WorldWideScience

Sample records for heat resisting alloy

  1. The Weldability of Heat-Resisting Alloys (N-102)

    Science.gov (United States)

    1945-12-05

    turbosupsrehargera, jat engines, and gas turbina wheals. Welds in fiva wrought alloya and two cast materials nera aubjacted to tha bead-on-plate test...superchar.jers, jet engines, and gas turbine wheels. ThiSc investigations are basing continued oy tht .tustluss Iron and steel Corporation, a3 a...characteristics of heat resisting alloys enployod in turbo-superchargers,jet anginas, and gas turbine wheels. The primary objectives wore tho development of

  2. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  3. Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Cu-Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Tao; Zhang Hailong; Xiao Nianxin; Zhao Xiangling

    2007-01-01

    The microstructure of Cu-Zn alloy with different heat treatment conditions in 3.5% NaCl + NH3 solution were observed, and the average corrosion rates and electrochemical data of Cu-Zn alloy were measured, as well as the effect of heat treatment on microstructure and corrosion resistance of Cu-Zn alloy was analyzed. The results show that the microstructure of Cu-Zn alloy has been changed due to the heat treatment. As a results, the better corrosion resistance can be obtained for the Cu-Zn alloy quenched from 900℃ for 0.5h followed by tempered at 100℃ for 2h.

  4. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  5. Experimental Study on Machining Shape Hole of Ni-based Super-heat-resistant Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718 and Waspaloy, Nickel-based super-heat-resistant alloy, are high-strength, thermal-resistant and corrosion-resistant alloy that are widely used in parts of gas turbines and airplane engines. Due to their extremely tough and thermal-resistant nature, they are well known as materials that are difficult to cut. Shape holes on a disc of an aircraft engine, made of Ni-based super-heat-resistant alloy, are required with good surface integrity and geometric accuracy. This kind of shape hole is produced ...

  6. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  7. Approximate evaluation of the density of single-crystal heat-resistant nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrushin, N.V.; Ignatova, I.A.; D`yachkova, L.A.

    1992-03-01

    On the basis of the generalization and analysis of the author`s and of published experimental data an analytical dependence is obtained of the density of single-crystal heat-resistant nickel alloys on their chemical composition which was characterized by the mean atomic mass of the alloy. 9 refs., 2 tabs.

  8. Peculiarities of structure-stressed state of phases in heat resisting nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Samojlov, A.I.; Ignatova, I.A.; Razumovskij, I.M.; Kozlova, V.S.; Dodonova, L.P.

    Temperature change of periods (asub(..gamma..) and asub(..gamma..') of crystal lattices of phases in the temperature range 293-1173 K in three differently alloyed heat-resisting nickel alloys is determined. The measurements are made in vacuum approximately 10/sup -4/ mm Hg. Discrepancy between crystal iattice periods ..gamma..- and ..gamma..'-phase in three industrial heat-resisting alloys of ZhS type at the temperatures 293, 973, 1173 K and interphase strains in them at room temperature are determined. The degree of intrinsic plastic strain of matrix of the above-mentioned alloys, caused by interphase strains, is determined. Correlation of the alloy properties with the level of intrinsic plastic is shown. Mechanisms of the effect of structurally-strained state of alloys on their properties are discussed.

  9. Determination of Stress-Rupture Parameters for Four Heat-Resisting Alloys

    Science.gov (United States)

    Lidman, William G.

    1947-01-01

    Stress-rupture data for four heat-resisting alloys are analyzed according to equations of the theory of rate processes. A method for determining the four parameters of structure and composition is demonstrated and the four parameters are determined for each of the alloys: forged S816, cast S816, cast S590, and cast Vitallium. It is concluded that parameters can be determined for an alloy provided sufficient reliable experimental data are available.

  10. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    Science.gov (United States)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  11. Effects of heat treatment process on thin film alloy resistance and its stability

    Institute of Scientific and Technical Information of China (English)

    周继承; 彭银桥

    2003-01-01

    Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was respectively heat-treated by four processes. The effects on stability of thin film alloy resistance were investigated, and paramaters of heat treatment that make thin film resistance stable were obtained. The experimental result indicates that the most stable thin film resistance can be obtained when it is heat-treated under protection of SiO2 and N2 at 673 K for 1 h, and then kept at 473 K for 24 h. Pressure sensor chips of high precision for harsh environments can be manufactured by this process.

  12. Microstructure and properties of 2618-Ti heat resistant aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建华; 易丹青; 王斌

    2003-01-01

    The mechanical properties of alloy 2618 with 0.5%(mass fraction) titanium and its microstructures in different states such as as-cast and quenching-aging were investigated. Titanium was added into the alloy with Al-5%Ti master alloy that was extruded severely. Al3Ti particles in the microstructure of cast alloy 2618-Ti are very small because those of master alloy are also small. When titanium is used as an alloying element, it does not affect the morphology of Al9FeNi phase in cast alloy, but decreases the grain size of as-cast alloy remarkably. The grain size of quenching-aging alloy 2618 decreases apparently due to the existence of a great deal of dispersive Al3Ti particles. Adding 0.5%Ti has no effect on the room temperature tensile properties of alloy 2618, but apparently increases the elevated temperature instantaneous tensile properties and that of the alloy which is exposed at 250 ℃ for 100 h.

  13. Geometrical product specifications heat-resistant cobalt cast alloy

    Directory of Open Access Journals (Sweden)

    Lyubimov V.

    2007-01-01

    Full Text Available Geometrical product specification MAR-M509 cast cobalt alloy depend beginning temperature of multilayer ceramic shell moulds (MCS. It has found that go down temperature of MCS from 1000°C to 200°C, the increase surface roughness and its amplitude parameters: Sa, Sz, St, Sq, Sp and Sv.

  14. OTS Selective Bibliography. High Temperature Metallurgy and Heat Resistant Alloys

    Science.gov (United States)

    1961-02-01

    Order from OTS at 75 cents PB 151083 thermite reactions were studies with regard to throt- tling materials (alumina versus kaolin , EPK), binders SELECTED...THERMODYNAMICS OF MOLTEN ALLOYS (Dilute solutions of metals - bibliography), by Goodwin and Ayton. sulphur in liquid tin and lead. Sn-Cu-S, Sn-Ag-S...1958, no. 6, p. 41-47. sulphur dioxide), by Makolkin. 1959. llp. Order as HB-4253 from HB at $4.90 59-14611 Trans. of Zhurnal Prikladnoy Khimii (USSR

  15. Temperature of phase transformations in heat-resistant nickel-base alloys

    Science.gov (United States)

    Ivanov, A. D.; Ukhlinov, A. G.

    1997-11-01

    The study of phase transformations in heating and cooling of alloys is needed for choosing optimum regimes of their melting, plastic deformation, and heat treatment. In the present paper differential thermal analysis is used to determine the temperature of phase transformations in complexly alloyed nickel-base alloys. Industrial nickel alloys with intermetallic reinforcement manufactured by means of vacuum arc remelting (VAR) and hot deformation (HD) were studied. Alloy KhN56MBYuD was studied after different metallurgical processes, namely, electroslag remelting (ESR), centrifugal casting (CC), powder spraying (PS), and hot isostatic pressing (HIP). All the alloys were studied in the initial state and after heat treatment.

  16. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    Science.gov (United States)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  17. Influence of composition and heat treatments on corrosion resistance of Fe-Co-BSi amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, E.; Antonione, C.; Baricco, M.; Rosalbino, F.; Zucchi, F. (Ist. Elettrotecnico Nazionale Galileo Ferraris, Turin (Italy) Turin Univ. (Italy) Politecnico di Torino (Italy))

    This paper studies the influence of composition and heat treatments on the corrosion resistance, in a solution of Na/sub 2/SO/sub 4/ 0.05M + H/sub 2/SO/sub 4/ 0.05M, at 1.5 pH, of a series of iron base amorphous alloys with increasing cobalt content, i.e., Fe/sub 80-x/Co/sub x/B/sub 10/Si/sub 10/ with x=0, 30, and 80. The treatments were carried out in an argon atmosphere over increasing time durations: 30, 60, 120, and 240 minutes, and increasing temperatures: 350, 400, 450 and 500 degrees C respectively. It was possible to observe that, independent of heat treatment, the corrosion resistance increased with increasing cobalt concentration. In comparing samples having the same chemical composition, it was noted that their electrochemical behaviour worsened with increasing temperature and time.

  18. Effects of heat treatment on properties of multi-element low alloy wear-resistant steel

    Directory of Open Access Journals (Sweden)

    SONG Xu-ding

    2007-02-01

    Full Text Available The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920℃ and tempered at 350-370℃, the MLAWS has achieved hardness above 60 HRC, tensile strength greater than 1 600 MPa, impact toughness higher than 18J/cm2 and fracture toughness greater than 37 MPa

  19. Standard classification of resistance to stress-corrosion cracking of heat-treatable Aluminum alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This classification covers alphabetical ratings of the relative resistance to SCC of various mill product forms of the wrought 2XXX, 6XXX, and 7XXX series heat-treated aluminum alloys and the procedure for determining the ratings. 1.2 The ratings do not apply to metal in which the metallurgical structure has been altered by welding, forming, or other fabrication processes. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Improvement of corrosion resistance of Nisbnd Mo alloy coatings: Effect of heat treatment

    Science.gov (United States)

    Mousavi, R.; Bahrololoom, M. E.; Deflorian, F.; Ecco, L.

    2016-02-01

    In this paper, Nisbnd Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 oC, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 oC for 25 min. The results showed that the coatings obtained at temperature 40 oC, pH 9, and annealing at 600 oC has the highest corrosion resistance and microhardness.

  1. Laws of alloyed cementite particles nucleation during heat-resistant steels carburizing

    Directory of Open Access Journals (Sweden)

    M. Yu. Semenov

    2014-01-01

    Full Text Available The article considers a problem analyzing a nucleation of cementite type carbides in carburized heat-resistant steels for the turbofan engines gear wheels.The verification of previously hypothesized mechanism of dislocation nucleation particles chromium-alloyed cementite during process of carburizing was accepted as an objective of the work.As a methodological basis of this paper were accepted the numerical experiments based on the kinetic theory of nucleation, as well as on the known results of experimental studies.According to the kinetic theory of nucleation, a new phase in the solid solutions take place in the defects of the crystal structure of the metal such as inter-grain boundaries and dislocations clusters. A principle feature of the inter-grain boundary mechanism of nucleation is formation of carbide lattice. It is of great practical interest because the cementite lattice drops mechanical properties of hardened parts.According to the experimental studies, the average chromium concentration in the alloyed cementite twice exceeds its Cr content in the heat-resistant steels. Furthermore, the areas of abnormally high (more than ten times in comparison with the average content chromium concentration in cementite have been experimentally revealed.Numerical experiments have revealed that the nucleation of cementite particles alloyed with chromium (chromium concentration of 3% or more occurs, mainly, by the dislocation mechanism on the concentration fluctuations of the alloying element. According to calculations, an obligatory prerequisite to start an active nucleation process of new phase in the solid solution is a local increase of the chromium concentration up to 40%.Despite the lack of physical prerequisites for the formation of chromium precipitates, this phenomenon is explained by a strong chemical affinity of chromium and carbon, causing diffusion of chromium atoms in the region of the carbon atoms clusters. The formation of carbon

  2. Heat-resistant materials

    CERN Document Server

    1997-01-01

    This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coa...

  3. Effects of composite scale on high temperature oxidation resistance of Fe-Cr-Ni heat resistant alloy

    Directory of Open Access Journals (Sweden)

    Wang Haitao

    2009-05-01

    Full Text Available Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain method, the oxidation resistances of the test alloys were determined at 1,200 ìC for 500 hours. According to the oxidation weight gains, the oxidation kinetic curves were plotted and the functions were regressed by the least squares method. The results show that the oxidation kinetic curves follow the power function of y = axb (a>0, 0resistance were studied further by analyses using X-ray diffraction (XRD and scanning electron microscope (SEM. It is found that the composite scale compounds of Cr2O3, メ-Al2O3, SiO2 and FeCr2O4, with compact structure and tiny grains, shows complete oxidation resistance at 1,200 ìC. When the composite scale lacks メ-Al2O3 or SiO2, it becomes weak in oxidation resistance with a loose structure. By the criterion of standard Gibbs formation free energy, the model of the nucleation and growth of the composite scale is established. The forming of the composite scale is the result of the competition of being oxidized and reduced between aluminum, silicon and the matrix metal elements of iron, chromium and nickel. The protection of the composite scale is analyzed essentially by electrical conductivity and strength properties.

  4. Improvement of corrosion resistance of Ni−Mo alloy coatings: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, R., E-mail: mousavi@scu.ac.ir [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bahrololoom, M.E. [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Deflorian, F.; Ecco, L. [Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Conjunction between SEM, EIS, and Tafel measurements to obtain a coat with dense morphology and without crack. • An inverse Hall-Petch effect is observed after annealing the coatings, i.e. the coatings get harder as the grain size is increased by increasing annealing temperature up to 600 {sup o}C. • Heat treatment can improve the mechanical and corrosion properties of coatings. - Abstract: In this paper, Ni−Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 {sup o}C, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 {sup o}C for 25 min. The results showed that the coatings obtained at temperature 40 {sup o}C, pH 9, and annealing at 600 {sup o}C has the highest corrosion resistance and microhardness.

  5. Effect of heat treatment on the corrosion resistance of modified aluminum-magnesium alloys in seawater

    Science.gov (United States)

    Ahmad, Z.; Aleem, A.

    1993-10-01

    Study of modified Al-2.5Mg alloys containing chromium, silica, iron, and manganese in various tempers (O, H-18, T-4, T-6, T-18, and H-34) has shown that their corrosion resistance is significantly altered by thermomechanical treatment and the beneficial effect of chromium on microstructural changes. Modified binary Al-2.5Mg alloys in the T-6 and T-4 tempers exhibit a higher resistance to corrosion in Arabian Gulf water than H-34 tempers due to the beneficial effect of chromium on microstructural changes.

  6. Effects of solution heat treatment on corrosion resistance of 5083F Al alloy

    Institute of Scientific and Technical Information of China (English)

    Seong-Jong KIM; Seok-Ki JANG

    2009-01-01

    Aluminum alloys are used as substitutes for fiber reinforced polymer(FRP) in ships and boats. However, ships constructed with 5000-series Al alloy suffer a little corrosion in the marine environment, when they run in high speed, and high flow rate, etc. Therefore, solution heat treatment was carried out to prevent corrosion. The optimal heat treatment involved heating specimens for 120 min at 420 ℃ and then cooling them in water. In addition, the optimal ageing condition involved ageing specimens for 240 min at 180 ℃. The slow strain rate test(SSRT) in a seawater revealed that heat treatment under optimal conditions produced improved elongation, time-to-fracture and amount of dimples compared with the as-received specimen.

  7. The Evaluation of Varying Ductile Fracture Criteria for 3Cr20Ni10W2 Austenitic Heat-Resistant Alloy

    OpenAIRE

    Yu-Feng Xia; Gui-Chang Luo; Dong-Sen Wu; Guo-Zheng Quan; Jie Zhou

    2013-01-01

    Most bulk metal forming processes may be limited by ductile fracture, such as an internal or surface fracture developing in the workpiece. Finding a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and strain-softening behavior of 3Cr20Ni10W2 heat-resistant alloy is very important, which, however, is a nontrivial issue that still needs to be addressed in greater depth. Based on cumulative damage theory, an innovative approach involvin...

  8. Effect of size discrepancy of. gamma. - and. gamma. '-phases crystal lattice parameters on heat resisting dispersion hardening nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrushin, N.V.; Ignatova, I.A.; Logunov, A.V.; Samojlov, A.I.; Razumovskij, I.M.

    Effect of Cr, Co, Nb and W alloying elements on crystal lattice parameters of ..gamma.. ahd ..gamma..' phases in Ni-Cr-Co-W-Al-Ti- Nb-Hf alloys and on their dimensional misfit at 293 and 1173 K is studied. Alloying at which alloys have the parameter of ..gamma..-solid solution lattice less than that of ..gamma..'-phase results in low heat-resistant properties and in considerable difference of coefficients of thermal expansion of the phases. Definite positive misfit of ..gamma..- and ..gamma..'-phase lattices and a low temperature gradient are the conditions of high heat resistance of complex-alloyed nickel alloys. Possible mechanisms of lattice misfit effect on strength and coalescence kinetics of the second phase in heterogeneous alloys at high temperatures are discussed.

  9. Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhang, Jinghuai; Li, Guoqiang; Feng, Yan; Su, Minliang; Wu, Ruizhi; Zhang, Zhongwu [Harbin Engineering Univ. (China). Key Laboratory of Superlight Material and Surface Technology; Jiao, Yufeng [Jiamusi Univ. (China). College of Materials Science and Engineering

    2017-05-15

    The thermal stability of Al-RE (rare earth) intermetallic phases with individual RE for heat-resistant high-pressure die-casting Mg-Al-RE alloys is investigated. The results of this study show that the main strengthening phase of Mg-4Al-4Ce alloy is Al{sub 11}Ce{sub 3}, whose content is about 5 wt.% according to quantitative X-ray diffraction phase analysis. The Al{sub 11}Ce{sub 3} phase appears to have high thermal stability at 200 C and 300 C, while phase morphology change with no phase structure transition could occur for Al{sub 11}Ce{sub 3} when the temperature reaches 400 C. Furthermore, besides the kinds of rare earths and temperature, stress is also an influencing factor in the microstructural stability of Mg-4Al-4Ce alloy.

  10. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  11. Study of the structure and development of the set of reference materials of composition and structure of heat resisting nickel and intermetallic alloys

    Directory of Open Access Journals (Sweden)

    E. B. Chabina

    2016-01-01

    Full Text Available Relevance of research: There are two sizes (several microns and nanodimensional of strengthening j'-phase in single-crystal heat resisting nickel and intermetallic alloys, used for making blades of modern gas turbine engines (GTD. For in-depth study of structural and phase condition of such alloys not only qualitative description of created structure is necessary, but quantitative analysis of alloy components geometrical characteristics. Purpose of the work: Development of reference material sets of heat resisting nickel and intermetallic alloy composition and structure. Research methods: To address the measurement problem of control of structural and geometrical characteristics of single-crystal heat resisting and intermetallic alloys by analytical microscopy and X-ray diffraction analysis the research was carried out using certified measurement techniques on facilities, entered in the Register of Measurement Means of the Russian Federation. The research was carried out on microsections, foils and plates, cut in the plane {100}. Results: It is established that key parameters, defining the properties of these alloys are particle size of strengthening j' -phase, the layer thickness of j-phase between them and parameters of phases lattice. Metrological requirements for reference materials of composition and structure of heat resisting nickel and intermetallic alloys are formulated. The necessary and sufficient reference material set providing the possibility to determine the composition and structure parameters of single-crystal heat resisting nickel and intermetallic alloys is defined. The developed RM sets are certified as in-plant reference materials. Conclusion: The reference materials can be used for graduation of spectral equipment when conducting element analysis of specified class alloys; for calibration of means of measuring alloy structure parameters; for measurement of alloys phases lattice parameters; for structure reference pictures

  12. Aging of a cast 35Cr-45Ni heat resistant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sustaita-Torres, Ireri A., E-mail: ireri.sustaita@gmail.com [Unidad Academica de Ingenieria, Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Haro-Rodriguez, Sergio, E-mail: haros907@hotmail.com [Unidad Academica de Ingenieria, Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Guerrero-Mata, Martha P., E-mail: martha.guerreromt@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Garza, Maribel de la, E-mail: maribeldelagarza@yahoo.com.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Valdes, Eduardo, E-mail: eduardo.valdes.57@gmail.com [Instituto Tecnologico de Saltillo, 25280 Saltillo (Mexico); Deschaux-Beaume, Frederic, E-mail: deschaux@iut-nimes.fr [Mechanical and Civil Engineering Laboratories, Universite de Montpellier 2, IUT Nimes, 30907 Nimes (France); and others

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer The as-cast microstructure is made of an austenitic matrix and primary carbides. Black-Right-Pointing-Pointer The carbides are of two different types: Cr- and Nb-rich. Black-Right-Pointing-Pointer The microstructure changes during aging. Black-Right-Pointing-Pointer These microstructural changes result in the degradation of mechanical properties. - Abstract: The microstructural evolution during aging and its effect on the mechanical properties of a centrifugally cast 35Cr-45Ni heat resistant alloy was studied by means of optical and electron microscopy, and by mechanical testing in samples aged in air at 750 Degree-Sign C for a period of time of up to 1000 h. The as-cast microstructure consisted of an austenitic matrix and a network of two types of primary carbides that were identified as NbC and M{sub 7}C{sub 3} by their light and dark tones when viewed in backscattered electron mode in a scanning electron microscope. Aging promoted the occurrence of different phenomena such as the transformation of primary M{sub 7}C{sub 3} to M{sub 23}C{sub 6} carbides, precipitation of secondary M{sub 23}C{sub 6} carbides and the transformation of NbC to Nb{sub 3}Ni{sub 2}Si. It was found that aging promoted an increase in Vickers microhardness of more than 50%, the increment in tensile strength of around 20% and the reduction in ductility of close to 70%.

  13. Effect of the Fine-Grained Structure on the Fatigue Properties of the Heat-Resistant Nickel-Iron Alloy Inconel 718

    Science.gov (United States)

    Mukhtarov, Sh. Kh.; Shakhov, R. V.

    2015-10-01

    It is well known that ultrafine-grained nickel alloys with average grain sizes d = 0.1-1 μm possess improved hot workability and can be used for superplastic forming or rolling. However, microstructure refinement can worsen some performance characteristics of the alloy, for example, heat-resistant or fatigue properties. In the present work, fatigue characteristics of the fine-grained alloy Inconel 718 are investigated. Ultrafine-grained alloys with average grain sizes d = 0.1-1 μm were manufactured by multiple forging with stage-by-stage deformation temperature decrease. During standard heat treatment of the alloy performed to obtain the desired properties, the γ-grain size was controlled by precipitations of δ-phase particles along the boundaries. Results of low-cycle fatigue tests of the fine-grained alloy at room and elevated temperatures are compared with the properties of the coarse-grained alloy.

  14. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Jara, David

    2011-03-21

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M{sub 23}C{sub 6} carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M{sub 23}C{sub 6} precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure

  15. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core.

    Science.gov (United States)

    de Koker, Nico; Steinle-Neumann, Gerd; Vlcek, Vojtech

    2012-03-13

    Earth's magnetic field is sustained by magnetohydrodynamic convection within the metallic liquid core. In a thermally advecting core, the fraction of heat available to drive the geodynamo is reduced by heat conducted along the core geotherm, which depends sensitively on the thermal conductivity of liquid iron and its alloys with candidate light elements. The thermal conductivity for Earth's core is very poorly constrained, with current estimates based on a set of scaling relations that were not previously tested at high pressures. We perform first-principles electronic structure computations to determine the thermal conductivity and electrical resistivity for Fe, Fe-Si, and Fe-O liquid alloys. Computed resistivity agrees very well with existing shock compression measurements and shows strong dependence on light element concentration and type. Thermal conductivity at pressure and temperature conditions characteristic of Earth's core is higher than previous extrapolations. Conductive heat flux near the core-mantle boundary is comparable to estimates of the total heat flux from the core but decreases with depth, so that thermally driven flow would be constrained to greater depths in the absence of an inner core.

  16. Heat Treatment and Properties of Nitrogen Alloyed, Martensitic,Corrosion-resistant Steels

    Institute of Scientific and Technical Information of China (English)

    Reinhold Schneider; Klaus Sammt; Roland Rabitsch; Michael Haspel

    2004-01-01

    This paper gives a short introduction to the typical process route and material properties of these steels in comparison to standard martensitic corrosion-resistant steels. The typical response of these steels to various heat treatment parameters is shown and explained using the three grades M333, N360 and M340 (all made by Bohler Edelstahl GmbH) as examples, and the physical metallurgy of these steels and its consequences for practical heat treatment is explained. The correlation between tempering parameters and their effect on the toughness and corrosion properties is explained in particular detail, showing that these new steels not only offer far better property combinations under the usual heat treatment parameters than standard martensitic corrosion-resistant steels, but that they also open the door to extending heat treatment combinations and properties.

  17. The Evaluation of Varying Ductile Fracture Criteria for 3Cr20Ni10W2 Austenitic Heat-Resistant Alloy

    Directory of Open Access Journals (Sweden)

    Yu-Feng Xia

    2013-01-01

    Full Text Available Most bulk metal forming processes may be limited by ductile fracture, such as an internal or surface fracture developing in the workpiece. Finding a way to evaluate the ductile fracture criteria (DFC and identify the relationships between damage evolution and strain-softening behavior of 3Cr20Ni10W2 heat-resistant alloy is very important, which, however, is a nontrivial issue that still needs to be addressed in greater depth. Based on cumulative damage theory, an innovative approach involving heat physical compression experiments, numerical simulations, and mathematical computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions. It is concluded that, as for strain-softening material, ductile damage starts at work hardening phase, and the damage cumulation is more sensitive in work hardening phase than in work softening phase. In addition, DFC of 3Cr20Ni10W2 heat-resistant alloy in a wide temperature range of 1203∼1403 K and the strain rate of 0.01∼10 s−1 are not constant but change in a range of 0.099∼0.197; thus they have been defined as varying ductile fracture criteria (VDFC and characterized by a function of strain rate and temperature. According to VDFC diagram, the exact fracture moment and position during various forming processes will be predicted conveniently.

  18. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    Science.gov (United States)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2016-12-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  19. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    Science.gov (United States)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-04-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  20. Characteristics and experimental evaluation of super-heat-resisting Nb-based and Mo-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Morinaga, Masahiko; Furui, Mitsuaki; Noda, Kenji; Oda, Masaaki [Nagoya Univ. (Japan). School of Engineering

    1997-03-01

    Nb-based and Mo-based alloys have been investigated in order to develop the frontiers of materials technique which will be utilized in the environment of high-temperature liquid alkali metals. In this study, both mechanical properties and corrosion resistance to liquid Li were evaluated for two designed Mo-based alloys, Mo-15Re-0.1Zr and Mo-15Re-0.1Zr-0.1Ti. In addition, a series of corrosion test was performed with provisionally designed Nb-based alloys, Nb-(1-4)Hf. High-temperature tensile properties: The designed Mo-based alloys were found to have more excellent high-temperature tensile properties, compared to the commercial TZM alloy. High-temperature creep properties: The designed Mo-based alloys were superior in the high-temperature creep properties to other solid solution hardening Mo-based alloys. Workability: The designed Mo-based alloys exhibited an excellent workability, irrespective of the Ti addition. Corrosion resistance to liquid Li: The Nb-1Hf alloy was chosen as a promising alloy of having the highest corrosion resistance among the Nb-based alloys. Also, the Mo-15Re-0.1Zr-0.1Ti alloy was superior to Mo-15Re-0.1Zr alloy, in view of the corrosion resistance to liquid Li. (J.P.N.)

  1. Tungsten alloyed with rhenium as an advanced material for heat-resistant silicon ICs interconnects

    Science.gov (United States)

    Belov, A. N.; Chaplygin, Yu. A.; Golishnikov, A. A.; Kostyukov, D. A.; Putrya, M. G.; Safonov, S. O.; Shevyakov, V. I.

    2016-12-01

    This paper presents the results of comparative analysis of the electrical and mechanical characteristics of the tungsten and tungsten alloyed with rhenium films deposited on silicon, from the point of view of their use as interconnects in silicon ICs. W and W (Re-5%) alloyed with rhenium films were made by magnetron deposition. Sheet resistivity for W and W (Re- 5%) was 13 and 27 μOhm·cm respectively. Elemental composition the formed films was examined by Auger spectroscopy. To investigate the electromigration resistance of the conductors a methodology based on the accelerated electromigration testing at constant temperature was used. A comparative analysis of the mechanical stresses carried out in the W and W(Re - 5%) films. For this purpose was applied non-destructive method for optical laser scanning. At the same time, these films explored their ability of adhesion to silicon and silicon oxide. It is shown that the pull force of the W(Re - 5%) films was 1500 G/mm2, of the W films 700 G/mm2

  2. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  3. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  4. Mechanism of scandium influence on strength and heat resistance increase in Al-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Drits, M.E.; Pavlenko, S.G.; Toropova, L.S.; Bykov' , Yu.G.; Ber, L.B. (AN SSSR, Moscow. Inst. Metallurgii)

    1981-01-01

    An attempt is made to study the strengthening nature in the Al-Mg-Sc alloy system. The problems of the temperature stability of the non-crystallized structure of the Al-6.5% Ng alloy and the nature of secondary extractions in these alloys caused by scandium presence, are studied. The alteration of the fluidity limit of the Al-6.5% Mg-Se alloys depending on the annealing temperature for various types of intermediate products is shown. Doping of the Al-6.5% Mg alloy with scandium brings about a considerable increase of strength properties, as a result of formation of the ScAl/sub 3/ phase.

  5. Recrystallisation in a cold drawn low cost beta titanium alloy during rapid resistance heating

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2519 (Australia); Vu, Viet Q.; Saleh, Ahmed A. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Markovsky, Pavlo E.; Ivasishin, Orest M. [Institute for Metal Physics, National Academy of Sciences Ukraine, UA-03142 Kiev (Ukraine); Davies, Christopher H.J. [Department of Mechanical and Aerospace Engineering, Monash University, Victoria 3800 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2519 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-02-05

    Highlights: • First EBSD study of cold drawn and rapid annealed LCB-Ti. • Maps are deconstructed into deformed, recovered, newly nucleated and growing grains. • Specific interfacial areas calculate apparent growth rates and activation energy. • The solute drag effect during grain growth is quantified. • Discontinuous and continuous recrystallization varies with cold drawing reduction. -- Abstract: The microstructure and micro-texture evolution in an 80% and 90% cold drawn LCB-Ti alloy subjected to rapid annealing was analysed via electron back-scattering diffraction. The partially recrystallised microstructures were deconstructed into four fractions comprising deformed, recovered, newly nucleated and growing grains. The specific interfacial areas of the various recrystallisation fronts were used to estimate the activation energy for boundary migration. It is inferred that diffusion controlled boundary migration is operational during rapid heating as the apparent activation energies for the deformed–recrystallised interfaces are close to the activation energy for the self-diffusion of β-Ti. Compared to the newly nucleated grains, the increase in the apparent activation energy of the growing grains suggests solute drag effects during the growth stage. The recrystallisation micro-textures of both cold drawn reductions exhibit varying extents of high and low energy discontinuous recrystallisation and continuous recrystallisation.

  6. The Crystal Structure at Room Temperature of Six Cast Heat-Resisting Alloys

    Science.gov (United States)

    Rosenbaum, Burt M.

    1947-01-01

    The crystal structures of alloys 61, X-40,X-50, 422-19, 6059, and Vitallium, derived from x-ray diffraction, are discussed. The alloys have been, or are being considered for use in gas turbine applications. The predominant phase was a solid solution of the face centered cubic type of the principal constituent elements.The lattice parameters were found to be between 3.5525 and 3.5662.

  7. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Directory of Open Access Journals (Sweden)

    Kieruj Piotr

    2016-12-01

    Full Text Available This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples’ temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  8. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Science.gov (United States)

    Kieruj, Piotr; Przestacki, Damian; Chwalczuk, Tadeusz

    2016-12-01

    This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples' temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  9. Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems

    Science.gov (United States)

    Holcomb, David E; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-09-06

    An essentially Fe- and Co-free alloy is composed essentially of, in terms of weight percent: 6.0 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 19.5 Mo, 0.03 to 4.5 Ta, 0.01 to 9 W, 0.03 to 0.08 C, 0 to 1 Re, 0 to 1 Ru, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850.degree. C., a yield strength of at least 25 Ksi, a tensile strength of at least 38 Ksi, a creep rupture life at 12 Ksi of at least 25 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2 sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 3 to 10.

  10. Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-09-06

    An essentially Fe- and Co-free alloy is composed essentially of, in terms of weight percent: 6.0 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 19.5 Mo, 0.03 to 4.5 Ta, 0.01 to 9 W, 0.03 to 0.08 C, 0 to 1 Re, 0 to 1 Ru, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850.degree. C., a yield strength of at least 25 Ksi, a tensile strength of at least 38 Ksi, a creep rupture life at 12 Ksi of at least 25 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2 sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 3 to 10.

  11. Heat storage in alloy transformations

    Science.gov (United States)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  12. Study on microstructure evolution of deformed Mg-Gd-Y-Nd-Zr heat-resistant magnesium alloys after solid solution and ageing

    Directory of Open Access Journals (Sweden)

    Jianmin Yu

    2016-01-01

    Full Text Available The microstructure evolution of Mg-Gd-Y-Nd-Zr heat-resistant magnesium alloy after deformation and T5 or T6 treatment were studied. In thermoplastic deformation, dynamic recrystallization and dynamic precipitation has been taken place at the same time. The dynamic precipitation reduces the recrystallization nucleation driving force in the grain; it will prevent to occur dynamic recrystallization partially. Solid solution temperature was 530oC and hold 4h. Age hardening treatments were performed at 225oC and hold 16h. The alloy showed the comprehensive properties are obviously improved from T6 to T5 heat treatment. After T5 heat treatment the tensile strength of alloy increased to 359.3 MPa, increased by around 48.5%; Elongation is increasing from 5.17% to 6.5%. After peak ageing treatment, the main precipitation is β' phase, the precipitation phase have obvious pinning effect to grain boundary of the alloy, it will prevent the grain growth ageing for a long-time. At the same time, strengthening role of precipitate phase make its strength increased significantly.

  13. Mechanism of Burn Resistance of Alloy Ti40

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Ti fire found in high performance engines promotes the development of burn resistant Ti alloys. The burn resistant mechanism of Ti40 alloy is investigated. Ti40 alloy reveals good burn resistance. Its interfacial products between burning products and the matrix are tenacious,which retard the diffusion of oxygen into the matrix. Two burn resistant mechanisms, that is, fast scatter dispersion of heat and suppression of oxygen diffusion, are proposed.

  14. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin.

    Science.gov (United States)

    Pan, Changjiang; Hu, Youdong; Hou, Yu; Liu, Tao; Lin, Yuebin; Ye, Wei; Hou, Yanhua; Gong, Tao

    2017-01-01

    In recent years, magnesium alloys are attracting more and more attention as a kind of biodegradable metallic biomaterials, however, their uncontrollable biodegradation speed in vivo and the limited surface biocompatibility hinder their clinical applications. In the present study, with the aim of improving the corrosion resistance and biocompatibility, the magnesium alloy (AZ31B) surface was modified by alkali heating treatment followed by the self-assembly of 3-aminopropyltrimethoxysilane (APTMS). Subsequently, poly (ethylene glycol) (PEG) and fibronectin or fibronectin/heparin complex were sequentially immobilized on the modified surface. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that the above molecules were successfully immobilized on the magnesium alloy surface. An excellent hydrophilic surface was obtained after the alkali heating treatment while the hydrophilicity decreased to some degree after the self-assembly of APTMS, the surface hydrophilicity was gradually improved again after the immobilization of PEG, fibronectin or fibronectin/heparin complex. The corrosion resistance of the control magnesium alloy was significantly improved by the alkali heating treatment. The self-assembly of APTMS and the following immobilization of PEG further enhanced the corrosion resistance of the substrates, however, the grafting of fibronectin or fibronectin/heparin complex slightly lowered the corrosion resistance. As compared to the pristine magnesium alloy, the samples modified by the immobilization of PEG and fibronectin/heparin complex presented better blood compatibility according to the results of hemolysis assay and platelet adhesion as well as the activated partial thromboplastin time (APTT). In addition, the modified substrates had better cytocompatibility to endothelial cells due to the improved anticorrosion and the introduction of fibronectin. The substrates

  15. Effects Of T6 Heat Treatment With Double Solution Treatment On Microstructure, Hardness And Corrosion Resistance Of Cast Al-Si-Cu Alloy

    Directory of Open Access Journals (Sweden)

    Wiengmoon A.

    2015-06-01

    Full Text Available Effects of T6 heat treatment with double solution treatment on microstructure, hardness and corrosion resistance of a cast A319 (Al-4.93wt%Si-3.47wt%Cu alloy were investigated. The T6 heat treatment comprised of the first solution treatment at 500±5°C for 8 h, the second solution treatment in the temperature range of 510 to 530±5°C for 2 h followed by water quenching (80°C, and artificial aging at 170°C for 24 h followed by water quenching (80°C. Microstructure of the alloy was studied by optical microscopy and electron microscopy, Rockwell hardness was measured, and corrosion resistance in 0.1 M NaCl aqueous solution was determined by a potentiodynamic technique. The results revealed that the T6 heat treatment with double solution treatment led to an improvement in corrosion resistance and comparable macrohardness as compared to those obtained from the case of single solution treatment. The second solution treatment at 520°C is the optimum leading to relatively low corrosion current density without substantial drawbacks on breakdown potential or the width of passive range.

  16. Wear resistant steels and casting alloys containing niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W.; Siebert, S.; Huth, S. [Lehrstuhl Werkstofftechnik, Ruhr-Univ. Bochum (Germany)

    2007-12-15

    Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear-resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear-resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion-resistant cold-work tool steel produced by melt metallurgy and by powder metallurgy. A heat-resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance. (orig.)

  17. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core

    Science.gov (United States)

    de Koker, Nico; Steinle-Neumann, Gerd; Vlček, Vojtěch

    2012-01-01

    Earth’s magnetic field is sustained by magnetohydrodynamic convection within the metallic liquid core. In a thermally advecting core, the fraction of heat available to drive the geodynamo is reduced by heat conducted along the core geotherm, which depends sensitively on the thermal conductivity of liquid iron and its alloys with candidate light elements. The thermal conductivity for Earth’s core is very poorly constrained, with current estimates based on a set of scaling relations that were not previously tested at high pressures. We perform first-principles electronic structure computations to determine the thermal conductivity and electrical resistivity for Fe, Fe–Si, and Fe–O liquid alloys. Computed resistivity agrees very well with existing shock compression measurements and shows strong dependence on light element concentration and type. Thermal conductivity at pressure and temperature conditions characteristic of Earth’s core is higher than previous extrapolations. Conductive heat flux near the core–mantle boundary is comparable to estimates of the total heat flux from the core but decreases with depth, so that thermally driven flow would be constrained to greater depths in the absence of an inner core. PMID:22375035

  18. Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy.

    Science.gov (United States)

    Shen, Sibo; Cai, Shu; Xu, Guohua; Zhao, Huan; Niu, Shuxin; Zhang, Ruiyue

    2015-05-01

    In this study, bioglass-ceramic coatings were prepared on magnesium alloy substrates through sol-gel dip-coating route followed by heat treatment at the temperature range of 350-500°C. Structure evolution, bond strength and corrosion resistance of samples were studied. It was shown that increasing heat treatment temperature resulted in denser coating structure as well as increased interfacial residual stress. A failure mode transition from cohesive to adhesive combined with a maximum on the measured bond strength together suggested that heat treatment enhanced the cohesion strength of coating on the one hand, while deteriorated the adhesion strength of coating/substrate on the other, thus leading to the highest bond strength of 27.0MPa for the sample heat-treated at 450°C. This sample also exhibited the best corrosion resistance. Electrochemical tests revealed that relative dense coating matrix and good interfacial adhesion can effectively retard the penetration of simulated body fluid through the coating, thus providing excellent protection for the underlying magnesium alloy.

  19. Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Syung-Yul; Won, Jong-Pil; Park, Dong-Hyun; Moon, Kyung-Man; Lee, Myeong-Hoon; Jeong, Jin-A [Korea Maritime and Ocean Univ., Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2014-02-15

    Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of 500 .deg. C was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The α, β and γ{sub 2} phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, β and γ{sub 2} phases decreased gradually with increasing the holding time at a constant temperature of 500 .deg. C. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that γ{sub 2} phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the γ{sub 2} phase with heat treatment

  20. Structure Defects Interrelation of Heat-resistant Nickel Alloy Obtained by Selective Laser Melting Method and Strategy and Scanning Parameters

    Directory of Open Access Journals (Sweden)

    O. A. Bytsenko

    2016-01-01

    Full Text Available The objective was to conduct a study of the surface morphology and a chemical composition analysis of the powder of different fractional composition of a heat-resistant Ni-Co-Cr-AlTi-W-Mo-Nb alloy, and to define the patterns of change in the quantitative parameters of the structure of samples obtained by selective laser melting (SLM method with different parameters of power, laser speed, and a type of hatching (staggered, island diagonal, and solid diagonal.To study the surface morphology of the microstructure was used optical, laser-confocal and scanning electron microscopy. The elemental and local phase composition was performed by X-ray and miсro-X-ray spectrum analysis.The initial powder morphology study has found that the powder granules have a generally spherical shape, and the number of structural defects increases with increasing granule size. The microstructure of all granules has a dendritic structure. The superficial defects have a form of satellites, shapeless shield, round gas pores, and pores located in the inter-dendritic regions because of the shrinkage process.The study of the microstructure of the samples has been defined that dimensions of the structural components, pores, and micro-cracks depend on the parameters of the SLM process. With raising laser power within 160 - 190 W there is an increase in a fraction of pores and their average diameter. With further increase in laser power the volume fraction of pores is slightly reduced while their average size is, essentially, unchanged.It has been found that at the constant laser power and variable scanning speed the volume fraction of pores depends on the type of hatching. For staggered and solid diagonal hatching, at the constant laser power of 180 W with increasing scanning speed the volume fraction, at first, falls and then again grows, and for island diagonal hatching remains unchanged.When changing the laser power values within a range from 160 to 170 W for samples with

  1. DEVELOPMENT OF CERTIFIED REFERENCE MATERIALS OF HEAT RESISTING NICKEL ALLOYS FOR DETERMINATION OF DETRIMENTAL IMPURITIES AND RARE EARTH ELEMENTS BY SPECTRAL METHODS

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Full Text Available Results of development and certification of reference materials of composition of heat resisting nickel alloy with the certified values of content of detrimental impurities (Zn, Cd, Pb, Tl, Bi, In, Ag, Sb, Ga, Ge, As, Se, Sn, Te, Mn, Cu, rare earth elements (Pr, Nd, Dy, Gd, Ho, Er, Nb, Sc, Y, La, Ce, and also other impurities (P, B, Fe, Si, V, Ru, Zr, Hf, Ca, Mg are given. Developed CRMs are used for calibration of optical emission spectrometers, mass-spectrometers with glow discharge and laser sampling and others.

  2. Heat capacities, magnetic properties, and resistivities of ternary RPdBi alloys where R = La, Nd, Gd, Dy, Er, and Lu

    Energy Technology Data Exchange (ETDEWEB)

    Riedemann, T.M.

    1996-05-01

    Over the past four and a half decades research on the rare earths, their compounds, and their alloys has yielded significant insights into the nature of materials. The rare earths can be used to systematically study a series of alloys or compounds. Magnetic ordering, crystalline fields, spin fluctuations, the magnetocaloric effect, and magnetostriction are a small sample of phenomena studied that are exhibited by the rare earth family. A significant portion of research has been conducted on the abundant RM{sub 2} and RM phases, where R is the rare earth and M is a transition metal. The natural progression of science has led to the study of related RMX ternary phases, where X is either another transition metal or semimetal. There are now over 1,000 known RMX phases. The focus of this study is on RPdBi where R = La, Nd, Gd, Dy, Er, and Lu. Their heat capacities, magnetic properties, and resistivities are studied.

  3. Kinetics of the Formation of Intermetallic Phases in HP-Type Heat-Resistant Alloys at Long-Term High-Temperature Exposure

    Science.gov (United States)

    Kondrat'ev, Sergey Yu.; Anastasiadi, Grigoriy P.; Petrov, Sergey N.; Ptashnik, Alina V.

    2017-01-01

    The kinetics of formation and morphology of the intermetallic phases in the structure of heat-resistant as-cast HP40NbTi alloys in the course of long high-temperature exposure have been studied with the help of light and electron microscopy, electron microprobe, and X-ray diffraction. During exposure of 2 to 1000 hours at 1423 K (1150 °C), intermetallic phase with conditional formula Cr7Ni5Si3N3FeNb is formed in the alloy. The analysis of the kinetics of intermetallic phase's growth for an impact assessment of certain metal substitutional elements (niobium, chromium, silicon) on the size of the formed particles was performed. Formation and growth of the intermetallic phases with high silicon content in the alloy structure on the boundaries between niobium and chromium carbides (NbC and M23C6) and matrix γ-phase provide a diffusion barrier for oxygen in oxidizing environment. This may create partial protection against oxidation of hardening carbide phases in the structure and promote increasing of the serviceability of the HP series alloys under operating conditions in the petrochemical industry.

  4. Influence of Hot-Working Conditions on High-Temperature Properties of a Heat-Resistant Alloy

    Science.gov (United States)

    Ewing, John F; Freeman, J W

    1957-01-01

    The relationships between conditions of hot-working and properties at high temperatures and the influence of the hot-working on response to heat treatment were investigated for an alloy containing nominally 20 percent molybdenum, 2 percent tungsten, and 1 percent columbium. Commercially produced bar stock was solution-treated at 2,200 degrees F. to minimize prior-history effects and then rolled at temperatures of 2,200 degrees, 2,100 degrees, 2,000 degrees, 1,800 degrees, and 1,600 degrees F. Working was carried out at constant temperature and with incremental decreases in temperature simulating a falling temperature during hot-working. In addition, a few special repeated cyclic conditions involving a small reduction at high temperature followed by a small reduction at a low temperature were used to study the possibility of inducing very low strengths by the extensive precipitation accompanying such properties. Most of the rolling was done in open passes with a few check tests being made with closed passes. Heat treatments at both 2,050 degrees and 2,200 degrees F. subsequent to working were used to study the influence on response to heat treatment.

  5. Investigation of residual stresses in welded joints of heat-resistant magnesium alloy ML10 after electrodynamic treatment

    Directory of Open Access Journals (Sweden)

    L.M. Lobanov

    2016-06-01

    Full Text Available In repair of aircraft structures of magnesium alloy ML10, the argon arc non-consumable electrode welding is used. In this case, the residual welding stresses occur in repair welds, being one of the causes for reducing the service characteristics of the restored products. Residual stresses arise as a result of welding. Post-weld heat treatment is used to reduce the residual stresses. The heat treatment, which occurs after welding, increases the cost of repair. This leads to the search for alternative methods to control the stressed state of welded joints, one of which is electrodynamic treatment, which reduces the level of residual stresses in repair welds, and as a consequence, the cost of the welding repair in restoring aircraft structures. It was found from the results of experiments carried out, that the electrodynamic treatment allows reduces the initial level of stresses in welded joints, reaching 120 MPa, to 30 MPa, and at definite geometric characteristics of the specimens forming the field of compressive stresses, the values of which are equal to –50 MPa. It is shown that the optimum distance between the zones of treatment, being 5 mm, provides the guaranteed covering the zones of electrodynamic effect and, as a consequence, the maximum efficiency of the electric dynamic treatment.

  6. 共混型高耐热ABS合金的研制%THE RESEARCH OF HIGH HEAT-RESISTANT ABS BLEND ALLOYS

    Institute of Scientific and Technical Information of China (English)

    田明; 李齐方; 张立群; 刘力; 乔利燕; 吕昆; 沙中瑛

    2001-01-01

    以ABS树脂为基体,加入短玻璃纤维提高了材料的耐热性,但冲击强度下降,进一步引入与ABS相容性很好的苯乙烯-马来酸酐共聚物(SMA),发现ABS与玻璃纤维间产生了强有力的界面粘合,在SMA含量7%时,显著地提高了ABS/玻纤体系的耐热性、冲击强度和拉伸强度。再进一步引入适量的刚性丙烯酸酯类聚合物,使ABS/玻纤/SMA体系的耐热性又有所提高。令人惊奇的是,在丙烯酸酯类聚合物含量为30%时,体系的冲击性能也明显增加,这归功于刚性有机填料对体系的冷拉增韧效果。最终成功研制出一种高耐热、综合性能优良的ABS/改性剂/玻纤共混合金。%The addition of short glass fiber into ABS resin can improve its heat resistance but decrease its impact strength. It is discovered that strong interphase adhesion between ABS and glass fiber can be gotten by the introduction of styrene-maleic anhydride copolymer(SMA) which is completely compatible with ABS, and heat resistance, impact strength and tensile strength of ABS/glass fiber alloy can be improved remarkably when the content of SMA is 7%. Subsequently, the introduction of 30% rigid acrylic ester polymer into above system can further improve heat resistance of ABS/glass fiber/SMA. Surprisingly, its impact strength is also enhanced, which is attributed to the hard-drawn mechanism of rigid organic filler (ROF). At last, a kind of ABS blend alloys with high heat resistance and good mechanical properties are successfully made.

  7. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  8. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  9. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  10. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  11. Co-Fe based amorphous alloy corrosion resistance: Effects of composition and heat treatment; Effetto della composizione e dei trattamenti termici sulla resistenza alla corrosione di leghe amorfe a base di ferro e cobalto

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, E.; Antonione, C.; Baricco, M.; Rosalbino, F.; Zucchi, F.

    1990-12-31

    This paper examines the influence of composition and heat treatment on the corrosion resistance, in a 1.5 pH solution of Na/sub 2/SO/sub 4/ 0.05M + H/sub 2/SO/sub 4/ 0.05M, of series of iron based amorphous alloys with increasing cobalt content, i.e., Fe/sub 80-x/Co/sub x/B/sub 10/Si/sub 10/ with values of x = 0,30,80. The heat treatments were carried out in an argon atmosphere at increasing durations (30, 60, 120 and 240 min) and temperatures (350, 400, 450, and 500 degrees C). Independently of the type of heat treatment, it was observed that the corrosion resistance increases with increasing cobalt concentration. In comparing samples having the same composition, corrosion resistance deteriorated with increasing heat treatment duration times and temperatures.

  12. Titanium aluminide intermetallic alloys with improved wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  13. Determination of inconsistency of crystal lattice parameters of. gamma. - and. gamma. '-phases of nickel heat resisting alloys by Fourier-analysis of x-ray diffraction reflex profiles

    Energy Technology Data Exchange (ETDEWEB)

    Samojlov, A.I.; Ignatova, I.A.; Krivko, A.I.; Kozlova, V.S.; Dodonova, L.P.

    1983-01-01

    A method is outlined that enables with the use of Fourier-analysis of summary unresolved X-ray diffraction profile of the matrix ..gamma.. and intermetallic ..gamma..' phases of nickel heat resisting alloys of the Ni-Cr-Co-Al-Ti-Nb-W-Mo-V -Hf system, to calculate the location of reflexes of each phase, that is, to determine the periods of their crystal lattices in the alloy (in monolith) directly without electrolytic separation of ..gamma..'-phase. The limits of the method applicability were determined.

  14. DEVELOPMENT OF THE COMPLEX-ALLOYED STEEL OF INCREASED HARDENABILITY, VISCOSITY AND HEAT-RESISTANCE FOR CUTTING PARTS OF HIGH-SPEED INSTRUMENT, OPERATING IN CONDITIONS OF HEATING UP AND DYNAMIC LOADS

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2006-01-01

    Full Text Available The theoretical aspects of development of the complex-alloyed steel compounds for cutting parts of high-speed instrument, particularly influence of alloying elements on its structure and characteristics are considered. It is shown that combined alloying of steel by carbon, chrome, silicon, manganese, vanadium and molybdenum in a certain proportion allows to reach the intended aim, achieving at the same time increase of solidity, impact elasticity and heat stability.

  15. Viscous properties of new mould flux based on aluminate systemwith CeO2 for continuous casting of RE alloyed heat resistant steel

    Institute of Scientific and Technical Information of China (English)

    QI Jie; LIU Chengjun; LI Chunlong; JIANG Maofa

    2016-01-01

    The conventional mould fluxes can not be applied to the continuous casting of RE alloyed heat resistant steel, because se-vere slag-metal interface reactions occur generally in the mold. To restrain the interface reaction and improve conditions for continu-ous casting, a new mould flux based on aluminate system was devised. The viscous properties were investigated. Scanning electron microscopy and X-ray diffraction were applied to detect and characterize the crystalline phases in the continuous cooling process. The results showed that appropriate addition of CeO2 could avoid the precipitation of CaO and decrease the viscosity of the mould flux. Increasing the mass ratio of CaO/Al2O3, especially to a value exceeding 1, could worsen the stability of the mould flux. With a con-tent of less than 14 wt.%, Li2O could reduce the viscosity and breaking temperature, but its effect could be weakened for the pro-moted precipitation of LiAlO2. To obtain a mould flux with stable viscous properties, such as viscosity and breaking temperature, ap-propriate contents of CeO2 and Li2O should be controlled to around 10 wt.% and 14 wt.%, while the mass ratio of CaO/Al2O3 should not be more than 1.

  16. Wear-Resistant Alloy for Protection of Contact Surfaces of Working Aircraft Engine Blades from Oxidation at High Temperatures

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2014-07-01

    Full Text Available Wear-resistant and heat-resistant cast cobalt-based alloy for hardening of the contact surfaces of working blades of aircraft gas turbine engines instead of commercial alloys ХТН-61 and ВЖЛ-2 was developed. High levels of heat resistance were achieved by complex doping (modification of the alloy. Based on studies of heat resistance, wear resistance, the structure and melting point of the alloys, the optimum chemical and phase composition of the developed alloy was defined.

  17. The effect of heat treatment on the corrosion behaviour of 319 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N.; Georgiou, E.P.; Giannakopoulos, K.I. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, Athens (Greece)

    2009-06-15

    The effect of various heat treatments on the corrosion behaviour of 319 T1 cast aluminium alloy was investigated. From this alloy, specimens were heat treated in T5, T6 and two steps solution heat treatment T6 conditions and afterwards were subjected to electrochemical corrosion in a 0.1 M NaCl solution (pH = 12). From the above treatments, T5 heat treatment did not improve the corrosion resistance of the as-received alloy in contrast to T6 heat treatment which improved the corrosion resistance of the same alloy. However, two steps solutionizing T6 treatment showed the best corrosion resistance of the aluminium alloy. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Zinc alloy enhances strength and creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Machler, M. [Fisher Gauge Ltd., Peterborough, Ontario (Canada). Fishercast Div.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  19. Iron aluminide useful as electrical resistance heating elements

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1999-11-02

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {le}1% Cr and either {ge}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {ge}0.1% oxide dispersoid particles. The alloy can contain 14--32% Al, {le}2% Ti, {le}2% Mo, {le}1% Zr, {le}1% C, {le}0.1% B, {le}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {le}1% rare earth metal, {le}1% oxygen, {le}3% Cu, balance Fe.

  20. Iron aluminide useful as electrical resistance heating elements

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  1. Iron aluminide useful as electrical resistance heating elements

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  2. Microstructure - property characterization of some Zn-Al alloys: effects of heat treatment parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Prasad, B. [CSIR, Bhopal (India). Regional Res. Lab.; Kumar Patwardhan, A. [Roorkee Univ. (India). Dept. of Metallurgical Engineering; Halasyam Yegneswaran, A. [CSIR, Bhopal (India). Regional Res. Lab.

    1996-12-01

    An attempt has been made in this investigation to understand the response of some Zn-Al alloys at different temperatures and durations of holding during T6 heat treatment (solutionizing followed by artificial ageing). Aspects studied include microstructure, hardness, density and electrical resistivity. This study correlates these properties to the microstructure of Zn based alloys comprising Ni/Si and compares the same to alloys with no alloying elements. Various combinations of microstructure and properties in the alloys have been obtained by appropriately controlling the parameters (i.e. the temperature and duration) of the T6 heat treatment. Furthermore, the presence of thermally stable microconstituents resulting from the addition of Ni/Si improves the hardness of the alloys. Optimized heat treatment parameters are suggested for the alloys. (orig.)

  3. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Yulong Zhu; Edward Courtright; Harold Adkins

    2005-01-30

    This project had two main objectives: (1) To design, fabricate and run a full size test for evaluating soldering and washout in die insert materials. This test utilizes the unique capabilities of the 350 Ton Squeeze Casting machine available in the Case Meal Casting Laboratory. Apply the test to evaluate resistance of die materials and coating, including heat resistant alloys to soldering and washout damage. (2) To evaluate materials and coatings, including heat resistant superalloys, for use as inserts in die casting of aluminum alloys.

  4. A high-specific-strength and corrosion-resistant magnesium alloy

    Science.gov (United States)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  5. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  6. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  7. Heat treatment of AlSi9Mg alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2008-04-01

    Full Text Available Processes of crystallization of alloys have decisive impact on structure of castings, and the same their utility characteristics. Knowledge about those processes constitutes a source of information to development of preparation of liquid metal and control of alloy preparation process within industry. Method of Thermal-Voltage-Derivative Analysis (ATND, developed by Faculty of Chipless Forming Technology enables registration of temperature and voltage curves, on which one can observe thermal and voltage effects being result of crystallization of phases and eutectic mixtures present on these curves in form of characteristic “peaks”. Temperature value read offs for these characteristic points become a basis to taking regression analysis aimed at obtaining of mathematical dependences illustrating effect of changes of these values on change of impact resistance of dispersion hardened AK9 alloy. The paper presents an attempt of implementation of Thermal-Voltage-Derivative Analysis method to determination of temperature of hyperquenching and ageing processes of AK9 (AlSi9Mg silumin. Investigated alloy had undergone typical treatments of refining and modification, and next the heat treatment. Temperature range for the heat treatment has been determined on base of ATND melting curves.

  8. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  9. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  10. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  11. Interfacial heat-transfer between A356-aluminium alloy and metal mould

    Institute of Scientific and Technical Information of China (English)

    Zhao Jianhua; Tian Jun; Qian Hancheng

    2009-01-01

    The interracial heat-transfer coefficient at casting/mould interface is a key factor that impacts the simulation accuracy of solidification progress. At present, the simulation result of using available data is comparatively different from the practice. In the current study, the methods of radial heating and electricity measurement under steady-state condition were employed to study the nature of interfacial heat-transfer between A356 Aluminum alloy and metal mould. The experimental results show that the interracial heat-transfer between A356 Aluminum alloy and the outer mould drops linearly with time while that of A356 aluminum alloy and the inner mould increases with time during cooling. The interracial heat-transfer coefficient between A356 aluminum alloy and mould is inversely proportional to the electrical resistance.

  12. Interfical heat-transfer between A356-aluminmum alloy and metal mould

    Directory of Open Access Journals (Sweden)

    Zhao Jianhua

    2009-11-01

    Full Text Available The interfacial heat-transfer coefficient at casting/mould interface in a key factor that impacts the simulation accuracy of solidification progress. At present, the simulation result of using available data is comparatively different from the practice. In the current study, the methods of radial heating and electricity measurement under steady-state condition were employed to study the nature of interfacial heat-transfer between A356 aluminum alloy and metal mould. The experimental results show that the interfacial heat-transfer between A356 aluminum alloy and the outer mould drops linearly with time while that of A356 aluminum alloy and the inner mould increases with time during cooling. The interfacial heat-transfer coefficient between A356 aluminum alloy and mould is inversely proportional to the electrical resistance.

  13. The Influence of Transition Metals Addition on the Corrosion Resistance of Nanocrystalline Al Alloys Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Asiful Hossain Seikh

    2016-06-01

    Full Text Available The corrosion resistance of nanocrystalline Al, Al-10 wt. % Fe and Al-10 wt. % Fe-5 wt. % Cr alloys was investigated in 3.5% NaCl solution using cyclic potentiodynamic polarization (CPP and electrochemical impedance spectroscopy (EIS techniques. The alloys were fabricated using mechanical alloying (MA and heat induction sintering. When compared with the corrosion resistance of pure Al, the experimental results indicated that the addition of 10 wt. % Fe and 10 wt. % Fe-5 wt. % Cr to pure Al has resulted in an enhancement in the corrosion resistance of these newly fabricated alloys. The resistance to corrosion is due to enhanced microstructural stability along with the formation of stable oxide layer.

  14. Current Technology Research Status of Ni80Cr20 High Resistance Alloys for Electrical Heating%Ni80Cr20高电阻电热合金的工艺技术研究现状

    Institute of Scientific and Technical Information of China (English)

    于朝清; 易立; 徐永红; 章应; 朱强军; 代红伟

    2014-01-01

    The nickel-based alloy Ni80Cr20 is widely used as a kind of high resistance alloys for electrical heating materials. The paper introduces the research status of technology preparing Ni80Cr20 materials, including composition of design, smelting and ingot casting, processing, and heat treatment. The quality gap existing in the similar products in China and abroad, and the research focus in future are indicated.%镍基电阻合金Ni80Cr20是应用广泛的高电阻电热合金材料。本文介绍了Ni80Cr20高电阻电热合金材料的成分设计、熔炼铸锭、加工及热处理等工艺技术研究现状,并指出了国内外同类产品质量差距以及今后研究人员需要关注的重点。

  15. Resistive Heating in Saturn's Thermosphere

    Science.gov (United States)

    Vriesema, Jess W.; Koskinen, Tommi; Yelle, Roger V.

    2016-10-01

    The thermospheres of the jovian planets are several times hotter than solar heating alone can account for. On Saturn, resistive heating appears sufficient to explain these temperatures in auroral regions, but the particular mechanism(s) responsible for heating the lower latitudes remains unclear. Smith et al. (2005) suggested that electrodynamics of the equatorial region—particularly resistive heating caused by strong electrojet currents—might explain the observed temperatures at low latitudes. Müller-Wodarg et al. (2006) found that their circulation model could reproduce low-latitude temperatures only when they included resistive heating at the poles and applied a uniform, generic heating source globally. Smith et al. (2007) concluded that heating at the poles leads to meridional circulation that cools low latitudes and argued that in-situ heating is required to explain the temperatures at low latitudes.Resistive heating at low latitudes, arising from enhanced current generation driven by thermospheric winds, is a potentially important in-situ heating mechanism. Ion drag caused by low-latitude electrodynamics can modify global circulation and meridional transport of energy. We present an axisymmetric, steady-state formulation of wind-driven electrodynamics to investigate these possibilities throughout Saturn's thermosphere. At present, we assume a dipole magnetic field and neglect any contributions from the magnetosphere. We use ion mixing ratios from the model of Kim et al. (2014) and the observed temperature-pressure profile from Koskinen et al. (2015) to calculate the generalized conductivity tensor as described by Koskinen et al. (2014). Our model solves the coupled equations for charge continuity and Ohm's law with tensor conductivity while enforcing zero current across the boundaries. The resulting partial differential equation is solved for the current density throughout the domain and used to calculate the net resistive heating rate. We demonstrate

  16. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Ren, W. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Alloys for design and construction of structural components needed to contain process streams and provide internal structures in advanced heat recovery and hot gas cleanup systems were examined. Emphasis was placed on high-strength, corrosion-resistant alloys for service at temperatures above 1000 {degrees}F (540{degrees}C). Data were collected that related to fabrication, joining, corrosion protection, and failure criteria. Alloys systems include modified type 310 and 20Cr-25Ni-Nb steels and sulfidation-resistance alloys HR120 and HR160. Types of testing include creep, stress-rupture, creep crack growth, fatigue, and post-exposure short-time tensile. Because of the interest in relatively inexpensive alloys for high temperature service, a modified type 310 stainless steel was developed with a target strength of twice that for standard type 310 stainless steel.

  17. Evolution of microstructure and hardness of AE42 alloy after heat treatments

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.;

    2008-01-01

    The AE42 magnesium alloy was developed for high pressure die casting (HPDC) from low-aluminum magnesium alloys. In this alloy the rare earth (RE) elements were shown to increase creep resistance by forming AlxREy intermetallics along the grain boundaries. The present work investigates...... the microstructure of squeeze cast AE42 magnesium alloy and evaluates its hardness before and after heat treatments. The change in hardness is discussed based on the microstructural observations. Some suggestions are given concerning future design of alloy compositions in order to improve high temperature creep...... properties even further. It is shown that the microstructure of the squeeze-cast AE42 alloy is stable at high temperature 450 degrees C. The subsequent solution and ageing treatments have a limited effect on the hardness. The weak age-hardening is attributed to the precipitation of small amount Of Mg17Al12...

  18. A new paradigm for heat treatment of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ustinovshikov, Y., E-mail: ust@ftiudm.ru

    2014-11-25

    Highlights: • The sign of the ordering energy in alloys varies with the temperature. • Each temperature of heating leads to formation of its characteristic microstructure. • Quenching of alloys is a totally unnecessary and useless operation. - Abstract: The article considers the consequences in the field of heat treatment of alloys that could follow the introduction of the concept of phase transition ordering-phase separation into common use. By example of the Fe{sub 50}Cr{sub 50} alloy, industrial carbon tool steel and Ni{sub 88}Al{sub 12} alloy, it is shown that this transition occurs at a temperature, which is definite for each system, that the change of the sign of the chemical interaction between component atoms reverses the direction of diffusion fluxes in alloys, which affects changes in the type of microstructures. The discovery of this phase transition dramatically changes our understanding of the solid solution, changes the ideology of alloy heat treatment. It inevitably leads to the conclusion about the necessity of carrying out structural studies with the help of TEM in order to adjust the phase diagrams of the systems where this phase transition has been discovered. Conclusions have been made that quenching of alloys from the so-called region of the solid solution, which is usually performed before tempering (aging) is a completely unnecessary and useless operation, that the final structure of the alloy is formed during tempering (aging) no matter what the structure was before this heat treatment.

  19. Cast Steels for Creep-Resistant Parts Used in Heat Treatment Plants

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2012-12-01

    Full Text Available Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium iron alloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.

  20. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  1. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    Science.gov (United States)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  2. Effects of Heat Treatment on Resistance to Microplastic Deformation in LY12 Alloy%热处理对LY12合金微塑变抗力的影响

    Institute of Scientific and Technical Information of China (English)

    张帆; 李小璀

    2000-01-01

    Microplastic deformation behavior of LY12 alloy under several typical heat treatment conditions has been investigated in this work.The results showed that the resistance to microplastic strain(σp) of annealed specimens was lower,subsequent was the quenched,the aged and thermal cycled specimens presented higher σp.During aging treatment the σp exhibited “peak aging”changing tendency,suggesting that the microyield strength,as conventional yield strength,is also controlled by the dispersed strengthening phase S’.Thermal cycling treatment decreased the resistance to higher magnitude of plastic strain (σ10-4,σt),but increased that of lower magnitude of plastic strain (σ10-6).%研究了LY12合金在多种热处理制度下的微塑变抗力,发现退火、淬火态的微塑变抗力很低,循环态次之,时效态最高。在时效过程中析出的S’强化相能显著提高微塑变抗力,具有典型峰时效规律。循环处理对低应变下的微塑变抗力有利,而对较高应变下的微塑变抗力却不利。

  3. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Ren, W. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, modified alloy 800, and two sulfidation resistant alloys: HR160 and HR120. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700{degrees}C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925{degrees}C with good weldability and ductility.

  4. Effect of heat treatment on the inhibition of the acidic corrosion aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, E. (Alexandria Univ. (Egypt). Dept. of Chemistry); El-Gamal, M. (Alexandria Univ. (Egypt). Dept. of Material Science); El-Toukhy, A. (Alexandria Univ. (Egypt). Dept. of Material Science); Atea, M. (Alexandria Univ. (Egypt). Dept. of Material Science)

    1994-12-01

    The effect of heat treatment on the inhibition of acid corrosion of duralumin has been studied using gasometry, mass loss measurements and potentiodynamic technique. All the data reveal that the duralumin generally developed good corrosion resistance after heat treatment and the corrosion rate ranked as follows: Non treated > Naturally aged > quenched. This improvement in the corrosion resistance was attributed to the structural homogeneity of the heat-treated alloys. The presence of some selected aryl and alkyl triazoline derivatives at the threshold concentration of 5 x 10[sup -3] M indicate that these compounds retard the corrosion rate of duralumin and the extent of inhibition depends on the molecular structure of the inhibitors. Polarization curves show that the triazoline compounds act as mixed-type inhibitors affecting both the cathodic and anodic processes. Moreover, there is no noticeable difference in the degree by which the triazoline derivatives inhibit the corrosion of pure aluminium and heat treated duralumin alloy. (orig.)

  5. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  6. Larson-Miller Constant of Heat-Resistant Steel

    Science.gov (United States)

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  7. Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy

    Directory of Open Access Journals (Sweden)

    Annalisa Pola

    2017-03-01

    Full Text Available Ultrasound treatment of liquid aluminum alloys is known to improve mechanical properties of castings. Aluminum foundry alloys are frequently used for production of parts that undergo severe cavitation erosion phenomena during service. In this paper, the effect of the ultrasound treatment on cavitation erosion resistance of AlSi7 alloy was assessed and compared to that of conventionally cast samples. Cavitation erosion tests were performed according to ASTM G32 standard on as-cast and heat treated castings. The response of the alloy in each condition was investigated by measuring the mass loss as a function of cavitation time and by analyzing the damaged surfaces by means of optical and scanning electron microscope. It was pointed out that the ultrasound treatment increases the cavitation erosion resistance of the alloy, as a consequence of the higher chemical and microstructural homogeneity, the finer grains and primary particles and the refined structure of the eutectic induced by the treatment itself.

  8. Effect of heat treatment on structural changes in metastable AlSi10mg alloy

    Directory of Open Access Journals (Sweden)

    Jordović B.

    2014-01-01

    Full Text Available This paper presents a study on structural changes occurring in a rapidly quenched metastable AlSi10Mg alloy during heating cycles within the temperature range from room temperature to 800 K. Measurement of electrical resistivity of a ribbon showed that structural stabilization takes place at temperatures ranging from 450 K to 650 K. The isotherms of the electrical resistivity measured at temperatures 473 K, 483 K and 498 K revealed two stages of structural stabilization i.e. a kinetic process and diffusion process. Measurement of the thermoelectromotive force of the thermocouple made from the investigated alloy and a copper conductor by a mechanical joining was used to determine relative changes in the electron density of states of the quenched sample after successive heat treatments. The same alloy sample was subjected to successive heat treatments at temperatures up to 503 K, 643 K, 683 K and 763 K. The change in the thermopower suggested that each heating was followed by an increase in free electron density in the alloy. Therefore, the abrupt decline in electrical resistivity was induced by an increase in both the mean free electron path and free electron density during the thermal stabilization of the structure. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057: Controlled synthesis, structure and properties of multifunctional materials

  9. Thermal Aging Effects on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Jun Hyuk; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Dissimilar metal weld (DMW), consists of Alloy 600, Alloy 182, and A508 Gr.3, is now being widely used as the reactor pressure vessel penetration nozzle and the steam generator tubing material for pressurized water reactors (PWR) because of its mechanical property, thermal expansion coefficient, and corrosion resistance. The heat affected zone (HAZ) on Alloy 600 which is formed by welding process is critical to crack. According to G.A. Young et al. crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions [3]. And according to Z.P. Lu et al. CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. To predict the life time of components, there is a model which can calculate the effective degradation years (EDYs) of the material as a function of operating temperature. This study was conducted to investigate how thermal aging affects the hardness of dissimilar metal weld from the fusion boundary to Alloy 600 base metal and the residual strain at Alloy 600 heat affected zone. Following conclusions can be drawn from this study. The hardness, measured by Vickers hardness tester, peaked near the fusion boundary between Alloy 182 and Alloy 600, and it decreases as the picked point goes to Alloy 600 base metal. Even though the formation of precipitate such as Cr carbide, thermal aging doesn't affect the value and the tendency of hardness because of reduced residual stress. According to kernel average misorientation mapping, residual strain decreases when the material thermally aged. And finally, in 30 years simulated specimen, the high residual strain almost disappears. Therefore, the influence of residual strain on primary water stress corrosion cracking can be diminished when the material undergoes thermal aging.

  10. Cast Steels for Creep-resistant Parts Used in Heat Treatment Plants

    Directory of Open Access Journals (Sweden)

    A. Drotlew

    2012-12-01

    Full Text Available Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium ironalloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.

  11. Surface modification by alkali and heat treatments in titanium alloys.

    Science.gov (United States)

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  12. Recrystallization behavior of Ti40 burn-resistant titanium alloy during hot working process

    Science.gov (United States)

    Lai, Yun-jin; Xin, She-wei; Zhang, Ping-xiang; Zhao, Yong-qing; Ma, Fan-jiao; Liu, Xiang-hong; Feng, Yong

    2016-05-01

    The recrystallization behavior of deformed Ti40 alloy during a heat-treatment process was studied using electron backscatter diffraction and optical microscopy. The results show that the microstructural evolution of Ti40 alloy is controlled by the growth behavior of grain-boundary small grains during the heating process. These small grains at the grain boundaries mostly originate during the forging process because of the alloy's inhomogeneous deformation. During forging, the deformation first occurs in the grain-boundary region. New small recrystallized grains are separated from the parent grains when the orientation between deformation zones and parent grains exceeds a certain threshold. During the heating process, the growth of these small recrystallized grains results in a uniform grain size and a decrease in the average grain size. The special recrystallization behavior of Ti40 alloy is mainly a consequence of the alloy's high β-stabilized elemental content and high solution strength of the β-grains, which partially explains the poor hot working ability of Ti-V-Cr-type burn-resistant titanium alloys. Notably, this study on Ti40 burn-resistant titanium alloy yields important information related to the optimization of the microstructures and mechanical properties.

  13. Heat-resistant inorganic binders.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich,

    2017-04-01

    Full Text Available The authors consider some aspects of production of inorganic heat-resistant composite materials in which new classes of inorganic binders - the basic salts of various metals – are applied. The possibility to use hydroxochlorides and hydroxonitrates of aluminum, zirconium, chromium and a number of other metals as the binder has been shown. The main products of the thermal decomposition of all types of binders discussed in this paper are nano-dispersed highly refractory oxides. Increased pressure in the manufacture of these materials shifts the position of the minimum of the dependence «production strength – production temperature» in the direction of low temperatures. This effect is caused by decreased film thickness of the binder located between filler particles and hence by increased rate of transfer of the matter to the interface and by facilitated sintering process. Materials based on the systems containing chromium and some other elements in transitional oxidation states are colour. For this reason, they have the worst thermal conductivity under the same heat resistance compared to colorless materials.

  14. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    Science.gov (United States)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  15. 用于镁还原罐的新型耐热合金及制作工艺%New Heat-resistant Alloy and Production Process Used for Mg Reduction Pot

    Institute of Scientific and Technical Information of China (English)

    董鹏敏; 管争荣

    2013-01-01

    Taking ZG30Cr24Ni7 scrap steel as basic raw material,then nitrogen ferrochrome (26%~28%chrome; 0.20%~ 0.40% carbon; 6% ~ 8% nickel; 1.0% ~ 2.0% silicon; 0.20% ~ 0.35% nitrogen; 0.20% ~ 1.6% manganese; 0.2% ~0.35%tombarthite) were added.A new type of heat resistant alloy can be obtained by ultrasonic treatment technique alloying in melting process.The refined magnesium reduction pot is made by the alloy,taking a new type of structure,using hot dipping aluminizing for the cylinder body and spherical bottom surface.The service life of the pot is up to more than four months,which has good economic efficiency.%以ZG30Cr24Ni7废钢为基本原料,合理加入氮化铬铁(26%~28%铬,0.20%~0.40%碳,6%~8%镍,1.0%~2.0%硅,0.20%~0.35%氮,0.20%~1.6%锰,0.2%~0.35%稀土),熔炼过程采用超声波处理,制得一种新型耐热合金.以此合金所制作的炼镁还原罐,采用新型结构,对简体和球形端底表面进行热浸渗铝,其使用寿命达到4个月以上,具有良好的经济效益.

  16. Design and fabrication of heat resistant multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, J.M.; Knight, L.V.; Peterson, B.G.; Perkins, R.T.; Gray, K.J.

    1986-01-01

    Many promising applications of multilayer x-ray optical elements subject them to intense radiation. This paper discusses the selection of optimal pairs of materials to resist heat damage and presents simulations of multilayer performance under extreme heat loadings.

  17. Crystallization Process of Heat-treated Amorphous Ni-P Alloy Coating

    Directory of Open Access Journals (Sweden)

    JIN Shi-wei

    2016-09-01

    Full Text Available Amorphous Ni-P alloy coatings were prepared on 45 carbon steel blocks using electrodeposition method. The thermal effect and quality change of Ni-P alloy coating under heating rate of 20℃/min were analyzed by differential scanning calorimetry (DSC and thermogravimetry (TG. Coatings were heat-treated at 300℃ and 400℃ for 0, 15, 30, 45, 60, 75min respectively, coating surface was characterized by scanning electron microscope (SEM, energy dispersive spectrometer (EDS, X-ray diffraction (XRD, microhardness tester. The result shows that the exothermic peak of Ni-P alloy coating appears at 284.8℃, coating quality and elemental composition are stable during the heat treatment. Crystallization process experiences a transformation of amorphous, metastable state NiP and Ni5P2, stable state Ni3P. The microhardness of coating can be improved remarkably after heat treatment, namely, the maximum value of heat-treated coating is 1036.56HV, which is nearly 2 times as hard as as-deposited coating. The corrosion resistance of heat-treated Ni-P alloy coating in NaCl solution is inferior to as-deposited coating, but they are both much better than 45 carbon steel substrate.

  18. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    Science.gov (United States)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  19. Potential of rapid heat treatment of titanium alloys and steels

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Teliovich, R.V. [Institute of Metal Physics, Kiev (Ukraine)

    1999-05-15

    Rapid heat treatment (RHT) of titanium alloys and steels, which includes rapid heating into the single-phase field, {beta} and {gamma} of titanium alloys and steels, respectively, is reviewed. Heating rate is an important parameter that affects the mechanism and kinetics of phase and/or structural transformation. Refinement of grain structure, formation of micro-chemical inhomogeneity and substructure in the high temperature phase following RHT are addressed. Thermo-kinetic effects during rapid heating of material with an initial metastable (quenched or deformed) microstructure are discussed. The response of titanium alloys and steels to RHT is compared. The improvement in mechanical properties of both material system following RHT is also presented. (orig.) 48 refs.

  20. Computational Evaluation of Cyclic Strength of Carburized Gears from Heat-Resistant Steels

    Science.gov (United States)

    Semenov, M. Yu.

    2014-11-01

    An advanced model for computing the fatigue bending strength of gears fabricated from a complexly alloyed heat-resistant steel 16Kh3NVFMB-Sh (VKS-5) subjected to vacuum carburizing in acetylene is suggested. The model matches experimental data satisfactorily and has been used to develop a mode for vacuum carburizing of gears from the heat-resistant steel to provide a high fatigue resistance.

  1. Effects of V addition on recrystallization resistance of 7150 aluminum alloy after simulative hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing; Shi, Cangji; Chen, X.-Grant, E-mail: xgrant_chen@uqac.ca

    2014-10-15

    The effects of different V contents (0.01 to 0.19 wt.%) on the recrystallization resistance of 7150 aluminum alloys during post-deformation heat treatment were investigated. The microstructural evolutions at as-cast, as-homogenized conditions and after post-deformation annealing were studied using optical, scanning electron and transmission electron microscopes and using the electron backscattered diffraction technique. The precipitation of Al{sub 21}V{sub 2} dispersoids was observed in alloys containing 0.11 to 0.19 wt.% V after homogenization. The dispersoids were mainly distributed in the dendrite cells, and the precipitate-free zones occurred in the interdendritic regions and near grain boundaries. V addition could significantly enhance the recrystallization resistance during post-deformation annealing, particularly in the presence of a great number of Al{sub 21}V{sub 2} dispersoids. Recrystallized grain growth was effectively restricted because of the dispersoid pinning effect. The alloy containing 0.15 wt.% V exhibited the highest recrystallization resistance amongst all V-containing alloys studied. - Highlights: • Investigated the effect of V level on microstructure and flow stress of 7150 alloys • Characterized microstructures using optical microscopy, SEM, TEM and EBSD • Described the precipitation behavior of V-dispersoids in the dendritic structure • Studied the V effect on recrystallization resistance during post heat treatment • V addition greatly enhanced the recrystallization resistance during annealing.

  2. Effect of T6 heat treatment on mechanical properties and microstructure of EN AB-42000 alloy modified with strontium

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2011-04-01

    Full Text Available Process of silumin properties perfection in scope of classic (simple and cheap methods is connected with change of morphology ofsilumin precipitations through: process of alloy modification, maintaining suitable temperature of superheating treatment and pouring into moulds, as well as perfection of heat treatment operations. In the paper are presented results of a tests aimed at investigation of an effects of performed heat treatment operations on change of tensile strength of EN AC-42000 silumin modified with strontium. Investigated alloy was melted in electric resistance furnace. Course of crystallization process was recorded with use of thermal-derivative analysis (ATD, and on base of this analysis one determined temperatures range of heat treatment operations of the alloy. Performed heat treatment operation resulted in change of mechanical properties (Rm, A5 of the investigated alloy, whereas performed tests enabled determination of temperature and duration of solutioning and ageing treatments, which condition improvement of its mechanical properties.

  3. Copper-Silicon-Magnesium Alloys for Latent Heat Storage

    Science.gov (United States)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-12-01

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. Two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  4. Effect of heat treatment on hydrogen trapping in alloy K-500

    Energy Technology Data Exchange (ETDEWEB)

    Pound, B.G. [SRI Int., Menlo Park, CA (United States). Materials Research Center

    1998-12-01

    The effect of heat treatment on irreversible hydrogen trapping was investigated for alloy K-500 (UNS N05500) with a goal of providing more detailed insight into factors governing the intrinsic susceptibility to hydrogen embrittlement (HE). A potentiostatic pulse technique was used to determine the irreversible trapping constants (k) and hydrogen entry fluxes for annealed, annealed and aged (AA), and 12-h and 16-h direct-aged (DA) specimens of cold-drawn alloy K-500 that had been used earlier to provide as-received (unannealed, cold-drawn) and 8-h Da specimens. the type of heat treatment produced marked differences in irreversible trapping. Intrinsic susceptibility to HE, as defined by k, was increased considerably by annealing. Aging had a negligible effect on the intrinsic susceptibility for the annealed alloy, but resulted in a sizable increase for the unannealed alloy if performed for extended times. Intrinsic susceptibilities for the AA and DA alloys were correlated with the observed resistances to HE, implying that the previously reported decrease in resistance to HE (based upon tensile strength) produced by annealing was caused to a large extent, if not entirely, by a change in the irreversible traps.

  5. Properties enhancement of Al-Zn-Mg alloy by retrogression and re-aging heat treatment

    Directory of Open Access Journals (Sweden)

    Zaid H.R.

    2011-01-01

    Full Text Available The higher strength 7xxx aluminum alloys exhibited low resistance to stress corrosion cracking (SCC when aged to the peak hardness (T6 temper. The overaged alloys (T7 temper developed to enhance the SCC with loss in the strength of the alloy. Recently, retrogression and re-aging (RRA heat treatments are used for improving the SCC behavior for alloys in T6 tempers such as 7075, 7475 and 8090. In this study, an application of retrogression and re-aging heat treatment processes are carried out to enhance toughness properties of the 7079-T651 aluminum alloy, while maintaining the higher strength of T651-temper. The results of charpy impact energy and electrical conductivity tests show a significantly increases in absorbed energy and electrical conductivity values, when the alloys are exposed to various retrogression temperatures (190, 200, 210°C and times (20, 40, 60 minutes, and then re-aged at 160°C for 18 hours.

  6. Electrodeposition, Structure and Corrosion Resistance of Nanocrystalline Ni-W Alloy

    Institute of Scientific and Technical Information of China (English)

    YANG, Fang-Zu(杨防祖); GUO, Yi-Fei(郭逸飞); HUANG, Ling(黄令); XU, Shu-Kai(许书楷); ZHOU, Shao-Min(周绍民)

    2004-01-01

    Ni-W alloy was electrodeposited from the electrolyte solution containing sodium tungstate, nickel sulfate and ammonium citrate. The electrodeposition, heat treatment, structure, surface morphology and corrosion resistance in w=0.03 NaCl solution, of Ni-W alloys were studied by means of DSC, XRD, SEM and electrochemical techniques. The results showed that the obtained Ni-W alloy electrodeposit with W weight content (wW=0.471) was presented in more typical nanocrystalline. After heat treatment at 400 ℃ for 1 h, the phase structure of the deposits was not obviously changed whereas the agglomerate for the reunion of tiny grains on deposit surface caused the granule in a more smooth morphology, the microhardness was slightly increased and the corrosion resistance was enhanced.

  7. Radiation resistance of copper alloys at high exposure levels

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A. (Pacific Northwest Lab., Richland, WA (USA)); Zinkle, S.J. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    Copper alloys are currently being considered for high heat flux applications in fusion power devices. A review is presented of the results of two separate series of experiments on the radiation response of copper and copper alloys. One of these involved pure copper and boron-doped copper in the ORR mixed spectrum reactor. The other series included pure copper and a wide array of copper alloys irradiated in the FFTF fast reactor 16 refs., 13 figs.

  8. Evolution of Globular Microstructure and Rheological Properties of Stellite™ 21 Alloy after Heating to Semisolid State

    Science.gov (United States)

    Sołek, Krzysztof Piotr; Rogal, Łukasz; Kapranos, Platon

    2016-11-01

    Metal alloys can be successfully thixoformed in the partially liquid state if they display non-dendritic near-globular microstructures. The article presents the development of feedstock with such non-dendritic microstructure produced through the solid-state route of strain-induced melt-activated (SIMA) method, for a Stellite™ 21 alloy. Stellite™ alloys are a range of cobalt-chromium alloys designed for wear and corrosion resistance, currently shaped by casting, powder metallurgy or forging processes, but semisolid-state processing offers the possibility of a near-net-shaping method for these alloys. In this work, sprayformed followed by extrusion samples were heated to the temperature range at which the liquid and solid phases coexist in the material and spheroidal shape solid particles in a liquid matrix were obtained as required for semisolid processing. Microstructural investigations were carried out using scanning electron microscopy (SEM) in combination with energy-dispersive spectroscopy (EDS), with a further objective of analyzing the rheological properties of Stellite™ 21 alloy in the semisolid state, providing results to be used for identification of a processing window of temperature and viscosity ranges for thixoforming this alloy.

  9. Developing and Studying the Methods of Hard-Facing with Heat-Resisting High-Hardness Steels

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop the methods of hard-facing of mining-metallurgic equipment parts with heat-resisting high-hardness steels on the base of plasma-jet hard-facing in the shielding-alloying nitrogen atmosphere.

  10. Effects of alloy heat treatment on oxidation kinetics and scale morphology for Crofer 22 APU

    Science.gov (United States)

    Magdefrau, Neal J.; Chen, Lei; Sun, Ellen Y.; Aindow, Mark

    2013-11-01

    The effect of alloy heat treatment on the oxidation kinetics and oxide scale microstructure of Crofer 22 APU has been studied. Parabolic oxidation rate constants were measured for the as-received alloy and after pre-oxidation heat treatment in argon at 1050 °C for 1 and 4 h. The oxide scale microstructure was investigated using scanning electron microscopy, focused ion beam milling and transmission electron microscopy. It was found that the alloy forms a two-layer scale with a continuous chromia layer and a discontinuous MnCr2O4 overlayer. Two forms of internal oxides were also formed: subscale pockets of spinel and isolated TiOx precipitates in the underlying alloy. The pre-oxidation heat treatment had a profound effect on the grain size and morphology of the Cr2O3 and MnCr2O4 layers in the scale. The heat-treated samples exhibit a 3.5× lower parabolic oxidation rate constant than the as-received Crofer 22 APU. This improvement in oxidation resistance is attributed to the dramatic differences in the morphology of the oxide scale that forms during the earliest stages of oxidation (<5 h). The implications of these findings for oxidation mechanisms and long-term SOFC performance are discussed.

  11. Gas chromatography using resistive heating technology.

    Science.gov (United States)

    Wang, Anzi; Tolley, H Dennis; Lee, Milton L

    2012-10-26

    Air bath ovens are standard in conventional gas chromatography (GC) instruments because of their simplicity and reliability for column temperature control. However, their low heating rates, high power consumption and bulky size are in conflict with the increasing demands for fast separation and portable instrumentation. The deficiencies of air bath ovens can be eliminated using resistive heating technology, as the column is conductively heated by compact resistive heaters with low thermal mass. Resistive heating methods were employed in the early years of GC history, and they are emerging again as instrumentation is becoming more compact and sophisticated. Numerous designs have been tested and some have been successfully commercialized. Development of portable GC systems, including lab-on-a-chip devices, greatly benefits from the use of small, low-power resistive heating hardware. High speed GC separations using conventional instruments also can be best achieved with resistive heating modules. Despite some of its own inherent disadvantages, including efficiency loss, complex manufacturing and inconvenient column maintenance, resistive heating is expected to rapidly become a mature technology and even replace oven heating in the not-to-distant future.

  12. Effects of Solution and Aging Treatments on Corrosion Resistance of As-cast 60NiTi Alloy

    Science.gov (United States)

    Qin, Qiuhui; Wen, Yuhua; Wang, Gaixia; Zhang, Lanhui

    2016-12-01

    60NiTi alloy has become a competitive candidate for bearing applications due to its shape memory effect, superelasticity, high strength, hardness, excellent abrasion resistance and corrosion resistance, etc. However, the relationship between its corrosion resistance and heat treatment is not clearly understood. Therefore, we used OM, XRD, SEM and EDS to study the evolution of microstructure in as-cast, solution-treated and aged 60NiTi alloy. Besides, the potentiodynamic polarization and salt spray test were used to compare corrosion resistance of 60NiTi alloy and 316 stainless steel and to study the effect of microstructures on corrosion resistance of 60NiTi alloy. The results show that the corrosion resistance of as-cast 60NiTi alloy is comparable to that of 316 stainless steel, but the corrosion resistance of solution-treated and aged 60NiTi alloys is much superior. The significantly reduced Ni3Ti phase after the solution and aging treatments is responsible for the remarkable improvement in the corrosion resistance of as-cast 60NiTi alloy.

  13. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints

    Directory of Open Access Journals (Sweden)

    G. Rambabu

    2015-12-01

    Full Text Available The aluminium alloy AA2219 (Al–Cu–Mg alloy is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components. Friction stir welding (FSW is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfaces. The welding parameters, such as tool pin profile, rotational speed, welding speed and axial force, play major role in determining the microstructure and corrosion resistance of welded joint. The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions. Dynamic polarization testing was carried out to determine critical pitting potential in millivolt, which is a criteria for measuring corrosion resistance and the data was used in model. Further the response surface method (RSM was used to develop the model. The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.

  14. Recrystallization behavior of Ti40 burn-resistant titanium alloy during hot working process

    Institute of Scientific and Technical Information of China (English)

    Yun-jin Lai; She-wei Xin; Ping-xiang Zhang; Yong-qing Zhao; Fan-jiao Ma; Xiang-hong Liu; Yong Feng

    2016-01-01

    The recrystallization behavior of deformed Ti40 alloy during a heat-treatment process was studied using electron backscatter dif-fraction and optical microscopy. The results show that the microstructural evolution of Ti40 alloy is controlled by the growth behavior of grain-boundary small grains during the heating process. These small grains at the grain boundaries mostly originate during the forging proc-ess because of the alloy’s inhomogeneous deformation. During forging, the deformation first occurs in the grain-boundary region. New small recrystallized grains are separated from the parent grains when the orientation between deformation zones and parent grains exceeds a certain threshold. During the heating process, the growth of these small recrystallized grains results in a uniform grain size and a decrease in the av-erage grain size. The special recrystallization behavior of Ti40 alloy is mainly a consequence of the alloy’s highβ-stabilized elemental con-tent and high solution strength of theβ-grains, which partially explains the poor hot working ability of Ti-V-Cr-type burn-resistant titanium alloys. Notably, this study on Ti40 burn-resistant titanium alloy yields important information related to the optimization of the microstruc-tures and mechanical properties.

  15. Plasma surface alloying of titanium alloy for enhancing burn-resistant property

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; ZHANG Gao-hui; HE Zhi-yong; YAO Zheng-jun

    2006-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, burn-resistant alloying layers were made on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si titanium alloys by using double glow plasma surface alloying technology (DG Technology). Two typical burn-resistant layers Ti-Cr and Ti-Mo were made by DG plasma chromizing and DG plasma molybdenizing, respectively. Burn-resistant properties were tested by layer ignition method using 2 kW laser machine. Ignition experiments result reveals that the ignition temperature of alloyed layer with Mo and Cr concentration above 10% is about 200℃ higher than ignition temperature of Ti-6Al-4V substrate.

  16. Effect of T6 heat treatment on tensile strength of EN AB-48000 alloy modified with strontium

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2011-07-01

    Full Text Available Among alloys of non-ferrous metals, aluminum alloys have found their broadest application in foundry industry. Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron. The silumins can be characterized by high mechanical properties. To upgrade mechanical properties of a castings made from silumins one makes use of heat treatment, what leads to change of their structure and advantageously affects on mechanical properties of the silumins. In the paper are presented test results concerning effect of dispersion hardening on change of tensile strength of EN AB-48000 silumin modified with strontium. Investigated alloy was melted in electric resistance furnace. Temperature ranges of solution heat treatment and ageing heat treatment were selected on base of curves from ATD method, recorded for refined alloy and for modified alloy. The heat treatment resulted in change of Rm tensile strength, while performed investigations have enabled determination of temperatures and durations of solution heat treatment and ageing heat treatment, which precondition obtainment of the best tensile strength Rm of the investigated alloy.

  17. Microstructural evolvement of wrought magnesium alloy sheet during heat treatment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Magnesium alloy is the lightest structural metal material. As its ductility is usually limited because of its hexagonal closest packing (hcp) structure, it is significant to improve its forming performance. The primary way to achieve this goal is by grain refinement. This study explores new ways of grain refinement for cold-rolled sheet of magnesium alloy AZ31B by probing into its structural evolvement in heat treatment. It is found that recrystallization mostly takes place in the cold-rolled sheet in heattreatment, and refined and equiaxial recrystallization grains with an average diameter of (14 to 15) μm can be obtained by heattreatment at 260 °C for (60 to 90) min, which is an effective method to obtain refined symmetrical grains of magnesium alloy by heat treatment at a lower recrystallization temperature after cold-rolling.

  18. Resistance to corrosion by water at high temperatures of Al-Fe-Ni alloy after prolonged heat treatment. Influence of Ti and Zr additions; Tenue a la corrosion par l'eau a haute temperature de l'alliage Al-Fe-Ni apres des chauffages de longue duree. Influence des additions Ti et Zr

    Energy Technology Data Exchange (ETDEWEB)

    Lelong, P.; Moisan, J.; Herenguel, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Centre de Recherches de la Ste des Trefileries et Laminoirs du Havre, 92 - Antony (France)

    1960-07-01

    The influence of titanium and zirconium additions on the heterogeneity texture of Al-Fe-Ni alloys, and the resultant effect on their corrosion resistance, is briefly recalled. The present article records the results of corrosion tests on these alloys after prolonged heat treatment. Without additions, the eutectic structure of the basis alloy is subject to a coalescence, which results in a deterioration of corrosion resistance. This effect applies equally to the as-cast and to the wrought conditions. The addition of titanium or zirconium retards this deterioration very considerably, both for the as-cast and wrought alloys. (author) [French] Apres un rappel de l'influence la texture d'heterogeneite sur la tenue a la corrosion, et du role joue par les additions de titane et de zirconium sur cette texture, il est rapporte dans le present travail les resultats d'essais de corrosion apres ces chauffages de longue duree. Pour l'alliage de base, la coalescence de l'eutectique dans l'etat de fonderie comme dans l'etat corroye, suivie micrographiquement, s'accompagne d'une degradation sensible de la tenue a la corrosion. Les additions de zirconium et de titane retardent tres fortement cette degradation, qu'il s'agisse encore de la texture de fonderie ou de celle de corroyage. (auteur)

  19. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    Science.gov (United States)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  20. Effect of heat diffusion on properties of zinc-aluminum coating on AZ91D magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-feng; HUANG Wei-jiu; LIU Ming

    2006-01-01

    A protecting zinc and aluminum coating on the surface of AZ91D magnesium alloys was obtained by thermal spraying to improve the corrosion and wear resistance performances. In order to enhance the combination between magnesium alloy matrix and zinc and aluminum coating, the sample was heat-treated at 300 ℃ for 2 h, then, the cross-section patterns, XRD pattern, micro-hardness, wear and corrosion resistance abilities were researched. The results indicate that the interface between the coating and substrate is metallurgical bond, and a transitional fusion layer is formed by diffusion. The micro-scale abrasion test and polarization test in 3% NaCl solution show that the diffusion-treated specimen has better wear and corrosion resistance performances in comparison with the undiffusion-treated and substrate magnesium alloys; in addition, it has relatively higher micro-hardness than the undiffusion-treated magnesium alloys.

  1. Identification of heat resistant Escherichia coli by qPCR for the locus of heat resistance.

    Science.gov (United States)

    Ma, Angela; Chui, Linda

    2017-02-01

    Three qPCR assays targeting the locus of heat resistance to identify heat resistant clinical Escherichia coli isolates are described. Of 613 isolates, 3 (0.5%) possessed the locus. The assays are a rapid, highly sensitive and specific alternative to screening by heat shock and can be used in food safety surveillance.

  2. The Influence of Casting Defects on Fatigue Resistance of Elektron 21 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    I. Pikos

    2013-04-01

    Full Text Available The Mg-RE alloys are attractive, constructional materials, especially for aircraft and automotive industry, thanks to combination of low density, good mechanical properties, also at elevated temperature, and good castability and machinability. Present paper contains results of fatigue resistance test carried out on Elektron 21 magnesium alloy, followed by microstructural and fractographical investigation of material after test. The as-cast material has been heat treated according to two different procedures. The fatigue resistance test has been conducted with 106 cycles of uniaxial, sine wave form stress between 9 MPa and 90 MPa. Fractures of specimens, which ruptured during the test, have been investigated with scanning electron microscope. The microstructure of specimens has been investigated with light microscopy. Detrimental effect of casting defects, as inclusions and porosity, on fatigue resistance has been proved. Also the influence of heat treatment's parameters has been described.

  3. Thermal Aging Effect on Corrosion Resistance in Fusion Boundary of A533 Gr. B and Alloy 152

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Taeho; Ham, Junhyuk; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weldment (DMW) is frequently used for joining low-alloy steel pressure vessel nozzles and steam generator nozzles to nickel-based wrought alloy or austenitic stainless steel components in high energy systems. This feature also significantly hinders C diffusion from the ferrite base metal to the weld metal. Until now, stress corrosion cracking has not occurred in DMWs where a High-Cr weld metal (such as Alloy 152 or Alloy 690), which is Ni-base weld metal including relative high Cr, is used as the weld metal in the weld between the nickel-based alloy and low-alloy steel. To understand the microstructure and corrosion evolution on fusion boundary between low-alloy steel and Ni-base weld metal, microstructural analysis and polarization test were performed with A533 Gr. B/Alloy 152/Alloy 690. Remarkable changes were observed in corrosion resistance and hardness at fusion boundary between low-alloy steel and Ni-base weld metal. The precipitate, which has different potential with peripheral region, can cause galvanic corrosion or pitting corrosion and is the one of hardening methods by disturbing movement of the dislocation. At initial step of heat treatment, the number of precipitates was increased. In fusion boundary between A533 Gr. B and Alloy 152, the corrosion resistance was decreased, and the hardness was increased. Next, at further step, the number of precipitates.

  4. Experimental Study on the Resistance to Hydrogen Embrittlement of NIFS-V4Cr4Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    CHENJiming; XUZengyu; T.Muroga; DENYing

    2001-01-01

    There are more and more countries to ake an effort to the studies of vanadium alloy for fusion application. NIFS in Japan has recently developed an 80 kg heat V4Cr4Ti alloy (NIFS-heat 2) after the production of a 500 kg scale V4Cr4Ti in U. S. several years ago. Property evaluation of the alloy has beenput into an international collaboration program under the coordination of IEA (International Energy Agency). SWIP has joined the collabration on the hydrogen embrittlement resistance evaluation of the alloyt.

  5. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, Ken (Naperville, IL); Baxter, David J. (Woodridge, IL)

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  6. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  7. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  8. Phase transformations in titanium alloys hardened by rapid heating

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Ivasishin, O.M.; Oshkaderov, S.P.; Smirnov, A.M. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    Features of phase transformations in titanium alloys, which subjected to hardening by rapid heating, are studied. The model for mathematical description of ..cap alpha..+..beta.. ..-->.. ..beta..- transformation under the conditions of continuous heating with different rate, is proposed. The increase of the polymorphic transformation temperature with the heating rate, is predicted and confirmed experimentally. Under certain conditions this fact can result in a two-stage process, of ..cap alpha..+..beta.. ..-->.. ..beta..-transformation, which begins according to difussion mechanism, and completes according to the non-diffusion one. It is shown, that ..cap alpha..+..beta.. ..-->.. ..beta..-transformation under non-equilibrium conditions is followed by appearing of concentration non-uniformity in reacting phases, that essentially affects the grain and intragranular structure of hardened alloys, and their phase composition. Variants of phase composition of the alloys of different classes quenched after rapid heating in the ..beta..-field, are analyzed. Possible aspects of the effect of increased heating rates on the ageing process are considered.

  9. Preparation and Corrosion Resistance of Rare Earth Conversion Coatings on AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Chen Xiang; Lü Zushun; Li Yingjie

    2005-01-01

    The feasibility of forming pollution-free and environmentally benign Ce-based rare earth conversion coatings (short for RECCs) on AZ91 magnesium alloy to enhance corrosion resistance was studied. The effect of optimum processing parameters on corrosion resistance of RECCs, such as density of treating solution, temperature and time of coating formation were discussed. Protective performance of conversion coatings on magnesium alloy was evaluated by moisture/heating test, anodic polarization, etc. The results show that Ce-based RECCs under moisture/heating condition can remain intact, with high coverage and no obvious corrosion phenomenon. Corrosion potential increases and passive phenomenon occurs while current density decreases, therefore Ce-based RECCs can improve corrosion resistance of AZ91 magnesium alloy. The morphology of Ce-based RECCs prepared under optimum process through SEM observation is found to be a few particles coherent to the base coating, and the coating has no cracks and exhibits apparent corrosion resistance during corrosion courses of AZ91 magnesium alloy.

  10. Influence of silicon addition on the mechanical properties and corrosion resistance of low-alloy steel

    Indian Academy of Sciences (India)

    M Hebda; H Dębecka; J Kazior

    2015-12-01

    The addition of silicon to low-alloy steel allows to modify the materials' microstructure and thus to improve their corrosion resistance and mechanical properties. The influence of adding different amounts of silicon on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low-alloy steel was investigated. Samples were prepared via the mechanical alloying process, which is the most useful method to homogeneously introduce silicon to low-alloy steel. Sintering was performed by using the spark plasma sintering (SPS) technique. After the SPS process, half of each of the obtained samples was heat-treated in a vacuum furnace. The results show that high-density materials were achieved, and a homogeneous and fine microstructure was obtained. The investigated compositions containing 1 wt% of silicon had better corrosion resistance than samples with 3 wt% of silicon addition. Furthermore, corrosion resistance as well as the mechanical and plastic properties of the samples with 1 wt% of silicon can be further improved by applying heat treatment.

  11. Corrosion-Resistant High-Entropy Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Yunzhu Shi

    2017-02-01

    Full Text Available Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.

  12. Localized corrosion of aluminum alloys for OTEC heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, S C

    1979-01-01

    The effects of dissolved oxygen, pH and temperature on the rate of initiation and growth of pitting and crevice corrosion of aluminum alloy 5052 and pure aluminum have been determined. Variations in pH and temperature rather than dissolved oxygen are shown to account for increased corrosion rates of 5000 series aluminum alloys that have been reported for deep ocean exposures. The impact of these results on the use of aluminum for OTEC heat exchanger tubing and on possible approaches to corrosion control are discussed.

  13. An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-03-01

    Full Text Available Zn-Al-Cu alloys are used primarily because of their tribological properties as an alternative material for bronze, cast iron and aluminum alloy bearings and as a construction material. Particularly interesting are high aluminum zinc alloys. Monoeutectic zinc and aluminum alloys are characterized by the highest hardness, tensile strength and wear resistance of all of the zinc alloys. A significant problem with the use of the Zn-Al-Cu alloys is their insufficient resistance to electrochemical corrosion. Properties of Zn-Al-Cu alloys can be improved by heat treatment. The purpose of examination was to determine the effect of heat treatment (aging at various temperatures on the microstructure and corrosion resistance of the ZnAl40Cu3 alloy. The scope of the examination included: structural examinations, determination of hardness using Brinell’s method and corrosion resistance examinations. Ageing at higher temperatures causes a creation of areas where is an eutectoid mixture. The study showed that ageing causes a decrease in hardness of ZnAl40Cu3 alloy. This decrease is even greater, when the temperature of ageing is lower. The studies have shown a significant influence of ageing on the corrosion resistance of the alloy ZnAl40Cu3. Maximum corrosion resistance were characterized by the sample after ageing at higher temperatures.

  14. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    Science.gov (United States)

    Yu, Ang-Yang; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-01

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO2interface. We calculate the segregation energy of the doped Ti/TiO2 interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO2 interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO2 interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO2 interfaces. Alloying effects on the Curie temperature of the Ti/TiO2 interface have been elaborated.

  15. Critical behavior of electrical resistivity in amorphous Fe–Zr alloys

    Indian Academy of Sciences (India)

    A Perumal

    2001-04-01

    Electrical resistivity (ρ) of the amorphous (a-)Fe100-Zr ( = 8.5, 9.5 and 10) alloys has been measured in the temperature range 77 to 300 K, which embraces the second-order magnetic phase transition at the Curie temperature point . Analysis of the resistivity data particularly in the critical region reveals that these systems have a much wider range of critical region compared to other crystalline ferromagnetic materials. The value of and specific heat critical exponent, has the same values as those determined from our earlier magnetic measurements. The value of for all the present investigated alloys are in close agreement with the values predicted for three-dimensional (3D) Heisenberg ferromagnet systems, which gives contradiction to the earlier results on similar alloys. It is observed from the analysis that the presence of quenched disorder does not have any influence on critical behavior.

  16. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  17. Heat resistance of Fe-Al intermetallics in the context of selected heat-resistant and hihg-temperature creep resistant steels

    Directory of Open Access Journals (Sweden)

    P. Baranowski

    2009-04-01

    Full Text Available Results are hereby presented of heat-resistance tests of two Fe3Al and FeAl intermetallic phase-based alloys in the context of St41k-typeboiler steel and 50H21G9N4 high-temperature creep resistant steel. It has been ascertained that heat resistance of the 50H21G9N4 steeland of the Fe3Al and FeAl intermetallic phase-based alloys significantly exceeds that of the boiler steel tested in the air atmosphere and the atmosphere of a flue gas with CO, CO2, SiO2 content alike. Improvement of these properties depends of exposure conditions. The largest differences have been observed when the tests were carried out in temperature 1023 K and in the flue gas atmosphere. The differences have been more and more noticeable as the exposition duration extended. A tendency has been also recorded of smaller mass decrements of the Fe3Al and FeAl intermetallic phase-based alloys as compared to the 50H21G9N4 steel.

  18. Influence of heat treatment on magnesium alloys meant to automotive industry

    NARCIS (Netherlands)

    Popescu, G.; Moldovan, P.; Bojin, D.; Sillekens, W.H.

    2009-01-01

    The paper presents a study concerning the heat treatment realized on magnesium alloys, from AZ80 and ZK60 class. These alloys are destined to replace the conventional ferrous and aluminum alloys in automotive industry. It was realized the heat treatment, T5 - artificially aging, and it were

  19. Influence of temperature of the short-period heat treatment on mechanical properties of the NiTi alloy

    Directory of Open Access Journals (Sweden)

    Jaroslav Čapek

    2014-01-01

    Full Text Available The equiatomic alloy of nickel and titanium, known as nitinol, possesses unique properties such as superelasticity, pseudoplasticity, shape memory, while maintaining good corrosion resistance and sufficient biocompatibility. Therefore it is used for production of various devices including surgery implants. Heat treatment of nickel-rich NiTi alloys can result in precipitation of nickel-rich phases, which strongly influence tensile and fatigue behaviour of the material.In this work we have studied influence of short-period heat treatment on tensile behaviour and fatigue life of the NiTi (50.9 at. % Ni wire intended for fabrication of surgery stents.

  20. Development of New Heats of Advanced Ferritic/Martensitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pestovich, Kimberly Shay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-23

    The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements in low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.

  1. Properties of Alloy 617 for Heat Exchanger Design

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard Neil [Idaho National Laboratory; Carroll, Laura Jill [Idaho National Laboratory; Benz, Julian Karl [Idaho National Laboratory; Wright, Julie Knibloe [Idaho National Laboratory; Lillo, Thomas Martin [Idaho National Laboratory; Lybeck, Nancy Jean [Idaho National Laboratory

    2014-10-01

    Abstract – Alloy 617 is among the primary candidates for very high temperature reactor heat exchangers anticipated for use up to 950ºC. Elevated temperature properties of this alloy and the mechanisms responsible for the observed tensile, creep and creep-fatigue behavior have been characterized over a wide range of test temperatures up to 1000ºC. Properties from the current experimental program have been combined with archival information from previous VHTR research to provide large data sets for many heats of material, product forms, and weldments. The combined data have been analyzed to determine conservative values of yield and tensile strength, strain rate sensitivity, creep-rupture behavior, fatigue and creep- fatigue properties that can be used for engineering design of reactor components. Phenomenological models have been developed to bound the regions over which the engineering properties are well known or can be confidently extrapolated for use in design.

  2. Wear resistance of alloy вт-22 with non-ferrous alloys at reverse

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2010-01-01

    Full Text Available  The article presents the results of tests of non hardened titanium alloy ВТ-22 with aviation non-ferrous alloys in reverse sliding friction. The main objective of the work is the selection of the optimum combination of materials depending on changes in loading conditions. Study of alloy ВТ-22 wear resistance was carried out in pairs with БрОФ-10-1, БрБ2, БрАЖ-9-4, ВТ-22, МЛ5, Д16Т, 7Х21ГАН5Ш and 95Х18Ш. The dependencies of the materials wear at pressures 10, 20 and 30 Mpa we determined. The linear nature of titanium alloy wear curves indicates that the change in the wear mechanism occurs gradually. The histograms of non-ferrous materials wear and the total wear of the friction pair are presented. It is established that the bronze БрАЖ-9-4 is the most preferable material for contact with non hardened titanium alloy ВТ-22, the least wear among the tested materials. The established coefficients of the titanium alloy ВТ-22 friction in pair with aviation structural non-ferrous alloys are presented. The results of research will be relevant for the engineering industry, where non hardened titanium alloy ВТ-22 in pair with non-ferrous alloys is applied.

  3. Nicral ternary alloy having improved cyclic oxidation resistance

    Science.gov (United States)

    Barrett, C. A.; Lowell, C. E.; Khan, A. S.

    1982-01-01

    NiCrAl alloys are improved by the addition of zirconium. These alloys are in the Beta or gamma/gamma' + Beta region of the ternary system. Zirconium is added in a very low amount between 0.06 and 0.20 weight percent. There is a narrow optimum zirconium level at the low value of 0.13 weight percent. Maximum resistance to cyclic oxidation is achieved when the zirconium addition is at the optimum value.

  4. Electrical resistivity of V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  5. Isolation, Identification of Heat Resistant Moulds in Margarine and Determination of Their Heat Resistance

    Directory of Open Access Journals (Sweden)

    A. S. Demirci

    2006-09-01

    Full Text Available In this study, moulds that cause problems in a margarine production plant which is located in Trakyaregion have been isolated and identified. In addition to, their heat resistance and lipolytic activity werestudied. For this purpose, margarine samples from various production lots and process water samples fromproduction plant were taken aseptically, transported immediately to the laboratory and analyzed. In thisresearch, two different heat resistant mould strains have been isolated from margarines and process water.After identification of this moulds, their heat resistances at different temperatures have been investigated.Mould isolates were identified as heat resistant Aspergillus fumigatus, Paecilomyces variotii based onmacroscopic and microscopic features. To this analyses results about thermal resistance, Aspergillusfumigatus and Paecilomyces variotii were ability to survive heat treatment at 95oC 10 minutes and 90oC 10minutes, respectively.

  6. Effect of coating and surface modification on the corrosion resistance of selected alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Zheng, W. [CANMET, Materials Technology Lab., Hamilton, Ontario (Canada); Cook, W. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada); Toivonen, A.; Penttila, S. [VTT Technical Research Center of Finland, Espoo (Finland); Guzonas, D.; Woo, O.T. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Liu, P.; Bibby, D. [CANMET, Materials Technology Lab., Hamilton, Ontario (Canada)

    2011-07-01

    Materials selection is one of the key tasks in Gen-IV reactor development. There is no known material that can meet the expected core outlet conditions of the Canadian SCWR concept (625{sup o}C core outlet temperature). High-Cr steels with excellent corrosion resistance are often susceptible to embrittlement due to the precipitation of sigma and other phases in the microstructure. Low-Cr steels such as P91 and oxide dispersion strengthened (ODS) steels exhibit good high-temperature mechanical properties, but the lack of sufficient Cr content makes this group alloy corrode too fast. Improvement in this alloy is needed in order for it to be considered as a piping construction material. In this report, the development of a metallic coating on a P91 substrate is discussed. Recent effort on selection of in-core cladding alloys has focused on heat-resistant 3xx series stainless steels. These alloys have higher strength at high-temperature ranges, but corrosion and stress-corrosion cracking resistance are a concern. Metallic coating and surface modification are considered as possible solutions to overcome this challenge. The effects of surface modification on the corrosion rate of austenitic steels were also reported in this paper. As-machined surface showed much better corrosion resistance than polished surface and advanced surface analyses showed distinct differences in the nature and the morphology of the surface layer metal. Possible mechanisms for improved corrosion performance are discussed. (author)

  7. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  8. Raising the heat and wear resistances of hardened carbon steels by friction strengthening treatment

    Science.gov (United States)

    Makarov, A. V.; Korshunov, L. G.; Malygina, I. Yu.; Solodova, I. L.

    2007-03-01

    The effect of friction treatment by a hard-alloy indenter on the microhardness and resistance to the heat-induced softening upon tempering of hardened medium-and high-carbon steels at 100-600°C is studied. The x-ray and electron microscopy methods are used to determine the causes of the increase in the heat resistance of the friction-strained steel surfaces. A comparative analysis of the effect of the hardening treatment by a hard-alloy indenter and by abrasive particles on the friction-induced heat resistance is performed for the case of high-speed friction treatment of a high-carbon laser-hardened steel.

  9. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  10. Influence of heat treatment on microstructure and wear resistance of a medium-carbon-low-alloy wear-resistant steel%热处理对中碳低合金耐磨钢组织与耐磨性的影响

    Institute of Scientific and Technical Information of China (English)

    温浩宇; 马瑜; 王联波; 唐正华

    2011-01-01

    Effect of cooling modes of water,wind and air on microstructure and wear-resistant properties of a medium-carbon-low-alloy steel under same temper conditions was studied.The influence of temper temperatures on wearing properties of the steel was also investigated.The results show that the microstructure of the studied steel consist of martensite(M) or martensite plus bainite(M/B) depending on heat treatment process.The steel with M/B microstructure exhibits better temper resistance and toughness than that of the single matensite.The M/B microstructure is beneficial to improving wear-resistance of the steel.SEM analysis reveals that the main wear mechanism of the studied steel is abrasive wear with some furrows and micro-cutting on the worn surface.%研究了水冷、风冷、空冷3种冷却方式和200、250、300、350、400℃5种回火温度对中碳低合金耐磨钢的组织和耐磨粒磨损性能的影响。结果表明,经不同的冷却方式,可依次得到单相马氏体和马氏体加贝氏体的复相组织。含有贝氏体的复相组织在低温回火后有较好的抗回火软化能力和韧性,有助于耐磨性的提高。用SEM观察磨损表面,结果表明:在磨粒磨损情况下,实验用钢的磨损机理主要为塑性变形犁机制和显微切削机制。

  11. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa

    2009-01-01

    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  12. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  13. ANALYSIS OF PITTING CORROSION ON AN INCONEL 718 ALLOY SUBMITTED TO AGING HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Felipe Rocha Caliari

    2014-10-01

    Full Text Available Inconel 718 is one of the most important superalloys, and it is mainly used in the aerospace field on account of its high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. In this work the resistance to pitting corrosion of a superalloy, Inconel 718, is analyzed before and after double aging heat treatment. The used heat treatment increases the creep resistance of the alloy, which usually is used up to 0.6 Tm. Samples were subjected to pitting corrosion tests in chloride-containing aqueous solution, according to ASTM-F746-04 and the procedure described by Yashiro et al. The results of these trials show that after heat treatment the superalloy presents higher corrosion resistance, i.e., the pitting corrosion currents of the as received surfaces are about 6 (six times bigger (~0.15 mA than those of double aged surfaces (~0.025 mA.

  14. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  15. Improved Stress Corrosion Cracking Resistance and Strength of a Two-Step Aged Al-Zn-Mg-Cu Alloy Using Taguchi Method

    Science.gov (United States)

    Lin, Lianghua; Liu, Zhiyi; Ying, Puyou; Liu, Meng

    2015-12-01

    Multi-step heat treatment effectively enhances the stress corrosion cracking (SCC) resistance but usually degrades the mechanical properties of Al-Zn-Mg-Cu alloys. With the aim to enhance SCC resistance as well as strength of Al-Zn-Mg-Cu alloys, we have optimized the process parameters during two-step aging of Al-6.1Zn-2.8Mg-1.9Cu alloy by Taguchi's L9 orthogonal array. In this work, analysis of variance (ANOVA) was performed to find out the significant heat treatment parameters. The slow strain rate testing combined with scanning electron microscope and transmission electron microscope was employed to study the SCC behaviors of Al-Zn-Mg-Cu alloy. Results showed that the contour map produced by ANOVA offered a reliable reference for selection of optimum heat treatment parameters. By using this method, a desired combination of mechanical performances and SCC resistance was obtained.

  16. Nitrogen hardening of creep-resistant G-NiCr28W alloy

    Directory of Open Access Journals (Sweden)

    Z. Pirowski

    2010-07-01

    Full Text Available In the group of creep-resistant materials, most important are heat-resistant nickel-based alloys. The G-NiCr28W alloy subject to detailed examinations was observed to have two different austenite-like phases. In the interdendritic spaces of alloy matrix, the presence of another phase, also characterised by paramagnetic properties, was detected. Inside this interdendritic phase, local areas of a lamellar structure, composed of both of the above mentioned phases, were present. Nitrogen treatment was observed to raise the microhardness of both these phases.The presence of nitrogen made the regions of a lamellar structure disappear completely. Their place was occupied by precipitates dispersed in the matrix, and occasionally forming large clusters.It has been observed that cold work can harden the G-NiCr28W alloy to a very small degree only, in spite of the fact that hardness isincreasing systematically with the increasing degree of cold work. The said alloy, when enriched with nitrogen added as an alloyingelement, is characterised by hardness higher than the hardness of its nitrogen-free counterpart. The value of hardness is increasing evenmore under the effect of low-degree cold work, although increasing further the degree of cold work seems to have no effect on hardnessincrease. The problem faced in nickel-based materials is the possibility of making defect-free castings from alloys with high nitrogen content. Alloys investigated in the present study were remelted, cast and subject to solidification under high nitrogen pressure in the furnace chamber. However, melting carried out under these conditions could not prevent the occurrence of non-metallic inclusions which, while being unable to pass to a riser, formed local clusters or even thin films, resulting in numerous microcracks or discontinuities encompassing large regions of the casting. This problem seems to be of major concern and is the first one to require prompt solution in the currently

  17. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    Science.gov (United States)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  18. Wear resistance of experimental titanium alloys for dental applications.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Rodrigues, Renata Cristina Silveira; Claro, Ana Paula Rosifini Alves; da Gloria Chiarello de Mattos, Maria; Ribeiro, Ricardo Faria

    2011-11-01

    The present study evaluated microstructure, microhardness and wear resistance of experimental titanium alloys containing zirconium and tantalum. Alloys were melted in arc melting furnace according to the following compositions: Ti-5Zr, Ti-5Ta and Ti-5Ta-5Zr (%wt). Hemispheres and disks were obtained from wax patterns that were invested and cast by plasma. Microstructures were evaluated using optical microscopy and X-ray diffraction (XRD) analysis and also Vickers microhardness was measured. Hemispherical samples and disks were used for 2-body wear tests, performed by repeated grinding of the samples. Wear resistance was assessed as height loss after 40,000 cycles. The data were compared using ANOVA and post-hoc Tukey test. Ti-5Zr presented a Widmanstätten structure and the identified phases were α and α' while Ti-5Ta and Ti-5Ta-5Zr presented α, β, α' and α" phases, but the former presented a lamellar structure, and the other, acicular. The microhardness of Ti-5Zr was significantly greater than other materials and cp Ti presented wear resistance significantly lower than experimental alloys. It was concluded that wear resistance was improved when adding Ta and Zr to titanium and Zr increased microhardness of Ti-5Zr alloy.

  19. Oxidation resistant iron and nickel alloys for high temperature use

    Science.gov (United States)

    Hill, V. L.; Misra, S. K.; Wheaton, H. L.

    1970-01-01

    Iron-base and nickel-base alloys exhibit good oxidation resistance and improved ductility with addition of small amounts of yttrium, tantalum /or hafnium/, and thorium. They can be used in applications above the operating temperatures of the superalloys, if high strength materials are not required.

  20. Shape memory alloy heat engines and energy harvesting systems

    Science.gov (United States)

    Browne, Alan L; Johnson, Nancy L; Keefe, Andrew C; Alexander, Paul W; Sarosi, Peter Maxwell; Herrera, Guillermo A; Yates, James Ryan

    2013-12-17

    A heat engine includes a first rotatable pulley and a second rotatable pulled spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes first spring coil and a first fiber core within the first spring coil. A timing cable is disposed about disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  1. Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys

    Directory of Open Access Journals (Sweden)

    Xiumin Ma

    2016-01-01

    Full Text Available Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM and energy dispersive spectrometer (EDS. The weight loss rates of different samples were arranged as T6-24 h>T6-6 h>T6-14 h>as-cast>T4. The open circuit potential (OCP showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μA·cm−2, whereas the T4 sample had the lowest at 52.164 μA·cm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.

  2. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  3. EFFECT OF THE HEAT AND SURFACE LASER TREATMENT ON THE CORROSION DEGRADATION OF THE Mg-Al ALLOYS

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzański

    2011-09-01

    Full Text Available In this paper there is presented the corrosion behavior of the cast magnesium alloys as cast state, after heat and laser treatment. Pitting corrosion resistance of the analyzed alloys was carried out using the potentiodynamic electrochemical method (direct current, based on a anodic polarization curve. On the basis of the achieved anodic polarization curves, using the Tefel extrapolation method near to the corrosion potential, the quantitative data were determined, which describe the electrochemical corrosion process of the investigated alloys: value of the corrosion potential Ecorr (mV, polarization resistance RP (kohm.cm2, corrosion current density icorr (10-6A/cm2, corrosion rate Vcorr (mm/year as well the mass loss Vc (g/m2<.

  4. Computational design of precipitation strengthened austenitic heat-resistant steels

    Science.gov (United States)

    Lu, Qi; Xu, Wei; van der Zwaag, Sybrand

    2013-09-01

    A new genetic alloy design approach based on thermodynamic and kinetic principles is presented to calculate the optimal composition of MX carbonitrides precipitation strengthened austenitic heat-resistant steels. Taking the coarsening of the MX carbonitrides as the process controlling the life time for steels in high temperature use, the high temperature strength is calculated as a function of steel chemistry, service temperature and time. New steel compositions for different service conditions are found yielding optimal combinations of strength and stability of the strengthening precipitation for specific applications such as fire-resistant steels (short-time property guarantee) and creep-resistant steels (long-time property guarantee). Using the same modelling approach, the high temperature strength and lifetime of existing commercial austenitic creep-resistant steels were also calculated and a good qualitative agreement with reported experimental results was obtained. According to the evaluation parameter employed, the newly defined steel compositions may have higher and more stable precipitation strengthening factors than existing high-temperature precipitate-strengthened austenite steels.

  5. Resistively heated shape memory polymer device

    Energy Technology Data Exchange (ETDEWEB)

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2017-09-05

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  6. Resistively heated shape memory polymer device

    Science.gov (United States)

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2016-10-25

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  7. Effect of T6 Heat Treatment Parameters on Technological Quality of the AlSi7Mg Alloy

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2016-12-01

    Full Text Available Very well-known advantages of aluminum alloys, such as low mass, good mechanical properties, corrosion resistance, machining-ability, high recycling potential and low cost are considered as a driving force for their development, i.e. implementation in new applications as early as in stage of structural design, as well as in development of new technological solutions. Mechanical and technological properties of the castings made from the 3xx.x group of alloys depend mainly on correctly performed processes of melting and casting, design of a mould and cast element, and a possible heat treatment.

  8. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  9. Development of Fire Resistant/Heat Resistant Sewing Thread

    Science.gov (United States)

    2016-03-01

    brilliance and fluorescence. The ionic attraction  between the basic dye and the  sulphonic   acid  dye sites in acrylic fibers is strong, which yields high... properties . Modified acrylic fiber shed during processing and bi-component construction could not be dyed successfully to a solid, level Tan 499...core to sheath ratio of 70:30 will offer a high performance, low cost sewing thread with required fire resistant/heat resistant properties . 15

  10. Study on fatigue resistance of low alloy steels with Mo and Cr

    Science.gov (United States)

    Enculescu, E.; Chicet, D. L.; Dia, V.; Stanciu, S.

    2016-08-01

    This paper presents, based on a case study, the analysis of the factors that influence the mechanical cyclic fatigue resistance of two grades of low alloy steel with Mo and Cr. It was studied the fatigue behavior in real operating conditions of some active elements manufactured from the two low-alloyed steel grades, elements that are equipping some farm implements. Using the fractographic analysis, optical microscopy and scanning electron microscopy, were analyzed the samples that carried away because of the fatigue fracture. On samples taken from the two brands of low alloy steels with Mo and Cr were performed tempering thermal treatments that modified the structure, in order to improve the operating characteristics. The effect of those thermal treatments was initially observed by microstructural analysis of metallographic prepared samples (by polishing and chemical attack using nital reagent), that revealed a troostite type structure. On the heat-treated samples were determined a number of mechanical properties: hardness, impact strength and tensile test. There was observed an improvement of the impact bending strength for both alloys and a tensile behavior that favors increasing resistance to fatigue.

  11. Comparison of heat treatment response of semisolid metal processed alloys A356 and F357

    CSIR Research Space (South Africa)

    Moller, H

    2010-01-01

    Full Text Available The heat treatment response of semisolid metal high pressure die cast Al-7Si-Mg alloys A356 and F357 was studied and compared. It was found that the heat treatment behaviour of alloy F357 is influenced markedly by the stability of the Mg containing...

  12. Effects of short-time heat treatment and subsequent chemical surface treatment on the mechanical properties, low-cycle fatigue behavior and corrosion resistance of a Ni-Ti (50.9 at.% Ni) biomedical alloy wire used for the manufacture of stents

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, D., E-mail: Dalibor.Vojtech@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Voderova, M.; Kubasek, J.; Novak, P.; Seda, P.; Michalcova, A.; Fojt, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Hanus, J. [Department of Medical Biophysics, Charles University - Faculty of Medicine in Hradec Kralove, Simkova 870, 500 38 Hradec Kralove (Czech Republic); Mestek, O. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2011-01-25

    Research highlights: {yields} Effect of short-time heat treatments on functional properties of a NiTi alloy. {yields} Negative effect of heat treatments on corrosion resistance. {yields} Positive effect of heat treatments on fatigue life. {yields} Positive influence of chemical treatment on both fatigue and corrosion resistance. - Abstract: Cold-drawn and straight-annealed NiTi wires (50.9% Ni) with a tensile strength of 1650 MPa were subjected to heat treatments at 450, 510 and 600 deg. C for 10 min in air to simulate the shape-setting process in the manufacture of stents. Afterwards, the wires were chemically etched in acidic baths containing HF, HNO{sub 3} and H{sub 2}O, followed by boiling in water. Variations in the internal structure, surface state and chemistry and transformation behavior of the wires due to these treatments were examined in detail by scanning and transmission electron microscopy, energy dispersion spectrometry, glow discharge spectrometry, X-ray photoelectron spectroscopy and differential scanning calorimetry. Mechanical properties were determined by tensile tests, and low-cycle fatigue behavior was measured by bend-type cyclic loading tests. Corrosion behavior was assessed by immersion tests and potentiodynamic measurements. A high tensile strength of the wire was shown to be attributable to a very fine-grained structure and work hardening. Heat treatment at 450-510 deg. C/10 min did not significantly affect the tensile strength of the wire. At 600 deg. C/10 min, the strength decreased by about 600 MPa due to recrystallization. The transformation temperatures first slightly increased after heat treatment at 450 deg. C and then reduced after treatments at higher temperatures due to changes in the composition of the B2 phase. The fatigue life was observed to prolong with both heat treatment and chemical etching. In contrast, the corrosion resistance worsened with heat treatment, but it improved significantly upon chemical etching. The

  13. Heat treatment of EN AC-AlSi13Cu2Fe silumin and its effect on change of hardness of the alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-01-01

    Full Text Available Wide application of aluminum casting alloys is connected with their very good physical and technical properties. Within such group of alloys, silumins play important role in automotive and aviation industry, as well as in another branches of technique, because the silumins enable casting of complicated shapes. The most important parameters which predetermine mechanical properties of a material in aspects of suitability for castings of machinery components are: tensile strength (Rm, elongation and hardness. Alloys based on equilibrium system of Al-Si comprise additional constituents (e.g.: Mg, Cu enabling, except modification, improvement of mechanical properties, obtained in result of heat treatment. In the paper are presented results of investigations concerning effect of the heat treatment on change of hardness (HB of the EN AC-AlSi12Cu2Fe alloy. Investigated alloy was melted in an electric resistance furnace. Run of the crystallization was presented with use of the thermal-derivative method (ATD. This method was also implemented to determination of heat treatments temperature range of the alloy. Performed heat treatment gave effect in change of the hardness. Performed investigations have enabled determination of heat treatment parameters range, which conditions suitable hardness of the investigated alloy.

  14. STA heat treatment of beta-titanium alloys after various thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Markovsky, P.E.; Teliovich, R.V.; Matviychuk, Yu.V. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fiziki Metallov

    2000-07-01

    Commercial beta-titanium alloys are promising material for a wide range of applications due to essentially high strength/density ratio, sufficient fatigue performance and crack propagation resistance. Present work was aimed at systematical study the microstructure and mechanical properties of two commercial beta-titanium alloys VT22 and TIMETAL {sup trademark} -LCB in STA condition produced by special heat treatment, comprising from rapid heating into a single-phase beta field and subsequent aging, depending on previous thermomechanical processing employed. Three types of such a processing were studied: hot deformation at temperatures of alpha+beta field, hot deformation in single-phase beta field and cold deformation of as-quenched metastable beta phase. Solid solutionizing by rapid heating has proved to be efficient in receiving fine-grained beta microstructure with average grain size, which varies from 50 {mu}m to 12 {mu}m depending on initial microstructure. Such treatment allowed to obtain on subsequent aging yield strengths up to 1470 MPa while maintaining sufficient ductility. (orig.)

  15. Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid

    Science.gov (United States)

    Wang, Tao; Reddy, Ramana G.

    2017-03-01

    MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).

  16. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Wai, E-mail: c.w.chan@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University Belfast, BT9 5AH (United Kingdom); Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Smith, Graham [Department of Natural Sciences, University of Chester, Thornton Science Park, Chester CH2 4NU (United Kingdom); Sarri, Gianluca [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Ng, Chi-Ho [School of Mechanical and Aerospace Engineering, Queen' s University Belfast, BT9 5AH (United Kingdom); Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Parkgate Road, Chester CH1 4BJ (United Kingdom); Sharba, Ahmed [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Man, Hau-Chung [Department of Industrial and Systems Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

    2016-03-30

    Graphical abstract: - Highlights: • Laser technology is a fast, clean and flexible method for surface hardening of TNZT. • Laser can form a protective hard layer on TNZT surface without altering surface roughness. • The laser-formed layer is metallurgically bonded to the substrate. • Laser-treated TNZT is highly resistant to corrosion and wear in Hank's solution. - Abstract: The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti–Nb–Zr–Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti–35.3Nb–7.3Zr–5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  17. High temperature oxidation resistance in titanium–niobium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tegner, B.E. [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Zhu, L. [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Siemers, C. [Technische Universitat Braunschweig, Institut fur Werkstoffe, Langer Kamp 8, 38106 Braunschweig (Germany); Saksl, K. [Slovak Academy of Sciences, Institute of Materials Research, Watsonova 47, 04353 Kosice (Slovakia); Ackland, G.J., E-mail: gjackland@ed.ac.uk [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2015-09-15

    Highlights: • The conventional explanation for oxidation resistance is disproven, an alternative presented. • A generic analytic diffusion model for oxidation resistance is presented. • We develop a class of oxidation resistant niobium–titanium alloys. • Calculation, microscopy, spectroscopy and diffraction analysis of the alloys. • The theory is verified in oxidation tests. - Abstract: Titanium alloys are ideally suited for use as lightweight structural materials, but their use at high temperature is severely restricted by oxidation. Niobium is known to confer oxidation-resistance, and here we disprove the normal explanation, that Nb{sup 5+} ions trap oxygen vacancies. Using density functional theory calculation, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) we show that Nb is insoluble in TiO{sub 2}. In fact, the Ti–Nb surface has three-layer structure: the oxide itself, an additional Nb-depleted zone below the oxide and a deeper sublayer of enhanced Nb. Microfocussed X-ray diffraction also demonstrates recrystallization in the Nb-depleted zone. We interpret this using a dynamical model: slow Nb-diffusion leads to the build up of a Nb-rich sublayer, which in turn blocks oxygen diffusion. Nb effects contrast with vanadium, where faster diffusion prevents the build up of equivalent structures.

  18. X-ray high temperature study of interphase strains in directionally crystallized eutectics. [Heat resisting alloys:Ni-Cr-Co-Al-Ti-Mo-W, and Co-Cr-Ni

    Energy Technology Data Exchange (ETDEWEB)

    Samojlov, A.I.; Ignatova, I.A.; Khatsinskaya, I.M.; Dodonova, L.P.; Krivko, A.I.; Kozlova, V.S.

    1981-01-01

    The technique of the determination of thermal interphase strains in the matrix and reinforced phases of directionally crystallized composits (eutectics) is developed. On the basis of previously suggested general principles of calculation tested at room temperature on the eutectics ..gamma../..gamma..'- MC the peculiarities and regularities of the formation of the strained state of phases (in Ni-Cr-Co-Al-Ti-Mo-W and Co-Cr-Ni alloys ..gamma../..gamma..' - MC and CoTaC-3) in a wide temperature range from the formation temperature to the room one are presented. On the basis of experimentally determined temperature dependence of X-ray strain of the matrix phase and adopted structural model the method of the determination of the level and sign of strains during the heating and cooling of the material in the given temperature range is presented. The existence of hysteresis of the curves of the sigmasub(i)=sigmasub(i)(T) dependences, characteristic of the given composite is established. The results of X-ray tensometry are compared with the results of dilatometric studies of the same eutectics.

  19. Corrosion resistance of Fe-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Botta, W.J., E-mail: wjbotta@ufscar.br [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Berger, J.E.; Kiminami, C.S. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Roche, V.; Nogueira, R.P. [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2014-02-15

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe{sub 66}B{sub 30}Nb{sub 4}, [(Fe{sub 0.6}Co{sub 0.4}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, [(Fe{sub 0.7}Co{sub 0.3}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, Fe{sub 56}Cr{sub 23}Ni{sub 5.7}B{sub 16}, Fe{sub 53}Cr{sub 22}Ni{sub 5.6}B{sub 19} and Fe{sub 50}Cr{sub 22}Ni{sub 5.4}B{sub 23}. The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau.

  20. [Effect of aurum coating on corrosion resistance of Ni-Cr alloy].

    Science.gov (United States)

    Chen, Zhi-hong; Liu, Li; Mao, Ying-jie

    2007-02-01

    To evaluate the effect of aurum coating on corrosion resistance of Ni-Cr alloy in artificial saliva environment. The corrosion potential (E(corr)), self-corrosion current density (I(corr)), and polarization resistance (R(p)) of three alloys were measured using electrochemical methods to compare the difference of corrosion resistance between aurum-coated Ni-Cr alloy and Ni-Cr alloy or Au alloy. Meanwhile, microstructural and phase diffraction was examined with field scanning electromicroscopy (FSEM) and surface chemical analysis was performed by energy diffraction X-ray (EDX). The I(corr) of aurum-coated Ni-Cr alloy was (0.70 +/- 0.20) x 10(-6) A/cm2, which was significantly higher than that of Au alloy (P Cr alloy (P coated Ni-Cr alloy was (34.77 +/- 12.61) KOmega.cm2, which was higher than that of Ni-Cr alloy (P Cr alloy coated with aurum was better than that of Ni-Cr alloy. The results of EDX indicated that released Ni and Cr of Ni-Cr alloy coated with aurum after test were less than those of Ni-Cr alloy (P coated Ni-Cr alloy is higher than that of Ni-Cr alloy.

  1. The Effect of Post-Bond Heat Treatment on Tensile Property of Diffusion Bonded Austenitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sunghoon; Kim, Sung Kwan; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Sah, Injin [KAERI, Daejeon (Korea, Republic of)

    2015-12-15

    Diffusion bonding is the key manufacturing process for the micro-channel type heat exchangers. In this study, austenitic alloys such as Alloy 800HT, Alloy 690, and Alloy 600, were diffusion bonded at various temperatures and the tensile properties were measured up to 650 ℃. Tensile ductility of diffusion bonded Alloy 800HT was significantly lower than that of base metal at all test temperatures. While, for Alloy 690 and Alloy 600, tensile ductility of diffusion bonded specimens was comparable to that of base metals up to 500 ℃, above which the ductility became lower. The poor ductility of diffusion bonded specimen could have caused by the incomplete grain boundary migration and precipitates along the bond-line. Application of post-bond heat treatment (PBHT) improved the ductility close to that of base metals up to 550 ℃. Changes in tensile properties were discussed in view of the microstructure in the diffusionbonded area.

  2. Effect of heat treatment conditions on microstructure and mechanical properties of long term serviced Fe25Cr-35Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hemmatad, Kannika; Visuttipitukul, Patama; Wangyao, Panyawat; Lothongkum, Gobboon [Chulalongkorn Univ. (Thailand). Faculty of Engineering

    2012-07-01

    HP alloy Fe-25Cr-35Ni is widely used in petrochemical industry, because of its good corrosion and oxidation resistance at high temperature. Ascast microstructure of HP alloy consists of eutectic carbide in discontinuous network. After service in carburizing atmosphere at high temperature, the microstructure of serviced HP alloy, which consisted of carbide network that was thicker and coarser than as-cast specimens as well as irregular shape carbide, lost its tensile strength and fracture elongation properties. However, the hardness increased. The serviced HP alloys were heat treated in 12 conditions, which could be classified in four main categories. The first one was solutionized at three different temperatures - 1,373, 1,423 and 1,473 K. The second was solutionized at 1,373 K and aged at 1,073, 1,173 and 1,273 K. The third was solutionized at 1,423 K and aged at 1,073, 1,173 and 1,273 K. The last one was solutionized at 1,473 K and aged at 1,073, 1,173 and 1,273 K. The process time for solution was 21.6 ks and aging is 86.4 ks for all conditions. The result showed that the amount of Cr rich carbide vastly decreased after heat treatment in all conditions. The Vicker hardness values (HV) of all heat treated specimen decreased comparing to that of serviced alloy. In conclusion, heat treatment provided new microstructures with lower amount of carbide networks of serviced alloy which resulted in improvement of tensile strength and fracture elongation properties. (orig.)

  3. The Influence of Post Weld Heat Treatment in Alloy 82/182 Dissimilar Metal Weld between Low Alloy Steel and 316L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sunghoon; Hong, Jong-Dae; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kyoung Soo [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    Dissimilar metal welds (DMWs) using an Alloy 82/182 are widely used to join low alloy steel components and stainless steel pipes in pressurized water reactors (PWRs). It has been reported that tensile residual stress would be generated within DMWs during the welding processes. It is thought as main reason for primary water stress corrosion cracking (PWSCC) resulting in deterioration of long-term integrity. The application of post weld heat treatment (PWHT) has been considered to reduce the tensile residual stress after welding process. Meanwhile, the PWHT could affect the changes in microstructure, mechanical properties, and corrosion resistance. Therefore, in this study, the effects of PWHT on the microstructure, mechanical properties and corrosion behaviors of base metals of low alloy steel and stainless steel and welding materials of Alloy 82/182 are evaluated. The influence of PWHT in DMW has been investigated. SA 508 and 316L SS exhibited tempered bainite and austenitic grains with a few residual stringer type ferrite. Grain boundary carbides are not precipitated owing to low carbon and insufficient exposure time in 316L SS. The change of mechanicals properties in base metals is not observed. In case of Alloy 182, after PWHT, grain boundaries are covered with film-like continuous Cr-rich carbides.

  4. Control of Heat-Resistant Steel Carburized Layer Structure. Part II

    Science.gov (United States)

    Semenov, M. Yu.

    2013-09-01

    In the first part of the article, published in the previous issue of this journal, on the basis of studying features of the process a physical and mathematical model is presented of carbide formation during heat-resistant steel vacuum carburizing based on the example of VKS-5. In the second part of this article on the basis of analyzing the calculation model physical features are presented for formation of cementite type carbide phase taking account of steel VKS-5 alloying with chromium and nickel, and also temperature. Simultaneously, features of special molybdenum, tungsten, vanadium and niobium carbide formation are considered. The expediency of increasing chromium content in a new generation of heat-resistant steels alloyed with nickel is substantiated.

  5. Shape memory alloy heat engines and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Alan L; Johnson, Nancy L; Shaw, John Andrew; Churchill, Christopher Burton; Keefe, Andrew C; McKnight, Geoffrey P; Alexander, Paul W; Herrera, Guillermo A; Yates, James Ryan; Brown, Jeffrey W

    2014-09-30

    A heat engine includes a first rotatable pulley and a second rotatable pulley spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes a first wire, a second wire, and a matrix joining the first wire and the second wire. The first wire and the second wire are in contact with the pulleys, but the matrix is not in contact with the pulleys. A timing cable is disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  6. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  7. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham

    2016-01-01

    , the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must...... be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing...... findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT....

  8. The Effects of Heat Treatments on the M{sub 23}C{sub 6} Carbide Evolution and Grain Boundary Serration in Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yun Soo; Kim, Dong Jin; Hwang, Seong Sik; Kim, Sung Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Some laboratory tests revealed that Alloy 690 is resistant to IGSCC in various environments. With a prolonged service life and improved performance being demanded by the nuclear energy industry, however, the need to improve the resistance to intergranular failure in Alloy 690 should also be considered. The present work is an attempt to elucidate the effects of various heat treatments on the evolutions of intergranular carbide precipitation and the grain boundary serration (GBS) in Alloy 690 to acquire a high resistance to intergranular degradations. By isothermal treatments at 720 .deg. C for 0.1-100 hr after solution annealing, most of the grain boundaries except for the coherent twin boundaries were decorated with well-developed M{sub 23}C{sub 6} carbides. The discontinuous precipitates were initiated on the grain boundary even by a heat treatment of 0.1 hr, and covered the entire grain boundary region within a heat treatment of 10 hr. With a long aging time of 100 hr, intragranular Cr carbides were precipitated on the imperfections such as the dislocations and stacking faults GBS could be introduced by a slow cooling process in this alloy, and occurred in a limited temperature range of 990-900 .deg. C under the present heat treatment conditions. The grain boundaries had a convex shape into the incoherent grain, from which it is believed that the grain boundary shape is closely associated with the grain boundary migration during serration in this alloy.

  9. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    LI Hualing; WANG Shumao; JIANG Lijun; ZHANG Lidong; LIU Xiaopeng; LI Zhinian

    2008-01-01

    At present,all hydrogen storage alloys are poisoned by hydrogen mixed with CO,CO2,etc,which decreases the hydrogen storage property sharply.Zr-Co based hydrogen storage alloys with good poisoning resistance were prepared by alloying,fluorinating,and electroless plating.The experiment results show that the poisoning resistance of the Zr-Co based alloy was improved remarkably after the treatments.The poisoning resistance mechanism of the Zr-Co based hydrogen storage alloys was analyzed.

  10. CYCLIC FATIGUE RESISTANCE OF AZ91 MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Aneta Němcová

    2009-11-01

    Full Text Available The paper deals with determination of principal mechanical properties and the investigation of fatigue behaviour of AZ91 magnesium alloy. The experimental material was made by squeeze casting technique and heat treated to obtain T4 state (solution annealing, when hard, brittle Mg17Al12 intermetallic phase is dissolved. The basic mechanical properties (Young’s modulus, ultimate tensile strength, yield strength, elongation to fracture and reduction of area were determined by static tensile test. Furthermore, fatigue parameters were investigated. The S-N curve on the basis of smooth test bars tested under symmetrical push-pull loading at room temperature was evaluated. The measured data were subsequently used for fitting with suitable regression functions (Kohout & Věchet and Stromeyer for determination of the fatigue parameters. Fatigue limit sigma-c of the studied alloy for 108 cycles is approaching 50 MPa. In addition, the fracture surfaces were observed by scanning electron microscopy. The failure analysis proved that the striations were observed in fatigue crack propagation area and in the area of static fracture was observed the transgranular ductile fracture. The structure of the studied alloy in the basic state and after heat treatment was observed by light and scanning electron microscopy.

  11. Design, fabrication, and characterization of electroless Ni–P alloy films for micro heating devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bernard Haochih, E-mail: hcliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan (China); Liao, Fang-Yi; Chen, Jian-Hong [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (China)

    2013-06-30

    In this work electroless nickel–phosphorous coatings were used as the micro heaters for scanning thermal microscopy. The deposition of Ni–P alloys not only simplified the microelectromechanical system fabrication steps but also provided flexibility in the tuning of the resistance of the heating elements. Ni–P films were plated on patterned silicon substrates and silicon with a silicon nitride film. The pre-deposition reactive ion etch (RIE) treatment caused a change in surface roughness that enhanced the adhesion of Ni–P coatings. Optimization of RIE parameters and pH values could achieve selective deposition of Ni–P, thus helped the lift-off of a serpentine circuit pattern. The chemical composition and microstructure of Ni–P films affect the electrical properties of micro heaters. Energy-dispersive X-ray spectroscopy identified the Ni–P composition and confirmed its insignificant level of oxidation. The high-temperature X-ray diffraction indicated that the as-deposited film was crystalline Ni, which later transformed into Ni{sub 3}P at higher temperature. The resistivity of Ni–P films was tailored between 10{sup −5} and 10{sup −7} Ω m via a post-deposition annealing, which also obtained a stable temperature coefficient of resistance. Consequently, the performance of micro heaters could be designed with a high degree of flexibility. - Highlights: • We developed a process to fabricate micro heater by Ni–P electroless plating. • Reactive ion etch caused oscillating surface roughness and affected Ni–P adhesion. • Ni{sub 3}P phase precipitates during annealing and reduces resistivity of Ni–P alloys. • Resistivity of Ni–P is tunable from 10{sup −5} to 10{sup −7} Ω m by plating and annealing.

  12. Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel

    Science.gov (United States)

    Tong, Xin; Li, Fu-hai; Kuang, Min; Ma, Wen-you; Chen, Xing-chi; Liu, Min

    2012-01-01

    The CO2 laser surface alloying technique was used to form wear resistance layers on medium carbon steel with a kind of spherical WC powder. The effects of WC particle size on the abrasive wear resistance were thoroughly investigated. The results indicate that the laser alloyed layer is characterized by dendritic primary phase and ledeburite microstructure, consisting of austenite, martensite and carbides of Fe3W3C, W2C and WC. The laser surface alloying with WC powder could improve the abrasive wear resistance of the medium carbon steel by over 63%. The factors such as the hardness, the amount and the distribution of WC particle determined the laser alloyed samples' wear resistance, and the laser alloyed sample with WC powder of 88-100 μm diameter presented the best wear resistance in this study. Furthermore, the wear resistance mechanisms of the laser alloyed layers were also explored.

  13. Integrated Behavior of Carbon and Copper Alloy Heat Sink Under Different Heat Loads and Cooling Conditions

    Institute of Scientific and Technical Information of China (English)

    Li Hua; Li Jiangang; Chen Junling; Hu Jiansheng

    2005-01-01

    An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m2 and a water flow rate of 3 m3/h, 4.5 m3/h and 6 m3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m2 of heat flux and 6 ms/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results.

  14. Effect of Nb Doping on High Temperature Oxidation Resistance of Ti-Al Alloyed Coatings

    Directory of Open Access Journals (Sweden)

    DAI Jing-jie

    2017-02-01

    Full Text Available Ti-Al alloyed coatings with different Nb doping contents were fabricated on TC4 titanium alloy by laser surface alloying to improve high temperature oxidation resistance of the alloy. Structures and high temperature oxidation behaviors of the alloyed coatings were analyzed and tested by X-ray diffraction (XRD, scanning electron microscope (SEM, energy dispersive spectrometer (EDS and box-type resistance furnace. The results show that the alloyed coatings consist of TiAl and Ti3Al, and no niobium compound are formed in Ti-Al-Nb alloyed coatings. The alloyed coatings are uniform and exhibit excellent metallurgical bonding with the substrates. A large amount of surface cracks and a few penetrating cracks are formed in Ti-Al alloyed coating without Nb doping, while no obvious cracks are formed in Ti-Al alloyed coating with Nb doping. The oxidation mass gains of all the alloyed coatings were significantly lower than those of the substrate. The alloyed coatings with Nb doping exhibit more excellent high temperature oxidation resistance due to the beneficial machanism of Nb doping. The mechanism of Nb doping on improving high temperature oxidation resistance of Ti-Al alloyed coatings includes reducing the defect concentration of TiO2, refining oxide grains and promoting the formation of Al2O3.

  15. Microstructures and properties of low-alloy fire resistant steel

    Indian Academy of Sciences (India)

    Bimal Kumar Panigrahi

    2006-02-01

    Microstructures and properties of weldable quality low-alloy fire resistant structural steels (YS: 287–415 MPa) and TMT rebar (YS: 624 MPa) have been investigated. The study showed that it is possible to obtain two-thirds of room temperature yield stress at 600°C with 0.20–0.25% Mo and 0.30–0.55% Cr in low carbon hot rolled structural steel. Microalloying the Cr–Mo steel by niobium or vanadium singly or in combination resulted in higher guaranteed elevated temperature yield stress (250–280 MPa). The final rolling temperature should be maintained above austenite recrystallization stop temperature (∼ 900° C) to minimize dislocation hardening. In a quenched and self-tempered 600 MPa class TMT reinforcement bar steel (YS: 624 MPa), low chromium (0.55%) addition produced the requisite yield stress at 600°C. The low-alloy fire resistant steel will have superior thermal conductivity up to 600°C (> 30 W/m.k) compared to more concentrated alloys.

  16. Improving Corrosion Resistance of Q235 Steel by Ni-Cr Alloyed Layer

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; ZHANG Pingze; WU Hongyan; BI Qiang

    2012-01-01

    Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate.The composition and microstructure of alloyed layer was analyzed by SEM and XRD.Potentiodynamic polarization and electrochemical impedance spectroscopy was applied to evaluate the corrosion resistance of the alloyed layer.The results showed working pressure had a great effect on structure of Ni-Cr alloyed layer,and the dense and smooth alloyed layer was prepared at 50 Pa working pressure.Compared with substrate,Ni-Cr alloyed layer exhibited higher corrosion potential,lower corrosion current density and larger charge transfer resistance,which indicated that Ni-Cr alloyed layer significantly modified the corrosion resistance of Q235 steel.

  17. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    Science.gov (United States)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  18. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    Science.gov (United States)

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-09-15

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  19. The New Heat Treatment Technology of A356 Aluminium Alloy Prepared by Ptc

    Science.gov (United States)

    Zhang, Lianyong; Jiang, Yanhua; Ma, Zhuang; Wang, Wenkui

    Phase Transition Cooling (PTC), using the absorbed latent heat during the melting of phase transition cooling medium to cool and solidify alloys in the process of casting, is a new casting technology. Specimens of A356 casting aluminum alloy were prepared by this method in the paper. The new heat treatment process (cast and then aging directly without solid solution) of A356 alloy was performed. For comparison, the conventional T6 heat treatment (solution and then aging treatment) was performed too. The mechanical properties of A356 alloy with different heat treatments were measured by tensile strength testing methods and microstructures of the alloy with different heat treatment process were investigated by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-rays diffraction (XRD) and transmission electron microscopy (TEM) too. The results show that ultimate tensile strength (UTS) of A356 alloy with the new heat treatment process is much higher than that with conventional heat treatment while the elongations with the two heat treatment processes are very close. This is due to the grain refinement obtained after PTC processing.

  20. Effect of Mold Coating Materials and Thickness on Heat Transfer in Permanent Mold Casting of Aluminum Alloys

    Science.gov (United States)

    Hamasaiid, A.; Dargusch, M. S.; Davidson, C. J.; Tovar, S.; Loulou, T.; Rezaï-Aria, F.; Dour, G.

    2007-06-01

    In permanent mold casting or gravity die casting (GDC) of aluminum alloys, die coating at the casting-mold interface is the most important single factor controlling heat transfer and, hence, it has the greatest influence on the solidification rate and development of microstructure. This investigation studies the influence of coating thickness, coating composition, and alloy composition on the heat transfer at the casting-mold interface. Both graphite and TiO2-based coatings have been investigated. Two aluminum alloys have been investigated: Al-7Si-0.3Mg and Al-9Si-3Cu. Thermal histories throughout the die wall have been recorded by fine type-K thermocouples. From these measurements, die surface temperatures and heat flux density have been evaluated using an inverse method. Casting surface temperature was measured by infrared pyrometry, and the interfacial heat-transfer coefficient (HTC) has been determined using these combined pieces of information. While the alloy is liquid, the coating material has only a weak influence over heat flow and the thermal contact resistance seems to be governed more by coating porosity and thickness. The HTC decreases as the coating thickness increases. However, as solidification takes place and the HTC decreases, the HTC of graphite coating remains higher than that of ceramic coatings of similar thickness. After the formation of an air gap at the interface, the effect of coating material vanishes. The peak values of HTC and the heat flux density are larger for Al-7Si-0.3Mg than for Al-9Si-3Cu. Consequently, the apparent solidification time of Al-9Si-3Cu is larger than that of Al-7Si-0.3Mg and it increases with coating thickness.

  1. Wear resistant zirconium base alloy article for water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, J.E.; Shockling, L.A.; Sherwood, D.G.

    1988-03-01

    In a water reactor operating environment, the combination having improved fretting wear resistance is described comprising: an elongated tubular water displacer rod; having a low neutron absorption cross section guide support plates distributed along the length of the water displacer rod; the water displacer rod intersecting the guide support plates through apertures in the guide support plates; the water displacer rod having a plurality of spaced apart annular electrospark deposited coatings, each coating facing the wall of a respective aperture, the electrospark deposited coatings comprising Cr/sub 2/C/sub 3/; wherein the water displacer rod has a tube wall composed of a zirconium base alloy; and wherein the guide support plates are composed of a stainless steel alloy.

  2. Corrosion-resistant nickel-base alloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.W.; Hulsizer, W.R.

    1976-08-01

    Laboratory corrosion screening procedures used during the past ten years in developing nickel-base superalloys for gas turbine applications are described. Hot salt corrosion tests have included crucible and salt shower exposures. Reproducible techniques were established and alloy composition effects defined, leading to development of M313, IN-587, a IN-792. Correlations have been made with corrosion results in burner rigs, and engine experience confirming anticipated behavior is now becoming available. During this work a number of limitations of these accelerated laboratory tests were uncovered; these are discussed. Finally, brief descriptions of the states of development of alloy MA 755E (an oxide dispersion-strengthened superalloy) and IN-939 (a cast 23 percent chromium superalloy) are outlined as examples of advanced corrosion resistant, high strength materials of the future.

  3. Peculiarities of high-temperature. beta. -phase formation during rapid heating of titanium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Oshkaderov, S.P. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1983-11-01

    In the framework of the diffusion mechanism of ..cap alpha..+..beta.. ..-->.. ..beta.. transformation the model for calculating interface location determining the degree of transformation and concentration of the formed ..beta..-phase during continuous heating under different rates in titanium alloys with ..beta..-isomorphous alloying elements is suggested. On the example of Ti-10% Mo alloy the comparison of calculation and experimental results of determining parameters of ..cap alpha..+..beta.. ..-->.. ..beta.. transformation is performed.

  4. Effect of Contact Temperature Rise During Sliding on the Wear Resistance of TiNi Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    S.K. Roy Chowdhury

    2013-03-01

    Full Text Available The high wear resistance of TiNi shape memory alloys has generally been attributed to its pseudoelastic nature. In the present work the hardening effect due to its phase transformation from martensite to austenite due to frictional heating during sliding has been considered. Based on existing constitutive models that represent the experimental results of TiNi shape memory alloys a theoretical model of the dependence of wear-resistance on the contact temperature rise has been developed. The analysis was further extended to include the operating and surface roughness parameters. The model essentially indicates that for these alloys wear decreases with the rise in contact temperature over a wide range of load, speed and surface roughness combination during sliding. This means that the wear resistance of these alloys results from the very cause that is normally responsible for the increased wear and seizure of common engineering materials. Preliminary wear tests were carried out with TiNi alloys at varying ambient temperature and varying load-speed combinations and the results agree well with the theoretical predictions.

  5. Dynamic measurements of thermophysical properties of metals and alloys at high temperatures by subsecond pulse heating techniques

    Science.gov (United States)

    Cezairliyan, Ared

    1993-01-01

    Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting

  6. Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1998-01-01

    The electrical conductivity of three different types of copper alloys, viz. CuNiBe, CuCrZr and Cu-Al(2)O(3) as well as of pure copper are reported. The alloys have undergone different pre-irradiation heat treatments and have been fission-neutron irradiated up to 0.3 dpa. In some cases post...

  7. Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-02-06

    The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.

  8. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  9. Comparison of corrosion behavior of ZL104 alloy at as-cast and heat treatment states

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The corrosion behavior of ZL 104 alloy at different states (as-cast and heat treatment) in salt spray corrosion (SSC) was studied. The results show that the sample treated after refinement and modification has the least corrosive resistance compared with the sample bearing as-cast structure at the beginning of the corrosion. As the corrosion process continued, however, the trend reversed itself. After 44 h continuous corrosion, the corrosive rates of all samples tend to be stable. After experiments, the sample bearing as-cast structure had the most corrosive products on the surface whereas the sample being refined and modified had the least products. The Fourier transformation infrared spectroscopy (FTIR)analyses of the corrosion products show that these products are composed of hydroxyl-containing substances.

  10. The softening effect of heat-treated strengthened Al-Zn-Mg alloy in welding process

    Science.gov (United States)

    Zhang, Xiaohong; Chen, Jingqing; Zhang, Kang; Chen, Hui

    2017-07-01

    Weld joint softening occurs during the welding process of heat-treatable aluminum alloys and strongly influences the mechanical properties. In this work, the softening of heat-treated Al-Zn-Mg alloy was studied in the multipass welding process. By Gleeble-3500 thermal-mechanical simulator, the heat treatment and tensile test with welding thermal cycles were carried out to simulate the microstructure evolution and mechanical softening during multipass welding. After that, the softening mechanism of the HAZ was analyzed by microstructure analysis. The results indicate that the heat-treated Al-Zn-Mg alloy exhibited obvious softening after several thermal cycles with peak temperature higher than 200∘C, and this phenomenon is worse with increasing peak temperature. Based on the microstructure analysis, it was found that the reinforcement phase changes according to the applied thermal cycles, which strongly affects the strength of Al-Zn-Mg alloys.

  11. Homogenization of. beta. -solid solution during fast heating of two-phase titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1985-01-01

    Using model alloy Ti-10%Mo as an example the homogenization of high-temperature ..beta..-phase during fast heating has been studied by calculational and experimental methods. The effect of heating rate and the initial structure disoersion on the homogenization is shown. A method is suggested for evaluation of the concentration state of ..beta..-solid solution depleted parts of commercial two-phase titanium alloys. The method has been used to study the homogenization process.

  12. Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone – Effect of post weld heat treatment and addition of boron carbide

    Directory of Open Access Journals (Sweden)

    P. Vijaya Kumar

    2015-06-01

    Full Text Available Friction stir welding (FSW of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding. In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense, aerospace and marine applications where it has to serve in non uniform loading and corrosive environments. Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance. The present work involves use of retrogression and reaging (RRA post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys. An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position. The effects of peak aged condition (T6, RRA and addition of B4C nano particles on microstructure, hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied. Even though RRA improved the pitting corrosion resistance, its hardness was slightly lost. Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.

  13. Hypersonic Composites Resist Extreme Heat and Stress

    Science.gov (United States)

    2007-01-01

    Through research contracts with NASA, Materials and Electrochemical Research Corporation (MER), of Tucson, Arizona, contributed a number of technologies to record-breaking hypersonic flights. Through this research, MER developed a coating that successfully passed testing to simulate Mach 10 conditions, as well as provide several additional carbon-carbon (C-C) composite components for the flights. MER created all of the leading edges for the X-43A test vehicles at Dryden-considered the most critical parts of this experimental craft. In addition to being very heat resistant, the coating had to be very lightweight and thin, as the aircraft was designed to very precise specifications and could not afford to have a bulky coating. MER patented its carbon-carbon (C-C) composite process and then formed a spinoff company, Frontier Materials Corporation (FMC), also based in Tucson. FMC is using the patent in conjunction with low-cost PAN (polyacrylonitrile)-based fibers to introduce these materials to the commercial markets. The C-C composites are very lightweight and exceptionally strong and stiff, even at very high temperatures. The composites have been used in industrial heating applications, the automotive and aerospace industries, as well as in glass manufacturing and on semiconductors. Applications also include transfer components for glass manufacturing and structural members for carrier support in semiconductor processing.

  14. Development of Heat-resistant XLPE Cable and Accessories

    Science.gov (United States)

    Yamada, Hiroyuki; Nakagawa, Shinichi; Murata, Yoshinao; Kishi, Kouji; Katakai, Shoshi

    We have developed heat-resistant XLPE cable and accessories that can be operated at 105°C as the maximum permissible conductor temperature in normal operation. Through this cable system, greater transmission capacity can be achieved using existing cable ducts and without increasing the conductor size of the cable. We have developed heat-resistant XLPE insulation material which has a higher melting point than that of conventional XLPE. The breakdown strength of heat-resistant XLPE cable at 105°C is almost the same as that of conventional XLPE cable at 90°C. The heat deformation of the new cable at 105°C is almost the same as that of conventional XLPE cable at 90°C. Conventional self-pressurized rubber joints can be applied to heat-resistant cable lines with the new waterproof joint compound with low heat resistivity.

  15. Investigation on inductive heating of A356 alloy for thixo-forming

    Institute of Scientific and Technical Information of China (English)

    Kai-kun Wang; Jian-lin Sun; Yong-lin Kang; Qi Zhang; Lei Yang; Chun-mei Ma

    2009-01-01

    To meet the demands of continuous stream-line for component production in the thixo-forming industry, billet heating should be of high quality and in a controllable way. A 4-step inductive heating strategy for aluminum alloy A356 was performed. Thixotropic testing and microstructure analysis showed that a homogenous temperature distribution was achieved after tempera-ture-power-time optimization. Theoretical analysis was given concerning the thermal conductivity and heat capacity of A356 be-tween conventional and semisolid casting microstructures. The experimental results show that the optimized 4-step strategy could bethe best strategy for billet heating during the thixo-forming of aluminum alloy A356.

  16. MICROSTRUCTURAL AND MECHANICAL STUDY OF ALUMINIUM ALLOYS SUBMITTED TO DISTINCT SOAKING TIMES DURING SOLUTION HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Valmir Martins Monteiro

    2014-12-01

    Full Text Available This work studies the microstructural characteristics and mechanical properties for different aluminium alloys (1100, 3104 and 8011 hot rolled sheets that were subjected to a solution heat treatment with distinct soaking times, in order to promote microstructural and mechanical changes on these alloys with solute fractions slightly above the maximum solubility limit. Scanning Electronic Microscopy (SEM / Energy Dispersive Spectroscopy X-Ray (EDS, X-Ray Diffraction (XRD and Hardness Tests were employed to observe the microstructural / compositional and mechanical evaluation. For the 1100 and 8011 alloys the more suitable soaking time occur between 1 and 2 hours, and for the 3104 alloy occurs between 2 and 3 hours.

  17. [Influence of cryogenic treatment and age-hardening heat treatment on the corrosion behavior of a dental casting Ag-Pd alloy].

    Science.gov (United States)

    Zhao, Yao; Wu, Bin; Meng, Yukun

    2014-06-01

    The purpose of this study is to investigate the influence of cryogenic treatment and age-hardening heat treatment on the corrosion behavior of a dental casting Ag-Pd alloy. A low gold content dental casting alloy composed of Ag-Pd-Cu-Au was prepared for this study. Corrosion test was performed according to ISO 10271:2001 dental metallie-corrosion test methods. Experimental specimens were casted according to a standard dental lost-wax casting procedure, treated with solution by heating the specimens to 900 degrees C, and immediately quenched in ice water. The specimens were then divided into four groups and subjected to heat treatment, cryogenic treatment, and heat treatment combined with cryogenic treatment. The specimens after the solution treatment were taken as control. The metallographic structures of the specimens were observed. The electrochemical parameters and the quantity of non-precious metallic ions released were evaluated via electrochemical and static immersion tests. Metallographic observation revealed that all the treatments resulted in a change in the microstructure of the alloy. The treatments were effective in improving the electrochemical parameters, such as an increase in Eocp and Ecorr and a decrease in Icorr (P 0.05). After different treatments, the antierosion properties of the alloy satisfied the ISO requirements. Age-hardening heat treatment and cryogenic treatment improved the corrosion resistance of the alloy.

  18. Air cushion furnace technology for heat treatment of high quality aluminum alloy auto body sheet

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Zhaodong; Ma Mingtu; Wang Guodong; Fu Tianliang; Li Jiadong; Liang Xiong

    2014-01-01

    The process characteristics of heat treatment of aluminum alloy auto body sheet and the working prin-ciple of air cushion furnace were introduced. The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied. Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages. Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward. With the rapid de-velopment of automotive industry,there will be certainly a new upsurge of research and application of air cush-ion furnace for heat treatment of aluminum alloy auto body sheet.

  19. Selection of heat treatment condition of the Mg-Al-Zn alloys

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-02-01

    Full Text Available Purpose: Main aim of this paper are results of the optimization of heat treatment conditions, which are temperature and heating time during solution heat treatment or ageing as well the cooling rate after solution treatment for MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 cast magnesium alloys.Design/methodology/approach: The following results concern mechanical properties especially hardness.Findings: The different heat treatment kinds employed contributed to the improvement of mechanical properties of the alloy.Research limitations/implications: According to the alloys characteristic, the applied cooling rate and alloy additions seems to be a good compromise for mechanical properties, nevertheless further tests should be carried out in order to examine different cooling rates and parameters of solution treatment process and aging process.Practical implications: Generally magnesium alloys are applied in motor industry and machine building, but they find application in a helicopter production, planes, disc scanners, a mobile telephony, computers, bicycle elements, household and office equipment, radio engineering and an air - navigation, in chemical, power, textile and nuclear industrial, etc.Originality/value: Contemporary materials should possess high mechanical properties, physical and chemical, as well as technological ones, to ensure long and reliable use. The above mentioned requirements and expectations regarding the contemporary materials are met by the non-ferrous metals alloys used nowadays, including the magnesium alloys.

  20. Environmental Considerations in the Studies of Corrosion Resistant Alloys for High-Level Radioactive Waste Containment

    Energy Technology Data Exchange (ETDEWEB)

    Ilevbare, G O; Lian, T; Farmer, J C

    2001-11-26

    The corrosion resistance of Alloy 22 (UNS No.: N06022) was studied in simulated ground water of different pH values and ionic contents at various temperatures. Potentiodynamic polarization techniques were used to study the electrochemical behavior and measure the critical potentials in the various systems. Alloy 22 was found to be resistant to localized corrosion in the simulated ground waters tested.

  1. Influence of Alloying Elements Corrosion Resistance of Cold on Mechanical Properties and Rolled C-Mn-Si TRIP Steels

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling-yun; WU Di; LI Zhuang

    2012-01-01

    The rust layer plays an important role in the corrosion of steel in chlorinated environments. Salt spray, po- tentiodynamic polarization curve and tensile test were conducted in laboratory for the specimens after two-stage heat treatment. The influence of the alloying elements on mechanical properties and corrosion resistance of three kinds of steels was investigated by observing the microstructure and the morphologies of rust layer. The results show that the highest value (29%) of total elongation for steel A is obtained. The mechanical property of the specimen for steel C exhibits best strength ductility balance (21 384 MPa ·%) because of the presence of the multiphase microstructures after a two-stage heat treatment and the addition of the alloying elements. The corrosion products are known to be a complex mixture of Fe3O4 , Fe2O3 and α-FeOOH for steel C. The presence of the alloying elements results in the for mation of compact and dense rust layers in steel B and C. Passive film protects the substrate of TRIP (transformation induced plasticity) steel containing a complex mix of multiphase. Superior corrosion performance is exhibited for steel C with low alloying contents due to the enrichment of alloying elements within the rust layers.

  2. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  3. The specific heat of alumel and chromel alloys near their magnetic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, E. [Univ. del Atlantico, Barranquilla (Colombia). Dept. de Fisica; Jurado, J.F. [Dept. de Fisica, Univ. Autonoma de Occidente, Cali (Colombia); Vargas, R.A. [Dept. de Fisica, Univ. del Valle, Cali (Colombia)

    1996-10-15

    We report the results of specific heat measurements at zero magnetic field and normal pressure on chromel (90% Ni-10% Cr) and alumel (95% Ni-2% Mn-2% Al) alloys using high-resolution a.c. calorimetry. We find a large anomaly in the specific heat at 225 K (for chromel) and at 463 K (for alumel), which is associated with the transition of each alloy into a ferromagnetic ordering when they are cooled below their corresponding Curie points. The experimental data for both alloys are compared with previously reported specific heat data of pure Ni Near T{sub c}, and for both alloys a critical behavior quite similar to Ni is found. (orig.)

  4. Tensile and impact properties of General Atomics 832864 heat of V-4Cr-4Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Nowicki, L.J.; Gazda, J.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States); Johnson, W.R.; Trester, P. [General Atomics, San Diego, CA (United States)

    1998-09-01

    A 1300-kg heat of V-4Cr-4Ti alloy was procured by General Atomics (GA) for the DIII-D radiative divertor program. To determine the mechanical properties of this alloy, tensile and Charpy tests were conducted on specimens prepared from pieces of 4.8-mm-thick as-rolled plates, a major product form for the DIII-D application. The tensile tests were conducted at three temperatures, 26, 280 and 380 C, the last two being the anticipated peak temperatures during DIII-D boronization and postvent bake-out, respectively. Results from these tests show that the tensile and impact properties of the 832864 heat are comparable to those of the other smaller V-(4-5)Cr-(4-5)Ti alloy heats previously developed by the US Fusion Materials Program and that scale-up of vanadium alloy production can be successfully achieved as long as reasonable process control is implemented.

  5. Wear-Resistance Performance of ZA-27 Alloys Reinforced by Rare Earth Compounds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundaries or between dendrite crystals so that the alloy has been refined. Energy spectrum analysis of scanning electron microscope shows that the second phases are complex compounds containing RE, Al, Zn and Si. The micro-hardness test indicates that micro-hardness values of the compounds are higher than those of the matrix. The wear-resistance of ZA-27 alloy reinforced by RE compounds is 4 times as high as that of ZA-27 alloy and also higher than that of ZA-27 alloy containing Si phase. The impact toughness of the alloy containing RE and Si is higher than that of the alloy containing Si.

  6. Improving Corrosion Resistance of Ferrous Alloy to Molten Zn by Modifying the Laves Phase Characteristics

    Science.gov (United States)

    Liu, X.; Yin, F. C.; Lou, J.; Ouyang, X. M.; Li, Z.

    2017-08-01

    The Laves phase morphology in the Fe25Mo14Cr10Ni1Si (wt.%) alloy was modified by Si addition to improve the corrosion resistance of the ferrous alloy to molten zinc. The Si-containing alloy showed a woven, needle-like Laves phase with higher Mo content than that of the Fe25Mo14Cr10Ni alloy. Corrosion resistance to molten Zn for the Si-containing alloy was more than 20 times higher than that of the silicon-free alloy mainly as a result of the characteristics of the modified Laves phase. This phase was oriented perpendicular to the Zn-diffusion direction, which effectively prevented corrosion by the molten Zn, leading to a denser FeZn13 layer rather than the FeZn10 layer produced in the Fe25Mo14Cr10Ni alloy.

  7. Effect of heat leaks in platinum resistance thermometry.

    Science.gov (United States)

    Goldratt, E; Yeshurun, Y; Greenfield, A J

    1980-03-01

    The effect of heat leaks in platinum resistance thermometry is analyzed. An experimental method is proposed for estimating the magnitude of this effect. Results are reported for the measurement of the temperature of a hot, solid body under different heat-leak configurations. Design criteria for thermometers are presented which minimize the effect of such heat leaks.

  8. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.

    Science.gov (United States)

    Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-03-01

    Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF.

  9. Effect of Aluminium and Silicon on High Temperature Oxidation Resistance of Fe-Cr-Ni Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Haitao; ZHAO Qi; YU Huashun; ZHANG Zhenya; CUI Hongwei; MIN Guanghui

    2009-01-01

    Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr2O3, ar-Al2O3, SiO2 and Fe(Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200℃ Its oxidation weight gain rate is only 0.081 g/(m2·h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.

  10. Microstructural Evolution of 6061 Alloy during Isothermal Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Na Wang; Zhimin Zhou; Guimin Lu

    2011-01-01

    The semi-solid billet of 6061 aluminum alloy was prepared by the near-liquidus semi-continuous casting (LSC) with rosette or near-spheroide grains. The pre-deformation processing was applied before partial remelting to further improve the microstructure and properties of the semi-solid alloy. The efiects of different processing parameters, such as holding temperature and holding time, on the semisolid microstructures during partial remelting have been investigated. It was found that the optimal partial remelting parameters should be 630℃ and 10-15 min for 6061 alloy cold rolled with 60% reduction in height of pre-deformation. The coarsening rates were anasysed by Lifshitz-Slyozov-Wagner (LSW) theory. The pre-deformed 6061 alloy exhibits lower coarsening rate constants than that of the as-cast one, and also lower than other alloys processed by different method found in previous literature. It is because the coarsening rate is associated with the initial microstructure and composition of the alloy. The secondary phases in the alloy inhibit the migration of the liquid film grain boundaries. The microstructure obtained by using the combination of near-liquidus semicontinuous casting and pre-deformation treatment is better than that without pre-deformation processing, which demonstrates that the used method is promising for fabricating high quality semi-solid alloys.

  11. Improvement effect on corrosion under heat flux in nitric acid solutions of anti-IGC stainless steel and high Cr-W-Si Ni base RW alloy

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Masamitsu; Kiuchi, Kiyoshi; Yano, Masaya; Sekiyama, Yoshio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In the advanced purex reprocessing equipment, the higher corrosion resistance is required for materials because of the high corrosive environment caused from the thermodynamic decomposition of boiling nitric acid. The authors group has been developed the two types of new corrosion resistant materials for application to the reprocessing equipment. One is the type 304ULC stainless steel with controlled microstructure and decreased minor elements (EB-SAR). The other is the nickel base alloy with the ability of forming stable oxide film by addition of Cr, W and Si (RW alloy). In this study, the heat transfer tubes applied in diminished pressure was postulated. In addition to the dominant factors of heat conducting corrosion by the nitric acid solution, the effect of the heat flux and the concentration of the corrosive vanadium ions were investigated. (author)

  12. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xing-Wu, E-mail: qiuxingwu@126.com [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China); Zhang, Yun-Peng; He, Li [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Liu, Chun-ge [Department of Transportation and Municipal Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China)

    2013-02-05

    Highlights: Black-Right-Pointing-Pointer We use a new method (laser cladding) to prepare high-entropy alloy. Black-Right-Pointing-Pointer We gained small microstructure under rapid solidification condition. Black-Right-Pointing-Pointer We studied corrosion resistance of AlCrFeCuCo high-entropy alloy in two different liquids. - Abstract: The AlCrFeCuCo high-entropy alloys were prepared by the laser cladding method. The microstructure and corrosion resistance property of AlCrFeCuCo high-entropy alloy were researched by scanning electron microscopy, X-ray diffraction and electrochemical workstation. The results show that, under the rapid solidification small microstructure gained, the morphology of AlCrFeCuCo high entropy alloy is simple, the phase mainly compose of FCC and BCC; elements segregated in the alloys; the alloy shows excellent corrosion resistance, along with the increase of the scanning speed, alloy corrosion resistance performance shows a enhancement in the first and then weakened trend. The corrosion resistance performance of AlCrFeCuCo high-entropy alloys in 1 mol/L NaCl solution is better than in 0.5 mol/L H{sub 2}SO{sub 4} solution.

  13. Behavior of CuPb12Sn6 Alloys subjected to Heat Treatments

    Directory of Open Access Journals (Sweden)

    Cristian Achiței Dragoș

    2016-01-01

    Full Text Available The paper present the structural modifications induced by 3 heat treatments: homogenization, recrystallization and quenching, respecting the specific parameters of copper based alloys. The obtained modifications by heat treatments were highlighted by micro-hardness measurements, with Vickers method, and by electronic structural microscopy, at various magnitudes.

  14. EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURE OF Cu-Zn-Al (RE) SHAPE MEMORY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    N.C.Si; S.C.Sun

    2001-01-01

    The effects of heat treatment on the Cu-Zn-Al shape memory alloys with mixed REwere researched with the help of X-ray diffraction and transmission electron micro-scope (TEM).The results show that the shape memory alloys with martensite can beproduced by adding mixed RE and heat treatment processes holding at 820C -880Cfor 15min,quenching into oil,aging at 150C for 15min,and then holding in waterat 50C for 10min.The alloys have the lowest transformation thermal hysteresis.Among the four experimental heat treatment processes the gradationally quenchingmakes the alloy have the highest transformation temperature and quenching into oilor water at room temperature makes the alloy have the largest thermal hysteresis.Mi-crostructure examination shows that aging at 2000C could destroy the substructuresin lathy martensites in the alloy and form a lot of dislocations,and aging at 250℃could cause the bainite transformation in the alloy.

  15. High strength microstructural forms developed in titanium alloys by rapid heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M. [Institute of Metal Physics, Kiev (Ukraine)

    2001-09-01

    It is shown that rapid heat treatment of alpha+beta and beta titanium alloys, which includes rapid heating of alloys with initial equiaxed microstructure into single-phase beta field is able to produce microstructural forms in which high strength can be well balanced with other mechanical properties. Main advantage of rapid heating approach comes from the possibility to extend the level of ''useful'' strength. Desirably high strength is provided by intragranular morphology and microchemistry while beta-grain refinement permits a reliability of such high strength conditions. (orig.)

  16. Effect of heat treatments in the silicon eutectic crystal evolution in Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Forn, A.; Baile, M.T.; Martin, E.; Ruperez, E. [Light Alloys and Surface Treatments Design Centre (CDAL), Univ. Politecnica de Catalunya, Vilanova I la Geltru (Spain)

    2005-07-01

    This paper describes the heat treatment effect on the eutectic silicon evolution in the A357 alloy, obtained by semisolid forming process (SSM). The coarsening rate of the silicon was determined by image analysis technique in specimens from rheocasting ingots and thixocasting components. The study was realized in the temperature range from 450 to 550 C by applying heating times between 1 and 24 hours. The results show that during the heat treatment the coarsening and sphereodization of the silicon particles is produced and the fragmentation stages, which are observed in conventional alloys, do not appear. Kinetic silicon growth has been adjusted to the Oswald's ripening equation. (orig.)

  17. Analysis of the temperature and thermal stress in pure tungsten monoblock during heat loading and the influences of alloying and dispersion strengthening on these responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, 6-6-01-2 Aramaki-aza Aoba, Aobaku, Sendai, 980-8579 (Japan); Nogami, Shuhei; Guan, Wenhai; Hasegawa, Akira [Tohoku University, 6-6-01-2 Aramaki-aza Aoba, Aobaku, Sendai, 980-8579 (Japan); Muroga, Takeo [National Institute for Fusion Science, 322-6 Oroshi-cho, Gifu, 509-5292 (Japan)

    2016-06-15

    Highlights: • The heat load response of pure W and its alloys monoblock was investigated by FEA. • The effect of alloying on heat load response of W was not clearly observed. • The possibility of cracking during cooling phase after heat load was suggested. • The effects of recrystallization and irradiation embrittlement were discussed. • W alloys will show better reliability than pure W during fusion reactor operation. - Abstract: The effects of 3% Re addition and K-bubble dispersion on temperature and stress values and the distributions thereof in a W monoblock during heat loading were investigated using finite element analysis. K-doped W-3%Re exhibited the highest recrystallization resistance but showed a higher surface temperature than pure W or K-doped W during the heat loading. The effect of K-bubble dispersion and 3% Re addition on thermal stress distribution during heat loading was not clearly observed, and residual tensile stress after heat loading, which could possibly cause cracking, was observed at the top surfaces of all materials. Because of the higher strength and temperature at which recrystallization starts for the K-doped W-3%Re and K-doped W, the probability of crack formation at the top surface might be lower compared to that in pure W. The improvement in the material properties and resistance to crack initiation and propagation in W during cyclic heat loading is crucial for the design and development of plasma-facing components. This work suggests possibility of the crack formation in a pure W monoblock in the cooling phase after a 20 MW/m{sup 2} heat loading cycle and the effectiveness of K-bubble dispersion and Re addition for improving the heat loading resistance of monoblock W.

  18. Electrochemical investigation of the corrosion behavior of heat treated Al-6Si-0.5Mg-xCu (x=0, 0.5 and 1 alloys

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-03-01

    Full Text Available The corrosion behavior of heat treated Al-6Si-0.5Mg-xCu (x=0, 0.5 and 1 wt % alloys in 0.1 M NaCl solution was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS techniques. The potentiodynamic polarization curves reveal that 0.5 wt % Cu and 1 wt % Cu content alloys are less prone to corrosion than the Cu free alloy. The EIS test results also showed that corrosion resistance or charge transfer resistance (Rct increases with increasing Cu content into Al-6Si-0.5Mg alloy. Maximum charge transfer resistance (Rct was obtained with the addition of 1 wt % Cu and minimum Rct value was for Cu free Al-6Si-0.5Mg alloy. Due to addition of Cu and thermal modification, the magnitude of open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit of Al-6Si-0.5Mg alloy in NaCl solution were shifted to the more noble direction.

  19. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten

    2015-05-01

    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  20. Grain growth of Al-4Cu-Mg alloy during isothermal heat treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure of an Al-4Cu-Mg alloy during isothermal heat treatment in the Strain Induced Melt Activation (SIMA)process was investigated and the kinetics of grain growth was analyzed. The grain growth during isothermal heat treatment of the Al4Cu-Mg alloy coincided with the Ostwald ripening theory. During isothermal heat treatment, both grain shape and the high volume fraction of solid phase have significant effects on grain growth. Therefore, a new grain growth model based on the Ostwald ripening theory was proposed taking into consideration the grain shape and the volume fraction of solid phase. By comparing the calculated results with the experimental results, it was confirmed that the present model could be applied to grain growth during isothermal heat treatment of the Al-4Cu-Mg alloy in the SIMA process.

  1. Comparison on welding mode characteristics of arc heat source for heat input control in hybrid welding of aluminum alloy

    Science.gov (United States)

    Song, Moo-Keun; Kim, Jong-Do; Oh, Jae-Hwan

    2015-03-01

    Presently in shipbuilding, transportation and aerospace industries, the potential to apply welding using laser and laser-arc hybrid heat sources is widely under research. This study has the purpose of comparing the weldability depending on the arc mode by varying the welding modes of arc heat sources in applying laser-arc hybrid welding to aluminum alloy and of implementing efficient hybrid welding while controlling heat input. In the experimental study, we found that hybrid welding using CMT mode produced deeper penetration and sounder bead surface than those characteristics produced during only laser welding, with less heat input compared to that required in pulsed arc mode.

  2. Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders

    Science.gov (United States)

    Falakzaadeh, F.; Mehryar, R.

    2017-01-01

    To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.

  3. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater

    Institute of Scientific and Technical Information of China (English)

    毛向阳; 方峰; 蒋建清; 谈荣生

    2009-01-01

    Cu-30Ni-xRE(x=0-0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...

  4. Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device.

  5. Heat Treatment of Modified 6005A Alloy for Vehicles

    Institute of Scientific and Technical Information of China (English)

    CAO Ling-fei; WANG Ming-pu; GUO Ming-xing; LI Zhou

    2004-01-01

    Modified 6005A alloy was reported and its mechanical properties were studied by tensile test, hardness measurement and TEM analysis. Results show that the favorable aging condition for 6005A is 175℃ for 8h, and the nose temperature of its TTP (Time-temperature-properties) curves is about 370℃. In a moderate temperature zone (270℃<T<390℃), the alloy has much high quench sensitivity. Therefore, in on-line extrusion, water spray quench and moderate temperature should be taken to enhance quench rate, then 6005A alloy can be quench hardened and its quenching distortion can be reduced

  6. ABOUT HEAT TREATMENTS APPLIED TO FERROUS ALLOYS AND METALS

    Directory of Open Access Journals (Sweden)

    Alin Stancioiu

    2016-05-01

    Full Text Available Materials and non-ferrous alloys lends itself through more plastic deformation processes. It is known that after deformation the material structure, as well as properties that are no longer adequate therefore is applied recrystallization annealing for the purpose of restore the initial structure. To increase the hardness of non-ferrous alloys it must after hardening the cooling rate to be slow. This is explained by the fact that of chemical compounds give time to precipitate on the edge of grain to the base of the constituents of alloys.

  7. Improvement of Wear Resistance of Magnesium Alloy AZ91HP by High Current Pulsed Electron Beam Treatment

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; HAO Sheng-zhi; ZOU Jian-xin; JIANG Li-min; ZHOU Ji-yang; DONG Chuang

    2004-01-01

    Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase Mg17Al12 is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface.The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250μm.Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.

  8. Induction and direct resistance heating theory and numerical modeling

    CERN Document Server

    Lupi, Sergio; Aliferov, Aleksandr

    2015-01-01

    This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.

  9. Thermal response of heat-resistant layer with pyrolysis

    Directory of Open Access Journals (Sweden)

    Huang Haiming

    2012-01-01

    Full Text Available A model is developed for analyzing the thermal response of the heat-resistant layer composed of high silica fiber reinforced phenolic matrix composites(SiO2/P and aluminum, in which pyrolysis and phase transitions are exsited, such as melt, vaporization and sublimation. Based on this model, the thermal response of the heat-resistant layer with different SiO2/P thickness is calculated under a heat flux by using FORTRAN codes. As indicated in the results, the slope of temperature gets a sudden decline at the pyrolysis interface, which is due to the latent heat of pyrolysis; the thickness of heat-resistant layer has little influence on the heating-surface temperature, however, the back temperature may increase with the decreasing thickness; and the thermal conductivity of carbonized layer is very important to thermal response.

  10. Electrochemical machining of burn-resistant Ti40 alloy

    Directory of Open Access Journals (Sweden)

    Xu Zhengyang

    2015-08-01

    Full Text Available This study investigates the feasibility of using electrochemical machining (ECM to produce critical aeroengine components from a new burn-resistant titanium alloy (Ti40, thereby reducing costs and improving efficiency relative to conventional mechanical machining. Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of 1 kHz rather than a direct current. Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration. By optimizing these parameters, a surface roughness of 0.371 μm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A·min.

  11. A Parametric Analysis of CO2 Laser Heat Absorption Profile of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    JOSEPH .I. ACHEBO

    2010-06-01

    Full Text Available Aluminum alloys are amongst the most difficult everyday metals that can be welded using the laser welding process. For this reason, high power density lasers are needed to weld these alloys because they require higher thermal diffusivity to form a key hole than would be needed for other metals such as steel. This means that more heat wouldhave to be applied while welding aluminum alloys than would be needed to weld steel to achieve a satisfactory coupling effect. The heat input generated from laser welding is affected by the absorptivity coefficient, the welding speed and the time spent. Once the optimum heat input is attained, it is expected to create less heat distortion, its energy is more concentrated within the weld area and deep weld penetration is achieved. Determining optimum values of welding parameters would lead to acceptable weld quality. In this study, the heat absorption profile of a CO2 laser welding of 5083 aluminum alloy was investigated using the models proposed by Bramson in 1968 and Okon et al in 2002. The 4mm thick aluminum alloy investigated was as received from the vendors. The calculated laser beam absorptivity coefficient, irradiance and boiling temperature were 0.12, 2.3 x 106 Wcm-2 and 2482oC respectively. These calculated values compared well with reported values in other literature.

  12. Influence of deformation and heat treatment on electrical conductivity of CuMoCr alloy

    Institute of Scientific and Technical Information of China (English)

    XIONG Xue-hui; LIU Lin; YUE Xue-qing; LIU Jian-hua; ZHANG Rui-jun

    2009-01-01

    The solution heat treatment, cold deformation and subsequent aging were performed on CuMoCr al-loy. And the influence of deformation and aging treatment on the electrical conductivity of CuMoCr alloy was studied through metallograph, transmission electron microscopy (TEM) and electrical conductivity measure-ment. Results show that deformation without subsequent aging can reduce the electrical conductivity of CuMoCr alloy, but deformation followed by the optimum aging treatment can effectively improve the electrical conductivi-ty of CuMoCr alloy. Aging at 500℃ for 4 h after 80% deformation, the much better electrical conductivity of CuMoCr alloy can be obtained. Reduction of Cr content in the Cu matrix could be the reason for the enhance-ment of electrical conductivity.

  13. Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystals and Polytetrehedral-Phase-Forming Alloys

    Science.gov (United States)

    2003-01-01

    By investigating the properties of quasicrystals and quasicrystal-forming liquid alloys, we may determine the role of ordering of the liquid phase in the formation of quasicrystals, leading to a better fundamental understanding of both the quasicrystal and the liquid. A quasicrystal is solid characterized by a symmetric but non-periodic arrangement of atoms, usually in the form of an icosahedron (12 atoms, 20 triangular faces). It is theorized that the short-range order in liquids takes this same form. The degree of ordering depends on the temperature of the liquid, and affects many of the liquid s properties, including specific heat, viscosity, and electrical resistivity. The MSFC role in this project includes solidification studies, phase diagram determination, and thermophysical property measurements on the liquid quasicrystal-forming alloys, all by electrostatic levitation (ESL). The viscosity of liquid quasicrystal-forming alloys is measured by the oscillating drop method, both in the stable and undercooled liquid state. The specific heat of solid, undercooled liquid, and stable liquid are measured by the radiative cooling rate of the droplets.

  14. Microstructure, cold rolling, heat treatment, and mechanical properties of Mg-Li alloys

    Institute of Scientific and Technical Information of China (English)

    Haibin Ji; Guangchun Yao; Hongbin Li

    2008-01-01

    The magnesium-lithium (Mg-Li) alloy exhibits two phase structures between 5.7wt% and 10.3wt% Li contents, consisting of the a (hcp) Mg-rich and the β (bee) Li-rich phases, at room temperature. In the experiment, Mg-5Li-2Zn, Mg-9Li-2Zn,Mg-16Li-2Zn, Mg-22Li-2Zn, Mg-5Li-2Zn-2Ca, Mg-9Li-2Zn-2Ca, Mg-16Li-2Zn-2Ca, and Mg-22Li-2Zn-2Ca (wt%) were melted.During the melting process, the flux, which was composed of lithium chloride (LiCI) and lithium fluoride (LiF) in the proportion of 3:1 (mass ratio) and argon gas were used to protect the alloys from oxidation. The mierostructure, mechanical properties, and cold-rolling workability of the wrought alloys were studied. The crystal grain of the alloys (adding Ga) is fine. The hardness of the studied alloys decreases with an increase in element Li. The density of the studied alloys is in the range of 1.187 to 1.617 g/cm3 The reduction of the Mg-16Li-2Zn and Mg-22Li-2Zn alloys can exceed 85% at room temperature. The Mg-9Li-2Zn-2Ca alloy was heat treated at 300℃ for 8, 12, 16, and 24 h, respectively. The optimum heat treatment of the Mg-9Li-2Zn-2Ca alloy is 300~Cx12h by metallographic observation and by studying the mechanical properties of the alloys.

  15. Effect of heat treatment on the microstructures and damping properties of biomedical Mg-Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Department of Dentistry, Chang Yin dental clinic, No.46-1, Yangming St., Banqiao City, Taipei County 220, Taiwan (China); Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Chen, May-Show [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Lin, Ling-Hung [Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Wu, Ching-Zong, E-mail: chinaowu@tmu.edu.tw [Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang, E-mail: klou@tmu.edu.tw [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Graduated Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Yu, Chih-Hua [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China)

    2011-01-21

    Research highlights: > When the as-quenched Mg-1Zr alloy was aged at temperatures ranging from 200 deg. C to 500 deg. C, a microstructural transformation sequence was found to be {alpha}-Mg {yields} ({alpha}-Mg + twin{sub dense}) {yields} ({alpha}-Mg + twin{sub loose}) {yields} ({alpha}-Mg + {alpha}-Zr). > As the as-quenched Mg-1Zr alloy was subjected to aging treatment at 300 deg. C for 16 h, it exhibited the maximum damping properties. > The twin structure plays a crucial role in increasing the damping capacity of the Mg-1Zr alloy. - Abstract: In this study, we elucidated the effect of heat treatment on the microstructures and damping properties of the biomedical Mg-1 wt% Zr (K1) alloy by optical microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, and experimental model analysis. The following microstructural transformation occurred when the as-quenched (AQ, i.e., solution heat treated and quenched) K1 alloy was subjected to aging treatment in the temperature range 200-500 deg. C: {alpha}-Mg {yields} ({alpha}-Mg + twin{sub dense}) {yields} ({alpha}-Mg + twin{sub loose}) {yields} ({alpha}-Mg + {alpha}-Zr). This microstructural transformation was accompanied by variations in the damping capacity. The damping properties of the AQ K1 alloy subjected to aging treatment at 300 deg. C for 16 h were the best among those of the alloys investigated in the present study. The presence of twin structures in the alloy matrix was thought to play a crucial role in increasing the damping capacity of the K1 alloy. Hence, we state that a combination of solution treatment and aging is an effective means of improving the damping capacity of biomedical K1 alloys.

  16. The stress corrosion cracking behaviour of heat-treated Al-Zn-Mg-Cu alloy in modified salt spray fog testing

    Energy Technology Data Exchange (ETDEWEB)

    Onoro, J. [Ingenieria y Ciencia de los Materiales, Universidad Politecnica de Madrid, ETS Ingenieros Industriales, Madrid (Spain)

    2010-02-15

    The stress corrosion cracking behaviour of 7075 (Al-Zn-Mg-Cu) alloy have been studied in a salt spray fog chamber with two vapourised aqueous solutions (0 and 5% NaCl). The paper analyses the stress corrosion resistance of 7075 aluminium alloy with several precipitation-ageing heat treatments. The results are compared with that obtained in 3.5% NaCl aqueous solution at 20 C. The salt spray fog testing has permitted a good evaluation of SCC susceptibility in 7075 alloy. All temper conditions studied were susceptible to SCC in the different environments tested. 7075-T6 temper was the most susceptible, while in all the cases studied 7075-T73 temper was the least susceptible. Compared to 7075-T6, 7075-RRA temper improved the resistance against the SCC process, but the mechanical properties obtained were lower. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  18. Study on the Correlation between Microstructure Corrosion and Wear Resistance of Ag-Cu-Ge Alloys

    Directory of Open Access Journals (Sweden)

    Antonio Cusma

    2015-03-01

    Full Text Available In this work, a morphological and structural characterization of a ternary Ag-Cu-Ge alloy of known composition was performed with the aim of evaluating how the passivation parameters (time and temperature influence the morphological features of the material surface. A nanomechanical characterization was performed in order to correlate the morphology and microstructure of the alloy with its tarnish, wear, and scratch resistance. It was found that the addition of germanium to the alloy not only provides the material with tarnish and fire-stain resistance, but it also improves the scratch and wear resistance owing to the formation of a dense and stable thin oxide layer.

  19. Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys

    Science.gov (United States)

    Paine, Jeffrey S. N.; Rogers, Craig A.

    1996-01-01

    Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which

  20. Mechanical properties and corrosion resistance of some titanium alloys in marine environment

    Directory of Open Access Journals (Sweden)

    Dupuis Jennifer

    2013-11-01

    Full Text Available Titanium alloys are used in several fields such as aerospace industry or biomedical. They are increasingly used in marine applications, a highly corrosive environment. We chose titanium alloys for their good properties such as high mechanical strength, low density and excellent corrosion resistance. This study is focused on titanium alloys potentially interesting to be used in marine transports, and mainly for the boats fittings such as a winch for example.

  1. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    Directory of Open Access Journals (Sweden)

    Gervasio DF

    2010-01-01

    Full Text Available Abstract A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments.

  2. The Effect of Applied Pressure During Feeding of Critical Cast Aluminum Alloy Components With Particular Reference to Fatigue Resistance

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Berry; R. Luck; B. Zhang; R.P. Taylor

    2003-06-30

    the medium to long freezing range alloys of aluminum such as A356, A357, A206, 319 for example are known to exhibit dispersed porosity, which is recognized as a factor affecting ductility, fracture toughness, and fatigue resistance of light alloy castings. The local thermal environment, for example, temperature gradient and freezing from velocity, affect the mode of solidification which, along with alloy composition, heat treatment, oxide film occlusion, hydrogen content, and the extent to which the alloy contracts on solidification, combine to exert strong effects on the porosity formation in such alloys. In addition to such factors, the availability of liquid metal and its ability to flow through the partially solidified casting, which will be affect by the pressure in the liquid metal, must also be considered. The supply of molten metal will thus be controlled by the volume of the riser available for feeding the particular casting location, its solidification time, and its location together with any external pressure that might be applied at the riser.

  3. [The effect on anti-acid corrosion resistance of Ni-Cr alloy coating titanium].

    Science.gov (United States)

    Hu, Bin; Zhang, Fu-qiang

    2003-04-01

    The aim of this study was to investigate the variation of the corrosion resistance of Ni-Cr alloy in acid environment before and after coating titanium in vitro. 1. Surface treatment using sol-gel technique of coating titanium. The steps were as follows: (1) Pre-treatment: sanding, washing and activation in order to remove the oxidative product; (2) The preparation of sol: some small charged particles produced by the hydrolytic reaction, and formed sol. These particles would congeal into extremely small ones (diameter usually is 5 microns); (3) Coating; (4) Heat treatment: The organism was resolved and volatilizeed at high temperature, and the atoms of Ti were left. These atoms of Ti were very active and could combine firmly with the atoms on the surface awaiting of treatment. 2. artificial saliva; pH = 7.0 and pH = 5.6; temperature: 36.5 degrees C 3. Electrochemical test: polarization curve; instrument: ZF-3 poteniostat. Before coating titanium, when pH was 7.0, the electrode potential of Ni-Cr alloy was -160 mV, and the self-corrosion current density was 0.262 microA cm-2; when pH = 5.6, the data were -182 mV and 0.352 microA cm-2, respectively. This result showed that when pH value reduced, the potential and current density descended, too. This indicated that the material was easy to be corroded. After coating titanium, when pH value was 7.0, the potential was -71 mV, the self-corrosion current density was 0.152 microA cm-2; when pH = 5.6, the data were -89 mV and 0.174 microA cm-2. This indicated that the corrosion rate of material descended evidently after coating titanium in acid environment. (1) Not only before coating Ti but also after coating, the corrosion resistance of Ni-Cr alloy would descend in acid environment;(2) In acid environment, the corrosion resistance of Ni-Cr alloy after coating titanium was superior to that of the material before coating. So was in neutral environment.

  4. Microstructural effects on the sliding wear resistance of a cobalt-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, A. (Dept. of Materials, Swiss Federal Inst. of Technology, Lausanne (Switzerland)); Kurz, W. (Dept. of Materials, Swiss Federal Inst. of Technology, Lausanne (Switzerland))

    1994-05-01

    The influence of the microstructure on the dry sliding wear resistance of a hypo-eutectic Stellite 6 alloy was investigated under conditions leading to severe metallic wear of the hardfacing alloy. Conventional chill casting as well as laser surface cladding were used to produce a wide range of solidification microstructures. The hardness of the alloy was strongly dependent on the microstructure and in particular on the size of the dendrites. Under the sliding conditions investigated, severe delamination wear of the Stellite occurred. High coefficients of friction were measured and the structure in the subsurface was completely destroyed by the resulting stress cycles. During the stationary wear regime, no dependence of the wear rate on the as-solidified microstructure could therefore be determined. However, a strong influence on the wear resistance of alloying elements which affect the matrix properties was observed. Suggestions are made for the improvement of the wear resistance of such alloys under similar sliding conditions. (orig.)

  5. Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel

    Science.gov (United States)

    Kim, Jae-Hwan; Wang, Jei-Pil; Kang, Chang-Yong

    2011-12-01

    In order to investigate the effect of aluminization on the oxidation properties of 12Cr martensitic heat resisting steel, a specimen was prepared by forging after centrifugal casting. After aluminizing treatment under various conditions, scanning electron microscopy observation, and hardness, line profile and x-ray diffraction analysis of the alloy layer were performed. The results confirmed that the thickness of the layer of Al13Fe4, with a Vickers hardness of over 880, increased with increasing aluminizing temperature and time. Moreover, it was concluded from the results of the oxidation experiment that the oxidation properties of the aluminized specimen were improved by up to approximately 30 %.

  6. The Effect of Chemical Composition and Structure on the Corrosion Resistance of Plated Aluminium Alloy Strips

    Science.gov (United States)

    Klyszewski, Andrzej; Zelechowski, Janusz; Opyrchal, Mieczyslaw; Nowak, Marek; Frontczak, Andrzej; Rutecki, Pawel

    Thin 3003 alloy strips plated with 4343 alloy were subjected to microstructure examinations, X-ray phase analysis, corrosion testing, and measurement of basic mechanical properties. In a similar manner, the properties of heat exchangers made from the plated strip were characterised, watching the long-term consequences of their use in vehicles. The results of investigations were applied in the manufacturing technology of thin plated strips for heat exchangers used by the automotive industry.

  7. Applications of resistive heating in gas chromatography: a review.

    Science.gov (United States)

    Jacobs, Matthew R; Hilder, Emily F; Shellie, Robert A

    2013-11-25

    Gas chromatography is widely applied to separate, identify, and quantify components of samples in a timely manner. Increasing demand for analytical throughput, instrument portability, environmental sustainability, and more economical analysis necessitates the development of new gas chromatography instrumentation. The applications of resistive column heating technologies have been espoused for nearly thirty years and resistively heated gas chromatography has been commercially available for the last ten years. Despite this lengthy period of existence, resistively heated gas chromatography has not been universally adopted. This low rate of adoption may be partially ascribed to the saturation of the market with older convection oven technology, coupled with other analytical challenges such as sampling, injection, detection and data processing occupying research. This article assesses the advantages and applications of resistive heating in gas chromatography and discusses practical considerations associated with adoption of this technology.

  8. New creep resistant cast alloys with improved oxidation resistance in water vapor at 650-800ºC

    Directory of Open Access Journals (Sweden)

    Sebastien eDryepondt

    2015-08-01

    Full Text Available Cast stainless steel CF8C-Plus (19wt.%Cr/12%Ni has excellent creep properties, but limited oxidation resistance above 700ºC in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with respectively 21wt%Cr-15wt%Ni and 22wt%Cr-17.5wt%Ni were therefore developed and their long-term oxidation behavior in humid air were compared with the oxidation behavior of five other cast alloys. At 650 and 700ºC, all the alloys formed internal Cr-rich nodules, and outer nodules or layers rich in Fe and Ni, but they grew a protective Cr-rich inner layer over time. At 750ºC, the lower alloyed steels such as CF8C-Plus showed large metal losses, but the two new alloys still exhibited a protective oxidation behavior. The 21Cr-15Ni alloy was severely oxidized in locations at 800ºC, but that was not the case for the 22Cr-17.5Ni alloy. Therefore, the two new modified alloys represent a potential operating temperature gain of respectively 50 and 100ºC in aggressive environments compared with the CF8C-Plus alloy.

  9. New creep resistant cast alloys with improved oxidation resistance in water vapor at 650-800°C

    Science.gov (United States)

    Dryepondt, Sebastien; Pint, Bruce; Maziasz, Philip

    2015-08-01

    Cast stainless steel CF8C-Plus (19wt.%Cr/12%Ni) has excellent creep properties, but limited oxidation resistance above 700ºC in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with respectively 21wt%Cr-15wt%Ni and 22wt%Cr-17.5wt%Ni were therefore developed and their long-term oxidation behavior in humid air were compared with the oxidation behavior of five other cast alloys. At 650 and 700ºC, all the alloys formed internal Cr-rich nodules, and outer nodules or layers rich in Fe and Ni, but they grew a protective Cr-rich inner layer over time. At 750ºC, the lower alloyed steels such as CF8C-Plus showed large metal losses, but the two new alloys still exhibited a protective oxidation behavior. The 21Cr-15Ni alloy was severely oxidized in locations at 800ºC, but that was not the case for the 22Cr-17.5Ni alloy. Therefore, the two new modified alloys represent a potential operating temperature gain of respectively 50 and 100ºC in aggressive environments compared with the CF8C-Plus alloy.

  10. Effect of heat treatment on transformation behavior of Ti-Ni-V shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    He Zhirong, E-mail: hezhirong01@163.com [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China); Liu Manqian [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China)

    2011-08-25

    Highlights: {yields} New shape memory alloy (SMA) - Ti-50.8Ni-0.5V SMA. {yields} The evolution laws of transformation types of annealed Ti-50.8Ni-0.5V SMA. {yields} The evolution laws of transformation types of aged Ti-50.8Ni-0.5V SMA. {yields} The effect laws of annealing on transformation temperature and hysteresis of the alloy. {yields} The effect laws of aging on transformation temperature and hysterises of the alloy. - Abstract: Effects of annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of differential scanning calorimetry (DSC). The A {yields} R/R {yields} A (A - parent phase, R - R phase) type one-stage reversible transformation occurs in 350-400 deg. C annealed alloy, the A {yields} R {yields} M/M {yields} R {yields} A (M - martensite) type two-stage transformation occurs in 450-500 deg. C annealed alloy, the A {yields} R {yields} M/M {yields} A type transformation occurs in 550 deg. C annealed alloy, and A {yields} M/M {yields} A type transformation occurs in the alloy annealed at above 600 deg. C upon cooling/heating. The transformation type of 300 deg. C aged alloy is A {yields} R/R {yields} A, and that of 500 deg. C aged alloy is A {yields} R {yields} M/M {yields} A, while that of 400 deg. C aged alloy changes from A {yields} R/R {yields} A to A {yields} R {yields} M/M {yields} R {yields} A with increasing aging time. The effects of annealing and aging processes on R and M transformation temperatures and temperature hysteresis are given. The influence of annealing and aging temperature on transformation behaviors is stronger than that of annealing and aging time.

  11. Novel Concepts for Damage-Resistant Alloys in Next Generation Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Bruemmer; Peter L. Andersen; Gary Was

    2002-12-27

    The discovery of a damage-resistant alloy based on Hf solute additions to a low-carbon 316SS is the highlight of the Phase II research. This damage resistance is supported by characterization of radiation-induced microstructures and microchemistries along with measurements of environmental cracking. The addition of Hf to a low-carbon 316SS reduced the detrimental impact of radiation by changing the distribution of Hf. Pt additions reduced the impact of radiation on grain boundary segregation but did not alter its effect on microstructural damage development or cracking. Because cracking susceptibility is associated with several material characteristics, separate effect experiments exploring strength effects using non-irradiated stainless steels were conducted. These crack growth tests suggest that irradiation strength by itself can promote environmental cracking. The second concept for developing damage resistant alloys is the use of metastable precipitates to stabilize the microstructure during irradiation. Three alloys have been tailored for evaluation of precipitate stability influences on damage evolution. The first alloy is a Ni-base alloy (alloy 718) that has been characterized at low neutron irradiation doses but has not been characterized at high irradiation doses. The other two alloys are Fe-base alloys (PH 17-7 and PH 17-4) that have similar precipitate structures as alloy 718 but is more practical in nuclear structures because of the lower Ni content and hence lesser transmutation to He.

  12. Novel Concepts for Damage-Resistant Alloys in Next Generation Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Bruemmer; Peter L. Andersen; Gary Was

    2002-12-27

    The discovery of a damage-resistant alloy based on Hf solute additions to a low-carbon 316SS is the highlight of the Phase II research. This damage resistance is supported by characterization of radiation-induced microstructures and microchemistries along with measurements of environmental cracking. The addition of Hf to a low-carbon 316SS reduced the detrimental impact of radiation by changing the distribution of Hf. Pt additions reduced the impact of radiation on grain boundary segregation but did not alter its effect on microstructural damage development or cracking. Because cracking susceptibility is associated with several material characteristics, separate effect experiments exploring strength effects using non-irradiated stainless steels were conducted. These crack growth tests suggest that irradiation strength by itself can promote environmental cracking. The second concept for developing damage resistant alloys is the use of metastable precipitates to stabilize the microstructure during irradiation. Three alloys have been tailored for evaluation of precipitate stability influences on damage evolution. The first alloy is a Ni-base alloy (alloy 718) that has been characterized at low neutron irradiation doses but has not been characterized at high irradiation doses. The other two alloys are Fe-base alloys (PH 17-7 and PH 17-4) that have similar precipitate structures as alloy 718 but is more practical in nuclear structures because of the lower Ni content and hence lesser transmutation to He.

  13. Simulated heat-exchanger tubes: DOE Geothermal Test Facility, East Mesa, California. Corrosion test report. [Allegheny-Ludlum Alloy 29-4 and Alloy 29-4C

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Anliker, D.M.

    1982-11-01

    A 1032-hr corrosion test was made of two geothermal heat exchanger materials, Allegheny-Ludlum Alloy 29-4 and Alloy 29-4C. Coupons of the two metals were exposed under conditions simulating flow in a geothermal heat exchanger tube. Continuous flow and cyclic exposure tests were made. No signs of localized corrosion were observed in either the base metal, tube weld seam, or heat affected zone. Most coupons showed statistically insignificant weight change. A corrosion rate of less than 0.5 mil/yr is indicated. No significant difference in the performance of the two alloys is reported. (LEW)

  14. Effect of Microstructure on the Performance of Corrosion Resistant Alloys

    OpenAIRE

    Kishan Roodbari, Marzieh

    2015-01-01

    Corrosion by pitting in aluminum alloys is a very complex process that can be affected by various factors such as chemical composition and microstructure of the alloys. The electrochemistry and distribution of second phases populating the alloy are the main factors that significantly influence the corrosion of aluminum alloys. The purpose of the present work is to contribute to a deeper understanding of how the chemical composition and microstructure affect the ability of an al...

  15. HEAT-RESISTANT COMPOSITES CURED BY ELECTRON BEAM

    Institute of Scientific and Technical Information of China (English)

    Jian-wen Bao; Yang Li; Xiang-bao Chen; Feng-mei Li

    2001-01-01

    Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250°C.

  16. Investigation of Corrosion Resistance Using Positron Annihilation for an Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An amorphous alloy with Ni-(17~19) at. pct P prepared by electrodeposition process was studied using positron annihilation technique (PAT) associated with X-ray diffraction and the measurement of corrosion rate. It is suggested that defect or the interface between precipitates and matrix is one of the important factors which decrease corrosion resistance of the alloy after crystallization.

  17. The effects of maintaining temperature in annealing heat treatment for an FSWed 6061-T6 Al alloy.

    Science.gov (United States)

    Lee, Seung-Jun; Han, Min-Su; Kim, Seong-Jong

    2013-08-01

    The technological development of all kinds of lightweight transportation devices including vehicles, aircraft, ships, etc. has progressed markedly with the demand for energy saving and environmental protection. Aluminum alloy is in the spotlight as it is a suitable environmentally friendly material. However, deformation is a major problem during the welding process because aluminum alloy has a large thermal expansion coefficient. In addition, it is known that its corrosion resistance is excellent; nevertheless, in practice, considerable corrosion is generated and this is a major problem. To solve this problem, the friction stir welding (FSW) technology is applied extensively at various industrial fields as a new welding technique. This method involves a process in which materials are joined by frictional heat and physical force. Therefore, we evaluated improvements in mechanical properties and corrosion resistance through annealing heat treatment after FSW. The electrochemical experiment did not show a significant difference. However, the microstructure observation showed defectless, fine crystal particles, indicating excellent properties at 200-225°C.

  18. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  19. Homogenization of. beta. -solid solution upon rapid heating of two-phase titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grudnev, V.N.; Zhuravlav, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Markovskiy, P.E.

    1985-01-01

    High temperature ..beta.. phase homogenization during rapid heating was studied in a Ti-Mo alloy by mathematical simulation and experimental observation. The method used allows quantitative estimation of the influence of the two major factors determining development of the process of homogenization of the ..beta.. solid solution: heating rate and initial structure dispersion. Successive quenching of specimens from increasing temperatures in the ..beta.. area provides a simple and reliable method of observing the process of homogenization. This method allows experimental development of equations similar to those calculated for the ..beta.. solid solution area with minimum alloying element content. The experimental and calculated results are similar for a heating rate of 300/sup 0/K per second. Heating rate and initial structure dispersion are found to be quite significant in the Ti-10% Mo alloy studied. A method is suggested for estimating the concentration state of impoverished sectors of the ..beta.. solid solution in commercial alloys during rapid heating and used to analyze the inhomogenization. 8 references, 6 figures.

  20. [Corrosion resistance and bond strength of dental alloys].

    Science.gov (United States)

    Schwickerath, H

    1990-07-01

    Investigated Ni-alloys, which showed extensive solubility of Ni particles in corrosion bathes due to DIN 13927, also revealed pronounced lost of bond strength to ceramic veneers when immersed into corrosion bathes of equal constitution. Noble metal alloys with a gold concentration more than 50 percent, however, showed no such large lost of bond strength. Pd alloys showed a lost of bond strength which increased with their Ga concentration. Co alloys revealed a behavior similar to the Ni alloys but with no obvious correlation between solubility and lost of bond strength.

  1. Evaluation of Microscopic Degradation of Copper and Copper Alloy by Electrical Resistivity Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chung Seok [Hanyang University, Seoul (Korea, Republic of); Nahm, Seung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Hyun, Chang Young [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2010-10-15

    In the present study, the microscopic degradation of copper and copper and alloy subjected to cyclic deformation has been evaluated by the electrical resistivity measurement using the DC four terminal potential method. The copper (Cu) and copper alloy (Cu-35Zn), whose stacking fault energy is much different each other, were cyclically deformed to investigate the response of the electrical resistivity to different dislocation substructures. Dislocation cell substructure was developed in the Cu, while the planar array of dislocation structure was developed in the Cu-35Zn alloy increasing dislocation density with fatigue cycles. The electrical resistivity increased rapidly in the initial stage of fatigue deformation in both materials. Moreover, after the fatigue test it increased by about 7 % for the Cu and 6.5 % for the Cu-35Zn alloy, respectively. From these consistent results, it may be concluded that the dislocation cell structure responds to the electrical resistivity more sensitively than the planar array dislocation structure evolved during cyclic fatigue

  2. Analysis on the joint tensile strength and fractography of TiNi shape memory alloy precise pulse resistance butt welding

    Institute of Scientific and Technical Information of China (English)

    赵熹华; 韩立军; 赵蕾

    2002-01-01

    This paper studies mechanical property and fractography of the welded joints obtained in different welding parameters such as welding heat and welding press with/without gas shield in TiNi shape memory alloy precise pulse resistance butt welding using tensile strength test, XRD, SEM and TEM measures. The optimum welding parameters obtaining high tensile strength welded joint are got. On the condition of welding press magneting current 2 A and welding heat 75%, the joint strength is the highest. This is important for to study other properties of TiNi shape memory alloy further. The experimental results state that argon gas shield have different effects on different welding parameters, less on welding press, but great on welding heat. But excessive welding press and welding heat have great effects on joint tensile strength. Too high welding heat can produce the new intermetallic compound, this intermetallic compound lead to dislocation density to increase and form the potential crack initiation, which can easily make the joint fracture under stress effect and decrease the shape memory ratio of joint for high density dislocation groups existing in the twinned martensite.

  3. Effect of heat-treatment on phase transition temperatures of a superelastic NiTi alloy for medical use

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, K.W.K.; Cheung, K.M.C.; Lu, W.W.; Luk, K.D.K. [Univ. of Hong Kong (China). Dept. of Orthopaedic Surgery; Chung, C.Y. [City Univ. of Hong Kong, Kowloon (China). Dept. of Physics and Materials Science

    2002-07-01

    Surgical correction of scoliosis typically uses stainless steel or titanium alloy spinal instrumentation to straighten the scoliotic spine by 70% only. Our aim is to develop a method to overcome this by using an implantable superelastic (SE) nickel-titanium (NiTi) alloy rod, which will impose a continuous gradual correction force to the spine after the surgery so as to achieve a superior correction. More than 75 specimens made of a Ti-50.0 at% Ni alloy were treated by different heat treatment routes. The Austenitic transition temperature of the NiTi alloy can be adjusted to be available at 37.5 C by altering the heat treatment parameters: time and temperature of heat treatment. The experimental results showed that the heat treatment temperature should set between 400-500 C and the heat treatment time should be less than 60 minutes for the alloy. (orig.)

  4. Report on the completion of the procurement of the first heat of Alloy 709

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Zhang, X.; Sham, T.-L.; Wang, H.; Wang, H.

    2017-01-01

    This report provides details on the completion of the procurement of the first commercial-sized heat of Alloy 709. The report is a Level 3 deliverable in FY17 (M3AT- 17OR1602053), under the Work Package AT-17OR160205, “Advanced Alloy Development” performed by Oak Ridge National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Technologies (ART). This work project supports the fabrication scale up effort for Alloy 709 that was started in FY16. The effort culminated in the placement of a Purchase Order in August 2016 with a commercial vendor to melt an Alloy 709 heat using industrial melt practice. Four ingots, totaling about 45,000 lb, had been bottom-poured from the melt in September 2016. Two of the ingots were hot rolled into 1.2”x60”x155” and 1.1”x60”x100” plates using standard hot rolling process in FY17. Some small test pieces were cut from the asrolled plates and sent to Argonne National Laboratory (ANL) for archival. The plates were then heat treated and surface pickled by the vendor. The plates were subsequently delivered to ANL and Oak Ridge National Laboratory (ORNL). Properties and microstructure screening were performed on these plates upon delivery in February 2017 at ANL. Several samples were cut from the as-rolled and heattreated plates and were analyzed for their microstructures, hardness values, grain sizes, and room temperature tensile properties. The results indicate that the scaled-up heat of Alloy 709 fabricated using commercial practice exhibit tensile properties that exceed the minimum values specified in the ASME Code Case for commercial heat of NF709. These plates will be used to support base metal testing for the 650°C, 100,000-h Alloy 709 Code Case development, for fabrication of weldments, and for the NEUP projects.

  5. Effects of Magnetic Heat Treatment on Magnetostiction Properties of Tb0.3 Dy0.7 Fe1.95 Alloy

    Institute of Scientific and Technical Information of China (English)

    Jiang Liping; Zhao Zengqi; Wu Shuangxia; Qiu Jufeng; Sha Yuhui; Zuo Liang

    2004-01-01

    The effects of magnetic heat treatment on magnetostriction properties of Tb0.3Dy0.7Fe1.95 alloy were investigated.The directionally solidified alloy was heated to various temperatures near Curie temperature TC in vacuum, kept for a certain time under the application of magnetic field and then cooled to room temperature.The magnetostriction coefficient was measured by a resistance strain gage.The crystal structure was analyzed by X-ray diffraction (XRD).The experimental results show that the magnetostriction coefficient obviously increases and the grains orientations along the axis changed somewhat as the field of 1 T vertical to axis of the rod-shaped specimen is applied for 5 min at the heating temperature slightly lower than TC.

  6. Effects of composition and heat treatment at 1150{degrees}C on creep-rupture properties of Fe{sub 3}Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.; Marrero-Santos, Y. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    The effects of composition and heat treatment at 1150{degrees}C on the creep-rupture properties of Fe3Al-based alloys were studied. Tests of alloy FA-180 (Fe-28Al-5Cr-0.5Nb-0.8Mo-0.025Zr-0.05C-0.005B, at.%) with this heat treatment were performed in air using various test temperatures and stresses in order to obtain creep activation energies and constants. An activation energy for creep of approximately 150 kcal/mole was determined, a value which is approximately twice that obtained earlier for the binary alloy heat treated at 750{degrees}C. Tests were also conducted on alloys containing various combinations of Cr, Mo, Nb, Zr, C, and B in order to better understand the effect of composition on the improved creep resistance with heat treating at 1150{degrees}C. The results suggest an interaction of Mo with Zr and Nb to produce increased creep life.

  7. Additive manufacturing of Co-Cr-Mo alloy: Influence of heat treatment on microstructure, tribological and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Kedar Mallik Mantrala

    2015-03-01

    Full Text Available Co-Cr-Mo alloy samples, fabricated using Laser Engineered Net Shaping – a laser based additive manufacturing technology, have been subjected heat treatment to study its influence on microstructure, wear and corrosion properties. Following L9 Orthogonal array of Taguchi method, the samples were solutionized at 1200oC for 30, 45 and 60 min followed by water quenching. Ageing treatment was done at 815oC and 830oC for 2, 4 and 6 h. Heat treated samples were evaluated for their microstructure, hardness, wear resistance and corrosion resistance. The results revealed that highest hardness of 512 ± 58 Hv and wear rate of 0.90 ± 0.14 × 10-4 mm3/N.m can be achieved with appropriate post-fabrication heat treatment. ANOVA and grey relational analysis on the experimental data revealed that the samples subjected to solution treatment for 60 min, without ageing, exhibit best combination of hardness, wear and corrosion resistance.

  8. Effect of heat treatment on structure and properties of multilayer Zn-Ni alloy coatings

    Directory of Open Access Journals (Sweden)

    VAISHAKA R. RAO

    2013-11-01

    Full Text Available Composition modulated multilayer alloy (CMMA coatings of Zn-Ni were electrodeposited galvanostatically on mild steel (MS for enhanced corrosion protection using single bath technique. Successive layers of Zn-Ni alloys, having alternately different composition were obtained in nanometer scale by making the cathode current to cycle between two values, called cyclic cathode current densities (CCCD’s. The coatings configuration, in terms of compositions and thicknesses were optimized, and their corrosion performances were evaluated in 5 % NaCl by electrochemical methods. The corrosion rates (CR’s of multilayer alloy coatings were found to decrease drastically (35 times with increase in number of layers (only up to 300 layers, compared to monolayer alloy deposited from the same bath. Surface study was carried with SEM, while XRD was used to determine metal lattice parameters, texture and phase composition of the coatings. The effect of heat treatment on surface morphology, thickness, hardness and corrosion behaviour of multilayer Zn-Ni alloy coatings were studied. The significant structural modification due to heat treatment is not accompanied by any decrease in corrosion rate. This effect is related to the formation of a less disordered lattice for multilayer Zn-Ni alloy coatings.

  9. The influence of Si on oxidation resistance of aluminide coatings on TiAl alloy

    OpenAIRE

    M. Goral; G. Moskal; L. Swadzba

    2006-01-01

    Purpose: Increasing oxidation resistance of TiAl intermetallic alloy by depositing aluminide coating by slurrymethod and investigation of the influence of Si addition on isothermal oxidation of TiAlNb intermetallic alloy.Design/methodology/approach: : The isothermal oxidation resistance tests were done in the chamber furnaceat 900ºC for 500h time in the air atmosphere. The structure of coatings was investigated by light and scanningmicroscopy. The chemical composition of coatings and scales w...

  10. CORRELATION BETWEEN MICROSTRUCTURE AND MECHANICAL AND CORROSION RESISTANCES OF A LEAD-FREE Sn-0,7%Cu SOLDER ALLOY

    Directory of Open Access Journals (Sweden)

    José Eduardo Spinelli

    2014-12-01

    Full Text Available Sn-Cu alloys are promising alternatives to the replacement of Pb-containing solder alloys. However, the effects of the cooling rate on the solidification microstructures of these alloys and the corresponding influence on the mechanical and corrosion resistances are not well known. In the present study, the transient directional solidification technique has been used to obtain a Sn-0,7wt.%Cu ingot. The experimental results include: solidification thermal parameters (cooling rate, Ṫ, growth rate, v, and metal/substrate heat transfer coefficient, hi , cellular spacing, λc , and primary dendritic arm spacing, λ1 , corrosion rate, corrosion potential and polarization resistance and mechanical strength and ductility. The results show a cellular/dendritic transition with eutectic cells prevailing for Ṫ< 0,9°C/s. Lower corrosion resistances have been associated with dendritic regions compared with regions characterized by eutectic cells. In the interdendritic regions extremely fine and fibrous Cu6 Sn5 intermetallic particles can be observed.

  11. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    Institute of Scientific and Technical Information of China (English)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry,and analyses and optimizations of the performance of heat exchangers are important topics.In this paper,we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process.With this concept,a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed.It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger,while the minimizations of entropy generation rate,entropy generation numbers,and revised entropy generation number do not always.

  12. Computer modeling of heat treating austenitic and nickel based alloys

    Science.gov (United States)

    Glickstein, S. S.; Friedman, E.; Berman, R. M.

    1982-05-01

    The adequacy of the heat treating process depends upon the thermal cycle experienced by the material during heat treating in the furnace and quenching. While thermocouples placed at the surface of the material during heat treating can assure the adequacy of the process for the material at the surface, assurance that inner regions of the material are experiencing the proper temperature transient is not guaranteed. To assess present process standards for heat treating 17-4 PH stainless steel and air quenching Inoconel X after solution treatment, computer models of the heat transfer within the material were developed. Sensitivity studies were conducted to determine the effects of material bar diameter, peak temperature, material properties, heat transfer coefficients, and neighboring bar stock. The computer modeling provided an easy and inexpensive technique for determining the adequacy of present heat treating process standards and for ensuring that future standards will provide the desired requirements. Details of these sensitivity studies are presented.

  13. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  14. Fatigue resistance of rotary instruments manufactured using different nickel-titanium alloys: a comparative study.

    Science.gov (United States)

    Plotino, Gianluca; Testarelli, Luca; Al-Sudani, Dina; Pongione, Gianlcarlo; Grande, Nicola M; Gambarini, Gianluca

    2014-01-01

    The aim of this study was to investigate whether cyclic fatigue resistance is increased for Controlled Memory (CM) Nickel-Titanium (NiTi) instruments, compared to instruments produced using traditional NiTi and instruments produced using M-Wire alloy. Two groups of NiTi endodontic instruments consisting of identical instrument sizes (constant 0.06 taper and 0.25 tip diameter and constant 0.04 taper and 0.40 tip diameter) were tested: group A compared Hyflex™ CM, Vortex ™ and ProFile ™ size 25 and 0.06 taper and group B compared Hyflex™ CM, Vortex™ and ProFile™ size 40 and 0.04 taper. 10 files from each different subgroup were tested for cyclic fatigue resistance. Mean and standard deviations of the Number of Cycles to Failure (NCF) were calculated for each group and data were statistically analysed (p 0.05) was noted between Vortex™ and ProFile™ in the tested sizes. The new manufacturing process involving memory shape heat treatment produced new NiTi rotary files (Hyflex™ CM) significantly more resistant to fatigue than instruments produced with other proprietary methods of treatment (Vortex™) and with the traditional NiTi grinding process (ProFile™).

  15. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  16. Radiation and Heat Resistance of Moraxella-Acinetobacter in Meats

    Science.gov (United States)

    1978-01-23

    growth 7 Vacuum packaging and impact on growth of resistant isolates .... 7 Effect of fat content of meat on radiation and heat resistance of...approximately 10 cells per ml. Storage for culture main- tenance after growth was at 3-5*C. Vacuum packaging and impact on growth of resistant isolates...sensitive to reduced oxygen occur- ring with vacuum packaging of foods (Maxcy et al., 1976). Furthermore, most of the radiation-resiscant M-A were

  17. Effect of heating rate on structure of VT23 and VT6 quenched alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Oshkaderov, S.P. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1982-01-01

    The grain and intergrain structures of two-phase VT23 and VT6 titanium alloys with an initial fine-grain structure quenched after heating with different rates in (..cap alpha..+..beta..) and ..beta..-regions were studied. The heating rate increase from 0.2 up to 200 deg/s is shown to result in the monotonic growth of a polymorphic transformation temperature, the decrease of grain size at a constant quenching temperature, the appearance of a grain size change jump, and the martensite grain refinement during heating up to ..beta..-region temperatures. The high-rate heating of VT23 and VT6 quenched alloys permits to build up dispersion intergranular structure and to control their properties.

  18. Surface tension and specific heat of liquid Ni70.2Si29.8 alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Haipeng; WEI Bingbo

    2005-01-01

    The surface tension and specific heat of stable and metastable liquid Ni70.2Si29.8 eutectic alloy were measured by electromagnetic levitation oscillating drop method and drop calorimetry. The surface tension depends on temperature linearly within the experimental undercooling regime of 0-182 K (0.12 TE). Its value is 1.693 N·m-1 at the eutectic temperature of 1488 K, and the temperature coefficient is -4.23×10-4 N·m-1·K-1. For the specific heat measurement, the maximum undercooling is up to 253 K (0.17 TE). The specific heat is determined as a polynomial function of temperature in the experimental temperature regime. On the basis of the measured data of surface tension and specific heat, the temperature-dependent density, excess volume and sound speed of liquid Ni70.2Si29.8 alloy are predicted theoretically.

  19. Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint%金属间化合物对钛合金与不锈钢的热轧焊过渡接头耐热性的影响

    Institute of Scientific and Technical Information of China (English)

    赵东升; 闫久春; 刘玉君

    2013-01-01

      研究金属间化合物对过渡接头耐热性的影响,采用镍中间层的钛与不锈钢热轧焊接头的焊后热处理方法,研究焊后热处理引起的连接界面微观组织演变。结果表明:当热处理温度为600~800°C,热处理时间为10 min和30 min时,在不锈钢与镍的连接界面处没有发生明显的互扩散。但是,当热处理温度为700°C热处理时间为30 min时,在不锈钢与镍的连接界面出现微裂纹。热处理温度为600°C时,镍与钛合金的连接界面的金属间化合物层的厚度增大,而热处理温度为700和800°C时,界面出现微裂纹。微裂纹产生在金属间化合物层之间或者是金属间化合物层与镍层之间。过渡接头的拉伸强度随着热处理温度的升高或时间的延长而降低。%The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy−stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600−800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.

  20. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core

    Science.gov (United States)

    Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei

    2016-10-01

    The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial

  1. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  2. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  3. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    Science.gov (United States)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The

  4. Heat input effect of friction stir welding on aluminium alloy AA 6061-T6 welded joint

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar

    2016-01-01

    Full Text Available This paper deals with the heat input and maximum temperature developed during friction stir welding with different parameters. Aluminium alloy (AA 6061-T6 has been used for experimental and numerical analysis. Experimental analysis is based on temperature measurements by using infrared camera, whereas numerical analysis was based on empirical expressions and finite element method. Different types of defects have been observed in respect to different levels of heat input.

  5. Identification of the heat transfer coefficient in the two-dimensional model of binary alloy solidification

    Science.gov (United States)

    Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam

    2017-05-01

    The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.

  6. Measurement of Thermal Resistance of Heat-resistant Fabrics with a Guarded-hot-box

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-long; ZHANG Wei-yuan

    2006-01-01

    A novel analytical method with the guarded-hot-box (GHB) in investigating the thermal resistance of heat-resistant fabrics is described and the analytical method is also presented in this paper. The new apparatus is capable of measure thermal resistance of the fabrics in high temperature up to an average applied temperature of 250℃.The maximum measurement error of the apparatus is 6.5%and relative error is less than 2.8% between the introduced method and standard given value. In the GHB method, air layer thickness is the most important factor that influences measurement value of thermal resistance of heat-resistant fabrics. Results show that the method is more accurate and efficient than GB11048-89 one in measuring thermal resistance of heat-resistant fabrics.

  7. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Pengyu [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China)], E-mail: linpengyu2000@yahoo.com.cn; Zhou Hong; Li Wei; Li Wenping; Sun Na [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China); Yang Rong [Public Mathematics Teaching and Research Center, College of Mathematics, Qianwei Campus of Jilin University, Changchun Jilin 130012 (China)

    2008-09-15

    This paper focused on the interactive effect of cerium (Ce) addition and aluminum (Al) content in magnesium alloy on ignition point and oxidation resistance. Ce content played an important role in improving the oxidation resistance of Mg alloy. Ignition point ascended with increasing Ce content. 0.25 wt% Ce content in Mg alloys could greatly improve tightness of the oxide film of Mg alloys. However, when Ce content in the alloy exceeded its solid solubility, ignition point descended. Furthermore, Al content in the alloy also influenced the ignition point. The higher the Al content was, the lower the ignition point.

  8. Phononic heat transfer across an interface: thermal boundary resistance.

    Science.gov (United States)

    Persson, B N J; Volokitin, A I; Ueba, H

    2011-02-02

    We present a general theory of phononic heat transfer between two solids (or a solid and a fluid) in contact at a flat interface. We present simple analytical results which can be used to estimate the heat transfer coefficient (the inverse of which is usually called the 'thermal boundary resistance' or 'Kapitza resistance'). We present numerical results for the heat transfer across solid-solid and solid-liquid He contacts, and between a membrane (graphene) and a solid substrate (amorphous SiO(2)). The latter system involves the heat transfer between weakly coupled systems, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  9. Heat Resistance of TiN Coated HSS Tools

    Institute of Scientific and Technical Information of China (English)

    周兰英; 周焕雷; 贾庆莲

    2003-01-01

    The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN coated tools, from the micromechanism angle, the relationship of the heat property and the crystal structure of TiN compound is analyzed, and the regularity of TiN compound crystal structure changing with temperature rising is sought. The difference of the wear resistance and heat resistance of TiN coated tools deposited by c1 and c2 depositing techniques is proved by tests. The conclusions will offer the theoretical basis for correct design of geometrical parameters of TiN coated tools, rational selection of cutting regimes and optimization of the depositing technique.

  10. The corrosion resistance of Nitinol alloy in simulated physiological solutions

    Energy Technology Data Exchange (ETDEWEB)

    Milosev, Ingrid, E-mail: ingrid.milosev@ijs.si [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, SI-1000, Ljubljana (Slovenia); Valdoltra Orthopaedic Hospital, Jadranska c. 31, SI-6280 Ankaran (Slovenia); Kapun, Barbara [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, SI-1000, Ljubljana (Slovenia)

    2012-07-01

    The corrosion behaviour of Nitinol alloy containing nearly equi-atomic composition of nickel and titanium and its constituent metals (nickel and titanium) was investigated in simulated Hanks physiological solution (pH value 7.5) and pH modified simulated Hanks physiological solution (pH values 4.5 and 6.5) and by electrochemical method of anodic potentiodynamic polarization at 37 Degree-Sign C. In this chloride-rich medium the corrosion stability of Nitinol is limited by the susceptibility to localized corrosion and is in that sense more similar to nickel than to titanium. The corrosion stability of Nitinol is strongly dependent on the surface preparation-grinding, polishing or chemical etching. Whereas a ground surface is not resistant to localized corrosion, polished and chemically etched surfaces are resistant to this type of corrosion attack. The reasons for this behaviour were investigated through metallurgical, topographical and chemical properties of the surface as a function of surface preparation. For that purpose, scanning electron microscopy combined with chemical analysis, confocal microscopy and X-ray photoelectron spectroscopy were used. The surface roughness decreased in the following order: chemically etched > ground > polished surface. Besides differences in topography, distinct differences in the chemical composition of the outermost surface are observed. Ground, rough surfaces comprised mainly titanium oxides and small amounts of nickel metal. Chemically etched and, especially, polished surfaces are composed of a mixture of titanium, nickel and titanium oxides, as studied by angle resolved X-ray photoelectron spectroscopy. These results emphasize the importance of detailed investigation of the metal surface since small differences in surface preparation may induce large differences in corrosion stability of material when exposed to corrosive environments. - Highlights: Black-Right-Pointing-Pointer The corrosion resistance of Nitinol is dependent

  11. Tensile and impact properties of V-4Cr-4Ti alloy heats 832665 and 832864.

    Energy Technology Data Exchange (ETDEWEB)

    Bray, T. S.; Tsai, H.; Nowicki, L. J.; Billone, M. C.; Smith, D. L.; Johnson, W. R.; Trester, P. W.

    1999-11-08

    Two large heats of V-4Cr-4Ti alloy were produced in the United States in the past few years. The first, 832665, was a 500 kg heat procured by the U.S. Department of Energy for basic fusion structural materials research. The second, 832864, was a 1300 kg heat procured by General Atomics for the DIII-D radiative divertor upgrade. Both heats were produced by Oremet-Wah Chang (previously Teledyne Wah Chang of Albany). Tensile properties up to 800 C and Charpy V-notch impact properties down to liquid nitrogen temperature were measured for both heats. The product forms tested for both heats were rolled sheets annealed at 1000 C for 1 h in vacuum. Testing results show the behavior of the two heats to be similar and the reduction of strengths with temperature to be insignificant up to at least 750 C. Ductility of both materials is good in the test temperature range. Impact properties for both heats are excellent--no brittle failures at temperatures above -150 C. Compared to the data for previous smaller laboratory heats of 15-50 kg, the results show that scale-up of vanadium alloy ingot production to sizes useful for reactor blanket design can be successfully achieved as long as reasonable process control is implemented.

  12. Effect of heat treatments on precipitate microstructure and mechanical properties of CuCrZr alloy

    DEFF Research Database (Denmark)

    Singh, B.N; Edwards, D.J.; Tähtinen, S.

    2004-01-01

    A number of specimens of CuCrZr alloy was prime aged and then overaged at 600oC for 1, 2 and 4 hours and for 4 hours at 700 and 850oC. After different heat treatments, both the precipitate microstructure and mechanical properties were characterized.Mechanical properties were determined at 50...

  13. Effect of solution heat treatment time on a rheocast Al-Zn-Mg-Cu alloy

    CSIR Research Space (South Africa)

    Mazibuko, NE

    2011-06-01

    Full Text Available During rheo-high pressure die casting (R-HPDC) of Al-Zn-Mg-Cu alloys a coarse eutectic phase is formed. This eutectic phase is difficult to take into solution because of its size and it would require longer solution heat treatment times...

  14. Comparison of heat effects associated with metal cutting method on ST 37 alloy steel

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2014-04-01

    Full Text Available In this study, by examining effects of the heat on the cut surface of material formed by the processes, such as Plasma, Laser, Wire Erosion applied on St 37 alloy steel material, it has been determined that minimum cutting damage occurs in wire erosion process.

  15. INFLUENCE OF HEAT TREATMENT ON DAMPING BEHAVIOUR OF THE MAGNESIUM WROUGHT ALLOY AZ61

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.

  16. Influence of Heat Treatment on the Surface Structure of 6082 Al Alloys

    Science.gov (United States)

    Bayat, N.; Carlberg, T.

    2017-10-01

    The β-Al5FeSi intermetallic phase and coarse Mg2Si particles have negative effects on extrudability and workability of 6xxx Al alloys billets. To achieve extruded products with a high surface quality, the as-cast billets are heat-treated before extrusion. During heat treatment, the undesired intermetallic particles, i.e., β-AlFeSi platelets are transformed to rounded α-Al(FeMn)Si intermetallic phases. Although the heat treatment of the bulk areas of the 6xxx Al alloys has been the focus of many previous studies, the process of phase transformation at the very surface has not been paid the same attention. In this study, microstructures of a homogenized billet of a 6082 alloy at the area very close to the surface were investigated. By comparing the X-ray diffraction patterns (XRD) of heat-treated samples as a function of different holding times, the gradual phase transformations could be followed, and using GDOES and map analysis by EDX, the alloying elemental redistribution was analyzed. Partial remelting and porosity growth was detected, and transformation rates were faster than in bulk material and from what is known from industrial processes.

  17. Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance

    Science.gov (United States)

    Song, Y. L.; Liu, Y. H.; Yu, S. R.; Zhu, X. Y.; Wang, Q.

    2008-03-01

    Ceramic coatings on the surfaces of Mg-9Al-1Zn (AZ91) magnesium alloy and Mg-9Al-1Zn-1Nd magnesium alloy (AZ91 magnesium alloy modified by neodymium, named as AZ91Nd in this paper) are synthesized in aluminate electrolyte by plasma electrolytic oxidation (PEO) process, respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses show the PEO coating on the Mg-9Al-1Zn-1Nd alloy comprises not only MgO and Al 2O 3, which are found in the coating on the AZ91 alloy, but also a trace amount of Nd 2O 3. Microstructure observations indicate the addition of Nd can decrease the sizes of β phases and form Al 2Nd intermetallics in the AZ91 alloy. The fine β phases can effectively restrain the formation of unclosed-holes and greatly decrease the sizes of pores in the coating during the PEO process. In addition, the Al 2Nd intermetallics can be completely covered due to the lateral growth of the PEO coatings formed on the α and β phases. As a result, the coating on the AZ91Nd alloy possesses a dense microstructure compared with that on the AZ91 alloy. The following corrosion tests indicate the corrosion resistance of the PEO coating on the AZ91Nd alloy is evidently higher than that of the PEO coating on the AZ91 alloy.

  18. Effect of Fe2B boride orientation on abrasion wear resistance of Fe-B cast alloy

    Directory of Open Access Journals (Sweden)

    Da-wei Yi

    2017-07-01

    Full Text Available The microstructures and abrasion wear resistance of directional solidification Fe-B alloy have been investigated using optical microscopy, X-ray diffraction, scanning electron microscopy and laser scanning microscopy. The results show that the microstructure of as-cast Fe-B alloy consists of ferrite, pearlite and eutectic boride. After heat treatment, the microstructure is composed of boride and martensite. The plane which is perpendicular to the boride growth direction possesses the highest hardness. In two-body abrasive wear tests, the silicon carbide abrasive can cut the boride and martensite matrix synchronously, and the wear mechanism is micro cutting mechanism. The worn surface roughness and the wear weight loss both increase with the increasing contact load. Moreover, when the boride growth direction is perpendicular to the worn surface, the highest hardness plane of the boride can effectively oppose abrasion, and the martensite matrix can surround and support borides perfectly.

  19. The Strengthening of Weight Heavy Alloys During Heat Treatment

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2012-12-01

    Full Text Available The results of studies of W-Ni-Co-Fe experimental alloy, with chemical composition assuring a possibility of producing Ni-basedsupersaturated solid solution are presented. The alloy was prepared from tungsten, nickel, cobalt and iron powders which were first mixedthen melted in a ceramic crucible where they slowly solidified in hydrogen atmosphere. Next specimens were cut from the casting andheated at a temperature 950oC. After solution treatment the specimens were water quenched and then aged for 20 h at a temperature 300oC.The specimens were subjected to microhardness measurements and structure investigations. The latter included both conventionalmetallography and SEM observations. Moreover, for some specimens X-ray diffractometry studies and TEM investigations wereconducted. It was concluded that quenching lead to an increase of tungsten concentration in nickel matrix which was confirmed by Nilattice parameter increase. Aging of supersaturated solid solution caused strengthening of the Ni-based matrix, which was proved byhardness measurements. The TEM observation did not yield explicit proofs that the precipitation process could be responsible forstrengthening of the alloy.

  20. Butt-welding Residual Stress of Heat Treatable Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    C.M. Cheng

    2007-01-01

    This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.

  1. Influence of casting procedures on the corrosion resistance of clinical dental alloys containing palladium.

    Science.gov (United States)

    Viennot, Stéphane; Lissac, Michèle; Malquarti, Guillaume; Dalard, Francis; Grosgogeat, Brigitte

    2006-05-01

    The aim of this study was to compare the in vitro corrosion resistance in artificial saliva of two palladium-silver alloys (a Pd-Ag (Pors on 4) and an Ag-Pd (Palliag LTG)), with and without casting defects; 1 nickel-chrome alloy and 1 high-gold alloy, cast under recommended conditions, served as controls. For each of the palladium-based alloys, three specimens corresponding to three different casting conditions were used: under recommended conditions, with the use of a graphite-containing investment and crucible, and by reusing the sprues and sprue button. The electrochemical tests were run in Fusayama-Meyer artificial saliva. The open-circuit potential was recorded in mV/SCE at t=24h. Then, potentiodynamic polarization was performed to measure the polarization resistance (R(p)) in kOmega cm(2) and the corrosion current (i(corr)) in microA cm(-2). Data were evaluated with one-way analysis of variance and multiple comparisons test (alpha=0.05). In addition, each specimen was examined by scanning electron microscopy. Compared to the control alloys, the electrochemical experiments in artificial saliva indicated satisfactory corrosion resistance for the Pd-Ag and Ag-Pd alloys; these results are related to their high noble metal content and stable substructure. The Pd-Ag alloy displayed superior electrochemical properties to those of the Ag-Pd alloy regardless of the casting condition. The use of the graphite-containing crucible and investment during the cast process did not dramatically reduce the corrosion resistance values, but the reuse of sprues and the sprue button did. The optimal corrosion resistance values were obtained for the alloys cast according to the recommended conditions.

  2. Cr20Ni80镍铬合金电热丝的热处理%Heat treatment of Cr20Ni80 alloy heating wire

    Institute of Scientific and Technical Information of China (English)

    潘丽霞; 杨燕

    2013-01-01

    通过研究固溶温度和时效温度对Cr20Ni80镍铬合金电热丝硬度、电阻率和线膨胀系数的影响,以确定Cr20Ni80合金的固溶及时效工艺.结果表明,最佳处理工艺为1150℃固溶处理+930℃×10h时效,电热丝的线膨胀系数明显下降,而电阻率无明显变化.%By studying the influence of solid solution temperature and aging temperature on hardness,resistivity,and linear expansion coefficient of Cr20Ni80 alloy heating wire,solid solution and aging process of Cr20Ni80 alloy were determined.The results show that after solid solution at 1150 ℃ and aged at 930 ℃ for 10 h,the linear expansion coefficient decreases significantly,electrical resistivity no change,hardness decreases slightly.

  3. Structure and Corrosion Resistance of Microarc Oxidation Coatings on AZ91D Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Cui Shihai; Han Jianmin; Li Weijing; Li Ronghua; Zhu Xiaowen; Wang Jinhua

    2004-01-01

    Magnesium alloys are widely used as shells of 3C (computer, mobile phone and consumer electronics) equipments for its impressive mechanical and physical properties, such as low density, good resistance to electromagnetic radiation, suitable for high pressure diecasting and easily recycling, etc. But poor corrosion resistance confines its extensively application. In this paper, protective coatings was successfully prepared on AZ91D magnesium alloys by micro-arc oxidation (MAO) and painting process. Microstructures and phases of MAO coatings were invesgated with scanning electron microscope (SEM) and X-Ray diffractometer. Mechanical properties of MAO coating, such as adhesive force and corrosion resistance, were also tested. Results showed that MAO coatings were a good base for painting process. MAO coatings with paint have good adhesive properties to base metal and excellent corrosion resistance. Micro-arc oxidation with painting process is a good kind of surface treatment to improve the corrosion resistance of mobile phone shell made of AZ91D magnesium alloys.

  4. Cooperative effect of silicon and other alloying elements on creep resistance of titanium alloys: insight from first-principles calculations.

    Science.gov (United States)

    Li, Yang; Chen, Yue; Liu, Jian-Rong; Hu, Qing-Miao; Yang, Rui

    2016-07-28

    Creep resistance is one of the key properties of titanium (Ti) alloys for high temperature applications such as in aero engines and gas turbines. It has been widely recognized that moderate addition of Si, especially when added together with some other elements (X), e.g., Mo, significantly improves the creep resistance of Ti alloys. To provide some fundamental understandings on such a cooperative effect, the interactions between Si and X in both hexagonal close-packed α and body-centered cubic β phases are systematically investigated by using a first-principles method. We show that the transition metal (TM) atoms with the number of d electrons (Nd) from 3 to 7 are attractive to Si in α phase whereas those with Nd > 8 and simple metal (SM) alloying atoms are repulsive to Si. All the alloying atoms repel Si in the β phase except for the ones with fewer d electrons than Ti. The electronic structure origin underlying the Si-X interaction is discussed based on the calculated electronic density of states and Bader charge. Our calculations suggest that the beneficial X-Si cooperative effect on the creep resistance is attributable to the strong X-Si attraction.

  5. Cooperative effect of silicon and other alloying elements on creep resistance of titanium alloys: insight from first-principles calculations

    Science.gov (United States)

    Li, Yang; Chen, Yue; Liu, Jian-Rong; Hu, Qing-Miao; Yang, Rui

    2016-07-01

    Creep resistance is one of the key properties of titanium (Ti) alloys for high temperature applications such as in aero engines and gas turbines. It has been widely recognized that moderate addition of Si, especially when added together with some other elements (X), e.g., Mo, significantly improves the creep resistance of Ti alloys. To provide some fundamental understandings on such a cooperative effect, the interactions between Si and X in both hexagonal close-packed α and body-centered cubic β phases are systematically investigated by using a first-principles method. We show that the transition metal (TM) atoms with the number of d electrons (Nd) from 3 to 7 are attractive to Si in α phase whereas those with Nd > 8 and simple metal (SM) alloying atoms are repulsive to Si. All the alloying atoms repel Si in the β phase except for the ones with fewer d electrons than Ti. The electronic structure origin underlying the Si-X interaction is discussed based on the calculated electronic density of states and Bader charge. Our calculations suggest that the beneficial X-Si cooperative effect on the creep resistance is attributable to the strong X-Si attraction.

  6. Structural transformations in wear resistance of iron- and cobalt-based amorphous alloys during abrasive wear

    Science.gov (United States)

    Korshunov, L. G.; Shabashov, V. A.; Chernenko, N. L.

    2010-04-01

    The wear resistance and structural changes in a number of amorphous alloys based on iron and cobalt and in high-carbon tool steels are studied during wear by a fixed abrasive (crondum, Carborundum) at room temperature and -196°C. The abrasive wear resistance of the amorphous alloys is shown to be 1.6-3.1 lower than that of the high-carbon tool steels having a similar hardness. The relatively low level of the abrasive wear resistance of the amorphous alloys is assumed to be caused by strain softening of their surface during wear. A nanocrystalline structure is found to form in local microvolumes in a thin deformed surface layer of the alloys.

  7. Electrodeposition of high corrosion resistance Cu/Ni-P coating on AZ91D magnesium alloy

    Science.gov (United States)

    Zhang, Shan; Cao, Fahe; Chang, Linrong; Zheng, JunJun; Zhang, Zhao; Zhang, Jianqing; Cao, Chunan

    2011-08-01

    High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density ( Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.

  8. Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials

    Indian Academy of Sciences (India)

    Anil Thakur; N S Negi; P K Ahluwalla

    2005-08-01

    The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.

  9. Study on shear resistance of aluminum alloy I-section members

    Institute of Scientific and Technical Information of China (English)

    Zhen DONG; Qilin ZHANG

    2008-01-01

    The design method for the shear resistance of aluminum alloy I-section members is presented, taking into consideration of the post-buckling strength of webs and the restraint effect of flanges, and the practical design formulas are proposed. The deflection of aluminum alloy I-section members under concentrated load is simulated by using the finite element method, and several design theories are discussed. The relation of shear resistance to the maximum web displacement reflects that the web of aluminum alloy I-section member is under fewer shears buckling force, while the whole member has higher shear resistance. However, the traditional design method is not able to give the real shear resistance of aluminum alloy I-section members. The proposed design formulas for the shear resistance of aluminum alloy I-section members is used to calculate accurately the post-buckling resistance of webs and the shear resistance contribution of flanges. The results are in a great agreement with the test data of Hamoodi M J, Burr C A, Evans H R and the results from Eurocode9 formulas.

  10. Influence of Solution Heat Treatment on Structure and Mechanical Properties of ZnAl22Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-09-01

    Full Text Available The influence of solution heat treatment at 385°C over 10 h with cooling in water on the structure, hardness and strength of the ZnAl22Cu3 eutectoid alloy is presented in the paper. The eutectoid ZnAl22Cu3 alloy is characterized by a dendritic structure. Dendrites are composed of a supersaturated solid solution of Al in Zn. In the interdendritic spaces a eutectoid mixture is present, with an absence of the ε (CuZn4 phase. Solution heat treatment of the ZnAl22Cu3 alloy causes the occurrence of precipitates rich in Zn and Cu, possibly ε phase. Solution heat treatment at 385°C initially causes a significant decrease of the alloy hardness, although longer solution heat treatment causes a significant increase of the hardness as compared to the as-cast alloy.

  11. New creep resistant cast alloys with improved oxidation resistance in water vapor at 650-800ºC

    OpenAIRE

    Sebastien eDryepondt; Pint, Bruce A.; Maziasz, Philip J.

    2015-01-01

    Cast stainless steel CF8C-Plus (19wt.%Cr/12%Ni) has excellent creep properties, but limited oxidation resistance above 700ºC in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with respectively 21wt%Cr-15wt%Ni and 22wt%Cr-17.5wt%Ni were therefore developed and their long-term oxidation behavior in humid air were compared with the oxidation behavior of five other cast alloys. At 650 and 700ºC, all ...

  12. New Creep-Resistant Cast Alloys with Improved Oxidation Resistance in Water Vapor at 650–800°C

    OpenAIRE

    Dryepondt, Sebastien; Pint, Bruce A.; Maziasz, Philip J.

    2015-01-01

    Cast stainless steel CF8C-Plus (19wt%Cr/12%Ni) has excellent creep properties, but limited oxidation resistance above 700°C in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with, respectively, 21wt%Cr–15wt%Ni and 22wt%Cr–17.5wt%Ni were therefore developed and their long-term oxidation behaviors in humid air were compared with the oxidation behavior of five other cast alloys. At 650°C and 700°C, ...

  13. Joule heating and anomalous resistivity in the solar corona

    Directory of Open Access Journals (Sweden)

    S. R. Spangler

    2009-06-01

    Full Text Available Recent radioastronomical observations of Faraday rotation in the solar corona can be interpreted as evidence for coronal currents, with values as large as 2.5×109 Amperes (Spangler, 2007. These estimates of currents are used to develop a model for Joule heating in the corona. It is assumed that the currents are concentrated in thin current sheets, as suggested by theories of two dimensional magnetohydrodynamic turbulence. The Spitzer result for the resistivity is adopted as a lower limit to the true resistivity. The calculated volumetric heating rate is compared with an independent theoretical estimate by Cranmer et al. (2007. This latter estimate accounts for the dynamic and thermodynamic properties of the corona at a heliocentric distance of several solar radii. Our calculated Joule heating rate is less than the Cranmer et al estimate by at least a factor of 3×105. The currents inferred from the observations of Spangler (2007 are not relevant to coronal heating unless the true resistivity is enormously increased relative to the Spitzer value. However, the same model for turbulent current sheets used to calculate the heating rate also gives an electron drift speed which can be comparable to the electron thermal speed, and larger than the ion acoustic speed. It is therefore possible that the coronal current sheets are unstable to current-driven instabilities which produce high levels of waves, enhance the resistivity and thus the heating rate.

  14. XPS study of the corrosion resisting composite alloying layer obtained by double glow plasma with the brush plating Ni interlayer

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Xishan Xie; Zhong Xu; Wenjin Liu

    2004-01-01

    The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brush plating Ni interlayer on the low carbon steel substrate has been investigated. By the electrochemical method in 3.5% (mass fraction) NaC1 solution, the corrosion resistance of the composite alloying layer and single alloying layer is determined. The experimental results show that the corrosion resistance of the composite alloying layer is obviously better than that of the single alloying layer. The structure and composition of passive films formed on the two kinds of alloyed layers after electrochemical tests in 3.5% NaC1 solution have been studied using X-ray photoelectron spectroscopy (XPS). It is concluded that the double glow plasma surface alloying of low carbon steel with the electric brush plating Ni interlayer is an appropriate technique to enhance the corrosion resistance compared with the single double glow surface alloying.

  15. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  16. Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (Al-Mg-Si-Cu

    Directory of Open Access Journals (Sweden)

    JongBeom Kim

    2013-01-01

    Full Text Available The nonlinear ultrasonic technique has been known to be more sensitive to minute variation of elastic properties in material than the conventional linear ultrasonic method. In this study, the ultrasonic nonlinear characteristics in the heat-treated aluminum alloy (Al-Mg-Si-Cu have been evaluated. For this, the specimens were heat treated for various heating period up to 50 hours at three different heating temperatures: 250°C, 300°C, and 350°C. The ultrasonic nonlinear characteristics of each specimen were evaluated by measuring the ultrasonic nonlinear parameter β from the amplitudes of fundamental and second harmonic frequency components in the transmitted ultrasonic wave. After the ultrasonic test, tensile strengths and elongations were obtained by the tensile test to compare with the parameter β. The heating time showing a peak in the parameter β was identical to that showing critical change in the tensile strength and elongation, and such peak appeared at the earlier heating time in the higher heating temperature. These results suggest that the ultrasonic nonlinear parameter β can be used for monitoring the variations in elastic properties of aluminum alloys according to the heat treatment.

  17. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  18. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  19. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods.

    Science.gov (United States)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-28

    Knowledge of bacteria's heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria's heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample's thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS's performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria's thermo-tolerances.

  20. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    Science.gov (United States)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances.

  1. Surface cracking of tungsten-vanadium alloys under transient heat loads

    Directory of Open Access Journals (Sweden)

    Kameel Arshad

    2015-07-01

    Full Text Available To evaluate high heat load performance of tungsten-vanadium (W-V alloys as a potential candidate for plasma facing materials of fusion devices, the target materials with three different V concentrations (1, 5 and 10 wt% are exposed to thermal shock loading. The alloys are fabricated by cold isostatic pressing and subsequently sintered in a vacuum furnace. Thereafter, they are exposed to different high heat flux densities ranging from 340 to 675 MW/m2 for single shot of 5 ms duration in an intense electron beam test facility. The alloys with lowest V concentration (1 wt% are highly damaged in form of seriously cracking. The ones with intermediate V content (5 wt% has shown comparatively better performance than both highest and lowest V contents alloys. The results indicate that improved mechanical properties and reduced thermal conductivity due to V addition comprehensively affect the cracking behavior of W-V alloy under transient thermal shock.

  2. Heat and mechanical resistance of zinc coating

    Directory of Open Access Journals (Sweden)

    Karel Horák

    2010-01-01

    Full Text Available The article is aimed at studying the effect of temperature on structure of intermetallic phases of the protective zinc layer. The main objective of the article is a description of the structure and the changes that can occur during the heating process. The first part of the article deals with the description of the structure and mechanical properties of the interfacial phases and their arrangement. The main part of the article is aimed at study of brittle intermetallic phases, which arise due to increased temperature. For this reason, a set of samples of steel CSN 11 321 (DC01 was prepared. These samples were subjected to thermal heating in the tempering furnace. Subsequently metallographic cross sections were prepared, observed and assessed using SEM microscopy and EDS analysis. Also accelerated corrosion tests and pull off bend tests were performed. Conclusion of the article is trying to explain the influence of intermetallic phases on degradation of the protective layer.

  3. Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia.

    Science.gov (United States)

    Paulus, J A; Richardson, J S; Tucker, R D; Park, J B

    1996-04-01

    Ferromagnetic alloys heated by magnetic induction have been investigated as interstitial hyperthermia delivery implants for over a decade, utilizing low Curie temperatures to provide thermal self-regulation. The minimally invasive method is attractive for fractionated thermal treatment of tumors which are not easily heated by focused microwave or ultrasound techniques. Past analyses of ferromagnetic seeds by other authors depict poor experimental correlation with theoretical heating predictions. Improvements in computer hardware and commercially available finite element analysis software have simplified the analysis of inductively heated thermal seeds considerably. This manuscript examines end effects of finite length implants and nonlinear magnetic material properties to account for previous inconsistencies. Two alloys, Ni-28 wt% Cu (NiCu) and Pd-6.15 wt% Co (PdCo), were used for comparison of theoretical and experimental calorimetric results. Length to diameter (L/d) ratios of over 20 for cylindrical seeds are necessary for minimization of end effects. Magnetic properties tested for alloys of NiCu and PdCo illustrate considerable nonlinearity of these materials in field strength ranges used for induction heating. Field strength dependent magnetic permeabilities and calorimetric data illustrate that more detailed material information must be included to accurately estimate induction power loss for these implants.

  4. Heat treatment of the EN AC-AlSi9Cu3(Fe alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-04-01

    Full Text Available Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron the silumins can be characterized by high mechanical properties. Additionally, they feature good casting properties, good machinability and good thermal conductivity. i.e. properties as required for machinery components operating in high temperatures and at considerable loads. Mechanical properties of the silumins can be upgraded, implementing suitably selected heat treatment. In the paper is presented an effect of modification and heat treatment processes on mechanical properties of the EN AC-AlSi9Cu3(Fe alloy. Investigated alloy has undergone typical processes of modification and refining, and next heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results concern registered melting and solidification curves from the ATD method and strength tests. On base of the performed tests one has determined range of the heat treatment parameters which would assure obtainment of the best possible mechanical properties of the EN AC-AlSi9Cu3(Fe alloy.

  5. Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment

    Institute of Scientific and Technical Information of China (English)

    FAN Xi-gang; JIANG Da-ming; MENG Qing-chang; ZHANG Bao-you; WANG Tao

    2006-01-01

    The evolution of the eutectic structures in the alloys with different copper contents during heat treatment was studied by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), and differential scanning calorimetry(DSC). The as cast microstructures involve α(Al), eutectic(α(Al) + Mg(Al, Cu, Zn)2) and Al7Cu2Fe. The Al2CuMg particles form during heat treatment. The volume of coarse phases decreases quickly in the initial 12 h during heat treatment. The volume of coarse phases change a little at 400 and 420 ℃. Copper content has a great influence on the evolution of the eutectic. The coarse phases dissolve slowly in alloy with higher copper content.

  6. Cyclic Deformation Behavior of a Rare-Earth Containing Extruded Magnesium Alloy: Effect of Heat Treatment

    Science.gov (United States)

    Mirza, F. A.; Chen, D. L.; Li, D. J.; Zeng, X. Q.

    2015-03-01

    The present study was aimed at evaluating strain-controlled cyclic deformation behavior of a rare-earth (RE) element containing Mg-10Gd-3Y-0.5Zr (GW103K) alloy in different states (as-extruded, peak-aged (T5), and solution-treated and peak-aged (T6)). The addition of RE elements led to an effective grain refinement and weak texture in the as-extruded alloy. While heat treatment resulted in a grain growth modestly in the T5 state and significantly in the T6 state, a high density of nano-sized and bamboo-leaf/plate-shaped β' (Mg7(Gd,Y)) precipitates was observed to distribute uniformly in the α-Mg matrix. The yield strength and ultimate tensile strength, as well as the maximum and minimum peak stresses during cyclic deformation in the T5 and T6 states were significantly higher than those in the as-extruded state. Unlike RE-free extruded Mg alloys, symmetrical hysteresis loops in tension and compression and cyclic stabilization were present in the GW103K alloy in different states. The fatigue life of this alloy in the three conditions, which could be well described by the Coffin-Manson law and Basquin's equation, was equivalent within the experimental scatter and was longer than that of RE-free extruded Mg alloys. This was predominantly attributed to the presence of the relatively weak texture and the suppression of twinning activities stemming from the fine grain sizes and especially RE-containing β' precipitates. Fatigue crack was observed to initiate from the specimen surface in all the three alloy states and the initiation site contained some cleavage-like facets after T6 heat treatment. Crack propagation was characterized mainly by the characteristic fatigue striations.

  7. Improvement of corrosion resistance of AZ91D magnesium alloy by gadolinium addition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xue-hua; WEI Zhong-ling; CHEN Qiu-rong; GAN Fu-xing

    2006-01-01

    Based on the previous investigation on beneficial introduction of holmium into magnesium alloy, the effect of gadolinium, an adjacent rare earth element, on corrosion resistance was examined. The corrosion behavior of two Mg-9Al-Gd alloys (Mg-9Al-0.45Gd and Mg-9Al-1.43Gd) was evaluated and compared with that of Mg-9Al alloy without Gd by means of specimen mass loss and hydrogen evolution in 3.5% NaCl solution saturated with Mg(OH)2. The Gd-containing alloys exhibit enhanced corrosion resistance with respect to the plain Mg-9Al alloy. The microstructures of Mg-9Al alloy and Mg-9Al-0.45 Gd alloy were observed by electron probe microanalysis (EPMA) and energy dispersion spectroscopy (EDS). The alloys with Gd addition show a microstructure characterized by α phase solid solution, surrounded by minor amount of β phase and more grain-like Gd-containing phase. To illustrate the involved mechanism their polarization curves were recorded. The electrochemical investigations reveal that Gd addition shifts the corrosion potential of the alloy towards active, as Gd containing phase is more active and hence less cathodic. As a result, the micro-galvanic corrosion is suppressed. Moreover corrosion product films formed on the Gd containing alloys are more compact and provide a better protective effectiveness than that on the alloy without Gd against corrosion. Repassivation measurements in mixture solution of 0.21 mol/L K2CrO4+0.6 mol/L NaCl also verify the beneficial role of Gd addition. Based on the present preliminary analysis, both the deposited Gd-containing phases and corrosion product films are believed to be responsible for the improved corrosion behaviour due to Gd addition.

  8. Grain refinement in a cast high Nb containing TiAl alloy by heat treatment

    Institute of Scientific and Technical Information of China (English)

    LIU Zicheng; LIN Junpin; WANG Yanli; LIN Zhi; SONG Xiping; CHEN Guoliang

    2004-01-01

    The grain refinement of an as-cast Ti-46Al-8.5Nb-0.2W (atom fraction in %) alloy by the cyclic heat treatments was studied. The heat treatment scheme included a tempering at 1250°C and cyclic tempering at 1000 and 1200°C three times after solution treatment at the temperature above o phase transus followed by immediate fan cooling. The fine and homogeneous near-γ microstructure can be obtained by this heat treatment, which causes the breakdown of as-cast microstructure and prevents the anomalous growing of original γ phase.

  9. Investigation of Martensite Formation in Fe Based Alloys During Heating From Boiling Nitrogen Temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Christiansen, Thomas L.; Hansen, Mikkel F.;

    2015-01-01

    he austenite-to-martensite transformation at temperatures below room temperature was investigated in situ by magnetometry in Fe-N, Fe-Cr-C and Fe-Cr-Ni based alloys. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during...... heating was convincingly demonstrated for all investigated materials by showing heating rate dependent transformation kinetics. Moreover, magnetometry showed that the heating rate influences the fraction of martensite formed during the thermal treatment. The activation energy for thermally activated...

  10. Effect of post weld heat treatment on the mechanical and corrosion behaviour of welded Al-Fe-Si alloy joints

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2017-06-01

    Full Text Available Al-Fe-Si alloy was joined by shielded metal arc welding (SMAW process and the effects of post weld heat treatment (PWHT on the mechanical (tensile and hardness properties, corrosion behaviour and microstructure of the welded joints were investigated. The welded samples were divided into as-weld (AW, PWHT, base metal (BM and heat treated base metal (HT BM samples. Artificial aging was carried out on part of the welded sample at 177 °C with holding time of 8 hours to obtain the PWHT samples. The various samples were subjected to tensile, hardness and corrosion tests while microstructures of the fractured surfaces were viewed under optical microscope. From the results, it was observed that corrosion susceptibility of the alloy in 3.5 wt% NaCl solution was highly reduced after PWHT. The hardness was reduced after PWHT while the yield strength and joint efficiency was improved compared to the AW sample. The improvement in corrosion resistance, yield strength and joint efficiency are 78, 8.4 and 8.7 %, respectively.

  11. Effect of Heat Treatment on Fatigue Behavior of Biomedical Ni-Ti Alloy Wires Under Ultrasonic Conditions

    Science.gov (United States)

    Zhou, Huimin; Li, Li; Zheng, Yufeng; Li, Qingfen

    2011-06-01

    The super-elastic Ti-50.8 at.% Ni alloy wires were tested under ultrasonic conditions using a self-designed ultrasonic fatigue tester. Different heat treatment processes were subjected to Ni-Ti wires in order to obtain different combinations of phase microstructure and corresponding mechanical properties. The fatigue behavior was evaluated under ultrasonic conditions. Experimental results show that proper thermo-mechanical treatment process increased the fatigue life of Ni-Ti wire obviously, because it could adjust the microstructure of Ni-Ti alloys, as well as the work-hardening effect. The longest fatigue life of Ni-Ti wire under ultrasonic conditions was obtained when it was annealed after cold drawing. The strengthen effect of heat treatment was attributed to the fine Ti3Ni4 precipitated phase, and the strengthen effect of cold drawing was attributed to the high density of dislocations. The SEM results show that smooth fractured faces with dimples existing in the propagation region of the fatigue cracks, indicating the excellent ductility and the resistance to the propagation of fatigue cracks of NiTi wires.

  12. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    Science.gov (United States)

    Benafan, O.; Chen, S.-Y.; Kar, A.; Vaidyanathan, R.

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  13. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov, E-mail: raj@ucf.edu; Vaidyanathan, R., E-mail: othmane.benafan@nasa.gov, E-mail: raj@ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Materials Science and Engineering, Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chen, S.-Y.; Kar, A. [Laser-Advanced Materials Processing Laboratory, Center for Research and Education in Optics and Lasers (CREOL), College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States)

    2015-12-15

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell’s equations and heat conduction.

  14. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [ORNL; Babu, Prof. Sudarsanam Suresh [University of Tennessee, Knoxville (UTK); Shassere, Benjamin [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  15. Mechanical properties and corrosion resistance of low rigidity quaternary titanium alloy for biomedical applications

    Institute of Scientific and Technical Information of China (English)

    Han-Cheol CHOE; Viswanathan S. SAJI; Yeong-Mu KO

    2009-01-01

    Electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy fabricated by arc melting and heat treatment process was studied in 0.9% NaCl at (37±1) ℃. Phase and microstructure of the fabricated alloy were investigated using X-ray diffractometer and scanning electron microscope. Mechanical properties such as yield strength and elastic modulus of the alloy were determined by tensile test. Potentiodynamic polarization technique and impedance spectroscopy were employed to study the corrosion behavior. The results of the study were compared with those obtained for Ti-6Al-4V commercial alloy. The result of the study supports feasibility of Ti-35Nb-5Ta-7Zr alloy for implant applications.

  16. Electrical resistivity and thermal conductivity of hcp Fe-Ni alloys under high pressure: Implications for thermal convection in the Earth's core

    Science.gov (United States)

    Gomi, Hitoshi; Hirose, Kei

    2015-10-01

    We measured the electrical resistivity of Fe-Ni alloys (iron with 5, 10, and 15 wt.% nickel) using four-terminal method in a diamond-anvil cell up to 70 GPa at 300 K. The results demonstrate that measured resistivity increases linearly with increasing nickel impurity concentration, as predicted by the Matthiessen's rule. The impurity resistivity is predominant at ambient temperature; the incorporation of 5 wt.% nickel into iron doubles the electrical resistivity at 60 GPa. Such impurity effect becomes minor at high temperature of the Earth's core because of the resistivity "saturation". We also calculated that >0.9 TW heat flow is necessary at the top of the inner core for thermal convection in the inner core. It requires the CMB heat flow of ∼30 TW, which is much higher than recent estimates of 5-15 TW. This means that purely thermal convection does not occur in the inner core.

  17. Effect of austenitization heat treatment on the magnetic properties of Fe-40wt% Ni-2wt% Mn alloy

    Institute of Scientific and Technical Information of China (English)

    S. Buyukakkas; H. Aktas; S. Akturk

    2007-01-01

    The effect of austenitization heat treatment on magnetic properties was examined by means of M(o)ssbauer spectroscopy on an Fe-40wt%Ni-2wt%Mn alloy. The morphology of the alloy was obtained by using scanning electron microscopy (SEM) under different heat treatment conditions. The magnetic behavior of the non heat-treated alloy is ferromagnetic. A mixed magnetic structure including both paramagnetic and ferromagnetic states was obtained at 800℃ after 6 and 12 h heat treatments. In addition, the magnetic structure of the heat-treated alloy at 1150℃ for 12 h was ferromagnetic. With the volume fraction changing, the effective hyperfine field of the ferromagnetic austenite phase and isomery shift values were also determined by M(o)ssbauer spectroscopy.

  18. Microstructure evaluation in low alloy steel weld metal from convective heat transfer calculations in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Mundra, K.; DebRoy, T.; Babu, S.S. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; David, S.A. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    Heat transfer and fluid flow during manual metal arc welding of low alloy steels were investigated by solving the equations of conservation of mass, momentum, and energy in three dimensions. Cooling rates were calculated at various locations in the weldment. Calculated cooling rates were coupled with an existing phase transformation model to predict percentages of acicular, allotriomorphic, and Widmanstaetten ferrites in various low alloy steel welds containing different concentration of V and Mn. Computed microstructures were in good agreement with experiment, indicating promise for predicting weld metal microstructure from the fundamentals of transport phenomena.

  19. Effect of Electromagnetic Treatment on Fatigue Resistance of 2011 Aluminum Alloy

    Science.gov (United States)

    Mohin, M. A.; Toofany, H.; Babutskyi, A.; Lewis, A.; Xu, Y. G.

    2016-08-01

    Beneficial effects of the electromagnetic treatment on fatigue resistance were reported on several engineering alloys. These could be linked to the dislocation activity and the rearrangement of the crystal structure of the material under the electromagnetic field (EMF), resulting in delayed crack initiation. This paper presents an experimental study on the effect of pulsed electromagnetic treatment on the fatigue resistance of 2011 aluminum alloy. Circular cantilever specimens with loads at their ends were tested on rotating fatigue machine SM1090. Fatigue lives of treated and untreated specimens were analyzed and compared systematically. It has been found that the effect of the pulsed electromagnetic treatment on the fatigue resistance is dependent on the intensity of the pulsed EMF and the number of the treatment applied. Clear beneficial effect of the pulsed electromagnetic treatment on the fatigue resistance of the aluminum alloys has been observed, demonstrating a potential new technique to industries for fatigue life extension.

  20. Fullerenes synthesis by combined resistive heating and arc discharge techniques.

    Science.gov (United States)

    Kyesmen, Pannan Isa; Onoja, Audu; Amah, Alexander Nwabueze

    2016-01-01

    The two main electrode techniques for fullerenes production; the direct arc technique and the resistive heating of graphite rod were employed in this work. One of the electrodes was resistively heated to high temperature and subjected to arc discharge along its length by the second graphite rod. Fullerenes solid were extracted from carbon soot samples collected from an installed arc discharge system using the solvent extraction method. The fullerenes solid obtained from carbon soot collected for 2 min of arc discharge run when one of the electrodes was resistively heated at different voltages all gave higher yields (maximum of 67 % higher, at 150 A arc current and 200 Torr chamber pressure) compared to when no resistive heating was carried out. Scanning electron microscopy and ultraviolet visible spectroscopy analysis carried out on all fullerenes solid indicated the presence of fullerenes. The enhancement of fullerenes production by combined resistive and direct arc techniques shows prospect for possible use at industrial level for large scale production.

  1. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance

    Science.gov (United States)

    Stringer, Sandra C.; Barker, Gary C.; Peck, Michael W.

    2016-01-01

    ABSTRACT Heat treatment is an important controlling factor that, in combination with other hurdles (e.g., pH, aw), is used to reduce numbers and prevent the growth of and associated neurotoxin formation by nonproteolytic C. botulinum in chilled foods. It is generally agreed that a heating process that reduces the spore concentration by a factor of 106 is an acceptable barrier in relation to this hazard. The purposes of the present study were to review the available data relating to heat resistance properties of nonproteolytic C. botulinum spores and to obtain an appropriate representation of parameter values suitable for use in quantitative microbial risk assessment. In total, 753 D values and 436 z values were extracted from the literature and reveal significant differences in spore heat resistance properties, particularly those corresponding to recovery in the presence or absence of lysozyme. A total of 503 D and 338 z values collected for heating temperatures at or below 83°C were used to obtain a probability distribution representing variability in spore heat resistance for strains recovered in media that did not contain lysozyme. IMPORTANCE In total, 753 D values and 436 z values extracted from literature sources reveal significant differences in spore heat resistance properties. On the basis of collected data, two z values have been identified, z = 7°C and z = 9°C, for spores recovered without and with lysozyme, respectively. The findings support the use of heat treatment at 90°C for 10 min to reduce the spore concentration by a factor of 106, providing that lysozyme is not present during recovery. This study indicates that greater heat treatment is required for food products containing lysozyme, and this might require consideration of alternative recommendation/guidance. In addition, the data set has been used to test hypotheses regarding the dependence of spore heat resistance on the toxin type and strain, on the heating technique used, and on the

  2. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  3. Heat-Resistant Composite Materials Based on Polyimide Matrix

    Directory of Open Access Journals (Sweden)

    Vitaly Sergeyevich Ivanov

    2016-12-01

    Full Text Available Heat-resistant composite materials with a polyimide-based binder were obtained in this paper. Composites were prepared with different content of single-wall carbon nanotubes (SWCNT and nanostructured silicon carbide, and polyimides coated carbon fibers woven into the cloth. Composite materials showed high values of thermostability and resistance to thermo-oxidative degradation, as well as good mechanical properties.

  4. A study on the surface shape and roughness of aluminum alloy for heat exchanger using ball end milling

    Science.gov (United States)

    Lee, E.; Kim, Y.; jeong, H.; Chung, H.

    2015-09-01

    Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball end milling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball end milling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

  5. Effects of Dy on cyclic oxidation resistance of NiAl alloy

    Institute of Scientific and Technical Information of China (English)

    GUO Hong-bo; WANG Xiao-yan; LI Ji; WANG Shi-xing; GONG Sheng-kai

    2009-01-01

    The NiAl alloys modified by reactive element(RE), dysprosium(Dy), were produced by arc melting. The microstructures of the modified alloys were investigated by field emission-scanning electron microscope(FE-SEM) equipped with energy dispersive spectroscope(EDS) and back scatter detector. Cyclic oxidation tests at 1 200 ℃ were conducted to assess the cyclic oxidation performance of the alloys. The Dy dopant prevents the surface rumpling of the oxide scale and the formation of cavities beneath the oxide scale. The pegs consisting of Dy-rich oxide inclusion core and an outer alumina sheath develop deeply in the alloy and improve the oxide scale adhesion. 0.05%-0.1% (molar fraction) Dy dramatically improves the cyclic oxidation resistance of the NiAl alloy. Too high concentration of Dy is deleterious because of the fast oxidation rate caused by severe internal oxidation.

  6. Approaches to oxidation-resistant refractory metal alloys

    OpenAIRE

    Wright, I; Nagarajan, V.

    1993-01-01

    The focus of the research reported here was on the design of high-temperature alloys which would form protective SiO2 and Al2O3 scales on exposure to high-temperature, oxidizing environments. One way to promote the growth of such scales is to incorporate sufficient amounts of Si or Al in the alloy substrate ; typically, additions of approximately 35 to 45 weight percent (all alloy compositions are given in weight percent unless explicitly stated otherwise) of Si or Al would be required to for...

  7. Review of creep resistant alloys for power plant applications

    Directory of Open Access Journals (Sweden)

    A. Nagode

    2011-01-01

    Full Text Available A paper describes the most popular alloys for power plant application as well as the most promising alloys for future application in that technology. The components in power plants operate in severe conditions (high temperatures and pressures and they are expected reliable service for 30 years and more. The correct choice of the material is, thus, of a very importance. The paper describes the development as well as advantages and disadvantages of convenient ferritic/martensitic steels, ferritic/bainitic steels, austenitic stainless steels and the new alloys for the application at temperatures of 650°C and more.

  8. Effect of heat treatment on tensile and fatigue deformation behavior of extruded Al-12 wt%Si alloy

    Science.gov (United States)

    Ham, Gi-Su; Baek, Min-Seok; Kim, Jong-Ho; Lee, Si-Woo; Lee, Kee-Ahn

    2017-01-01

    This study investigated the effect of heat treatment on tensile and high-cycle fatigue deformation behavior of extruded Al-12 wt%Si alloy. The material used in this study was extruded at a ratio of 17.7: 1 through extrusion process. To identify the effects of heat treatment, T6 heat treatment (515 °C/1 h, water quenching, and then 175 °C/10 h) was performed. Microstructural observation identified Si phases aligned in the extrusion direction in both extruded alloy (F) and heat treated alloy (T6). The average grain size of F alloy was 8.15 °C, and that of T6 alloy was 8.22 °C. Both alloys were composed of Al matrix, Si, Al2Cu, Al3Ni and AlFeSi phases. As T6 heat treatment was applied, Al2Cu phases became more finely and evenly distributed. Tensile results confirmed that yield strength increased from 119.0 MPa to 329.0 MPa, ultimate tensile strength increased from 226.8 MPa to 391.4 MPa, and the elongation decreased from 16.1% to 5.0% as T6 heat treatment was applied. High-cycle fatigue results represented F alloy's fatigue limit as 185 MPa and T6 alloy's fatigue limit as 275 MPa, indicating that high-cycle fatigue properties increased significantly as heat treatment was conducted. Through tensile and fatigue fracture surface analysis, this study considered the deformation behaviors of extruded and heat treated Al-Si alloys in relation to their microstructures.

  9. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2009-01-01

    was investigated. Sulphuric, nitric and phosphoric acids of different concentrations were used to clean the alloy for various pickling times. The surface morphology, composition and phases were elucidated using scanning electron microscopy, X-ray fluorescence analysis, spark discharge-optical emission spectroscopy...... the corrosion resistance of the alloy. The cleaning efficiency of the three acids used and the corrosion protection mechanisms were found to be remarkably different. Best corrosion results were obtained with nitric acid, followed closely by phosphoric acid. Only the sulphuric acid failed more or less when...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...

  10. Diffusion Barrier Coating System and Oxidation Behavior of Coated Alloys

    Institute of Scientific and Technical Information of China (English)

    T.NARITA

    2009-01-01

    @@ 1 Introduction Research into the formation of Re-based alloys is in progress in our laboratory to provide a diffusion barrier layer between heat-resistant alloys and Al reservoir layers, which assist in the formation and maintenance a protective Al2O3 scale for long periods. Coatings with a two-layered structure comprised of inner Re-based alloy layer and outer β-NiAl layer with or without Pt addition were successfully formed on various heat resistant alloys such as Ni-based singlecrystal superalloys, Ni-based heat resistant alloys, NiMo based alloy, Ni-Cr based alloy, and Fe-based alloys. The duplex layer coating proposed is generally termed a diffusion barrier coating system; DBC system.

  11. Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders

    Science.gov (United States)

    Paul, Tanaji; Harimkar, Sandip P.

    2017-07-01

    The viscous flow behavior of Fe-based amorphous alloy powder during isochronal spark plasma sintering was analyzed under the integrated theoretical background of the Arrhenius and directional structural relaxation models. A relationship between viscous flow activation energy and heating rate was derived. An extension of the pertinent analysis to Ti-based amorphous alloys confirmed the broad applicability of such a relationship for predicting the activation energy for sintering below the glass transition temperature (T g) of the amorphous alloy powders.

  12. Evaluation of Subsequent Heat Treatment Routes for Near-β Forged TA15 Ti-Alloy

    Directory of Open Access Journals (Sweden)

    Zhichao Sun

    2016-10-01

    Full Text Available TA15 Ti-alloy is widely used to form key load-bearing components in the aerospace field, where excellent service performance is needed. Near-β forging technology provides an attractive way to form these complicated Ti-alloy components but subsequent heat treatment has a great impact on the final microstructure and mechanical properties. Therefore evaluation and determination of the heat treatment route is of particular significance. In this paper, for the near-β forged TA15 alloy, the formation and evolution of microstructures under different subsequent heat treatment routes (annealing, solution and aging, toughening and strengthening were studied and the cooling mode after forging was also considered. Then, the type and characteristics of the obtained microstructures were discussed through quantitative metallographic analysis. The corresponding mechanical properties (tensile, impact toughness, and fracture toughness and effects of microstructural characteristics were investigated. Finally, for a required microstructure and performance a reasonable heat treatment route was recommended. The work is of importance for the application and development of near-β forging technology.

  13. Effects of heat-treatment on microstructure of wrought magnesium alloy ZK60

    Institute of Scientific and Technical Information of China (English)

    MA Yan-long; PAN Fu-sheng; ZUO Ru-lin; ZHANG Jin; YANG Ming-bo

    2006-01-01

    The microstructure of the as-cast, as-solution-treated and as-aged wrought magnesium alloy ZK60 was studied. The results indicate that the microstructure of the as-cast ZK60 alloy is mainly composed of network eutectic (α-Mg+MgZn) and divorced eutectic MgZn, which semi-continuously distribute along the grain boundaries or in the interdendritic area and almost dissolve into the matrix after solid solution treatment. The Laves phase MgZn2 is not sensitive to the heat treatment and seems to form at the early stage of solidification and keeps its size and shape till the aging stage. It is believed that the occurrence of the Laves phase in the ZK60 alloy would possibly contribute to the defects. Many new phases, including MgZn phase which is different from that forms during eutectic reaction, precipitate after aging treatment.

  14. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  15. SHOT PEENING INFLUENCE ON CORROSION RESISTANCE OF AE21 MAGNESIUM ALLOY

    OpenAIRE

    Branislav Hadzima; Michal Bukovina; Pavel Doležal

    2010-01-01

    Evaluation of the electrochemical characteristics of the AE21 magnesium alloy is presented in the article. The surfaces of tested alloys were treated by grinding and grinding followed by sodium bicarbonate shot-peening. The specimens were evaluated by electrochemical impedance spectroscopy method in combination with exposure tests in 0.1 NaCl solution. The exposition times were from 5 minutes to 168 hours. The measured data were analysed using equivalent circuits and polarization resistances ...

  16. SHOT PEENING INFLUENCE ON CORROSION RESISTANCE OF AE21 MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Branislav Hadzima

    2010-12-01

    Full Text Available Evaluation of the electrochemical characteristics of the AE21 magnesium alloy is presented in the article. The surfaces of tested alloys were treated by grinding and grinding followed by sodium bicarbonate shot-peening. The specimens were evaluated by electrochemical impedance spectroscopy method in combination with exposure tests in 0.1 NaCl solution. The exposition times were from 5 minutes to 168 hours. The measured data were analysed using equivalent circuits and polarization resistances of the various corrosion systems were determined. Results of the electrochemical measurements are complemented by metallographical evaluation of the tested alloy.

  17. Very High Temperature Test of Alloy617 Compact Heat Exchanger in Helium Experimental Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Soo; Park, Byung-Ha; Kim, Eung-Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Intermediate Heat eXchanger (IHX) is a key-challenged high temperature component which determines the efficiency and the economy of VHTR system. Heat generated in the VHTR fuel block is transferred from the VHTR to the intermediate loop through IHX. In the present, the shell-helical tube heat exchanger is generally used as IHX of the helium cooled reactor. Recently, a Printed Circuit Heat Exchanger (PCHE) is one of the candidates for the IHX in a VHTR because its operation temperature and pressure are larger than any other compact heat exchanger types. These test results show that there is no problem in operation of HELP at the very high temperature experimental condition and the alloy617 compact heat exchanger can be operated in the very high temperature condition above 850℃. In the future, the high temperature structural analysis will be studied to estimate the thermal stress during transient and thermal shock condition. The conditions and evaluation standard for the alloy 617 diffusion bonding will be minutely studied to fabricate the large-scale PCHE for the high temperature condition.

  18. SIGNAL MEDIATORS AT INDUCTION OF HEAT RESISTANCE OF WHEAT PLANTLETS BY SHORT-TERM HEATING.

    Science.gov (United States)

    Karpets, Yu V; Kolupaev, Yu E; Yastreb, T O

    2015-01-01

    The effects of functional interplay of calcium ions, reactive oxygen species (ROS) and nitric oxide (NO) in the cells of wheat plantlets roots (Triticum aestivum L.) at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 degrees C during 1 minute) have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium), lanthanum chloride (blocker of calcium channels of various types) and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C). The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate) and NO-synthase (N(G)-nitro-L-arginine methyl ester--L-NAME), and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea). These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets' heat resistance, invoked by hardening heating. The conclusion on calcium's role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made.

  19. Signal mediators at induction of heat resistance of wheat plantlets by short-term heating

    Directory of Open Access Journals (Sweden)

    Yu. V. Karpets

    2015-12-01

    Full Text Available The effects of functional interplay of calcium ions, reactive oxygen species (ROS and nitric oxide (NO in the cells of wheat plantlets roots (Triticum aestivum L. at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 °С during 1 minute have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium, lanthanum chloride (blocker of calcium channels of various types and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C. The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate and NO-synthase (NG-nitro-L-arginine methyl ester – L-NAME, and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea. These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets’ heat resistance, invoked by hardening heating. The conclusion on calcium’s role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made.

  20. Corrosion resistance of 15Mo3 in steam boiler pipe surfaced with Inconel 625 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Aracic, S.; Samardzic, I.; Krumes, D. [Mechanical Engineering Faculty, Trg Ivane Brlic Mazuranic 18, HR-35000 Slavonski Brod (Croatia)

    2004-07-01

    This paper presents accelerated laboratory corrosion resistant investigation results made on steam boiler 15Mo3 steel pipes surfaced with alloy Inconel 625. Surfacing of 15Mo3 pipes was made due to pipes corrosion resistance increase in exploitation conditions which are present in fire box of trash burning plant. Corrosion resistance investigations were made in fire box simulated atmosphere and in salt spray chamber. (authors)

  1. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  2. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  3. Application of the Electricity Motor Driving Pipe End Beveling Machine in Cr-Mo Heat-resistant Alloy Steel Pipe Groove Processing%电动管端坡口机在铬钼耐热钢管坡口加工中的应用

    Institute of Scientific and Technical Information of China (English)

    何文洲

    2014-01-01

    管道在安装前都需要进行坡口加工,坡口加工质量优劣直接影响焊接质量。对常用坡口加工机具及其加工质量进行了比较分析,阐述了电动管端坡口机的结构组成和工作原理。应用效果显示:电动管端坡口机在铬钼耐热合金钢管焊接工序中加工出来的坡口平整光亮,保证了焊接质量,省时高效,避免了采用其他方式加工坡口造成的各种质量问题。而且针对钢质管道安装维修特点,提出采用直流电机和便携式锂离子电源,省时高效、经济环保。%Before pipeline installation, the pipe need bevel process, and bevel machining quality directly affects welding quality. In this article, it made a comparative analysis on the common bevel processing equipment and its processing quality, and expatiated the structure and working principle of electricity motor driving pipe end beveling machine. The application results indicated that the bevel is smooth and bright by using electricity motor driving pipe end beveling machine in Cr-Mo heat-resistant alloy steel pipe welding process. It ensures the welding quality, time-saving and efficient, avoiding various quality problems caused by other methods of processing bevel. According to the characteristics of the pipeline installation and maintenance, it put forward using DC motor and portable lithium-ion power resource, it is with time-saving and efficient, economic and environmental protection.

  4. Effect of heating rate on temperature of titanium alloy (. cap alpha. +. beta. ). -->. beta. transformaton

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1985-01-01

    The effect of doping of two-phase titaniums alloys and morphology of initial structure on the Tsub(t) temperature shift value of (..cap alpha..+..beta..)..--> beta.. transformation depending on heating rate is investigated. It has been found that the Tsub(t) shift occurs in the strictly determined temperature range depending on chemical alloy composition. The Tsub(t) shift is directly proportional to the Ksub(..beta..) coefficient applied as a quantitative alloying characteristic as well as a dimensional factor equal either to the plate thickness or the ..cap alpha..-phase globule diameter depending on the type of initial structure. In the limits of this temperature range the (..cap alpha..+..beta..)..--> beta..-transformation occurs completely according to the diffusion mechanism. The critical heating rate at which maximum permissible Tsub(t) value is attained and above which its stabilization is observed is determined by the same parameters - the alloy doping degree characterized by the Ksub(..beta..) coefficient and the ..cap alpha..-phase crystal dimensions in the initial structure.

  5. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  6. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    OpenAIRE

    I. Sudhakar; V. Madhu; G. Madhusudhan Reddy; K. Srinivasa Rao

    2015-01-01

    Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to tha...

  7. Lattice specific heat and local density of states of Ni-based dilute alloys at low temperature

    Indian Academy of Sciences (India)

    P D Semlaty; Kapil Dev; P N Ram

    2006-06-01

    A detailed theoretical study of the low-temperature lattice specific heat of Ni-based dilute alloys has been carried out. Lattice Green's function method has been used to calculate the local density of states of substitutional impurities and lattice specific heat in different alloys. The resonance condition has been investigated for possible occurrence of resonance modes. Except in NiCr and NiMn, low-frequency resonance modes have been obtained in all the alloys. However, no localized mode was obtained. The impurity-induced increase in lattice specific heat is explained on the basis of the obtained resonance modes. The calculation shows an excellent agreement with the measured lattice specific heat in these alloys

  8. THE INFLUENCE OF HEAT TREATMENT WITH THE LIQUID PHASE ON FORMATION OF A MICROSTRUCTURE OF EUTECTIC Al-Si-ALLOY

    Directory of Open Access Journals (Sweden)

    A. Anikin

    2015-01-01

    Full Text Available The effect of heat treatment on the structure of the eutectic Al-Si-alloy, a theoretical substantiation process based on thermal analyzer and cooked microstructures was presented in this paper.

  9. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    Science.gov (United States)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  10. GRCop-84: A High-Temperature Copper Alloy for High-Heat-Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) is a new high-temperature copper-based alloy. It possesses excellent high-temperature strength, creep resistance and low-cycle fatigue up to 700 C (1292 F) along with low thermal expansion and good conductivity. GRCop-84 can be processed and joined by a variety of methods such as extrusion, rolling, bending, stamping, brazing, friction stir welding, and electron beam welding. Considerable mechanical property data has been generated for as-produced material and following simulated braze cycles. The data shows that the alloy is extremely stable during thermal exposures. This paper reviews the major GRCop-84 mechanical and thermophysical properties and compares them to literature values for a variety of other high-temperature copper-based alloys.

  11. Influence of heat treatment on the microstructure and mechanical properties of DZ951 alloy

    Institute of Scientific and Technical Information of China (English)

    XIA Pengcheng; YU Jingjiang; SUN Xiaofeng; GUAN Hengrong; HU Zhuangqi

    2008-01-01

    DZ951 directionally solidified nickel-base superalloy is mainly strengthened by y phase.Regularly aligned cuboidal and bimodal γ precipitates were attained by two heat treatments.The effect of microstructure on the mechanical properties of DZ951 alloy has been investigated.The results indicate that MC carbide changes to little blocks during aging treatment at 1050℃ (HT1).MC carbide partly degrades into M23c6 and there is a layer of γ around the carbide during aging treatment at 115℃ (HT2),which is beneficial to the elongation of DZ951 alloy.Small γ volume fraction and the uneven deformation structure are contributed to low mechanical propexties of the as-cast alloy.HT1 alloy has a better stress rupture life at 1100℃50 MPa and yield stress at 20℃,800℃ and 1100℃,which is attributed to regularly aligned cuboidal γ phase and even deformation structure.HT2 alloy has a good combination of strength and ductility.This arises fi'om the bimodal γ precitates and the degeneration of MC carbide.

  12. Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment

    Directory of Open Access Journals (Sweden)

    Daniel R. Brown

    2016-05-01

    Full Text Available Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn0.8Ga0.2 system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealed Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.

  13. Effect Of Heat Treatment On The Corrosion Resistance Of Aluminized Steel Strips

    Directory of Open Access Journals (Sweden)

    Żaba K.

    2015-09-01

    Full Text Available The paper presents the results of corrosion resistance of heat treated aluminized steel strips. Products coated by Al-10Si alloy are used among others in a manufacturing process of welded pipes as the elements of the car exhaust systems, working in high temperatures and different environments (eg. wet, salty. The strips and tubes high performance requirements are applied to stability, thickness and roughness of Al-Si coating, adhesion and corrosion resistance. Tubes working in elements of exhaust systems in a wide range of temperatures are exposed to the effects of many aggressive factors, such as salty snow mud. It was therefore decided to carry out research on the impact of corrosion on the environmental influence on heat treated aluminized steel strips. The heat treatment was carried out temperatures in the range 250-700°C for 30, 180, 1440 minutes. Then the coatings was subjected to cyclic impact of snow mud. Total duration of treatment was 12 months and it was divided into three stages of four months and at the end of each stage was made the assessment of factor of corrosion. The results are presented in the form of macroscopic, microscopic (using a scanning electron microscope observations and the degree and type of rusty coating.

  14. Surface treatment to improve corrosion resistance of A1 plate heat exchangers

    Institute of Scientific and Technical Information of China (English)

    Jong-Soon KIM; Tae-Ho KANG; In-Kwan KIM

    2009-01-01

    The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3-5, 2.0-9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.

  15. Structure and mechanical properties of high-temperature titanium alloys after rapid heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M. (Inst. for Metal Physics, Kiev (Ukraine)); Luetjering, G. (Technical Univ. Hamburg-Harburg, Hamburg (Germany))

    1993-08-30

    In this study a new approach to optimizing the mechanical properties of high-temperature titanium alloys was developed. It is based on using rapid heating of equiaxed structures into the [beta]-field to achieve a fine [beta] grain size (less than or equal to 100 [mu]m), transforming on subsequent cooling into a fully lamellar structure. This fine [beta] grain size is an order of magnitude smaller than the grain sizes achieved by conventional furnace [beta]-treatment. Structures and mechanical properties (tensile, fatigue and creep) of high temperature alloys after rapid and conventional furnace heat treatments were compared. The results are discussed in terms of structure-property relationships. (orig.)

  16. A molecular dynamics study on melting point and specific heat of Ni3Al alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using the Embedding Atom Method(EAM)for highly undercooled Ni3Al alloy,the melting point and the specific heat were studied by a molecular dynamics simula-tion.The simulation of melting point was carried out by means of the sandwich method and the NVE ensemble method,and the results show a good agreement,whereas are larger than the experimental value of 1663 K.This difference is attrib-uted to the influence of surface melting on experimental results,which causes the smaller measurements compared with the thermodynamic melting point.The simulated specific heat of Ni3Al alloy weakly and linearly increases with the in-crease of undercooling in the temperature range from 800 K to 2000 K.

  17. A molecular dynamics study on melting point and specific heat of Ni3Al alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; L(U) YongJun; CHEN Min; GUO ZengYuan

    2007-01-01

    Using the Embedding Atom Method (EAM) for highly undercooled Ni3Al alloy, the melting point and the specific heat were studied by a molecular dynamics simulation. The simulation of melting point was carried out by means of the sandwich method and the NVE ensemble method, and the results show a good agreement, whereas are larger than the experimental value of 1663 K. This difference is attributed to the influence of surface melting on experimental results, which causes the smaller measurements compared with the thermodynamic melting point. The simulated specific heat of Ni3Al alloy weakly and linearly increases with the increase of undercooling in the temperature range from 800 K to 2000 K.

  18. Effect of heat treatments on 8090 AlLi alloy pitting susceptibility in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, A.M. [CNR, Genova (Italy). Istituto per la Corrosion Marina dei Metalli; Traverso, P. [CNR, Genova (Italy). Istituto per la Corrosion Marina dei Metalli

    1996-05-01

    The pitting susceptibility of 8090 Al-Li alloy in sea water, after different heat treatments, was investigated. Free corrosion and electrochemical tests were carried out at 25 C, in quiescent sea water at pH=8.2 and dissolved oxygen =6.5 ppm. The microstructure was examined by metallographic microscopy and by X-Ray microdiffractometry, while the corrosion layer was characterized by chemical methods and by Infrared and X-ray photoelectron spectroscopies. The following was observed: . aging treatments lead to a non homogeneous microstructure which increases the average corrosion rate as well as pitting susceptibility; . heat treatments do not affect the average passive film composition; . in all examined states, Al-Li alloy 8090 is subject to localized corrosion which takes place preferentially at the grain boundaries. (orig.)

  19. EFFECT OF MELT OVER-HEATING AND ZIRCONIUM ALLOYING ON THE MORPHOLOGY OF Al9FeNi PHASE AND MECHANICAL PROPERTIES OF 2618 ALLOY

    Institute of Scientific and Technical Information of China (English)

    J.H. Wang; D.Q. Yi

    2002-01-01

    The effect of melt over-heating on the morphology of Al9FeNi phase in 2618 aluminumalloy with high contents of Fe and Ni and 0.22wt.% zirconium has been investigatedby optical microscopy, SEM and TEM. The mechanical properties of 2618 aluminumalloy after hot extrusion and quenching/aging have been tested. The results show:melt over-heating treatment of 2618 alloy with high contents of Fe and Ni at 960° Cled to finer and better-distributed needle-like Al9FeNi phase in cast microstructureand fine Al9FeNi particles after hot extrusion; the grain size of the alloy after hotextrusion could also be refined evidently by alloying of zirconium; the ambient andhigh temperature tensile strength and elongation of 2618 alloy have been apparentlyenhanced due to fine Al9FeNi particles and dispersed Al3Zr as well as fine grain size.

  20. Stress corrosion cracking resistance of aluminum alloy 7000 series after two-step aging

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2015-01-01

    Full Text Available The effect of one step-and a new (short two-step aging on the resistance to stress corrosion cracking of an aluminum alloy 7000 series was investigated, using slow strain rate test and fracture mechanics method. Aging level in the tested alloy was evaluated by means of scanning electron microscopy and measurements of electrical resistivity. It was shown that the alloy after the new two-step aging is significantly more resistant to stress corrosion cracking. Values of tensile properties and fracture toughness are similar for both thermal states. Processes that take place at the crack tip have been considered. The effect of the testing solution temperature on the crack growth rate on the plateau was determined. Two values of the apparent activation energy were obtained. These values correspond to different processes that control crack growth rate on the plateau at higher and lower temperatures. [Projekat Ministarstva nauke Republike Srbije, br. TR 34028 i br. TR 34016

  1. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  2. Electrical Resistivity of Na-K Binary Liquid Alloy Using Ab-Initio Pseudopotentials

    Institute of Scientific and Technical Information of China (English)

    Anil Thakur; P. K. Ahluwalia

    2005-01-01

    @@ The study of electrical resistivity of simple binary liquid alloy Na-K is presented as a function of concentration.Hard sphere diameters of sodium (Na) and potassium (K) are obtained through the inter ionic pair potentials evaluated using Troullier and Martins ab-initio pseudopotentials, which have been used to calculate partial structure factors S(q). The Ziman formula for calculating resistivity of binary liquid alloys has been used. Form factors are calculated using ab-initio pseudopotentials. The results suggest that the first principle approach for calculating pseudopotentials with in the frame work of Ziman formalism is quite successful in explaining the electrical resistivity data of compound forming binary liquid alloys.

  3. Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaohua; LIU Daoxin

    2009-01-01

    An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented. Shot peening was introduced to post-treat the modified surface to synergistically improve the fretting fatigue resistance of the Ti811 alloy at 350~C. The results indicate that the 0Cr18Ni9 film with high density, small grain size, low void radio, and high bonding strength can be prepared using IBED. As a result, the hardness, wear resistance, and fretting fatigue resistance of the Ti811 alloy are increased to a remarkable extent. Compared with shot peening treatment or IBED 0Cr18Ni9 film alone, the Ti811 titanium alloy with an IBED 0Cr18Ni9 film combined with shot peening shows a higher fretting fatigue resistance at 350℃. This is due to the synergistic effect of the high wear resistance of the film surface and the residual compressive stress induced by shot peening.

  4. Tensile and impact properties of V-4Cr-4Ti alloy heats 832665 and 832864

    Energy Technology Data Exchange (ETDEWEB)

    Bray, T.S. E-mail: tbray@anl.gov; Tsai, H.; Nowicki, L.J.; Billone, M.C.; Smith, D.L.; Johnson, W.R.; Trester, P.W

    2000-12-01

    Two large heats of V-4Cr-4Ti alloy were produced in the US in the past few years. The first, 832665, was a 500 kg heat procured by the US Department of Energy for basic fusion structural materials research. The second, 832864, was a 1300 kg heat procured by General Atomics for the DIII-D radiative divertor upgrade. Both heats were produced by Oremet-Wah Chang (previously Teledyne Wah Chang of Albany). Tensile properties up to 800 deg. C and Charpy V-notch impact properties down to liquid nitrogen temperature were measured for both heats. The product forms tested for both heats were rolled sheets annealed at 1000 deg. C for 1 h in vacuum. Testing results show the behavior of the two heats to be similar and the reduction of strengths with temperature to be insignificant up to at least 750 deg. C. Ductility of both materials is good in the test temperature range. Impact properties for both heats are excellent - no brittle failures at temperatures above -150 deg. C. Compared to the data for previous smaller laboratory heats of 15-50 kg, the results show that scale-up of vanadium alloy ingot production to sizes useful for reactor blanket design can be successfully achieved as long as reasonable process control is implemented (H. Tsai, et al., Fusion Materials Semiannual Progress Report for Period Ending 30th June 1998, DOE/ER-0313/24, p. 3; H. Tsai, et al., Fusion Materials Semiannual Progress Report for Period Ending 31st December 1998, DOE/ER-0313/25, p. 3)

  5. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons.

  6. Development of an Electric induction furnace for heat treatment of ferrous and non-ferrous alloys

    OpenAIRE

    Ufuoma Peter Anaidhuno; Chinedum Ogonna Mgbemena

    2015-01-01

    A 3kg capacity Electric induction furnace with a power rating of 2500W for heat treatment of ferrous and non-ferrous alloys was developed. The furnace which is made from mild steel sheet was monolithically lined with fire clay refractories and designed to attain a temperature of 12000C on the automatic control panel. This project was primarily undertaken to build local capacity in foundry practice in Nigeria and to encourage the demonstration of fundamental foundry practice for undergradua...

  7. Influence of Trace Alloying Elements on Corrosive Resistance of Cast Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    DUAN Han-qiao; YAN Xiang; WEI Bo-kang; LIN Han-tong

    2005-01-01

    The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18-8 type cast stainless steel have been studied in deta() orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.

  8. Doping in the Valley of Hydrogen Solubility: A Route to Designing Hydrogen-Resistant Zirconium Alloys

    Science.gov (United States)

    Youssef, Mostafa; Yang, Ming; Yildiz, Bilge

    2016-01-01

    Hydrogen pickup and embrittlement pose a challenging safety limit for structural alloys used in a wide range of infrastructure applications, including zirconium alloys in nuclear reactors. Previous experimental observations guide the empirical design of hydrogen-resistant zirconium alloys, but the underlying mechanisms remain undecipherable. Here, we assess two critical prongs of hydrogen pickup through the ZrO2 passive film that serves as a surface barrier of zirconium alloys; the solubility of hydrogen in it—a detrimental process—and the ease of H2 gas evolution from its surface—a desirable process. By combining statistical thermodynamics and density-functional-theory calculations, we show that hydrogen solubility in ZrO2 exhibits a valley shape as a function of the chemical potential of electrons, μe . Here, μe , which is tunable by doping, serves as a physical descriptor of hydrogen resistance based on the electronic structure of ZrO2 . For designing zirconium alloys resistant against hydrogen pickup, we target either a dopant that thermodynamically minimizes the solubility of hydrogen in ZrO2 at the bottom of this valley (such as Cr) or a dopant that maximizes μe and kinetically accelerates proton reduction and H2 evolution at the surface of ZrO2 (such as Nb, Ta, Mo, W, or P). Maximizing μe also promotes the predomination of a less-mobile form of hydrogen defect, which can reduce the flux of hydrogen uptake. The analysis presented here for the case of ZrO2 passive film on Zr alloys serves as a broadly applicable and physically informed framework to uncover doping strategies to mitigate hydrogen embrittlement also in other alloys, such as austenitic steels or nickel alloys, which absorb hydrogen through their surface oxide films.

  9. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    Science.gov (United States)

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedheatedheated. The cytotoxicity evaluation revealed that none of the alkaline heat treated Mg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  10. Phase constitution and corrosion resistance of Al–Co alloys

    Energy Technology Data Exchange (ETDEWEB)

    Palcut, Marián, E-mail: marian.palcut@gmail.com; Priputen, Pavol; Šalgó, Kristián; Janovec, Jozef

    2015-09-15

    Al–24Co, Al–25Co, Al–26Co, Al–27Co and Al–28Co alloys (composition in atomic percent) were prepared by arc-melting in high purity argon. Each alloy was found to consist of several microstructure constituents. Precipitation sequences of different intermetallic compounds were described based on a previously published Al–Co phase diagram and non-equilibrium processes taking place during casting. Electrochemical corrosion was investigated by potentiodynamic polarization in aqueous NaCl solution at room temperature. A large amount of pitting is observed, with some of the phases being preferentially corroded. The nobility of Al–Co intermetallic compounds is discussed in terms of chemical composition and crystal structure. Conclusions towards the alloy stability are provided. - Highlights: • Al–24Co to Al–28Co alloys were prepared by arc-melting in high purity argon. • Precipitation sequences of different intermetallic compounds have been observed. • Anodic alloy dissolution takes place by galvanic mechanism. • Nobility of Al–Co intermetallic compounds increases with increasing Co concentration.

  11. Specific heat and related thermophysical properties of liquid Fe-Cu-Mo alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The specific heat and related thermophysical properties of liquid Fe77.5Cu13Mo9.5 monotectic alloy were investigated by an electromagnetic levitation drop calo-rimeter over a wide temperature range from 1482 to 1818 K.A maximum under-cooling of 221 K(0.13 Tm)was achieved and the specific heat was determined as 44.71 J·mol1·K1.The excess specific heat,enthalpy change,entropy change and Gibbs free energy difference of this alloy were calculated on the basis of experimental results.It was found that the calculated results by traditional esti-mating methods can only describe the solidification process under low under-cooling conditions.Only the experimental results can reflect the reality under high undercooling conditions.Meanwhile,the thermal diffusivity,thermal conductivity,and sound speed were derived from the present experimental results.Furthermore,the solidified microstructural morphology was examined,which consists of(Fe)and(Cu)phases.The calculated interface energy was applied to exploring the correlation between competitive nucleation and solidification microstructure within monotectic alloy.

  12. Specific heat and related thermophysical properties of liquid Fe-Cu-Mo alloy

    Institute of Scientific and Technical Information of China (English)

    WANG HaiPeng; LUO BingChi; CHANG Jian; WEI BingBo

    2007-01-01

    The specific heat and related thermophysical properties of liquid Fe77.5Cu13Mo9.5 monotectic alloy were investigated by an electromagnetic levitation drop calorimeter over a wide temperature range from 1482 to 1818 K. A maximum undercooling of 221 K (0.13 Tm) was achieved and the specific heat was determined as 44.71 J·mol-1·K-1. The excess specific heat, enthalpy change, entropy change and Gibbs free energy difference of this alloy were calculated on the basis of experimental results. It was found that the calculated results by traditional estimating methods can only describe the solidification process under low undercooling conditions. Only the experimental results can reflect the reality under high undercooling conditions. Meanwhile, the thermal diffusivity, thermal conductivity, and sound speed were derived from the present experimental results. Furthermore, the solidified microstructural morphology was examined, which consists of (Fe) and (Cu) phases. The calculated interface energy was applied to exploring the correlation between competitive nucleation and solidification microstructure within monotectic alloy.

  13. Magnesium alloy-graphite composites with tailored heat conduction properties for hydrogen storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Pohlmann, Carsten; Kalinichenka, Siarhei [Institute for Materials Science, Dresden University of Technology, Helmholtzstr. 7, 01069 Dresden (Germany); Roentzsch, Lars; Hutsch, Thomas [Fraunhofer Institute for Manufacturing Technology and Applied Materials Research, Winterbergstr. 28, 01277 Dresden (Germany); Kieback, Bernd [Institute for Materials Science, Dresden University of Technology, Helmholtzstr. 7, 01069 Dresden (Germany); Fraunhofer Institute for Manufacturing Technology and Applied Materials Research, Winterbergstr. 28, 01277 Dresden (Germany)

    2010-12-15

    Melt-spun magnesium alloys that contain catalytically active constituents have become attractive hydrogen storage materials due to their ultra-fine and homogeneous microstructure and their excellent (de-)hydrogenation characteristics. However, their heat conduction properties have to be improved for practical applications. For this purpose, composites of melt-spun magnesium alloys and expanded natural graphite (ENG) were examined in this work. Melt-spun flakes were mixed with different amounts of up to 25.5 wt.% ENG. These mixtures were compacted to cylindrical pellets using compaction pressures up to 600 MPa. For comparison, pellets of pure magnesium hydride and ENG were equally processed. All sets of specimens were investigated regarding their thermal conductivities in radial and axial direction, their microstructure and phase fractions. It was found that the heat transfer characteristics can be tailored in a wide range, e.g. the thermal conductivity of magnesium alloy-ENG compacts were tuned from 1 up to 47 W m{sup -1} K{sup -1}. For the system MgH{sub 2}-ENG, the thermal conductivity can be adjusted from 1 up to 43 W m{sup -1} K{sup -1}. Therefore, a hydrogen storage material with homogeneous heat transfer properties can be anticipated which only slightly depend on the hydrogenated fraction. (author)

  14. Microstructural study and numerical simulation of phase decomposition of heat treated Co–Cu alloys

    Directory of Open Access Journals (Sweden)

    A.M. Mebed

    2014-12-01

    Full Text Available The influence of heat treatment on the phase decomposition and the grain size of Co–10 at% Cu alloy were studied. Few samples were aged in a furnace for either 3 or 5 h and then quenched in iced water. The materials and phase compositions were investigated using energy dispersive spectrometry and X-ray diffraction techniques. X-ray diffraction analysis showed that the samples contained Co, Cu, CuO, CoCu2O3, CoCuO2 phases in different proportions depending on the heat treatment regimes. The formation of dendrite Co phase rendered the spinodal decomposition while the oxidations prevent the initiation of the spinodal decomposition even for a deep long aging inside the miscibility gap. Since the Bragg reflections from different phases of Co–Cu alloy significantly overlap, the crystal structural parameters were refined with FULLPROF program. The shifts in the refined lattice constants (a, b and c, the space group and the grain size were found to be phase- and heat treatment-dependant. Two-dimensional computer simulations were conducted to study the phase decomposition of Co–Cu binary alloy systems. The excess free energy as well as the strain energy, without a priori knowledge of the shape or the position of the new phase, was precisely evaluated. The results indicate that the morphology and the shape of the microstructure agree with SEM observation.

  15. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  16. Correlation between Electrical Resistivity, Particle Dissolution, Precipitation of Dispersoids, and Recrystallization Behavior of AA7020 Aluminum Alloy

    NARCIS (Netherlands)

    Eivani, A.R.; Ahmed, H.; Zhou, J.; Duszczyk, J.

    2009-01-01

    This research concerns the effect of homogenization treatment on the electrical resistivity of AA7020 aluminum alloy variants with different Zr and Cr contents. Small changes in the Zr and Cr contents of the as-cast alloy increase the electrical resistivity significantly. After employing various

  17. Influence of heating rate on the temperature of the (alpha+beta)-beta transformation of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Ivasishin, O.M.; Markovskii, P.E.

    1985-07-01

    Results of a systematic experimental study of the effect of the heating rate, composition, and structure on the temperature of the (alpha+beta)-beta transformation in titanium alloys VT6, VT14, VT3-1, VT23, and VT22 are presented. It is shown that the transformation temperature of the alloys increases proportionally to the coefficient k-beta, which characterizes the alloy content, and to the size of the alpha-phase grains in the original structure. All other conditions being equal, the transformation is completed sooner in alloys with a spheroidal structure. 8 references.

  18. Nickel super alloy INCONEL 713LC - structural characteristics after heat treatment

    Directory of Open Access Journals (Sweden)

    A. Hernas

    2007-06-01

    Full Text Available Purpose: Nickel super alloy’s products are mainly using for construction parts of jet engines, gas turbines and turbo-blowers.Design/methodology/approach: Super alloy was commercially produced and was investigated by using the light microscopy (OLYMPUS IX 71 and local chemical microanalysis and by the scanning electron microscopy (JEOL JSM 50AFindings: We found a mode of optimum heat treatment. On the basis of obtained results it is possible to recommend a following regime of heat treatment: heating and dwell at the temperature exceeding 1240 °C (min. 1260 °C, so that precipitates at the grain boundaries dissolve completely, with subsequent slow cooling down to the temperature of approx. 940-950 °C, so that there occurs intensive intra-granular precipitation of intermetallic phase γ’.Research limitations/implications: The experiment was limited by occurrence a void in cast alloys.Practical implications: Nickel super alloy’s products are mainly using for construction parts of jet engines, gas turbines and turbo-blowers.Originality/value: Mode of optimum heat treatment was proposed. On the basis of obtained results it is possible to recommend the most suitable heat treatment, which produce intensive intra-granular precipitation of inter-metallic phase γ’. It was received a new know-how in this field.

  19. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  20. Effects of induction heat treatment on mechanical properties of TiAl-based alloy

    Institute of Scientific and Technical Information of China (English)

    彭超群; 黄伯云; 贺跃辉

    2002-01-01

    The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl-based alloy (Ti-33Al-3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully-lamellar microstructure with colony size of about 50 μm and lamellar spacing of about 0.12 μm can be obtained; 2) the compression mechanical properties can be improved to a large extent and the best comprehensive compression mechanical properties can reach the yield stress 745 MPa, the large flow stress 1 672 MPa and the compression ratio 19.4%; and 3) the compression fracture at room temperature after induction heat treatment and aging is still typical cleavage fracture.

  1. New Low-Sn Zr Cladding Alloys with Excellent Autoclave Corrosion Resistance and High Strength

    Directory of Open Access Journals (Sweden)

    Ruiqian Zhang

    2017-04-01

    Full Text Available It is expected that low-Sn Zr alloys are a good candidate to improve the corrosion resistance of Zr cladding alloys in nuclear reactors, presenting excellent corrosion resistance and high strength. The present work developed a new alloy series of Zr-0.25Sn-0.36Fe-0.11Cr-xNb (x = 0.4~1.2 wt % to investigate the effect of Nb on autoclave corrosion resistance. Alloy ingots were prepared by non-consumable arc-melting, solid-solutioned, and then rolled into thin plates with a thickness of 0.7 mm. It was found that the designed low-Sn Zr alloys exhibit excellent corrosion resistances in three out of pile autoclave environments (distilled water at 633 K/18.6 MPa, 70 ppm LiOH solution at 633 K/18.6 MPa, and superheated water steam at 673 K/10.3 MPa, as demonstrated by the fact of the Zr-0.25Sn-0.36Fe-0.11Cr-0.6Nb alloy shows a corrosion weight gain ΔG = 46.3 mg/dm2 and a tensile strength of σUTS = 461 MPa following 100 days of exposure in water steam. The strength of the low-Sn Zr alloy with a higher Nb content (x = 1.2 wt % is enhanced up to 499 MPa, comparable to that of the reference high-Sn N36 alloy (Zr-1.0Sn-1.0Nb-0.25Fe, wt %. Although the strength improvement is at a slight expense of corrosion resistance with the increase of Nb, the corrosion resistance of the high-Nb alloy with x = 1.2 (ΔG = 90.4 mg/dm2 for 100-day exposure in the water steam is still better than that of N36 (ΔG = 103.4 mg/dm2.

  2. Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation

    Institute of Scientific and Technical Information of China (English)

    CHEN Qun; REN JianXun

    2008-01-01

    In order to further analyze and optimize convective heat transfer process further, the concepts of heat flux weighted average heat temperature and heat flux weighted average heat temperature difference in multi-dimensional heat transfer system were introduced in this paper. The ratio of temperature difference to heat flux is defined as the generalized thermal resistance of convective heat transfer processes,and then the minimum thermal resistance theory for convective heat transfer optimization was developed. By analyzing the relationship between generalized thermal resistance and entansy dissipation in convective heat transfer processes, it can be concluded that the minimum thermal resistance theory equals the entransy dissipation extremum theory. Finally, a two-dimensional convective heat transfer process with constant wall temperature is taken as an example to illustrate the applicability of generalized thermal resistance to convective heat transfer process analysis and optimization.

  3. Chemical thermodynamics of nuclear materials. Pt. 9. The high temperature heat capacity of plutonium-3. 2 at. % gallium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.O.; Oetting, F.L. (Rockwell International Corp., Golden, CO (USA). Energy Systems Group)

    The heat capacity of delta-stabilized plutonium (Pu-3.2 at.% Ga) has been determined from 330 to 700 K using an adiabatic calorimeter. It was found that a large portion of the total heat capacity in this temperature range is due to some combination of the electronic heat capacity and the anharmonic heat capacity. By including certain data from the literature, the thermal functions for this plutonium-gallium alloy were calculated in the temperature range 298 to 700 K.

  4. Numerical simulation of boundary heat flow effects on directional solidification microstructure of a binary alloy

    Directory of Open Access Journals (Sweden)

    Xue Xiang

    2010-08-01

    Full Text Available The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W·cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W·cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W·cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.

  5. Numerical simulation of boundary heat flow effects on directional solidification microstructure of a binary alloy

    Institute of Scientific and Technical Information of China (English)

    Xue Xiang; Tang Jinjun

    2010-01-01

    The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W-cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W-cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W-cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.

  6. Optimization of Temperatures Heating Melt and Annealing Soft Magnetic Alloys

    Science.gov (United States)

    Tsepelev, Vladimir; Starodubtsev, Yuri

    2017-05-01

    Taking into account the concept of the quasi-chemical model of the liquid micro-non-uniform composition and the research made on the physical properties of the Fe-based melts being crystallized, the unique technology of the melt time-temperature treatment has been developed. Amorphous ribbons produced using this technology require optimal annealing temperatures to be specifically selected. Temperature dependences of the kinematic viscosity of a multicomponent Fe72.5Cu1Nb2Mo1.5Si14B9 melt have been studied. A critical temperature is detected above which the activation energy of viscous flow of the melt changes. Upon cooling the overheated melt, the temperature curves of the kinematic viscosity become linear within the given coordinates. In amorphous ribbon produced in the mode with overheating the melt above the critical temperature, the enthalpy of crystallization grows, the following heat treatment results in an increase in magnetic permeability.

  7. Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys

    Science.gov (United States)

    Raj, Sai V. (Inventor)

    2005-01-01

    A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

  8. Wear resistance of ceramic coating on AZ91 magnesium alloy by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; LIU Zheng; CHEN Li-jia; CHEN Ji; HAN Zhong

    2006-01-01

    The ceramic coating formed on AZ91 magnesium alloy by micro-arc oxidation (MAO) was characterized. The results show that the ceramic coating(3.4-23 μm in thickness)on the surface of AZ91 alloy was attained under different micro-arc oxidation treatment conditions, which consist mainly of MgO, Mg2SiO4 and MgSiO3 phases. Nano-hardness in a cross-sectional specimen was determined by nano-indentation experiment. The MAO coatings exhibit higher hardness than the substrate. Dry sliding wear tests for the MAO coatings and AZ91 alloy were also carried out using an oscillating friction and wear tester in a ball-on-disc contact configuration. The wear resistance of the MAO coatings is improved respectively under different treatment time as a result of different structures of ceramic coatings formed on AZ91 alloy.

  9. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    Science.gov (United States)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  10. Formation and Corrosion Resistance of Mg-Al Hydrotalcite Film on Mg-Gd-Zn Alloy

    Science.gov (United States)

    Ba, Z. X.; Dong, Q. S.; Kong, S. X.; Zhang, X. B.; Xue, Y. J.; Chen, Y. J.

    2017-06-01

    An environment-friendly technique for depositing a Mg-Al hydrotalcite (HT) (Mg6Al2(OH)16-CO3ṡ4H2O) conversion film was developed to protect the Mg-Gd-Zn alloy from corrosion. The morphology and chemical compositions of the film were analyzed by scanning electronic microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy (RS), respectively. The electrochemical test and hydrogen evolution test were employed to evaluate the biocorrosion behavior of Mg-Gd-Zn alloy coated with the Mg-Al HT film in the simulated body fluid (SBF). It was found that the formation of Mg-Al HT film was a transition from amorphous precursor to a crystalline HT structure. The HT film can effectively improve the corrosion resistance of magnesium alloy. It indicates that the process provides a promising approach to modify Mg-Gd-Zn alloy.

  11. HOW TO MAKE MAGNESIUM ALLOYS BE RESISTANT TO OPERATIONAL RISKS

    Directory of Open Access Journals (Sweden)

    N. M. Chigrinova

    2016-01-01

    Full Text Available The paper studies regularities and mechanisms of structure and phase formation in the surface layers of magnesium alloys when they are processed by method of micro-arc oxidation [MAO]. It has been determined that the same specific features of structure formation, namely: existence of a thin dense inner sublayer and a thicker outer sublayer with developed porosity are common for all types of coatings on the surface of magnesium and aluminum alloys. Such structural state of a protective coating can not be considered as a guaranteed protection against operational impacts, taking into account the fields of their primary application that is aviation construction, automotive construction, instrumentation, building construction, etc. The paper has analyzed the effect of alkaline electrolytes with varying chemical composition due to additions of sodium fluoride or potassium on the structure and properties of these alloys as well as on the level of basic performance characteristics of the layers formed in such electrolytes. On the basis of the analysis a conclusion has been made that it is possible to extend their life-span under operational conditions. It has been revealed that the existing techniques and methods for process control of MAO aluminum and magnesium alloys, particularly processing modes and technological equipment capacity determine a nature of structure formation and changes in a phase composition of the formed coatings.

  12. Annealing effects on the electrical resistivity of AuAl thin films alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, R.D., E-mail: rubdoming@live.com.mx [Centro de Investigacion y de Estudios Avanzados del IPN Unidad Merida, Depto. de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso 97310, Merida, Yucatan (Mexico); Oliva, A.I.; Corona, J.E. [Centro de Investigacion y de Estudios Avanzados del IPN Unidad Merida, Depto. de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso 97310, Merida, Yucatan (Mexico)

    2009-08-15

    Au/Al bilayer (50-250-nm thickness) thin films were deposited by thermal evaporation on p-type silicon (1 0 0) substrates. The formed Au/Al/Si systems were annealed from room temperature (RT) to 400 deg. C to form AuAl/Si alloys. Two groups of AuAl alloys were analyzed. The first group was prepared as a function of the atomic concentration and the second group was prepared as a function of thickness. The morphology and crystalline structure of the alloys were analyzed by AFM and X-ray diffraction techniques, respectively. The electrical resistivities of the AuAl alloys were measured by the four-probe technique. The first group of thin AuAl alloys presented segregations as a consequence of the annealing treatment and the atomic concentration; meanwhile, the electrical resistivity showed abrupt changes as a consequence of changing the atomic concentration. In the second group a monotonically increment in the grain size was found meanwhile for thickness below 100 nm the electrical resistivity presented important differences as compared with the before annealing process.

  13. Corrosion resistance of benzotriazole passivated Cu-Zn-Al shape memory alloy in artificial Ringer's solution

    Institute of Scientific and Technical Information of China (English)

    LIANG Chenghao; CHEN Bangyi; CHEN Wan; WANG Hua

    2005-01-01

    The corrosion resistance of the Cu-Zn-Al shape memory alloy passivated by benzotriazole was investigated by salt spraying test and electrochemical methods in artificial Ringer's solution. The results showed that after benzotriazole passivation, the corrosion resistance of the Cu-Zn-Al shape memory alloy was improved evidently. The anodic polarization current density of the passivated alloy decreased, the mass loss reduced, the anodic passivation accelerated, the anodic active dissolution was inhibited effectively, and the surface tarnishing was restrained. Infrared reflection spectrum test showed that Cu(Ⅰ)-benzoaiazole or Cu(Ⅱ)-benzotriazole complex layer was formed on the surface of the Cu-Zn-Al shape memory alloy after passivation. This layer appeared plane, well adhesion, and presented homogeneous golden metallic luster. The corrosion resistance of the Cu-Zn-Al shape memory alloy passivated by benzotriazole is improved for the formation of an electrochemical stable baffle layer on passivated surface. This layer separates the metal substrate from the outside corrosion medium effectively and retards the corrosion process of dezincification.

  14. Correlation Between Microstructure and Corrosion Resistance of Magnesium Alloys Prepared by High Strain Rate Rolling

    Science.gov (United States)

    Chen, Jihua; Chen, Guanqing; Yan, Hongge; Su, Bin; Gong, Xiaole; Zhou, Bo

    2017-09-01

    Microstructure and corrosion resistance in Hank's solution of four magnesium alloys (pure Mg, ZK60, Mg-4Zn and Mg-4Zn-0.3Ca) prepared by high strain rate rolling (HSRR) and conventional rolling (CR) are comparatively investigated. The HSRR alloy exhibits better bio-corrosion resistance than the CR alloy. The HSRR ZK60 alloy has finer grains, higher dynamic recrystallization (DRX) extent, lower twin fraction, coarser residual second-phase particles, finer and denser nanometer β 1 precipitates, lower residual compressive stress and stronger basal texture than the CR alloy. The average corrosion rate of the HSRR ZK60 sheet after 90-day immersion in Hank's solution is 0.17 mg cm-2 d-1, about 19% lower than that of the CR sheet. Its corrosion current density is 30.9 μA/cm2, about 45% lower than that of the CR sheet. Bio-corrosion resistance enhancement by HSRR can be mainly ascribe to the reduced grain size, the relatively adequate DRX, non-twinning, the coarser residual second-phase particles, the finer and denser nanometer precipitates and the slightly stronger (0001) texture.

  15. The Microstructure And Mechanical Properties Of The AlSi17Cu5 Alloy After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2015-09-01

    Full Text Available In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2 of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda and aging (200ºC/16h/piec are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together. It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment, causes not only increase in concentration in α(Al solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.

  16. Effect of the microstructure in the dynamic fracture resistance in a high strength low alloy steel; Efeito da microestrutura na resistencia a fratura dinamica de um aco de alta resistencia e baixa liga

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Carlos N.; Romero, Alfonso W. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia e Ciencia dos Materiais; Rios, Paulo R. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    1990-12-31

    In this work, low-alloyed high resistance steel proof samples were heated under different conditions and submitted to a explosion-induced sheet impact. After this assay, the behaviour of the materials submitted to high deformation rates may change, depending on the defects and micro-crack propagation. 11 figs., 2 tabs., 3 refs.

  17. Heat-resistant bacterial phytase in broiler pelleted diets

    Directory of Open Access Journals (Sweden)

    TC de F Carlos

    2015-03-01

    Full Text Available The objective of the study was to evaluate the effects of a heat-resistant bacterial phytase added to pelleted diets on mineral digestibility, live performance, carcass traits, and bone quality of broilers. Three treatments were evaluated: Positive control; negative control, with 0.10 points reduction in calcium level and 0.15 points reduction in available phosphorus level; and negative control + phytase at 500 FTU/kg. Mineral digestibility and bone quality results demonstrated that the evaluated phytase resisted pelleting as it increased the utilization of the minerals present in the diet.

  18. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    Science.gov (United States)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  19. FLOW RESISTANCE AND HEAT TRANSFER CHARACTERISTICS OF A NEW-TYPE PLATE HEAT EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhi-jian; ZHANG Guan-min; TIAN Mao-cheng; FAN Ming-xiu

    2008-01-01

    A new-type corrugation Plate Heat Exchanger (PHE) was designed. Results from both numerical simulations and experiments showed that the flow resistance of the working fluid in this new corrugation PHE, compared with the traditional chevron-type one, was decreased by more than 50%, and corresponding heat transfer performance was decreased by about 25%. The flow field of the working fluid in the corrugation PHE was transformed and hence performance difference in both flow resistance and heat transfer was generated. Such a novel plate, consisting of longitudinal and transverse corrugations, can effectively avoid the problem of flow path blockage, which will help to extend the application of PHEs to the situation with unclean working fluids.

  20. Heat load behaviors of plasma sprayed tungsten coatings on copper alloys with different compliant layers

    Energy Technology Data Exchange (ETDEWEB)

    Chong, F.L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: flch@ipp.ac.cn; Chen, J.L.; Li, J.G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, D.Y.; Zheng, X.B. [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200051 (China)

    2008-04-15

    Plasma sprayed tungsten (PS-W) coatings with the compliant layers of titanium (Ti), nickel-chromium-aluminum (NiCrAl) alloys and W/Cu mixtures were fabricated on copper alloys, and their properties of the porosity, oxygen content, thermal conductivity and bonding strength were measured. High heat flux tests of actively cooled W coatings were performed by means of an electron beam facility. The results indicated that APS-W coating showed a poorer heat transfer capability and thermo-mechanical properties than VPS-W coating, and the compliant layers improved W coating performance under the heat flux load. Among three compliant layers, W/Cu was the preferable because of its better effects on heat removal and stress alleviating. The optimization of W/Cu compliant layer found that 0.1 mm and 25 vol.%W was optimum compliant layer structure for 1 mm W coating, which induced a 23% reduction of the maximum stress compared to the sharp interface, and the plastic strain was reduced to 0.01% from 1.55%.

  1. Heat load behaviors of plasma sprayed tungsten coatings on copper alloys with different compliant layers

    Science.gov (United States)

    Chong, F. L.; Chen, J. L.; Li, J. G.; Hu, D. Y.; Zheng, X. B.

    2008-04-01

    Plasma sprayed tungsten (PS-W) coatings with the compliant layers of titanium (Ti), nickel-chromium-aluminum (NiCrAl) alloys and W/Cu mixtures were fabricated on copper alloys, and their properties of the porosity, oxygen content, thermal conductivity and bonding strength were measured. High heat flux tests of actively cooled W coatings were performed by means of an electron beam facility. The results indicated that APS-W coating showed a poorer heat transfer capability and thermo-mechanical properties than VPS-W coating, and the compliant layers improved W coating performance under the heat flux load. Among three compliant layers, W/Cu was the preferable because of its better effects on heat removal and stress alleviating. The optimization of W/Cu compliant layer found that 0.1 mm and 25 vol.%W was optimum compliant layer structure for 1 mm W coating, which induced a 23% reduction of the maximum stress compared to the sharp interface, and the plastic strain was reduced to 0.01% from 1.55%.

  2. Effect of Mn Content and Solution Annealing Temperature on the Corrosion Resistance of Stainless Steel Alloys

    Directory of Open Access Journals (Sweden)

    Ihsan-ul-Haq Toor

    2014-01-01

    Full Text Available The corrosion behavior of two specially designed austenitic stainless steels (SSs having different Nickel (Ni and Manganese (Mn contents was investigated. Prior to electrochemical tests, SS alloys were solution-annealed at two different temperatures, that is, at 1030°C for 2 h and 1050°C for 0.5 h. Potentiodynamic polarization (PD tests were carried out in chloride and acidic chloride, whereas linear polarization resistance (LPR and electrochemical impedance spectroscopy (EIS was performed in 0.5 M NaCl solution at room temperature. SEM/EDS investigations were carried out to study the microstructure and types of inclusions present in these alloys. Experimental results suggested that the alloy with highest Ni content and annealed at 1050°C/0.5 hr has the highest corrosion resistance.

  3. Improving the wear resistance of titanium alloys under high contact loads

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Markovskii, P.E.; Mikulyak, O.V. [Inst. of Metal Physics, Kiev (Ukraine)] [and others

    1992-01-01

    One of the basic shortcomings of titanium alloys is their poor antifriction properties. The wear resistance of titanium alloys can be improved by applying special coatings to their surface by various methods. However, the formation of surface layers whose properties differ greatly from the properties of the metallic substrate is accompanied, as a rule, by considerable impairment of the ductile and fatigue characteristics of the alloy. Besides, the material of the coating or the technology of its application are not always able to ensure the required resistance under large contact loads, both of the coating itself and of the adjacent zones of the material of the substrate (which are often weakened by thermal or thermochemical effects). 8 refs., 1 fig.

  4. Isothermal and cyclic oxidation resistance of pack siliconized Mo-Si-B alloy

    Science.gov (United States)

    Majumdar, Sanjib

    2017-08-01

    Oxidation behaviour of MoSi2 coated Mo-9Si-8B-0.75Y (at.%) alloy has been investigated at three critical temperatures including 750, 900 and 1400 °C in static air. Thermogravimetric analysis (TGA) data indicates a remarkable improvement in the oxidation resistance of the silicide coated alloy in both isothermal and cyclic oxidation tests. The cross-sectional scanning electron microscopy and energy dispersive spectroscopic analysis reveal the occurrence of internal oxidation particularly at the crack fronts formed in the outer MoSi2 layer during thermal cycling. The dominant oxidation mechanisms at 750-900 °C and 1400 °C are identified. Development of MoB inner layer further improves the oxidation resistance of the silicide coated alloy.

  5. Composition and corrosion resistance of cerium conversion films on 2195Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    SONG Dong; FENG Xingguo; SUN Mingren; MA Xinxin; TANG Guangze

    2012-01-01

    The Ce conversion films on 2195Al-Li alloy without and with post-treatment were studied and the corrosion resistance was evaluated as well.The surface morphology was observed by scanning electron microscopy (SEN),and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS).The corrosion behaviors of 2195Al-Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves.The experimental results indicated that after post-treatment the surface quality was improved significantly.According to XPS,the conversion coating after post-treatment was mainly composed of CeO2,Ce2O3,Ce-OH and a little MoO3 and MoO2.The results of potentiodynamic polarization curves revealed that the conversion coating with post-treatment possessed better corrosion resistance than bare alloy and Ce conversion coating without post-treatment.

  6. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    LiJin-chai; GuoHuai-xi; LuXlan-feng; ZhangZhi-hong; YeMing-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In or der totest the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent charac-teristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  7. Improvement on the Corrosion Resistance of AZ91D Magnesium Alloy by Aluminum Diffusion Coating

    Institute of Scientific and Technical Information of China (English)

    Hongwei HUO; Ying LI; Fuhui WANG

    2007-01-01

    By combination of magnetron sputtering deposition and vacuum annealing, an aluminum diffusion coating was prepared on the substrate of AZ91D alloy to improve its corrosion resistance. The microstructure and composition of the diffusion coating was investigated by scanning electron microscopy and X-ray diffraction. The diffusion coating was mainly comprised of β phase-Al12Mg17. The continuous immersion test in 3.5 wt pct neutral NaCl solution indicated that the specimen with diffusion coating had better corrosion resistance compared with the bare AZ91D alloy specimen. The potentiodynamic polarization measurement indicated that the diffusion coating could function as an effectively protective layer to reduce the corrosion rate of AZ91D alloy when exposed to 3.5 wt pct NaCl solution.

  8. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jin-chai; Guo Huai-xi; Lu Xian-feng; Zhang Zhi-hong; Ye Ming-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In order to test the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent characteristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  9. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    Science.gov (United States)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  10. Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber

    Science.gov (United States)

    Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.

    2017-01-01

    The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.

  11. Analysis Of The Austenite Grain Growth In Low-Alloy Boron Steel With High Resistance To Abrasive Wear

    Directory of Open Access Journals (Sweden)

    Białobrzeska B.

    2015-09-01

    Full Text Available Today low-alloy steels with boron achieve high resistance to abrasive wear and high strength. These features are obtained by using advanced technology of manufacturing. This makes boron steels increasingly popular and their application more diverse. Application of these steels can extend the lifetime of very expensive machine construction in many industries such as mining, the automotive, and agriculture industries. An interesting subgroup of these materials is steel with boron intended for heat treatment. These steels are supplied by the manufacturer after cold or hot rolling so that it is possible for them to be heat treated in a suitable manner by the purchaser for its specific application. Very important factor that determines the mechanical properties of final product is austenite grain growth occurring during hot working process such us quenching or hot rolling. Investigation of the effect of heating temperature and holding time on the austenite grain size is necessary to understand the growth behavior under different conditions. This article presents the result of investigation of austenite grain growth in selected low-allow boron steel with high resistance to abrasive wear and attempts to describe the influence of chemical composition on this process.

  12. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature.

    Science.gov (United States)

    Miyagi, Lowell; Kanitpanyacharoen, Waruntorn; Raju, Selva Vennila; Kaercher, Pamela; Knight, Jason; MacDowell, Alastair; Wenk, Hans-Rudolf; Williams, Quentin; Alarcon, Eloisa Zepeda

    2013-02-01

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run#1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run#2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg0.9Fe0.1)O in Run#3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.

  13. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Lowell [Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Earth Sciences, Montana State University, Bozeman, Montana 59717 (United States); Kanitpanyacharoen, Waruntorn; Kaercher, Pamela; Wenk, Hans-Rudolf; Alarcon, Eloisa Zepeda [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Raju, Selva Vennila [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); HiPSEC, Department of Physics, University of Nevada, Las Vegas, Nevada 89154 (United States); Knight, Jason; MacDowell, Alastair [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Williams, Quentin [Department of Earth and Planetary Science, University of California, Santa Cruz, California 95064 (United States)

    2013-02-15

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.

  14. Diesel particulate filter regeneration via resistive surface heating

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  15. Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2012-12-01

    Full Text Available The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc., which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces,excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines, it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.

  16. Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots

    Directory of Open Access Journals (Sweden)

    Binczyk F.

    2012-12-01

    Full Text Available The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc., which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces, excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines, it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.

  17. Strength Improvement in ZK60 Magnesium Alloy Induced by Pre-deformation and Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianhua; LIU Lizi; PAN Fusheng

    2016-01-01

    The inlfuence of pre-deformation and heat treatment on mechanical properties of as-extruded ZK60 alloy was investigated. The experimental results indicated that the solid solution, pre-cold rolling and artificial aging treatments remarkably improved the mechanical strength of alloys compared with the as-extruded condition. Especially, pre-cold rolling in 5% reduction combined with artiifcial aging at 150℃for 20 h was determined as the optimum heat treatment condition, which resulted in a yield strength of 333 MPa with an increment of 87 MPa and ultimate tensile strength of 373 MPa. High density of nanoscale precipitates in α-Mg matrix observed in this sample was beneifcial to enhancing the strength. The as-extruded sample showed a typical brittle fracture while the solution treated sample exhibited ductile-fragile failure characterized by cleavage fractures, river patterns, and tear ridges. And the sample after pre-cold rolling combined with aging presented more equiaxial dimples with a great amount of cracked particles in them. The above-mentioned observations were analyzed in terms of microstructure and possible strengthening mechanism in the extruded ZK60 alloy.

  18. Microstructural changes in padding welds made from the 713C alloy after heat treatment

    Directory of Open Access Journals (Sweden)

    M. B. Lachowicz

    2010-07-01

    Full Text Available The following paper presents the results of the metallographic research of the padding welds made from cast alloy Inconel 713C that had undergone heat treatment in four different time and temperature variants. Annealing was applied at temperatures 1150oC and 950oC. Theresults of the research showed a strong coalescence of precipitation of the intermetalic γ’ phase (Ni3Al, resulting in formation ofsubgrains. The coalescence of the γ’ particles ran simultaneously with a diffusive decomposition of carbides (NbTiC, which caused thesupersaturation of the γ’ phase with niobium, and the loss of its coherence with austenite γ. The phenomenon of the formation of subgrains intensified with the lengthening of the time of annealing. The analysis of the results showed that heating the alloy that had undergone pad welding to the temperatures used in the research is detrimental to the alloy because of the loss of the strengthening of the coherent γ’ phase and the increase of the brittleness.

  19. Steerable Catheter Microcoils for Interventional MRI: Reducing Resistive Heating

    Science.gov (United States)

    Bernhardt, Anthony; Wilson, Mark W.; Settecase, Fabio; Evans, Leland; Malba, Vincent; Martin, Alastair J.; Saeed, Maythem; Roberts, Timothy P. L.; Arenson, Ronald L.; Hetts, Steven W.

    2010-01-01

    PURPOSE To assess resistive heating of microwires used for remote catheter steering in interventional magnetic resonance imaging. To investigate the use of alumina to facilitate heat transfer to saline flowing in the catheter lumen. MATERIALS AND METHODS A microcoil was fabricated using a laser lathe onto polyimide-tipped or alumina-tipped endovascular catheters. In vitro testing was performed in a 1.5 T MR system using a vessel phantom, body RF coil, and steady state pulse sequence. Resistive heating was measured with water flowing over a polyimide tip catheter, or saline flowing through the lumen of an alumina-tip catheter. Preliminary in vivo testing in porcine common carotid arteries was conducted with normal blood flow or after arterial ligation when current was applied to an alumnia-tip catheter for up to 5 minutes. RESULTS After application of up to 1 W of DC power, clinically significant temperature increases were noted with the polyimide-tip catheter: 23°C/W at zero flow, 13°C/W at 0.28 cc/s, and 7.9°C/W at 1 cc/s. Using the alumina-tip catheter, the effluent temperature rise using the lowest flow rate (0.12 cc/s) was 2.3°C/W. In vivo testing demonstrated no thermal injury to vessel walls at normal and zero arterial flow. CONCLUSION Resistive heating in current carrying wire pairs can be dissipated by saline coolant flowing within the lumen of a catheter tip composed of material that facilitates heat transfer. PMID:21075017

  20. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2004-08-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  1. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2004-03-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  2. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2004-05-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  3. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2004-11-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  4. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2005-02-28

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  5. Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Chang-Jiang Pan

    2016-12-01

    Full Text Available Owing to excellent mechanical property and biodegradation, magnesium-based alloys have been widely investigated for temporary implants such as cardiovascular stent and bone graft; however, the fast biodegradation in physiological environment and the limited surface biocompatibility hinder their clinical applications. In the present study, magnesium alloy was treated by sodium hydroxide (NaOH and hydrogen fluoride (HF solutions, respectively, to produce the chemical conversion layers with the aim of improving the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR and X-ray photoelectron spectroscopy (XPS indicated that the chemical conversion layers of magnesium hydroxide or magnesium fluoride were obtained successfully. Sodium hydroxide treatment can significantly enhance the surface hydrophilicity while hydrogen fluoride treatment improved the surface hydrophobicity. Both the chemical conversion layers can obviously improve the corrosion resistance of the pristine magnesium alloy. Due to the hydrophobicity of magnesium fluoride, HF-treated magnesium alloy showed the relative better corrosion resistance than that of NaOH-treated substrate. According to the results of hemolysis assay and platelet adhesion, the chemical surface modified samples exhibited improved blood compatibility as compared to the pristine magnesium alloy. Furthermore, the chemical surface modified samples improved cytocompatibility to endothelial cells, the cells had better cell adhesion and proliferative profiles on the modified surfaces. Due to the excellent hydrophilicity, the NaOH-treated substrate displayed better blood compatibility and cytocompatibility to endothelial cells than that of HF-treated sample. It was considered that the method of the present study can be used for the surface modification of the magnesium alloy to enhance the corrosion resistance and biocompatibility.

  6. Structural transformations and wear resistance of abrasive-affected amorphous Fe- and Co-based alloys

    Science.gov (United States)

    Korshunov, L. G.; Chernenko, N. L.

    2008-12-01

    The abrasive wear resistance of the Fe64Co30Si3B3, Fe82.6Nb5Cu3Si8B1.4, Co86.5Cr4Si7B2.5, and Fe81Si4B13C2 amorphous alloys (ribbon 30 μm thick) has been investigated upon sliding over fixed abrasives (corundum and silicon carbide). The character of fracture of the surface and structural transformations initiated in these materials by the abrasive action have been studied by the metallographic, X-ray diffraction, and electron-microscopic methods. It has been shown that the abrasive wear resistance of the amorphous alloys is smaller by a factor of 1.6-2.9 than that of the Kh12M and U8 tool steels possessing approximately the same level of hardness. A pronounced softening of the surface layer of the amorphous alloys in the process of wear, which is characterized by a decrease in their microhardness reaching 12.5%, has been found. It has been shown that in the surface layer of these amorphous alloys upon wear there arises a small amount (on the order of several volume percent) of the nanocrystalline structure, which does not exert a marked effect on the microhardness and wear resistance of the alloys. In the alloys under study, the main factor that is responsible for their comparatively low abrasive wear resistance is their local softening in the process of wear caused by specific features of deformation processes occurring heterogeneously under the action of high shear contact stresses.

  7. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  8. Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Chu, J.

    2006-01-01

    The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P20...

  9. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    NARCIS (Netherlands)

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous a

  10. Correlation of microstructure and fatigue crack growth resistance in Ti-6Al-4V alloy

    CSIR Research Space (South Africa)

    Masete, Stephen

    2016-10-01

    Full Text Available The effect of the microstructure on fatigue crack growth resistance of the Ti-6Al-4V alloy was investigated. Various microstructures were produced by solution treatment above the beta transus temperature followed by cooling at different rates...

  11. Molecular communications between plant heat shock responses and disease resistance.

    Science.gov (United States)

    Lee, Jae-Hoon; Yun, Hye Sup; Kwon, Chian

    2012-08-01

    As sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses. Global warming is currently a big issue threatening the future of humans. Reponses to high temperature affect many physiological processes in plants including growth and disease resistance, resulting in decrease of crop yield. Although plant heat stress and defense responses share important mediators such as calcium ions and heat shock proteins, it is thought that high temperature generally suppresses plant immunity. We therefore specifically discuss on interactions between plant heat and defense responses in this review hopefully for an integrated understanding of these responses in plants.

  12. Resistive Wall Heating of the Undulator in High Repetition Rate

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, J; Corlett, J; Emma, P; Wu, J

    2012-05-20

    In next generation high repetition rate FELs, beam energy loss due to resistive wall wakefields will produce significant amount of heat. The heat load for a superconducting undulator (operating at low temperature), must be removed and will be expensive to remove. In this paper, we study this effect in an undulator proposed for a Next Generation Light Source (NGLS) at LBNL. We benchmark our calculations with measurements at the LCLS and carry out detailed parameter studies using beam from a start-to-end simulation. Our preliminarym results suggest that the heat load in the undulator is about 2 W/m or lower with an aperture size of 6 mm for nominal NGLS preliminary design parameters.

  13. Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an Al-Zn-Mg-(Cu) Alloy

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Young; J.R. Scully

    2001-09-12

    It is well established that Al-Zn-Mg-(Cu) aluminum alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are commonly used to increase HEAC resistance at the expense of strength. Overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). When freshly bared coupons of AA 7050 are exposed to 90 C, 90% RH air, hydrogen ingress follows inverse-logarithmic-type kinetics and is equivalent for underaged (HEAC susceptible) and overaged (HEAC resistant) tempers. However, when the native oxide is allowed to form (24 hrs in 25 C, 40% RH lab air) prior to exposure to 90 C, 90% RH air, underaged alloy shows significantly greater hydrogen ingress than the overaged alloy. Humid air is a very aggressive environment producing local ({approx}1{micro}m) hydrogen concentrations in excess of 10,000 wt. ppm at 90 C. In the copper bearing alloy, overaging also effects the apparent diffusivity of hydrogen. As AA 7050 is aged from underaged {yields} peak aged {yields} overaged, the activation energy for hydrogen diffusion increases and the apparent diffusivity for hydrogen decreases, In the low copper alloy, overaging has little effect on hydrogen diffusion. Comparison of the apparent activation energies for hydrogen diffusion and for K independent (stage II) crack growth

  14. Heat Treated AZ61 Magnesium Alloy Obtained by Direct Extrusion and Continuous Rotary Extrusion Process

    Directory of Open Access Journals (Sweden)

    Bigaj M.

    2016-03-01

    Full Text Available The results of studies carried out on the heat treated AZ61 magnesium alloy extruded by two methods, i.e. direct extrusion and continuous rotary extrusion, were presented. As part of the work, parameters of the T6 heat treatment were proposed and aging curves were plotted. The solution heat treatment process was accompanied by the grain growth. During artificial aging, due to the decomposition of solid solution, the β-Mg17Al12 phase was precipitated from the supersaturated α solution. It precipitated in a coagulated form at the grain boundaries and in the form of fine-dispersed plates arranged in a preferred direction relative to the grain orientation. Rods obtained by continuous rotary extrusion, unlike those made by the direct process, exhibited a low degree of texturing and lack of anisotropic properties.

  15. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Heat Transfer Modeling and Thermal History Analysis

    Science.gov (United States)

    Pan, Yi; Lados, Diana A.

    2017-02-01

    Friction stir welding (FSW) is a technique that can be used for materials joining and local microstructural refinement. Owing to the solid-state character of the process, FSW has significant advantages over traditional fusion welding, including reduced part distortion and overheating. In this study, a novel heat transfer model was developed to predict weld temperature distributions and quantify peak temperatures under various combinations of processing parameters for different wrought and cast Al alloys. Specifically, an analytical analysis was first developed to characterize and predict heat generation rate within the weld nugget, and then a two-dimensional (2D) numerical simulation was performed to evaluate the temperature distribution in the weld cross-section and top-view planes. A further three-dimensional (3D) simulation was developed based on the heat generation analysis. The model was validated by measuring actual temperatures near the weld nugget using thermocouples, and good agreement was obtained for all studied materials and conditions.

  16. Effect of Heat-Treatment Process on Properties of Rare Earth Mg-Based System Hydrogen Storage Alloys with AB3-Type

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed. The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.

  17. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    DEFF Research Database (Denmark)

    Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.

    2012-01-01

    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...

  18. 1.9 K Heat Inleak and Resistive Heating Measurements on LHC Cryomagnets

    CERN Document Server

    Ferlin, G; Tavian, L; Wagner, U

    2010-01-01

    The superconducting magnets of the Large Hadron Collider (LHC) distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. During the commissioning campaign of the sectors in 2008, cold standby periods at nominal operating temperature have allowed to measure the overall static heat inleaks reaching the magnet cold masses at 1.9 K by enthalpy balance in steady-state operation. In addition, during electrical powering of the different magnet circuits, helium II calorimetry based on precision thermometry has been implemented to assess with an accuracy of 100 mW/m the additional heat loads due to resistive heating and to detect possible abnormal heat dissipation during powering. This paper describes the method applied to perform these measurements, compares the results with the expected specified values and discusses the impact of the measured values on cryo-plant tuning and operational margins.

  19. Effect of heat treatment on elevated temperature tensile and creep properties of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lin, E-mail: yuanlin@hit.edu.cn; Shi, Wenchao; Jiang, WenMao; Zhao, Zhe; Shan, Debin

    2016-03-21

    The light and heavy rare earth elements are added to the magnesium alloys to improve the strengths and the creep resistance. The age hardening behaviors of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy aged at 200, 225 and 250 °C were investigated. Tensile tests and creep tests of the extruded and extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr were carried out at 150–300 °C. The relationship between the microstructure and the properties of the extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr alloy was studied. The result shows that the extruded Mg–6Gd–4Y–Nd–0.7Zr (contained less than 10 wt% Gd) peak aged at 225 °C for 72 h has the excellent creep resistance and high strengths with the UTS more than 350 MPa from room temperature to 200 °C, which are correlative with the precipitates. The high dense and uniform distribution of β′ phase with good heat stability precipitates inhibiting the dislocation motion contributes to age hardening, accelerates the ageing hardening response and increases the creep resistance. The artificially aged (T5) at low temperature further creep tested and tensile tested at higher temperatures decreases the resistance to the dislocation motion and the grain boundary sliding, resulting in the reduction in creep properties and strengths of the extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr alloy above 225 °C.

  20. Experimental and FEM Investigation of Heat Treatment on the Torsional Aspects of D2 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Safwan M. Al-Qawabah

    2010-09-01

    Full Text Available This study shows the effect of heat treatment on the torsion aspects of D2 alloy steel, in addition further analysis using ANSYS11 software w as used in investigation. Test specimens were prepared using high accurate machines (CNC however, hardening at different austenite temperature (during hardening namely 1070, 1040, 1010 and 980ºC was studied followed by tempering process at 540ºC . It was found that there was a direct relation between the micro hardness magnitude and the austenite temperature, the maximum was 66.1% that achieved at 1070ºC. This finding was significant because there is a great enhancement in the ability of D2 alloy steel to sustain high torsion loads, where the maximum was 191.1% that achieved at 1070ºC.