01-01

    Full text: In 2001, we published a (hypothetical) mechanism by which radiofrequency (RF) radiation from mobile phones could induce cancer, via the chronic induction of the heat shock response (HSR). This hypothesis provides the focus for our research. Other groups have reported induction of the HSR by RF at apparently non thermal levels. The aim of this study was to determine whether the HSR induced by RF is (a) truly non thermal and (b) quantitatively or qualitatively different from that induced by conventional heating of cells. A rat mast cell line, RBL-2H3, was chosen as the target RBL-2H3 cells were exposed in an air incubator at 41.1 deg C for 45 minutes and 75 minutes, and then returned to a 37 deg C incubator. Sham exposures were performed in the same air incubator at 37 deg C. Cells were exposed for 1 hour in the two pulsed RF exposure systems. The first was a converted 750W microwave oven that emits a short burst of 2.45GHz pulses at the start of each contiguous six minute period. This exposes cells to an average specific energy absorption rate (SAR) of 20W/kg. The second system was a TEM cell, which simulates. GSM pulses - the earner frequency is 0.9GHz pulse modulated at 217Hz. The SAR was approx 0.1W/kg. Both of these exposure systems are housed in incubators maintained at 37 deg C. Sham exposures were performed in the two systems with the same conditions but with no RF radiation present. Cell samples for the conventional heating and microwave exposures were taken 0, 2. 5, 5 and 20 hours after exposure, and expression of heat shock proteins hsp 110, 90, 70, 60 and 56 were determined by Western Blotting and compared between exposures

  14. Hsp105 family proteins suppress staurosporine-induced apoptosis by inhibiting the translocation of Bax to mitochondria in HeLa cells

    International Nuclear Information System (INIS)

    Yamagishi, Nobuyuki; Ishihara, Keiichi; Saito, Youhei; Hatayama, Takumi

    2006-01-01

    Hsp105 (Hsp105α and Hsp105β), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105α has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105α regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105α or Hsp105β by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105α or Hsp105β. In addition, we found that overexpression of Hsp105α or Hsp105β suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105α or Hsp105β. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells

  15. Heat shock factor 1 upregulates transcription of Epstein–Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    International Nuclear Information System (INIS)

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-01-01

    Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the − 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  16. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  17. The pretective effects of heat shock protein 70 on radiation injury of V79 cells

    International Nuclear Information System (INIS)

    Qin Yongchun; Zhang Baoguo; Hong Chengjiao

    2008-01-01

    Westem blot was used to detect the expression of heat shock protein 70 in V79 cells after heat shock pretreatment; V79 cells were irradiated using γ-ray after heat shock pretreatment, survival rate was observed using Colony formation assay. Our study shows that 1) the overexpression of heat shock protein 70 was observed in cells recovering for 1 hour after heat shock pretreatment, with peak expression in cells recovering for 4 hours, and could last for 24 hours; 2) heat shock pretreatment was able to elevate survival rate of V79 cells after irradiation by 60 Co γ ray (when the irradiation dose was less than 6 Gy). The results indicate that heat shock protein 70 has protective effect on radiation induced cell death of V79 cells (when the irradiation dose was less than 6 Gy). (authors)

  18. Recombinant heat shock protein 27 (HSP27/HSPB1) protects against cadmium-induced oxidative stress and toxicity in human cervical cancer cells.

    Science.gov (United States)

    Alvarez-Olmedo, Daiana G; Biaggio, Veronica S; Koumbadinga, Geremy A; Gómez, Nidia N; Shi, Chunhua; Ciocca, Daniel R; Batulan, Zarah; Fanelli, Mariel A; O'Brien, Edward R

    2017-05-01

    Cadmium (Cd) is a carcinogen with several well-described toxicological effects in humans, but its molecular mechanisms are still not fully understood. Overexpression of heat shock protein 27 (HSP27/HSPB1)-a multifunctional protein chaperone-has been shown to protect cells from oxidative damage and apoptosis triggered by Cd exposure. The aims of this work were to investigate the potential use of extracellular recombinant HSP27 to prevent/counteract Cd-induced cellular toxicity and to evaluate if peroxynitrite was involved in the development of Cd-induced toxicity. Here, we report that the harmful effects of Cd correlated with changes in oxidative stress markers: upregulation of reactive oxygen species, reduction in nitric oxide (NO) bioavailability, increment in lipid peroxidation, peroxynitrite (PN), and protein nitration; intracellular HSP27 was reduced. Treatments with Cd (100 μM) for 24 h or with the peroxynitrite donor, SIN-1, decreased HSP27 levels (~50%), suggesting that PN formation is responsible for the reduction of HSP27. Pre-treatments of the cells either with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) (a pharmacological inhibitor of NO synthase) or with recombinant HSP27 (rHSP27) attenuated the disruption of the cellular metabolism induced by Cd, increasing in a 55 and 52%, respectively, the cell viability measured by CCK-8. Cd induced necrotic cell death pathways, although apoptosis was also activated; pre-treatment with L-NAME or rHSP27 mitigated cell death. Our findings show for the first time a direct relationship between Cd-induced toxicity and PN production and a role for rHSP27 as a potential therapeutic agent that may counteract Cd toxicity.

  19. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  20. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    Science.gov (United States)

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic PreconditioningCraig...

  1. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-02-01

    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  2. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation

    International Nuclear Information System (INIS)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan; Han, Sung Koo; Shim, Young-Soo; Yoo, Chul-Gyu

    2005-01-01

    Heat shock (HS) treatment has been previously shown to suppress the IκB/nuclear factor-κB (NF-κB) cascade by denaturing, and thus inactivating IκB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IκB/NF-κB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-α-induced activation of the IκB/NF-κB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-α-induced activation of the IκB/NF-κB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-α-induced IκBα degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IκBα stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IκB/NF-κB cascade by facilitating the renaturation of IKK and blocking its further denaturation

  3. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter.

    Science.gov (United States)

    Kim, Joo Ae; Lee, Somyoung; Kim, Da-Eun; Kim, Moonil; Kwon, Byoung-Mog; Han, Dong Cho

    2015-06-01

    Heat shock factor 1 (HSF1) is a transcription factor for heat shock proteins (HSPs) expression that enhances the survival of cancer cells exposed to various stresses. HSF1 knockout suppresses carcinogen-induced cancer induction in mice. Therefore, HSF1 is a promising therapeutic and chemopreventive target. We performed cell-based screening with a natural compound collection and identified fisetin, a dietary flavonoid, as a HSF1 inhibitor. Fisetin abolished heat shock-induced luciferase activity with an IC50 of 14 μM in HCT-116 cancer cells. The treatment of HCT-116 with fisetin inhibited proliferation with a GI50 of 23 μM. When the cells were exposed to heat shock in the presence of fisetin, the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 (Bcl-2-associated athanogene domain 3), were inhibited. HSP70/BAG3 complexes protect cancer cells from apoptosis by stabilizing anti-apoptotic Bcl-2 family proteins. The downregulation of HSP70/BAG3 by fisetin significantly reduced the amounts of Bcl-2, Bcl-xL and Mcl-1 proteins, subsequently inducing apoptotic cell death. Chromatin immunoprecipitation assays showed that fisetin inhibited HSF1 activity by blocking the binding of HSF1 to the hsp70 promoter. Intraperitoneal treatment of nude mice with fisetin at 30mg/kg resulted in a 35.7% (P < 0.001) inhibition of tumor growth. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  5. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    Science.gov (United States)

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P stress. In contrast, serum malonaldehyde concentrations were decreased (P stress also reduced (P stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.

  6. Examination the expression pattern of HSP70 heat shock protein in chicken PGCs and developing genital ridge

    Directory of Open Access Journals (Sweden)

    Mahek Anand

    2016-05-01

    Full Text Available Chicken Primordial Germ cells (PGCs are emerging pioneers in the field of applied embryology and stem cell technology. Now-a-days transgenic chickens are promising models to study human disease pathophysiology and drug designing. However, most of the molecular mechanism, which govern the stemness and pluripotency of chicken PGCs, not known in details. Recent studies have indicated the role of HSP70 in early embryonic development in many vertebrate species. Exposure of chicken to heat stress result in activation of heat shock factors which activate the transcription of HSP70. Exposure chicken eggs to acute heat stress effects HSP70 expression in PGCs and gonads. HSP70 helps in maintaining the integrity of chicken PGCs. A new emerging role of HSP70 in apoptosis has emerged. In our lab, we aim to characterize the expression of cHsp70 in chicken PGCs and gonads during embryonic development by subjecting the parents to acute levels of heat stress. Chickens whose parents subjected to heat stress showed varied expression of cHsp70 and also improved thermo tolerance. In the future we plan to study other factors and miRNAs, which is characterized as an emerging player in regulating heat shock protein response in chicken and also plays an important role in apoptosis.

  7. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  8. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  9. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  10. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    Science.gov (United States)

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Science.gov (United States)

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  12. Racemization of Valine by Impact-Induced Heating

    Science.gov (United States)

    Furukawa, Yoshihiro; Takase, Atsushi; Sekine, Toshimori; Kakegawa, Takeshi; Kobayashi, Takamichi

    2018-03-01

    Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3). With a shock wave generated by an impact at 0.8 km/s, both d- and l-enriched valine were significantly decomposed and partially racemized under all experimental conditions. Different minerals had different shock impedances; therefore, they provided different P-T conditions for identical impacts. Furthermore, the high pH of calcite promoted the racemization of valine. The results indicate that in natural hypervelocity impacts, amino acids in shocked oceanic water would have decomposed completely, since impact velocity and the duration of shock compression and heating are typically greater in hypervelocity impact events than those in experiments. Even with the shock wave by the impact of small and decelerated projectiles in which amino acids survive, the shock heating may generate sufficient heat for significant racemization in shocked oceanic water. However, the duration of shock induced heating by small projectiles is limited and the population of such decelerated projectiles would be limited. Therefore, even though impacts of asteroids and meteorites were frequent on the prebiotic Earth, impact events would not have significantly changed the ee of proteinogenic amino acids accumulated in the entire ocean.

  13. Stress proteins in lymphocytes: Membrane stabilization does not affect the heat shock response

    International Nuclear Information System (INIS)

    Hughes, C.S.; Repasky, E.A.; Subjeck, J.R.

    1987-01-01

    Temperatures which have been used to induce heat shock proteins (hsps) have been at the upper physiologic limit or well above this limit. In addition, little attention has been given to the effects of physiologic heat exposures on hsp induction in lymphocytes. The author examined temperatures between 39 0 C and 41 0 C on protein synthesis in the following lymphoid cell lines and cells: BDK, EL-4, JM, DO.11, and in dispersed lymph nodes and thymic tissues. In these studies, 39.5 0 appears to be the threshold for hsp induction (as distinguished by gel electrophoresis). At this temperature the induction of the major hsps at 70 and 89 kDa are observed. Hsp 89 appears to be the most strongly induced in all cells examined. In JM cells, a human cell line, heat shock also induces hsp 68, the non-constitutive hsp at this size. These temperatures do not depress normal levels of protein synthesis. When stearic acid or cholesterol was added to lymphocyte cultures prior to heating (which stabilize membranes), hsp induction appears to occur in a manner indistinguishable from cells heated in normal media. This suggests that membrane fluidity (as influenced by these agents) does not affect or depress the heat shock response in these cells. Finally, the authors observed that 2-deoxyglucose and other inducers of glucose regulated proteins in fibroblasts also induce the major glucose regulated proteins in lymphocytes

  14. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    Science.gov (United States)

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  15. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Liu, Chia-Chia; Wang, John; Shyue, Song-Kun; Sung, Li-Ying; Liou, Jun-Yang; Jan, Yee-Jee; Ko, Bor-Sheng; Wu, Yao-Ming; Liang, Shu-Man; Chen, Shyh-Chang; Lee, Yen-Ming; Liu, Tzu-An; Chang, Tzu-Ching

    2014-01-01

    14-3-3σ is implicated in promoting tumor development of various malignancies. However, the clinical relevance of 14-3-3σ in hepatocellular carcinoma (HCC) tumor progression and modulation and pathway elucidation remain unclear. We investigated 14-3-3σ expression in 109 HCC tissues by immunohistochemistry. Overexpression and knockdown experiments were performed by transfection with cDNA or siRNA. Protein expression and cell migration were determined by Western blot and Boyden chamber assay. In this study, we found that 14-3-3σ is abundantly expressed in HCC tumors. Stable or transient overexpression of 14-3-3σ induces the expression of heat shock factor-1α (HSF-1α) and heat shock protein 70 (HSP70) in HCC cells. Moreover, expression of 14-3-3σ significantly correlates with HSF-1α/HSP70 in HCC tumors and both 14-3-3σ and HSP70 overexpression are associated with micro-vascular thrombi in HCC patients, suggesting that 14-3-3σ/HSP70 expression is potentially involved in cell migration/invasion. Results of an in vitro migration assay indicate that 14-3-3σ promotes cell migration and that 14-3-3σ-induced cell migration is impaired by siRNA knockdown of HSP70. Finally, 14-3-3σ-induced HSF-1α/HSP70 expression is abolished by the knockdown of β-catenin or activation of GSK-3β. Our findings indicate that 14-3-3σ participates in promoting HCC cell migration and tumor development via β-catenin/HSF-1α/HSP70 pathway regulation. Thus, 14-3-3σ alone or combined with HSP70 are potential prognostic biomarkers for HCC

  16. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  17. Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective

    Directory of Open Access Journals (Sweden)

    Stefania Bellini

    2017-12-01

    Full Text Available Heat shock proteins (HSPs are a large family of proteins highly conserved throughout evolution because of their unique cytoprotective properties. Besides assisting protein refolding and regulating proteostasis under stressful conditions, HSPs also play an important role in protecting cells from oxidative stress, inflammation, and apoptosis. Therefore, HSPs are crucial in counteracting the deleterious effects of hyperglycemia in target organs of diabetes vascular complications. Changes in HSP expression have been demonstrated in diabetic complications and functionally related to hyperglycemia-induced cell injury. Moreover, associations between diabetic complications and altered circulating levels of both HSPs and anti-HSPs have been shown in clinical studies. HSPs thus represent an exciting therapeutic opportunity and might also be valuable as clinical biomarkers. However, this field of research is still in its infancy and further studies in both experimental diabetes and humans are required to gain a full understanding of HSP relevance. In this review, we summarize current knowledge and discuss future perspective.

  18. A family of related proteins is encoded by the major Drosophila heat shock gene family

    International Nuclear Information System (INIS)

    Wadsworth, S.C.

    1982-01-01

    At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites

  19. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  20. Thermotolerance, oxidative stress, apoptosis, heat-shock proteins and damages to reproductive cells of insecticide-susceptible and -resistant strains of the diamondback moth Plutella xylostella.

    Science.gov (United States)

    Zhang, L J; Chen, J L; Yang, B L; Kong, X G; Bourguet, D; Wu, G

    2017-08-01

    In this study, we investigated thermotolerance, several physiological responses and damage to reproductive cells in chlorpyrifos-resistant (Rc) and -susceptible (Sm) strains of the diamondback moth, Plutella xylostella subjected to heat stress. The chlorpyrifos resistance of these strains was mediated by a modified acetylcholinesterase encoded by an allele, ace1R, of the ace1 gene. Adults of the Rc strain were less heat resistant than those of the Sm strain; they also had lower levels of enzymatic activity against oxidative damage, higher reactive oxygen species contents, weaker upregulation of two heat shock protein (hsp) genes (hsp69s and hsp20), and stronger upregulation of two apoptotic genes (caspase-7 and -9). The damage to sperm and ovary cells was greater in Rc adults than in Sm adults and was temperature sensitive. The lower fitness of the resistant strain, compared with the susceptible strain, is probably due to higher levels of oxidative stress and apoptosis, which also have deleterious effects on several life history traits. The greater injury observed in conditions of heat stress may be due to both the stronger upregulation of caspase genes and weaker upregulation of hsp genes in resistant than in susceptible individuals.

  1. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60.

    Science.gov (United States)

    Lu, Ming-Chi; Yu, Chia-Li; Yu, Hui-Chun; Huang, Hsien-Bin; Koo, Malcolm; Lai, Ning-Sheng

    2016-01-01

    We hypothesized that anti-citrullinated protein antibodies (ACPAs) react with osteoblast surface citrullinated proteins and affect cell function, leading to joint damage in patients with rheumatoid arthritis (RA). First, we purified ACPAs by cyclic citrullinated peptide (CCP)-conjugated affinity column chromatography. The cognate antigens of ACPAs on Saos-2 cells, a sarcoma osteogenic cell line generated from human osteoblasts, were probed by ACPAs, and the reactive bands were analyzed using proteomic analyses. We found that ACPAs bind to Saos-2 cell membrane, and several protein candidates, including HSP60, were identified. We then cloned and purified recombinant heat shock protein 60 (HSP60) and citrullinated HSP60 (citHSP60) and investigated the effect of ACPAs on Saos-2 cell. We confirmed that HSP60 obtained from Saos-2 cell membrane were citrullinated and reacted with ACPAs, which induces Saos-2 cells apoptosis via binding to surface-expressed citHSP60 through Toll-like receptor 4 signaling. ACPAs promoted interleukin (IL)-6 and IL-8 expression in Saos-2 cells. Finally, sera from patients with RA and healthy controls were examined for their titers of anti-HSP60 and anti-citHSP60 antibodies using an enzyme-linked immunosorbent assay. The radiographic change in patients with RA was evaluated using the Genant-modified Sharp scoring system. Patients with RA showed higher sera titers of anti-citHSP60, but not anti-HSP60, antibodies when compared with controls. In addition, the anti-citHSP60 level was positively associated with increased joint damage in patients with RA. In conclusion, Saos-2 cell apoptosis was mediated by ACPAs via binding to cell surface-expressed citHSP60 and the titer of anti-citHSP60 in patients with RA positively associated with joint damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    Science.gov (United States)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  3. Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Lassmann, Hans; Johansen, Flemming Fryd

    2007-01-01

    Several anti-apoptotic proteins are induced in CA1 neurons after transient forebrain ischemia (TFI), but fail to protect the majority of these cells from demise. Correlating cell death morphologies (apoptosis-like and necrosis-like death) with immunohistochemistry (IHC), we investigated whether...... anti-apoptosis contributes to survival, compromises apoptosis effector functions and/or delays death in CA1 neurons 1-7 days after TFI. As surrogate markers for bioenergetic failure, the IHC of respiratory chain complex (RCC) subunits was investigated. Dentate granule cell (DGC) apoptosis following...... colchicine injection severed as a reference for classical apoptosis. Heat shock protein 70 (Hsp70), neuronal apoptosis inhibitory protein (NAIP) and manganese superoxide dismutase (MnSOD) were upregulated in the majority of intact CA1 neurons paralleling the occurrence of CA1 neuronal death (days 3...

  4. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  5. Identification of proteins whose synthesis in Saccharomyces cerevisiae is induced by DNA damage and heat shock

    International Nuclear Information System (INIS)

    Gailit, James

    1990-01-01

    Protein synthesis in Saccharomyces cerevisiae after exposure to ultraviolet light (UV) was examined by two-dimensional gel electrophoresis of pulse-labelled proteins. The synthesis of 12 distinct proteins was induced by treatment with UV doses of 10-200 J/m 2 . The induced proteins differed in minimum dose necessary for induction, maximum dose at which induction still occurred and constitutive level present in unirradiated cells. A chemical mutagen, 4-nitroquinoline-1-oxide, induced synthesis of the same proteins. Induction after UV treatment was observed in seven different yeast strains, including three mutants deficient in DNA repair. Synthesis of five of the proteins was also induced by brief heat shock treatment. These five may be members of a family of proteins whose synthesis is regulated by two different pathways responding to different types of stress. (author)

  6. Initial crystallographic studies of a small heat-shock protein from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Tada, Susely F. S.; Saraiva, Antonio Marcos; Lorite, Gabriela S.; Rosselli-Murai, Luciana K.; Pelloso, Alexandre César; Santos, Marcelo Leite dos; Trivella, Daniela B. B.; Cotta, Mônica A.; Souza, Anete Pereira de; Aparicio, Ricardo

    2012-01-01

    Initial crystallographic studies of the X. fastidiosa small heat-shock protein HSP17.9 are reported. The ORF XF2234 in the Xylella fastidiosa genome was identified as encoding a small heat-shock protein of 17.9 kDa (HSP17.9). HSP17.9 was found as one of the proteins that are induced during X. fastidiosa proliferation and infection in citrus culture. Recombinant HSP17.9 was crystallized and surface atomic force microscopy experiments were conducted with the aim of better characterizing the HSP17.9 crystals. X-ray diffraction data were collected at 2.7 Å resolution. The crystal belonged to space group P4 3 22, with unit-cell parameters a = 68.90, b = 68.90, c = 72.51 Å, and is the first small heat-shock protein to crystallize in this space group

  7. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    Science.gov (United States)

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  8. Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sørensen, J G; Kristensen, Torsten Nygård; Kristensen, K V

    2007-01-01

    In insects mild heat stress early in life has been reported to increase life span and heat resistance later in life, a phenomenon termed hormesis. Here, we test if the induction of the heat shock response by mild heat stress is mediating hormesis in longevity and heat resistance at older age...... line, seemingly mediated by the production of heat shock proteins (Hsps). The results indicate that heat inducible Hsps are important for heat induced hormesis in longevity and heat stress resistance. However, the results also suggest that other processes are involved and that different mechanisms...... might have marked sex specific impact...

  9. Heat shock protein 27 phosphorylation state is associated with cancer progression

    Directory of Open Access Journals (Sweden)

    Maria eKatsogiannou

    2014-10-01

    Full Text Available Understanding the mechanisms that control stress-induced survival is critical to explain how tumors frequently resist to treatment and to improve current anti-cancer therapies. Cancer cells are able to cope with stress and escape drug toxicity by regulating heat shock proteins (Hsps expression and function. Hsp27 (HSPB1, a member of the small Hsp family, represents one of the key players of many signaling pathways contributing to tumorigenicity, treatment resistance and apoptosis inhibition. Hsp27 is overexpressed in many types of cancer and its functions are regulated by post-translational modifications, such as phosphorylation. Protein phosphorylation is the most widespread signaling mechanism in eukaryotic cells, and it is involved in all fundamental cellular processes. Aberrant phosphorylation of Hsp27 has been associated with several diseases such as cancer but the molecular mechanisms by which it is implicated in cancer development and progression remain undefined. This review focuses on the role of phosphorylation in Hsp27 functions in cancer cells and its potential usefulness as therapeutic target in cancer.

  10. Heat shock and salicylic acid on postharvest preservation of organic strawberries

    Directory of Open Access Journals (Sweden)

    Sidiane Coltro

    2014-06-01

    Full Text Available Heat shock and salicylic acid have been studied on shelf-life extension of fruits. The benefits of these techniques have been related to their effect on inducing physiological defense responses against the oxidative stress and pathogen development. The objective of this study was to evaluate the effect of heat shock and salicylic acid on the postharvest preservation and contents of total phenolics, anthocyanins, ascorbic acid, fresh weight loss and microbiological quality of organic strawberries cv. Dover. Strawberries produced organically and stored at 5 ºC were subjected to heat shock (45 ºC ± 3 ºC for 3 h, application of salicylic acid (soaking in 2.0 mmol L-1 solution, heat shock in combination with salicylic acid and control. After treatment, the fruits were packed and stored in a climatic chamber at 5 ºC ± 2 ºC. At 1, 7 and 14 days, the experimental units were removed from refrigeration and kept at room temperature of approximately 20 ºC for two days. There was no effect of treatments on fresh weight loss, incidence of pathogens or chemical variations in strawberry fruits during the storage period. In natural conditions, organically grown strawberries remained in good condition for sale up to seven days of storage in all treatments.

  11. Detection of irradiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors using Hsp70 Fab fragment

    International Nuclear Information System (INIS)

    Stangl, Stefan; Themelis, George; Friedrich, Lars; Ntziachristos, Vasilis; Sarantopoulos, Athanasios; Molls, Michael; Skerra, Arne; Multhoff, Gabriele

    2011-01-01

    Background and purpose: The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in highly aggressive tumors, and elevated intracellular Hsp70 levels mediate protection against apoptosis. Following therapeutic intervention, such as ionizing irradiation, translocation of cytosolic Hsp70 to the plasma membrane is selectively increased in tumor cells and therefore, membrane Hsp70 might serve as a therapy-inducible, tumor-specific target structure. Materials and methods: Based on the IgG1 mouse monoclonal antibody (mAb) cmHsp70.1, we produced the Hsp70-specific recombinant Fab fragment (Hsp70 Fab), as an imaging tool for the detection of membrane Hsp70 positive tumor cells in vitro and in vivo. Results: The binding characteristics of Hsp70 Fab towards mouse colon (CT26) and pancreatic (1048) carcinoma cells at 4 deg. C were comparable to that of cmHsp70.1 mAb, as determined by flow cytometry. Following a temperature shift to 37 deg. C, Hsp70 Fab rapidly translocates into subcellular vesicles of mouse tumor cells. Furthermore, in tumor-bearing mice Cy5.5-conjugated Hsp70 Fab, but not unrelated IN-1 control Fab fragment (IN-1 ctrl Fab), gradually accumulates in CT26 tumors between 12 and 55 h after i.v. injection. Conclusions: In summary, the Hsp70 Fab provides an innovative, low immunogenic tool for imaging of membrane Hsp70 positive tumors, in vivo.

  12. Heat-Induced Changes in Heat Shock Protein Genes Expression in Crossbred and Baladi Pregnant Cows and Their Offspring

    International Nuclear Information System (INIS)

    Khalil, W.K.B.; Nessim, M.Z.; El- Masry, K.A.

    2010-01-01

    The experiment was carried out during August (hot climate) on twelve pregnant cows of six crossbred (50% native Baladi and 50% Brown Swiss) and six native Baladi pregnant cows in the same age and the second parity during their mid-pregnancy as detected by rectal palpation. The experiment was repeated during December (mild climate) on similar twelve pregnant cows. Blood sample was obtained from each cow at the end of August (first group) and at the end of December (second group) to obtain heat shock protein genes expression (HSP72, HSP70.01, HSP70, HSP47, k Dalton and Actin) in pregnant cows under mild and hot climate to find out, which breed is more tolerant to heat stress and to estimate offspring birth weight and their growth performances during suckling period. Comparison was made between hot climate cows group and mild climate cows group to estimate heat- induced changes in both breeds in expression level of the Hsp genes and to compare with their neonate birth weight and growth performances during suckling period. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp 47) was higher (p<0.01) in hot season compared to that of mild season. Expression level of the Hsp genes (Hsp70.1, Hsp70 and Hsp 47) was higher (p<0.05) in crossbred cows than in Baldi cows under summer hot season. This indicates that crossbred cows are less heat tolerant than Baladi cows under heat stress climate. Heat induced decrease (p<0.01) in offspring birth weight in Baladi and crossbred by 18.1% and 25%, respectively, in weaning weight by 14.61% and 23.14%, respectively and in body weight gain by 14.61% and 21.18%, respectively

  13. Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy.

    Science.gov (United States)

    Zhou, Jian-da; Luo, Cheng-qun; Xie, Hui-qing; Nie, Xin-min; Zhao, Yan-zhong; Wang, Shao-hua; Xu, Yi; Pokharel, Pashupati Babu; Xu, Dan

    2008-07-20

    Chronic dermal ulcers are also referred to as refractory ulcers. This study was conducted to elucidate the therapeutic effect of laser on chronic dermal ulcers and the induced expression of heat shock factor 1 (HSF1) and heat shock protein 70 (HSP70) in wound tissues. Sixty patients with 84 chronic dermal ulcers were randomly divided into traditional therapy and laser therapy groups. Laser treatment was performed in addition to traditional therapy in the laser therapy group. The treatment efficacy was evaluated after three weeks. Five tissue sections of healing wounds were randomly collected along with five normal skin sections as controls. HSP70-positive cells from HSP70 immunohistochemical staining were counted and the gray scale of positive cells was measured for statistical analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the mRNA and protein expressions of HSF1 and HSP70. The cure rate of the wounds and the total efficacy in the laser therapy group were significantly higher than those in the traditional therapy group (P ulcers plays a facilitating role in healing due to the mechanism of laser-activated endogenous heat shock protection in cells in wound surfaces.

  14. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  15. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    Science.gov (United States)

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  16. UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures.

    Science.gov (United States)

    Chen, Szu-Jung; Lin, Pei-Wen; Lin, Hsin-Ping; Huang, Shenq-Shyang; Lai, Feng-Jie; Sheu, Hamm-Ming; Hsu, Li-Jin; Chang, Nan-Shan

    2015-04-10

    When COS7 fibroblasts and other cells were exposed to UVC irradiation and cold shock at 4°C for 5 min, rapid upregulation and nuclear accumulation of NOS2, p53, WWOX, and TRAF2 occurred in 10-30 min. By time-lapse microscopy, an enlarging gas bubble containing nitric oxide (NO) was formed in the nucleus in each cell that finally popped out to cause "bubbling death". Bubbling occurred effectively at 4 and 22°C, whereas DNA fragmentation was markedly blocked at 4°C. When temperature was increased to 37°C, bubbling was retarded and DNA fragmentation occurred in 1 hr, suggesting that bubbling death is switched to apoptosis with increasing temperatures. Bubbling occurred prior to nuclear uptake of propidium iodide and DAPI stains. Arginine analog Nω-LAME inhibited NO synthase NOS2 and significantly suppressed the bubbling death. Unlike apoptosis, there were no caspase activation and flip-over of membrane phosphatidylserine (PS) during bubbling death. Bubbling death was significantly retarded in Wwox knockout MEF cells, as well as in cells overexpressing TRAF2 and dominant-negative p53. Together, UV/cold shock induces bubbling death at 4°C and the event is switched to apoptosis at 37°C. Presumably, proapoptotic WWOX and p53 block the protective TRAF2 to execute the bubbling death.

  17. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  18. Acute Heat Stress Changes Protein Expression in the Testes of a Broiler-Type Strain of Taiwan Country Chickens.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chan, Hong-Lin; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2018-03-19

    Heat stress leads to decreased fertility in roosters. This study investigated the global protein expression in response to acute heat stress in the testes of a broiler-type strain of Taiwan country chickens (TCCs). Twelve 45-week-old roosters were randomly allocated to the control group maintained at 25°C, and three groups subjected to acute heat stress at 38°C for 4 h, with 0, 2, and 6 h of recovery, respectively. Testis samples were collected for hematoxylin and eosin staining, apoptosis assay, and protein analysis. The results revealed 101 protein spots that differed significantly from the control following exposure to acute heat stress. The proteins that were differentially expressed participated mainly in protein metabolism and other metabolic processes, responses to stimuli, apoptosis, cellular organization, and spermatogenesis. Proteins that negatively regulate apoptosis were downregulated and proteins involved in autophagy and major heat shock proteins (HSP90α, HSPA5, and HSPA8) were upregulated in the testes of heat-stressed chickens. In conclusion, acute heat stress causes a change in protein expression in the testes of broiler-type B strain TCCs and may thus impair cell morphology, spermatogenesis, and apoptosis. The expression of heat shock proteins increased to attenuate the testicular injury induced by acute heat stress.

  19. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  20. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  1. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    Science.gov (United States)

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  2. Cold Shock Induced Protein RBM3 but Not Mild Hypothermia Protects Human SH-SY5Y Neuroblastoma Cells From MPP+-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hai-Jie Yang

    2018-05-01

    Full Text Available The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD, the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+ served as an in-vitro model of PD. Mild hypothermia (32°C aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C. In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.

  3. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  4. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Bergen en Henegouwen, P.M.P. van; Linnemans, W.A.M.

    The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce

  5. Glutamine's protection against cellular injury is dependent on heat shock factor-1.

    Science.gov (United States)

    Morrison, Angela L; Dinges, Martin; Singleton, Kristen D; Odoms, Kelli; Wong, Hector R; Wischmeyer, Paul E

    2006-06-01

    Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1(+/+)) and knockout (HSF-1(-/-)) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1(+/+) cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1(-/-) cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1(-/-) cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.

  6. Structure of fast shocks in the presence of heat conduction

    International Nuclear Information System (INIS)

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-01-01

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V d in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K 0 , the ratio of upstream plasma pressure to magnetic pressure β 1 , Alfven Mach number M A1 , and the angle θ 1 between shock normal and magnetic field. It is found that as the upstream shock parameters K 0 , β 1 , and M A1 increase or θ 1 decreases, the width of foreshock L d increases. The present results can be applied to fast shocks in the solar corona, solar wind, and magnetosphere, in which the heat conduction effects are

  7. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat shock protein 90 (HSP90 inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70 family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  8. Suppression of heat shock protein 70 by siRNA enhances the antitumor effects of cisplatin in cultured human osteosarcoma cells.

    Science.gov (United States)

    Mori, Yuki; Terauchi, Ryu; Shirai, Toshiharu; Tsuchida, Shinji; Mizoshiri, Naoki; Arai, Yuji; Kishida, Tsunao; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2017-09-01

    Although advances in chemotherapy have improved the prognosis for osteosarcoma, some patients do not respond sufficiently to treatment. Heat shock protein 70 (Hsp70) is expressed at high levels in cancer cells and attenuates the therapeutic efficacy of anticancer agents, resulting in a poorer prognosis. This study investigated whether small interfering RNA (siRNA)-mediated inhibition of Hsp70 expression in an osteosarcoma cell line would enhance sensitivity to cisplatin. The expression of Hsp70 with cisplatin treatment was observed by using Western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR). Changes in the IC 50 of cisplatin when Hsp70 was inhibited by siRNA were evaluated. Cisplatin's effectiveness in inducing apoptosis was assessed by assay of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), caspase-3 activity, and mitochondrial membrane potential. Up-regulation of Hsp70 expression was dependent on the concentration of cisplatin. Inhibition of Hsp70 expression significantly reduced the IC 50 of cisplatin. When cisplatin was added to osteosarcoma cells with Hsp70 expression inhibited, a significant increase in apoptosis was demonstrated in TUNEL, caspase-3, and mitochondrial membrane potential assays. Inhibition of Hsp70 expression induced apoptosis in cultured osteosarcoma cells, indicating that Hsp70 inhibition enhanced sensitivity to cisplatin. Inhibition of Hsp70 expression may provide a new adjuvant therapy for osteosarcoma.

  9. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  10. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  11. Supplementary heat-killed Lactobacillus reuteri GMNL-263 ameliorates hyperlipidaemic and cardiac apoptosis in high-fat diet-fed hamsters to maintain cardiovascular function.

    Science.gov (United States)

    Ting, Wei-Jen; Kuo, Wei-Wen; Kuo, Chia-Hua; Yeh, Yu-Lan; Shen, Chia-Yao; Chen, Ya-Hui; Ho, Tsung-Jung; Viswanadha, Vijaya Padma; Chen, Yi-Hsing; Huang, Chih-Yang

    2015-09-14

    Obesity and hyperlipidaemia increase the risk of CVD. Some strains of probiotics have been suggested to have potential applications in cardiovascular health by lowering serum LDL-cholesterol. In this work, high-fat diet-induced hyperlipidaemia in hamsters was treated with different doses (5×108 and 2·5×109 cells/kg per d) of heat-killed Lactobacillus reuteri GMNL-263 (Lr263) by oral gavage for 8 weeks. The serum lipid profile analysis showed that LDL-cholesterol and plasma malondialdehyde (P-MDA) were reduced in the GMNL-263 5×108 cells/kg per d treatment group. Total cholesterol and P-MDA were reduced in the GMNL-263 2·5×109 cells/kg per d treatment group. In terms of heart function, the GMNL-263 2·5×109 cells/kg per d treatments improved the ejection fraction from 85·71 to 91·81 % and fractional shortening from 46·93 to 57·92 % in the high-fat diet-fed hamster hearts. Moreover, the GMNL-263-treated, high-fat diet-fed hamster hearts exhibited reduced Fas-induced myocardial apoptosis and a reactivated IGF1R/PI3K/Akt cell survival pathway. Interestingly, the GMNL-263 treatments also enhanced the heat-shock protein 27 expression in a dose-dependent manner, but the mechanism for this increase remains unclear. In conclusion, supplementary heat-killed L. reuteri GMNL-263 can slightly reduce serum cholesterol. The anti-hyperlipidaemia effects of GMNL-263 may reactivate the IGF1R/PI3K/Akt cell survival pathway and reduce Fas-induced myocardial apoptosis in high-fat diet-fed hamster hearts.

  12. Small heat shock proteins can release light dependence of tobacco seed during germination.

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR.

    Science.gov (United States)

    Kraynik, Stephen M; Gabanic, Andrew; Anthony, Sarah R; Kelley, Melissa; Paulding, Waltke R; Roessler, Anne; McGuinness, Michael; Tranter, Michael

    2015-06-01

    Heat shock protein 70.3 (Hsp70.3) expression increases in response to cellular stress and plays a cytoprotective role. We have previously shown that Hsp70.3 expression is controlled through coordinated post-transcriptional regulation by miRNAs and alternative polyadenylation (APA), and APA-mediated shortening of the Hsp70.3 3'-UTR facilitates increased protein expression. A stress-induced increase in Hsp70.3 mRNA and protein expression is accompanied by alternative polyadenylation (APA)-mediated truncation of the 3'UTR of the Hsp70.3 mRNA transcript. However, the role that APA plays in stress-induced expression of Hsp70.3 remains unclear. Our results show that APA-mediated truncation of the Hsp70.3 3'UTR increases protein expression through enhanced polyribosome loading. Additionally, we demonstrate that the RNA binding protein HuR, which has been previously shown to play a role in mediating APA, is necessary for heat shock mediated increase in Hsp70.3 mRNA and protein. However, it is somewhat surprising to note that HuR does not play a role in APA of the Hsp70.3 mRNA, and these two regulatory events appear to be mutually exclusive regulators of Hsp70.3 expression. These results not only provide important insight to the regulation of stress response genes following heat shock, but also contribute an enhanced understanding of how alternative polyadenylation contributes to gene regulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel.

    Science.gov (United States)

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren; Altier, Christophe

    2016-01-01

    Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function

  15. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Energy Technology Data Exchange (ETDEWEB)

    Zorzi, Elisa [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Bonvini, Paolo, E-mail: paolo.bonvini@unipd.it [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza (Italy)

    2011-10-21

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.

  16. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Science.gov (United States)

    Zorzi, Elisa; Bonvini, Paolo

    2011-01-01

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells. PMID:24213118

  17. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt

    OpenAIRE

    Yang, X; Fraser, M; Abedini, M R; Bai, T; Tsang, B K

    2008-01-01

    Cisplatin is a first-line chemotherapeutic for ovarian cancer, although chemoresistance limits treatment success. Apoptosis, an important determinant of cisplatin sensitivity, occurs via caspase-dependent and -independent mechanisms. Activation of the protein kinase Akt, commonly observed in ovarian tumours, confers resistance to ovarian cancer cells via inhibition of caspase-dependent apoptosis. However, the effect of Akt on cisplatin-induced, caspase-independent apoptosis remains unclear. W...

  18. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    Science.gov (United States)

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  19. Effect of Geranylgeranylacetone on Ultraviolet Radiation Type B-Induced Cataract in Heat-Shock Transcription Factor 1 Heterozygous Mouse.

    Science.gov (United States)

    Ogasawara, Satoshi; Hashizume, Kouhei; Okuno, Takashi; Imaizumi, Toshiyasu; Inomata, Yui; Tezuka, Yu; Sanbe, Atushi; Kurosaka, Daijiro

    2017-05-01

    We investigated whether heat-shock transcription factor 1 (HSF1) was involved in ultraviolet radiation type B (UVR-B)-induced lens opacity (cataract) using HSF1 heterozygous mice. We also examined the effects of geranylgeranylacetone (GGA), an inducer of heat-shock proteins via activation of HSF, on the UVR-B-induced cataract. Male HSF1 +/- and WT mice were unilaterally exposed to UVR-B (total: 1200mJ) at 16 weeks of age. At 48 h after the last UVR-B irradiation, the lens was isolated and the induction of the cataract was quantified as the cataract area ratio (opacity area/anterior capsule). GGA was orally administered at a dosage of 500 mg/kg once a day for two days before the first UVR-B exposure until the end of the experiment (21days in total). The HSF1 expression was more greatly decreased in the lens from HSF1 +/- mice than in that from WT mice (p B exposure could mainly induce cataracts in the anterior capsule in both HSF1 +/- and WT mice, while the opacity of the lens was markedly enhanced in HSF 1+/- mice compared to that in WT mice(p (0.01). GGA treatment could prevent the induction of lens opacity by UVR-B exposure in both WT and HSF1 +/- mice as compared with the non-administration group (p B radiation was seen in lens protein levels of αA-crystallin, αB-crystallin, or γ-crystallin with or without GGA administration among all groups of mice. In contrast to the crystallins, the lens protein level of HSP25 was decreased by UVR-B exposure in both HSF1 +/- and WT mice, and was significantly recovered in WT mice by the GGA treatment (p B-induced cataracts, possibly via regulation of HSPs such as HSP25.

  20. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.

    Directory of Open Access Journals (Sweden)

    Roelien A M Meijering

    Full Text Available The heat shock response (HSR is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1, which binds to conserved heat shock elements (HSE in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP. Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli.Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress.These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.

  1. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  2. Monitoring the Induction of Heat Shock Factor 1/Heat Shock Protein 70 Expression following 17-Allylamino-Demethoxygeldanamycin Treatment by Positron Emission Tomography and Optical Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Mikhail Doubrovin

    2012-01-01

    Full Text Available The cell response to proteotoxic cell stresses is mediated primarily through activation of heat shock factor 1 (HSF1. This transcription factor plays a major role in the regulation of the heat shock proteins (HSPs, including HSP70. We demonstrate that an [124I]iodide-pQHNIG70 positron emission tomography (PET reporter system that includes an inducible HSP70 promoter can be used to image and monitor the activation of the HSF1/HSP70 transcription factor in response to drug treatment (17-allylamino-demethoxygeldanamycin [17-AAG]. We developed a dual imaging reporter (pQHNIG70 for noninvasive imaging of the heat shock response in cell culture and living animals previously and now study HSF1/HSP70 reporter activation in both cell culture and tumor-bearing animals following exposure to 17-AAG. 17-AAG (10–1,000 nM induced reporter expression; a 23-fold increase was observed by 60 hours. Good correspondence between reporter expression and HSP70 protein levels were observed. MicroPET imaging based on [124I]iodide accumulation in pQHNIG70-transduced RG2 xenografts showed a significant 6.2-fold reporter response to 17-AAG, with a corresponding increase in tumor HSP70 and in tumor human sodium iodide symporter and green fluorescent protein reporter proteins. The HSF1 reporter system can be used to screen anticancer drugs for induction of cytotoxic stress and HSF1 activation both in vitro and in vivo.

  3. Involvement of apoptosis in host-parasite interactions in the zebra mussel.

    Directory of Open Access Journals (Sweden)

    Laëtitia Minguez

    Full Text Available The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.

  4. Involvement of Apoptosis in Host-Parasite Interactions in the Zebra Mussel

    Science.gov (United States)

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  5. Heat shock protein 90 inhibitor enhances apoptosis by inhibiting the AKT pathway in thermal-stimulated SK-MEL-2 human melanoma cell line.

    Science.gov (United States)

    Shin, Min Kyung; Jeong, Ki-Heon; Choi, Hyeongwon; Ahn, Hye-Jin; Lee, Mu-Hyoung

    2018-02-08

    Heat shock proteins (Hsps) are chaperone proteins, which are upregulated after various stresses. Hsp90 inhibitors have been investigated as adjuvant therapies for the treatment of melanoma. Thermal ablation could be a treatment option for surgically unresectable melanoma or congenital nevomelanocytic nevi, however, there is a limitation such as the possibility of recurrence. We evaluated apoptosis in a melanoma cell line treated with the Hsp90 inhibitor 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in hyperthermic conditions. SK-MEL-2 cells were stimulated at 43 °C for 1 h and treated with 0, 0.1 and 1 μM 17-DMAG. We evaluated the cell viability using MTT and apoptosis with HSP 90 inhibitor. We studied the protein expression of AKT, phospho-AKT, ERK, phospho-ERK, MAPK, and phospho-MAPK, caspase 3,7,9, and anti-poly (ADP-ribose) polymerase. 17-DMAG significantly inhibited the proliferation of the SK-MEL-2 cells at 37 °C (0.1 μM: 44.47% and 1 μM: 61.23%) and 43 °C (0.1 μM: 49.21% and 1 μM: 63.60%), suggesting synergism between thermal stimulation and 17-DMAG. 17-DMAG treatment increased the frequency of apoptotic cell populations to 2.17% (0.1 μM) and 3.05% (1 μM) in 37 °C controls, and 4.40% (0.1 μM) and 4.97% (1 μM) in the group stimulated at 43 °C. AKT phosphorylation were activated by thermal stimulation and inhibited by 17-DMAG. Hsp90 inhibitor treatment may be clinically applicable to enhance the apoptosis of melanoma cells in hyperthermic condition. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  6. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.

    Science.gov (United States)

    Heikkila, John J

    2017-01-01

    Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Continuous fever-range heat stress induces thermotolerance in odontoblast-lineage cells.

    Science.gov (United States)

    Morotomi, Takahiko; Kitamura, Chiaki; Okinaga, Toshinori; Nishihara, Tatsuji; Sakagami, Ryuji; Anan, Hisashi

    2014-07-01

    Heat shock during restorative procedures can trigger damage to the pulpodentin complex. While severe heat shock has toxic effects, fever-range heat stress exerts beneficial effects on several cells and tissues. In this study, we examined whether continuous fever-range heat stress (CFHS) has beneficial effects on thermotolerance in the rat clonal dental pulp cell line with odontoblastic properties, KN-3. KN-3 cells were cultured at 41°C for various periods, and the expression level of several proteins was assessed by Western blot analysis. After pre-heat-treatment at 41°C for various periods, KN-3 cells were exposed to lethal severe heat shock (LSHS) at 49°C for 10min, and cell viability was examined using the MTS assay. Additionally, the expression level of odontoblast differentiation makers in surviving cells was examined by Western blot analysis. CFHS increased the expression levels of several heat shock proteins (HSPs) in KN-3 cells, and induced transient cell cycle arrest. KN-3 cells, not pre-heated or exposed to CFHS for 1 or 3h, died after exposure to LSHS. In contrast, KN-3 cells exposed to CFHS for 12h were transiently lower on day 1, but increased on day 3 after LSHS. The surviving cells expressed odontoblast differentiation markers, dentine sialoprotein and dentine matrix protein-1. These results suggest that CFHS for 12h improves tolerance to LSHS by inducing HSPs expression and cell cycle arrest in KN-3 cells. The appropriate pretreatment with continuous fever-range heat stress can provide protection against lethal heat shock in KN-3 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Discrimination of Thermal versus Mechanical Effects of Shock on Rock Magnetic Properties of Spherically Shocked up to 10-160 GPa Basalt and Diabase

    Science.gov (United States)

    Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.

    2016-12-01

    Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities

  9. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  10. What a Shock: No Apoptosis without Heat Shock Protein 90α | Center for Cancer Research

    Science.gov (United States)

    Apoptosis, also known as programmed cell death, consists of a series of reactions designed to systematically chop up a cell and its contents. The process is used to eliminate specific cells during development or to remove old or damaged cells without harming any surrounding cells. Since cancer cells can develop mechanisms to avoid apoptosis, researchers may be able to identify

  11. Heat shock protein 72: release and biological significance during exercise.

    Science.gov (United States)

    Whitham, Martin; Fortes, Matthew Benjamin

    2008-01-01

    The cumulative stressors of exercise manifest themselves at a cellular level by threatening the protein homeostasis of the cell. In these conditions, Heat Shock Proteins (HSP) are synthesised to chaperone mis-folded and denatured proteins. As such, the intracellular HSP response is thought to aid cell survival in the face of otherwise lethal cellular stress. Recently, the inducible isoform of the 70 Kda heat shock protein family, Hsp72 has been detected in the extracellular environment. Furthermore, the release of this protein into the circulation has been shown to occur in response to a range of exercise bouts. The present review summarises the current research on the exercise Hsp72 response, the possible mediators and mechanisms of extracellular (e)Hsp72 release, and the possible biological significance of this systemic response. In particular, the possible role of eHsp72 in the modulation of immunity during exercise is discussed.

  12. Barcoding heat shock proteins to human diseases : looking beyond the heat shock response

    NARCIS (Netherlands)

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) - and thus generally restoring the disturbed protein homeostasis associated with such diseases - has often been suggested as a

  13. The novel role of platelet-activating factor in protecting mice against lipopolysaccharide-induced endotoxic shock.

    Directory of Open Access Journals (Sweden)

    Young-Il Jeong

    Full Text Available BACKGROUND: Platelet-activating factor (PAF has been long believed to be associated with many pathophysiological processes during septic shock. Here we present novel activities for PAF in protecting mice against LPS-mediated endotoxic shock. PRINCIPAL FINDINGS: In vivo PAF treatment immediately after LPS challenge markedly improved the survival rate against mortality from endotoxic shock. Administration of PAF prominently attenuated LPS-induced organ injury, including profound hypotension, excessive polymorphonuclear neutrophil infiltration, and severe multiple organ failure. In addition, PAF treatment protects against LPS-induced lymphocytes apoptosis. These protective effects of PAF was correlated with significantly decreases in the production of the inflammatory mediators such as TNF-alpha, IL-1beta, IL-12, and IFN-gamma, while increasing production of the anti-inflammatory cytokine IL-10 in vivo and in vitro. CONCLUSIONS: Taken together, these results suggest that PAF may protect mice against endotoxic shock via a complex mechanism involving modulation of inflammatory and anti-inflammatory mediators.

  14. Adaptive response in Drosophila melanogaster heat shock proteins mutant strains

    International Nuclear Information System (INIS)

    Shaposhnikov, M.V.; Moskalev, A.A.; Turysheva, E.V.

    2007-01-01

    Complete text of publication follows. The members of the heat shock proteins (Hsp) family function as molecular chaperones and assist intracellular folding of newly synthesized proteins. Also it is possible that molecular chaperones are induced during adaptive response to oxidative stress and radiation. The aim of our research was to exam the role of heat shock proteins in adaptive response to oxidative stress after low dose rate gamma-irradiation in Drosophila melanogaster. Drosophilamelanogaster strains were kindly provided by Bloomington Drosophila Stock Center (University of state of Indiana, Bloomington, USA). We used wild type strain (CS), heat shock protein mutant strains (Hsp22, Hsp70, Hsp83), and heat shock factor mutant strain (Hsf). Strains were chronically exposured to adaptive dose of gamma-irradiation in dose rate of 0.17 cGy/h during all stages of life history (from the embrional stage to the stage of matured imago). The rate of absorbed dose was 60 cGy. For oxidative-stress challenge twodays old flies were starved in empty vials for 6 h and then transferred to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival data were collected after 26 h of treatment. Dead flies were counted daily. The obtained data were subjected to survival analysis by Kaplan and Meier method and presented as survival curves. Statistical analysis was held by non-parametric methods. To test the significance of the difference between the two age distributions Kolmogorov-Smirnov test was applied. Gehan-Braslow- Wilcoxon and Cox-Mantel tests were used for estimation of median life span differences. In addition the minimal and maximal life span, time of 90% death, and mortality rate doubling time (MRDT) were estimated. The obtained results will be discussed in presentation.

  15. Heat Shock Protein-Inducing Property of Diarylheptanoid Containing Chalcone Moiety from Alpinia katsumadai

    Directory of Open Access Journals (Sweden)

    Joo-Won Nam

    2017-10-01

    Full Text Available A new diarylheptanoid containing a chalcone moiety, katsumain H (1, was isolated from the seeds of Alpinia katsumadai. The structure was elucidated using a combination of 1D/2D NMR spectroscopy and mass spectrometry data analysis. The absolute configurations of C-3, C-5, and C-7 in 1 were assigned based on its optical rotation and after comparing its NMR chemical shifts with those of its diastereoisomers, katsumain E and katsumain F, which were previously isolated from this plant and characterized. In this study, the stimulatory effects of compounds 1 and 2 were evaluated on heat shock factor 1 (HSF1, heat shock protein 27 (HSP27, and HSP70. Compounds 1 and 2 increased the expression of HSF1 (1.056- and 1.200-fold, respectively, HSP27 (1.312- and 1.242-fold, respectively, and HSP70 (1.234- and 1.271-fold, respectively, without increased cytotoxicity.

  16. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock.

    Science.gov (United States)

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.

  17. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hottiger, T.; Schmutz, P.; Wiemken, A.

    1987-01-01

    Heat shock resulted in rapid accumulation of large amounts of trehalose in Saccharomyces cerevisiae. In cultures growing exponentially on glucose, the trehalose content of the cells increased from 0.01 to 1 g/g of protein within 1 h after the incubation temperature was shifted from 27 to 40 0 C. When the temperature was readjusted to 27 0 C, the accumulated trehalose was rapidly degraded. In parallel, the activity of the trehalose-phosphate synthase, the key enzyme of trehalose biosynthesis, increased about six fold during the heat shock and declined to normal level after readjustment of the temperature. Surprisingly, the activity of neutral trehalase, the key enzyme of trehalose degradation, also increased about threefold during the heat shock and remained almost constant during recovery of the cells at 27 0 C. In pulse-labeling experiments with [ 14 C] glucose, trehalose was found to be turned over rapidly in heat-shocked cells, indicating that both anabolic and catabolic enzymes of trehalose metabolism were active in vivo. Possible functions of the heat-induced accumulation of trehalose and its rapid turnover in an apparently futile cycle during heat shock are discussed

  18. Destabilization and recovery of a yeast prion after mild heat shock.

    Science.gov (United States)

    Newnam, Gary P; Birchmore, Jennifer L; Chernoff, Yury O

    2011-05-06

    Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  20. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells.

    Science.gov (United States)

    Li, Lian; Wu, Jie; Luo, Man; Sun, Yu; Wang, Genlin

    2016-05-01

    Summer heat stress (HS) is a major contributing factor in low fertility in lactating dairy cows in hot environments. Heat stress inhibits ovarian follicular development leading to diminished reproductive efficiency of dairy cows during summer. Ovarian follicle development is a complex process. During follicle development, granulosa cells (GCs) replicate, secrete hormones, and support the growth of the oocyte. To obtain an overview of the effects of heat stress on GCs, digital gene expression profiling was employed to screen and identify differentially expressed genes (DEGs; false discovery rate (FDR) ≤ 0.001, fold change ≥2) of cultured GCs during heat stress. A total of 1211 DEGs including 175 upregulated and 1036 downregulated ones were identified, of which DEGs can be classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results suggested that heat stress triggers a dramatic and complex program of altered gene expression in GCs. We hypothesized that heat stress could induce the apoptosis and dysfunction of GCs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the expression of steroidogenic genes (steroidogenic acute regulatory protein (Star), cytochrome P-450 (CYP11A1), CYP19A1, and steroidogenic factor 1 (SF-1)) and apoptosis-related genes (caspase-3, BCL-2, and BAX). Radio immunoassay (RIA) was used to analyze the level of 17β-estradiol (E2) and progesterone (P4). We also assessed the apoptosis of GCs by flow cytometry. Our data suggested that heat stress induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and E2 synthesis. These results suggest that the decreased function of GCs may cause ovarian dysfunction and offer an improved understanding of the molecular mechanism responsible for the low fertility in cattle in summer.

  1. Ubiquitin-dependent system controls radiation induced apoptosis

    International Nuclear Information System (INIS)

    Delic, J.; Magdelenat, H.; Glaisner, S.; Magdelenat, H.; Maciorowski, Z.

    1997-01-01

    The selective proteolytic pathway, dependent upon 'N-end rule' protein recognition/ubiquitination and on the subsequent proteasome dependent processing of ubiquitin conjugates, operates in apoptosis induced by γ-irradiation. The proteasome inhibitor peptide aldehyde, MG132, efficiently induced apoptosis and was also able (at doses lower than those required for apoptosis induction) to potentiate apoptosis induced by DNA damage. Its specificity is suggested by the induction of the ubiquitin (UbB and UbC) and E1 (ubiquitin activating enzyme) genes and by an altered ubiquitination pattern. More selectively, a di-peptide competitor of the 'N-end rule' of ubiquitin dependent protein processing inhibited radiation induced apoptosis. This inhibition is also followed by an altered ubiquitination pattern and by activation of Poly (ADP-ribose) polymerase (PARP). These data strongly suggest that early apoptosis radiation induced events are controlled by ubiquitin-dependent proteolytic processing. (author)

  2. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    Science.gov (United States)

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Impact of Heat-Shock Treatment on Yellowing of Pak Choy Leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-yang; SHEN Lian-qing; YUAN Hai-na

    2004-01-01

    The physiological mechanism of maintaining the green colour of pak choy leaves (Brassica rapa var chinensis) with heat-shock treatment was studied. Chlorophyll in the outer leaves of pak choy degraded rapidly during storage at ambient temperature (20 ± 2℃), a slight yellow appeared. Heat-shock treatment (46- 50℃) had a mild effect on maintaining the green colour of outer leaves. Normal chlorophyll degradation was associated with a binding of chlorophyll with chlorophyll-binding-protein preceding chlorophyll breakdown.Heat-shock treatment was found to reduce the binding-capacity between chlorophyllbinding-protein and chlorophyll. In the chlorophyll degradation pathway, pheide dioxygenase was synthesized during leaf senescence which was considered to be a key enzyme in chlorophyll degradation. Activity of this enzyme was reduced following heat-shock treatment, which might explain the observed reduction in chlorophyll breakdown. Two groups of heat-shock proteins were detected in treated leaves, the first group containing proteins from 54KDa to 74 Kda, and the second group contained proteins from 15 KDa to 29KDa. Heat-shock treatment was also found to retard the decline of glucose and fructose (the main energy substrates) of outer leaves.

  4. The dynamics of heat shock system activation in Monomac-6 cells upon Helicobacter pylori infection.

    Science.gov (United States)

    Pierzchalski, P; Jastrzebska, M; Link-Lenczowski, P; Leja-Szpak, A; Bonior, J; Jaworek, J; Okon, K; Wojcik, P

    2014-12-01

    Immune system cells, particularly phagocytes, are exposed to direct contact with pathogens. Because of its nature - elimination of pathogenes - their cytoprotective systems supposed to be quick and forceful. Physiological consequence of phagocytosis for the phagocyte is the apoptotic death to prevent the eventual survival of bacteria as intracellular parasites. However, in some cases, defense systems used by the bacteria force the immune cells to prolong the contact with the pathogen for its effective elimination. Experiments were performed on Monomac-6 cells exposed to live CagA, VacA expressing Helicobacter pylori (H. pylori) over different period of time. Total cellular RNA, cytoplasmic and nuclear proteins were isolated for polymerase chain reaction, Western-blot and electrophoretic mobility shift assay, respectively. We found that Monomac-6 cells infection with H. pylori resulted in the translocation of the entire cellular content of the heat shock protein 70 (HSP70) into the cytoplasm, where its presence could protect cell against toxic products of engulfed bacteria and premature apoptosis. At the same time the nuclear translocation of heat shock factor 1 (HSF-1) and activation of HSP70 gene transcription was noticed. Action of HSP70 might to postpone monocyte apoptosis through protecting cytoplasmic and nuclear proteins from damaging effect of bacterial products, what could be the defending mechanism against the toxic stress caused by engulfed bacteria and provide the immune cell with the sufficient amount of time required for neutralization of the bacteria from phagosomes, even at the expense of temporary lack of the protection of nuclear proteins.

  5. Aspartame-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effect of Heat Shock Treatment and Aloe Vera Coating to Chilling Injury Symptom in Tomato (Lycopersicon asculantum Mill.

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2012-04-01

    Full Text Available This research was undertaken to determine the effect of length in heat shock and edible coating as pre-storage treatment to Chilling Injury (CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.. Heat Shock Treatment (HST was conducted at three different levels of length, which were, 20; 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock, AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

  7. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response.

    Science.gov (United States)

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H

    2014-04-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.

  8. An overview on the small heat shock proteins | Mahmood | African ...

    African Journals Online (AJOL)

    In eukaryotes, different heat shock genes are expressed uncoordinatedly, whereas in prokaryote, heat shock genes form a regulon and appear simultaneously. sHSPs are associated with nuclei, cytoskeleton and membranes. They bind partially to denatured proteins, preventing irreversible protein aggregation during stress.

  9. Rituximab enhances radiation-triggered apoptosis in non-Hodgkin's lymphoma cells via caspase-dependent and - independent mechanisms

    International Nuclear Information System (INIS)

    Skvortsova, I.; Skvortsov, S.; Popper, B.A.; Haidenberger, A.; Saurer, M.; Gunkel, A.R.; Zwierzina, H.; Lukas, P.

    2006-01-01

    Rituximab (RTX), a chimeric human anti-CD20 monoclonal antibody, is currently employed in the treatment of malignant non-Hodgkin's lymphoma (NHL) either alone or in combination with other cytotoxic approaches. The present study examines the effects of ionizing radiation in combination with RTX on proliferation and apoptosis development in B-lymphoma RL and Raji cells. RTX was used at a concentration of 10 μg/mL 24 hours prior to irradiation at a single dose of 9 Gy. CD20 expression, cell viability, apoptosis, mitochondrial membrane potential and apoptosis-related proteins were evaluated in the treated B cells. The constitutive level of CD20 expression in RL and Raji lymphoma cells did not play an essential role in RTX-induced cell growth delay. Both lymphoma cells showed similar inhibition of cell proliferation without apoptosis development in response to RTX treatment. Exposure to ionizing radiation induced cell growth delay and apoptosis in RL cells, whereas Raji cells showed moderate radio-resistance and activation of cell growth at 24 hours after irradiation, which was accompanied by increased radiation-triggered CD20 expression. The simultaneous exposure of lymphoma cells to ionizing radiation and RTX abrogated radioresistance of Raji cells and significantly enhanced cell growth delay and apoptosis in RL cells. X-linked inhibitor of apoptosis protein (XIAP) and the inducible form of heat shock protein 70 (Hsp70) were positively modulated by RTX in combination with ionizing radiation in order to induce apoptosis. Furthermore, it was demonstrated that mitochondrial membrane potential dissipation is not an essential component to induce apoptosis-inducing factor (AIF) maturation and apoptosis. Our results show that RTX-triggered enhancement of radiation-induced apoptosis and cell growth delay is achieved by modulation of proteins involved in programmed cell death. (author)

  10. Molecular mechanism of apoptosis and characterization of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Li Yumin; Zhang Yuguang; Li Yukun

    1999-01-01

    The major discoveries of apoptosis research in recent years were reviewed briefly. The mechanisms of caspases/ICE gene family and bcl-2 gene family on apoptosis were analyzed. And the signal transduction pathway of apoptosis found currently has been summarized. The characterizations of apoptosis induced by radiation such as time-effects, dose-effects and the radiosensibility were summed up

  11. Heating and generation of suprathermal particles at collisionless shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1985-01-01

    Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs

  12. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α.

    Science.gov (United States)

    Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette; Deffit, Sarah N; Evans-Molina, Carmella; Thurmond, Debbie C; Blum, Janice S

    2017-06-01

    A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the α cytoplasmic isoform of heat-shock protein 90 (hsp90) were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized that hsp90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released hsp90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including interleukin-1β, tumour necrosis factor-α and interferon-γ. Mechanistically, hsp90α release was found to be driven by cytokine-induced endoplasmic reticulum stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell hsp90α release and JNK activation were significantly reduced by pre-treating cells with the endoplasmic reticulum stress-mitigating chemical chaperone tauroursodeoxycholic acid. The hsp90α release by cells may therefore be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity. © 2017 John Wiley & Sons Ltd.

  13. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    Science.gov (United States)

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  14. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.

  15. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    Directory of Open Access Journals (Sweden)

    Lionel Leclere

    Full Text Available Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3 protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.

  16. Mitochondrial dysfunction in lyssavirus-induced apoptosis.

    Science.gov (United States)

    Gholami, Alireza; Kassis, Raïd; Real, Eléonore; Delmas, Olivier; Guadagnini, Stéphanie; Larrous, Florence; Obach, Dorothée; Prevost, Marie-Christine; Jacob, Yves; Bourhy, Hervé

    2008-05-01

    Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.

  17. Heat-flow equation motivated by the ideal-gas shock wave.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  18. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  19. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  20. Distinct radioprotective activities of major heat shock proteins in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Kabakov, Alexander; Malyutina, Yana; Kudryavtsev, Vladimir

    2008-01-01

    Full text: Several years ago we have suggested that heat shock proteins (Hsps) can be involved in cellular and tissue mechanisms of protection from ionizing radiation. At present, the accumulated experimental data do allow us to characterize three major mammalian Hsps, Hsp70, Hsp27 and Hsp90, as specific endogenous radioprotectors which are able to prevent or minimize cell death resulting from the radiation exposure. It follows from the many findings that the radioprotective effect of these Hsps is particularly manifested in their ability to attenuate apoptosis in various normal and tumor cells irradiated in vivo or in vitro. The obtained data already enable to suggest three main mechanisms of the radioprotection conferred by the excess Hsps: 1) Modulation of the intracellular signaling so that the apoptotic signal transduction is blocked, whereas the 'cell survival' signal transduction is stimulated; 2) Suppression of the radiation-associated free radical generation and apoptosis induced by reactive oxygen species (ROS); 3) Attenuation of the genotoxic impact of ionizing radiation. The latter suggested mechanism seems particularly intriguing and implies that the excess Hsps can somehow contribute to protection/repair of genomic DNA from radiation-induced damage. According to our recent results, Hsp90 is indeed involved in the post-irradiation repair of nuclear DNA, while excess Hsp70 can beneficially affect the p53-mediated DNA damage response in irradiated cells to ensure their long-term survival and recovery. As for Hsp27, we found that its accumulation in target cells increases their radioresistance by enhancing the irradiation-responsive activation of anti apoptotic pathways. While the Hsp70 and Hsp27 seem to perform different functions in irradiated cells, the synergistic enhancement of radioprotection was clearly observed in the cells enriched by the both the Hsps. In vivo, such radioprotective activities of the major mammalian Hsps may play a role in

  1. Heat Shock Proteins in Tendinopathy: Novel Molecular Regulators

    Directory of Open Access Journals (Sweden)

    Neal L. Millar

    2012-01-01

    Full Text Available Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-associated molecular patterns (DAMPs, are rapidly released following nonprogrammed cell death, are key effectors of the innate immune system, and critically restore homeostasis by promoting the reconstruction of the effected tissue. Our investigations have highlighted a key role for HSPs in tendion disease which may ultimately affect tissue rescue mechanisms in tendon pathology. This paper aims to provide an overview of the biology of heat shock proteins in soft tissue and how these mediators may be important regulators of inflammatory mediators and matrix regulation in tendinopathy.

  2. Quercetin suppresses heat shock-induced nuclear translocation of Hsp72

    Directory of Open Access Journals (Sweden)

    Antoni Gawron

    2011-08-01

    Full Text Available The effect of quercetin and heat shock on the Hsp72 level and distribution in HeLa cells was studied by Western blotting, indirect immunofluorescence and immunogold electron microscopy. In control cells and after quercetin treatment, Hsp72 was located both in the cytoplasm and in the nucleus in comparable amounts. After hyperthermia, the level of nuclear Hsp72 raised dramatically. Expression of Hsp72 in cytoplasm was also higher but not to such extent as that observed in the nucleus. Preincubation of heated cells with quercetin inhibited strong Hsp72 expression observed after hyperthermia and changed the intracellular Hsp72 distribution. The cytoplasmic level of protein exceeded the nuclear one, especially around the nucleus, where the coat of Hsp72 was noticed. Observations indicating that quercetin was present around and in the nuclear envelope suggested an involvement of this drug in the inhibition of nuclear translocation. Our results indicate that pro-apoptotic activity of quercetin may be correlated not only with the inhibition of Hsp72 expression but also with suppression of its migration to the nucleus.

  3. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Alisia Carnemolla

    Full Text Available The heat shock response (HSR is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders.

  4. Analysis of heat shock gene expression in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Arnau, José; Sørensen, Kim; Appel, Karen Fuglede

    1996-01-01

    The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologous was carried out. Nothern blot analysis showed a similar induction pattern...... in the heat shock response in L. lactis MG1363 is presented. A gene located downstream of the dnaK operon in strain MG1363, named orf4, was shown not to be regulated by heat shock....

  5. Heat shock protein 90 in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Rodina Anna

    2010-06-01

    Full Text Available Abstract Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1, the master regulator of the heat shock response, mechanism that cells use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative diseases.

  6. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    International Nuclear Information System (INIS)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee

    2015-01-01

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  7. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  8. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    International Nuclear Information System (INIS)

    Nolan, N.L.; Kidwell, W.R.

    1982-01-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37 0 C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of γ-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of γ-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels

  9. Finite element analysis of the shock waves induced in the liquid wall of a pellet fusion reactor

    International Nuclear Information System (INIS)

    Miya, K.; Iizuka, T.; Silverman, J.

    1985-01-01

    A shock wave induced in liquid metal is analyzed numerically by application of the finite element method. Since the governing equations of motion of the fluid are nonlinear, an incremental method is combined with the finite element method to obtain a convergent solution of the shock wave without an interaction technique. To demonstrate the validity of the method developed, shock wave problems in an inertial confinement spherical reactor with a liquid lithium ''waterfall'' are solved for two cases of surface heating due to soft x-ray absorption and bulk heating due to 14-MeV neutron absorption. The solution is based on a combination of the conservation equations for mass, energy, and momentum along with the following equation of state for liquid metals: p = P /sub b/ ((/rho///rho/ 0 ) /sup n/ - 1). Numerical results show that peak pressure induced in the liquid lithium is very high even for a comparatively small energy release E /sub TAU/ = 100 MJ/microexplosion of a pellet. Dynamic stress induced in a 5-cm-thick stainless steel pressure vessel is 1.14 x 10 3 MPa for the surface heating. The results show that the dynamic stress induced by bulk heating is superimposed on that due to surface heating within the same period. Two appropriate ways to reduce the high stress are application of two-phase flow of liquid lithium or an increase in the thickness of the pressure vessel

  10. The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus.

    Directory of Open Access Journals (Sweden)

    Vladimír Kostál

    Full Text Available BACKGROUND: The Pyrrhocoris apterus (Insecta: Heteroptera adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps and the role of Hsps during repair of heat- and cold-induced injury. PRINCIPAL FINDINGS: The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70 and cognate forms (PaHsc70 were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR and corresponding protein (Western blotting were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. CONCLUSION: Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus.

  11. Extracellular small heat shock proteins: exosomal biogenesis and function.

    Science.gov (United States)

    Reddy, V Sudhakar; Madala, Satish K; Trinath, Jamma; Reddy, G Bhanuprakash

    2018-05-01

    Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.

  12. Short-term heat shock affects the course of immune response in Galleria mellonella naturally infected with the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Vertyporokh, Lidiia; Taszłow, Paulina; Samorek-Pieróg, Małgorzata; Wojda, Iwona

    2015-09-01

    We aimed to investigate how exposition of infected insects to short-term heat shock affects the biochemical and molecular aspects of their immune response. Galleria mellonella larvae were exposed to 43°C for 15min, at the seventy second hour after natural infection with entomopathogenic fungus Beauveria bassiana. As a result, both qualitative and quantitative changes in hemolymph protein profiles, and among them infection-induced changes in the amount of apolipophorin III (apoLp-III), were observed. Heat shock differently affects the expression of the tested immune-related genes. It transiently inhibits expression of antifungal peptides gallerimycin and galiomicin in both the fat body and hemocytes of infected larvae. The same, although to a lesser extent, concerned apoLp-III gene expression and was observed directly after heat shock. Nevertheless, in larvae that had recovered from heat shock, apoLp-III expression was higher in comparison to unshocked larvae in the fat body but not in hemocytes, which was consistent with the higher amount of this protein detected in the hemolymph of the infected, shocked larvae. Furthermore, lysozyme-type activity was higher directly after heat shock, while antifungal activity was significantly higher also in larvae that had recovered from heat shock, in comparison to the respective values in their non-shocked, infected counterparts. These results show how changes in the external temperature modulate the immune response of G. mellonella suffering from infection with its natural pathogen B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Chk2 mediates RITA-induced apoptosis.

    Science.gov (United States)

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  14. Genetic responses of the marine copepod Acartia tonsa (Dana) to heat shock and epibiont infestation

    DEFF Research Database (Denmark)

    Petkeviciute, Egle; Kania, Per Walter; Skovgaard, Alf

    2015-01-01

    Expression of stress-related genes was investigated in the marine copepod Acartia tonsa in relation to heat shock at two different salinities (10 and 32‰), and it was furthermore investigated whether experimentally induced epibiont infestation led to elevated expression of stress-related genes...

  15. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis.

    Science.gov (United States)

    McConnell, Kevin W; Fox, Amy C; Clark, Andrew T; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A; Farris, Alton B; Buchman, Timothy G; Hunt, Clayton R; Coopersmith, Craig M

    2011-03-15

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.

  16. Extremely Low Frequency Magnetic Fields Induce Spermatogenic Germ Cell Apoptosis: Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Sang-Kon Lee

    2014-01-01

    Full Text Available The energy generated by an extremely low frequency electromagnetic field (ELF-EMF is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010 for limiting exposure to time-varying MF (1 Hz to 100 kHz, overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.

  17. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA

    Directory of Open Access Journals (Sweden)

    Mathews Sarah A

    2008-11-01

    Full Text Available Abstract Background Chlamydia trachomatis, an obligate intracellular human pathogen, is the most prevalent bacterial sexually transmitted infection worldwide and a leading cause of preventable blindness. HtrA is a virulence and stress response periplasmic serine protease and molecular chaperone found in many bacteria. Recombinant purified C. trachomatis HtrA has been previously shown to have both activities. This investigation examined the physiological role of Chlamydia trachomatis HtrA. Results The Chlamydia trachomatis htrA gene complemented the lethal high temperature phenotype of Escherichia coli htrA- (>42°C. HtrA levels were detected to increase by western blot and immunofluorescence during Chlamydia heat shock experiments. Confocal laser scanning microscopy revealed a likely periplasmic localisation of HtrA. During penicillin induced persistence of Chlamydia trachomatis, HtrA levels (as a ratio of LPS were initially less than control acute cultures (20 h post infection but increased to more than acute cultures at 44 h post infection. This was unlike IFN-γ persistence where lower levels of HtrA were observed, suggesting Chlamydia trachomatis IFN-γ persistence does not involve a broad stress response. Conclusion The heterologous heat shock protection for Escherichia coli, and increased HtrA during cell wall disruption via penicillin and heat shock, indicates an important role for HtrA during high protein stress conditions for Chlamydia trachomatis.

  18. Structure of slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Tsai, R.H.; Wu, B.H.; Lee, L.C.

    2002-01-01

    The structure of slow shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. In this study, a pair of slow shocks is formed through the evolution of a current sheet initiated by the presence of a normal magnetic field. It is found that the slow shock consists of two parts: The isothermal main shock and foreshock. Significant jumps in plasma density, velocity and magnetic field occur across the main shock, but the temperature is found to be continuous across the main shock. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. It is shown that the jumps in plasma density, pressure, velocity, and magnetic field across the main shock are determined by the set of modified isothermal Rankine-Hugoniot conditions. It is also found that a jump in the temperature gradient is present across the main shock in order to satisfy the energy conservation. The present results can be applied to the heating in the solar corona and solar wind

  19. Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model

    International Nuclear Information System (INIS)

    Graham, R.A.

    1979-01-01

    When polymeric solids are subjected to high-pressure shock loading, two anomalous electrical phenomena, shock-induced conduction and shock-induced polarization, are observed. The present paper proposes a model of mechanically induced bond scission within the shock front to account for the effects. An experimental study of shock-induced polarization in poly(pyromellitimide) (Vespel SP-1) is reported for shock compressions from 17 to 23% (pressures from 2.5 to 5.4 GPa). Poly(pyromellitimide) is found to be a strong generator of such polarization and the polarization is found to reflect an irreversible or highly hysteretic process. The present measurements are combined with prior measurements to establish a correlation between monomer structure and strength of shock-induced polarization; feeble signals are observed in the simpler monomer repeat units of poly(tetrafluoroethylene) and polyethylene while the strongest signals are observed in more complex monomers of poly(methyl methacrylate) and poly(pyromellitimide). It is also noted that there is an apparent correlation between shock-induced conduction and shock-induced polarization. Such shock-induced electrical activity is also found to be well correlated with the propensity for mechanical bond scission observed in experiments carried out in conventional mechanochemical studies. The bond scission model can account for characteristics observed for electrical activity in shock-loaded polymers and their correlation to monomer structure. Localization of elastic energy within the monomer repeat unit or along the main chain leads to the different propensities for bond scission and resulting shock-induced electrical activity

  20. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  1. PERAN HEAT SHOCK PROTEINS (HSP DALAM PATOGENESIS PENYAKIT OTOIMUN DI DALAM RONGGA MULUT

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2015-08-01

    Full Text Available Heat Shock Proteins (HSP are highly conserved immunoreactive group of proteins found in microorganisms and animal/human tissue. In addition to heat, other stressful conditiions also induce stressed proteins, especially anorexia, heavy metal ion, exposure to H2O2 and infection by DNA or RNA viruses. Recent studies suggest the involvement of HSPs as autoantigens in autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Bechet's syndrome, recurrent oral uclers, oral lichen planus and other. The HSPs 60 - 65 KDa might be involved in the pathogenesis of autoimmune diseases such as Bechet's syndrome, recurrent oral ulcers, and oral lichen planus. This paper will discuss the immunopathogenesis mechanism of those diseases induced by HSPs.

  2. Csk regulates angiotensin II-induced podocyte apoptosis.

    Science.gov (United States)

    Zhang, Lu; Ren, Zhilong; Yang, Qian; Ding, Guohua

    2016-07-01

    Increasing data have shown that angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. The mechanism underlying Ang II-induced podocyte apoptosis has not been established. C-terminal Src kinase (Csk) is a cytoplasmic kinase that interacts with scaffolding proteins involved in cell growth, adhesion, and polarization, and the role of Csk in regulating cellular apoptosis has gradually attracted attention. This study evaluates the role of Csk in Ang II-induced podocyte apoptosis. In vivo, Wistar rats were randomly subjected to a normal saline or Ang II infusion. In vitro, we exposed differentiated mouse podocytes to Ang II. Ang II increased Csk expression and induced podocyte apoptosis, stimulated Csk translocation and binding to Caveolin-1, and stimulated decreased Fyn pY416, increased Fyn pY529, and nephrin dephosphorylation. Csk knockdown prevented Ang II-induced podocyte apoptosis, reduced Fyn kinase inactivation, and increased the interaction between nephrin and the activated form of Fyn, accompanied by a reduced interaction between Csk and Caveolin-1. These findings indicate that Ang II induces podocyte injury via a Csk-dependent pathway.

  3. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.

    Science.gov (United States)

    Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan

    2017-01-01

    3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.

  4. An overview on the small heat shock proteins

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... whose expression is increase when cells are exposed to elevated ... shock due to much slower degradation of the protein, .... Plant sHSPs are all encoded by nuclear genes and are .... genesis, germination, pollen growth and fruit maturation). ... Production of high levels of heat shock proteins can also.

  5. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    Science.gov (United States)

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  6. Research Advances on Pathways of Nickel-Induced Apoptosis

    Science.gov (United States)

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  7. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  8. Two-state ion heating at quasi-parallel shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Onsager, T.G.; Russell, C.T.

    1990-01-01

    In a previous study of ion heating at quasi-parallel shocks, the authors showed a case in which the ion distributions downstream from the shock alternated between a cooler, denser, core/shoulder type and a hotter, less dense, more Maxwellian type. In this paper they further document the alternating occurrence of two different ion states downstream from several quasi-parallel shocks. Three separate lines of evidence are presented to show that the two states are not related in an evolutionary sense, but rather both are produced alternately at the shock: (1) the asymptotic downstream plasma parameters (density, ion temperature, and flow speed) are intermediate between those characterizing the two different states closer to the shock, suggesting that the asymptotic state is produced by a mixing of the two initial states; (2) examples of apparently interpenetrating (i.e., mixing) distributions can be found during transitions from one state to the other; and (3) examples of both types of distributions can be found at actual crossings of the shock ramp. The alternation between the two different types of ion distribution provides direct observational support for the idea that the dissipative dynamics of at least some quasi-parallel shocks is non-stationary and cyclic in nature, as demonstrated by recent numerical simulations. Typical cycle times between intervals of similar ion heating states are ∼2 upstream ion gyroperiods. Both the simulations and the in situ observations indicate that a process of coherent ion reflection is commonly an important part of the dissipation at quasi-parallel shocks

  9. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  10. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    Science.gov (United States)

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  11. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  12. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  13. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Morioka Mizue

    2003-08-01

    Full Text Available Abstract Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX, a fluoroquinolone (FQ, induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs.

  14. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-02-01

    Full Text Available The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg. 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  15. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

    Science.gov (United States)

    Yang, Wei; Wang, Huanlin

    2018-02-01

    The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  16. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    Science.gov (United States)

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation. ©2014 Poultry Science Association Inc.

  17. Down-regulation of cellular FLICE-inhibitory protein (Long Form contributes to apoptosis induced by Hsp90 inhibition in human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Wang Qilin

    2012-12-01

    Full Text Available Abstract Background Cellular FLICE-Inhibitory Protein (long form, c-FLIPL is a critical negative regulator of death receptor-mediated apoptosis. Overexpression of c-FLIPL has been reported in many cancer cell lines and is associated with chemoresistance. In contrast, down-regulation of c-FLIP may drive cancer cells into cellular apoptosis. This study aims to demonstrate that inhibition of the heat shock protein 90 (Hsp90 either by inhibitors geldanamycin/17-N-Allylamino-17-demethoxygeldanamycin (GA/17-AAG or siRNA technique in human lung cancer cells induces c-FLIPL degradation and cellular apoptosis through C-terminus of Hsp70-interacting protein (CHIP-mediated mechanisms. Methods Calu-1 and H157 cell lines (including H157-c-FLIPL overexpressing c-FLIPL and control cell H157-lacZ were treated with 17-AAG and the cell lysates were prepared to detect the given proteins by Western Blot and the cell survival was assayed by SRB assay. CHIP and Hsp90 α/β proteins were knocked down by siRNA technique. CHIP and c-FLIPL plasmids were transfected into cells and immunoprecipitation experiments were performed to testify the interactions between c-FLIPL, CHIP and Hsp90. Results c-FLIPL down-regulation induced by 17-AAG can be reversed with the proteasome inhibitor MG132, which suggested that c-FLIPL degradation is mediated by a ubiquitin-proteasome system. Inhibition of Hsp90α/β reduced c-FLIPL level, whereas knocking down CHIP expression with siRNA technique inhibited c-FLIPL degradation. Furthermore, c-FLIPL and CHIP were co-precipitated in the IP complexes. In addition, overexpression of c-FLIPL can rescue cancer cells from apoptosis. When 17-AAG was combined with an anti-cancer agent celecoxib(CCB, c-FLIPL level declined further and there was a higher degree of caspase activation. Conclusion We have elucidated c-FLIPL degradation contributes to apoptosis induced by Hsp90 inhibition, suggesting c-FLIP and Hsp90 may be the promising combined targets

  18. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. Testosterone Depletion by Castration May Protect Mice from Heat-Induced Multiple Organ Damage and Lethality

    Directory of Open Access Journals (Sweden)

    Ruei-Tang Cheng

    2010-01-01

    Full Text Available When the vehicle-treated, sham-operated mice underwent heat stress, the fraction survival and core temperature at +4 h of body heating were found to be 5 of 15 and 34.4∘C±0.3∘C, respectively. Castration 2 weeks before the start of heat stress decreased the plasma levels of testosterone almost to zero, protected the mice from heat-induced death (fraction survival, 13/15 and reduced the hypothermia (core temperature, 37.3∘C. The beneficial effects of castration in ameliorating lethality and hypothermia can be significantly reduced by testosterone replacement. Heat-induced apoptosis, as indicated by terminal deoxynucleotidyl- transferase- mediatedαUDP-biotin nick end-labeling staining, were significantly prevented by castration. In addition, heat-induced neuronal damage, as indicated by cell shrinkage and pyknosis of nucleus, to the hypothalamus was also castration-prevented. Again, the beneficial effects of castration in reducing neuronal damage to the hypothalamus as well as apoptosis in multiple organs during heatstroke, were significantly reversed by testosterone replacement. The data indicate that testosterone depletion by castration may protect mice from heatstroke-induced multiple organ damage and lethality.

  20. Characterization of radiation-induced Apoptosis in rodent cell lines

    International Nuclear Information System (INIS)

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-01-01

    For REC:myc(ch1), Rat1 and Rat1:myc b cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using 4 He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on 4 He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G 2 phases reduced the relative radioresistance observed for clonogenic survival during late S and G 2 phases. 30 refs., 8 figs

  1. Effect of pH on radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Chang, W. Song; Park, Heon J.; Lyons, John C.; Auger, Elizabeth A.; Lee, Hyung-Sik

    1996-01-01

    Purpose/Objective: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Materials and Methods: SCK mammary adenocarcinoma cells of A/J mice were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 degree sign C for 24-120 hrs., the extent of apoptosis was determined using agarose gel electrophoresis of DNA, in situ TUNEL staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The membrane integrity, using the trypan blue exclusion method, and the clonogenicity of the cells were also determined. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in pH 7.5 medium within 48 hrs. The radiation-induced apoptosis progressively declined as the medium pH was lowered so that little apoptosis occurred in 48 hrs. after irradiation with 12 Gy in pH 6.6 medium. However, when the cells were irradiated and incubated for 48 hrs. in pH 6.6 medium and then medium was replaced with pH 7.5 medium, apoptosis promptly occurred. Apoptosis also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 hrs. or longer post-irradiation before incubation in pH 6.6 medium. Conclusion: An acidic environment markedly suppresses radiation-induced apoptosis probably by suppressing the expression of initial signals responsible for irradiation-induced apoptosis. Indications are that the signals persist in an acidic environment and trigger apoptosis when the environmental acidity is eased. Our results suggest that the acidic environment in human tumors may inhibit the apoptosis after irradiation. However, apoptosis may be triggered when reoxygenation occurs after irradiation, and thus, the intratumor environment becomes less acidic after irradiation. Not only the change in pO 2 but the change in pH during the course of fractionated radiotherapy may greatly influence the outcome of the treatment

  2. Liquid metal targets for high-power applications : pulsed heating and shock hydrodynamics

    International Nuclear Information System (INIS)

    Hassanein, A.

    2000-01-01

    Significant interest has recently focused on the use of liquid-metal targets flowing with high velocities for various high-power nuclear and high-energy physics applications such as fusion reactor first-walls, the Spallation Neutron Source, Isotope Separation On Line, and Muon Collider projects. This is because the heat generated in solid targets due to beam or plasma bombardment cannot be removed easily and the resulting thermal shock damage could be a serious lifetime problem for long-term operation. More recently, the use of free or open flying-liquid jets has been proposed for higher-power-density applications. The behavior of a free-moving liquid mercury or gallium jet subjected to proton beam deposition in a strong magnetic field has been modeled and analyzed for the Muon Collider project. Free-liquid-metal jets can offer significant advantages over conventional solid targets, particularly for the more demanding and challenging high-power applications. However, the use of free-moving liquid-metal targets raises a number of new and challenging problems such as instabilities of the jet in a strong magnetic field, induced eddy-current effects on jet shape, thermal-shock formation, and possible jet fragmentation. Problems associated with shock heating of liquid jets in a strong magnetic field are analyzed in this study

  3. Aspartame-induced apoptosis in PC12 cells

    OpenAIRE

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-induc...

  4. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  5. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    Science.gov (United States)

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  6. Heat Tolerance Induction of the Indian Meal Moth (Lepidoptera: Pyralidae) Is Accompanied by Upregulation of Heat Shock Proteins and Polyols.

    Science.gov (United States)

    Kim, Minhyun; Lee, Seunghee; Chun, Yong Shik; Na, Jahyun; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2017-08-01

    The Indian meal moth, Plodia interpunctella, causes massive damage to stored grains and processed foods. Heat treatment has been widely used to control insect pests infesting stored grains. However, heat treatment may result in unsatisfactory control owing to heat tolerance of target insects. This study quantified the heat tolerance and analyzed its induction in P. interpunctella. Susceptibility of P. interpunctella to different high temperatures was assessed in all developmental stages. Heat treatment at 44 °C for 1 h caused significant mortalities to all developmental stages, with late-instar larvae exhibiting the highest tolerance. However, the survivorship to heat treatment was significantly increased by pre-exposure to 37 °C for 30 min. The induction of heat tolerance was accompanied by upregulation of two heat shock proteins of Hsc70 and Hsp90. Trehalose and glycerol concentrations in the hemolymph also increased after pre-exposure to 37 °C for 30 min. RNA interference (RNAi) by specific double-stranded RNAs effectively suppressed the inducible expressions of both Hsc70 and Hsp90 in response to 37 °C for 30 min. Either RNAi of Hsc70 or Hsp90 significantly impaired the heat tolerance induction of P. interpunctella. These results suggest that the induction of heat tolerance in P. interpunctella involves the upregulation of these heat shock proteins and hemolymph polyol levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response.

    Directory of Open Access Journals (Sweden)

    Alejandra eBernardini

    2015-10-01

    Full Text Available Quinolone resistance is usually due to mutations in the genes encoding bacterial topoisomerases. However different reports have shown that neither clinical quinolone resistant isolates nor in vitro obtained S. maltophilia mutants present mutations in such genes. The mechanisms so far described consist on efflux pumps' overexpression. Our objective is to get information on novel mechanisms of S. maltophilia quinolone resistance. For this purpose, a transposon-insertion mutant library was obtained in S. maltophilia D457.. One mutant presenting reduced susceptibility to nalidixic acid was selected. Inverse PCR showed that the inactivated gene encodes RNase G. Complementation of the mutant with wild-type RNase G allele restored the susceptibility to quinolones. Transcriptomic and real-time RT-PCR analyses showed that several genes encoding heat-shock response proteins were expressed at higher levels in the RNase defective mutant than in the wild-type strain. In agreement with this situation, heat-shock reduces the S. maltophilia susceptibility to quinolone. We can then conclude that the inactivation of the RNase G reduces the susceptibility of S. maltophilia to quinolones, most likely by regulating the expression of heat-shock response genes. Heat-shock induces a transient phenotype of quinolone resistance in S. maltophilia.

  8. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  9. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  10. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response

    NARCIS (Netherlands)

    Meijering, Roelien A. M.; Wiersma, Marit; van Marion, Denise M. S.; Zhang, Deli; Hoogstra-Berends, Femke; Dijkhuis, Anne-Jan; Schmidt, Martina; Wieland, Thomas; Kampinga, Harm H.; Henning, Robert H.; Brundel, Bianca J. J. M.

    2015-01-01

    Background The heat shock response (HSR) is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress.

  11. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    Science.gov (United States)

    Baars, Destiny L.; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole duplication, this method results in a precise cell division stall during the second cell cycle. The precise one-cycle division stall, coupled to unaffected DNA duplication, results in whole genome duplication. Protocols associated with this method include egg and sperm collection, UV treatment of sperm, in vitro fertilization and heat pulse to cause a one-cell cycle division delay and ploidy duplication. A modified version of this protocol could be applied to induce ploidy changes in other animal species. PMID:28060351

  12. Test of a new heat-flow equation for dense-fluid shock waves.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  13. Heat Shock Proteins as Danger Signals for Cancer Detection

    International Nuclear Information System (INIS)

    Seigneuric, Renaud; Mjahed, Hajare; Gobbo, Jessica; Joly, Anne-Laure; Berthenet, Kevin; Shirley, Sarah; Garrido, Carmen

    2011-01-01

    First discovered in 1962, heat shock proteins (HSPs) are highly studied with about 35,500 publications on the subject to date. HSPs are highly conserved, function as molecular chaperones for a large panel of “client” proteins and have strong cytoprotective properties. Induced by many different stress signals, they promote cell survival in adverse conditions. Therefore, their roles have been investigated in several conditions and pathologies where HSPs accumulate, such as in cancer. Among the diverse mammalian HSPs, some members share several features that may qualify them as cancer biomarkers. This review focuses mainly on three inducible HSPs: HSP27, HPS70, and HSP90. Our survey of recent literature highlights some recurring weaknesses in studies of the HSPs, but also identifies findings that indicate that some HSPs have potential as cancer biomarkers for successful clinical applications.

  14. Shock-induced nanobubble collapse and its applications

    Science.gov (United States)

    Vedadi, Mohammad Hossein

    The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.

  15. Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes.

    Science.gov (United States)

    Xia, Xun; Ma, Yuan; Yang, Li-Bin; Cheng, Jing-Ming; Yang, Tao; Fan, Ke-Xia; Li, Yun-Ming; Liu, En-Yu; Cheng, Lin; Huang, Hai-Dong; Gu, Jian-Wen; Kuang, Yong-Qin

    2016-08-01

    Heat shock protein A 12B (HSPA12B) is a newly discovered member of the heat shock protein 70 family. Preclinical evidence indicates that HSPA12B helps protect the brain from ischemic injury, although its specific function remains unclear. The aim of this study is to investigate whether HSPA12B overexpression can protect astrocytes from oxygen-glucose-serum deprivation/restoration (OGD/R) injury. We analyzed the effects of HSPA12B overexpression on spinal cord ischemia-reperfusion injury and spinal astrocyte survival. After ischemia-reperfusion injury, we found that HSPA12B overexpression decreased spinal cord water content and infarct volume. MTT assay showed that HSPA12B overexpression increased astrocyte survival after OGD/R treatment. Flow cytometry results showed a marked inhibition of OGD/R-induced astrocyte apoptosis. Western blot assay showed that HSPA12B overexpression significantly increased regulatory protein B-cell lymphocyte 2 (Bcl-2) levels, whereas it decreased expression of the Bax protein, which forms a heterodimer with Bcl-2. Measurements of the level of activation of caspase-3 by Caspase-Glo®3/7 Assay kit showed that HSPA12B overexpression markedly inhibited caspase-3 activation. Notably, we demonstrated that the effects of HSPA12B on spinal astrocyte survival depended on activation of the PI3K/Akt signal pathway. These findings indicate that HSPA12B protects against spinal cord ischemia-reperfusion injury and may represent a potential treatment target.

  16. CELLS OVEREXPRESSING HSP27 SHOW ACCELERATED RECOVERY FROM HEAT-INDUCED NUCLEAR-PROTEIN AGGREGATION

    NARCIS (Netherlands)

    KAMPINGA, HH; BRUNSTING, JF; STEGE, GJJ; KONINGS, AWT; LANDRY, J

    1994-01-01

    Protein denaturation/aggregation upon cell exposure to heat shock is a likely cause of cell death. in the nucleus, protein aggregation has often been correlated to inhibition of nuclear located processes and heat-induced cell killing. in Chinese hamster 023 cells made thermotolerant by a prior

  17. Irreversible thermodynamics of overdriven shocks in solids

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1981-01-01

    An isotropic solid capable of transporting heat and of undergoing dissipative plastic flow, is treated. The shock is assumed to be a steady wave, and any phase changes or macroscopic inhomogeneities which might be induced by the shock are neglected. Under these conditions it is established that for an overdriven shock, no solution is possible without heat transport, and when the heat transport is governed by the steady conduction equation, no solution is possible without plastic dissipation as well. Upper and lower bounds are established for the thermodynamic variables, namely the shear stress, temperature, entropy, plastic strain, and heat flux, as functions of compression through the shock

  18. Geldanamycin induces production of heat shock protein 70 and partially attenuates ototoxicity caused by gentamicin in the organ of Corti explants

    Directory of Open Access Journals (Sweden)

    Haupt Heidemarie

    2009-09-01

    Full Text Available Abstract Background Heat shock protein 70 (HSP70 protects inner ear cells from damage and death induced by e.g. heat or toxins. Benzoquinone ansamycin antibiotic geldanamycin (GA was demonstrated to induce the expression of HSP70 in various animal cell types. The aim of our study was to investigate whether GA induces HSP70 in the organ of Corti (OC, which contains the auditory sensory cells, and whether GA can protect these cells from toxicity caused by a common aminoglycoside antibiotic gentamicin. Methods To address these questions, we used the OC explants isolated from p3-p5 rats. As a read-out, we used RT-PCR, ELISA and immunofluorescence. Results We found that GA at the concentration of 2 μM efficiently induced HSP70 expression on mRNA and protein level in the OC explants. Confocal microscopy revealed that HSP70 induced by GA is expressed by hair cells and interdental cells of spiral limbus. Preincubation of explants with 2 μM GA prior to adding gentamicin (500 μM significantly reduced the loss of outer but not inner hair cells, suggesting different mechanisms of otoprotection needed for these two cell types. Conclusion GA induced HSP70 in the auditory sensory cells and partially protected them from toxicity of gentamicin. Understanding the molecular mechanisms of GA otoprotection may provide insights for preventative therapy of the hearing loss caused by aminoglycoside antibiotics.

  19. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2

    Science.gov (United States)

    Andersen, Joshua L; Johnson, Carrie E; Freel, Christopher D; Parrish, Amanda B; Day, Jennifer L; Buchakjian, Marisa R; Nutt, Leta K; Thompson, J Will; Moseley, M Arthur; Kornbluth, Sally

    2009-01-01

    The apoptotic initiator caspase-2 has been implicated in oocyte death, in DNA damage- and heat shock-induced death, and in mitotic catastrophe. We show here that the mitosis-promoting kinase, cdk1–cyclin B1, suppresses apoptosis upstream of mitochondrial cytochrome c release by phosphorylating caspase-2 within an evolutionarily conserved sequence at Ser 340. Phosphorylation of this residue, situated in the caspase-2 interdomain, prevents caspase-2 activation. S340 was susceptible to phosphatase 1 dephosphorylation, and an interaction between phosphatase 1 and caspase-2 detected during interphase was lost in mitosis. Expression of S340A non-phosphorylatable caspase-2 abrogated mitotic suppression of caspase-2 and apoptosis in various settings, including oocytes induced to undergo cdk1-dependent maturation. Moreover, U2OS cells treated with nocodazole were found to undergo mitotic catastrophe more readily when endogenous caspase-2 was replaced with the S340A mutant to lift mitotic inhibition. These data demonstrate that for apoptotic stimuli transduced by caspase-2, cell death is prevented during mitosis through the inhibitory phosphorylation of caspase-2 and suggest that under conditions of mitotic arrest, cdk1–cyclin B1 activity must be overcome for apoptosis to occur. PMID:19730412

  20. 3,3'-diindolylmethane potentiates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of gastric cancer cells.

    Science.gov (United States)

    Ye, Yang; Miao, Shuhan; Wang, Yan; Zhou, Jianwei; Lu, Rongzhu

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically kills cancer cells without destroying the majority of healthy cells. However, numerous types of cancer cell, including gastric cancer cells, tend to be resistant to TRAIL. The bioactive product 3,3'-diindolylmethane (DIM), which is derived from cruciferous vegetables, is also currently recognized as a candidate anticancer agent. In the present study, a Cell Counting Kit 8 cell growth assay and an Annexin V-fluorescein isothiocyanate apoptosis assay were performed to investigate the potentiating effect of DIM on TRAIL-induced apoptosis in gastric cancer cells, and the possible mechanisms of this potentiation. The results obtained demonstrated that, compared with TRAIL or DIM treatment alone, co-treatment with TRAIL (25 or 50 ng/ml) and DIM (10 µmol/l) induced cytotoxic and apoptotic effects in BGC-823 and SGC-7901 gastric cancer cells. Furthermore, western blot analysis revealed that the protein expression levels of death receptor 5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were upregulated in the co-treated gastric cancer cells. To the best of our knowledge, the present study is the first to provide evidence that DIM sensitizes TRAIL-induced inhibition of proliferation and apoptosis in gastric cancer cells, accompanied by the upregulated expression of DR5, CHOP and GRP78 proteins, which may be involved in endoplasmic reticulum stress mechanisms.

  1. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin.

    Directory of Open Access Journals (Sweden)

    Sidhartha M Chafekar

    Full Text Available The molecular mechanisms by which polyglutamine (polyQ-expanded huntingtin (Htt causes neurodegeneration in Huntington's disease (HD remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1 are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis.

  2. Induction of Heat Shock Protein Expression in Cervical Epithelial Cells by Human Semen

    Directory of Open Access Journals (Sweden)

    J. C. Jeremias

    1999-01-01

    Full Text Available Objective: The 70kD heat shock protein (Hsp70, induced when cells are subjected to environmental stress, prevents the denaturation and incorrect folding of polypeptides and may expedite replication and transmission of DNA and RNA viruses. We analyzed whether messenger RNA (mRNA for Hsp70 was expressed following exposure of a cultured human cervical cell line (HeLa cells to human semen or in cervical cells from sexually active women.

  3. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  4. Balmer line diagnostic of electron heating at collisionless shocks in supernova remnants

    International Nuclear Information System (INIS)

    Rakowski, C.

    2008-01-01

    The mechanism and extent of electron heating at collisionless shocks has recently been under intense investigation. H α Balmer line emission is excited immediately behind the shock front and provides the best diagnostic for the electron to proton temperature ratio at supernova remnant shocks. Two components of emission are produced, a narrow component from electron and proton impact excitation of cold neutrals, and a broad component produced through charge exchange between the cold neutrals and the shock heated protons. Thus the broad and narrow component fluxes reflect the competition between electron and proton impact ionization, electron and proton impact excitation and charge exchange. This diagnostic has led to the discovery of an approximate inverse square relationship between the electron to proton temperature ratio and the shock velocity. In turn, this implies a constant level of electron heating, independent of shock speed above ∼ 450 km/s. In this talk I will present the observational evidence to date. Time permitting, I will introduce how lower-hybrid waves in an extended cosmic ray precursor could explain such a relationship, and how this and other parameters in the H α profile might relate to properties of cosmic rays and magnetic field amplification ahead of the shock. (author)

  5. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  6. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress–mediated apoptosis: possible implication in asthma

    Science.gov (United States)

    Merendino, Anna M.; Paul, Catherine; Vignola, Antonio M.; Costa, Maria A.; Melis, Mario; Chiappara, Giuseppina; Izzo, V.; Bousquet, J.; Arrigo, André-Patrick

    2002-01-01

    Inflammation of the human bronchial epithelium, as observed in asthmatics, is characterized by the selective death of the columnar epithelial cells, which desquamate from the basal cells. Tissue repair initiates from basal cells that resist inflammation. Here, we have evaluated the extent of apoptosis as well as the Hsp27 level of expression in epithelial cells from bronchial biopsy samples taken from normal and asthmatic subjects. Hsp27 is a chaperone whose expression protects against oxidative stress. We report that in asthmatic subjects the basal epithelium cells express a high level of Hsp27 but no apoptotic morphology. In contrast, apoptotic columnar cells are devoid of Hsp27 expression. Moreover, we observed a decreased resistance to hydrogen peroxide–induced apoptosis in human bronchial epithelial 16–HBE cells when they were genetically modified to express reduced levels of Hsp27. PMID:12482203

  7. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1983-01-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho 0 strain) were used to assess the role of O 2 , mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho 0 yeast grown and heat shocked in either the presence or absence of O 2 are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O 2 , mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes

  8. Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon.

    Directory of Open Access Journals (Sweden)

    Mingyan Lin

    Full Text Available Schizophrenia (SZ and autism spectrum disorders (ASD are highly heritable neuropsychiatric disorders, although environmental factors, such as maternal immune activation (MIA, play a role as well. Cytokines mediate the effects of MIA on neurogenesis and behavior in animal models. However, MIA stimulators can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS-regulated cellular stress pathways. However, this has not been well-studied. To help understand the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39°C for 24 hours, along with their control partners maintained at 37°C. 186 genes showed significant differences in expression following HS (p<0.05, including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain copy number variants (CNVs, although the effects of HS are likely to be transient. The dramatic effect on the expression of some SZ and ASD genes places HS, and perhaps other cellular stressors, into a common conceptual framework with disease-causing genetic variants. The findings also suggest that some candidate genes that are assumed to have a relatively limited impact on SZ and ASD pathogenesis based on a small number of positive genetic findings, such as SMARCA2 and ARNT2, may in fact have a much more substantial role in these disorders - as targets of common environmental stressors.

  9. Inhibition of inducible heat shock protein-70 (hsp72 enhances bortezomib-induced cell death in human bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Wei Qi

    Full Text Available The proteasome inhibitor bortezomib (Velcade is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A(high cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1A(low cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1 to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1A(low cell lines (UM-UC10 and UM-UC13, and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.

  10. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Directory of Open Access Journals (Sweden)

    Jingfei Huang

    Full Text Available Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS generation, activation of mitochondrial permeability transition pores (MPTPs and loss of mitochondrial membrane potential (MMP were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP inhibitor cyclosporin A (CsA, which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  11. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Science.gov (United States)

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  12. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  13. The induced expression of heat shock proteins as a part of the early cellular response to gamma radiation

    International Nuclear Information System (INIS)

    Stankova, K.; Ivanova, K.; Georgieva, R.; Rupova, I.; Boteva, R.

    2008-01-01

    A variety of stressful stimuli including gamma radiation can induce increase in the synthesis of heat shock proteins (Hsp). This family of molecular chaperones includes members with molecular masses ranging from 10 to 150 kDa and has been identified in all organisms from bacteria to humans. Hsp70 chaperones are very important. The present study aimed to characterize the radiation-induced changes in Hsp70 synthesis in human lymphocytes as a part of the early cellular response to gamma irradiation. The expression of Hsp70 was determined with Western blot and the radiation-induced apoptotic changes were registered by staining with fluorescent dyes. Part of the experiments were performed in the presence of the organic solvent DMSO. At low concentrations this reagent shows antioxidant activity and can reduce the level of the radiation-induced oxidant stress which determines the predominant biological effects of the ionizing radiation. Irradiation with 0.5 to 8 Gy caused statistically significant increase in the synthesis of Hsp70 which was strongest after irradiation with 4 Gy. In the range 0.5-2 Gy the enhancement of the radiation-induced synthesis of Hsp70 reached 60%. Our experimental results characterize changes in the Hsp70 synthesis after gamma irradiation as a part of the early cellular stress response in lymphocytes. (authors)

  14. Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis.

    Science.gov (United States)

    Liao, H J; Qian, Q; Liu, X D

    2014-06-01

    Temperature is a key environmental factor in determining the population size of Cnaphalocrocis medinalis in summer. High temperatures inhibit survival, development and fecundity of this insect. However, biological responses of female and male adults to heat shock, and physiological mechanism of high temperature suppressing population development are still ambiguous. We experimentally tested the impact of heat shock (5 h day-1) on biological traits, spermatogenesis and sperm transfer of adults of C. medinalis. The result showed that heat exposure to 39 and 40 °C for 5 h reduced longevity and copulation frequency of adults, and hatchability of eggs. Immediate survival rate of males was lower than that of females after 3 days of exposure to 41 °C. The oviposition period, copulation frequency, fecundity of adults and hatchability of eggs were significantly lower when male adults were exposed to 40 or 41 °C for 3 days. Heat shock decreased frequency and success rate of mating when males were exposed, and it also resulted in postponement of mating behaviour and prolongation of mating duration as both the female and male adults were exposed. Heat shock did not affect spermatogenesis, but significantly inhibited sperms maturation. Moreover, males could not ejaculate sperm into females during copulation when these male moths received heat shock. Heat shock remarkably suppressed mating behaviour and sperm transfer, which led to a dramatic decline of rice leaf folder populations.

  15. Influence of heat shock on germination Na/sup +/ and K/sup +/ leakage and electrical conductivity of imbibed calligonum seeds

    International Nuclear Information System (INIS)

    Ren, J.; Tao, L.

    2016-01-01

    Relationships between mineral leakage and germination characteristics of five Calligonum seed in teat shock treatments were analyzed. The results suggested that heat shock stress for imbibing seeds significantly inhabited the germination and K+ leakage, and induced more seed transform death. The greater EC induced decreasing of germination of five Calligonum species, and seeds with more leakage of K+ performed greater germinability. Increasing of EC and Na+ leakage induced more seed dead. Na+ leakage and EC of germination medium always increased with temperature. K+ in seeds inhabited germination, Na+ in seeds determined the vigor of Calligonum seeds. Na+/K+ and EC both could be considered to be used for indications of seed vigor of Calligonum seeds. (author)

  16. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Thonel, Aurelie de [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); Mezger, Valerie, E-mail: valerie.mezger@univ-paris-diderot.fr [CNRS, UMR7216 Epigenetics and Cell Fate, Paris (France); University Paris Diderot, 75013 Paris (France); Garrido, Carmen, E-mail: valerie.mezger@univ-paris-diderot.fr [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); CHU, Dijon BP1542, Dijon (France)

    2011-03-07

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  17. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    International Nuclear Information System (INIS)

    Thonel, Aurelie de; Mezger, Valerie; Garrido, Carmen

    2011-01-01

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents

  18. A novel protein from edible fungi Cordyceps militaris that induces apoptosis

    Directory of Open Access Journals (Sweden)

    Ke-Chun Bai

    2018-01-01

    Full Text Available Cordyceps militaris is a dietary therapeutic fungus that is an important model species in Cordyceps research. In this study, we purified a novel protein from the fruit bodies of C. militaris and designated it as Cordyceps militaris protein (CMP. CMP has a molecular mass of 18.0 kDa and is not glycosylated. Interestingly, CMP inhibited cell viability in murine primary cells and other cell lines in a time- and dose-dependent manner. Using trypan blue staining and a lactate dehydrogenase release assay, we showed that CMP caused cell death in the murine hepatoma cell line BNL 1MEA.7R.1. Furthermore, the frequency of BNL 1MEA.7R.1 cells at the sub-G1 stage was increased by CMP. Apoptosis, as determined by Annexin V and propidium iodide analysis, indicated that CMP could mediate BNL 1MEA.7R.1 apoptosis, but not necrosis. After coincubation with CMP, a decrease in mitochondria potential was detected using 3,3′-dihexyloxacarbocyanine iodide. These results suggest that CMP is a harmful protein that induces apoptosis through a mitochondrion-dependent pathway. Stability experiments demonstrated that heat treatment and alkalization degraded CMP and further destroyed its cell-death-inducing ability, implying that cooking is necessary for food containing C. militaris.

  19. Circulating Heat Shock Proteins in Women With a History of Recurrent Vulvovaginitis

    Directory of Open Access Journals (Sweden)

    P. C. Giraldo

    1999-01-01

    70-kDa heat shock proteins (hsp60 and hsp70, respectively in the circulation of women with or without a history of recurrent BV or candidal vaginitis and with or without a current lower genital tract infection. Heat shock protein expression is associated with a down-regulation of proinflammatory immune responses that would inhibit microbial infection.

  20. Acquired Thermotolerance and Heat Shock Proteins in Thermophiles from the Three Phylogenetic Domains

    DEFF Research Database (Denmark)

    Trent, Jonathan D.; Gabrielsen, Mette; Jensen, Bo

    1994-01-01

    Thermophilic organisms from each of the three phylogenetic domains (Bacteria, Archaea, and Eucarya) acquired thermotolerance after heat shock. Bacillus caldolyticus grown at 60 degrees C and heat shocked at 69 degrees C for 10 min showed thermotolerance at 74 degrees C, Sulfolobus shibatae grown...

  1. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2016-07-01

    Full Text Available Background: Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. Methods: BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-κB p65 and phosphorylated NF-κB p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-κB were activated by BAG3 overexpression, and the NF-κB inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. Conclusion: these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-κB signaling pathway in hypoxia-injured cardiomyocytes.

  2. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    Science.gov (United States)

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  3. Electron heating, magnetic field amplification, and cosmic-ray precursor length at supernova remnant shocks

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States); Hwang, Una [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Rakowski, Cara, E-mail: laming@nrl.navy.mil, E-mail: Una.Hwang-1@nasa.gov, E-mail: pghavamian@towson.edu

    2014-07-20

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and it may be quenched by either nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to 10{sup 17}-10{sup 18} cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly generated shock precursor, which when expressed in terms of the cosmic-ray diffusion coefficient kappav and shock velocity v{sub s} is kappav/v{sub s} . In the nonresonantly saturated case, the precursor length declines less quickly with increasing v{sub s} . Where precursor length proportional to 1/v{sub s} gives constant electron heating, this increased precursor length could be expected to lead to higher electron temperatures for nonresonant amplification. This should be expected at faster supernova remnant shocks than studied by previous works. Existing results and new data analysis of SN 1006 and Cas A suggest some observational support for this idea.

  4. Fas-induced apoptosis in malnourished infants

    African Journals Online (AJOL)

    EL-HAKIM

    deprivation in animals, including man11. Factor of apoptosis signal (Fas) induces apoptosis in activated T cells when they are repeatedly stimulated by antigen and functions to maintain T cell tolerance by deleting auto reactive cells12. The functional role of Fas (CD95) in the immune system has been examined in a variety ...

  5. Ketamine-induced apoptosis in cultured rat cortical neurons

    International Nuclear Information System (INIS)

    Takadera, Tsuneo; Ishida, Akira; Ohyashiki, Takao

    2006-01-01

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons

  6. IRES-dependent translational control during virus-induced endoplasmic reticulum stress and apoptosis

    Directory of Open Access Journals (Sweden)

    Paul eHanson

    2012-03-01

    Full Text Available Many virus infections and stresses can induce endoplasmic reticulum (ER stress response, a host self defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to IRES (internal ribosome entry sites-dependent. This switching is largely dependent on the mRNA structure of the 5’untranslated region (5’UTR and on the particular stress stimuli. Picornviruses and some other viruses contain an IRES within their 5’UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5’UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation of host factors for translation initiation, over-production of homologous proteins of cap-binding protein eIF4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.

  7. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation

  8. Effects of HSP27 chaperone on THP-1 tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Maroshkina, A N; Belkina, M V

    2012-11-01

    The role of Hsp27 (heat shock protein 27) chaperone in regulation of THP-1 tumor cell apoptosis was studied. Realization of tumor cell apoptosis under conditions of in vitro culturing with Hsp27 specific inhibitor (KRIBB3) was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Measurements of Bcl-2 family proteins (Bcl-2, Bax, Bad) in tumor cells incubated with Hsp27 inhibitor were carried out by Western blotting. Chaperone Hsp27 acted as apoptosis inhibitor in THP-1 tumor cells modulating the proportion of antiapoptotic (Bcl-2) and proapoptotic (Bax and Bad) proteins.

  9. Caloric restriction induces heat shock response and inhibits B16F10 cell tumorigenesis both in vitro and in vivo

    Science.gov (United States)

    Novelle, Marta G.; Davis, Ashley; Price, Nathan L.; Ali, Ahmed; Fürer-Galvan, Stefanie; Zhang, Yongqing; Becker, Kevin; Bernier, Michel; de Cabo, Rafael

    2015-01-01

    Caloric restriction (CR) without malnutrition is one of the most consistent strategies for increasing mean and maximal lifespan and delaying the onset of age-associated diseases. Stress resistance is a common trait of many long-lived mutants and life-extending interventions, including CR. Indeed, better protection against heat shock and other genotoxic insults have helped explain the pro-survival properties of CR. In this study, both in vitro and in vivo responses to heat shock were investigated using two different models of CR. Murine B16F10 melanoma cells treated with serum from CR-fed rats showed lower proliferation, increased tolerance to heat shock and enhanced HSP-70 expression, compared to serum from ad libitum-fed animals. Similar effects were observed in B16F10 cells implanted subcutaneously in male C57BL/6 mice subjected to CR. Microarray analysis identified a number of genes and pathways whose expression profile were similar in both models. These results suggest that the use of an in vitro model could be a good alternative to study the mechanisms by which CR exerts its anti-tumorigenic effects. PMID:25948793

  10. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  11. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  12. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    Science.gov (United States)

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  13. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  14. Prevention of Trauma/Hemorrhagic Shock-Induced Mortality, Apoptosis, Inflammation and Mitochondrial Dysfunction

    Science.gov (United States)

    2012-12-01

    delineated, we investigated 5 the unfolded protein response (UPR), which, with marked activation, can lead to 6 apoptosis. Prior studies of hepatic and...to 10 liver disease has been investigated in liver diseases such as steatosis 15,16, 11 ischemia/reperfusion injury 17,18 and T/HS 19,20. The...the observed reversible 7 hepatic apoptosis. Unbiased hierarchical clustering of our experimental animals based 8 on intervention group and entity

  15. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12.

    Science.gov (United States)

    Trent, J D; Osipiuk, J; Pinkau, T

    1990-03-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.

  16. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    Science.gov (United States)

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  17. Heat shock protein 90-sheltered overexpression of insulin-like growth factor 1 receptor contributes to malignancy of thymic epithelial tumors.

    Science.gov (United States)

    Breinig, Marco; Mayer, Philipp; Harjung, Andreas; Goeppert, Benjamin; Malz, Mona; Penzel, Roland; Neumann, Olaf; Hartmann, Arndt; Dienemann, Hendrik; Giaccone, Giuseppe; Schirmacher, Peter; Kern, Michael André; Chiosis, Gabriela; Rieker, Ralf Joachim

    2011-04-15

    The underlying molecular mechanisms of thymic epithelial malignancies (TEMs) are poorly understood. Consequently, there is a lack of efficacious targeted therapies and patient prognosis remains dismal, particularly for advanced TEMs. We sought to investigate protumorigenic mechanism relevant to this understudied cancer. Recently established cell lines derived from thymic epithelial tumors were used as a model system. The antitumor activity of specific heat shock protein 90 (Hsp90) inhibitors was investigated by an analysis of cell viability, cell cycle, and apoptosis using MTT-assays and flow cytometry. Western blotting was used to investigate the altered expression of Hsp90 clients. Pharmacological inhibitors against select Hsp90 clients, as well as RNAi, were employed to test the relevance of each client independently. Tissue microarray analysis was performed to match the in vitro findings with observations obtained from patient-derived samples. Hsp90 inhibition significantly reduces cell viability of thymic carcinoma cells, induces cell cycle arrest and apoptosis, and blocks invasiveness. Hsp90 inhibition triggers the degradation of multiple oncogenic clients, for example insulin-like growth factor 1 receptor (IGF-1R), CDK4, and the inactivation of PI3K/Akt and RAF/Erk signaling. Mechanistically, the IGF/IGF-1R-signaling axis contributes to the establishment of the antiapoptotic phenotype of thymic cancer cells. Finally, IGF-1R is overexpressed in advanced TEMs. We have unraveled a novel protumorigenic mechanism in TEMs, namely Hsp90-capacitated overexpression of IGF-1R, which confers apoptosis evasion in malignant thymic epithelial cells. Our data indicate that Hsp90 inhibition, which simultaneously blocks multiple cancer hallmarks, represents a therapeutic strategy in TEMs that may merit evaluation in clinical trials. ©2011 AACR.

  18. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    Science.gov (United States)

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-09-01

    Previous studies have demonstrated differences in thermotolerance between two wing morphs of Nilaparvata lugens, the most serious pest of rice across the Asia. To reveal the molecular regulatory mechanisms underlying the differential thermal resistance abilities between two wing morphs, a full-length of transcript encoding heat shock cognate protein 70 (Hsc70) was cloned, and its expression patterns across temperature gradients were analyzed. The results showed that the expression levels of NlHsc70 in macropters increased dramatically after heat shock from 32 to 38°C, while NlHsc70 transcripts in brachypters remained constant under different temperature stress conditions. In addition, NlHsc70 expression in the macropters was significantly higher than that in brachypters at 1 and 2h recovery from 40°C heat shock. There was no significant difference in NlHsc70 mRNA expression between brachypters and macropters under cold shock conditions. Therefore, NlHsc70 was indeed a constitutively expressed member of the Hsp70 family in brachypters of N. lugens, while it was heat-inducible in macropters. Furthermore, the survival rates of both morphs injected with NlHsc70 dsRNA were significantly decreased following heat shock at 40°C or cold shock at 0°C for 1h. These results suggested that the up-regulation of NlHsc70 is possibly related to the thermal resistance, and the more effective inducement expression of NlHsc70 in macropters promotes a greater thermal tolerance under temperature stress conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis.

    Science.gov (United States)

    Xu, Shu-Jun; Liu, Chun-Jiang; Jiang, Ping-An; Cai, Wei-Min; Wang, Yan

    2009-03-15

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 degrees C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 degrees C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs.

  1. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis

    International Nuclear Information System (INIS)

    Xu Shujun; Liu Chunjiang; Jiang Pingan; Cai Weimin; Wang Yan

    2009-01-01

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 deg. C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 deg. C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs

  2. N,N'-dinitrosopiperazine--mediated heat-shock protein 70-2 expression is involved in metastasis of nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Zhengke Peng

    Full Text Available N,N'-Dinitrosopiperazine (DNP is invovled in nasopharyngeal carcinoma (NPC development and metastasis, and it shows organ specificity to the nasopharyngeal epithelium. Herein, we demonstrate that DNP induces heat-shock protein (HSP 70-2 expression in NPC cells (6-10B at a non-cytotoxic concentration. DNP induced HSP70-2 expression in a dose- and time- dependent manner, but showed no effect on other HSP70 family members. Furthermore, DNP also increased HSP70-2 RNA transcription through directly binding to the hypoxia-responsive elements (HRE and heat shock elements (HSE located in the HSP70-2 promoter. DNP-mediated HSP70-2 expression might act through enhancing the transcription of HSP70-2 RNA. Importantly, DNP induced motility and invasion of 6-10B cells dose- and time-dependently, and DNP-mediated NPC metastasis was confirmed in nude mice, which showed high HSP70-2 expression in the metastatic tumor tissue. However, the motility and invasion of NPC cells that were stably transfected using short interfering RNA against HSP70-2 could not effectively induce DNP. These results indicate that DNP induces HSP70-2 expression through increasing HSP70-2 transcription, increases the motility and invasion of cells, and promotes NPC tumor metastasis. Therefore, DNP mediated HSP70-2 expression may be an important factor of NPC-high metastasis.

  3. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  4. Novel Functional Role of Heat Shock Protein 90 in Mitochondrial Connexin 43-Mediated Hypoxic Postconditioning

    Directory of Open Access Journals (Sweden)

    Rong-Hui Tu

    2017-11-01

    Full Text Available Background/Aims: Previous studies have shown that heat shock protein 90 (HSP90-mediated mitochondrial import of connexin 43 (Cx43 is critical in preconditioning cardioprotection. The present study was designed to test whether postconditioning has the same effect as preconditioning in promoting Cx43 translocation to mitochondria and whether mitochondrial HSP90 modulates this effect. Methods: Cellular models of hypoxic postconditioning (HPC from rat heart-derived H9c2 cells and neonatal rat cardiomyocytes were employed. The effects of HPC on cardiomyocytes apoptosis were examined by flow cytometry and Hoechst 33342 fluorescent staining. Reactive oxidative species (ROS production was assessed with the peroxide-sensitive fluorescent probe 2′,7′-dichlorofluorescin in diacetate (DCFH-DA. The anti- and pro-apoptotic markers Bcl-2 and Bax, HSP90 and Cx43 protein levels were studied by Western blot analysis in total cell homogenate and sarcolemmal and mitochondrial fractions. The effects on HPC of the HSP90 inhibitor geldanamycin (GA, ROS scavengers superoxide dismutase (SOD and catalase (CAT, and small interfering RNA (siRNA targeting Cx43 and HSP90 were also investigated. Results: HPC significantly reduced hypoxia/reoxygenation (H/R-induced cardiomyocyte apoptosis. These beneficial effects were accompanied by an increase in Bcl-2 levels and a decrease in Bax levels in both sarcolemmal and mitochondrial fractions. HPC with siRNA targeting Cx43 or the ROS scavengers SOD plus CAT significantly prevented ROS generation and HPC cardioprotection, but HPC with either SOD or CAT did not. These data strongly supported the involvement of Cx43 in HPC cardioprotection, likely via modulation of the ROS balance which plays a central role in HPC protection. Furthermore, HPC increased total and mitochondrial levels of HSP90 and the mitochondria-to-sarcolemma ratio of Cx43; blocking the function of HSP90 with the HSP90 inhibitor geldanamycin (GA or siRNA targeting

  5. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    Science.gov (United States)

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  6. Virus-Heat Shock Protein Interaction and a Novel Axis for Innate Antiviral Immunity

    Directory of Open Access Journals (Sweden)

    Michael Oglesbee

    2012-09-01

    Full Text Available Virus infections induce heat shock proteins that in turn enhance virus gene expression, a phenomenon that is particularly well characterized for the major inducible 70 kDa heat shock protein (hsp70. However, hsp70 is also readily induced by fever, a phylogenetically conserved response to microbial infections, and when released from cells, hsp70 can stimulate innate immune responses through toll like receptors 2 and 4 (TLR2 and 4. This review examines how the virus-hsp70 relationship can lead to host protective innate antiviral immunity, and the importance of hsp70 dependent stimulation of virus gene expression in this host response. Beginning with the well-characterized measles virus-hsp70 relationship and the mouse model of neuronal infection in brain, we examine data indicating that the innate immune response is not driven by intracellular sensors of pathogen associated molecular patterns, but rather by extracellular ligands signaling through TLR2 and 4. Specifically, we address the relationship between virus gene expression, extracellular release of hsp70 (as a damage associated molecular pattern, and hsp70-mediated induction of antigen presentation and type 1 interferons in uninfected macrophages as a novel axis of antiviral immunity. New data are discussed that examines the more broad relevance of this protective mechanism using vesicular stomatitis virus, and a review of the literature is presented that supports the probable relevance to both RNA and DNA viruses and for infections both within and outside of the central nervous system.

  7. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    International Nuclear Information System (INIS)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-01-01

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  8. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam, E-mail: sganesh@iitk.ac.in

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  9. Induction of Triploidy in Clarias Gariepinus by Heat Shock of ...

    African Journals Online (AJOL)

    Eggs and milt were collected from female and male Clarias gariepinus respectively. Fertilized eggs were given heat-shock at 40 and 41oC for 4.5 minutes duration. The eggs were shocked at different post fertilization periods viz: immediately after fertilization, 2, 3, 4, 5 and 6 mins after fertilization. Percentage hatchability for ...

  10. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    Science.gov (United States)

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  11. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  12. Radiation-induced apoptosis in F9 teratocarcinoma cells

    International Nuclear Information System (INIS)

    Langley, R.E.; Palayoor, S.T.; Coleman, C.N.; Bump, E.A.

    1994-01-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author)

  13. Radiation-induced apoptosis in F9 teratocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R E; Palayoor, S T; Coleman, C N; Bump, E A [Joint Center for Radiation Therapy and Dana Farber Cancer Inst., Boston (United States)

    1994-05-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-[beta]-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author).

  14. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    International Nuclear Information System (INIS)

    Friesen, Claudia; Lubatschofski, Annelie; Debatin, Klaus-Michael; Kotzerke, Joerg; Buchmann, Inga; Reske, Sven N.

    2003-01-01

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-x L , a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  15. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  16. The apoptosis of CHO cells induced by X-rays

    International Nuclear Information System (INIS)

    Lu Zhaohong; Zhao Jingyong; Zhu Mingqing; Shi Xijin; Wang Chunlei

    2004-01-01

    The work is to study the mechanism of toxic effects on reproductive system and apoptosis of Chinese hamster ovary (CHO) cells induced by X-rays. CHO cell was exposed to X-rays 2 to 20 Gy. Apoptosis and morphological changes of the cells were observed by fluorescent microscopy and flow cytometry analyzer with double staining with Annexin V/PI. The apoptosis could be observed at 24, 48 and 72h after the exposure, but it was more obvious 48 and 72 h after the exposure. Rate of the apoptosis increased along with radiation dose were elevated. Some morphological changes, such as irregular agglomerate of chromatins, pycnosis and periphery distribution of nuclei, crescent-moon-like cells, small apoptosis body, were observed. Radiation results DNA damage in the CHO cells, and the damage cannot be repaired, hence the induced cell apoptosis. (authors)

  17. Sequential activation of proteases in radiation induced apoptosis

    International Nuclear Information System (INIS)

    Watters, D.; Waterhouse, N.

    1997-01-01

    Full text: Significant advances have been made in recent years in unraveling the molecular mechanisms of apoptosis particularly in relation to Fas- and TNF-mediated cell death, however there are considerable gaps in our knowledge of the processes involved in apoptosis induced by ionizing radiation. We have used the degradation of specific proteolytic targets in a pair of isogenic Burkitt's Iymphoma cells lines (BL30A, sensitive and BL30K resistant) to study the sequence of events in the execution of radiation-induced apoptosis. Fodrin can be cleaved to fragments of 150 kDa and 120 kDa. In the case of Fas-mediated apoptosis both cleavages are inhibited by the caspase inhibitor zVAD-fmk at 10 μM, a concentration which inhibits all the hallmarks of apoptosis. However in radiation-induced apoptosis, inhibition of the clevage of fodrin to the 150 kDa fragment requires 100 μM zVAD-fink while apoptosis itself is inhibited at 10 μM. This suggests that different enzymes are responsible for the generation of the 150 kDa fragment in the two models of apoptosis. Fodrin has been reported to be cleaved by μ-calpain to a 150 kDa fragment however, the involvement of μ-calpain in apoptosis has not yet been established. In murine fodrin there is a caspase cleavage site within 1 kDa of the calpain cleavage site. In vitro studies using purified enzymes showed that only caspase-3 and μ-calpain could cleave fodrin in untreated cell extracts to the same sized fragments as seen during apoptosis in vivo. We provide evidence for the early activation of μ-calpain after ionizing radiation in the sensitive BL30A cell line, and show that the time course of μ-calpain activation parallels that of the appearance of the 150 kDa fragment. Caspase-3 is activated much later and is likely to be responsible for the generation of the 120 kDa fragment. μ-Calpain was not activated in the resistant cell line. Based on these results we propose a model for the proteolytic cascade in radiation-induced

  18. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  19. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    NARCIS (Netherlands)

    Greijer, A.E.; Wall, E. van der

    2004-01-01

    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory

  20. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  1. The effects of cysteamine on the radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Choi, Young Min; Cho, Heung Lae; Park, Chang Gyo; Lee, Hyung Sik; Hur, Won Joo

    2000-01-01

    To investigate the pathways of radiation induced apoptosis and the effect of cysteamine (β-mercaptoethylamine), as a radioprotector, on it. HL-60 cells were assigned to control, irradiated, and cysteamine (1 mM, 10 mM) pretreated groups. Irradiation was given in a single fraction of 10 Gy (6 MV x-ray) and cysteamine was administered 1 hour before irradiation. The activities of caspase-8 were measured in control and irradiated group to evaiuate its relation to the radiation induced apoptosis. To evaluate the role of cysteamine in radiation induced apoptosis, the number of viable cells, the expression and activity or caspase-3, and the expression of poly (ADP-ribose) polymerase (PARP) were measured and compared after irradiating the HL cells with cysteamine pretreatment or not. The intracellular caspase-8 activity, known to be related to the death receptor induced apoptosis, was not affected by irradiation( p>0.05). The number of viable cells began to decrease from 6 hours after irradiation (p>0.05), but the number of viable cells in 1 mM cysteamine pretreated group was not decreased after irradiation and was similar to those in the control group. In caspase-3 analyses, known as apoptosis executioner, its expression was not different but its activity was increased by irradialion(p>0.05). However, this increase of activity was suppressed by the pretreatment of 1 mM cysteamine. The cleavage of PARP, thought to be resulted from caspase-3 activation, occurred, after irradiation, which was attenuated by the pretreatment of 1 mM cysteamine. These results show that radiation induced apoptotic process is somewhat different from death receptor induced one and the pretreatment of 1 mM cysteamine has a tendency to decrease the radiation-induced apoptosis in HL-60 cells

  2. MicroRNAs regulate B-cell receptor signaling-induced apoptosis

    NARCIS (Netherlands)

    Kluiver, J. L.; Chen, C-Z

    Apoptosis induced by B-cell receptor (BCR) signaling is critical for antigen-driven selection, a process critical to tolerance and immunity. Here, we examined the roles of microRNAs (miRNAs) in BCR signaling-induced apoptosis using the widely applied WEHI-231 model. Comparison of miRNA levels in

  3. The characteristics and mechanism of apoptosis induced by internal irradiation

    International Nuclear Information System (INIS)

    Hong Chengjiao; Zhang Junning; Zhu Shoupeng

    2001-01-01

    Apoptosis in tumor cells induced by radionuclides is likely the most effective way to cure cancer. In order to explore the possibility in clinic application, the characteristics and mechanism of apoptosis induced by internal irradiation were investigated. The apoptosis and expressions of bcl-2mRNA, bcl-2 and bax of K 562 cells following internal exposure with different accumulated absorbed doses of strontium-89 were studied. 6 h after irradiation, the characteristics of apoptosis and necrosis appeared in K 562 cells. The apoptosis and necrosis enhanced with the prolongation of internally contaminated time at 6 h, 9 h, 12 h, 24 h and 48 h. The expressions of bcl-2mRNA decreased at 12 h, most remarkably at 24 h. The expressions of bcl-2 decreased after irradiation whereas bax had no obvious changes. The results suggest that the apoptosis induced by internal exposure may be regulated by lower expressions of bcl-2mRNA and bcl-2, lower bcl-2/bax value

  4. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  5. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  6. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells

    Directory of Open Access Journals (Sweden)

    Li Y

    2016-07-01

    Full Text Available Yinghua Li,1 Zhengfang Lin,1 Mingqi Zhao,1 Tiantian Xu,1 Changbing Wang,1 Huimin Xia,1,* Hanzhong Wang,2,* Bing Zhu1,* 1Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, 2State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Small interfering RNA (siRNA as a new therapeutic modality holds promise for cancer treatment, but it is unable to cross cell membrane. To overcome this limitation, nanotechnology has been proposed for mediation of siRNA transfection. Selenium (Se is a vital dietary trace element for mammalian life and plays an essential role in the growth and functioning of humans. As a novel Se species, Se nanoparticles have attracted more and more attention for their higher anticancer efficacy. In the present study, siRNAs with polyethylenimine (PEI-modified Se nanoparticles (Se@PEI@siRNA have been demonstrated to enhance the apoptosis of HepG2 cells. Heat shock protein (HSP-70 is overexpressed in many types of human cancer and plays a significant role in several biological processes including the regulation of apoptosis. The objective of this study was to silence inducible HSP70 and promote the apoptosis of Se-induced HepG2 cells. Se@PEI@siRNA were successfully prepared and characterized by various microscopic methods. Se@PEI@siRNA showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. The cytotoxicity of Se@PEI@siRNA was lower for normal cells than tumor cells, indicating that these compounds may have fewer side effects. The gene-silencing efficiency of Se@PEI@siRNA was significantly much higher than Lipofectamine 2000@siRNA and resulted in a significantly reduced HSP70 mRNA and protein expression in cancer cells. When the expression of HSP70 was diminished, the function of cell protection was also removed and cancer cells became more

  7. Apoptosis-induced lymphopenia in sepsis and other severe injuries.

    Science.gov (United States)

    Girardot, Thibaut; Rimmelé, Thomas; Venet, Fabienne; Monneret, Guillaume

    2017-02-01

    Sepsis and other acute injuries such as severe trauma, extensive burns, or major surgeries, are usually followed by a period of marked immunosuppression. In particular, while lymphocytes play a pivotal role in immune response, their functions and numbers are profoundly altered after severe injuries. Apoptosis plays a central role in this process by affecting immune response at various levels. Indeed, apoptosis-induced lymphopenia duration and depth have been associated with higher risk of infection and mortality in various clinical settings. Therapies modulating apoptosis represent an interesting approach to restore immune competence after acute injury, although their use in clinical practice still presents several limitations. After briefly describing the apoptosis process in physiology and during severe injuries, we will explore the immunological consequences of injury-induced lymphocyte apoptosis, and describe associations with clinically relevant outcomes in patients. Therapeutic perspectives targeting apoptosis will also be discussed.

  8. Angiotensin II protects primary rat hepatocytes against bile salt-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available UNLABELLED: Angiotensin II (AT-II is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R and thereby activates hepatic stellate cells (HSCs. AT-II receptor blockers (ARBs are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that AT-1R blockers may induce hepatocyte injury. Therefore, we investigated the effect of AT-II and its receptor blockers on cytokine-, oxidative stress- and bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to TNF-α/Actinomycin D, the ROS-generating agent menadione or the bile salts: glycochenodeoxycholic acid (GCDCA and tauro-lithocholic acid-3 sulfate (TLCS, to induce apoptosis. AT-II (100 nmol/L was added 10 minutes prior to the cell death-inducing agent. AT-1R antagonists (Sartans and the AT-2R antagonist PD123319 were used at 1 µmol/L. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (Sytox green staining were quantified. Expression of CHOP (marker for ER stress and AT-II receptor mRNAs were quantified by Q-PCR. AT-II dose-dependently reduced GCDCA-induced apoptosis of hepatocytes (-50%, p<0.05 without inducing necrosis. In addition, AT-II reduced TLCS-induced apoptosis of hepatocytes (-50%, p<0.05. However, AT-II did not suppress TNF/Act-D and menadione-induced apoptosis. Only the AT-1R antagonists abolished the protective effect of AT-II against GCDCA-induced apoptosis. AT-II increased phosphorylation of ERK and a significant reversal of the protective effect of AT-II was observed when signaling kinases, including ERK, were inhibited. Moreover, AT-II prevented the GCDCA-induced expression of CHOP (the marker of the ER-mediated apoptosis. CONCLUSION: Angiotensin II protects hepatocytes from bile salt-induced apoptosis through a combined activation of PI3-kinase, MAPKs, PKC pathways and inhibition of bile salt-induced ER stress. Our results suggest a mechanism for the observed hepatocyte

  9. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Xiaotao Ding

    Full Text Available Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  10. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows.

    Science.gov (United States)

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; B, Indu; Aarif, Ovais

    2017-06-01

    Thermal stress in India is one of the major constraints affecting dairy cattle productivity. Every attempt should be made to ameliorate the heat and calving related stress in high producing dairy cows for higher economic returns. In the current study, inorganic zinc was tried to alleviate the adverse effects of thermal stress in periparturient cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were chosen for the experiment. The blood samples were collected periparturiently on three occasions viz. -21, 0 and +21 days relative to calving. The in vitro study was conducted after isolating peripheral blood mononuclear cells (PBMC) from whole blood. The cultured PBMC were subjected to three different levels of exposures viz. 37°C as control, 42°C to induce thermal stress and 42°C + zinc to ameliorate the adverse effects of high temperature. Heat shock lead to a significant (Pheat shock proteins (HSP). HSP was more on the day of calving as well. KF showed more HSP concentration than Sahiwal breed indicating the heat bearing capacity of later. Zinc treatment to thermally stressed PBMC caused a fall in the HSP concentration in both the breeds during periparturient period. Moreover, heat stress increased significantly (PHeat and calving related stress caused a fall in the IL-12 levels which increased significantly (Pcows. The study could help to alleviate the heat stress and potentiate immunity by providing mineral supplements in periparturient dairy cattle habituating tropics. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J

    2006-01-01

    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of ... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  12. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    Science.gov (United States)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  13. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus

    International Nuclear Information System (INIS)

    Zhang, Yingying; Cheng, Mengqian; Wu, Lang; Zhang, Guo; Wang, Zaizhao

    2016-01-01

    Highlights: • Adult male G. rarus were exposed to 225 μg/L BPA for 7, 21 and 63 days. • BPA could induce spermatocyte apoptosis in rare minnow testis. • The mitochondrial apoptotic pathway participated in the germ cell apoptosis. • The spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest. - Abstract: Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not’ been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225 μg L"−"1 (0.99 μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.

  14. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Cheng, Mengqian; Wu, Lang; Zhang, Guo; Wang, Zaizhao, E-mail: zzwang@nwsuaf.edu.cn

    2016-10-15

    Highlights: • Adult male G. rarus were exposed to 225 μg/L BPA for 7, 21 and 63 days. • BPA could induce spermatocyte apoptosis in rare minnow testis. • The mitochondrial apoptotic pathway participated in the germ cell apoptosis. • The spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest. - Abstract: Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not’ been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225 μg L{sup −1} (0.99 μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.

  15. cDNA cloning and mRNA expression of heat shock protein 70 gene ...

    African Journals Online (AJOL)

    In this study, the full-length heat shock protein 70 of Tegillarca granosa was cloned from cDNA library by rapid amplification of cDNA end (RACE). The open reading frame (ORF) of heat shock protein 70 was 1968 bp, and it encoded a protein of 655 amino acids with a predicted molecular weight of 71.48 kDa and an ...

  16. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  17. Small heat shock protein message in etiolated Pea seedlings under altered gravity

    Science.gov (United States)

    Talalaiev, O.

    Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion

  18. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    Science.gov (United States)

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  19. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  20. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    Science.gov (United States)

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  1. Heat shock protein 70 and heat shock protein 90 expression in light- and dark-adapted adult octopus retinas.

    Science.gov (United States)

    Ochoa, Gina H; Clark, Ying Mei; Matsumoto, Brian; Torres-Ruiz, Jose A; Robles, Laura J

    2002-02-01

    Light- and dark-adaptation leads to changes in rhabdom morphology and photopigment distribution in the octopus retina. Molecular chaperones, including heat shock proteins (Hsps), may be involved in specific signaling pathways that cause changes in photoreceptor actin- and tubulin-based cytoskeletons and movement of the photopigments, rhodopsin and retinochrome. In this study, we used immunoblotting, in situ RT-PCR, immunofluorescence and confocal microscopy to localize the inducible form of Hsp70 and the larger Hsp90 in light- and dark-adapted and dorsal and ventral halves of adult octopus retinas. The Hsps showed differences in distribution between the light and dark and in dorsal vs. ventral position in the retina. Double labeling confocal microscopy co-localized Hsp70 with actin and tubulin, and Hsp90 with the photopigment, retinochrome. Our results demonstrate the presence of Hsp70 and Hsp90 in otherwise non-stressed light- and dark-adapted octopus retinas. These Hsps may help stabilize the cytoskeleton, important for rhabdom structure, and are perhaps involved in the redistribution of retinochrome in conditions of light and dark.

  2. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.

    Science.gov (United States)

    Kim, Eun-Ae; Jang, Ji-Hoon; Lee, Yun-Han; Sung, Eon-Gi; Song, In-Hwan; Kim, Joo-Young; Kim, Suji; Sohn, Ho-Yong; Lee, Tae-Jin

    2014-07-01

    Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.

  3. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.

    Science.gov (United States)

    Gao, Caiqiu; Jiang, Bo; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping

    2012-04-01

    It is well known that plant heat shock proteins (HSPs) play important roles both in response to adverse environmental conditions and in various developmental processes. However, among plant HSPs, the functions of tree plant HSPs are poorly characterized. To improve our understanding of tree HSPs, we cloned and characterized an HSP gene (ThHSP18.3) from Tamarix hispida. Sequence alignment reveals that ThHSP18.3 belongs to the class I small heat shock protein family. A transient expression assay showed that ThHSP18.3 protein was targeted to the cell nucleus. Treatment of Tamarix hispida with cold and heat shock highly induced ThHSP18.3 expression in all studied leaves, roots and stems, whereas, treatment of T. hispida with NaCl, NaHCO(3), and PEG induced ThHSP18.3 expression in leaves and decreased its expression in roots and stems. Further, to study the role of ThHSP18.3 in stress tolerance under different stress conditions, we cloned ThHSP18.3 into the pYES2 vector, transformed and expressed the vector in yeast Saccharomyces cerevisiae. Yeast cells transformed with an empty pYES2 vector were employed as a control. Compared to the control, yeast cells expressing ThHSP18.3 showed greater tolerance to salt, drought, heavy metals, and both low and high temperatures, indicating that ThHSP18.3 confers tolerance to these stress conditions. These results suggested that ThHSP18.3 is involved in tolerance to a variety of stress conditions in T. hispida.

  4. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    Science.gov (United States)

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  5. Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Bensassi, Fatma; El Golli-Bennour, Emna; Abid-Essefi, Salwa; Bouaziz, Chayma; Hajlaoui, Mohamed Rabeh; Bacha, Hassen

    2009-01-01

    The mycotoxin, deoxynivalenol (DON), is generally detected in cereal grains and grain-based food products worldwide. Therefore, DON has numerous toxicological effects on animals and humans. The present investigation was conducted to determine the molecular aspects of DON toxicity on human colon carcinoma cells (HT 29). To this aim, we have monitored the effects of DON on (i) cell viability, (ii) Heat shock protein expressions as a parameter of protective and adaptive response, (iii) oxidative damage and (iv) cell death signalling pathway. Our results clearly showed that DON treatment inhibits cell proliferation, did not induce Hsp 70 protein expression and reactive oxygen species generation. We have also demonstrated that this toxin induced a DNA fragmentation followed by p53 and caspase-3 activations. Finally, our findings suggested that oxidative damage is not the major contributor to DON toxicity. This mycotoxin induces direct DNA lesions and could be considered by this fact as a genotoxic agent inducing cell death via an apoptotic process.

  6. Dose-effect relationship of apoptosis induced by fission-neutron in murine thymocytes

    International Nuclear Information System (INIS)

    Yuan Bin; Li Liang; Xue Wencheng; Sun Jianmin; Wang Baoqin

    2000-01-01

    Objective: To investigate the effectiveness of high LET fission-neutron to induce apoptosis in murine thymocytes and to compare it with that of low LET 60 Co γ-ray. Methods: Apoptosis induction was studied qualitatively by light and transmission electron microscopy and DNA gel electrophoresis,also quantitatively by flow cytometry(FCM) and diphenylamine (DPA)methods. Results: DNA ladders of murine thymocytes were detectable, the typical apoptosis of thymocytes could be observed morphologically by means of light and electron microscopy at 6 h after fission-neutron irradiation with doses ranging from 0.5 to 5.0 Gy, meanwhile the percentages of apoptosis increased with increasing doses. After exposure to γ-rays with doses ranging from 1.0 to 30 Gy, the experimental results were similar to those from neutron radiation. The incidence of apoptosis peaked at about 20 Gy, the percentages did not increase further when doses increased. Conclusion: Apoptosis of murine thymocytes can be induced when mice are exposed to either fission-neutron (0.5-5.0 Gy) or to γ-ray (1-30 Gy). Although the relationship between apoptosis and radiation doses is similar, the percentage of apoptosis induced by neutron irradiation is higher than that induced by γ-irradiation. The RBE values of fission-neutron for inducing apoptosis murine thymocytes are 2.09 (by FCM method) and 2.37 (by DPA method), respectively. These results also suggest that fission-neutron-induced murine immune tissue is more severe than that induced by γ-rays at several hours post-irradiation and this might be the basis for heavy damage to immune tissues induced by fission-neutron-irradiation in later period

  7. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    International Nuclear Information System (INIS)

    Li Tie; Lu Luo

    2007-01-01

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFκB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells

  8. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  9. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    Science.gov (United States)

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (Pshock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (Pstress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  10. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis

    International Nuclear Information System (INIS)

    Graaf, Aniek O. de; Heuvel, Lambert P. van den; Dijkman, Henry B.P.M.; Abreu, Ronney A. de; Birkenkamp, Kim U.; Witte, Theo de; Reijden, Bert A. van der; Smeitink, Jan A.M.; Jansen, Joop H.

    2004-01-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity

  11. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis.

    Science.gov (United States)

    de Graaf, Aniek O; van den Heuvel, Lambert P; Dijkman, Henry B P M; de Abreu, Ronney A; Birkenkamp, Kim U; de Witte, Theo; van der Reijden, Bert A; Smeitink, Jan A M; Jansen, Joop H

    2004-10-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.

  12. Effect of bFGF on radiation-induced apoptosis of vascular endothelial cells

    International Nuclear Information System (INIS)

    Gu Qingyang; Wang Dewen; Li Yuejuan; Peng Ruiyun; Dong Bo; Wang Zhaohai; Liu Jie; Deng Hua; Jiang Tao

    2003-01-01

    Objective: To study the effect of bFGF on radiation-induced apoptosis vascular endothelial cells. Methods: A cell line PAE (porcine aortic endothelial cells) and primary cultured HUVEC (human umbilical vein endothelial cells) were irradiated with 60 Co γ-rays to establish cell apoptosis models. Flow cytometry with annexin-V-FITC + PI labeling was used to evaluate cell apoptosis. Different amounts of bFGF were used to study their effects on radiation-induced endothelial cell apoptosis. Results and Conclusions: It is found that bFGF could inhibit radiation-induced endothelial cell apoptosis in a considerable degree

  13. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  14. Neem oil limonoids induces p53-independent apoptosis and autophagy

    Science.gov (United States)

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  15. Manipulating heat shock protein expression in laboratory animals.

    Science.gov (United States)

    Tolson, J Keith; Roberts, Stephen M

    2005-02-01

    Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.

  16. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Yide Mei

    2007-10-01

    Full Text Available Although camptothecin (CPT has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that 131-113-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay, cAMP response element binding protein (CREB knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa, Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa, Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  17. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    NARCIS (Netherlands)

    Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Span, P.N.; O'Neill, E.E.; Buffa, F.M.; Hammond, E.M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent

  18. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  19. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    International Nuclear Information System (INIS)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun; Wu, Biao; Li, Shengnan

    2017-01-01

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.

  20. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun [Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029 (China); Wu, Biao, E-mail: wubiao@ncu.edu.cn [Department of Surgery, The First Affiliated Hospital, Nanchang University (China); Li, Shengnan, E-mail: snli@njmu.edu.cn [Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029 (China)

    2017-05-15

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.

  1. related apoptosis-inducing ligand in transplastomic tobacco

    African Journals Online (AJOL)

    -inducing ligand (sTRAIL) can, as the whole length TRAIL protein, bind with its receptors and specifically induce the apoptosis of cancer cells; therefore, it has been developed as a potential therapeutic agent for various cancer treatments.

  2. Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yuyang Du

    2018-04-01

    Full Text Available Araloside C (AsC is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 μM for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2α and ATF6, and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12. Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.

  3. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    Science.gov (United States)

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  4. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    Science.gov (United States)

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Non-lethal heat shock increased Hsp70 and immune protein transcripts but not Vibrio tolerance in the white-leg shrimp.

    Directory of Open Access Journals (Sweden)

    Nguyen Hong Loc

    Full Text Available Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70 and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO, peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined.

  6. Non-Lethal Heat Shock Increased Hsp70 and Immune Protein Transcripts but Not Vibrio Tolerance in the White-Leg Shrimp

    Science.gov (United States)

    Loc, Nguyen Hong; MacRae, Thomas H.; Musa, Najiah; Bin Abdullah, Muhd Danish Daniel; Abdul Wahid, Mohd. Effendy; Sung, Yeong Yik

    2013-01-01

    Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined. PMID:24039886

  7. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  8. Mesothelioma Cells Escape Heat Stress by Upregulating Hsp40/Hsp70 Expression via Mitogen-Activated Protein Kinases

    Directory of Open Access Journals (Sweden)

    Michael Roth

    2009-01-01

    Full Text Available Therapy with hyperthermal chemotherapy in pleural diffuse malignant mesothelioma had limited benefits for patients. Here we investigated the effect of heat stress on heat shock proteins (HSP, which rescue tumour cells from apoptosis. In human mesothelioma and mesothelial cells heat stress (39–42°C induced the phosphorylation of two mitogen activated kinases (MAPK Erk1/2 and p38, and increased Hsp40, and Hsp70 expression. Mesothelioma cells expressed more Hsp40 and were less sensitive to heat stress compared to mesothelial cells. Inhibition of Erk1/2 MAPK by PD98059 or by Erk1 siRNA down-regulated heat stress-induced Hsp40 and Hsp70 expression and reduced mesothelioma cell survival. Inhibition of p38MAPK by SB203580 or siRNA reduced Hsp40, but not Hsp70, expression and also increased mesothelioma cell death. Thus hyperthermia combined with suppression of p38 MAPK or Hsp40 may represent a novel approach to improve mesothelioma therapy.

  9. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  10. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat.

    Science.gov (United States)

    Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro

    2014-06-01

    Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.

  11. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul

    2013-01-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  12. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyeon [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  13. The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Willem van Eden

    2017-11-01

    Full Text Available Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.

  14. Study of Unsteady, Sphere-Driven, Shock-Induced Combustion for Application to Hypervelocity Airbreathing Propulsion

    Science.gov (United States)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2011-01-01

    A premixed, shock-induced combustion engine has been proposed in the past as a viable option for operating in the Mach 10 to 15 range in a single stage to orbit vehicle. In this approach, a shock is used to initiate combustion in a premixed fuel/air mixture. Apparent advantages over a conventional scramjet engine include a shorter combustor that, in turn, results in reduced weight and heating loads. There are a number of technical challenges that must be understood and resolved for a practical system: premixing of fuel and air upstream of the combustor without premature combustion, understanding and control of instabilities of the shock-induced combustion front, ability to produce sufficient thrust, and the ability to operate over a range of Mach numbers. This study evaluated the stability of the shock-induced combustion front in a model problem of a sphere traveling in a fuel/air mixture at high Mach numbers. A new, rapid analysis method was developed and applied to study such flows. In this method the axisymmetric, body-centric Navier-Stokes equations were expanded about the stagnation streamline of a sphere using the local similarity hypothesis in order to reduce the axisymmetric equations to a quasi-1D set of equations. These reduced sets of equations were solved in the stagnation region for a number of flow conditions in a premixed, hydrogen/air mixture. Predictions from the quasi-1D analysis showed very similar stable or unstable behavior of the shock-induced combustion front as compared to experimental studies and higher-fidelity computational results. This rapid analysis tool could be used in parametric studies to investigate effects of fuel rich/lean mixtures, non-uniformity in mixing, contaminants in the mixture, and different chemistry models.

  15. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    International Nuclear Information System (INIS)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-01

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS ; 400 μg/ml), UV-irradiated virus (CIV UV ; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV , CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and

  16. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    Science.gov (United States)

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  17. Exercise induces the release of heat shock protein 72 from the human brain in vivo

    OpenAIRE

    Lancaster, G. I.; Møller, K.; Nielsen, B.; Secher, N. H.; Febbraio, M. A.; Nybo, L.

    2004-01-01

    The present study tested the hypothesis that in response to physical stress the human brain has the capacity to release heat shock protein 72 (Hsp72) in vivo. Therefore, 6 humans (males) cycled for 180 minutes at 60% of their maximal oxygen uptake, and the cerebral Hsp72 response was determined on the basis of the internal jugular venous to arterial difference and global cerebral blood flow. At rest, there was a net balance of Hsp72 across the brain, but after 180 minutes of exercise, we were...

  18. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Cheng [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Sun, Hong [Hubei Maternal and Child Health Hospital, Wuhan 430070 (China); Xie, Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Jianghua; Zhang, Guirong; Chen, Nan [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Yan, Wei, E-mail: Yanwei75126@163.com [Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064 (China); Li, Guangyu, E-mail: ligy2001@163.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China)

    2014-04-01

    Highlights: • MCLR-induced apoptosis in the heart of developing embryos leads to the growth delay in zebrafish. • MCLR-triggered apoptosis might be induced by ROS. • P53–Bax–Bcl-2 and caspase-dependent apoptotic pathway contribute greatly to MCLR-induced apoptosis. Abstract: We previously demonstrated that cyanobacteria-derived microcystin–leucine–arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L⁻¹ for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L⁻¹ MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53–Bax–Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.

  19. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    International Nuclear Information System (INIS)

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-01-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA

  20. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    Science.gov (United States)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  1. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  2. Time development of a blast wave with shock heated electrons

    International Nuclear Information System (INIS)

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  3. Physical mechanisms in shock-induced turbulent separated flow

    Science.gov (United States)

    Dolling, D. S.

    1987-12-01

    It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.

  4. Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment.

    Science.gov (United States)

    Yang, Guiyan; Wang, Yucheng; Zhang, Kaimin; Gao, Caiqiu

    2014-03-01

    Heat shock proteins (HSPs) play important roles in protecting plants against environmental stresses. Furthermore, small heat shock proteins (sHSPs) are the most ubiquitous HSP subgroup with molecular weights ranging from 15 to 42 kDa. In this study, nine sHSP genes (designated as ThsHSP1-9) were cloned from Tamarix hispida. Their expression patterns in response to cold, heat shock, NaCl, PEG and abscisic acid (ABA) treatments were investigated in the roots and leaves of T. hispida by real-time RT-PCR analysis. The results showed that most of the nine ThsHSP genes were expressed at higher levels in roots than in leaves under normal growth condition. All of ThsHSP genes were highly induced under conditions of cold (4 °C) and different heat shocks (36, 40, 44, 48 and 52 °C). Under NaCl stress, all nine ThsHSPs genes were up-regulated at least one stress time-point in both roots and leaves. Under PEG and ABA treatments, the nine ThsHSPs showed various expression patterns, indicating a complex regulation pathway among these genes. This study represents an important basis for the elucidation of ThsHSP gene function and provides essential information that can be used for stress tolerance genetic engineering in future studies.

  5. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    Science.gov (United States)

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  6. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress.

    Science.gov (United States)

    Zhang, Shu; Han, Guo-dong; Dong, Yun-wei

    2014-04-01

    Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Molecular mechanism of X-ray-induced p53-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hisako [Tokyo Metropolitan Inst. of Medical Center (Japan)

    1999-03-01

    Radiation-induced cell death has been classified into the interphase- and mitotic-ones, both of which apoptosis involving. This review described the molecular mechanism of the apoptosis, focusing on its p53-dependent process. It is known that there are genes regulating cell death either negatively or positively and the latter is involved in apoptosis. As an important factor in the apoptosis, p53 has become remarkable since it was shown that X-ray-induced apoptosis required RNA and protein syntheses in thymocytes and those cells of p53 gene-depleted mouse were shown to be resistant to gamma-ray-induced apoptosis. Radiation sensitivity of MOLT-4 cells derived from human T cell leukemia, exhibiting the typical X-ray-induced p53-dependent apoptosis, depends on the levels of p53 mRNA and protein. p53 is a gene suppressing tumor and also a transcription factor. Consequently, mutation of p53 conceivably leads to the failure of cell cycle regulation, which allows damaged cells to divide without both repair and exclusion due to loss of the apoptotic mechanism, and finally results in carcinogenesis. The radiation effect occurs in the order of the cell damage, inhibition of p53-Mdm2 binding, accumulation of p53, activation of mdm2 transcription, Mdm2 accumulation, p53-protein degradation and recovery to the steady state level. Here, the cystein protease (caspases) plays an important role as a disposing mechanism for cells scheduled to die. However, many are unknown to be solved in future. (K.H.) 119 refs.

  8. Whole Body Hyperthermia in Mice Confers Delayed Radioprotection at Cellular and Tissue Levels: Inducible Heat Shock Proteins as Endogenous Radioprotectors

    International Nuclear Information System (INIS)

    Malytina, Y. V.; Sements, T. N.; Semina, O. V.; Mosin, A. F.; Kabakov, A.

    2004-01-01

    It was previously shown on heat shock protein (Hsp)-over expressing cell lines that the increased intracellular content of Hsp 70 or Hsp27 is associated with the elevated radioresistance. However, it was so far unknown whether the in vivo Fsp induction by stressful preconditioning can confer radioprotection at the tissue and cellular levels. In the present study, we examined how the in vivo up-regulation of the Hsp expression in response to mild whole body hyperthermia (42 degrees C, 10 min) in mice changes susceptibility of their bone marrow stem cells and thymocytes to subsequent gamma-irradiation. to assess the expectable contribution of stress-inducible Hsp we used injections with Quercetin, a flavonoid inhibiting the stress-responsive Hsp induction. The results demonstrate that the bone marrow stem cells and thymocytes from heat-preconditioned mice were more radioresistant than those from the non-preconditioned animals. the radioprotection was well manifested if mice or their isolated thymocytes were irradiated 18-25 h after the in vivo hyperthermia. This delayed radioprotection resulting from the heat preconditioning was suppressed in Quercetin-injected mice. The revealed correlation between the intracellular Hsp accumulation and the acquired Quercetin-sensitive radioprotection suggests a beneficial role of Hsps as of endogenous radioprotectors. Our finding discovers new ways for artificial modulation of effects of irradiation on target cells via manipulating the Hsp expression. (Author) 17 refs

  9. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.

    Science.gov (United States)

    Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D

    1995-11-10

    One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were

  10. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the 31 kDa Vibrio cholerae heat-shock protein VcHsp31

    International Nuclear Information System (INIS)

    Das, Samir; Dey, Sanjay; Roy, Trina; Sen, Udayaditya

    2011-01-01

    A heat-shock protein from V. cholerae (VcHsp31) has been cloned, expressed, purified and crystallized. Crystals of VcHsp31 belonged to a monoclinic space group and diffracted to 1.9 Å resolution. The Gram-negative bacterium Vibrio cholerae, which is responsible for the diarrhoeal disease cholera in humans, induces the expression of numerous heat-shock genes. VcHsp31 is a 31 kDa putative heat-shock protein that belongs to the DJ-1/PfpI superfamily, functioning as both a chaperone and a protease. VcHsp31 has been cloned, overexpressed and purified by Ni 2+ –NTA affinity chromatography followed by gel filtration. Crystals of VcHsp31 were grown in the presence of PEG 6000 and MPD; they belonged to space group P2 1 and diffracted to 1.9 Å resolution. Assuming the presence of six molecules in the asymmetric unit, the Matthews coefficient was estimated to be 1.97 Å 3 Da −1 , corresponding to a solvent content of 37.4%

  11. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    Science.gov (United States)

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  12. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    Science.gov (United States)

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  13. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice

    International Nuclear Information System (INIS)

    Jin Jie; Wang Yu; Xu Yang; Chen Shilei; Wang Junping; Ran Xinze; Su Yongping; Wang Jin

    2014-01-01

    Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3 -/- ) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3 -/- mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3 -/- mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury. (author)

  14. Protection of betulin against cadmium-induced apoptosis in hepatoma cells

    International Nuclear Information System (INIS)

    Oh, Seon-Hee; Choi, Jeong-Eun; Lim, Sung-Chul

    2006-01-01

    The protective effects of betulin (BT) against cadmium (Cd)-induced cytotoxicity have been previously reported. However, the mechanisms responsible for these protective effects are unclear. Therefore, this study investigated the mechanisms responsible for the protection of BT against Cd-induced cytotoxicity in human hepatoma cell lines. The protection of BT against Cd cytotoxicity was more effective in the HepG2 than in the Hep3B cells. The protection of BT on Cd-induced cytotoxicity in the HepG2 cells appeared to be related to the inhibition of apoptosis, as determined by PI staining and DNA fragmentation analysis. The anti-apoptosis exerted by BT involved the blocking of Cd-induced reactive oxygen species (ROS) generation, the abrogation of the Cd-induced Fas upregulation, the blocking of caspase-8-dependent Bid activation, and subsequent inhibition of mitochondrial pathway. The BT pretreatment did not affect the p21 and p53 expression levels, when compared with those of the treated cells with Cd alone. BT induced the transient S phase arrest at an early stage and the G /G 1 arrest at a relatively late stage, but it did not observe the sub-G1 apoptotic peak. In the Hep3B cells, Cd did not induce ROS generation. The BT pretreatment partially inhibited the Cd-induced apoptosis, which was related with the incomplete blockage in caspase-9 or -3 activation, as well as in Bax activation. Taken together, it was found that Cd can induce apoptosis via the Fas-dependent and -independent apoptosis pathways. However, the observed protective effects of BT were clearly more sensitive to Fas-expressing HepG2 cells than to Fas-deficient Hep3B cells

  15. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.

    Science.gov (United States)

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-03-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.

  16. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    Science.gov (United States)

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  17. Podophyllum hexandrum (Himalayan mayapple) extract provides radioprotection by modulating the expression of proteins associated with apoptosis.

    Science.gov (United States)

    Kumar, Raj; Singh, Pankaj Kumar; Sharma, Ashok; Prasad, Jagdish; Sagar, Ravinder; Singh, Surender; Arora, Rajesh; Sharma, Rakesh Kumar

    2005-08-01

    Podophyllum hexandrum Royale (Himalayan mayapple), a high-altitude Himalayan plant, has been shown to provide over 80% whole-body radioprotection in mice. To investigate the radioprotective potential of P. hexandrum at the molecular level, expression patterns of various proteins associated with apoptosis were studied in the spleen of male Swiss albino strain A mice by immunoblotting. Treatment with P. hexandrum [200 mg/kg of body weight; an ethanolic 50% (w/v) extract delivered intraperitoneally] 2 h before irradiation resulted in MAPKAP (mitogen-activated protein kinase-activated protein) kinase-2 activation along with HSF-1 (heat-shock transcription factor-1), leading to up-regulation of HSP-70 (heat-shock protein-70) as compared with sham-irradiated (10 Gy) mice. Strong inhibition of AIF (apoptosis-inducing factor) expression was observed in the mice treated with P. hexandrum 2 h before irradiation as compared with the sham-irradiated group. Inhibition in the translocation of free NF-kappaB (nuclear factor kappaB) from cytoplasm to nucleus was observed upon P. hexandrum pretreatment 2 h before irradiation when compared with radiation-treated mice. P. hexandrum pre-treatment (2 h before irradiation) resulted in inhibition of NF-kappaB translocation, and the expression of tumour suppressor protein p53 was observed to be down-regulated as compared with sham-irradiated control. An increase in the expression of proteins responsible for cell proliferation [Bcl-2 (B-cell chronic lymphocytic lymphoma 2), Ras-GAP (Ras-GTPase-activating protein) and PCNA (proliferating cell nuclear antigen)] was observed in the P. hexandrum-pretreated irradiated mice as compared with sham-irradiated controls. Caspase 3 activation resulted PARP [poly(ADP-ribose) DNA polymerase] cleavage, and DNA degradation was strongly inhibited in the mice treated with P. hexandrm (+/-irradiation) as compared with the mice treated with radiation (+/-heat shock). The present study thus clearly

  18. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pdairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future.

  19. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis1

    Science.gov (United States)

    Mei, Yide; Xie, Chongwei; Xie, Wei; Tian, Xu; Li, Mei; Wu, Mian

    2007-01-01

    Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis. PMID:17971907

  20. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

    Science.gov (United States)

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-09-28

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

  1. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  2. Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L.

    Science.gov (United States)

    Ortega, M Sofia; Rocha-Frigoni, Nathália A S; Mingoti, Gisele Zoccal; Roth, Zvi; Hansen, Peter J

    2016-11-01

    The objectives were to test whether (1) melatonin blocks inhibition of embryonic development caused by heat shock at the zygote stage, and (2) the frequency of a thermoprotective allele for HSPA1L is increased in blastocysts formed from heat-shocked zygotes as compared with blastocysts from control zygotes. It was hypothesized that melatonin prevents effects of heat shock on development by reducing accumulation of reactive oxygen species (ROS) and that embryos inheriting the thermoprotective allele of HSPA1L would be more likely to survive heat shock. Effects of 1 µM melatonin on ROS were determined in experiments 1 and 2. Zygotes were cultured at 38.5 or 40°C for 3 h in the presence of CellROX reagent (ThermoFisher Scientific, Waltham, MA). Culture was in a low [5% (vol/vol)] oxygen (experiment 1) or low or high [21% (vol/vol)] oxygen environment (experiment 2). Heat shock and high oxygen increased ROS; melatonin decreased ROS. Development was assessed in experiments 3 and 4. In experiment 3, zygotes were cultured in low oxygen ± 1 µM melatonin and exposed to 38.5 or 40°C for 12 h (experiment 1) beginning 8 h after fertilization. Melatonin did not protect the embryo from heat shock. Experiment 4 was performed similarly except that temperature treatments (38.5 or 40°C, 24 h) were performed in a low or high oxygen environment (2×2 × 2 factorial design with temperature, melatonin, and oxygen concentration as main effects), and blastocysts were genotyped for a deletion (D) mutation (C→D) in the promoter region of HSPA1L associated with thermotolerance. Heat shock decreased percent of zygotes developing to the blastocyst stage independent of melatonin or oxygen concentration. Frequency of genotypes for HSPA1L was affected by oxygen concentration and temperature, with an increase in the D allele for blastocysts that developed in high oxygen and following heat shock. It was concluded that (1) lack of effect of melatonin or oxygen concentration on embryonic

  3. 17-AAG and Apoptosis, Autophagy, and Mitophagy in Canine Osteosarcoma Cell Lines.

    Science.gov (United States)

    Massimini, M; Palmieri, C; De Maria, R; Romanucci, M; Malatesta, D; De Martinis, M; Maniscalco, L; Ciccarelli, A; Ginaldi, L; Buracco, P; Bongiovanni, L; Della Salda, L

    2017-05-01

    Canine osteosarcoma is highly resistant to current chemotherapy; thus, clarifying the mechanisms of tumor cell resistance to treatments is an urgent need. We tested the geldanamycin derivative 17-AAG (17-allylamino-17-demethoxygeldanamycin) prototype of Hsp90 (heat shock protein 90) inhibitors in 2 canine osteosarcoma cell lines, D22 and D17, derived from primary and metastatic tumors, respectively. With the aim to understand the interplay between cell death, autophagy, and mitophagy, in light of the dual effect of autophagy in regulating cancer cell viability and death, D22 and D17 cells were treated with different concentrations of 17-AAG (0.5 μM, 1 μM) for 24 and 48 hours. 17-AAG-induced apoptosis, necrosis, autophagy, and mitophagy were assessed by transmission electron microscopy, flow cytometry, and immunofluorescence. A simultaneous increase in apoptosis, autophagy, and mitophagy was observed only in the D22 cell line, while D17 cells showed low levels of apoptotic cell death. These results reveal differential cell response to drug-induced stress depending on tumor cell type. Therefore, pharmacological treatments based on proapoptotic chemotherapy in association with autophagy regulators would benefit from a predictive in vitro screening of the target cell type.

  4. Apoptosis induced by high- and low-LET radiations

    International Nuclear Information System (INIS)

    Hendry, J.H.; Potten, C.S.; Merritt, A.

    1995-01-01

    Cell death after irradiation occurs by apoptosis in certain cell populations in tissues. The phenomenon also occurs after high linear energy transfer (LET) irradiation, and the relative biological effectiveness (RBE) is 3 to 4 (with respect to low-LET radiation and apoptosis in intestinal crypts) for neutrons with energies of 14 MeV and up to 600 MeV. It is thought that p53 plays a role in the phenomenon, as radiation-induced apoptosis is not observed in p53-null animals. (orig.)

  5. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis.

    Science.gov (United States)

    Perrone, Erin E; Jung, Enjae; Breed, Elise; Dominguez, Jessica A; Liang, Zhe; Clark, Andrew T; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia-induced sepsis is a common cause of morbidity in the intensive care unit. Although pneumonia is initiated in the lungs, extrapulmonary manifestations occur commonly. In light of the key role the intestine plays in the pathophysiology of sepsis, we sought to determine whether MRSA pneumonia induces intestinal injury. FVB/N mice were subjected to MRSA or sham pneumonia and killed 24 h later. Septic animals had a marked increase in intestinal epithelial apoptosis by both hematoxylin-eosin and active caspase 3 staining. Methicillin-resistant S. aureus-induced intestinal apoptosis was associated with an increase in the expression of the proapoptotic proteins Bid and Bax and the antiapoptotic protein Bcl-xL in the mitochondrial pathway. In the receptor-mediated pathway, MRSA pneumonia induced an increase in Fas ligand but decreased protein levels of Fas, FADD, pFADD, TNF-R1, and TRADD. To assess the functional significance of these changes, MRSA pneumonia was induced in mice with genetic manipulations in proteins in either the mitochondrial or receptor-mediated pathways. Both Bid-/- mice and animals with intestine-specific overexpression of Bcl-2 had decreased intestinal apoptosis compared with wild-type animals. In contrast, Fas ligand-/- mice had no alterations in apoptosis. To determine if these findings were organism-specific, similar experiments were performed in mice subjected to Pseudomonas aeruginosa pneumonia. Pseudomonas aeruginosa induced gut apoptosis, but unlike MRSA, this was associated with increased Bcl-2 and TNF-R1 and decreased Fas. Methicillin-resistant S. aureus pneumonia thus induces organism-specific changes in intestinal apoptosis via changes in both the mitochondrial and receptor-mediated pathways, although the former may be more functionally significant.

  6. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  7. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  8. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis.

    Science.gov (United States)

    Jordà, Elvira G; Verdaguer, Ester; Jimenez, Andrés; Arriba, S Garcia de; Allgaier, Clemens; Pallàs, Mercè; Camins, Antoni

    2005-08-01

    The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.

  9. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    International Nuclear Information System (INIS)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus

  10. [Study on thaspine in inducing apoptosis of A549 cell].

    Science.gov (United States)

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  11. Wnt1 inhibits hydrogen peroxide-induced apoptosis in mouse cardiac stem cells.

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    Full Text Available BACKGROUND: Because of their regenerative and paracrine abilities, cardiac stem cells (CSCs are the most appropriate, optimal and promising candidates for the development of cardiac regenerative medicine strategies. However, native and exogenous CSCs in ischemic hearts are exposed to various pro-apoptotic or cytotoxic factors preventing their regenerative and paracrine abilities. METHODS AND RESULTS: We examined the effects of H2O2 on mouse CSCs (mCSCs, and observed that hydrogen peroxide (H2O2 treatment induces mCSCs apoptosis via the caspase 3 pathway, in a dose-dependent manner. We then examined the effects of Wnt1 over-expression on H2O2-induced apoptosis in mCSCs and observed that Wnt1 significantly decreased H2O2-induced apoptosis in mCSCs. On the other hand, inhibition of the canonical Wnt pathway by the secreted frizzled related protein 2 (SFRP2 or knockdown of β-catenin in mCSCs reduced cells resistance to H2O2-induced apoptosis, suggesting that Wnt1 predominantly prevents H2O2-induced apoptosis through the canonical Wnt pathway. CONCLUSIONS: Our results provide the first evidences that Wnt1 plays an important role in CSCs' defenses against H2O2-induced apoptosis through the canonical Wnt1/GSK3β/β-catenin signaling pathway.

  12. Errors in macromolecular synthesis after stress. A study of the possible protective role of the small heat shock proteinsBiochemistry

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  13. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  14. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72.

    Science.gov (United States)

    Lancaster, Graeme I; Febbraio, Mark A

    2005-01-01

    The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.

  15. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  16. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Park, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kohl, Ian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knepper, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farrow, Darcie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

  17. Shock Heating of the Merging Galaxy Cluster A521

    Science.gov (United States)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  18. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    Science.gov (United States)

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  19. The dynamics of histone H2A ubiquitination in HeLa cells exposed to rapamycin, ethanol, hydroxyurea, ER stress, heat shock and DNA damage.

    Science.gov (United States)

    Nakata, Shiori; Watanabe, Tadashi; Nakagawa, Koji; Takeda, Hiroshi; Ito, Akihiro; Fujimuro, Masahiro

    2016-03-25

    Polyubiquitination plays key roles in proteasome-dependent and independent cellular events, whereas monoubiquitination is involved in gene expression, DNA repair, protein-protein interaction, and protein trafficking. We previously developed an FK2 antibody, which specifically recognizes poly-Ub moieties but not free Ub. To elucidate the role of Ub conjugation in response to cellular stress, we used FK2 to investigate whether chemical stress (rapamycin, ethanol, or hydroxyurea), ER stress (thapsigargin or tunicamycin), heat shock or DNA damage (H2O2 or methyl methanesulfonate) affect the formation of Ub conjugates including histone H2A (hH2A) ubiquitination. First, we found that all forms of stress tested increased poly-ubiquitinated proteins in HeLa cells. Furthermore, rapamycin and hydroxyurea treatment, and ER stress increased ubiquitination of hH2A, while methyl methanesulfonate (MMS) treatment induced deubiquitination of hH2A. The ethanol and H2O2 treatments, and heat shock transiently induced hH2A de-ubiquitination, although deubiquitinated hH2A were ubiquitinated again by subsequent cultivation. We also revealed that FK2 reacts with not only polyubiquitinated proteins but also mono-ubiquitinated hH2A. With the exception of MMS, all forms of stress tested increased the acetylation of K5-hH2A, K9-hH3 and K8-hH4 in addition to ubiquitination. K118 and K119 of hH2A were ubiquitinated in cells under normal conditions, and K119 was the major ubiquitination site. The MMS-treatment and heat shock induced the deubiquitination of both K118 and K119-histone H2A. Interestingly, MMS treatment did not affect cell HeLa cell viability expressing double-mutant hH2A (KK118,119AA-hH2A), while heat shock slightly but significantly decreased viability of double-mutant hH2A expressing cells, indicating that ubiquitination of both sites associates with recovery from heat shock but not MMS treatment. Thus, we characterized FK2 reactivity and demonstrated that various stresses alter

  20. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  1. Small heat shock proteins mediate cell-autonomous and -nonautonomous protection in a Drosophila model for environmental-stress-induced degeneration.

    Science.gov (United States)

    Kawasaki, Fumiko; Koonce, Noelle L; Guo, Linda; Fatima, Shahroz; Qiu, Catherine; Moon, Mackenzie T; Zheng, Yunzhen; Ordway, Richard W

    2016-09-01

    Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule

  2. Module-based analysis of robustness tradeoffs in the heat shock response system.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kurata

    2006-07-01

    Full Text Available Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures. In the heat shock response system, the sigma-factor sigma32 is a central regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior. We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward one of many robustly functional solutions.

  3. Widespread Inhibition of Posttranscriptional Splicing Shapes the Cellular Transcriptome following Heat Shock

    Directory of Open Access Journals (Sweden)

    Reut Shalgi

    2014-06-01

    Full Text Available During heat shock and other proteotoxic stresses, cells regulate multiple steps in gene expression in order to globally repress protein synthesis and selectively upregulate stress response proteins. Splicing of several mRNAs is known to be inhibited during heat stress, often meditated by SRp38, but the extent and specificity of this effect have remained unclear. Here, we examined splicing regulation genome-wide during heat shock in mouse fibroblasts. We observed widespread retention of introns in transcripts from ∼1,700 genes, which were enriched for tRNA synthetase, nuclear pore, and spliceosome functions. Transcripts with retained introns were largely nuclear and untranslated. However, a group of 580+ genes biased for oxidation reduction and protein folding functions continued to be efficiently spliced. Interestingly, these unaffected transcripts are mostly cotranscriptionally spliced under both normal and stress conditions, whereas splicing-inhibited transcripts are mostly spliced posttranscriptionally. Altogether, our data demonstrate widespread repression of splicing in the mammalian heat stress response, disproportionately affecting posttranscriptionally spliced genes.

  4. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range.

    Science.gov (United States)

    Massa, Sónia I; Pearson, Gareth A; Aires, Tânia; Kube, Michael; Olsen, Jeanine L; Reinhardt, Richard; Serrão, Ester A; Arnaud-Haond, Sophie

    2011-09-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30min, 2h, 4h and 24h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as 'molecular chaperones' and were over-expressed following heat-shock, while 12 (23.5%) were 'photosynthesis TUGs' generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30min AHS library, followed by a slow decrease during further recovery. In contrast, 'photosynthesis TUGs' were under-expressed 30min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. dFOXO Activates Large and Small Heat Shock Protein Genes in Response to Oxidative Stress to Maintain Proteostasis in Drosophila.

    Science.gov (United States)

    Donovan, Marissa R; Marr, Michael T

    2016-09-02

    Maintaining protein homeostasis is critical for survival at the cellular and organismal level (Morimoto, R. I. (2011) Cold Spring Harb. Symp. Quant. Biol. 76, 91-99). Cells express a family of molecular chaperones, the heat shock proteins, during times of oxidative stress to protect against proteotoxicity. We have identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shock protein genes. This expression likely protects cells from protein misfolding associated with oxidative stress. Here we identify the regions of the Hsp70 promoter essential for FOXO-dependent transcription using in vitro methods and find a physiological role for FOXO-dependent expression of heat shock proteins in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Inhibiting Heat-Shock Protein 90 Reverses Sensory Hypoalgesia in Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Michael J Urban

    2010-07-01

    Full Text Available Increasing the expression of Hsp70 (heat-shock protein 70 can inhibit sensory neuron degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy is associated with the gradual decline of sensory neuron function, we evaluated whether increasing Hsp70 was sufficient to improve several indices of neuronal function. Hsp90 is the master regulator of the heat-shock response and its inhibition can up-regulate Hsp70. KU-32 (N-{7-[(2R, 3R, 4S, 5R-3, 4-dihydroxy-5-methoxy-6, 6-dimethyl-tetrahydro-2H-pyran-2-yloxy]-8-methyl-2-oxo-2H-chromen-3-yl}acetamide was developed as a novel, novobiocin-based, C-terminal inhibitor of Hsp90 whose ability to increase Hsp70 expression is linked to the presence of an acetamide substitution of the prenylated benzamide moiety of novobiocin. KU-32 protected against glucose-induced death of embryonic DRG (dorsal root ganglia neurons cultured for 3 days in vitro. Similarly, KU-32 significantly decreased neuregulin 1-induced degeneration of myelinated Schwann cell DRG neuron co-cultures prepared from WT (wild-type mice. This protection was lost if the co-cultures were prepared from Hsp70.1 and Hsp70.3 KO (knockout mice. KU-32 is readily bioavailable and was administered once a week for 6 weeks at a dose of 20 mg/kg to WT and Hsp70 KO mice that had been rendered diabetic with streptozotocin for 12 weeks. After 12 weeks of diabetes, both WT and Hsp70 KO mice developed deficits in NCV (nerve conduction velocity and a sensory hypoalgesia. Although KU-32 did not improve glucose levels, HbA1c (glycated haemoglobin or insulin levels, it reversed the NCV and sensory deficits in WT but not Hsp70 KO mice. These studies provide the first evidence that targeting molecular chaperones reverses the sensory hypoalgesia associated with DPN.

  7. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows*

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pheat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916

  8. A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks

    International Nuclear Information System (INIS)

    Winske, D.; Giacalone, J.; Thomsen, M.F.; Mellott, M.M.

    1987-01-01

    Plasma heating due to the ion instability and the modified two-stream instability is examined for quasi-perpendicular subcritical shocks. Electron and ion heating is investigated as a function of upstream electron to ion temperature ratio and plasma beta using second-order heating rates. A simple shock model is employed in which the cross-field electron-ion drift speed is adjusted until the total (adiabatic plus anomalous) heating matches that required by the Rankine-Hugoniot relations. Quantities such as the width of the shock and the maximum electric field fluctuations are also calculated, and the results are compared with the ISEE data set of subcritical box shock crossings. The observed width of the shock, the amount of plasma heating, and the low-frequency electric field intensity are in reasonably good agreement with the calculations for the modified two-stream instability. On the other hand, the wave intensities at higher frequency are about 4 orders of magnitude smaller than those predicted for the ion acoustic instability at saturation, consistent with the fact that the measured shock widths imply cross-field drift speeds that are below threshold for this instability. It is therefore concluded that the dissipation at these shocks is most likely due to the lower frequency, modified two-stream instability

  9. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model

    Directory of Open Access Journals (Sweden)

    Ariadna Bargiela

    2015-07-01

    Full Text Available Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1 disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor or muscleblind, or by RNA interference (RNAi-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis.

  10. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN.

    Science.gov (United States)

    Chen, Xuehong; Gao, Hui; Han, Yantao; Ye, Junli; Xie, Jing; Wang, Chunbo

    2015-10-05

    Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells

    NARCIS (Netherlands)

    Michels, AA; Kanon, B; Bensaude, O; Kampinga, HH

    1999-01-01

    Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K,, Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272,

  12. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    OpenAIRE

    Baars, Destiny L.; Takle, Kendra A.; Heier, Jonathon; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole...

  13. Heat-shock responses in two leguminous plants: a comparative study.

    Science.gov (United States)

    Ortiz, C; Cardemil, L

    2001-08-01

    Relative growth rates, basal and acclimated thermotolerance, membrane damage, fluorescence emission, and relative levels of free and conjugated ubiquitin and HSP70 were compared after 2 h of treatment at different temperatures between Prosopis chilensis and Glycine max (soybean), cv. McCall, to evaluate if the thermotolerance of these two plants was related to levels of accumulation of heat shock proteins. Seedlings of P. chilensis germinated at 25 degrees C and at 35 degrees C and grown at temperatures above germination temperature showed higher relative growth than soybean seedlings treated under the same conditions. The lethal temperature of both species was 50 degrees C after germination at 25 degrees C. However, they were able to grow at 50 degrees C after germination at 35 degrees C. Membrane damage determinations in leaves showed that P. chilensis has an LT(50) 6 degrees C higher than that of soybean. There were no differences in the quantum yield of photosynthesis (F(v)/F(m)), between both plants when the temperatures were raised. P. chilensis showed higher relative levels of free ubiquitin, conjugated ubiquitin and HSP70 than soybean seedlings when the temperatures were raised. Time-course studies of accumulation of these proteins performed at 40 degrees C showed that the relative accumulation rates of ubiquitin, conjugated ubiquitin and HSP70 were higher in P. chilensis than in soybean. In both plants, free ubiquitin decreased during the first 5 min and increased after 30 min of heat shock, conjugated ubiquitin increased after 30 min and HSP70 began to increase dramatically after 20 min of heat shock. From these data it is concluded that P. chilensis is more tolerant to acute heat stress than soybean.

  14. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  15. New evidence for efficient collisionless heating of electrons at the reverse shock of a young supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroya; Petre, Robert [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Eriksen, Kristoffer A. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O' Hara St, Pittsburgh, PA 15260 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Slane, Patrick O.; Smith, Randall K., E-mail: hiroya.yamaguchi@nasa.gov [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-01-10

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect Kβ (3p → 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe Kα (2p → 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe Kα morphology from the Chandra observations. Since strong Fe Kβ fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  16. New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    Science.gov (United States)

    Yamaguchi, Hiroya; Eriksen, Kristoffer A.; Badenes, Carles; Hughes, John P.; Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Petre, Robert; Slane, Patrick O.; Smith, Randall K.

    2013-01-01

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K beta (3p yields 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K alpha (2p yields 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe K alpha morphology from the Chandra observations. Since strong Fe K beta fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  17. Radiation-induced apoptosis in different pH environments in vitro

    International Nuclear Information System (INIS)

    Lee, Hyung-Sik; Park, Heon J.; Lyons, John C.; Griffin, Robert J.; Auger, Elizabeth A.; Song, Chang W.

    1997-01-01

    Purpose: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Methods and Materials: Mammary adenocarcinoma cells of A/J mice (SCK cells) were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 deg. C for 24-120 h the extent of apoptosis was determined using agarose gel electrophoresis, TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The clonogenicity of the cells irradiated in different pH medium was determined, and the progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in SCK cells in pH 7.5 medium within 48 h as judged from the results of four different assays mentioned. Radiation-induced apoptosis declined as the medium pH was lowered from 7.5 to 6.4. Specifically, the radiation-induced degradation of DNA including the early DNA breaks, as determined with the TUNEL method, progressively declined as the medium pH was lowered so that little DNA fragmentation occurred 48 h after irradiation with 12 Gy in pH 6.6 medium. When the cells were irradiated and incubated for 48 h in pH 6.6 medium and the medium was replaced with pH 7.5 medium, DNA fragmentation promptly occurred. DNA fragmentation also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 h or longer post-irradiation before incubation in pH 6.6 medium. The radiation-induced G 2 arrest in pH 6.6 medium lasted markedly longer than that in pH 7.5 medium. Conclusion: Radiation-induced apoptosis in SCK cells in vitro is reversibly suppressed in an acidic environment. Taking the results of four different assays together, it was concluded that early step(s) in the apoptotic pathway, probably the DNA break or upstream of DNA break, is

  18. Comparative study on 4 quantitative detection methods of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Yang Yepeng; Chen Guanying; Zhou Mei; Shen Qinjian; Shen Lei; Zhu Yingbao

    2004-01-01

    Objective: To reveal the capability of 4 apoptosis-detecting methods to discriminate between apoptosis and necrosis and show their respective advantages and shortcomings through comparison of detected results and analysis of detection mechanism. Methods: Four methods, PI staining-flow cytometric detection (P-F method), TUNEL labeling-flow cytometric detection (T-F method), annexing V-FITC/PI vital staining-flow cytometric detection (A-F method) and Hoechst/PI vital staining-fluorescence microscopic observation (H-O method), were used to determine apoptosis and necrosis in human breast cancer MCF-7 cell line induced by γ-rays. Hydroxycamptothecine and sodium azide were used to induce positive controls of apoptosis and necrosis respectively. Results: All 4 methods showed good time-dependent and dose dependent respondence to apoptosis induced by γ-rays and hydroxycamptothecine. Apoptotic cell ratios and curve slopes obtained from P-F method were minimum and, on the contrary, those from T-F method were maximum among these 4 methods. With A-F method and H-O method, two sets of data, apoptosis and necrosis, could be gained respectively and the data gained from these two methods were close to equal. A-F method and H-O method could distinguish necrosis induced by sodium azide from apoptosis while P-F method and T-F method presented false increase of apoptosis. Conclusions: P-F method and T-F method can not discriminate between apoptosis and necrosis. P-F method is less sensitive but more simple, convenient and economical than T-F method. A-F method and H-O method can distinguish necrosis from apoptosis. A-F method is more costly but more quick and reliable than H-O method. H-O method is economical, practical and morphological changes of cells and nucleus can be observed simultaneously with it. (authors)

  19. Aspirin Induces Apoptosis through Release of Cytochrome c from Mitochondria

    Directory of Open Access Journals (Sweden)

    Katja C. Zimmermann

    2000-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAID reduce the risk for cancer, due to their anti proliferative and apoptosis-inducing effects. A critical pathway for apoptosis involves the release of cytochrome c from mitochondria, which then interacts with Apaf-1 to activate caspase proteases that orchestrate cell death. In this study we found that treatment of a human cancer cell line with aspirin induced caspase activation and the apoptotic cell morphology, which was blocked by the caspase inhibitor zVAD-fmk. Further analysis of the mechanism underlying this apoptotic event showed that aspirin induces translocation of Bax to the mitochondria and triggers release of cytochrome c into the cytosol. The release of cytochrome c from mitochondria was inhibited by overexpression of the antiapoptotic protein Bcl-2 and cells that lack Apaf-1 were resistant to aspirin-induced apoptosis. These data provide evidence that the release of cytochrome c is an important part of the apoptotic mechanism of aspirin.

  20. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori [Hokkaido Univ., Graduate School of Veterinary Medicine, Sapporo, Hokkaido (Japan)

    2006-03-15

    In the present study, using inhibitors of ceramide synthase (fumonisin B{sub 1}), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B{sub 1} and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  1. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    International Nuclear Information System (INIS)

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-01-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B 1 ), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B 1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  2. Heat shock protein 27 mediates the effect of 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone on mitochondrial apoptosis in hepatocellular carcinoma.

    Science.gov (United States)

    Fu, Wei-ming; Zhang, Jin-fang; Wang, Hua; Xi, Zhi-chao; Wang, Wei-mao; Zhuang, Peng; Zhu, Xiao; Chen, Shih-chi; Chan, Tak-ming; Leung, Kwong-Sak; Lu, Gang; Xu, Hong-Xi; Kung, Hsiang-fu

    2012-08-03

    Hepatocellular carcinoma (HCC) is a global public health problem which causes approximately 500,000 deaths annually. Considering that the limited therapeutic options for HCC, novel therapeutic targets and drugs are urgently needed. In this study, we discovered that 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), isolated from the traditional Chinese medicinal herb, Garcinia oblongifolia, effectively inhibited cell growth and induced the caspase-dependent mitochondrial apoptosis in HCC. A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were performed to find the molecular targets of TDP in HCC cells. Eighteen proteins were identified as differently expressed, with Hsp27 protein being one of the most significantly down-regulated proteins induced by TDP. In addition, the following gain- and loss-of-function studies indicated that Hsp27 mediates mitochondrial apoptosis induced by TDP. Furthermore, a nude mice model also demonstrated the suppressive effect of TDP on HCC. Our study suggests that TDP plays apoptosis-inducing roles by strongly suppressing the Hsp27 expression that is specifically associated with the mitochondrial death of the caspase-dependent pathway. In conclusion, TDP may be a potential anti-cancer drug candidate, especially to cancers with an abnormally high expression of Hsp27. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Arsenic induced apoptosis in rat liver following repeated 60 days exposure

    International Nuclear Information System (INIS)

    Bashir, Somia; Sharma, Yukti; Irshad, M.; Nag, T.C.; Tiwari, Monica; Kabra, M.; Dogra, T.D.

    2006-01-01

    Background: Accumulation of the wide spread environmental toxin arsenic in liver results in hepatotoxcity. Exposure to arsenite and other arsenicals has been previously shown to induce apoptosis in certain tumor cell lines at low (1-3 μM) concentration. Aim: The present study was focused to elucidate the role of free radicals in arsenic toxicity and to investigate the nature of in vivo sodium arsenite induced cell death in liver. Methods: Male wistar rats were exposed to arsenite at three different doses of 0.05, 2.5 and 5 mg/l for 60 days. Oxidative stress in liver was measured by estimating pro-oxidant and antioxidant activity in liver. Histopathological examination of liver was carried out by light and transmission electron microscopy. Analysis of DNA fragmentation by gel electrophoresis was used to identify apoptosis after the exposure. Terminal deoxy-nucleotidyl transferase mediated dUTP Nick end-labeling (TUNEL) assay was used to qualify and quantify apoptosis. Results: A significant increase in cytochrome-P450 and lipid peroxidation accompanied with a significant alteration in the activity of many of the antioxidants was observed, all suggestive of arsenic induced oxidative stress. Histopathological examination under light and transmission electron microscope suggested a combination of ongoing necrosis and apoptosis. DNA-TUNEL showed an increase in apoptotic cells in liver. Agarose gel electrophoresis of DNA of hepatocytes resulted in a characteristic ladder pattern. Conclusion: Chronic arsenic administration induces a specific pattern of apoptosis called post-mitotic apoptosis

  4. Effect of a Traditional Herbal Prescription, Kyung-Ok-Ko, on Male Mouse Spermatogenic Ability after Heat-Induced Damage

    Directory of Open Access Journals (Sweden)

    Deok-Sang Hwang

    2015-01-01

    Full Text Available Kyung-Ok-Ko (KOK, a well-known traditional Korean medicinal formula, has long been used to invigorate the essential qi. This use of KOK may be associated with reproductive ability as a more modern concept. The protective effect of KOK was evaluated against deterioration of testicular function induced by heat exposure in male mice. Male fertility was disrupted by scrotal heat stress at 43°C for 5 weeks. KOK (0.25, 0.50, and 2.00 g/kg/day was administered orally at 3 h after the stress. To evaluate the protective effect of KOK, body weight, testicular weight, sperm count, sperm motility, and histopathological changes in the testes were evaluated. KOK-treated mice significantly recovered their general health, as evidenced by body weight. KOK-treated mice also showed significantly higher testes weights, sperm counts, and sperm motility than did the heat stress group. KOK-treated mice significantly recovered the morphological appearance of the seminiferous tubules and seminiferous epithelium. Furthermore, KOK-treated mice significantly increased antioxidant enzyme activities and reduced the protein expressions of apoptosis in the testes. KOK significantly protects against heat-induced damage to testicular function in male mice by inhibiting oxidative stress and apoptosis, indicating that KOK may be an effective agent for treatment of heat-induced male infertility.

  5. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    Science.gov (United States)

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. © 2016 John Wiley & Sons Ltd.

  6. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    Science.gov (United States)

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ∼25-50 fold in whole adults by four hours after heat-shock, with significant activity (∼20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ∼2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  7. Study of progesterone mechanisms in radio-induced apoptosis prevention

    International Nuclear Information System (INIS)

    Vares, G.

    2004-10-01

    The purpose of this work was to study the modulation of radiation-induced cell death of human mammary tumoral cells by progesterone. On the one hand, we observed that progesterone protects cells against radiation-induced apoptosis and increases the proportion of surviving and proliferating damaged cells. On the other hand, a transcriptome analysis was undertaken in irradiated cells treated by progesterone, using DNA micro-arrays. This let us highlight several transcriptional dis-regulations that are likely to explain the protective effect of the hormone; in particular, we showed that progesterone regulates the expression of genes implicated in apoptosis signaling by death receptors. Knowing the crucial role of hormonal control and of apoptosis regulation in breast cancer initiation, our results may help to achieve a better understanding of the implication of progesterone in mammary carcinogenesis. (author)

  8. Isolation and identification of gene mediating radiation-induced apoptosis in human leukemia U937 cells

    International Nuclear Information System (INIS)

    Tong Xin; Luo Ying; Dong Yan; Sun Zhixian

    1998-01-01

    Objective: Increasing evidences suggest that Caspase family proteases play an important role in the effector mechanism of apoptotic cell death. Radiation (IR) can induce apoptosis in tumor cells, so it is very important to isolate and identify the member of the Caspase family proteases involved in IR-induced apoptosis, and this would contribute to the understanding of the mechanism responsible for apoptosis execution. Methods: A PCR approach to isolate genes for IR-induced apoptosis was developed. The approach used degenerated oligonucleotide encoding the highly conserved peptides that were present in all known Caspases. Results: Protease inhibitors special for Caspases could block the apoptotic cell death caused by IR, and Caspase-3 was isolated from irradiated human leukemia U937 cells. Conclusion: Caspases involve in IR-induced apoptosis, and Caspase-3 is the pivotal element of IR-induced apoptosis

  9. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  10. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    International Nuclear Information System (INIS)

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L.

    2005-01-01

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis

  11. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    International Nuclear Information System (INIS)

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K.

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis

  12. Numerical simulation of shock absorbers heat load for semi-active vehicle suspension system

    Directory of Open Access Journals (Sweden)

    Demić Miroslav D.

    2016-01-01

    Full Text Available Dynamic simulation, based on modelling, has a significant role during to the process of vehicle development. It is especially important in the first design stages, when relevant parameters are to be defined. Shock absorber, as an executive part of a semi-active suspension system, is exposed to thermal loads which can lead to its damage and degradation of characteristics. Therefore, this paper attempts to analyze a conversion of mechanical work into heat energy by use of a method of dynamic simulation. The issue of heat dissipation from the shock absorber has not been taken into consideration.

  13. Curcumin induces apoptosis of upper aerodigestive tract cancer cells by targeting multiple pathways.

    Directory of Open Access Journals (Sweden)

    A R M Ruhul Amin

    Full Text Available Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2.

  14. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases?

    Science.gov (United States)

    Jansen, Manon A A; Spiering, Rachel; Broere, Femke; van Laar, Jacob M; Isaacs, John D; van Eden, Willem; Hilkens, Catharien M U

    2018-01-01

    Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens. © 2017 John Wiley & Sons Ltd.

  15. Effect of cycloheximide and actinomycin D on radionuclide 235U-induced apoptosis

    International Nuclear Information System (INIS)

    Fu Qiang; Zhang Lansheng; Zhu Shoupeng

    1999-01-01

    Objective: The mechanism of apoptosis induced by radionuclide 235 U was studied. Methods: MTT and JAM assay were used to analyse the cell viability and quantification of fragmented DNA. Results: The inhibitor of protein cycloheximide (CHX), and the inhibitor of RNA synthesis, actinomycin D. cannot inhibit the apoptosis induced by 235 U, but CHX can partly inhibit apoptotic cells DNA fragmentation. Conclusion: The pathway of apoptosis induced by radionuclide 235 U is different from X-and γ-ray external irradiation, protein synthesis is not essential for it, but synthetic endonuclease is necessary for DNA fragmentation of apoptotic cells

  16. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    International Nuclear Information System (INIS)

    Chen, Rui; Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-01

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  17. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rui [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Department of Forensic Medicine, Guangdong Medical University, Dongguan 523808 (China); Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Liu, Chao [Guangzhou Forensic Science Institute, Guangzhou 510030 (China); Lin, Zhoumeng [Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 (United States); Xie, Wei-Bing, E-mail: xieweib@126.com [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Wang, Huijun, E-mail: hjwang711@yahoo.cn [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China)

    2016-03-15

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  18. Molecular cloning, phylogenetic analysis and heat shock response of Babesia gibsoni heat shock protein 90.

    Science.gov (United States)

    Yamasaki, Masahiro; Tsuboi, Yoshihiro; Taniyama, Yusuke; Uchida, Naohiro; Sato, Reeko; Nakamura, Kensuke; Ohta, Hiroshi; Takiguchi, Mitsuyoshi

    2016-09-01

    The Babesia gibsoni heat shock protein 90 (BgHSP90) gene was cloned and sequenced. The length of the gene was 2,610 bp with two introns. This gene was amplified from cDNA corresponding to full length coding sequence (CDS) with an open reading frame of 2,148 bp. A phylogenetic analysis of the CDS of HSP90 gene showed that B. gibsoni was most closely related to B. bovis and Babesia sp. BQ1/Lintan and lies within a phylogenetic cluster of protozoa. Moreover, mRNA transcription profile for BgHSP90 exposed to high temperature were examined by quantitative real-time reverse transcription-polymerase chain reaction. BgHSP90 levels were elevated when the parasites were incubated at 43°C for 1 hr.

  19. Cytotoxicity and Hsp 70 induction in Hep G2 cells in response to zearalenone and cytoprotection by sub-lethal heat shock

    International Nuclear Information System (INIS)

    Hassen, Wafa; Golli, Emna El; Baudrimont, Isabelle; Mobio, A. Theophile; Ladjimi, M. Moncef; Creppy, E. Edmond; Bacha, Hassen

    2005-01-01

    Zearalenone (ZEN) is a mycotoxin with several adverse effects in laboratory and domestic animals. The mechanism of ZEN toxicity that involves mainly binding to oestrogen receptors and inhibition of macromolecules synthesis is not fully understood. Using human hepatocytes Hep G2 cells as a model, the aim of this work was (i) to investigate the ability of ZEN to induce heat shock proteins Hsp 70 and (ii) to find out the mechanisms of ZEN cytotoxicity by examining cell proliferation and protein synthesis. Our study demonstrated that ZEN induces Hsp 70 expression in a time and dose-dependant manner; this induction occurs at non-cytotoxic concentrations, it could be therefore considered as a biomarker of toxicity. A cytoprotective effect of Hsp 70 was elicited when Hep G2 cells were exposed to Sub-Lethal heat shock prior to ZEN treatment and evidenced by a reduced ZEN cytolethality. This cytoprotection suggests that Hsp 70 may constitute an important cellular defence mechanism. Finally, our data show that ZEN is cytotoxic in Hep G2 cells by inhibiting cell proliferation and total protein synthesis and pointed out oxidative damage as possible pathway involved in ZEN toxicity; however, other investigations are needed to further confirm Zen induced oxidative stress

  20. Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane

    Science.gov (United States)

    Ding, Xue-feng; Wu, Yan; Qu, Wen-rui; Fan, Ming; Zhao, Yong-qi

    2018-01-01

    Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation. PMID:29623929

  1. Atrazine-induced apoptosis of splenocytes in BALB/C mice

    Directory of Open Access Journals (Sweden)

    Zheng Jing

    2011-10-01

    Full Text Available Abstract Background Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR, is the most commonly applied broad-spectrum herbicide in the world. Unintentional overspray of ATR poses an immune function health hazard. The biomolecular mechanisms responsible for ATR-induced immunotoxicity, however, are little understood. This study presents on our investigation into the apoptosis of splenocytes in mice exposed to ATR as we explore possible immunotoxic mechanisms. Methods Oral doses of ATR were administered to BALB/C mice for 21 days. The histopathology, lymphocyte apoptosis and the expression of apoptosis-related proteins from the Fas/Fas ligand (FasL apoptotic pathway were examined from spleen samples. Results Mice administered ATR exhibited a significant decrease in spleen and thymus weight. Electron microscope histology of ultrathin sections of spleen revealed degenerative micromorphology indicative of apoptosis of splenocytes. Flow cytometry revealed that the percentage of apoptotic lymphocytes increased in a dose-dependent manner after ATR treatment. Western blots identified increased expression of Fas, FasL and active caspase-3 proteins in the treatment groups. Conclusions ATR is capable of inducing splenocytic apoptosis mediated by the Fas/FasL pathway in mice, which could be the potential mechanism underlying the immunotoxicity of ATR.

  2. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone

    International Nuclear Information System (INIS)

    Johnson, Timothy E.; Zhang, Xiaohua; Bleicher, Kimberly B.; Dysart, Gary; Loughlin, Amy F.; Schaefer, William H.; Umbenhauer, Diane R.

    2004-01-01

    Statins are widely used to treat lipid disorders. These drugs are safe and well tolerated; however, in <1% of patients, myopathy and/or rhabdomyolysis can develop. To better understand the mechanism of statin-induced myopathy, we examined the ability of structurally distinct statins to induce apoptosis in an optimized rat myotube model. Compound A (a lactone) and Cerivastatin (an open acid) induced apoptosis, as measured by TUNEL and active caspase 3 staining, in a concentration- and time-dependent manner. In contrast, an epimer of Compound A (Compound B) exhibited a much weaker apoptotic response. Statin-induced apoptosis was completely prevented by mevalonate or geranylgeraniol, but not by farnesol. Zaragozic acid A, a squalene synthase inhibitor, caused no apoptosis on its own and had no effect on Compound-A-induced myotoxicity, suggesting the apoptosis was not a result of cholesterol synthesis inhibition. The geranylgeranyl transferase inhibitors GGTI-2133 and GGTI-2147 caused apoptosis in myotubes; the farnesyl transferase inhibitor FTI-277 exhibited a much weaker effect. In addition, the prenylation of rap1a, a geranylgeranylated protein, was inhibited by Compound A in myotubes at concentrations that induced apoptosis. A similar statin-induced apoptosis profile was seen in human myotube cultures but primary rat hepatocytes were about 200-fold more resistant to statin-induced apoptosis. Although the statin-induced hepatotoxicity could be attenuated with mevalonate, no effect was found with either geranylgeraniol or farnesol. In studies assessing ubiquinone levels after statin treatment in rat and human myotubes, there was no correlation between ubiquinone levels and apoptosis. Taken together, these observations suggest that statins cause apoptosis in myotube cultures in part by inhibiting the geranylgeranylation of proteins, but not by suppressing ubiquinone concentration. Furthermore, the data from primary hepatocytes suggests a cell-type differential

  3. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  4. Studying arsenic trioxide-induced apoptosis of Colo-16 cells with ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... induced apoptosis at the single cell level. Key words: Two-photon laser scanning microscopy, confocal laser scanning microscopy, human skin squamous carcinoma cells (Colo-16 cells), arsenic trioxide, apoptosis. INTRODUCTION. Although arsenic is poisonous and chronic arsenic exposure from ...

  5. Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    International Nuclear Information System (INIS)

    Mahyar-Roemer, Mojgan; Köhler, Hans; Roemer, Klaus

    2002-01-01

    The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

  6. Susceptibility of different subsets of immature thymocytes to apoptosis induced by anti-TCRmAb

    International Nuclear Information System (INIS)

    Li Hongmei; Zhong Renqian; Yu Jiaping; Kong Xiantao; Chen Weifeng

    2003-01-01

    To analysis the susceptibility of different subsets of immature mice thymocytes to apoptosis induced by anti-TCRmAbs in vitro apoptosis was induced in unfractionated mice thymocytes by anti-TCRmAb. In Vivo apoptosis was induced in BALB/c mice by anti-TCR mAb, and thymocytes were examined by FACS. Results showed that CD4 + CD8 + DP thymocytes and CD4 - CD8 + CD3 - thymocytes were equally sensitive to apoptosis after treatment with the anti-TCR mAb. In sharp contrast, the early migrants or precursor containing thymocytes which are CD4 - CD8 - CD3 - TN have a lower spontaneous apoptosis rate and were relatively resistant to the anti-TCR mAb. The findings showed a breakpoint in thymocyte sensitivity to apoptosis which occurs after the onset of CD4 - CD8 + CD3 expression, suggesting that susceptibility of thymocytes to apoptosis is developmentally regulated

  7. Gonadal steroids modulate Fas-induced apoptosis of lactotropes and somatotropes.

    Science.gov (United States)

    Jaita, Gabriela; Zárate, Sandra; Ferrari, Luciana; Radl, Daniela; Ferraris, Jimena; Eijo, Guadalupe; Zaldivar, Verónica; Pisera, Daniel; Seilicovich, Adriana

    2011-02-01

    We have previously reported that Fas activation induces apoptosis of anterior pituitary cells from rats at proestrus but not at diestrus and in an estrogen-dependent manner. In this study, we evaluated the effect of Fas activation on apoptosis of lactotropes and somatotropes during the estrous cycle and explored the action of gonadal steroids on Fas-induced apoptosis. Also, we studied whether changes in Fas expression are involved in the apoptotic response of anterior pituitary cells. Fas activation increased the percentage of TUNEL-positive lactotropes and somatotropes at proestrus but not at diestrus. FasL triggered apoptosis of somatotropes only when cells from ovariectomized rats were cultured in the presence of 17 β-estradiol (E2). Progesterone (P4) blocked the apoptotic action of the Fas/FasL system in lactotropes and somatotropes incubated with E2. Both E2 and P4 increased the percentage of cells expressing Fas at the cell membrane. Our results show that Fas activation induces apoptosis of lactotropes and somatotropes at proestrus but not at diestrus. Gonadal steroids may be involved in the apoptotic response of lactotropes and somatotropes, suggesting that Fas activation is implicated in the renewal of these pituitary subpopulations during the estrous cycle. The effect of gonadal steroids on Fas expression may be only partially involved in regulation of the Fas/FasL apoptotic pathway in the anterior pituitary gland.

  8. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation

    Science.gov (United States)

    Chang, Hsiang-Yu; Hou, Shin-Chen; Way, Tzong-Der; Wong, Chi-Huey; Wang, I.-Fan

    2013-11-01

    Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.

  9. Effect of Temperature Shock and Inventory Surprises on Natural Gas and Heating Oil Futures Returns

    Science.gov (United States)

    Hu, John Wei-Shan; Lin, Chien-Yu

    2014-01-01

    The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station. PMID:25133233

  10. Norcantharidin (NCTD) induces mitochondria mediated apoptosis in ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... cancer deaths for both sexes being attributable to hepatoma. However ..... Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in ... involvement of the CD95 receptor/ligand. J. Cancer. Res.

  11. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    DEFF Research Database (Denmark)

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70...... proteins in human cancer cells and identify Hsp70-2, a protein essential for spermatogenesis, as an important regulator of cancer cell growth. Targeted knock-down of the individual family members by RNA interference revealed that both Hsp70 and Hsp70-2 were required for cancer cell growth, whereas...

  12. Apoptosis of nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation

    International Nuclear Information System (INIS)

    Liang Ke; He Shaoqin; Feng Yan; Tang Jinhua; Feng Qinfu; Shen Yu; Yin Weibo; Xu Guozhen; Liu Xinfan; Wang Luhua; Gao Li

    1999-01-01

    Objective: To study the apoptotic response of the nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation. Methods: CNE-2 cells were cultured as usual. Using the techniques of DNA agarose gel electrophoresis and DNA special fluorescent staining, the status of apoptosis in CNE-2 cells after neutron irradiation was detected. Results: It was shown that the apoptosis can be induced in CNE-2 cell after neutron radiation. Six hrs, after different doses of neutron (0/0.667/1.333/2.000/2.667/3.333 Gy) and X-ray 0/2/4/6/8/10 Gy) irradiation the apoptotic rates were 2.4%, 6.3%, 7.1%, 9.5%, 13.5%, 14.6% and 2.4%, 3.8%, 5.7%, 7.8%, 10.4%, 11.7%, respectively; at 48 hrs they were 18.3%, 21.5%, 22.8%, 29.3%, 34.2% and 13.7%, 17.6%, 21.3%, 25.6%, 28.9%, respectively. At 10 hrs after neutron irradiation the DNA ladder of apoptosis could be detected between 0.667-3.333 Gy doses in CNE-2 cells by DNA agarose gel electrophoresis. Conclusion: Neutron radiation can induce apoptosis in tumor cells. Compared with the X-ray, neutron induces apoptosis in larger extent than X-ray in the same condition; meanwhile, apoptosis after irradiation is dose and time dependent

  13. Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.

    Science.gov (United States)

    Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A

    2002-01-01

    We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.

  14. Canine distemper virus induces apoptosis in cervical tumor derived cell lines

    Directory of Open Access Journals (Sweden)

    Rajão Daniela S

    2011-06-01

    Full Text Available Abstract Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi, by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  15. Isoform composition and stoichiometry of the ∼ 90-kDa heat shock protein associated with glucocorticoid receptors

    International Nuclear Information System (INIS)

    Mendel, D.B.; Orti, E.

    1988-01-01

    The authors observed that the ∼ 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the ∼ 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the ∼ 90-kDa heat shock protein. The observation that TSTA and the ∼ 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested that the doublet observed is also due to the existence of two isoforms. They have therefore conducted this study to determine whether TSTA and the ∼ 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the ∼ 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. They used the BuGr1 and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free ∼ 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [ 35 S]methionine to metabolically label proteins to steady state. The long-term metabolic labeling approach has also enabled them to directly determine that the purified non-activated glucocorticoid receptor contains a single steroid-binding protein and two ∼ 90-kDa non-steroid-binding subunits. The consistency with which a ∼ 1:2 stoichiometric ratio of steroid binding to ∼ 90-kDa protein is observed supports the view that the ∼ 90-kDa heat shock protein is a true component of nonactivated glucocorticoid-receptor complexes

  16. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    International Nuclear Information System (INIS)

    Homa, Joanna; Olchawa, Ewa; Stuerzenbaum, Stephen R.; John Morgan, A.; Plytycz, Barbara

    2005-01-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes

  17. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Joanna [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Olchawa, Ewa [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Stuerzenbaum, Stephen R. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); John Morgan, A. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); Plytycz, Barbara [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland)]. E-mail: plyt@zuk.iz.uj.edu.pl

    2005-05-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes.

  18. The Heat Shock Protein 26 Gene is Required for Ethanol Tolerance in Drosophila

    Directory of Open Access Journals (Sweden)

    Awoyemi A. Awofala

    2011-01-01

    Full Text Available Stress plays an important role in drug- and addiction-related behaviours. However, the mechanisms underlying these behavioural responses are still poorly understood. In the light of recent reports that show consistent regulation of many genes encoding stress proteins including heat shock proteins following ethanol exposure in Drosophila , it was hypothesised that transition to alcohol dependence may involve the dysregulation of the circuits that mediate behavioural responses to stressors. Thus, behavioural genetic methodologies were used to investigate the role of the Drosophila hsp26 gene, a small heat shock protein coding gene which is induced in response to various stresses, in the development of rapid tolerance to ethanol sedation. Rapid tolerance was quantified as the percentage difference in the mean sedation times between the second and first ethanol exposure. Two independently isolated P-element mutations near the hsp26 gene eliminated the capacity for tolerance. In addition, RNAi-mediated functional knockdown of hsp26 expression in the glial cells and the whole nervous system also caused a defect in tolerance development. The rapid tolerance phenotype of the hsp26 mutants was rescued by the expression of the wild-type hsp26 gene in the nervous system. None of these manipulations of the hsp26 gene caused changes in the rate of ethanol absorption. Hsp26 genes are evolutionary conserved, thus the role of hsp26 in ethanol tolerance may present a new direction for research into alcohol dependency.

  19. Butyrate down regulates BCL-XL and sensitizes human fibroblasts to radiation and chemotherapy induced apoptosis

    International Nuclear Information System (INIS)

    Chung, Diana H.; Ljungman, Mats; Zhang Fenfen; Chen Feng; McLaughlin, William P.

    1997-01-01

    Purpose/Objective: Butyrate is a short chain fatty acid that has been implicated in the induction of cell cycle arrest, cell differentiation and apoptosis. The purpose of this study was to determine if butyrate treatment sensitizes cells to radiation or chemotherapy induced apoptosis. Materials and Methods: Normal neonatal human diploid fibroblasts were used throughout this study. Apoptosis was scored and quantified using three different methods. First, cell morphology using propidium iodide and fluorescence microscopy was used to qualitatively determine apoptosis and to quantify the percentage of cells undergoing apoptosis. Second, apoptosis induced DNA degradation was scored by quantifying the amount of cells appearing in a sub-G1 peak using fixed and PI-stained cells and flow cytometry. Third, apoptosis-induced DNA degradation was examined by using an assay involving direct lysis of cells in the wells of agarose gels followed by conventional gel electrophoresis. Western blotting was used to quantify the cellular levels of the apoptosis regulators, Bcl-2, Bcl-XL and Bax. Results: Human diploid fibroblasts, which were resistant to radiation induced apoptosis, were found to undergo massive apoptosis when radiation was combined with butyrate treatment. Sensitization was obtained when butyrate was added before or after radiation although the combination of both pre and post-treatment was the most effective. Butyrate was also found to enhance UV light and cisplatin-induced apoptosis. These findings correlated with a reduction of the apoptosis antagonist Bcl-XL. Bcl-XL levels significantly dropped in a time and dose dependent manner. In addition, butyrate effectively blocked UV-induced accumulation of p53. Conclusion: Our results suggest that butyrate may be an attractive agent to use in combination with radiation or chemotherapy to lower the apoptotic threshold of tumor cells, regardless of the p53 status of the tumor cells

  20. Dietary supplementation of Zingiber officinale and Zingiber zerumbet to heat-stressed broiler chickens and its effect on heat shock protein 70 expression, blood parameters and body temperature.

    Science.gov (United States)

    Hasheimi, S R; Zulkifli, I; Somchit, M N; Zunita, Z; Loh, T C; Soleimani, A F; Tang, S C

    2013-08-01

    The present study was conducted to assess the effects of dietary supplementation of Zingiber officinale and Zingiber zerumbet and to heat-stressed broiler chickens on heat shock protein (HSP) 70 density, plasma corticosterone concentration (CORT), heterophil to lymphocyte ratio (HLR) and body temperature. Beginning from day 28, chicks were divided into five dietary groups: (i) basal diet (control), (ii) basal diet +1%Z. zerumbet powder (ZZ1%), (iii) basal diet +2%Z. zerumbet powder (ZZ2%), (iv) basal diet +1%Z. officinale powder (ZO1%) and (v) basal diet +2%Z. officinale powder (ZO2%). From day 35-42, heat stress was induced by exposing birds to 38±1°C and 80% RH for 2 h/day. Irrespective of diet, heat challenge elevated HSP70 expression, CORT and HLR on day 42. On day 42, following heat challenge, the ZZ1% birds showed lower body temperatures than those of control, ZO1% and ZO2%. Neither CORT nor HLR was significantly affected by diet. The ZO2% and ZZ2% diets enhanced HSP70 expression when compared to the control groups. We concluded that dietary supplementation of Z. officinale and Z. zerumbet powder may induce HSP70 reaction in broiler chickens exposed to heat stress. © 2012 Blackwell Verlag GmbH.

  1. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  2. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    International Nuclear Information System (INIS)

    Aloy, Marie-Therese; Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-01-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to γ-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors

  3. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ren-Jie [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Lin, Su-Shuan [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Wu, Wen-Ren [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Chen, Lih-Ren [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Division of Physiology, Livestock Research Institute, Council of Agriculture, Taiwan (China); Li, Chien-Feng [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan (China); National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan (China); Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Han-De; Chou, Chien-Ting; Chen, Ya-Chun [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Liang, Shih-Shin [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chien, Shang-Tao [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Shiue, Yow-Ling, E-mail: ylshiue@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2016-11-15

    The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G{sub 2}/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G{sub 2}/M cell cycle regulators, ABT-751 induced G{sub 2}/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. - Highlights: • An anti-microtubule agent, ABT-751, induces autophagy and apoptosis in Huh-7 cells.

  4. Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis

    International Nuclear Information System (INIS)

    Martin, S.J.; Cotter, T.G.

    1991-01-01

    UV radiation is known to be a potent agent for the induction of programmed cell death (apoptosis) in human skin. However, the mechanistic aspects of UV-induced apoptosis remain ill-defined. In this study the effects of varying periods of UV-irradiation on the human leukaemia HL-60 cell line and on five other human cell lines were investigated.HL-60 cells were found to rapidly undergo apoptosis en masse after short periods of UV-irradiation whereas prolonged exposure of these cells to this form of radiation induced a more rapid form of cell death which was suggestive of necrosis, the pathological mode of cell death. UV-induced apoptosis in cell lines was characterized by morphological changes as well as DNA fragmentation into unit multiples of ∼ 200 bp, which was indicative of endogenous endonuclease activation. This DNA fragmentation pattern was not detected in cells immediately after UV-irradiation, and was therefore not the result of direct UV-induced DNA damage. UV-induced apoptosis of the HL-60 cell line was found to require extracellular calcium and to be inhibited in a dose-dependent way by zinc added to the culture medium. (author)

  5. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    International Nuclear Information System (INIS)

    Vishwakarma, J P; Nath, G

    2010-01-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient α R are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  6. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

    DEFF Research Database (Denmark)

    Nylandsted, J; Jäättelä, M; Hoffmann, E K

    2004-01-01

    Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found...... that severe hypertonic stress greatly diminished the viability of murine fibrosarcoma cells (WEHI-902) and immortalized murine embryonic fibroblasts (iMEFs). This effect was attenuated markedly by Hsp70 over-expression. To determine whether the protective effect of Hsp70 was mediated via an effect on volume...... regulatory ion transport, we compared regulatory volume decrease (RVD) and increase (RVI) in control WEHI-902 cells and after increasing Hsp70 levels by heat shock or over-expression (WEHI-912). Hsp70 levels affected neither RVD, RVI nor the relative contributions of the Na(+)/H(+)-exchanger (NHE1) and Na...

  7. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    Science.gov (United States)

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  8. Effects of Friction and Plastic Deformation in Shock-Comminuted Damaged Rocks on Impact Heating

    Science.gov (United States)

    Kurosawa, Kosuke; Genda, Hidenori

    2018-01-01

    Hypervelocity impacts cause significant heating of planetary bodies. Such events are recorded by a reset of 40Ar-36Ar ages and/or impact melts. Here we investigate the influence of friction and plastic deformation in shock-generated comminuted rocks on the degree of impact heating using the iSALE shock-physics code. We demonstrate that conversion from kinetic to internal energy in the targets with strength occurs during pressure release, and additional heating becomes significant for low-velocity impacts (projectile mass to temperatures for the onset of Ar loss and melting from 8 and 10 km s-1, respectively, for strengthless rocks to 2 and 6 km s-1 for typical rocks. Our results suggest that the impact conditions required to produce the unique features caused by impact heating span a much wider range than previously thought.

  9. Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells

    NARCIS (Netherlands)

    Lens, S. M.; den Drijver, B. F.; Pötgens, A. J.; Tesselaar, K.; van Oers, M. H.; van Lier, R. A.

    1998-01-01

    To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with

  10. Regulation of radiation-induced protein kinase Cδ activation in radiation-induced apoptosis differs between radiosensitive and radioresistant mouse thymic lymphoma cell lines

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Yukawa, Osami; Tsuji, Hideo; Ohyama, Harumi; Wang, Bing; Tatsumi, Kouichi; Hayata, Isamu; Hama-Inaba, Hiroko

    2006-01-01

    Protein kinase Cδ (PKCδ) has an important role in radiation-induced apoptosis. The expression and function of PKCδ in radiation-induced apoptosis were assessed in a radiation-sensitive mouse thymic lymphoma cell line, 3SBH5, and its radioresistant variant, XR223. Rottlerin, a PKCδ-specific inhibitor, completely abolished radiation-induced apoptosis in 3SBH5. Radiation-induced PKCδ activation correlated with the degradation of PKCδ, indicating that PKCδ activation through degradation is involved in radiation-induced apoptosis in radiosensitive 3SBH5. In radioresistant XR223, radiation-induced PKCδ activation was lower than that in radiosensitive 3SBH5. Cytosol PKCδ levels in 3SBH5 decreased markedly after irradiation, while those in XR223 did not. There was no apparent change after irradiation in the membrane fractions of either cell type. In addition, basal cytosol PKCδ levels in XR223 were higher than those in 3SBH5. These results suggest that the radioresistance in XR223 to radiation-induced apoptosis is due to a difference in the regulation of radiation-induced PKCδ activation compared to that of 3SBH5. On the other hand, Atm -/- mouse thymic lymphoma cells were more radioresistant to radiation-induced apoptosis than wild-type mouse thymic lymphoma cells. Irradiated wild-type cells, but not Atm -/- cells, had decreased PKCδ levels, indicating that the Atm protein is involved in radiation-induced apoptosis through the induction of PKCδ degradation. The decreased Atm protein levels induced by treatment with Atm small interfering RNA had no effect on radiation-induced apoptosis in 3SBH5 cells. These results suggest that the regulation of radiation-induced PKCδ activation, which is distinct from the Atm-mediated cascade, determines radiation sensitivity in radiosensitive 3SBH5 cells

  11. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.

    Science.gov (United States)

    Muthalagu, Nathiya; Junttila, Melissa R; Wiese, Katrin E; Wolf, Elmar; Morton, Jennifer; Bauer, Barbara; Evan, Gerard I; Eilers, Martin; Murphy, Daniel J

    2014-09-11

    MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  13. Guidelines for the nomenclature of the human heat shock proteins

    NARCIS (Netherlands)

    Kampinga, Harm H.; Hageman, Jurre; Vos, Michel J.; Kubota, Hiroshi; Tanguay, Robert M.; Bruford, Elspeth A.; Cheetham, Michael E.; Chen, B.; Hightower, Lawrence E.

    The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40),

  14. Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death

    OpenAIRE

    Michalak, Ewa M.; Vandenberg, Cassandra J.; Delbridge, Alex R.D.; Wu, Li; Scott, Clare L.; Adams, Jerry M.; Strasser, Andreas

    2010-01-01

    Although tumor development requires impaired apoptosis, we describe a novel paradigm of apoptosis-dependent tumorigenesis. Because DNA damage triggers apoptosis through p53-mediated induction of BH3-only proteins Puma and Noxa, we explored their roles in γ-radiation-induced thymic lymphomagenesis. Surprisingly, whereas Noxa loss accelerated it, Puma loss ablated tumorigenesis. Tumor suppression by Puma deficiency reflected its protection of leukocytes from γ-irradiation-induced death, because...

  15. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    Science.gov (United States)

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  16. Proteasomal Dysfunction Induced By Diclofenac Engenders Apoptosis Through Mitochondrial Pathway.

    Science.gov (United States)

    Amanullah, Ayeman; Upadhyay, Arun; Chhangani, Deepak; Joshi, Vibhuti; Mishra, Ribhav; Yamanaka, Koji; Mishra, Amit

    2017-05-01

    Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin.

    Science.gov (United States)

    Magesky, Adriano; de Oliveira Ribeiro, Ciro A; Beaulieu, Lucie; Pelletier, Émilien

    2017-07-01

    Using immune cells of sea urchin Strongylocentrotus droebachiensis in early development as a model, the cellular protective mechanisms against ionic and poly(allylamine)-coated silver nanoparticle (AgNPs; 14 ± 6 nm) treatments at 100 μg L -1 were investigated. Oxidative stress, heat shock protein expression, and pigment production by spherulocytes were determined as well as AgNP translocation pathways and their multiple effects on circulating coelomocytes. Sea urchins showed an increasing resilience to Ag over time because ionic Ag is accumulated in a steady way, although nanoAg levels dropped between 48 h and 96 h. A clotting reaction emerged on tissues injured by dissolved Ag (present as chloro-complexes in seawater) between 12 h and 48 h. Silver contamination and nutritional state influenced the production of reactive oxygen species. After passing through coelomic sinuses and gut, AgNPs were found in coelomocytes. Inside blood vessels, apoptosis-like processes appeared in coelomocytes highly contaminated by poly(allylamine)-coated AgNPs. Increasing levels of Ag accumulated by urchins once exposed to AgNPs pointed to a Trojan-horse mechanism operating over 12-d exposure. However, under short-term treatments, physical interactions of poly(allylamine)-coated AgNPs with cell structures might be, at some point, predominant and responsible for the highest levels of stress-related proteins detected. The present study is the first report detailing nano-translocation in a marine organism and multiple mechanisms by which sea urchin cells can deal with toxic AgNPs. Environ Toxicol Chem 2017;36:1872-1886. © 2016 SETAC. © 2016 SETAC.

  18. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  19. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  20. Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock.

    Science.gov (United States)

    Duvigneau, Johanna Catharina; Kozlov, Andrey V; Zifko, Clara; Postl, Astrid; Hartl, Romana T; Miller, Ingrid; Gille, Lars; Staniek, Katrin; Moldzio, Rudolf; Gregor, Wolfgang; Haindl, Susanne; Behling, Tricia; Redl, Heinz; Bahrami, Soheyl

    2010-03-01

    Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.

  1. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef.

    Science.gov (United States)

    Juneja, V K; Klein, P G; Marmer, B S

    1998-04-01

    Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 degrees C for 15-30 min, and then heated to a final internal temperature of 60 degrees C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 degrees C increased 1.56- and 1.50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 degrees C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held to 15 or 28 degrees C. A 25 min heat shock at 46 degrees C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.

  2. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    International Nuclear Information System (INIS)

    Pattani, Varun P.; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W.

    2015-01-01

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of ‘clean’ cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm 2 laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue

  3. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pattani, Varun P., E-mail: varun.pattani@utexas.edu; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W. [The University of Texas at Austin, Department of Biomedical Engineering (United States)

    2015-01-15

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of ‘clean’ cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm{sup 2} laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue.

  4. Effectiveness of edible coatings combined with mild heat shocks on microbial spoilage and sensory quality of fresh cut broccoli (Brassica oleracea L.).

    Science.gov (United States)

    Moreira, María del R; Ponce, Alejandra; Ansorena, R; Roura, Sara I

    2011-08-01

    The use of edible coatings and mild heat shocks is proposed as postharvest treatments to prevent microbial deterioration of refrigerated broccoli. Minimally processed broccoli was coated with either chitosan or carboxymethyl-cellulose (CMC) combined or not with a previous application of a mild heat shock. The evolution of microbial populations (mesophilic, psycrotrophic, Enterobacteriaceae, molds and yeast, and lactic acid bacteria) was studied during 20 d of storage and fitted to Gompertz and logistic models. Results revealed that, at the end of the storage, chitosan coating significantly reduced all microbiological population counts, except lactic acid bacteria; while higher reduction was observed with chitosan coating combined with a heat shock treatment. A significant delay at the beginning of the exponential phase was observed for all the bacterial populations analyzed. On the other hand, CMC coating, with and without a previous thermal treatment, did not exert any antibacterial effect. Excellent agreement was found between experimental microbial counts and predicted values obtained from Gompertz and logistic models. Kinetic modeling was found to be valuable for prediction of microbiological shelf life of broccoli during storage. Results showed that the application of chitosan coating effectively maintained microbiological quality and extended shelf life of minimally processed broccoli. According to these results, the use of the edible chitosan coating alone or in combination with a heat mild shock appear to be a viable alternative for controlling microbiological growth and sensory attributes in minimally processed broccoli. The continuous consumer interest in high quality and food safety, combined with environmental concern has induced to the development and study of edible coatings that avoid the use of synthetic materials. The edible coatings, formed from generally recognized as safe materials, have the potential to reduce weight loss, respiration rate, and

  5. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level.

    Science.gov (United States)

    Liu, Yu; Yang, Huarong; Song, Zhi; Gu, Shaojuan

    2014-12-01

    Copper is an essential trace element that serves as an important catalytic cofactor for cuproenzymes, carrying out major biological functions in growth and development. Although Wilson's disease (WD) is unquestionably caused by mutations in the ATP7B gene and subsequent copper overload, the precise role of copper in inducing pathological changes remains poorly understood. Our study aimed to explore, in HepG2 cells exposed to copper, the cell viability and apoptotic cells was tested by MTT and Hoechst 33342 stainning respectively, and the signaling pathways involved in oxidative stress response, apoptosis and lipid metabolism were determined by real time RT-PCR and Western blot analysis. The results demonstrate dose- and time-dependent cell viability and apoptosis in HepG2 cells following treatment with 10 μM, 200 μM and 500 μM of copper sulfate for 8 and 24 h. Copper overload significantly induced the expression of HSPA1A (heat shock 70 kDa protein 1A), an oxidative stress-responsive signal gene, and BAG3 (BCL2 associated athanogene3), an anti-apoptotic gene, while expression of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), a lipid biosynthesis and lipid metabolism gene, was inhibited. These findings provide new insights into possible mechanisms accounting for the development of liver apoptosis and steatosis in the early stages of Wilson's disease.

  7. Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors.

    Science.gov (United States)

    Lavania, Dhruv; Dhingra, Anuradha; Grover, Anil

    2018-06-01

    Based on yeast one-hybrid assays, we show that the presence of C-terminal AHA motifs is not a prerequisite for transactivation potential in rice heat shock factors. Transcriptional activation or transactivation (TA) of heat stress responsive genes takes place by binding of heat shock factors (Hsfs) to heat shock elements. Analysis of TA potential of thirteen rice (Oryza sativa L.) Hsfs (OsHsfs) carried out in this study by yeast one-hybrid assay showed that OsHsfsA3 possesses strong TA potential while OsHsfs A1a, A2a, A2b, A4a, A4d, A5, A7b, B1, B2a, B2b, B2c and B4d lack TA potential. From a near complete picture of TA potential of the OsHsf family (comprising of 25 members) emerging from this study and an earlier report from our group (Mittal et al. in FEBS J 278(17):3076-3085, 2011), it is concluded that (1) overall, six OsHsfs, namely A3, A6a, A6b, A8, C1a and C1b possess TA potential; (2) four class A OsHsfs, namely A3, A6a, A6b and A8 have TA potential out of which A6a and A6b contain AHA motifs while A3 and A8 lack AHA motifs; (3) nine class A OsHsfs, namely A1a, A2a, A2b, A2e, A4a, A4d, A5, A7a and A7b containing AHA motif(s) lack TA function in the yeast assay system; (4) all class B OsHsfs lack AHA motifs and TA potential (B4a not analyzed) and (5) though all class C OsHsf members lack AHA motifs, two members C1a and C1b possess TA function, while one member C2a lacks TA potential (C2b not analyzed). Thus, the presence or absence of AHA motif is possibly not the only factor determining TA potential of OsHsfs. Our findings will help to identify the transcriptional activators of rice heat shock response.

  8. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage.

    Science.gov (United States)

    Jiang, Rui; Qi, Lan-Da; Du, Yu-Zhou; Li, Yuan-Xi

    2017-10-01

    Temperature plays an important role in the growth, development, and geographic distribution of insects. There is convincing evidence that heat-shock proteins (HSPs) play important roles in helping organisms adapt to thermal stress. To better understand the physiological and ecological influence of thermal stress on the different development stages of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Mediterranean species (MED), nymphs and adults were shocked with temperatures of 35, 38, and 41℃ for 1 and 2 h, respectively, and the survival rate, fecundity, and developmental duration were investigated in the laboratory. The expression levels of the hsp40, hsp70, and hsp90 genes were assessed using real-time PCR. The results indicate that the survival rates of the nymphs and adults decreased with increased temperature. A 2-h heat shock at 41℃ induced a significant reduction in fecundity in adults and an increase in developmental duration in young nymphs. Hsp90 showed higher temperature responses to thermal stress than hsp40 or hsp70. The expression levels of the hsps in the adults were significantly down-regulated by a 2-h heat shock at 41℃ compared with that by a 1-h treatment. A significant decrease in the expression levels of the hsps also occurred in the adults when the temperature increased from 38 to 41℃ for the 2-h treatment, whereas no significant decrease occurred in the nymphs. Compared with previous studies, we provide some evidence indicating that MED has the potential to adapt to a wider temperature range than the Middle East-Asia Minor 1 species. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis.

    Science.gov (United States)

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-05-07

    Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMvarphi), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMvarphi. Resultant MDMvarphi were treated for 24 h with DETA/NO (100 - 1000 muM) or GEA-3162 (10 - 300 muM) in the presence or absence of BAY 41-2272 (1 muM), isobutylmethylxanthine (IBMX; 1 muM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 muM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMvarphi was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMvarphi. Preconditioning of MDMvarphi with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41-2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner. These results

  10. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  11. Apoptosis and radiosensitivity induced by N-acety1 phytosphingosine, in human cancer cell line

    International Nuclear Information System (INIS)

    Kim, Y. H.; Kim, K. S.; Han, Y. S.; Jeon, S. J.; Song, J. Y.; Jung, I. S.; Hong, S. H.; Yun, Y. S.; Park, J. S.

    2004-01-01

    Ceramide is a key lipid molecule in signal transduction with a role in various regulatory pathways including differentiation, proliferation and especially apoptosis. Ionizing radiation-induced apoptosis is associated with accumulation of ceramide, and the sphingomyelinase deficiency results in radioresistance. We investigated the exogenous treatment of N-acetyl-phytosphingosine (NAPS), an analogue of N-acetyl-sphingosine (C 2 -Ceramide), and C 2 -ceramide exert apoptotic effect on human T cell lymphoma Jurkat cells and breast cancer cell line MDA-MB-231. NAPS and C 2 -Ceramide has cytotoxic effect in time- and dose-dependent manner, and increased caspase-3, 8 activity. However, NAPS induced apoptosis more effectively, and increased caspase activity induced by NAPS is more higher than C 2 -ceramide. Moreover, NAPS decreased clonogenicity of irradiated cells and increased radiation-induced apoptosis significantly. Increased cell death by irradiation in the presence of NAPS is owing to the increase of caspase activity. These data suggest that NAPS might be used for lead as a new type of radiosensitizing agent increasing radiation-induced apoptosis

  12. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress

    Directory of Open Access Journals (Sweden)

    Ian R. Brown

    2017-04-01

    Full Text Available Heat shock proteins (Hsps co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40, HSPA (Hsp70, and HSPH (Hsp105α. The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B' is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1 or HSPH1 (Hsp105α. At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC of the nucleolus. Inducible HSPA1A (Hsp70-1 and constitutively expressed HSPA8 (Hsc70 co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.

  13. Cloning and Characterization of Genes that Inhibit TRAIL-Induced Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Shu, Hong-Bing

    2003-01-01

    ...). However, some cancer cells are resistant to TRAIL-induced apoptosis (3, 4, 6-13). The purpose of this proposed study is to clone and characterize such inhibitory genes of TRAIL-induced apoptosis...

  14. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review.

    Science.gov (United States)

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Amaya-Farfan, Jaime

    2018-05-28

    Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.

  15. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  16. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  17. Roles of acid sphingomyelinase activation in neuronal cells apoptosis induced by microwave irradiation

    International Nuclear Information System (INIS)

    Zhang Lei; Xu Shangcheng; Zhang Guangbin; Yu Zhengping

    2009-01-01

    The present study is to examine the effect of microwave on acid sphingomyelinase (ASM) activity and expression, and to explore the role of ASM activation in neuronal cells apoptosis induced by microwave irradiation. Primary cultured hippocampal neurons were irradiated by 30 W/cm 2 microwave for 10 min, and ASM activity assay was used to investigate ASM activity alteration. RT-PCR and western blot were used to detect ASM mRNA and protein expression respectively. Apoptosis was observed by Hoechst 33342 fluorescence staining. ASM specific inhibitor imipramine was applied to inhibit ASM activation. It has been found that apoptosis rate of primary cultured hippocampal neurons increased significantly after microwave irradiation. ASM was activated while ASM mRNA and protein expression were upregulated in neurons after microwave irradiation. Pretreatment with imipramine could reverse neuronal apoptosis induced by microwave irradiation. Results show that microwave irradiation causes increment of ASM activation and expression and ASM activation is involved in microwave induced neuronal apoptosis. (authors)

  18. Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma.

    Science.gov (United States)

    Griffith, Thomas S; Fialkov, Jonathan M; Scott, David L; Azuhata, Takeo; Williams, Richard D; Wall, Nathan R; Altieri, Dario C; Sandler, Anthony D

    2002-06-01

    The lack of effective therapy for disseminated renal cell carcinoma (RCC) has stimulated the search for novel treatments including immunotherapeutic strategies. However, poor therapeutic responses and marked toxicity associated with immunological agents has limited their use. The tumor necrosis factor family member tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2 ligand induces apoptosis in a variety of tumor cell types, while having little cytotoxic activity against normal cells. In this study the activation and regulation of TRAIL-induced apoptosis and TRAIL receptor expression in human RCC cell lines and pathologic specimens was examined. TRAIL induced caspase-mediated apoptotic death of RCC cells with variable sensitivities among the cell lines tested. Compared with TRAIL-sensitive RCC cell lines (A-498, ACHN, and 769-P), the TRAIL-resistant RCC cell line (786-O) expressed lesser amounts of the death-inducing TRAIL receptors, and greater amounts of survivin, an inhibitor of apoptosis. Incubation of 786-O with actinomycin D increased the expression of the death-inducing TRAIL receptors and, concomitantly, decreased the intracellular levels of survivin, resulting in TRAIL-induced apoptotic death. The link between survivin and TRAIL regulation was confirmed when an increase in TRAIL resistance was observed after overexpression of survivin in the TRAIL-sensitive, survivin-negative RCC line A-498. These findings, along with our observation that TRAIL receptors are expressed in RCC tumor tissue, suggest that TRAIL may be useful as a therapeutic agent for RCC and that survivin may partially regulate TRAIL-induced cell death.

  19. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    Science.gov (United States)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  20. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (Stål): Its response to temperature and insecticide stresses.

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhang, Zhichao; Wang, Ying; You, Keke; Li, Yue; Zhang, Rongbin; Zhou, Qiang

    2017-10-01

    The brown planthopper, Nilaparvata lugens, possesses a strong adaptability to extreme temperature and insecticide stresses. Heat shock proteins (Hsps) are highly conserved molecular chaperones and play a pivotal role in response to various environmental stresses in insects. However, little is known about the response of Hsps to stresses in N. lugens. In the present study, an inducible Hsp70 (NlHsp70) was isolated from this insect and transcriptional expression patterns of NlHsp70 under temperature and insecticide stresses were analyzed. The full-length of NlHsp70 was 2805bp with an open reading frame (ORF) of 1896bp, showing high homology to its counterparts in other species. Expression of NlHsp70 was not altered by heat shock for 1h, nor following recovery from thermal stress. Conversely, decreased expression of NlHsp70 was observed in response to cold shock. In addition, the expression of NlHsp70 increased after imidacloprid exposure. RNA interference experiment combined with insecticide injury assay also demonstrated that NlHsp70 was essential for resistance against insecticide exposure. These observations indicated that NlHsp70 was an important gene involved in the resistance or tolerance to environmental stresses in N. lugens. Interestingly, weak changes in mRNA expression levels of two thermal-inducible Hsp genes, NlHsp90 and NlHsc70 were observed in imidacloprid-exposed N. lugens adults, suggesting that different Hsps may respond differential to the extreme temperature and insecticide stresses. Copyright © 2017 Elsevier Inc. All rights reserved.