WorldWideScience

Sample records for heat rejection radiators

  1. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Science.gov (United States)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  2. Design and Modeling of a Variable Heat Rejection Radiator

    Science.gov (United States)

    Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan

    2011-01-01

    Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads

  3. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    Science.gov (United States)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  4. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  5. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  6. Heat-rejection design for large concentrating solar arrays

    Science.gov (United States)

    French, E. P.

    1980-01-01

    This paper considers the effect of heat rejection devices (radiators) on the performance and cost of large concentrating solar arrays for space application. Overall array characteristics are derived from the weight, cost, and performance of four major components; namely primary structure, optics/secondary structure, radiator, and solar panel. An ideal concentrator analysis is used to establish general cost and performance trends independent of specific array design. Both passive and heat-pipe radiation are evaluated, with an incremental cost-of-power approach used in the evaluation. Passive radiators are found to be more cost effective with silicon than with gallium arsenide (GaAs) arrays. Representative concentrating arrays have been evaluated for both near-term and advanced solar cell technology. Minimum cost of power is achieved at geometric concentration ratios in the range 2 to 6.

  7. Heat rejection efficiency research of new energy automobile radiators

    Science.gov (United States)

    Ma, W. S.; Shen, W. X.; Zhang, L. W.

    2018-03-01

    The driving system of new energy vehicle has larger heat load than conventional engine. How to ensure the heat dissipation performance of the cooling system is the focus of the design of new energy vehicle thermal management system. In this paper, the heat dissipation efficiency of the radiator of the hybrid electric vehicle is taken as the research object, the heat dissipation efficiency of the radiator of the new energy vehicle is studied through the multi-working-condition enthalpy difference test. In this paper, the test method in the current standard QC/T 468-2010 “automobile radiator” is taken, but not limited to the test conditions specified in the standard, 5 types of automobile radiator are chosen, each of them is tested 20 times in simulated condition of different wind speed and engine inlet temperature. Finally, regression analysis is carried out for the test results, and regression equation describing the relationship of radiator heat dissipation heat dissipation efficiency air side flow rate cooling medium velocity and inlet air temperature is obtained, and the influence rule is systematically discussed.

  8. Design and Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

    Science.gov (United States)

    Sunada, Eric; Birur, Gajanana C.; Ganapathi, Gani B.; Miller, Jennifer; Berisford, Daniel; Stephan, Ryan

    2010-01-01

    NASA's proposed lunar lander, Altair, will be exposed to vastly different external environment temperatures. The challenges to the active thermal control system (ATCS) are compounded by unfavorable transients in the internal waste heat dissipation profile: the lowest heat load occurs in the coldest environment while peak loads coincide with the warmest environment. The current baseline for this fluid is a 50/50 inhibited propylene glycol/water mixture with a freeze temperature around -35 C. While the overall size of the radiator's heat rejection area is dictated by the worst case hot scenario, a turn-down feature is necessary to tolerate the worst case cold scenario. A radiator with digital turn-down capability is being designed as a robust means to maintain cabin environment and equipment temperatures while minimizing mass and power consumption. It utilizes active valving to isolate and render ineffective any number of parallel flow tubes which span across the ATCS radiator. Several options were assessed in a trade-study to accommodate flow tube isolation and how to deal with the stagnant fluid that would otherwise remain in the tube. Bread-board environmental tests were conducted for options to drain the fluid from a turned-down leg as well an option to allow a leg to freeze/thaw. Each drain option involved a positive displacement gear pump with different methods of providing a pressure head to feed it. Test results showed that a start-up heater used to generate vapor at the tube inlet held the most promise for tube evacuation. Based on these test results and conclusions drawn from the trade-study, a full-scale radiator design is being worked for the Altair mission profile.

  9. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  10. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  11. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    International Nuclear Information System (INIS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS O pt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids

  12. Assessment of impact of borehole heat exchanger design on heat extraction/rejection efficiency

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available The article considers the impact of design of borehole heat exchanger (BHE as one of the main elements of a geothermal heat pump system on its efficiency in the ground heat extraction/rejection. Four BHE modifications are considered: coaxial with metal and polyethylene outside tube as well as single and double U-shaped structures of polyethylene tubes. Numerical modeling resulted to data on the efficiency of these BHE modifications for rejection heat into ground (heat pump system in cooling mode, and ground heat extraction (heat pump system in heating mode. Numerical values were obtained and BHEs were ranked according to their efficiency in both operation modes. Besides, additional calculations were made for the most common modification - double U-shaped design - in the ground heat extraction mode for various tube sizes with various wall thicknesses.

  13. Performance Evaluation of Air-Based Heat Rejection Systems

    Directory of Open Access Journals (Sweden)

    Hannes Fugmann

    2015-01-01

    Full Text Available On the basis of the Number of Transfer Units (NTU method a functional relation between electric power for fans/pumps and effectiveness in dry coolers and wet cooling towers is developed. Based on this relation, a graphical presentation method of monitoring and simulation data of heat rejection units is introduced. The functional relation allows evaluating the thermodynamic performance of differently sized heat rejection units and comparing performance among them. The method is used to evaluate monitoring data of dry coolers of different solar cooling field projects. The novelty of this approach is that performance rating is not limited by a design point or standardized operating conditions of the heat exchanger, but is realizable under flexible conditions.

  14. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  15. Split radiator design for heat rejection optimization for a waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  16. Radiation heat transfer calculations for the uranium fuel-containment region of the nuclear light bulb engine.

    Science.gov (United States)

    Rodgers, R. J.; Latham, T. S.; Krascella, N. L.

    1971-01-01

    Calculation results are reviewed of the radiant heat transfer characteristics in the fuel and buffer gas regions of a nuclear light bulb engine based on the transfer of energy by thermal radiation from gaseous uranium fuel in a neon vortex, through an internally cooled transparent wall, to seeded hydrogen propellant. The results indicate that the fraction of UV energy incident on the transparent walls increases with increasing power level. For the reference engine power level of 4600 megw, it is necessary to employ space radiators to reject the UV radiated energy absorbed by the transparent walls. This UV energy can be blocked by employing nitric oxide and oxygen seed gases in the fuel and buffer gas regions. However, this results in increased UV absorption in the buffer gas which also requires space radiators to reject the heat load.

  17. Active Disturbance Rejection Control of a Heat Integrated Distillation Column

    DEFF Research Database (Denmark)

    Al-Kalbani, Fahad; Zhang, Jie; Bisgaard, Thomas

    2016-01-01

    pressure. However, the control of some HiDC processesis generally difficult due to the strong control loop interaction, high purity of the components and undesired disturbances. Active disturbance rejection control (ADRC) is used in this paperto control a simulated HiDC for separating benzene-toluene......Heat integrated distillation column (HiDC) is the most energy efficient distillation approach making efficient utilization of internal heat integration through heat pump. The rectifying section acts as a heat source with high pressure, while the stripping section operates as a heat sink with low...

  18. Radiation therapy treatment of acute refractory renal allograft rejection

    International Nuclear Information System (INIS)

    Godinez, J.; Thisted, R.A.; Woodle, E.S.; Thistlethwaite, J.R.; Powers, C.; Haraf, D.

    1996-01-01

    radiation treatment (median 4, range 1-22), number of transplants (one transplant in 77 %), and concomitant immunosuppressive therapy. Independent factors by the Cox regression model were: Sex (P=0.005), Creatinine levels (P=0.000), HLA-DR (P=0.05), PRA-Max > 70% (P=0.014). Each factor was scored using the integral coefficients to generate four different groups. The overall actuarial graft survival from the initiation of RT was 83% at 1 month, 60% at 1 year and 36% at 5 years. The Kaplan-Meier survival analyzed by groups seems to produce an interpretable separation of the risk factors for graft loss. The number of rejections of pre-RT range from 1-6 (median 2) and post-RT range from 0-3 (median 0). Conclusions: Our experience indicates that radiation therapy provides effective treatment for acute refractory renal allograft rejection. The response to radiation therapy in patients treated with acute refractory renal graft rejection can be predicted by a new scoring system

  19. New scoring system identifies kidney outcome with radiation therapy in acute renal allograft rejection

    International Nuclear Information System (INIS)

    Chen, Luci M.; Godinez, Juan; Thisted, Ronald A.; Woodle, E. Steve; Thistlewaite, J. Richard; Powers, Claire; Haraf, Daniel

    2000-01-01

    Purpose: To evaluate the role of radiation therapy for acute refractory renal rejection after failure of medical intervention, and to identify risk factors that influence graft survival following radiation therapy. Methods: Between June 1989 and December 1995, 53 renal transplant recipients (34 men and 19 women) were treated with localized radiation therapy for acute renal allograft rejection. Graft rejection was defined as an increase in serum creatinine with histologic evidence of rejection on renal biopsy. Ninety-one percent were cadaveric transplant recipients. The majority of patients who experienced acute graft rejection initially received corticosteroid therapy, except for 25% who were referred for radiation therapy and steroids for the first rejection. In more recent years, patients with moderate or severe steroid-resistant or recurrent rejection received OKT3, a polyclonal antilymphocyte antibody (ATGAM), tacrolimus (FK506), or mycophenolate mofetil (MMF). Patients who failed to respond to medical treatment were then referred for radiation therapy. Ultrasound was performed for kidney localization. Treatment consisted of a dose of 600 cGy given in 3 or 4 fractions using 6 MV photons, delivered AP or AP/PA. Results: The overall actuarial graft survival from the initiation of RT was 83% at 1 month, 60% at 1 year, and 36% at 5 years. The median follow-up from the date of transplant to the last follow-up was 22 months. The median time from the date of transplant to the initiation of radiotherapy was 3 months, and the median time from the initiation of radiotherapy to the last follow-up was 10 months. Variables evaluated were as follows: human leukocyte antigen matching on HLA-A, HLA-B, and HLA-DR, the transplant panel-reactive antibodies (PRA) at transplantation, number of acute rejection episodes, interval from the date of the transplant to the first rejection, serum creatinine levels at the time of the first radiation treatment, number of transplants, and

  20. Band rejection filter for measurement of electron cyclotron emission during electron cyclotron heating

    International Nuclear Information System (INIS)

    Iwase, Makoto; Ohkubo, Kunizo; Kubo, Shin; Idei, Hiroshi.

    1996-05-01

    For the measurement of electron cyclotron emission from the high temperature plasma, a band rejection filter in the range of 40-60 GHz is designed to reject the 53.2 GHz signal with large amplitude from the gyrotron for the purpose of plasma electron heating. The filter developed with ten sets of three quarters-wavelength coupled by TE 111 mode of tunable resonant cavity has rejection of 50 dB and 3 dB bandwidth of 500 MHz. The modified model of Tschebysheff type for the prediction of rejection is proposed. It is confirmed that the measured rejection as a function of frequency agrees well with the experimental results for small coupling hole, and also clarified that the rejection ratio increases for the large coupling hole. (author)

  1. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  2. Lightweight, High-Temperature Radiator for Space Propulsion

    Science.gov (United States)

    Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.

    2012-01-01

    For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.

  3. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  4. Enabling Self-Propelled Condensate Flow During Phase-Change Heat Rejection Using Surface Texturing

    Data.gov (United States)

    National Aeronautics and Space Administration — A collaborative project between Oregon State University and Auburn University is proposed on the topic of heat rejection. A unique and innovative method of...

  5. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.

    2016-10-15

    Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.

  6. Shape Morphing Adaptive Radiator Technology (SMART) Updates to Techport Entry

    Science.gov (United States)

    Erickson, Lisa; Bertagne, Christopher; Hartl, Darren; Witcomb, John; Cognata, Thomas

    2017-01-01

    The Shape-Morphing Adaptive Radiator Technology (SMART) project builds off the FY16 research effort that developed a flexible composite radiator panel and demonstrated its ability to actuate from SMA's attached to it. The proposed FY17 Shape-Morphing Adaptive Radiator Technology (SMART) project's goal is to 1) develop a practical radiator design with shape memory alloys (SMAs) bonded to the radiator's panel, and 2) build a multi-panel radiator prototype for subsequent system level thermal vacuum tests. The morphing radiator employs SMA materials to passively change its shape to adapt its rate of heat rejection to vehicle requirements. Conceptually, the radiator panel has a naturally closed position (like a cylinder) in a cold environment. Whenever the radiator's temperature gradually rises, SMA's affixed to the face sheet will pull the face sheet open a commensurate amount - increasing the radiators view to space and causing it to reject more heat. In a vehicle, the radiator's variable heat rejection capabilities would reduce the number of additional heat rejection devices in a vehicle's thermal control system. This technology aims to help achieve the required maximum to minimum heat rejection ratio required for manned space vehicles to adopt a lighter, simpler, single loop thermal control architecture (ATCS). Single loop architectures are viewed as an attractive means to reduce mass and complexity over traditional dual-loop solutions. However, fluids generally considered safe enough to flow within crewed cabins (e.g. propylene glycol-water mixtures) have much higher freezing points and viscosities than those used in the external sides of dual loop ATCSs (e.g. Ammonia and HFE7000).

  7. Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Spitler, Jeffrey D.; Fang, Zhaohong

    2011-01-01

    Highlights: → Propose a novel HGCHP system with NCR works as supplemental heat rejecter. → Establish the analytical model and computer program of NCR and novel HGCHP system to simulate their operation performance. → Design the novel HGCHP system for a sample building located in Hong Kong. → It is found to be feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system. → The novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings. -- Abstract: When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.

  8. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  9. Potential use of power plant reject heat in commercial aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10/sup 5/ kg/year of fish, 1.5 x 10/sup 6/ kg/year of clam meat, and 1.5 x 10/sup 4/ kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated.

  10. Potential use of power plant reject heat in commercial aquaculture

    International Nuclear Information System (INIS)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10 5 kg/year of fish, 1.5 x 10 6 kg/year of clam meat, and 1.5 x 10 4 kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated

  11. Radiation therapy for renal transplant rejection refractory to pulse steroids and OKT3

    International Nuclear Information System (INIS)

    Noyes, William R.; Rodriguez, Rey; Knechtle, Stuart J.; Pirsch, John D.; Sollinger, Hans W.; D'Alessandro, Anthony M.; Chappell, Rick; Belzer, Folkert O.; Kinsella, Timothy J.

    1996-01-01

    Purpose: To determine the response rate and kidney graft survival following local irradiation to the transplanted renal graft undergoing persistent rejection after medical management including pulse steroids and OKT3. The role of radiation for renal transplant rejection after failure of OKT3 has not been previously reported. Methods and Materials: From July 1, 1988 to July 1, 1994, 72 consecutive patients with kidney graft rejection were treated with local irradiation to the transplanted renal graft following failure of medical management. All patients received pulse steroids and OKT3, an anti-CD3 immunosuppressant. Patients who failed to respond to methylprednisolone and OKT3 therapy were referred for radiation therapy. The median time from the diagnosis of rejection to irradiation was 8 days. All kidney grafts received local graft irradiation to a total of 8 Gy delivered in four daily fractions. Results: Sixty (83%) patients initially responded to radiotherapy at 7 days after completion of radiotherapy, as defined by a decrease in serum creatinine. Thirty-five responding patients have not experienced a second episode of graft rejection. Overall, 43 (60%) patients have renal graft survival, with a median follow-up of 16 months (range of 6-73 months). Conclusion: It is concluded that there is a subgroup of kidney graft patients undergoing graft rejection who are refractory to pulse steroids and OKT3 therapy where irradiation may be an effective modality with high rates of response and a moderate rate of graft survival. However, a prospective, randomized trial in these medically refractory patients is needed to ascertain whether these results are clinically significant

  12. Energy distributions in a diesel engine using low heat rejection (LHR) concepts

    International Nuclear Information System (INIS)

    Li, Tingting; Caton, Jerald A.; Jacobs, Timothy J.

    2016-01-01

    Highlights: • Altering coolant temperature was employed to devise low heat rejection concept. • The energy distributions at different engine coolant temperatures were analyzed. • Raising coolant temperature yields improvements in fuel conversion efficiency. • The exhaust energy is highly sensitive to the variations in exhaust temperature. • Effects of coolant temperature on mechanical efficiency were examined. - Abstract: The energy balance analysis is recognized as a useful method for aiding the characterization of the performance and efficiency of internal combustion (IC) engines. Approximately one-third of the total fuel energy is converted to useful work in a conventional IC engine, whereas the major part of the energy input is rejected to the exhaust gas and the cooling system. The idea of a low heat rejection (LHR) engine (also called “adiabatic engine”) was extensively developed in the 1980s due to its potential in improving engine thermal efficiency via reducing the heat losses. In this study, the LHR operating condition is implemented by increasing the engine coolant temperature (ECT). Experimentally, the engine is overcooled to low ECTs and then increased to 100 °C in an effort to get trend-wise behavior without exceeding safe ECTs. The study then uses an engine simulation of the conventional multi-cylinder, four-stroke, 1.9 L diesel engine operating at 1500 rpm to examine the five cases having different ECTs. A comparison between experimental and simulation results show the effects of ECT on fuel conversion efficiency. The results demonstrate that increasing ECT yields slight improvements in net indicated fuel conversion efficiency, with larger improvements observed in brake fuel conversion efficiency.

  13. Optimal piston motion for maximum net output work of Daniel cam engines with low heat rejection

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2015-01-01

    Highlights: • The piston motion of low heat rejection compression ignition engines is optimized. • A realistic model taking into account the cooling system is developed. • The optimized cam is smaller for cylinders without thermal insulation. • The optimized cam size depends on ignition moment and cooling process intensity. - Abstract: Compression ignition engines based on classical tapper-crank systems cannot provide optimal piston motion. Cam engines are more appropriate for this purpose. In this paper the piston motion of a Daniel cam engine is optimized. Piston acceleration is taken as a control. The objective is to maximize the net output work during the compression and power strokes. A major research effort has been allocated in the last two decades for the development of low heat rejection engines. A thermally insulated cylinder is considered and a realistic model taking into account the cooling system is developed. The sinusoidal approximation of piston motion in the classical tapper-crank system overestimates the engine efficiency. The exact description of the piston motion in tapper-crank system is used here as a reference. The radiation process has negligible effects during the optimization. The approach with no constraint on piston acceleration is a reasonable approximation. The net output work is much larger (by 12–13%) for the optimized system than for the classical tapper-crank system, for similar thickness of cylinder walls and thermal insulation. Low heat rejection measures are not of significant importance for optimized cam engines. The optimized cam is smaller for a cylinder without thermal insulation than for an insulated cylinder (by up to 8%, depending on the local polar radius). The auto-ignition moment is not a parameter of significant importance for optimized cam engines. However, for given cylinder wall and insulation materials there is an optimum auto-ignition moment which maximizes the net output work. The optimum auto

  14. Experimental demonstrations of organic Rankine cycle waste heat rejection systems

    Science.gov (United States)

    Bland, Timothy J.; Lacey, P. Douglas

    Two phase fluid management is an important factor in the successful design of organic Rankine cycle (ORC) power conversion systems for space applications. The evolution of the heat rejection system approach from a jet condenser, through a rotary jet condenser, to a rotary fluid management device (RFMD) with a surface condenser has been described in a previous paper. Some of the test programs that were used to prove the validity of the selected approach are described.

  15. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  16. Semitransparent ceramic heat-insulation of eco-friendly Low- Heat-Rejection diesel

    Science.gov (United States)

    Merzlikin, V. G.; Gutierrez, M. O.; Makarov, A. R.; Kostukov, A. V.; Dementev, A. A.; Khudyakov, S. V.; Zagumennov, F. A.

    2018-03-01

    Efficiency of diesel has been studied using well-known types of the ceramic heat-insulating HICs- or thermal barrier TBCs-coatings. This problem is relevant for a high-speed diesel combustion chamber in which an intensive radiant component (near IR) reaches ~50% within total thermal flux. Therefore, in their works the authors had been offering new concept of study these materials as semitransparent SHICs-, STBCs-coatings. On the Mie scattering theory, the effect of selection of the specific structural composition and porosity of coatings on the variation of their optical parameters is considered. Conducted spectrophotometric modeling of the volume-absorbed radiant energy by the coating had determined their acceptable temperature field. For rig testings, a coated piston using selected SHIC (PSZ-ceramic ZrO2+8%Y2O3) with a calculated optimum temperature gradient was chosen. A single cylinder experimental tractor diesel was used. At rotation frequency n > 2800 rpm, the heat losses were no more than 0.2 MW/m2. Executed testings showed ~2-3% lower specific fuel consumption in contrast to the diesel with an uncoated piston. Effective power and drive torque were ∼2-5% greater. The authors have substantiated the growth the efficiency of this Low-Heat-Rejection(LHR) diesel due to the known effect of soot deposition gasification at high speed. Then unpolluted semitransparent ceramic thermal insulation forms the required thermoradiation fields and temperature profiles and can affect regulation of heat losses and a reduction of primarily nitrogen dioxide generation.

  17. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  18. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  19. Conceptual designs for 100-MW space radiators

    International Nuclear Information System (INIS)

    Prenger, F.C.; Sullivan, J.A.

    1982-01-01

    A description and comparison of heat rejection systems for multimegawatt space-based power supplies is given. Current concepts are described, and through a common performance parameter, these are compared with three advanced radiator concepts. The comparison is based on a power system that rejects 100 MW of heat while generating 10 MW of electrical power

  20. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    Science.gov (United States)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  1. Experimental test of liquid droplet radiator performance

    Science.gov (United States)

    Mattick, A. T.; Simon, M. A.

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.

  2. Optimized Radiator Geometries for Hot Lunar Thermal Environments

    Science.gov (United States)

    Ochoa, Dustin

    2013-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approximately 325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Intense Thermal Infrared Reflector (ITIR), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of ITIR is the absence of louvers or other moving parts and its simple geometry (no parabolic shapes). ITIR consists of a specularly reflective shielding surface and a diffuse radiating surface joined to form a horizontally oriented V-shape (shielding surface on top). The point of intersection of these surfaces is defined by two angles, those which define the tilt of each surface with respect to the local horizontal. The optimum set of these angles is determined on a case-by-case basis. The idea assumes minimal conductive heat transfer between shielding and radiating surfaces, and a practical design would likely stack sets of these surfaces on top of one another to reduce radiator thickness.

  3. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  4. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  5. Demonstration of a shape memory alloy torque tube-based morphing radiator

    Science.gov (United States)

    Chong, Jorge B.; Walgren, Patrick; Hartl, Darren J.

    2018-03-01

    Long-distance crewed space exploration will require advanced thermal control systems (TCS) with the ability to handle a wide range of thermal loads. The ability of a TCS to adapt to the thermal environment is described by the turndown ratio. Developing radiators with high turndown ratios is critical for improving TCS technology. This paper describes a novel morphing radiator designed to achieve a high turndown ratio by varying its own radiative view factor and effective emissivity through the use of shape memory alloys (SMAs). This radiator features two SMA torque tubes cantilevered to a rigid fixture. The working fluid is transported within the SMA tubes through an annular flow system. In a cold environment, radiator panels fixed to the free ends of the tubes are oriented vertically in a parallel-plate fashion, where the high-emissivity interior faces have restricted views to the environment and heat rejection is minimized. When the system heats up, the tubes actuate by twisting in opposing directions, bringing the panels to a horizontal position with the interior faces exposed to maximize heat rejection. When the system cools down, the tubes twist in reverse, restoring the panels to the vertical orientation where heat rejection is again minimized. This variable heat rejection system has the potential for achieving higher turndown ratios than those of current state-of-the-art systems. A benchtop prototype has been designed and tested to demonstrate actuation and to explore internal heat transfer effects. Prototype design, testing, and results are herein described.

  6. Reactor waste heat utilization and district heating reactors. Nuclear district heating in Sweden - Regional reject heat utilization schemes and small heat-only reactors

    International Nuclear Information System (INIS)

    Hannerz, K.; Larsson, Y.; Margen, P.

    1977-01-01

    A brief review is given of the current status of district heating in Sweden. In future, district heating schemes will become increasingly interesting as a means of utilizing heat from nuclear reactors. Present recommendations in Sweden are that large reactors should not be located closer than about 20 km from large population centres. Reject heat from such reactors is cheap at source. To minimize the cost of long distance hot water transmission large heat rates must be transmitted. Only areas with large populations can meet this requirement. The three areas of main interest are Malmoe/Lund/Helsingborg housing close to 0.5 million; Greater Stockholm housing 1 to 1.5 million and Greater Gothenburg housing about 0.5 million people. There is an active proposal that the Malmoe/Lund/Helsingborg region would be served by a third nuclear unit at Barsebaeck, located about 20 km from Malmoe/Lund and supplying 950 MW of base load heat. Preliminary proposals for Stockholm involve a 2000 MW heat supply; proposals for Gothenburg are more tentative. The paper describes progress on these proposals and their technology. It also outlines technology under development to increase the economic range of large scale heat transport and to make distribution economic even for low heat-density family housing estates. Regions apart from the few major urban areas mentioned above require the adoption of a different approach. To this end the development of a small, simple low-temperature reactor for heat-only production suitable for urban location has been started in Sweden in close contact with Finland. Some results of the work in progress are presented, with emphasis on the safety requirements. An outline is given in the paper as to how problems of regional heat planning and institutional and legislative issues are being approached

  7. Luminaries-level structure improvement of LEDs for heat dissipation ...

    Indian Academy of Sciences (India)

    the natural convection heat transfer process of LED luminaries is simulated by compu- ... Heat dissipation has become one of the key problems limiting the large ... micro channel heat radiator, are able to reject heat efficiently, they may make LED ... convection heat transfer coefficient, for example, adopting finned surface to ...

  8. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    Science.gov (United States)

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  9. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  10. The liquid droplet radiator: Status of development

    Science.gov (United States)

    Persson, J.

    1991-12-01

    The ever greater amounts of power to be dissipated onboard future spacecraft, together with their limited external dimensions, will make it increasingly difficult to use conventional radiator technology without imposing a severe mass penalty. Hunting for lightweight alternatives to current heat rejection systems has become a matter of growing urgency, which explains the great interest that the Liquid Droplet Radiator (LDR) has attracted. Tradeoff analyses indicate that an LDR may be as much as an order of magnitude lighter than a comparable conventional radiator. A literature study examining the progress of the LDR research and some of its possible applications is reviewed. An investigation of the LDR heat rejection capability is presented.

  11. Radiation and combined heat transfer in channels

    International Nuclear Information System (INIS)

    Tamonis, M.

    1986-01-01

    This book presents numerical methods of calculation of radiative and combined heat transfer in channel flows of radiating as well as nonradiating media. Results obtained in calculations for flow conditions of combustion products from organic fuel products are given and methods used in determining the spectral optical properties of molecular gases are analyzed. The book presents applications of heat transfer in solving problems. Topic covered are as follows: optical properties of molecular gases; transfer equations for combined heat transfer; experimental technique; convective heat transfer in heated gas flows; radiative heat transfer in gaseous media; combined heat transfer; and radiative and combined heat transfer in applied problems

  12. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  13. Estimation of heat rejection based on the air conditioner use time and its mitigation from buildings in Taipei City

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chun-Ming; Aramaki, Toshiya; Hanaki, Keisuke [The University of Tokyo, Bunkyo-ku, Tokyo (Japan). Department of Urban Engineering

    2007-09-15

    The main work in the research focuses on the analysis and mitigation of the anthropogenic heat discharged from buildings, which is one of the main reasons leading to the heat island effect. The residential and commercial buildings, divided into 10 categories, with HVAC systems were analyzed by the building energy program, EnergyPlus. With the help of GIS, the heat rejection of all the residential and commercial buildings in DaAn Ward of Taipei City were evaluated, in which the spatial data and diurnal variation of the heat rejection were described by 3-h time periods. Furthermore, the effect of mitigation strategies was discussed. The first strategy was to change the wall/roof material of building envelope. The second and third strategies, from the viewpoint of energy saving, were to change the temperature setting of air conditioners and to turn off the lighting and equipment when not in use. The fourth strategy was to use a better efficiency of the cooling systems. Finally, the evaluation of installing the water-cooled cooling system, which discharges heat in the form of sensible and latent heat, was also included. (author)

  14. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    Science.gov (United States)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-01-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  15. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    Science.gov (United States)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-03-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  16. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  17. Fluid Line Evacuation and Freezing Experiments for Digital Radiator Concept

    Science.gov (United States)

    Berisford, Daniel F.; Birur, Gajanana C.; Miller, Jennifer R.; Sunada, Eric T.; Ganapathi, Gani B.; Stephan, Ryan; Johnson, Mark

    2011-01-01

    The digital radiator technology is one of three variable heat rejection technologies being investigated for future human-rated NASA missions. The digital radiator concept is based on a mechanically pumped fluid loop with parallel tubes carrying coolant to reject heat from the radiator surface. A series of valves actuate to start and stop fluid flow to di erent combinations of tubes, in order to vary the heat rejection capability of the radiator by a factor of 10 or more. When the flow in a particular leg is stopped, the fluid temperature drops and the fluid can freeze, causing damage or preventing flow from restarting. For this reason, the liquid in a stopped leg must be partially or fully evacuated upon shutdown. One of the challenges facing fluid evacuation from closed tubes arises from the vapor generated during pumping to low pressure, which can cause pump cavitation and incomplete evacuation. Here we present a series of laboratory experiments demonstrating fluid evacuation techniques to overcome these challenges by applying heat and pumping to partial vacuum. Also presented are results from qualitative testing of the freezing characteristics of several different candidate fluids, which demonstrate significant di erences in freezing properties, and give insight to the evacuation process.

  18. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  19. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  20. Heat Shock Protein 90α Is a Potential Serological Biomarker of Acute Rejection after Renal Transplantation.

    Directory of Open Access Journals (Sweden)

    Takeshi Maehana

    Full Text Available Heat shock protein 90 (HSP90, a molecular chaperone associated with the activation of client proteins, was recently reported to play an important role in immunologic reactions. To date, the role of HSP90 in solid organ transplantations has remained unknown. The aim of this study was to evaluate the relationship between serum HSP90α levels and acute allograft rejection after organ and tissue transplantation using serum samples from kidney allograft recipients, an in vitro antibody-mediated rejection model, and a murine skin transplantation.Serum HSP90α levels were significantly higher in kidney recipients at the time of acute rejection (AR than in those with no evidence of rejection. In most cases with AR, serum HSP90 decreased to baseline after the treatment. On the other hand, serum HSP90α was not elevated as much in patients with chronic rejection, calcineurin inhibitor nephrotoxicity, or BK virus nephropathy as in AR patients. In vitro study showed that HSP90α concentration in the supernatant was significantly higher in the supernatant of human aortic endothelial cells cocultured with specific anti-HLA IgG under complement attack than in that of cells cocultured with nonspecific IgG. In mice receiving skin transplantation, serum HSP90α was elevated when the first graft was rejected and the level further increased during more severe rejection of the second graft.The results suggest that HSP90α is released into the serum by cell damage due to AR in organ and tissue transplantation, and it is potentially a new biomarker to help detect AR in kidney recipients.

  1. Weight Optimization of Active Thermal Management Using a Novel Heat Pump

    Science.gov (United States)

    Lear, William E.; Sherif, S. A.

    2004-01-01

    Efficient lightweight power generation and thermal management are two important aspects for space applications. Weight is added to the space platforms due to the inherent weight of the onboard power generation equipment and the additional weight of the required thermal management systems. Thermal management of spacecraft relies on rejection of heat via radiation, a process that can result in large radiator mass, depending upon the heat rejection temperature. For some missions, it is advantageous to incorporate an active thermal management system, allowing the heat rejection temperature to be greater than the load temperature. This allows a reduction of radiator mass at the expense of additional system complexity. A particular type of active thermal management system is based on a thermodynamic cycle, developed by the authors, called the Solar Integrated Thermal Management and Power (SITMAP) cycle. This system has been a focus of the authors research program in the recent past (see Fig. 1). One implementation of the system requires no moving parts, which decreases the vibration level and enhances reliability. Compression of the refrigerant working fluid is accomplished in this scheme via an ejector.

  2. Experimental test of liquid droplet radiator performance

    International Nuclear Information System (INIS)

    Mattick, A.T.; Simon, M.A.

    1986-01-01

    This liquid droplet radiator (LDR) is evolving rapidly as a lightweight system for heat rejection in space power systems. By using recirculating free streams of submillimeter droplets to radiate waste energy directly to space, the LDR can potentially be an order of magnitude lighter than conventional radiator systems which radiate from solid surfaces. The LDR is also less vulnerable to micrometeoroid damage than are conventional radiators, and it has a low transport volume. Three major development issues of this new heat rejection system are the ability to direct the droplet streams with sufficient precision to avoid fluid loss, radiative performance of the array of droplet streams which comprise the radiating elements of the LDR, and the efficacy of the droplet stream collector, again with respect to fluid loss. This paper reports experimental results bearing on the first two issues - droplet aiming in a multikilowatt-sized system, and radiated power from a large droplet array. Parallel efforts on droplet collection and LDR system design are being pursued by several research groups

  3. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott; Poynot, Joe

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's.

  4. Self-Regulating Freezable Heat Exchanger and Radiator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — At present, both the astronaut's metabolic heat and that produced by the Portable Life Support System are rejected to space by a sublimator that consumes up to 8...

  5. Diversified emergency core cooling in CANDU with a passive moderator heat rejection system

    Energy Technology Data Exchange (ETDEWEB)

    Spinks, N [AECL Research, Chalk River Labs., Chalk River, ON (Canada)

    1996-12-01

    A passive moderator heat rejection system is being developed for CANDU reactors which, combined with a conventional emergency-coolant injection system, provides the diversity to reduce core-melt frequency to order 10{sup -7} per unit-year. This is similar to the approach used in the design of contemporary CANDU shutdown systems which leads to a frequency of order 10{sup -8} per unit-year for events leading to loss of shutdown. Testing of a full height 1/60 power-and-volume-scaled loop has demonstrated the feasibility of the passive system for removal of moderator heat during normal operation and during accidents. With the frequency of core-melt reduced, by these measures, to order 10{sup -7} per unit year, no need should exist for further mitigation. (author). 3 refs, 2 figs.

  6. Heat pump evaluation for Space Station ATCS evolution

    Science.gov (United States)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  7. The theory of heat radiation

    CERN Document Server

    Planck, Max

    2003-01-01

    Nobel laureate's classic exposition of the theory of radiant heat in terms of quantum action. Kirchoff's law, black radiation, Maxwell's radiation pressure, entropy, other topics. 1914 edition. Bibliography.

  8. Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al2O3 and CuO nanofluids

    Science.gov (United States)

    Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.

    2017-12-01

    Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.

  9. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    International Nuclear Information System (INIS)

    Morison, W.L.; Kelley, S.P.

    1985-01-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans

  10. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  11. Super-Planckian far-field radiative heat transfer

    Science.gov (United States)

    Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.

    2018-01-01

    We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.

  12. The radiative heating response to climate change

    Science.gov (United States)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  13. Influence of radiation heat transfer during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  14. Influence of radiation heat transfer during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A.; Polo L, M. A.

    2016-09-01

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  15. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  16. Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers

    Science.gov (United States)

    Wescott, Matthew T.; McQuien, J. Scott; Bertagne, Christopher L.; Whitcomb, John D.; Hart, Darren J.; Erickson, Lisa R.

    2017-01-01

    Upcoming crewed space missions will involve large internal and external heat loads and require advanced thermal control systems to maintain a desired internal environment temperature. Radiators with at least 12:1 turndown ratios (the ratio between the maximum and minimum heat rejection rates) will be needed. However, current technologies are only able to achieve turndown ratios of approximately 3:1. A morphing radiator capable of altering shape could significantly increase turndown capabilities. Shape memory alloys offer qualities that may be well suited for this endeavor; their temperature-dependent phase changes could offer radiators the ability to passively control heat rejection. In 2015, a morphing radiator prototype was constructed and tested in a thermal vacuum environment, where it successfully demonstrated the morphing behavior and variable heat rejection. Newer composite prototypes have since been designed and manufactured using two distinct types of SMA materials. These models underwent temperature cycling tests in a thermal vacuum chamber and a series of fatigue tests to characterize the lifespan of these designs. The focus of this paper is to present the design approach and testing of the morphing composite facesheet. The discussion includes: an overall description of the project background, definition of performance requirements, composite materials selection, use of analytic and numerical design tools, facesheet fabrication, and finally fatigue testing with accompanying results.

  17. Combustion, performance, and emission characteristics of low heat rejection engine operating on various biodiesels and vegetable oils

    International Nuclear Information System (INIS)

    Abedin, M.J.; Masjuki, H.H.; Kalam, M.A.; Sanjid, A.; Ashraful, A.M.

    2014-01-01

    Highlights: • Combustion, performance, and emissions of low heat rejection engine are studied. • Comparative assessment is carried out for different fuels and coating materials. • Alternative coating materials are suggested for engine. • Thermal efficiency is increased and fuel consumption is decreased for all fuels. • Exhaust emissions have improved except nitrogen oxides emission. - Abstract: Internal combustion engine with its combustion chamber walls insulated by thermal barrier coating materials is referred to as low heat rejection engine or LHR engine. The main purpose of this concept is to reduce engine coolant heat losses, hence improve engine performance. Most of the researchers have reported that the thermal coating increases thermal efficiency, and reduces exhaust emissions. In contrast to the above expectations, a few researchers reported that almost there was no improvement in thermal efficiency. This manuscript investigates the contradictory results in order to find out the exact scenario. A wide range of coating materials has been studied in order to justify their feasibility of implementation in engine. The influence of coating material, thickness, and technique on engine performance and emissions has been studied critically to accelerate the LHR engine evolution. The objectives of higher thermal efficiency, improved fuel economy, and lower emissions are accomplishable but much more investigations with improved engine modification, and design are required to explore full potentiality of LHR engine

  18. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  19. Heat-pipe development for the SPAR space-power system

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1981-01-01

    The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures

  20. Sliding seal materials for low heat rejection engines

    Science.gov (United States)

    Beaty, Kevin; Lankford, James; Vinyard, Shannon

    1989-01-01

    Sliding friction coefficients and wear rates of promising piston seal materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the low heat rejection (LHR) diesel engine environment. These materials included carbides, oxides, and nitrides. In addition, silicon nitride and partially stablized zirconia disks (cylinder liners) were ion-implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins (piston rings), with the objective of producing reduced friction via solid lubrication at elevated temperature. Friction and wear measurements were obtained using pin-on-disk laboratory experiments and a unique engine friction test rig. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above during the pin-on-disk tests. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combination, by the ion-implantation of TiNi or Co. This beneficial effect was found to derive from the lubricious Ti, Ni, and Co oxides. Similar results were demonstrated on the engine friction test rig at lower temperatures. The structural integrity and feasibility of engine application with the most promising material combination were demonstrated during a 30-hour single-cylinder, direct-injection diesel engine test.

  1. Development of lightweight radiators for lunar based power systems

    International Nuclear Information System (INIS)

    Juhasz, A.J.; Bloomfield, H.S.

    1994-05-01

    This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil-Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology

  2. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    Science.gov (United States)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  3. Increase net plant output through selective operation of the heat-rejection system

    International Nuclear Information System (INIS)

    Ostrowski, E.T.; Queenan, P.T.

    1987-01-01

    Depending on unit load and ambient meteorological conditions, a net increase of 800 to 5500 kW in plant output is possible for many generating units through optimized operation of the major motor-driven equipment in the heat-rejection system - the circulating water pumps and mechanical-draft cooling tower fans. This can be realised when the resulting decrease in auxiliary-power demand is greater than the decrease in gross electric generation caused by operating fewer pumps and/or fans. No capital expenditures are incurred and only operating procedures are involved so that the performance gains are achieved at no cost. The paper considers the application of this technique to nuclear power plants, pump optimization and the superimposition of fan and cooling tower performance curves

  4. Effect of radiation heat transfer on the performance of high temperature heat exchanger, (2)

    International Nuclear Information System (INIS)

    Yamada, Yukio; Mori, Yasuo; Hijikata, Kunio.

    1977-01-01

    In high temperature helium gas-cooled reactors, the nuclear energy can be utilized effectively, and the safety is excellent as compared with conventional reactors. They are advantageous also in view of environmental problems. In this report, the high temperature heat exchanger used for heating steam with the helium from a high temperature gas reactor is modeled, and the case that radiating gas flow between parallel plates is considered. Analysis was made on the case of one channel and constant heat flux and on the model for a counter-flow type heat exchanger with two channels, and the effect of radiation on the heat transfer in laminar flow and turbulent flow regions was clarified theoretically. The basic equations, the method of approximate solution and the results of calculation are explained. When one dimensional radiation was considered, the representative temperature Tr regarding fluid radiation was introduced, and its relation to mean mixing temperature Tm was determined. It was clarified that the large error in the result did not arise even if Tr was taken equally to Tm, especially in case of turbulent flow. The error was practically negligible when the rate of forced convection heat transfer in case of radiating medium flow was taken same as that in the case without radiation. (Kako, I.)

  5. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  6. Summary of the Manufacture, Testing and Model Validation of a Full-Scale Radiator for Fission Surface Power Applications

    Science.gov (United States)

    Ellis, David L.; Calder, James; Siamidis, John

    2011-01-01

    A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.

  7. Development of a semitransparent ceramic heat-insulation for an eco-friendly combustion chamber of Low-Heat-Rejection diesel

    Science.gov (United States)

    Merzlikin, V. G.; Gutierrez, M. O.; Makarov, A. R.; Bekaev, A. A.; Bystrov, A. V.; Zagumennov, F. A.

    2018-02-01

    Efficiency of diesel has been studied using well-known types of the ceramic heat-insulating HICs- or thermal barrier TBCs-coatings. This problem is relevant for a high-speed diesel combustion chamber in which intensive radiant component (near IR) reaches ~50% within total thermal flux. Therefore, in their papers the authors offered new concept of study these materials as semitransparent SHICs-, STBCs-coatings. On the Mie scattering theory the effect of selection of the specific structural composition and porosity of coatings on the variation of their optical parameters is considered. Conducted spectrophotometric modeling of the volume-absorbed radiant energy by the coating had determined their acceptable temperature field. For rig testings coated piston using selected SHIC (PSZ-ceramic ZrO2+8%Y2O3) with a calculated optimum temperature gradient was chosen. A single cylinder experimental tractor diesel was used. At rotation frequency n > 2800 rpm the heat losses were no more than 0.2 MW/m2. Executed testings showed ~2-3% lower specific fuel consumption in contrast the diesel with uncoated piston. Effective power and drive torque were ~2-5% greater. The authors have substantiated the growth the efficiency of this Low-Heat-Rejection (LHR) diesel due to the known effect of soot deposition gasification at high speed.Then unpolluted semitransparent ceramic thermal insulation forms the required thermoradiation fields and temperature profiles and can affect regulation of heat losses and reduction of primarily nitrogen dioxide generation.

  8. International symposium on radiative heat transfer: Book of abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting

  9. Graft rejection by cytolytic T cells. Specificity of the effector mechanism in the rejection of allogeneic marrow

    International Nuclear Information System (INIS)

    Nakamura, H.; Gress, R.E.

    1990-01-01

    Cellular effector mechanisms of allograft rejection remain incompletely described. Characterizing the rejection of foreign-marrow allografts rather than solid-organ grafts has the advantage that the cellular composition of the marrow graft, as a single cell suspension, can be altered to include cellular components with differing antigen expression. Rejection of marrow grafts is sensitive to lethal doses of radiation in the mouse but resistant to sublethal levels of radiation. In an effort to identify cells mediating host resistance, lymphocytes were isolated and cloned from spleens of mice 7 days after sublethal TBI (650 cGy) and inoculation with allogeneic marrow. All clones isolated were cytolytic with specificity for MHC encoded gene products of the allogeneic marrow donor. When cloned cells were transferred in vivo into lethally irradiated (1025 cGy) recipients unable to reject allogeneic marrow, results utilizing splenic 125IUdR uptake indicated that these MHC-specific cytotoxic clones could suppress marrow proliferation. In order to characterize the effector mechanism and the ability of the clones to affect final engraftment, double donor chimeras were constructed so that 2 target cell populations differing at the MHC from each other and from the host were present in the same marrow allograft. Results directly demonstrated an ability of CTL of host MHC type to mediate graft rejection and characterized the effector mechanism as one with specificity for MHC gene products

  10. Transient heat pipe investigations for space power systems

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1985-01-01

    A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm 2 for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm 2 over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs

  11. Experimental Characterization of a Composite Morphing Radiator Prototype in a Relevant Thermal Environment

    Science.gov (United States)

    Bertagne, Christopher L.; Chong, Jorge B.; Whitcomb, John D.; Hartl, Darren J.; Erickson, Lisa R.

    2017-01-01

    For future long duration space missions, crewed vehicles will require advanced thermal control systems to maintain a desired internal environment temperature in spite of a large range of internal and external heat loads. Current radiators are only able to achieve turndown ratios (i.e. the ratio between the radiator's maximum and minimum heat rejection rates) of approximately 3:1. Upcoming missions will require radiators capable of 12:1 turndown ratios. A radiator with the ability to alter shape could significantly increase turndown capacity. Shape memory alloys (SMAs) offer promising qualities for this endeavor, namely their temperature-dependent phase change and capacity for work. In 2015, the first ever morphing radiator prototype was constructed in which SMA actuators passively altered the radiator shape in response to a thermal load. This work describes a follow-on endeavor to demonstrate a similar concept using highly thermally conductive composite materials. Numerous versions of this new concept were tested in a thermal vacuum environment and successfully demonstrated morphing behavior and variable heat rejection, achieving a turndown ratio of 4.84:1. A summary of these thermal experiments and their results are provided herein.

  12. Status of the Development of Low Cost Radiator for Surface Fission Power - II

    Science.gov (United States)

    Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.

    2016-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement

  13. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  14. Heat enhances radiation inhibition of wound healing

    International Nuclear Information System (INIS)

    Twomey, P.; Hill, S.; Joiner, M.; Hobson, B.; Denekamp, J.

    1987-01-01

    To study the effect of hyperthermia on the inhibition of healing by radiation, the authors used 2 models of wound tensile strength in mice. In one, tensile strength of 1 cm strips of wounded skin was measured. In the other, strength was measured on 2 by 1 by .3 cm surgical prosthetic sponges of polyvinyl alcohol which has been cut, resutured, and implanted subcutaneously. Granulation tissue grows into the pores of the sponges which gradually fill with collagen. Tensile strength in both models was measured on day 14 using a constant strain extensiometer. The wounds were given graduated doses of ortho-voltage radiation with or without hyperthermia. Maximum radiation sensitivity occurred during the period of rapid neovascularization in the first 5 days after wounding, when a loss of 80% in wound strength occurred with doses less than 20 gray. For single radiation doses given 48 hours after wounding, the authors found a steep dose-response curve with half maximum reduction in strength occurring in both models at approximately 10 gray. Hyperthermia was produced in two ways. Skin wounds were heated in a circulating water bath. In the sponge model, more uniform heating occurs with an RF generator scaled to the mouse. At a dose of 43 C for 30 minutes, no inhibition of healing by heat alone was found. However the combination of heat and radiation produced definite enhancement of radiation damage, with thermal enhancement ratios of up to 1.9 being observed

  15. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  16. Canine tumor and normal tissue response to heat and radiation

    International Nuclear Information System (INIS)

    Gillette, E.L.; McChesney, S.L.

    1985-01-01

    Oral squamous cell carcinomas of dogs were treated with either irradiation alone or combined with hyperthermia. Tumor control was assessed as no evidence of disease one year following treatment. Dogs were randomized to variable radiation doses which were given in ten fractions three times a week for three weeks. Heat was given three hours after the first and third radiation dose each week for seven treatments. The attempt was made to achieve a minimum tumor temperature of 42 0 C for thirty minutes with a maximum normal tissue temperature of 40 0 C. It was usually possible to selectively heat tumors. The TCD 50 for irradiation alone was about 400 rads greater than for heat plus irradiation. The dose response curve for heat plus radiation was much steeper than for radiation alone indicating less heterogeneity of tumor response. That also implies a much greater effectiveness of radiation combined with heat at higher tumor control probabilities. Early necrosis caused by heating healed with conservative management. No increase in late radiation necrosis was observed

  17. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  18. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  19. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  20. Evaluation method for radiative heat transfer in polydisperse water droplets

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki

    2008-01-01

    Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media

  1. Heat- and radiation-resistant scintillator for electron microscopes

    International Nuclear Information System (INIS)

    Kosov, A.V.; Petrov, S.A.; Puzyr', A.P.; Chetvergov, N.A.

    1987-01-01

    The use of a scintillator consisting of a single crystal of bismuth orthogermanate, which has high heat and radiation resistance, in REM-100, REM-200, and REM-100U electron microscopes is described. A study of the heat and radiation stabilities of single crystals of bismuth orthogermanate (Bi 4 Ge 3 O 12 ) has shown that they withstood multiple electron-beam heating redness (T ∼ 800 0 C) without changes in their properties

  2. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  3. Design considerations for the rotating electrostatic liquid-film radiator

    International Nuclear Information System (INIS)

    Bankoff, S.G.; Miksis, M.J.; Kim, H.; Gwinner, R.

    1994-01-01

    A lightweight, fully modular radiator design for heat rejection in space is proposed, which is estimated to weigh less than 2kg per square meter of the effective radiator area. The feature which makes this thin membrane radiator practical is the internal electrostatic field system, which can stop radiator leaks from punctures, sudden accelerations or accidental tears. Preliminary design calculations are presented for a rotating conical radiator, using liquid lithium at an inlet temperature of 800K. Remarkably low weights of less than 1kgkW -1 may be attained, with safety factors of two or more for stopping leaks. This is almost an order of magnitude less than the values for current heat pipe designs. ((orig.))

  4. Image rejects/retakes-radiographic challenges

    International Nuclear Information System (INIS)

    Waaler, D.; Hofmann, B.

    2010-01-01

    A general held position among radiological personnel prior to digitalisation was that the problem of image rejects/retakes should more or less vanish. However, rejects/retakes still impose several challenges within radiographic imaging; they occupy unnecessary resources, expose patients to unnecessary ionizing radiation and may also indicate suboptimal quality management. The latter is the main objective of this paper, which is based on a survey of international papers published both for screen/film and digital technology. The digital revolution in imaging seems to have reduced the percentage of image rejects/retakes from 10-15 to 3-5%. The major contribution to the decrease appears to be the dramatic reduction of incorrect exposures. At the same time, rejects/retakes due to lack of operator competence (positioning, etc.) are almost unchanged, or perhaps slightly increased (due to lack of proper technical competence, incorrect organ coding, etc.). However, the causes of rejects/retakes are in many cases defined and reported with reference to radiographers' subjective evaluations. Thus, unless radiographers share common views on image quality and acceptance criteria, objective measurements and assessments of reject/retake rates are challenging tasks. Interestingly, none of the investigated papers employs image quality parameters such as 'too much noise' as categories for rejects/retakes. Surprisingly, no reject/retake analysis seems yet to have been conducted for direct digital radiography departments. An increased percentage of rejects/retakes is related to 'digital skills' of radiographers and therefore points to areas for extended education and training. Furthermore, there is a need to investigate the inter subjectivity of radiographers' perception of, and attitude towards, both technical and clinical image quality criteria. Finally, there may be a need to validate whether reject/retake rate analysis is such an effective quality indicator as has been asserted

  5. Image rejects/retakes--radiographic challenges.

    Science.gov (United States)

    Waaler, D; Hofmann, B

    2010-01-01

    A general held position among radiological personnel prior to digitalisation was that the problem of image rejects/retakes should more or less vanish. However, rejects/retakes still impose several challenges within radiographic imaging; they occupy unnecessary resources, expose patients to unnecessary ionizing radiation and may also indicate suboptimal quality management. The latter is the main objective of this paper, which is based on a survey of international papers published both for screen/film and digital technology. The digital revolution in imaging seems to have reduced the percentage of image rejects/retakes from 10-15 to 3-5 %. The major contribution to the decrease appears to be the dramatic reduction of incorrect exposures. At the same time, rejects/retakes due to lack of operator competence (positioning, etc.) are almost unchanged, or perhaps slightly increased (due to lack of proper technical competence, incorrect organ coding, etc.). However, the causes of rejects/retakes are in many cases defined and reported with reference to radiographers' subjective evaluations. Thus, unless radiographers share common views on image quality and acceptance criteria, objective measurements and assessments of reject/retake rates are challenging tasks. Interestingly, none of the investigated papers employs image quality parameters such as 'too much noise' as categories for rejects/retakes. Surprisingly, no reject/retake analysis seems yet to have been conducted for direct digital radiography departments. An increased percentage of rejects/retakes is related to 'digital skills' of radiographers and therefore points to areas for extended education and training. Furthermore, there is a need to investigate the inter-subjectivity of radiographers' perception of, and attitude towards, both technical and clinical image quality criteria. Finally, there may be a need to validate whether reject/retake rate analysis is such an effective quality indicator as has been asserted.

  6. Nonsteady heat conduction code with radiation boundary conditions

    International Nuclear Information System (INIS)

    Fillo, J.A.; Benenati, R.; Powell, J.

    1975-01-01

    A heat-transfer model for studying the temperature build-up in graphite blankets for fusion reactors is presented. In essence, the computer code developed is for two-dimensional, nonsteady heat conduction in heterogeneous, anisotropic solids with nonuniform internal heating. Thermal radiation as well as bremsstrahlung radiation boundary conditions are included. Numerical calculations are performed for two design options by varying the wall loading, bremsstrahlung, surface layer thickness and thermal conductivity, blanket dimensions, time step and grid size. (auth)

  7. Lunar base heat pump, phase 1

    Science.gov (United States)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  8. User's Manual: Routines for Radiative Heat Transfer and Thermometry

    Science.gov (United States)

    Risch, Timothy K.

    2016-01-01

    Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.

  9. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    Science.gov (United States)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  10. Titanium-Water Thermosyphon Gamma Radiation Effects and Results

    Science.gov (United States)

    Sanzi, James L.; Jaworske, Donald A.; Goodenow, Debra A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some exposure to gamma irradiation. Non-condensable gas formation from radiation may breakdown water over time and render a portion of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature with accelerated gamma irradiation exposures on the same order of magnitude that is expected in eight years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon; evaporator, condenser, and condenser end cap. Some non-condensable gas was evident, however thermosyphon performance was not affected because the non-condensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of non-condensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the non-condensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of selected thermosyphons at temperature and in a vacuum chamber revealed that the non-condensable gas likely diffused out of the thermosyphons over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  11. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Young In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Myoung Jun; Lee, Hee Joon [School of Mechanical Eng., Kookmin University, Seoul (Korea, Republic of)

    2014-10-15

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer

  12. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  13. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2018-01-09

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.

  14. Fluctuations of radiative heat exchange between two bodies

    Science.gov (United States)

    Biehs, S.-A.; Ben-Abdallah, P.

    2018-05-01

    We present a theory to describe the fluctuations of nonequilibrium radiative heat transfer between two bodies both in the far- and near-field regimes. As predicted by the blackbody theory, in the far field, we show that the variance of radiative heat flux is of the same order of magnitude as its mean value. However, in the near-field regime, we demonstrate that the presence of surface polaritons makes this variance more than one order of magnitude larger than the mean flux. We further show that the correlation time of heat flux in this regime is comparable to the relaxation time of heat carriers in each medium. This theory could open the way to an experimental investigation of heat exchanges far from the thermal equilibrium condition.

  15. Radiative heat transfer in low-dimensional systems -- microscopic mode

    Science.gov (United States)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  16. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  17. Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner

    International Nuclear Information System (INIS)

    Li, B.X.; Lu, Y.P.; Liu, L.H.; Kudo, K.; Tan, H.P.

    2005-01-01

    For the purpose of energy conservation and uniform heating of object surface, a gas-fired porous radiant burner with a bundle of reflecting tubes is developed. A physical model is developed to simulate the directional radiative behavior of this heating device, in which the Monte Carlo method based on the concept of radiation distribution factor is used to compute the directional radiative behavior. The effects of relating parameters on the directional behavior of radiative heating and the heating efficiency are analyzed. With the increase of the length-to-radius ratio of tube, the radiation heating efficiency decreases, but the radiation energy incident on the object surface is more collimated. The radiation heating efficiency increases with the specular reflectivity. With the increase in length of tube segment with specular reflective surface, the radiation heating efficiency increases, but the extent of concentration and collimation of radiative energy decreases. For real design of the heating device, some trade-offs are needed to balance the radiation heating efficiency and the uniformity of radiative heating of object surface

  18. Polymeric hollow fiber heat exchanger as an automotive radiator

    International Nuclear Information System (INIS)

    Krásný, Ivo; Astrouski, Ilya; Raudenský, Miroslav

    2016-01-01

    Highlights: • Polymeric hollow fiber heat exchanger as an automotive radiator is proposed. • The mechanism of heat transfer (HT) relies on diameter of polymeric hollow fiber. • Grimson equation is sufficient for approximate prediction of the heat transfers. - Abstract: Nowadays, different automotive parts (tubing, covers, manifolds, etc.) are made of plastics because of their superior characteristics, low weight, chemical resistance, reasonable price and several other aspects. Manufacturing technologies are already well-established and the application of plastics is proven. Following this trend, the production of compact and light all-plastic radiators seems reasonable. Two plastic heat exchangers were manufactured based on polypropylene tubes of diameter 0.6 and 0.8 mm (so-called fibers) and tested. The heat transfer performance and pressure drops were studied with hot (60 °C) ethyleneglycol-water brine flowing inside the fibers and air (20 °C) outside because these conditions are conventional for car radiator operation. It was observed that heat transfer rates (up to 10.2 kW), overall heat transfer coefficients (up to 335 W/m"2 K), and pressure drops are competitive to conventional aluminium finned-tube radiators. Moreover, influence of fiber diameter was studied. It was observed that air-side convective coefficients rise with a decrease of fiber diameter. Air-side pressure drops of plastic prototypes were slightly higher than of aluminium radiator but it is expected that additional optimization will eliminate this drawback. Experimentally obtained air-side heat transfer coefficients were compared with the theoretical prediction using the Grimson equation and the Churchill and Bernstein approach. It was found that the Grimson equation is sufficient for approximate prediction of the outer HTCs and can be used for engineering calculations. Further work will concentrate on optimizing and developing a polymeric hollow fiber heat exchanger with reduced size

  19. Intense radiative heat transport across a nano-scale gap

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Ghafari, Amin; Bogy, David B.

    2016-01-01

    In this paper, we analyze the radiative heat transport in layered structures. The analysis is based on our prior description of the spectrum of thermally excited waves in systems with a heat flux. The developed method correctly predicts results for all known special cases for both large and closing gaps. Numerical examples demonstrate the applicability of our approach to the calculation of the radiative heat transport coefficient across various layered structures.

  20. Analysis of the thermal performance of heat pipe radiators

    Science.gov (United States)

    Boo, J. H.; Hartley, J. G.

    1990-01-01

    A comprehensive mathematical model and computational methodology are presented to obtain numerical solutions for the transient behavior of a heat pipe radiator in a space environment. The modeling is focused on a typical radiator panel having a long heat pipe at the center and two extended surfaces attached to opposing sides of the heat pipe shell in the condenser section. In the set of governing equations developed for the model, each region of the heat pipe - shell, liquid, and vapor - is thermally lumped to the extent possible, while the fin is lumped only in the direction normal to its surface. Convection is considered to be the only significant heat transfer mode in the vapor, and the evaporation and condensation velocity at the liquid-vapor interface is calculated from kinetic theory. A finite-difference numerical technique is used to predict the transient behavior of the entire radiator in response to changing loads.

  1. Adriamycin resistance, heat resistance and radiation response in Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Wallner, K.; Li, G.

    1985-01-01

    Previous investigators have demonstrated synergistic interaction between hyperthermia and radiation or Adriamycin (ADR), using cell lines that are sensitive to heat or ADR alone. The authors investigated the effect of heat, radiation or ADR on Chinese hamster fibroblasts (HA-1), their heat resistant variants and their ADR resistant variants. Heat for ADR resistance did not confer cross resistance to radiation. Cells resistant to heat did show cross resistance to ADR. While cells selected for ADR resistance were not cross resistant to heat, they did not exhibit drug potentiation by hyperthermia, characteristic of ADR sensitive cells. Cytofluorometric measurement showed decreased ADR uptake in both heat and ADR resistant cells. The possibility of cross resistance between heat and ADR should be considered when designing combined modality trials

  2. Analysis and Evaluation of a Vapor-Chamber Fin-Tube Radiator for High-Power Rankine Cycles

    National Research Council Canada - National Science Library

    Haller, Henry

    1965-01-01

    An analytical investigation of a flat, direct- condensing fin-tube radiator employing segmented vapor-chamber fins as a means of improving heat rejection was performed A for illustrative high-power...

  3. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  4. Maximal near-field radiative heat transfer between two plates

    Science.gov (United States)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  5. Development of a contact heat exchanger for a constructable radiator system

    Science.gov (United States)

    Howell, H. R.

    1983-01-01

    A development program for a contact heat exchanger to be used to transfer heat from a spacecraft coolant loop to a heat pipe radiator is described. The contact heat exchanger provides for a connectable/disconnectable joint which allows for on-orbit assembly of the radiator system and replacement or exchange of radiator panels for repair and maintenance. The contact heat exchanger does not require the transfer of fluid across the joint; the spacecraft coolant loop remains contained in an all welded system with no static or dynamic fluid seals. The contact interface is also "dry' with no conductive grease or interstitial material required.

  6. Radiative heat transfer in a heat generating and turbulently convecting fluid layer

    International Nuclear Information System (INIS)

    Cheung, F.B.; Chan, S.H.; Chawla, T.C.; Cho, D.H.

    1980-01-01

    The coupled problem of radiative transport and turbulent natural convection in a volumetrically heated, horizontal gray fluid medium, bounded from above by a rigid, isothermal wall and below by a rigid, adiabatic wall, is investigated analytically. An approximate method based upon the boundary layer approach is employed to obtain the dependence of heat transfer at the upper wall on the principal parameters of the problem, which, for moderate Prandtl number, are the Rayleigh number, Ra, the optical thickness, KL, and the conduction-radiation coupling parameter, N. Also obtained in this study is the behaviour of the thermal boundary layer at the upper wall. At large kL, the contribution of thermal radiation to heat transfer in the layer is found to be negligible for N > 10, moderate for N approximately 1, and overwhelming for N < 0.1. However, at small kL, thermal radiation is found to be important only for N < 0.01. While a higher level of turbulence results in a thinner boundary layer, a larger effect of radiation is found to result in a thicker one. Thus, in the presence of strong thermal radiation, a much larger value of Ra is required for the boundary layer approach to remain valid. Under severe radiation conditions, no boundary layer flow regime is found to exist even at very high Rayleigh numbers. Accordingly, the ranges of applicability of the present results are determined and the approximate method justified. In particular, the validity of the present analysis is tested in three limiting cases, ie those of kL → infinity, N → infinity, and Ra → infinity, and is further confirmed by comparison with the numerical solution (author)

  7. Combined natural convection and radiation in a volumetrically heated fluid layer

    International Nuclear Information System (INIS)

    Chawla, T.C.; Chan, S.H.; Cheung, F.B.; Cho, D.H.

    1980-01-01

    The effect of radiation in combination with turbulent natural convection on the rates of heat transfer in volumetrically heated fluid layers characterized by high temperatures has been considered in this study. It is demonstrated that even at high Rayleigh numbers the radiation mode is as effective as the turbulent natural convection mode in removing the heat from the upper surface of the molten pools with adiabatic lower boundary. As a result of this improved heat transfer, it is shown that considerably thicker molten pools with internal heat generation can be supported without boiling inception. The total Nusselt number at a moderate but fixed value of conduction-radiation parameter, can be represented as a function of Rayleigh number in a simple power-law form. As a consequence of this relationship it is shown that maximum nonboiling pool thicknesses vary approximately inversely as the 0.9% power of internal heat generation rate. A comparison between exact analysis using the integral formulation of radiation flux and Rosseland approximation shows that the latter approximation bears out very adequately for optically thick pools with conduction-radiation parameters greater than or equal to 0.4 inspite of the fact that individual components of Nusselt number due to radiation and convection, respectively, are grossly in error. These errors in component heat fluxes are compensating due to the total heat balance constraint. However, the comparison between Rosseland approximation and exact formulation gets poorer as the value of conduction-radiation parameters decreases. This increase in error is principally incurred due to the error in estimating wall temperature differences

  8. Combined natural convection and radiation in a volumetrically heated fluid layer

    International Nuclear Information System (INIS)

    Chawla, T.C.; Chan, S.H.; Cheung, F.B.; Cho, D.H.

    1980-01-01

    The effect of radiation in combining with turbulent natural convection on the rates of heat transfer in volumetrically heated fluid layers characterized by high temperatures has been considered in this study. It is demonstrated that even at high Rayleigh numbers the radiation mode is as effective as the turbulent natural convection mode in removing the heat from the upper surface of molten pools with adiabatic lower boundary. As a result of this improved heat transfer, it is shown that considerably thicker molten pools with internal heat generation can be supported without boiling inception. The total Nusselt number at a moderate but fixed value of conduction-radiation parameter, can be represented as a function of Rayleigh number in a simple power-law form. As a consequence of this relationship it is shown that maximum nonboiling pool thicknesses vary approximately inversely as the 0.9 power of internal heat generation rate. A comparison between exact analysis using the integral formulation of radiation flux and Rosseland approximateion shows that the latter approximation bears out very adequately for optically thick pools with conduction-radiation parameter > or approx. =0.4 inspite of the fact that individual components of Nusselt number due to radiation and convection, respectively, are grossly in error. These errors in component heat fluxes are compensating due to the total heat balance constraint. However, the comparison between Rosseland approximation and exact formulation gets poorer as the value of conduction-radiation parameter decreases. This increase in error is principally incurred due to the error in estimating wall temperature differences

  9. The effect of turbulence-radiation interaction on radiative entropy generation and heat transfer

    International Nuclear Information System (INIS)

    Caldas, Miguel; Semiao, Viriato

    2007-01-01

    The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors' knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence

  10. Aerodynamic characteristics and heat radiation performance of sportswear fabrics

    Science.gov (United States)

    Koga, H.; Hiratsuka, M.; Ito, S.; Konno, A.

    2017-10-01

    Sports such as swimming, speed skating, and marathon are sports competing for time. In recent years, reduction of the fluid drag of sportswear is required for these competitions in order to improve the record. In addition, sweating and discomfort due to body temperature rise during competition are thought to affect competitor performance, and heat radiation performance is also an important factor for sportswear. The authors have measured fluid force drag by wrapping cloth around a cylinder and have confirmed their differences due to the roughness of the fabric surface, differences in sewing. The authors could be verified the drag can be reduced by the position of the wear stitch. This time, we measured the heat radiation performance of 14 types of cloths whose aero dynamic properties are known using cylinders which are regarded as human fuselages, and found elements of cloth with heat radiation performance. It was found to be important for raising the heat radiation performance of sportswear that the fabric is thin and flat surface processing.

  11. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  12. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  13. Radiation drive in laser heated hohlraums

    International Nuclear Information System (INIS)

    Suter, L.J.; Kauffman, R.L.; Darrow, C.B.

    1995-01-01

    Nearly 10 years of Nova experiments and analysis have lead to a relatively detailed quantitative and qualitative understanding of radiation drive in laser heated hohlraums. Our most successful quantitative modelling tool is 2D Lasnex numerical simulations. Analysis of the simulations provides us with insight into the details of the hohlraum drive. In particular we find hohlraum radiation conversion efficiency becomes quite high with longer pulses as the accumulated, high Z blow-off plasma begins to radiate. Extensive Nova experiments corroborate our quantitative and qualitative understanding

  14. Heat-pipe transient model for space applications

    International Nuclear Information System (INIS)

    Tournier, J.; El-Genk, M.S.; Juhasz, A.J.

    1991-01-01

    A two-dimensional model is developed for simulating heat pipes transient performance following changes in the input/rejection power or in the evaporator/condenser temperatures. The model employs the complete form of governing equations and momentum and energy jump conditions at the liquid-vapor interface. Although the model is capable of handling both cylindrical and rectangular geometries, the results reported are for a circular heat pipe with liquid lithium as the working fluid. The model incorporates a variety of other working fluids, such as water, ammonia, potassium, sodium, and mercury, and offers combinations of isothermal, isoflux, convective and radiative heating/cooling conditions in the evaporator and condenser regions of the heat pipe. Results presented are for lithium heat pipes with exponential heating of the evaporator and isothermal cooling of the condenser

  15. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  16. Multiplied effect of heat and radiation in chemical stress relaxation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1981-01-01

    About the deterioration of rubber due to radiation, useful knowledge can be obtained by the measurement of chemical stress relaxation. As an example, the rubber coating of cables in a reactor containment vessel is estimated to be irradiated by weak radiation at the temperature between 60 and 90 deg C for about 40 years. In such case, it is desirable to establish the method of accelerated test of the deterioration. The author showed previously that the law of time-dose rate conversion holds in the case of radiation. In this study, the chemical stress relaxation to rubber was measured by the simultaneous application of heat and radiation, and it was found that there was the multiplied effect of heat and radiation in the stress relaxation speed. Therefore the factor of multiplication of heat and radiation was proposed to describe quantitatively the degree of the multiplied effect. The chloroprene rubber used was offered by Hitachi Cable Co., Ltd. The experimental method and the results are reported. The multiplication of heat and radiation is not caused by the direct cut of molecular chains by radiation, instead, it is based on the temperature dependence of various reaction rates at which the activated species reached the cut of molecular chains through complex reaction mechanism and the temperature dependence of the diffusion rate of oxygen in rubber. (Kako, I.)

  17. Mammographic image reject rate analysis and cause – A National Maltese Study

    International Nuclear Information System (INIS)

    Mercieca, N.; Portelli, J.L.; Jadva-Patel, H.

    2017-01-01

    Mammography is used as a first-line investigation in the detection of breast cancer and imaging is required to be of optimal quality and achieved without adverse effects on the health of individuals. Repeated images come at a cost in terms of radiation dose, discomfort to clients and unnecessary financial burdens. No studies investigating mammography quality in Malta had been previously undertaken. Hence, this research aimed to investigate whether mammography is being performed at an acceptable level, through the investigation of reject rates. Quantitative methodology was used to collect data from eight participating mammography units, which were utilising screen film (SFM), computed radiography (CR) and direct digital mammography (DDM). Data relating to the total number of images performed, rejects and causes was prospectively collected over two weeks, resulting in a sample of 2291 images. All units were also asked to answer a questionnaire which provided other data that could be used for analysis. The national mammography reject rate was found to be 2.62%; within the 3% acceptable range. Individual rates' analysis revealed unacceptably high or low reject rates in some units. Positioning was the main reject cause. No significant difference in rejection was found between different types of mammography units or radiographers' experience. Alternatively, radiographers' qualifications, employment conditions and use of rejection criteria were proven to affect reject rates. Whilst on a national level, images are being rejected at an acceptable rate, individual units revealed suboptimal rates; at the cost of extra radiation, added discomfort and financial burden. - Highlights: • The national reject rate complied with the European Guidelines. • Reject rates in different units were found to vary. • Positioning was the commonest cause for repeats. • The equipment used and radiographers' experience did not affect reject rates. • Qualifications

  18. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  19. Radiative heat transfer by the Monte Carlo method

    CERN Document Server

    Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko

    1995-01-01

    This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering

  20. Dry heat and radiation combination effects on Aspergillus flavus Link. infecting cocoa beans

    International Nuclear Information System (INIS)

    Amoako-Atta, B.; Meier, H.; Odamtten, G.T.

    1981-01-01

    The paper deals with the effect of heat and radiation combination treatments on the control of microbial spoilage of cocoa beans caused by toxigenic Aspergillus flavus Link. The heat and radiation sources were from dry air oven heat and 60 Co gammacell 220 irradiator, respectively. The radiation doses used were either 0, 50, 100, 150 or 200 krad, with combined heat temperatures of 30, 60 or 90 0 C. At each temperature level three different exposure time intervals of either 15 min, 30 min or 60 min respectively, were used. Two reversible sequential heat/radiation combination effects were evaluated. The first sequence involved cocoa beans inoculated with A. flavus spores exposed first to dry heat at pre-determined temperature heat exposure time, followed by radiation treatment, then retention of samples in a constant humidity environmental chamber set at 80% for daily observation up to forty days post-treatment. The second sequence involved exposure of the inoculated beans first to radiation, then to heat before retention under fixed RH for observation. From their results, the authors arrive at four conclusions: first, that there is a critical radiation/heat combination range (200, 150 and 100 krad/90 0 C for 15 min) that significantly decontaminates (less than 5% mouldiness) A. flavus infected cocoa beans even under high relative humidity (80% RH) environment; second, that a temperature level of 90 0 C combined with 200, 150 or 100 krad maximizes such effect but the heat exposure time is a major factor; third, that low heat temperature ranges of 30 or 60 0 C, combined with low radiation dosages of 150 krad or below, enhance the rate of A. flavus spoilage effects of cocoa beans; and, lastly, that the sequence of exposure of the inoculated cocoa beans to heat/radiation combination influenced the spore germination; exposure to heat before radiation would sensitize the spores (200 krad/90 0 C) but results in an increased radioresistance. (author)

  1. Radiators in hydronic heating installations structure, selection and thermal characteristics

    CERN Document Server

    Muniak, Damian Piotr

    2017-01-01

    This book addresses key design and computational issues related to radiators in hydronic heating installations. A historical outline is included to highlight the evolution of radiators and heating technologies. Further, the book includes a chapter on thermal comfort, which is the decisive factor in selecting the ideal heating system and radiator type. The majority of the book is devoted to an extensive discussion of the types and kinds of radiators currently in use, and to identifying the reasons for the remarkable diversity of design solutions. The differences between the solutions are also addressed, both in terms of the effects of operation and of the thermal comfort that needs to be ensured. The book then compares the advantages and disadvantages of each solution, as well as its potential applications. A detailed discussion, supported by an extensive theoretical and mathematical analysis, is presented of the computational relations that are used in selecting the radiator type. The dynamics of radiator hea...

  2. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  3. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    Science.gov (United States)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  4. Radiation heat transfer model for the SCDAP code

    International Nuclear Information System (INIS)

    Sohal, M.S.

    1984-01-01

    A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant

  5. Solar-Radiation Heating as a Possible Heat Source for Dehydration of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Golabek, G.; Ohtsuka, K.; Matsuoka, M.

    2017-07-01

    We have calculated time-dependent temperature profiles of near surface layers of primitive Near Sun Asteroid (3200) Phaethon and found that solar radiation heating is a possible heat source for dehydration of carbonaceous chondrites.

  6. Effective thermal conductivity of a heat generating rod bundle dissipating heat by natural convection and radiation

    International Nuclear Information System (INIS)

    Senve, Vinay; Narasimham, G.S.V.L.

    2011-01-01

    Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.

  7. Some factors affecting radiative heat transport in PWR cores

    International Nuclear Information System (INIS)

    Hall, A.N.

    1989-04-01

    This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO 2 . It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO 2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 2200 0 C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)

  8. Low Radiation Dose and Low Cell Dose Increase the Risk of Graft Rejection in a Canine Hematopoietic Stem Cell Transplantation Model.

    Science.gov (United States)

    Lange, Sandra; Steder, Anne; Glass, Änne; Killian, Doreen; Wittmann, Susanne; Machka, Christoph; Werner, Juliane; Schäfer, Stephanie; Roolf, Catrin; Junghanss, Christian

    2016-04-01

    The canine hematopoietic stem cell transplantation (HSCT) model has become accepted in recent decades as a good preclinical model for the development of new transplantation strategies. Information on factors associated with outcome after allogeneic HSCT are a prerequisite for designing new risk-adapted transplantation protocols. Here we report a retrospective analysis aimed at identifying risk factors for allograft rejection in the canine HSCT model. A total of 75 dog leukocyte antigen-identical sibling HSCTs were performed since 2003 on 10 different protocols. Conditioning consisted of total body irradiation at 1.0 Gy (n = 20), 2.0 Gy (n = 40), or 4.5 Gy (n = 15). Bone marrow was infused either intravenously (n = 54) or intraosseously (n = 21). Cyclosporin A alone or different combinations of cyclosporine A, mycophenolate mofetil, and everolimus were used for immunosuppression. A median cell dose of 3.5 (range, 1.0 to 11.8) total nucleated cells (TNCs)/kg was infused. Cox analyses were used to assess the influence of age, weight, radiation dose, donor/recipient sex, type of immunosuppression, and cell dose (TNCs, CD34(+) cells) on allograft rejection. Initial engraftment occurred in all dogs. Forty-two dogs (56%) experienced graft rejection at median of 11 weeks (range, 6 to 56 weeks) after HSCT. Univariate analyses revealed radiation dose, type of immunosuppression, TNC dose, recipient weight, and recipient age as factors influencing long-term engraftment. In multivariate analysis, low radiation dose (P rejection. Peripheral blood mononuclear cell chimerism ≥30% (P = .008) and granulocyte chimerism ≥70% (P = .023) at 4 weeks after HSCT were independent predictors of stable engraftment. In summary, these data indicate that even in low-dose total body irradiation-based regimens, the irradiation dose is important for engraftment. The level of blood chimerism at 4 weeks post-HSCT was predictive of long-term engraftment in the canine HSCT

  9. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    International Nuclear Information System (INIS)

    Dong, J.; Zhao, J.M.; Liu, L.H.

    2017-01-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.

  10. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  11. Inactivation of ascaris lumbricoides eggs by heat, radiation, and thermoradiation

    International Nuclear Information System (INIS)

    Brannen, J.P.; Garst, D.M.; Langley, S.

    1975-07-01

    It is desirable to eliminate the public health hazards associated with land application of municipal sewage sludge as a fertilizer or soil conditioner. This report describes experimentation to determine the effects of heat, radiation, and thermoradiation on the suppression of embryonation of Ascaris lumbricoides ova, a parasite commonly found in sewage sludge. Heat effects were observed at a minimum temperature of 51 0 C and radiation effects at doses in excess of 15 krads of radiation. Thermoradiation at 47 0 C suppressed embryonation at less than half the total dose required by radiation alone. (U.S.)

  12. The inaccuracy of heat transfer characteristics of insulated and non-insulated circular duct while neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Hsien, T.-L.; Wong, K.-L.; Yu, S.-J.

    2009-01-01

    The non-insulated and insulated ducts are commonly applied in the industries and various buildings, because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations. Most heat transfer experts recognized from their own experiences that the heat radiation effect can be ignored due to the small temperature difference between insulated and non-insulated surface and surroundings. This paper studies in detail to check the inaccuracies of heat transfer characteristics non-insulated and insulated duct by comparing the results between considering and neglecting heat radiation effect. It is found that neglecting the heat radiation effect is likely to produce large errors of non-insulated and thin-insulated ducts in situations of ambient air with low external convection heat coefficients and larger surface emissivity, especially while the ambient air temperature is different from that of surroundings and greater internal fluid convection coefficients. It is also found in this paper that using greater duct surface emissivity can greatly improve the heat exchanger effect and using smaller insulated surface emissivity can obtain better insulation.

  13. Applications of Radiative Heating for Space Exploration

    Science.gov (United States)

    Brandis, Aaron

    2017-01-01

    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  14. Six-Tube Freezable Radiator Testing and Model Correlation

    Science.gov (United States)

    Lilibridge, Sean T.; Navarro, Moses

    2012-01-01

    Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.

  15. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids

    Directory of Open Access Journals (Sweden)

    Waqar Azeem Khan

    Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer

  16. The inaccuracy of heat transfer characteristics for non-insulated and insulated spherical containers neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, King-Leung; Salazar, Jose Luis Leon; Prasad, Leo; Chen, Wen-Lih

    2011-01-01

    In this investigation, the differences of heat transfer characteristics for insulated and non-insulated spherical containers between considering and neglecting the influence of heat radiation are studied by the simulations in some practical situations. It is found that the heat radiation effect cannot be ignored in conditions of low ambient convection heat coefficients (such ambient air) and high surface emissivities, especially for the non-insulated and thin insulated cases. In most practical situations when ambient temperature is different from surroundings temperature and the emissivity of insulation surface is different from that of metal wall surface, neglecting heat radiation will result in inaccurate insulation effect and heat transfer errors even with very thick insulation. However, the insulation effect considering heat radiation will only increase a very small amount after some dimensionless insulated thickness (such insulation thickness/radius ≥0.2 in this study), thus such dimensionless insulated thickness can be used as the optimum thickness in practical applications. Meanwhile, wrapping a material with low surface emissivity (such as aluminum foil) around the oxidized metal wall or insulation layer (always with high surface emissivity) can achieve very good insulated effect for the non-insulated or thin insulated containers.

  17. Heat transfer augmentation of a car radiator using nanofluids

    Science.gov (United States)

    Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.

    2014-05-01

    The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.

  18. Radiation Effects in Dual Heat Sinks for Cooling of Concentrated Photovoltaics

    Science.gov (United States)

    2016-06-01

    heat transfer out of a module is by radiation [7]. 1. Previous work Previous work in field has been focused on improving convection transfer via...LEFT BLANK 35 VII. CONCLUSION AND RECOMMENDATION A. CONCLUSION This thesis examined means to improve heat transfer out of a CPV module by... heat transfer by radiation to lower the operating temperature of the CPV system, and therefore increase the power output. Experimental and

  19. Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-01-15

    Conventional diesel engines with ethanol as fuel are associated with problems due to high self-ignition temperature of the fuel. The hot surface ignition method, wherein a part of the injected fuel is made to touch an electrically heated hot surface (glowplug) for ignition, is an effective way of utilizing ethanol in conventional diesel engines. The purpose of the present study is to investigate the effect of thermal insulation on ethanol fueled compression ignition engine. One of the important ethanol properties to be considered in the high compression ratio engine is the long ignition delay of the fuel, normally characterized by lower cetane number. In the present study, the ignition delay was controlled by partial insulation of the combustion chamber (low heat rejection engine) by plasma spray coating of yttria stabilized zirconia for a thickness of 300 {mu}m. Experiments were carried out on the glowplug assisted engine with and without insulation in order to find out the possible benefits of combustion chamber insulation in ethanol and diesel operation. Highest brake thermal efficiency of 32% was obtained with ethanol fuel by insulating the combustion chamber. Emissions of the unburnt hydrocarbons, oxides of nitrogen and carbon monoxides were higher than that of diesel. But the smoke intensity and was less than that of diesel engine. Volumetric efficiency of the engine was reduced by a maximum of 9% in LHR mode of operation. (author)

  20. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  1. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  2. Chemical implications of heat and radiation damage to rock salt

    International Nuclear Information System (INIS)

    Pederson, L.R.

    1984-11-01

    Chemical changes induced in Palo Duro and Paradox Basin natural rock salts and in synthetic NaCl by heat and gamma radiation were investigated. Heating of unirradiated natural rock salts to 300 0 C resulted in HCl (most prevalent), SO 2 , CO 2 , and H 2 S evolution, and increased the base content of the remaining salt by not more than 10 microequivalents per gram; whereas, heating of synthetic NaCl gave no product. Gamma irradiation produced sodium colloids and neutral chlorine in amounts similar to the results of Levy and coworkers. When the irradiated salts were heated, three reactions were apparent: (1) radiation-induced defects recombined; (2) neutral chlorine was evolved; and (3) HCl, SO 2 , CO 2 , and H 2 S were evolved, similar to results for unirradiated salts. Because reaction (1) appeared to dominate over reaction (2), it is expected that the influence of radiation damage to salt on the near-field chemical environment will be minor. 4 figures, 1 table

  3. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  4. Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials

    Science.gov (United States)

    Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua

    2018-04-01

    We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.

  5. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    A physical model for analyzing the radiative and convective heat transfer in a fog cooled, naturally ventilated greenhouse was developed for estimating the overall heat transmission coefficient based on the conduction, convection and thermal radiation heat transfer coefficients and for predicting the soil heat flux. The contribution of the water vapor of the inside air to the emission and absorption of thermal radiation was determined. Measurements of the outside and inside greenhouse environments to be used in the analysis were conducted around solar noon (12:19-13:00) on a hot sunny day to provide the maximum solar radiation transmission into the greenhouse. The net solar radiation flux measured at the greenhouse floor showed a reasonable agreement with the predicted value. The net fluxes were estimated around noon. The average net radiation (solar and thermal) at the soil surface was 220.0 W m -2 , the average soil heat flux was 155.0 W m -2 and the average contribution of the water vapor of the inside air to the thermal radiation was 22.0 W m -2 . The average overall heat transmission coefficient was 4.0 W m -2 C -1 and was in the range between 3.0 W m -2 C -1 and 6.0 W m -2 C -1 under the different hot summer conditions between the inside and outside of the naturally ventilated, fog cooled greenhouse

  6. Impact of cloud radiative heating on East Asian summer monsoon circulation

    International Nuclear Information System (INIS)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-01-01

    The impacts of cloud radiative heating on the East Asian Summer Monsoon (EASM) over southeastern China (105°–125°E, 20°–35°N) are addressed by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of clouds, the EASM circulation and precipitation would be much weaker than that in normal conditions. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. the different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which consequently enhances updraft. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance. (letter)

  7. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  8. Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating

    Science.gov (United States)

    Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.

    2011-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.

  9. Best estimate radiation heat transfer model developed for TRAC-BD1

    International Nuclear Information System (INIS)

    Spore, J.W.; Giles, M.M.; Shumway, R.W.

    1981-01-01

    A best estimate radiation heat transfer model for analysis of BWR fuel bundles has been developed and compared with 8 x 8 fuel bundle data. The model includes surface-to-surface and surface-to-two-phase fluid radiation heat transfer. A simple method of correcting for anisotropic reflection effects has been included in the model

  10. Measurement of heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  11. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    International Nuclear Information System (INIS)

    Liu, X. L.; Zhang, Z. M.

    2014-01-01

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  12. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  13. Detection of radiation from a heated and modulated equatorial electrojet current system

    International Nuclear Information System (INIS)

    Lunnen, R.J.; Lee, H.S.; Ferraro, A.J.; Collins, T.W.

    1984-01-01

    In May 1983, ionospheric heating experiments were conducted using the very high frequency radar facility at Lima, Peru. Experiments involving high frequency heating of the ionosphere were successfully conducted during 1982 at Islote, Puerto Rico. These local experiments had characterized the signal radiated from a heated and modulated ionospheric current system near the mid-latitudes. A long-path signal had also been received in September 1982 at Salinas, Puerto Rico from a mid-day equatorial electrojet, heated and modulated by the Jicamarca facility. The authors have investigated the characteristics of the local signal that would be radiated from a strong equatorial electrojet when heated and modulated, and report here that at the geomagnetic equator they were similar to, but less intense than, those observed at Arecibo, Puerto Rico due to parameter differences. This radiation is believed to be the first detected from a heated and modulated equatorial electrojet current system in the Western Hemisphere. (author)

  14. The Collection of Event Data and its Relevance to the Optimisation of Decay Heat Rejection Systems

    International Nuclear Information System (INIS)

    Roughley, R.; Jones, N.

    1975-01-01

    The precision with which the reliability of DHR (Decay Heat Rejection) systems for nuclear reactors can be predicted depends not only upon model representation but also on the accuracy of the data used. In the preliminary design stages when models are being used to arrive at major engineering decisions in relation to plant configuration, the best the designer can do is use the data available at the time. With the present state of the art it is acknowledged that some degree of judgement will have to be exercised particularly for plant involving sodium technology where a large amount of operational experience has not yet been generated. This paper reviews the current efforts being deployed in the acquisition of field data relevant to DHR systems so that improvements in reliability predictions may be realised

  15. Radiation hygienic assessment of centralized heat and hot water supply of Bilibino village from Bilibin central nuclear heating- and power plant

    International Nuclear Information System (INIS)

    Eremin, V.A.; Marej, A.N.; Nechiporenko, N.I.; Rasskazov, A.P.; Sayapin, N.P.; Soldatov, G.E.; Shcherbinin, A.S.

    1983-01-01

    The experience in using an atomic power plant for heat and hot water supply of the village of Bilibino is outlined. Particular attention is given to the population radiation safety. It has been demonstrated that radiation safety of the system is ensured by maintaining fixed pressure levels in the heating media and by the hermetic state of heat exchanges. Water in the heat and hot water supply network meets the requirements for drinking water. Radioactive corrosion products were not detected in the test water. Gamma-radiation dose rate from the surface of heating devices and pipe-lines in the test premises did not exceed the natural background, that is, U.U1-0.025 mrad

  16. Analysis of a radiative heat exchanger for systems for thermal control of space vehicles

    International Nuclear Information System (INIS)

    Vasil'ev, L.L.; Kanonchik, L.E.; Babenko, V.A.

    1995-01-01

    Starting from the solution of a two-dimensional heat conduction problem, a mathematical model of a heat pipe-based radiative heat exchanger is developed. Good agreement between the predicted and experimental results is obtained. The effect of operational and structural parameters on the characteristics of the radiative heat exchanger is analyzed

  17. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical ...

  18. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  19. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    Science.gov (United States)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  20. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  1. Efficacy of total lymphoid irradiation for chronic allograft rejection following double lung transplantation

    International Nuclear Information System (INIS)

    Diamond, David A.; Michalski, Jeff M.; Trulock, Elbert M.; Lynch, John P.

    1997-01-01

    Purpose: The purpose of this study was to assess the safety and efficacy of total lymphoid irradiation in a series of patients experiencing chronic rejection following bilateral lung transplantation. Patients and Materials: Eleven patients (10 males, 1 female) received total lymphoid irradiation for chronic allograft rejection (bronchiolitis obliterans syndrome) refractory to conventional treatment modalities. Treatment was delivered between March, 1995, and September, 1996. Mean patient age was 33 years (range 15-51). Indications for transplantation included cystic fibrosis (7 patients), alpha 1 anti-trypsin deficiency (2 patients), primary pulmonary hypertension (1 patient), and emphysema (1 patient). Radiation therapy was prescribed as 800 cGy delivered in ten 80 cGy fractions, 2 fractions per week, via AP/PA mantle and inverted-Y fields. Radiation was withheld for total wbc count 3 , absolute neutrophil count 3 , or platelets 3 . Serial pre- and post-radiation therapy pulmonary function values, complete blood counts, and immunosuppressive augmentation requirements (use of methylprednisolone, azathioprine, mycophenolate mofetil, OKT3, and FK506) were monitored. Results: In the 3 months preceding total lymphoid irradiation, the average decrease in FEV 1 was 34% (range 0-75%) and the median number of immunosuppression augmentations was 3 (range 0-5). At initiation of radiation therapy, the average FEV 1 was 1.4 liters (range 0.77-2.28). Only (4(11)) patients completed all 10 treatment fractions. Reasons for discontinuation included unabated rejection (4 patients), worsening pulmonary infection (2 patients), and persistent thrombocytopenia (1 patient). No treatment course was discontinued because of persistent neutropenia or leukopenia. Seven of the 11 patients failed within 8 weeks of treatment cessation. One patient had unabated rejection and received bilateral living related donor transplants. He is alive and well. Six patients died. Two of these deaths were due

  2. Long term results of total lymphoid irradiation in the treatment of cardiac allograft rejection

    International Nuclear Information System (INIS)

    Wolden, Suzanne L.; Tate, David J.; Hunt, Sharon A.; Strober, Samuel; Hoppe, Richard T.

    1996-01-01

    Purpose: To evaluate the short and long term effects of total lymphoid irradiation (TLI) in the treatment of allograft rejection in cardiac transplant patients. Materials and Methods: From 1986 to 1995, 48 courses of TLI were delivered to 47 patients who had received cardiac transplants at Stanford University. In 38 cases, TLI was administered for chronic, intractable allograft rejection despite conventional anti-rejection therapy, including corticosteroids, azathioprine, cyclosporine, OKT3, DHPG, RATG, and methotrexate. Ten patients received TLI prophylactically, beginning radiation between 5 and 16 days after heart transplantation. The prescribed radiation dose was 800 cGy given in 80 cGy fractions twice weekly to all major lymph node regions using mantle and inverted Y fields. Patients continued to receive all medications except azathioprine which was held during TLI to prevent severe marrow suppression. All patients were closely monitored for episodes of rejection, infection, prednisone requirements, blood counts, and complications of treatment. Post-irradiation follow up ranged from 6 months to 9.1 years with a mean of 3.1 years. Results: The actual mean dose of radiation was 730 cGy delivered over a mean of 39 calendar days. Fifty six percent of patients required treatment delay or abbreviation because of thrombocytopenia, leukopenia, infection, or unrelated problems. In patients treated for intractable rejection, the frequency of rejection dropped from 0.46 episodes/patient/month before radiation to 0.14 episodes/patient/month during TLI (p 3 during TLI (p = 0.01) and remained low at 167.6 cells/mm 3 2-4 months after treatment (p = 0.05). CD8+ lymphocytes also decreased during treatment from 233.2 to 65.8 cells/mm 3 (p = 0.003) but rose significantly above normal to 381.3 cells/mm 3 2-4 months after TLI (p 0.05). Thus, the ratio of helper/suppresser T-cells was chronically decreased. Infection rates were not significantly different before, during or after

  3. The radiation safety assessment of the heating loop of district heating reactors

    International Nuclear Information System (INIS)

    Liu Yuanzhong

    1993-01-01

    The district heating reactors are used to supply heating to the houses in cities. The concerned problems are whether the radioactive materials reach the heated houses through heating loop, and whether the safety of the dwellers can be ensured. In order to prevent radioactive materials getting into the heated houses, the district heating reactors have three loops, namely, primary loop, intermediate loop, and heating loop. In the paper, the measures of preventing radioactive materials getting into the heating loop are presented, and the possible sources of the radioactivity in the water of the intermediate loop and the heating loop are given. The regulatory aim limit of radioactive concentration in the water of the intermediate loop is put forward, which is 18.5 Bq/l. Assuming that specific radioactivity of the water of contaminated intermediate loop is up to 18.5 Bq/l, the maximum concentration of radionuclides in water of the heating loop is calculated for the normal operation and the accident of district heating reactor. The results show that the maximum possible concentration is 5.7 x 10 -3 Bq/l. The radiation safety assessment of the heating loop is made out. The conclusions are that the district heating reactors do not bring any harmful impact to the dwellers, and the safety of the dwellers can be safeguarded completely

  4. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods

    International Nuclear Information System (INIS)

    Atouei, S.A.; Hosseinzadeh, Kh.; Hatami, M.; Ghasemi, Seiyed E.; Sahebi, S.A.R.; Ganji, D.D.

    2015-01-01

    In this study, heat transfer and temperature distribution equations for semi-spherical convective–radiative porous fins are presented. Temperature-dependent heat generation, convection and radiation effects are considered and after deriving the governing equation, Least Square Method (LSM), Collocation Method (CM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the described fins. Results reveal that LSM has excellent agreement with numerical method, so can be suitable analytical method for solving the problem. Also, the effect of some physical parameters which are appeared in the mathematical formulation on fin surface temperature is investigated to show the effect of radiation and heat generation in a solid fin temperature. - Highlights: • Thermal analysis of a semi-spherical fin is investigated. • Collocation and Least Square Methods are applied on the problem. • Convection, radiation and heat generation is considered. • Physical results are compared to numerical outcomes.

  5. Application of the finite element method to problems with heat radiation exchange

    International Nuclear Information System (INIS)

    Breitbach, G.; Altes, J.

    1985-07-01

    The calculation of temperature distributions for systems exchanging heat radiation requires in a first step the determination of the heat fluxes caused by radiation at its surfaces. In this paper the radiation transport equation is developed and it is shown, that it can be derived from a variational principle. The functional of the variational principle is the starting point of a numerical solution method. By using Finite Element Procedures a system of linear equations is derived, which supplies an approximation of the radiosity. Having the radiosity the heat flux at the surfaces, which governs as the boundary condition the temperature distribution in the structure, can be calculated. (orig.) [de

  6. Combination Treatment of Spores of Cl. Botulinum with Heat plus Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N.; Upadhyay, J.; Tang, T. C.; Lin, C. A. [Illinois Institute of Technology, Chicago, IL (United States)

    1967-11-15

    Radiation resistance of spores of Cl. botulinum is strongly affected by the temperature during irradiation. Very low radiation resistance was consistently observed at 0 Degree-Sign C when samples were in the liquid state. Below 0 Degree-Sign C, the resistance of spores increased because the solidly frozen medium presumably decreased the diffusion of free radicals. As temperature increased above 0 Degree-Sign C processes of radiation protection occurred. When spores were subjected to low levels of radiation (0.6-0.8 Mrad) the heat resistance of the surviving spores was very remarkedly decreased. Experiments were designed to study what kind of radiation damage, i.e. direct hit or indirect action, is responsible for the loss of heat resistance of spores. Indirect effects were reduced by freezing the medium and lowering the temperature during irradiation down to -196 Degree-Sign C. Spores of Cl. botulinum 33A in phosphate buffer were irradiated to 0.6, 0.8 and 1.0 Mrad at irradiation temperatures ranging from +25 to -196 Degree-Sign C and subsequently heated at 99 Degree-Sign C. Survival curves revealed that all spores irradiated at +25 and 0 Degree-Sign C were highly sensitive to heat with D{sub 10} = 5.5 min (after 0.6 Mrad), D{sub 10} = 3.0 min (after 0.8 Mrad) and D{sub 10} = 2.3 min (after 1.0 Mrad). For nonTirradiated controls D10 was 23 min. Pre-irradiation at -25 through -196 Degree-Sign C resulted in a much smaller loss of heat resistance with D{sub 10} clustering around 17.4 min (after 0.6 Mrad), 13. 5 min (after 0.8 Mrad) and 11.5 min (after 1.0 Mrad). Loss of heat resistance after pre-irradiation at +25 and 0 Degree-Sign C was highly influenced by the liquid state of suspending medium whereas at -25 through -196 Degree-Sign C it depended primarily on radiation dose. The mechanism of heat sensitization of spores seems to be related primarily to migrating active free radicals at +25 and 0 Degree-Sign C and to random splitting of molecular bonds at -25 to -196

  7. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Madhlopa, A.

    2014-01-01

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  8. Title Investigation of the influence of various factors on the power of heat exchange by radiation

    Directory of Open Access Journals (Sweden)

    Korolyov Alexander V.

    2017-04-01

    Full Text Available The issue of lack of knowledge of radiation heat transfer process has been repeatedly raised in various studies. Despite the fact that works on study of heat transfer by radiation covers a wide range of different industries, it should be noted the lack of materials on study of heat exchange processes by radiation in a core of a nuclear reactor. In this work, the fuel assemblies of the VVER-1000 reactor were used as the bodies under study. Aim: The aim of the research is to investigate the heat exchange process between heat transfer assemblies and to study of the effect of changing the distance between the fuel assemblies on their power taking into account the inter-radiating of assemblies. Materials and Methods: A general description of the process of heat transfer by radiation. A calculation study of the effect of geometric parameters on heat transfer in the close lattice of the reactor core is performed. The influence of heat transfer by radiation on the temperature change of the fuel assemblies surface of the VVER-1000 reactor at change in the cassette gap is studied. The change in the power of the fuel assemblies relative to the initial power with a change in the cassette gap was studied. Experimental measurements of the temperature at different distances from the radiation source were made with an obstacle in the path of radiation propagation in the form of glass and water of different levels. The heat radiation and convective heat transfer are calculated based on the obtained experimental data. The calculation of thermal radiation power and convective heat transfer based on the obtained experimental data is performed. Results: The calculation results show that in models that determine the temperature of the fuel assemblies in the core of the VVER-1000 reactor, the radiation heat transfer must be taken into account. In this case, the amount of transferred energy is the greater, the smaller the distance between objects. This is observed

  9. Germanium cryogenic detectors: Alpha surface events rejection capabilities

    International Nuclear Information System (INIS)

    Fiorucci, S.; Broniatowski, A.; Chardin, G.; Censier, B.; Lesquen, A. de; Deschamps, H.; Fesquet, M.; Jin, Y.

    2006-01-01

    Alpha surface events and multiple compton gamma interactions are the two major background components in Ge detectors for double-beta decay investigations. Two different methods have been studied to identify such type of events, using cryogenic Ge detectors developed primarily for dark matter search: (i) combined heat and ionization measurements, and (ii) pulse-shape analysis of the charge collection signals. Both methods show strong separation between electron recoil events and surface alphas. Cryogenic heat-ionization detectors therefore appear able to reject virtually all surface alpha interactions

  10. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids

    OpenAIRE

    Ali Hafiz Muhammad; Azhar Muhammad Danish; Saleem Musab; Saeed Qazi Samie; Saieed Ahmed

    2015-01-01

    The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12%) were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % vol...

  11. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    ... radiative heat transfer is useful for predicting the heat feedback to the burning surface ... petroleum technology, to study the movement of natural gas, oil and water ... (e.g. sea water, rain water, and sewage) past an impulsively started infinite ...

  12. Thermal radiators with embedded pulsating heat pipes: Infra-red thermography and simulations

    International Nuclear Information System (INIS)

    Hemadri, Vadiraj A.; Gupta, Ashish; Khandekar, Sameer

    2011-01-01

    With the aim of exploring potential applications of Pulsating Heat Pipes (PHP), for space/terrestrial sectors, experimental study of embedded PHP thermal radiators, having two different effective Biot numbers respectively, and subjected to conjugate heat transfer conditions on their surface, i.e., natural convection and radiation, has been carried out under different thermo-mechanical boundary conditions. High resolution infrared camera is used to obtain spatial temperature profiles of the radiators. To complement the experimental study, detailed 3D computational heat transfer simulation has also been undertaken. By embedding PHP structures, it was possible to make the net thermal resistance of the mild steel radiator plate equivalent to the aluminum radiator plate, in spite of the large difference in their respective thermal conductivities (k Al ∼ 4k MS ). The study reveals that embedded PHP structures can be beneficial only under certain boundary conditions. The degree of isothermalization achieved in these structures strongly depends on its effective Biot number. The relative advantage of embedded PHP is appreciably higher if the thermal conductivity of the radiator plate material itself is low. The study indicates that the effective thermal conductivity of embedded PHP structure is of the order of 400 W/mK to 2300 W/mK, depending on the operating conditions. - Research highlights: → Study of radiator plates with embedded Pulsating Heat Pipe by infrared thermography. → Radiator is subjected to natural convection and radiation boundary conditions. → Experimental study is supported by 3D simulation. → Effective thermal conductivity of PHPs of the order of 2000 W/mK is obtained. → Efficacy of embedded PHPs depends on the effective Biot number of the system.

  13. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme

    Science.gov (United States)

    Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2018-06-01

    The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

  14. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  15. Radiation heat transfer in a pressurized water reactor lower head filled with molten corium

    International Nuclear Information System (INIS)

    Šadek, Siniša; Grgić, Davor; Debrecin, Nenad

    2013-01-01

    Highlights: ► We develop radiation heat exchange model for a reactor pressure vessel lower head. ► Model is used during a late in-vessel phase of severe accidents. ► View factors are calculated automatically for a time-dependent enclosure. ► Model is included in the RELAP5/SCDAPSIM computer code. ► Inclusion of heat radiation causes faster heat-up rate of RPV lower head structures. - Abstract: Following a core melt, molten material may slump to the lower head of a reactor pressure vessel (RPV). In that case, some structures like lower parts of fuel elements and a core support plate would remain intact. Since the melt is at high temperature and there are no obstacles between the melt and the supporting plate, the plate is exposed to an intense radiation heating. The radiation heat exchange model of the lower head was developed and applied to a finite element code COUPLE which is a part of the detailed mechanistic code RELAP5/SCDAPSIM. The radiation enclosure consisted of three surfaces: the upper surface of the relocated material, the inner surface of the RPV wall above the relocated material and the lower surface of the core support plate. View factors were calculated for the enclosure geometry that is changing in time because of intermittent accumulation of molten material. The enclosure surfaces were covered by mesh of polygonal areas and view factors were calculated, for each pair of the element areas, by solving the definite integrals using the algorithms for adaptive integrations by means of Gaussian quadrature. Algebraic equations for radiosity and irradiation vectors were solved by LU decomposition and the radiation model was explicitly coupled with the heat conduction model. The results show that there is a possibility of the core support plate failure after being heated up due to radiation heat exchange with the melt.

  16. Research on high-temperature heat receiver in concentrated solar radiation system

    Directory of Open Access Journals (Sweden)

    Estera Przenzak

    2017-01-01

    Full Text Available The article presents the results of experimental and computer simulations studies of the high temperature heat receiver working in the concentrated solar radiation system. In order to study the radiation absorption process and heat exchange, the two types of computer simulations were carried out. The first one was used to find the best location for absorber in the concentrating installation. Ray Tracing Monte Carlo (RTMC method in Trace Pro software was used to perform the optical simulations. The results of these simulations were presented in the form of the solar radiation distribution map and chart. The data obtained in RTMC simulations were used as a second type boundary conditions for Computational Fluid Dynamics (CFD simulations. These studies were used to optimize the internal geometry of the receiver and also to select the most effective flow parameters of the working medium. In order to validate the computer simulations, high temperature heat receiver was tested in experimental conditions. The article presents the results of experimental measurements in the form of temperature, radiation intensity and power graphs. The tests were performed for varied flow rate and receiver location. The experimental and computer simulation studies presented in this article allowed to optimize the configuration of concentrating and heat receiving system.

  17. Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux

    Science.gov (United States)

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2017-02-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  18. Thermotronics. Towards nanocircuits to manage radiative heat flux

    International Nuclear Information System (INIS)

    Ben-Abdallah, Philippe; Sherbrooke Univ., PQ; Biehs, Svend-Age

    2017-01-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20 th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  19. Thermotronics. Towards nanocircuits to manage radiative heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe [Univ. Paris-Sud 11, Palaiseau (France). Lab. Charles Fabry; Sherbrooke Univ., PQ (Canada). Dept. of Mechanical Engineering; Biehs, Svend-Age [Oldenburg Univ. (Germany). Inst. fuer Physik

    2017-05-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20{sup th} century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  20. ESTIMATION OF WORKING CONDITIONS OF FOUNDRY WORKERS BY INFRARED (HEAT RADIATION

    Directory of Open Access Journals (Sweden)

    A. M. Lazarenkov

    2010-01-01

    Full Text Available The description of infrared radiations, their influence on human organism is given. The results of investigation of infrared (heat radiation intensity on the workers in foundries are given.

  1. Computer simulation of heating of biological tissue during laser radiation

    International Nuclear Information System (INIS)

    Bojanic, S.; Sreckovic, M.

    1995-01-01

    Computer model is based on an implicit finite difference scheme to solve the diffusion equation for light distribution and the bio-heat equation. A practical application of the model is to calculate the temperature distributions during thermal coagulation of prostate by radiative heating. (author)

  2. Information about radiographic films rejects of dental x-rays

    International Nuclear Information System (INIS)

    Cezimbra, M.R.; Bernarsiuk, M.E.; Bauer V, E.

    1996-01-01

    The purpose of this research was to qualify and quantify the number of dental x-ray films rejected in a Porto Alegre clinic. As we analyzed the captured data, it was concluded that, our of 1066 peri-apical films, we had a total percentage of 4.5% in relation to the total of the exams made. This 4.5% consists of the following rejects: placement, patient movement, technical errors, diaphragm, too much clarity in the result, double exposure, prolongation, shortness, darkened for not have been shot, superposed film. Because of that, the rejection, due to the bad placement of the film, is the one with the larger percentage value, i.e., 1.22% of the 4.5%. With the knowledge of the types of rejects and their causes, it was possible to correct some sources of systematic errors minimizing the repetition of the exams, saving costs, time and diminishing the ionizing radiation exposure for the patient, odontologist and his technical staff, which will be proved. (authors). 4 refs., 1 tab

  3. Heat transfer including radiation and slag particles evolution in MHD channel-I

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed

  4. Drying characteristics of rough rice by far-infrared radiation heating

    International Nuclear Information System (INIS)

    Matsuoka, T.

    1990-01-01

    The relationship between the heat radiation characteristics of a far-infrared radiation heater and the drying characteristics of rough rice was investigated to determine the basic data required for utilization of far-infrared rays for drying rough rice. Results of investigations are discussed in detail

  5. Scrape-off layer radiation and heat load to the ASDEX Upgrade LYRA divertor

    International Nuclear Information System (INIS)

    Kallenbach, A.; Kaufmann, M.; Coster, D.P.

    1999-01-01

    In 1997 the new 'LYRA' divertor went into operation at ASDEX Upgrade and, in parallel, the neutral beam heating power was increased to 20 MW by installation of a second injector leading to a P/R value of 12 MW/m. Experiments have shown that the ASDEX Upgrade LYRA divertor is capable of handling such high heating powers. There is an overall reduction of the maximum heat flux in the LYRA divertor by about a factor of 2 compared with the previous open divertor Div I. This reduction is mainly due to increased radiative losses inside the divertor region, which are caused by an effective reflection of hydrogen neutrals into the hot separatrix region. The main channel of radiative loss is carbon radiation, which cools the divertor plasma down to a few electronvolts, where hydrogen radiation losses become significant. The radiative losses preferentially reduce the power flux at the separatrix, leading to early detachment around the strike point position. With increasing density, the detached region extends upwards on the vertical target. The power fraction radiated in the LYRA divertor is around 45% and nearly independent of the heating power. This value is a factor of 2 higher than the typical radiation fraction in Div I. B2-EIRENE modelling of the performed experiments supports the experimental finding and refines the understanding of loss processes in the divertor region. (author)

  6. Environmental microbiology as related to planetary quarantine. [synergetic effect of heat and radiation

    Science.gov (United States)

    Pflug, I. J.

    1973-01-01

    The mechanistic basis of the synergetic effect of combined heat and radiation on microbial destruction was analyzed and results show that radiation intensity, temperature, and relative humidity are the determining factors. Dry heat resistance evaluation for selected bacterial spore crops indicates that different strains of Bacillus stearothermophilus demonstrate marked differences in resistance. Preliminary work to determine the effects of storage time, suspending medium, storage temperature and spore crop cleaning procedures on dry heat survival characteristics of Bacillus subtilis var. Niger, and dry heat resistance of natural microflora in soil particles is also reported.

  7. Radiation and convective heat transfer, and burnout in oxy-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Smart; P. O' Nions; G.S. Riley [RWE npower, Swindon (United Kingdom)

    2010-09-15

    Measurements of radiative and convective heat transfer, and carbon-in-ash have been taken on the RWEn 0.5 MWth combustion test facility (CTF) firing two different coals under oxy-fuel firing conditions. The two coals fired were a Russian Coal and a South African Coal. Recycle ratios were varied within the range of 65-75% dependent on coal. Furnace exit O{sub 2} values were maintained at 3% and 6% for the majority of tests. Air firing tests were also performed to generate baseline data. The work gives a comprehensive insight into the effect of oxy-fuel combustion on both radiative and convective heat transfer, and carbon-in-ash compared to air under dry simulated recycle conditions. Results have shown peak radiative heat flux values are inversely related to the recycle ratio for the two coals studied. Conversely, the convective heat flux values increase with increasing recycle ratio. It was also observed that the axial position of the peak in radiative heat flux moves downstream away from the burner as recycle ratio is increased. A 'working range' of recycle ratios exists where both the radiative and convective heat fluxes are comparable with air. Carbon-in-ash (CIA) was measured for selected conditions. For air firing of Russian Coal, the CIA for follows and expected trend with CIA decreasing with increasing furnace exit O{sub 2}. The CIA data for the two recycle ratios of 72% and 68% for the same coal show that the CIA values are lower than for air firing for corresponding furnace exit O{sub 2} levels and vary little with the value of furnace exit O{sub 2}. CIA measurements were taken for the South African Coal for a range of recycle ratios at 3% and 6% furnace exit O{sub 2} levels. Results indicate that the CIA values are lower for higher furnace exit O{sub 2}. 32 refs., 11 figs., 1 tab.

  8. Numerical simulation of heat transfer process in solar enhanced natural draft dry cooling tower with radiation model

    International Nuclear Information System (INIS)

    Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli

    2017-01-01

    Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of

  9. Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced heat transport technology is presented that can enable space nuclear power systems to transfer reactor heat, convert heat into electricity, reject waste...

  10. Studi Eksperimen Pengaruh Variasi Kecepatan Udara Terhadap Performa Heat Exchanger Jenis Compact Heat Exchanger (Radiator) Dengan Susunan Tube Inline Sebagai Pemanas Pada Sistem Pengeringan Batubara

    OpenAIRE

    Irvan Paramananda; Prabowo Prabowo

    2014-01-01

    Pengeringan yang dilakukan pada batu bara dengan memanfaatkan udara panas menggunakan konsep heat exchanger. Salah satu heat exchanger yang sering digunakan adalah heat exchanger dengan tipe single row-fin tube yaitu radiator. Radiator ini akan dimanfaatkan sebagai penghasil udara panas dari air panas yang mengalir dan dihembuskan oleh kipas radiator. Penelitian ini difokuskan pada effectiveness dari komponen radiator fungsi dari kecepatan udara mulai dari kecepatan 1 m/s, 2 m/s, 3 m/s, 4 m/s...

  11. Analytical heat transfer modeling of a new radiation calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)

    2016-06-10

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  12. Analytical heat transfer modeling of a new radiation calorimeter

    International Nuclear Information System (INIS)

    Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric

    2016-01-01

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  13. Effect of Cattaneo-Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts

    Science.gov (United States)

    Dogonchi, A. S.; Ganji, D. D.

    2018-06-01

    In this study, buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts, are studied. Cattaneo-Christov heat flux model instead of conventional Fourier's law of heat conduction is applied to investigate the heat transfer characteristics. A similarity transformation is used to transmute the governing momentum and energy equations into non-linear ordinary differential equations with the appropriate boundary conditions. The obtained non-linear ordinary differential equations are solved numerically. The impacts of diverse active parameters such as the magnetic parameter, the radiation parameter, the buoyancy parameter, the heat source parameter, the volume fraction of nanofluid and the thermal relaxation parameter are examined on the velocity and temperature profiles. In addition, the value of the Nusselt number is calculated and presented through figures. The results demonstrate that the temperature profile is lower in the case of Cattaneo-Christov heat flux model as compared to Fourier's law. Moreover, the Nusselt number raises with the raising volume fraction of nanofluid and it abates with the ascending the radiation parameter.

  14. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    Science.gov (United States)

    Lee, Steve A.; Leimkuehler, Thomas O.; Stephan, Ryan; Le, Hung V.

    2010-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PC1V1) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  15. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    International Nuclear Information System (INIS)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-01-01

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics

  16. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Miura, Atsushi; Iizuka, Hideo [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  17. Influence of Variable Fluid Properties and Radiative Heat loss on ...

    African Journals Online (AJOL)

    Consequently, comparative analysis is also performed on the wall shear stress and local heat transfer of the present study with the available results.The results show that the inclusion variable viscosity and thermal conductivity, and radiative heat loss mechanism cause significant effects on the fluid flow velocity, temperature ...

  18. Modeling Loss-of-Flow Accidents and Their Impact on Radiation Heat Transfer

    Directory of Open Access Journals (Sweden)

    Jivan Khatry

    2017-01-01

    Full Text Available Long-term high payload missions necessitate the need for nuclear space propulsion. The National Aeronautics and Space Administration (NASA investigated several reactor designs from 1959 to 1973 in order to develop the Nuclear Engine for Rocket Vehicle Application (NERVA. Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. In this work, a system model based on RELAP5 is developed to simulate loss-of-flow accidents on the Pewee I test reactor. This paper investigates the radiation heat transfer between the fuel elements and the structures around it. In addition, the impact on the core fuel element temperature and average core pressure was also investigated. The following expected results were achieved: (i greater than normal fuel element temperatures, (ii fuel element temperatures exceeding the uranium carbide melting point, and (iii average core pressure less than normal. Results show that the radiation heat transfer rate between fuel elements and cold surfaces increases with decreasing flow rate through the reactor system. However, radiation heat transfer decreases when there is a complete LOFA. When there is a complete LOFA, the peripheral coolant channels of the fuel elements handle most of the radiation heat transfer. A safety system needs to be designed to counteract the decay heat resulting from a post-LOFA reactor scram.

  19. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  20. Measurements of Bremsstrahlung radiation and X-ray heat load to cryostat on SECRAL

    International Nuclear Information System (INIS)

    Zhao, H.Y.; Cao, Y.; Lu, W.; Zhang, W.H.; Zhao, H.W.; Zhang, X.Z.; Zhu, Y.H.; Li, X.X.; Xie, D.Z.

    2012-01-01

    The measurement of Bremsstrahlung radiation from ECR (Electron Cyclotron Resonance) plasma can yield certain information about the ECR heating process and the plasma confinement, and more important it can give a plausible estimate of the X-ray heat load to the cryostat of a superconducting ECR source. To better understand the additional heat load to the cryostat due to Bremsstrahlung radiation, the axial Bremsstrahlung measurements have been conducted on SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) with different source parameters. In addition, the heat load induced by intense X-ray or even γ-ray was estimated in terms of liquid helium consumption. The relationship between these two parameters is presented here. Thick-target Bremsstrahlung, induced by the collision of hot electrons with the wall or the source electrode, is much more intensive compared with the radiation produced in the plasma and, consequently, much more difficult to shield off. In this paper the presence of the thick-target Bremsstrahlung is correlated with the magnetic confinement configuration, specifically, the ratio of B(last) to B(ext). And possible solutions to reduce the X-ray heat load induced by Bremsstrahlung radiation are proposed and discussed. It appears that by choosing an appropriate ratio of B(last) to B(ext) the thick-target Bremsstrahlung radiation can be avoided effectively. The paper is followed by the associated poster

  1. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12% were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % volumetric concentration of MgO in basefluid. The fluid flow rate was kept in a range of 8-16 liter per minute. Lower flow rates resulted in greater heat transfer rates as compared to heat transfer rates at higher flow rates for the same volumetric concentration. Heat transfer rates were found weakly dependent on the inlet fluid temperature. An increase of 8°C in inlet temperature showed only a 6% increase in heat transfer rate.

  2. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    Science.gov (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  3. Solid state radiative heat pump

    Science.gov (United States)

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  4. Microwave Heating of a Liquid Stably Flowing in a Circular Channel Under the Conditions of Nonstationary Radiative-Convective Heat Transfer

    Science.gov (United States)

    Salomatov, V. V.; Puzyrev, E. M.; Salomatov, A. V.

    2018-05-01

    A class of nonlinear problems of nonstationary radiative-convective heat transfer under the microwave action with a small penetration depth is considered in a stabilized coolant flow in a circular channel. The solutions to these problems are obtained, using asymptotic procedures at the stages of nonstationary and stationary convective heat transfer on the heat-radiating channel surface. The nonstationary and stationary stages of the solution are matched, using the "longitudinal coordinate-time" characteristic. The approximate solutions constructed on such principles correlate reliably with the exact ones at the limiting values of the operation parameters, as well as with numerical and experimental data of other researchers. An important advantage of these solutions is that they allow the determination of the main regularities of the microwave and thermal radiation influence on convective heat transfer in a channel even before performing cumbersome calculations. It is shown that, irrespective of the heat exchange regime (nonstationary or stationary), the Nusselt number decreases and the rate of the surface temperature change increases with increase in the intensity of thermal action.

  5. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  6. Numerical simulations of a coupled radiative?conductive heat transfer model using a modified Monte Carlo method

    KAUST Repository

    Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz

    2012-01-01

    Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer

  7. Homogenization of a Conductive-Radiative Heat Transfer Problem

    Directory of Open Access Journals (Sweden)

    Habibi Zakaria

    2012-04-01

    Full Text Available This paper focuses on the contribution of the second order corrector in periodic homogenization applied to a conductive-radiative heat transfer problem. Especially, for a heat conduction problem in a periodically perforated domain with a non-local boundary condition modelling the radiative heat transfer, if this model contains an oscillating thermal source and a thermal exchange with the perforations, the second order corrector helps us to model the gradients which appear between the source area and the perforations. Ce papier est consacré à montrer l’influence du correcteur de second ordre en homogénéisation périodique. Dans l’homogénéisation d’un problème de conduction rayonnement dans un domaine périodiquement perforé par plusieurs trous, on peut voir une contribution non négligeable de ce correcteur lors de la présence d’une source thermique oscillante et d’un échange thermique dans les perforations. Ce correcteur nous permet de modéliser les gradients qui apparaissent entre la zone de la source thermique et les perforations.

  8. Dynamic simulation of space heating systems with radiators controlled by TRVs in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoping; Fu, Lin; Di, Hongfa [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2008-07-01

    The objective of this paper is to develop a model for simulating the thermal and hydraulic behavior of space heating systems with radiators controlled by thermostat valves (TRVs) in multi-family buildings. This is done by treating the building and the heating system as a complete entity. Sub-models for rooms, radiators, TRVs, and the hydraulic network are derived. Then the suggested sub-models are combined to form an integrated model by considering interactions between them. The proposed model takes into account the heat transfer between neighboring rooms, the transport delay in the radiator, the self-adjusting function of the TRV, and the consumer's regulation behavior, as well as the hydraulic interactions between consumers. To test the model, two space heating systems in Beijing and Tianjin were investigated, and the model was validated under three operation modes. There was good agreement between the measured and simulated values for room temperature, return water temperature, and flow rate. A modeling analysis case was given based on an existing building and heating system. It was found that when the set value of the TRVs were kept on 2-3, about 12.4% reduction of heat consumption could be gained, compared with the situation in which the TRVs were kept fully open. The water flow rate was an important index that truly reflected the heat load change. It was also noted that if the flow rate or supply water temperature changed much during the transport delay time in the radiator, ignoring the transport delay would introduce an obvious deviation of the simulation results. Additionally, when an apartment stopped using the heating system during a heating season, the heat consumption of its neighboring apartments would be increased about 6-14%. (author)

  9. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kasmani, Ruhaila Md; Bhuvaneswari, M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sivasankaran, S.; Siri, Zailan [Institute of Mathematical Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge–Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of the heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.

  10. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2003-01-01

    For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)

  11. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.

    2003-01-01

    For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results

  12. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  13. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    International Nuclear Information System (INIS)

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  14. Ocean heat content and Earth's radiation imbalance. II. Relation to climate shifts

    International Nuclear Information System (INIS)

    Douglass, D.H.; Knox, R.S.

    2012-01-01

    In an earlier study of ocean heat content (OHC) we showed that Earth's empirically implied radiation imbalance has undergone abrupt changes. Other studies have identified additional such climate shifts since 1950. The shifts can be correlated with features in recently updated OHC data. The implied radiation imbalance may possibly alternate in sign at dates close to the climate shifts. The most recent shifts occurred during 2001–2002 and 2008–2009. The implied radiation imbalance between these dates, in the direction of ocean heat loss, was −0.03±0.06 W/m 2 , with a possible systematic error of [−0.00,+0.09] W/m 2 . -- Highlights: ► Ocean heat content (OHC) slope discontinuities match similar Earth climate features. ► OHC slopes between climate shifts give most of the implied radiation balance (IRI). ► IRI often alternates in sign at dates close to the climate shifts. ► IRI between climate shifts of 2001–2002 and 2008–2009 was −0.03±0.06 W/m 2 . ► Geothermal flux is relevant to analyses of radiation imbalance.

  15. Ocean heat content and Earth's radiation imbalance

    International Nuclear Information System (INIS)

    Douglass, David H.; Knox, Robert S.

    2009-01-01

    Earth's radiation imbalance is determined from ocean heat content data and compared with results of direct measurements. Distinct time intervals of alternating positive and negative values are found: 1960-mid-1970s (-0.15), mid-1970s-2000 (+0.15), 2001-present (-0.2 W/m 2 ), and are consistent with prior reports. These climate shifts limit climate predictability.

  16. Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation

  17. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and ...

  18. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  19. Systems with a constant heat flux with applications to radiative heat transport across nanoscale gaps and layers

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2018-06-01

    We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.

  20. Ultra thin metallic coatings to control near field radiative heat transfer

    Science.gov (United States)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  1. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    Science.gov (United States)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  2. Application of advanced model of radiative heat transfer in a rod geometry to QUENCH and PARAMETER tests

    International Nuclear Information System (INIS)

    Vasiliev, A.D.; Kobelev, G.V.; Astafieva, V.O.

    2007-01-01

    Radiative heat transfer is very important in different fields of mechanical engineering and related technologies including nuclear reactors, heat transfer in furnaces, aerospace, different high-temperature assemblies. In particular, in the course of a hypothetical severe accident at PWR-type nuclear reactor the temperatures inside the reactor vessel reach high values at which taking into account of radiative heat exchange between the structures of reactor (including core and other reactor vessel elements) gets important. Radiative heat transfer dominates the late phase of severe accident because radiative heat fluxes (proportional to T4, where T is the temperature) are generally considerably higher than convective and conductive heat fluxes in a system. In particular, heat transfer due to radiation determines the heating and degradation of the core and surrounding steel in-vessel structures and finally influences the composition, temperature and mass of materials pouring out of the reactor vessel after its loss of integrity. Existing models of radiative heat exchange use many limitations and approximations: approximate estimation of view factors and beam lengths; the geometry change in the course of the accident is neglected; the database for emissivities of materials is not complete; absorption/emission by steam-noncondensable medium is taken into account approximately. The module MRAD was developed in this paper to model the radiative heat exchange in rod-like geometry typical of PWR-type reactor. Radiative heat exchange is computed using dividing on zones (zonal method) as in existing radiation models implemented to severe accident numerical codes such as ICARE, SCDAP/RELAP, MELCOR but improved in following aspects: new approach to evaluation of view factors and mean beam length; detailed evaluation of gas absorptivity and emissivity; account of effective radiative thermal conductivity for the large core; account of geometry modification in the course of severe

  3. Numerical modeling of the conduction and radiation heating in precision glass moulding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2012-01-01

    wafer, heating can be performed by either conduction or radiation. The numerical simulation of these two heating mechanisms in the wafer based glass moulding process is the topic of the present paper. First, the transient heating of the glass wafer is simulated by the FEM software ABAQUS. Temperature...

  4. Maximal near-field radiative heat transfer between two plates

    OpenAIRE

    Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl

    2013-01-01

    International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...

  5. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    Science.gov (United States)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the

  6. Solar radiative heating of fiber-optic cables used to monitor temperatures in water

    Science.gov (United States)

    Neilson, Bethany T.; Hatch, Christine E.; Ban, Heng; Tyler, Scott W.

    2010-08-01

    In recent years, applications of distributed temperature sensing (DTS) have increased in number and diversity. Because fiber-optic cables used for DTS are typically sheathed in dark UV-resistant materials, the question arises as to how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures in aquatic applications. To quantify these effects, we completed a modeling effort that accounts for the effects of radiation and convection on a submersed cable to predict when solar heating may be important. Results indicate that for cables installed at shallow depths in clear, low-velocity water bodies, measurable heating of the cable is likely during peak solar radiation. However, at higher velocities, increased turbidity and/or greater depths, the effects of solar heating are immeasurable. A field study illustrated the effects of solar radiation by installing two types of fiber-optic cable at multiple water depths (from 0.05 to 0.8 m) in the center and along the sidewall of a trapezoidal canal. Thermistors were installed at similar depths and shielded from solar radiation to record absolute water temperatures. During peak radiation, thermistor data showed small temperature differences (˜0.003°C-0.04°C) between depths suggesting minor thermal stratification in the canal center. DTS data from cables at these same depths show differences of 0.01°C-0.17°C. The DTS differences cannot be explained by stratification alone and are likely evidence of additional heating from solar radiation. Sidewall thermistor strings also recorded stratification. However, corresponding DTS data suggested that bed conduction overwhelmed the effects of solar radiation.

  7. Cost-effective computational method for radiation heat transfer in semi-crystalline polymers

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Rémi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2018-05-01

    This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.

  8. Passive cryogenic cooling of electrooptics with a heat pipe/radiator.

    Science.gov (United States)

    Nelson, B E; Goldstein, G A

    1974-09-01

    The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.

  9. Thermal radiation heat transfer in participating media by finite volume discretization using collimated beam incidence

    Science.gov (United States)

    Harijishnu, R.; Jayakumar, J. S.

    2017-09-01

    The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.

  10. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Johnson, Tim [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  11. Rejection Sensitivity Moderates the Impact of Rejection on Self-Concept Clarity

    Science.gov (United States)

    Ayduk, Özlem; Gyurak, Anett; Luerssen, Anna

    2014-01-01

    Self-concept clarity (SCC) refers to the extent to which self-knowledge is clearly and confidently defined, internally consistent, and temporally stable. Research shows that SCC can be undermined by failures in valued goal domains. Because preventing rejection is an important self-relevant goal for people high in rejection sensitivity (RS), it is hypothesized here that failures to attain this goal would cause them to experience diminished SCC. Study 1, an experimental study, showed that high-RS people’s SCC was undermined following rejection but not following an aversive experience unrelated to rejection. Study 2, a daily diary study of couples in relationships, used occurrence of partner conflicts to operationalize rejection. Replicating the findings in Study 1, having a conflict on any given diary day predicted a greater reduction in the SCC of high- compared to low-RS people on the following day. The implications for understanding the conditions under which rejection negatively affects the self-concept are discussed. PMID:19713567

  12. Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).

  13. Heat effect of pulsed Er:YAG laser radiation

    Science.gov (United States)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  14. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  15. Calculation of heat generation due to nuclear radiation in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The study is performed for caculating nuclear heating due to the interaction of neutrons and gamma-rays with matter. Modifications were implemented in the ANISN code, that solves the one-dimensional transport equation using the discrete ordinate method, to include nuclear heating calculations. Tests of the implemented modifications were performed in problems of nuclear heating due to radiation energy deposition in a fusion reactor. (Author) [pt

  16. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  17. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    OpenAIRE

    Kuyumcu Muhammed Enes; Yumrutaş Recep

    2017-01-01

    This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effec...

  18. CFD analysis of heat transfer performance of graphene based hybrid nanofluid in radiators

    Science.gov (United States)

    Bharadwaj, Bharath R.; Sanketh Mogeraya, K.; Manjunath, D. M.; Rao Ponangi, Babu; Rajendra Prasad, K. S.; Krishna, V.

    2018-04-01

    For Improved performance of an automobile engine, Cooling systems are one of the critical systems that need attention. With increased capacity to carry away large amounts of wasted heat, performance of an engine is increased. Current research on Nano-fluids suggests that they offer higher heat transfer rate compared to that of conventional coolants. Hence this project seeks to investigate the use of hybrid-nanofluids in radiators so as to increase its heat transfer performance. Carboxyl Graphene and Graphene Oxide based nanoparticles were selected due to the very high thermal conductivity of Graphene. System Analysis of the radiator was performed by considering a small part of the whole automobile radiator modelled using SEIMENS NX. CFD analysis was conducted using ANSYS FLUENT® for the nanofluid defined and the increase in effectiveness was compared to that of conventional coolants. Usage of such nanofluids for a fixed cooling requirement in the future can lead to significant downsizing of the radiator.

  19. Experimental evaluation of radiator control based on primary supply temperature for district heating substations

    International Nuclear Information System (INIS)

    Gustafsson, Jonas; Delsing, Jerker; Deventer, Jan van

    2011-01-01

    Highlights: → We compared a new radiator system control approach with traditional control. → This is an experimental verification of previous simulation results. → We examine changes in delta-T and indoor comfort. → The indoor comfort were not affected by the introduction of alt. radiator control. → The alternative control method can contribute to an increased delta-T. -- Abstract: In this paper, we evaluate whether the primary supply temperature in district heating networks can be used to control radiator systems in buildings connected to district heating; with the purpose of increasing the ΔT. The primary supply temperature in district heating systems can mostly be described as a function of outdoor temperature; similarly, the radiator supply temperature in houses, offices and industries can also be described as a function of outdoor temperature. To calibrate the radiator control system to produce an ideally optimal radiator supply temperature that produces a maximized ΔT across the substation, the relationship between the primary supply temperature and outdoor temperature must be known. However, even if the relation is known there is always a deviation between the expected primary supply temperature and the actual temperature of the received distribution media. This deviation makes the radiator control system incapable of controlling the radiator supply temperature to a point that would generate a maximized ΔT. Published simulation results show that it is possible and advantageous to utilize the primary supply temperature for radiator system control. In this paper, the simulation results are experimentally verified through implementation of the control method in a real district heating substation. The primary supply temperature is measured by the heat-meter and is shared with the radiator control system; thus no additional temperature sensors were needed to perform the experiments. However additional meters were installed for surveillance purposes

  20. Fate of Manuscripts Rejected From the Red Journal

    International Nuclear Information System (INIS)

    Holliday, Emma B.; Yang, George; Jagsi, Reshma; Hoffman, Karen E.; Bennett, Katherine Egan; Grace, Calley; Zietman, Anthony L.

    2015-01-01

    Purpose: To evaluate characteristics associated with higher rates of acceptance for original manuscripts submitted for publication to the International Journal of Radiation Oncology • Biology • Physics (IJROBP) and describe the fate of rejected manuscripts. Methods and Materials: Manuscripts submitted to the IJROBP from May 1, 2010, to August 31, 2010, and May 1, 2012, to August 31, 2012, were evaluated for author demographics and acceptance status. A PubMed search was performed for each IJROBP-rejected manuscript to ascertain whether the manuscript was ultimately published elsewhere. The Impact Factor of the accepting journal and the number of citations of the published manuscript were also collected. Results: Of the 500 included manuscripts, 172 (34.4%) were accepted and 328 (65.6%) were rejected. There was no significant difference in acceptance rates according to gender or degree of the submitting author, but there were significant differences seen based on the submitting author's country, rank, and h-index. On multivariate analysis, earlier year submitted (P<.0001) and higher author h-index (P=.006) remained significantly associated with acceptance into the IJROBP. Two hundred thirty-five IJROBP-rejected manuscripts (71.7%) were ultimately published in a PubMed-listed journal as of July 2014. There were no significant differences in any submitting author characteristics. Journals accepting IJROBP-rejected manuscripts had a lower median [interquartile range] 2013 impact factor compared with the IJROBP (2.45 [1.53-3.71] vs 4.176). The IJROBP-rejected manuscripts ultimately published elsewhere had a lower median [interquartile range] number of citations (1 [0-4] vs 6 [2-11]; P<.001), which persisted on multivariate analysis. Conclusions: The acceptance rate for manuscripts submitted to the IJROBP is approximately one-third, and approximately 70% of rejected manuscripts are ultimately published in other PubMed-listed journals, but these ultimate

  1. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  2. Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system

    Science.gov (United States)

    Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul

    2018-05-01

    In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.

  3. A Numerical Study on Effect of Gas-Phase Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames

    International Nuclear Information System (INIS)

    Sohn, Chae Hoon

    2007-01-01

    Extinction characteristics of hydrogen-air diffusion flames are investigated numerically by adopting counterflow flame configuration. At various pressures, effect of radiative heat loss on flame extinction is examined. Only gas-phase radiation is considered here. Radiative heat loss depends on flame thickness, temperature, H 2 O concentration, and pressure. From flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of H 2 O increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate

  4. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping, E-mail: tanheping@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2013-05-15

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction–radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.

  5. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  6. Radiation control report on intermediate heat exchanger replacement and related works

    International Nuclear Information System (INIS)

    Kanou, Y.; Yamanaka, T.; Sasajima, T.; Hoshiba, H.; Emori, S.; Shindou, K.

    2002-03-01

    The 13th periodical inspection of the experimental fast reactor JOYO is being made from Jun. 2000 to Jan. 2003. While this inspection, from the end of Oct. 2000 to Nov. 2001, the MK-III modification work on heat transport system was made in lower region of the reactor containment vessel in the reactor facility (under floor area). In the MK-III modification work, the works important to radiation control were the replacement of intermediate heat exchangers (IHXs) and fixtures, and the picking out of the surveillance material from primary heat transport piping carried out in the maintenance building. Because the working areas of these works were executed in small space around the complicated primary heat transport piping, workability was bad and dose rate from the corrosion products (CP) in piping or fixtures was high. In such condition, radiation control was performed mainly concerned about external exposure. The planted total external exposure of the IHX replacement and related works was 7135 man-mSv (target of total dose control: less than 5708 man-mSv, 80% of the plan), derived from special radiation work plants for segmental works, concerned about work procedure, number of workers, period of work, dose rate of working area and surface dose rate of equipments. The special radiation control organization was established for such long and large-scale work. The spatial organization held detailed discussion about radiation control of this work with the execution section and contractors appropriately, performance careful external/internal exposure control and surface contamination control and made efforts to reduce te external exposure thoroughly. As a result of these action, the total external exposure was 2386 man·mSv (≅33% of the plan, ≅42% of the target) and the maximum individual exposure were 24.7 mSv for staffs and 21.7mSv for contractors. The dose rate, surface contamination and air contamination while the works were kept under the control level with the

  7. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  8. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator.

    Science.gov (United States)

    Tattersall, Glenn J; Andrade, Denis V; Abe, Augusto S

    2009-07-24

    The toco toucan (Ramphastos toco), the largest member of the toucan family, possesses the largest beak relative to body size of all birds. This exaggerated feature has received various interpretations, from serving as a sexual ornament to being a refined adaptation for feeding. However, it is also a significant surface area for heat exchange. Here we show the remarkable capacity of the toco toucan to regulate heat distribution by modifying blood flow, using the bill as a transient thermal radiator. Our results indicate that the toucan's bill is, relative to its size, one of the largest thermal windows in the animal kingdom, rivaling elephants' ears in its ability to radiate body heat.

  9. Radiative heat transfer in honeycomb structures-New simple analytical and numerical approaches

    International Nuclear Information System (INIS)

    Baillis, D; Coquard, R; Randrianalisoa, J

    2012-01-01

    Porous Honeycomb Structures present the interest of combining, at the same time, high thermal insulating properties, low density and sufficient mechanical resistance. However, their thermal properties remain relatively unexplored. The aim of this study is the modelling of the combined heat transfer and especially radiative heat transfer through this type of anisotropic porous material. The equivalent radiative properties of the material are determined using ray-tracing procedures inside the honeycomb porous structure. From computational ray-tracing results, simple new analytical relations have been deduced. These useful analytical relations permit to determine radiative properties such as extinction, absorption and scattering coefficients and phase function functions of cell dimensions and optical properties of cell walls. The radiative properties of honeycomb material strongly depend on the direction of propagation. From the radiative properties computed, we have estimated the radiative heat flux passing through slabs of honeycomb core materials submitted to a 1-D temperature difference between a hot and a cold plate. We have compared numerical results obtained from Discrete Ordinate Method with analytical results obtained from Rosseland-Deissler approximation. This approximation is usually used in the case of isotropic materials. We have extended it to anisotropic honeycomb materials. Indeed a mean over incident directions of Rosseland extinction coefficient is proposed. Results tend to show that Rosseland-Deissler extended approximation can be used as a first approximation. Deviation on radiative conductivity obtained from Rosseland-Deissler approximation and from the Discrete Ordinated Method are lower than 6.7% for all the cases studied.

  10. Composite heat transfer in a pipe with thermal radiation of two-dimensional propagation - in connection with the temperature rise in flowing medium upstream from heating section

    International Nuclear Information System (INIS)

    Echigo, R.; Hasegawa, S.; Kamiuto, K.

    1975-01-01

    An analytical procedure is presented for simultaneous convective and radiative heat transfer with a fully developed laminar flow in a pipe by taking account of the two-dimensional propagation of radiative transfer and also shows the numerical results on the temperature profiles and the heat-transfer characteristics. In order to solve the energy equation with two-dimensional radiative transfer the entire ranges of the temperature field have to be solved simultaneously both along the radial and flow directions. Moreover, the heat flux by thermal radiation emitted from the heating wall propagates upstream so that it is necessary to examine the temperature profiles of the flowing medium to a certain distance upstream from the entrance of the heating section. In this way in order to attempt to solve the governing equation numerically by a finite difference method the dimension of matrix becomes extremely large provided that a satisfactory validity of numerical calculation is required Consequently the band matrix method is used and the temperature profiles of the medium in both regions upstream and downstream from the entrance of the heating section are illustrated and the heat transfer results are discussed in some detail by comparing with those of the one-dimensional transfer of radiation.(auth)

  11. Research of management information system of radiation protection for low temperature nuclear heating reactor

    International Nuclear Information System (INIS)

    Bai Hongtao; Wang Jiaying; Wu Manxue

    2001-01-01

    Management information system of radiation protection for low temperature reactor uses computer to manage the data of the low temperature nuclear heating reactor radiation monitoring, it saves the data from the front real-time radiation monitoring system, comparing these data with historical data to give the consequence. Also, the system provides some picture in order to show space information at need. The system, based on Microsoft Access 97, consists of nine parts, including radiation dose, environmental data, meteorological data and so on. The system will have value in safely operation of the low temperature nuclear heating reactor

  12. Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics

    NARCIS (Netherlands)

    Svetovoy, Vitaly; van Zwol, P.J.; Chevrier, J.

    2012-01-01

    It is shown that a graphene layer on top of a dielectric slab can dramatically influence the ability of this dielectric for radiative heat exchange turning a poor heat emitter/absorber into a good one and vice versa. The effect of graphene is related to thermally excited plasmons. The frequency of

  13. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  14. Radiative heat transfer in 2D Dirac materials

    International Nuclear Information System (INIS)

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-01-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. (paper)

  15. A multilevel method for conductive-radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Banoczi, J.M.; Kelley, C.T. [North Carolina State Univ., Raleigh, NC (United States)

    1996-12-31

    We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

  16. Reject analysis: A comparison of radiographer and radiologist perceptions of image quality

    International Nuclear Information System (INIS)

    Mount, J.

    2016-01-01

    This study explores the potential differences in perceptions of image quality between radiographers and radiologists in a large UK hospital and the subsequent impact this has on image rejection. Image rejection, while sometimes necessary, often leads to an increased radiation dose to the patient due to the need to repeat. Moreover, this translates into increased waiting times, departmental costs, and lower patient satisfaction. Adopting a mixed methods approach, this paper first seeks to quantify the differences in radiographer and radiologist perceptions and second establish the underlying causes of such differences through a quantitative and qualitative investigation respectively. Using a standardized psychometric scale of a GP lateral knee, the study reveals significant differences in the perceptions of quality and rejection rates between radiographers and radiologists driven by a conflict in the evaluation criteria used. The study has significant implications for improving departmental performance and proposes a potential solution for reducing reject rates and image repeats. - Highlights: • Significant differences are found to exist in perceptions of image quality. • Differences in perceptions of image quality directly influence reject rates. • Radiographers judge images on technical criteria. • Radiologists judge images on diagnostic criteria. • Results suggest better communication could reduce reject rates.

  17. Lung allograft rejection in the rat. I. Accelerated rejection caused by graft lymphocytes

    International Nuclear Information System (INIS)

    Prop, J.; Nieuwenhuis, P.; Wildevuur, C.R.

    1985-01-01

    To find out to what extent rejection of lungs differs from that of other organs, functional rejection of lung allografts was studied in five combinations of inbred rat strains. Rejection could be monitored accurately by perfusion scintigraphy, and equally well by chest roentgenography. The rejection of lung grafts was found to proceed remarkably fast, when compared with heart grafts, in combinations with strong RT1-incompatibilities. This accelerated rejection pattern could be converted into rejection at a normal pace by pretreatment of the donor with 10 Gy roentgen irradiation one day before transplantation. Donor pretreatment depleted the lung graft's bronchus-associated lymphoid tissue (BALT) of lymphocytes. When grafts were depleted of all other passenger cells as well--by retransplantation from a cyclosporine-treated intermediate host--they showed an even more reduced immunogenicity, probably because of the loss of donor-type dendritic cells. These results indicate that lymphocytes from the BALT of lung grafts are capable of accelerating the rejection response

  18. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR.

    Science.gov (United States)

    Rahman, MuhibUr; Park, Jung-Dong

    2018-03-19

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  19. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR

    Directory of Open Access Journals (Sweden)

    MuhibUr Rahman

    2018-03-01

    Full Text Available In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT. Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs on the radiating patch and placing two rectangular split-ring resonators (RSRR near the feedline-patch junction of the conventional ultra-wideband (UWB antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  20. Evaluation of radiation heat transfer in porous medial: Application for a pebble bed modular reactor cooled by CO2 gas

    Directory of Open Access Journals (Sweden)

    Sidi-Ali Kamel

    2013-01-01

    Full Text Available This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2 is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.

  1. Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank

    International Nuclear Information System (INIS)

    Kuyumcu, Muhammed Enes; Tutumlu, Hakan; Yumrutaş, Recep

    2016-01-01

    Highlights: • An analytical model of the system, and a computational program were developed. • Transient behavior of the water in the buried energy storage tank was simulated. • Effects of various system parameters on the system performance were investigated. • Long period performance of the system was analyzed and obtained periodic condition. • Optimum ice rink size is determined for a semi-Olympic size swimming pool heating. - Abstract: This study deals with determining the long period performance of a swimming pool heating system by utilizing waste heat energy that is rejected from a chiller unit of ice rink and subsequently stored in an underground thermal energy storage (TES) tank. The system consists of an ice rink, a swimming pool, a spherical underground TES tank, a chiller and a heat pump. The ice rink and the swimming pool are both enclosed and located in Gaziantep, Turkey. An analytical model was developed to obtain the performance of the system using Duhamel’s superposition and similarity transformation techniques. A computational model written in MATLAB program based on the transient heat transfer is used to obtain the annual variation of the ice rink and the swimming pool energy requirements, the water temperature in the TES tank, COP, and optimum ice rink size depending on the different ground, TES tank, chiller, and heat pump characteristics. The results obtained from the analysis indicate that 6–7 years’ operational time span is necessary to obtain the annual periodic operation condition. In addition, an ice rink with a size of 475 m"2 gives the optimum performance of the system with a semi-Olympic size swimming pool (625 m"2).

  2. New Physical and Mathematical Model of Radiation Heat Transmission Inside Circular Furnace

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolsky

    2004-01-01

    Full Text Available Methods of solving problems concerning heat transmission by radiation are considered in the paper. The paper shows disadvantages of the existing techniques. A physical and mathematical model of a conjugate heat exchange has been developed to eliminate the above disadvantages.

  3. Analysis of combustion performance and emission of extended expansion cycle and iEGR for low heat rejection turbocharged direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Shabir Mohd F.

    2014-01-01

    Full Text Available Increasing thermal efficiency in diesel engines through low heat rejection concept is a feasible technique. In LHR engines the high heat evolution is achieved by insulating the combustion chamber surfaces and coolant side of the cylinder with partially stabilized zirconia of 0.5 mm thickness and the effective utilization of this heat depend on the engine design and operating conditions. To make the LHR engines more suitable for automobile and stationary applications, the extended expansion was introduced by modifying the inlet cam for late closing of intake valve through Miller’s cycle for extended expansion. Through the extended expansion concept the actual work done increases, exhaust blow-down loss reduced and the thermal efficiency of the LHR engine is improved. In LHR engines, the formation of nitric oxide is more, to reduce the nitric oxide emission, the internal EGR is incorporated using modified exhaust cam with secondary lobe. Modifications of gas exchange with internal EGR resulted in decrease in nitric oxide emissions. In this work, the parametric studies were carried out both theoretically and experimentally. The combustion, performance and emission parameters were studied and were found to be satisfactory.

  4. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation

    International Nuclear Information System (INIS)

    Sinha, A.; Shit, G.C.

    2015-01-01

    This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field

  5. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A. [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Institute of Mathematical Sciences, Chennai 600113 (India)

    2015-03-15

    This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field.

  6. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  7. Heat and radiation analysis of NPP Krsko irradiated fuel

    International Nuclear Information System (INIS)

    Lalovic, M.

    1986-01-01

    Radioactive and heat potential for irradiated fuel in the region 2 with burnup of 13400 MWd/tHM, and in the region 4A with burnup of 9360 MWd/tHM for NPP KRSKO, was calculated. Computer code KORIGEN (Karlsruhe Oak Ridge Isotope Generation and Depletion Code) was used. The aspects of radiation (mainly gamma and neutrons) and of heat production was considered with respect to their impact on fuel handing and waste management. Isotopic concentrations for irradiated fuel was calculated and compared with Westinghouse data. (author)

  8. Numerical studies of heat transfer by simultaneous radiative-conduction and radiative-convection in a two dimensional semi-transparent medium

    International Nuclear Information System (INIS)

    Draoui, Abdeslam

    1989-01-01

    The works we present here are on numerical approaches of heat transfer coupling radiation-conduction and radiation-convection within semi-transparent two-dimensional medium. The first part deals with a review of equations of radiative transfer and introduces three numerical methods (Pl, P3, Hottel's zones) which enable one to solve this problem in a two-dimensional environment. After comparing the three methods in the case where radiation is the only mode of transfer, we introduce in the second chapter a study of the coupling of radiation with conduction. So, a fourth method is used to solve this problem. These comparisons lead us to various methods which enable us to show the interest of the spherical harmonics approximations. In the third part, the Pl approximation is kept because it is simple to use, moreover it enables us to introduce both the coupling of radiative transfers with laminar convective equations in a thermally driven two-dimensional cavity. The results show a significant influence of the radiative participation of the fluid on heat and dynamic transfer we met in this type of problem. (author) [fr

  9. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  10. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    Science.gov (United States)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2017-02-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  11. User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)

    Science.gov (United States)

    Hainley, Donald C.

    1991-01-01

    A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.

  12. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    Science.gov (United States)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  13. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    International Nuclear Information System (INIS)

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  14. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  15. Studi Eksperimen Pengaruh Variasi Kecepatan Udara Terhadap Performa Heat Exchanger Jenis Compact Heat Exchanger (Radiator Dengan Susunan Tube Inline Sebagai Pemanas Pada Sistem Pengeringan Batubara

    Directory of Open Access Journals (Sweden)

    Irvan Paramananda

    2014-03-01

    Full Text Available Pengeringan yang dilakukan pada batu bara dengan memanfaatkan udara panas menggunakan konsep heat exchanger. Salah satu heat exchanger yang sering digunakan adalah heat exchanger dengan tipe single row-fin tube yaitu radiator. Radiator ini akan dimanfaatkan sebagai penghasil udara panas dari air panas yang mengalir dan dihembuskan oleh kipas radiator. Penelitian ini difokuskan pada effectiveness dari komponen radiator fungsi dari kecepatan udara mulai dari kecepatan 1 m/s, 2 m/s, 3 m/s, 4 m/s dan 5 m/s dan fungsi jumlah radiator yang digunakan. Prinsip dari radiator yang digunakan adalah mengalirkan fluida panas berupa air ke dalam tube-tube radiator kemudian didinginkan oleh udara yang dihembuskan oleh fan yang melewati fin sehingga air yang keluar dari tube menjadi dingin dan udara yang melewati fin menjadi panas. Hasil yang didapatkan dari eksperimen ini diantaranya kecepatan udara yang optimal terhadap proses pengeringan batu bara yang dipakai pada alat pengering batu bara adalah sebesar 5 m/s dengan menggunakan 2 radiator. qhot untuk penggunaan 2 radiator dengan kecepatan udara sebesar 5 m/s adalah 30121.17 Watt. Effectiveness pada penggunaan 2 radiator dengan kecepatan udara sebesar 5 m/s adalah 0.65. Efisiensi fin yang terjadi pada kecepatan udara 5 m/s dengan menggunakan 2 radiator sebesar 0.93

  16. CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J. [Astronomical Institute, Academy of Sciences of the Czech Republic (v.v.i.), Fričova 298, 25165 Ondřejov (Czech Republic); Del Moro, D.; Berrilli, F. [Department of Physics, University of Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy)

    2016-07-20

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  17. Time-of-day effects of exposure to solar radiation on thermoregulation during outdoor exercise in the heat.

    Science.gov (United States)

    Otani, Hidenori; Goto, Takayuki; Goto, Heita; Shirato, Minayuki

    2017-01-01

    High solar radiation has been recognised as a contributing factor to exertional heat-related illness in individuals exercising outdoors in the heat. Although solar radiation intensity has been known to have similar time-of-day variation as body temperature, the relationship between fluctuations in solar radiation associated with diurnal change in the angle of sunlight and thermoregulatory responses in individuals exercising outdoors in a hot environment remains largely unknown. The present study therefore investigated the time-of-day effects of variations in solar radiation associated with changing solar elevation angle on thermoregulatory responses during moderate-intensity outdoor exercise in the heat of summer. Eight healthy, high school baseball players, heat-acclimatised male volunteers completed a 3-h outdoor baseball trainings under the clear sky in the heat. The trainings were commenced at 0900 h in AM trial and at 1600 h in PM trial each on a separate day. Solar radiation and solar elevation angle during exercise continued to increase in AM (672-1107 W/m 2 and 44-69°) and decrease in PM (717-0 W/m 2 and 34-0°) and were higher on AM than on PM (both P  0.05). Tympanic temperature measured by an infrared tympanic thermometer and mean skin temperature were higher in AM than PM at 120 and 180 min (P  0.05). The current study demonstrates a greater thermoregulatory strain in the morning than in the afternoon resulting from a higher body temperature and heart rate in relation to an increase in environmental heat stress with rising solar radiation and solar elevation angle during moderate-intensity outdoor exercise in the heat. This response is associated with a lesser net heat loss at the skin and a greater body heat gain from the sun in the morning compared with the afternoon.

  18. Flower garden trees' ability to absorb solar radiation heat for local heat reduction

    Science.gov (United States)

    Maulana, Muhammad Ilham; Syuhada, Ahmad; Hamdani

    2017-06-01

    Banda Aceh as an urban area tends to have a high air temperature than its rural surroundings. A simple way to cool Banda Aceh city is by planting urban vegetation such as home gardens or parks. In addition to aesthetics, urban vegetation plays an important role as a reducer of air pollution, oxygen producer, and reducer of the heat of the environment. To create an ideal combination of plants, knowledge about the ability of plants to absorb solar radiation heat is necessary. In this study, some types of flowers commonly grown by communities around the house, such as Michelia Champaka, Saraca Asoka, Oliander, Adenium, Codiaeum Variegatum, Jas Minum Sambac, Pisonia Alba, Variegata, Apium Graveolens, Elephantopus Scaber, Randia, Cordylin.Sp, Hibiscus Rosasinensis, Agave, Lili, Amarilis, and Sesamum Indicum, were examined. The expected benefit of this research is to provide information for people, especially in Banda Aceh, on the ability of each plant relationship in absorbing heat for thermal comfort in residential environments. The flower plant which absorbs most of the sun's heat energy is Hibiscus Rosasinensis (kembang sepatu) 6.2 Joule, Elephantopus Scaber.L (tapak leman) 4.l Joule. On the other hand, the lowest heat absorption is Oliander (sakura) 0.9 Joule.

  19. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  20. Numerical simulations of a coupled radiative?conductive heat transfer model using a modified Monte Carlo method

    KAUST Repository

    Kovtanyuk, Andrey E.

    2012-01-01

    Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer and an equation of the conductive heat exchange. The problem is characterized by anisotropic scattering of the medium and by specularly and diffusely reflecting boundaries. For the computation of solutions of this problem, two approaches based on iterative techniques are considered. First, a recursive algorithm based on some modification of the Monte Carlo method is proposed. Second, the diffusion approximation of the radiative transfer equation is utilized. Numerical comparisons of the approaches proposed are given in the case of isotropic scattering. © 2011 Elsevier Ltd. All rights reserved.

  1. Energy conservation. Purposeful regulation and control systems for gas infrared radiation heating

    Energy Technology Data Exchange (ETDEWEB)

    Reitsch, L [GoGaS Goch G.m.b.H. und Co., Dortmund (Germany, F.R.)

    1978-01-01

    Gas infrared radiators have been in use for a long time for heating large halls of trade and industrial buildings as well as sport centers. The success of this heating system is based mainly on considerably reduced energy consumption as against convective heating systems. However, the biggest energy savings can be achieved when heating systems of this kind are equipped with regulation and control systems which are adapted to the way the rooms are used. Solutions to problems are described and information is given for planning.

  2. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    International Nuclear Information System (INIS)

    Vishwakarma, J P; Nath, G

    2010-01-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient α R are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  3. Theory and design of heat exchanger : air cooled plate, spiral heat exchanger

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1960-02-01

    This book deals with air cooled heat exchanger, which introduces heat rejection system, wet surface cooler in new from, explanation of structure and design, materials, basic design like plenums chambers and fan ring, finned tube fouling factor, airflow in forced draft and fan design. It also tells of plate heat exchanger and spiral heat exchanger giving descriptions of summary, selection, basic design, device and safety function, maintenance, structure of plate heat exchanger, frames and connector plate and, basic things of spiral tube heat exchanger.

  4. Film reject analysis and image quality in diagnostic Radiology Department of a Teaching hospital in Ghana

    Directory of Open Access Journals (Sweden)

    J. Owusu-Banahene

    2014-10-01

    Full Text Available Patients usually undergo repeated X-ray examinations after their initial X-ray radiographs are rejected due to poor image quality. This subjects the patients to an excess radiation exposure and extra cost and necessitates the need to investigate the causes of reject. The use of reject analysis as part of the overall quality assurance programs in clinical radiography and radiology services is vital in the evaluation of image quality of a well-established practice. It is shown that, in spite of good quality control maintained by the Radiology Department of a Teaching hospital in Ghana, reject analysis performed on a number of radiographic films developed indicated 14.1% reject rate against 85.9% accepted films. The highest reject rate was 57.1 ± 0.7% which occurs in cervical spine and the lowest was7.7 ± 0.5% for lumbar spine. The major factors contributing to film rejection were found to be over exposure and patient positioning in cervical spine examinations. The most frequent examination was chest X-ray which accounts for about 42.2% of the total examinations. The results show low reject rates by considering the factors for radiographic rejection analysis in relation to both equipment functionality and film development in the facility.

  5. Simulation of Radiation Heat Transfer in a VAR Furnace Using an Electrical Resistance Network

    Science.gov (United States)

    Ballantyne, A. Stewart

    The use of electrical resistance networks to simulate heat transfer is a well known analytical technique that greatly simplifies the solution of radiation heat transfer problems. In a VAR furnace, radiative heat transfer occurs between the ingot, electrode, and crucible wall; and the arc when the latter is present during melting. To explore the relative heat exchange between these elements, a resistive network model was developed to simulate the heat exchange between the electrode, ingot, and crucible with and without the presence of an arc. This model was then combined with an ingot model to simulate the VAR process and permit a comparison between calculated and observed results during steady state melting. Results from simulations of a variety of alloys of different sizes have demonstrated the validity of the model. Subsequent simulations demonstrate the application of the model to the optimization of both steady state and hot top melt practices, and raises questions concerning heat flux assumptions at the ingot top surface.

  6. Use of waste heat from nuclear power plants

    International Nuclear Information System (INIS)

    Olszewski, M.

    1978-01-01

    The paper details the Department of Energy (DOE) program concerning utilization of power plant reject heat conducted by the Oak Ridge National Laboratory (ORNL). A brief description of the historical development of the program is given and results of recent studies are outlined to indicate the scope of present efforts. A description of a DOE-sponsored project assessing uses for reject heat from the Vermont Yankee Nuclear Station is also given

  7. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    Directory of Open Access Journals (Sweden)

    Kuyumcu Muhammed Enes

    2017-01-01

    Full Text Available This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effects of different design parameters such as ceiling insulation thickness, ceiling emissivity, Carnot efficiency factor and size of the ice rink on the thermal energy requirements and coefficient of performance of the chiller unit are investigated. As a result of analyses of the system, the minimum ice rink area is determined in order to meet annual total heat energy demand of the olympic-sized swimming pool.

  8. Mathematical Model for the Sequential Action of Radiation and Heat on Yeast Cells

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun Jong; Kim, Su Hyoun; Nili, Mohammad; Zhurakovskaya, Galina P.; Petin, Vladislav G.

    2009-01-01

    It is well known that the synergistic interaction of hyperthermia with ionizing radiation and other agents is widely used in hyperthermic oncology. Interaction between two agents may be considered as synergistic or antagonistic when the effect produced is greater or smaller than the sum of the two single responses. It has long be considered that the mechanism of synergistic interaction of hyperthermia and ionizing radiation may be brought about by an inhibition of the repair from sublethal and potentially lethal damage at the cellular level. The inhibition of the recovery process after combined treatments cannot be considered as a reason for the synergy, but rather would be the expected and predicted consequence of the production of irreversible damage. On the basis of it, a simple mathematical model of the synergistic interaction of two agents acting simultaneously has been proposed. However, the model has not been applied to predict the degree of interaction of heat and ionizing radiation after their sequential action. Extension of the model to the sequential treatment of heat and ionizing radiation seems to be of interest for theoretical and practical reasons. Thus, the purposes of the present work is to suggest the simplest mathematical model which would be able to account for the results obtained and currently available experimental information on the sequential action of radiation and heat.

  9. Solar radiation during rewarming from torpor in elephant shrews: supplementation or substitution of endogenous heat production?

    Science.gov (United States)

    Thompson, Michelle L; Mzilikazi, Nomakwezi; Bennett, Nigel C; McKechnie, Andrew E

    2015-01-01

    Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.

  10. Effect of heat radiation in a Walter’s liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation

    Directory of Open Access Journals (Sweden)

    A.K. Abdul Hakeem

    2014-07-01

    Full Text Available In this present article heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink, elastic deformation and radiation are reported. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The dimensionless governing equations for this investigation are solved analytically using hyper geometric functions. The results are carried out for prescribed surface temperature (PST and prescribed power law surface heat flux (PHF. The effects of viscous dissipation, Prandtl number, Eckert number, heat source/sink parameter with elastic deformation and radiation are shown in the several plots and addressed.

  11. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Naraki, M.; Vermahmoudi, Y.

    2013-01-01

    Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated experimentally by calculating the overall heat transfer coefficient (U) according to the conventional ε-NTU technique. Copper oxide (CuO) and Iron oxide (Fe 2 O 3 ) nanoparticles are added to the water at three concentrations 0.15, 0.4, and 0.65 vol.% with considering the best pH for longer stability. In these experiments, the liquid side Reynolds number is varied in the range of 50–1000 and the inlet liquid to the radiator has a constant temperature which is changed at 50, 65 and 80 °C. The ambient air for cooling of the hot liquid is used at constant temperature and the air Reynolds number is varied between 500 and 700. However, the effects of these variables on the overall heat transfer coefficient are deeply investigated. Results demonstrate that both nanofluids show greater overall heat transfer coefficient in comparison with water up to 9%. Furthermore, increasing the nanoparticle concentration, air velocity, and nanofluid velocity enhances the overall heat transfer coefficient. In contrast, increasing the nanofluid inlet temperature, lower overall heat transfer coefficient was recorded. -- Highlights: ► Overall heat transfer coefficient in the car radiator measured experimentally. ► Nanofluids showed greater heat transfer performance comparing with water. ► Increasing liquid and air Re increases the overall heat transfer coefficient. ► Increasing the inlet liquid temperature decreases the overall heat transfer coefficient

  12. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids

    International Nuclear Information System (INIS)

    Ali, Hafiz Muhammad; Ali, Hassan; Liaquat, Hassan; Bin Maqsood, Hafiz Talha; Nadir, Malik Ahmed

    2015-01-01

    New experimental data are reported for water based nanofluids to enhance the heat transfer performance of a car radiator. ZnO nanoparticles have been added into base fluid in different volumetric concentrations (0.01%, 0.08%, 0.2% and 0.3%). The effect of these volumetric concentrations on the heat transfer performance for car radiator is determined experimentally. Fluid flow rate has been varied in a range of 7–11 LPM (liter per minute) (corresponding Reynolds number range was 17,500–27,600). Nanofluids showed heat transfer enhancement compared to the base fluid for all concentrations tested. The best heat transfer enhancement up to 46% was found compared to base fluid at 0.2% volumetric concentration. A further increase in volumetric concentration to 0.3% has shown a decrease in heat transfer enhancement compared to 0.2% volumetric concentration. Fluid inlet temperature was kept in a range of 45–55 °C. An increase in fluid inlet temperature from 45 °C to 55 °C showed increase in heat transfer rate up to 4%. - Highlights: • ZnO–water nanofluids were used for car radiator thermal enhancement. • Heat transfer enhancement up to 46% was achieved comparing pure water. • 0.2% vol. concentration of ZnO found to be optimum for heat transfer. • Heat transfer was found weakly dependant on the fluid inlet temperature

  13. Near-field radiative heat transfer between metasurfaces

    DEFF Research Database (Denmark)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.

    2016-01-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...... and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer...

  14. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes

    CERN Document Server

    Tremsin, A S

    2000-01-01

    The photoemissive stability of as-deposited and heat-treated CsI, KI and KBr evaporated thin films under UV radiation is examined in this paper. After the deposition, some photocathodes were annealed for several hours at 90 deg. C in vacuum and their performance was then compared to the performance of non-heated samples. We observed that the post-evaporation thermal treatment not only increases the photoyield of CsI and KI photocathodes in the spectral range of 115-190 nm, but also reduces CsI, KI and KBr photocurrent degradation that occurs after UV irradiation. KBr evaporated layers appeared to be more radiation-resistant than CsI and KI layers. Post-deposition heat treatment did not result in any significant variation of KBr UV sensitivity.

  15. Radiation induced Maillard reactions (the kinetic of colour formation during heating)

    International Nuclear Information System (INIS)

    Tegota, A.; Bachman, S.

    1998-01-01

    The results are presented of the investigation of the effect of ionizing radiation from 60 Co on the acceleration of the Maillard reactions in a model system containing an aqueous solution of fructose (F) at 0.03 mol/dm 3 and alanine (Ala) at 0.01 mol/dm 3 . Solutions of F/Ala irradiated with 5 to 30 kGy at a dose rate 1.4 Gy/s were then heated for a few hours at different temperatures: 400, 600, 800, and 1000 deg C. The colour intensity of the solutions was measured via their absorbance at 450 nm. The reaction constant estimates increased with increasing radiation dose and temperature. The activation energy of colour development determined over the range of 600 deg C to 1000 deg C decreased with dose from 70.6 kJ/mol for 5 kGy to 60.7 kJ/mol for 30 kGy. The results confirmed the formation of carbonyl products from fructose radiolysis and their participation in the acceleration of the non-enzymatic browning reactions. The aldehyde products formed from the amino acids as a result of the Strecker degradation are responsible for the formation of odour typical of the Maillard reaction during heating. The changes in the F and Ala concentrations during irradiation of the solutions were proportional to the radiation dose. The radiation yield of fructose and alanine decomposition was G = 2.6 and 0.22, respectively. In the irradiated solutions of F/Ala, serine has been found, which has not been mentioned so far as a product of alanine radiolysis. The study demonstrates the influence of radiation and acceleration of the Maillard reaction during subsequent heating at 400 deg C up to 1000 deg C of systems containing reducing sugars and amino acids. It should be taken under consideration in the studies on introducing radiation technology of food products preservation connected with further thermal treatment

  16. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  17. Nongray radiative heat transfer analysis in the anisotropic scattering fog layer subjected to solar irradiation

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Mori, Yusuke; Sakai, Seigo

    2004-01-01

    Radiative heat transfer in the fog layer is analyzed. Direct and diffuse solar irradiation, and infrared sky flux are considered as incident radiation. Anisotropic scattering of radiation by water droplets is taken into account. Absorption and emission of radiation by water droplets and radiative gases are also considered. Furthermore, spectral dependences of radiative properties of irradiation, reflectivity, gas absorption and scattering and absorption of mist are considered. The radiation element method by ray emission model (REM 2 ) is used for the nongray radiation analysis. Net downward radiative heat flux at the sea surface and radiative equilibrium temperature distribution in the fog layer are calculated for several conditions. Transmitted solar flux decreases as liquid water content (LWC) in the fog increases. However, the value does not become zero but has the value about 60 W/m 2 . The effect of humidity and mist on radiative cooling at night is investigated. Due to high temperature and humidity condition, the radiation cooling at night is not so large even in the clear sky. Furthermore, the radiative equilibrium temperature distribution in the fog layer in the daytime is higher as LWC increases, and the inversion layer of temperature occurs

  18. Development of a space-flight ADR providing continuous cooling at 50 mK with heat rejection at 10 K

    Science.gov (United States)

    Tuttle, James; Canavan, Edgar; DeLee, Hudson; DiPirro, Michael; Jahromi, Amir; James, Bryan; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-12-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on adiabatic demagnetization refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 μT. We describe the cooling system here and report on the progress in its development.

  19. Theory of many-body radiative heat transfer without the constraint of reciprocity

    Science.gov (United States)

    Zhu, Linxiao; Guo, Yu; Fan, Shanhui

    2018-03-01

    Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.

  20. Robust non-local effects of ocean heat uptake on radiative feedback and subtropical cloud cover

    Science.gov (United States)

    Rose, B. E. J.

    2016-02-01

    Much recent work has pointed to the limitations of the global mean planetary energy budget as a useful diagnostic tool for understanding transient climate response, because the climate sensitivity (or radiative feedback) governing the relationships between ocean heat content, surface temperature and top-of-atmosphere energy imbalance depends sensitively on timescale, spatial pattern and nature of the climate forcing. Progress has been made by treating the slowly-evolving (and spatially complex) pattern of ocean heat uptake as a quasi-equilibrium forcing on the "fast" components of the climate system: the atmospheric radiative-dynamical processes that link air-sea heat exchange to the top-of-atmosphere energy budget. Differences between these feedbacks and those on CO2 radiative forcing can be expressed as an "efficacy" of ocean heat uptake. We use idealized slab ocean GCMs forced by prescribed steady energy sinks limited to specific latitude bands (representing heat exchange with the deep ocean) to quantify how (and why) the efficacy depends on the spatial pattern of ocean heat uptake. By repeating the experiment across several independent GCMs we identify robust and non-robust aspects of the response. We find that the efficacy of sub-polar heat uptake is 3 to 4 times larger than the efficacy of tropical heat uptake. Radiative kernel analysis allows an accurate partition into feedbacks due to temperature, water vapor and clouds. We find large and robust differences in clear-sky lapse rate feedbacks, associated with robust differences in large-scale atmospheric circulation and stratification driven by ocean heat uptake. A more novel and surprising result is the robustness across several independent GCMs of the differences in subtropical low cloud feedback (positive under high-latitude uptake, strongly negative under tropical uptake). We trace these robust differences to thermodynamic constraints associated with lower-tropospheric stability and boundary layer

  1. Dynamic ignition regime of condensed system by radiate heat flux

    International Nuclear Information System (INIS)

    Arkhipov, V A; Zolotorev, N N; Korotkikh, A G; Kuznetsov, V T

    2017-01-01

    The main ignition characteristics of high-energy materials are the ignition time and critical heat flux allowing evaluation of the critical conditions for ignition, fire and explosive safety for the test solid propellants. The ignition process is typically studied in stationary conditions of heat input at constant temperature of the heating surface, environment or the radiate heat flux on the sample surface. In real conditions, ignition is usually effected at variable time-dependent values of the heat flux. In this case, the heated layer is formed on the sample surface in dynamic conditions and significantly depends on the heat flux change, i.e. increasing or decreasing falling heat flux in the reaction period of the propellant sample. This paper presents a method for measuring the ignition characteristics of a high-energy material sample in initiation of the dynamic radiant heat flux, which includes the measurement of the ignition time when exposed to a sample time varying radiant heat flux given intensity. In case of pyroxyline containing 1 wt. % of soot, it is shown that the ignition times are reduced by 20–50 % depending on the initial value of the radiant flux density in initiation by increasing or decreasing radiant heat flux compared with the stationary conditions of heat supply in the same ambient conditions. (paper)

  2. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  3. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Anastaselos, Dimitrios; Theodoridou, Ifigeneia; Papadopoulos, Agis M.; Hegger, Manfred

    2011-01-01

    Based on the need to reduce CO 2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  4. Heated water and UV-C radiation to post harvest control of Cryptosporiopsis perennans on apples

    International Nuclear Information System (INIS)

    Bartnicki, Vinicius Adao; Amarante, Cassandro Vidal Talamini do; Castro, Luis Antonio Suita de; Rizzatti, Mara Regina; Souza, Joao Antonio Vargas de

    2010-01-01

    The objective of this work was to assess the colonization of Cryptosporiopsis perennans in the epidermis of apples and the efficiency of heated water and UV-C radiation application to control this pathogen. In apples inoculated with C. perennans, the colonization of lenticels and adjacent areas by the pathogen was observed by electronic scanning microscopy. The sensitivity of C. perennans conidia was evaluated in aqueous suspension, at temperatures of 28, 45, 50 and 55 deg C for 15 and 30 s, and at UV.C radiation doses of 0.018, 0.037, 0.075, 0.150, 0.375, 0.750, 1.500 and 3.000 kJ m.2. The effects of UV.C radiation doses at 0.375, 0.750 and 1.500 kJ m.2 and heated water at 50 deg C, sprayed during 15 and 30 s were evaluated for controlling C. perennans in apples inoculated with the pathogen. The fungus produced abundant mycelium and conidia in lenticels and adjacent areas on the epidermis of the apples. The heated water at 50 deg C during 15 s and a 0.750 kJ m.2 UV.C radiation dose reduced conidia survival in more than 99%. Heated water sprayed at 50 deg C during 15 s and a UV.C radiation dose of 0.375 kJ m.2 control C. perennans in apples. (author)

  5. End users heat energy savings using thermostat regulation valves radiators, v. 16(64)

    International Nuclear Information System (INIS)

    Jakimovska, Emilija Misheva; Potsev, Eftim

    2008-01-01

    Billing the used heat energy offers the opportunity to motivate end users to use the heat energy rationally and to save the energy. Installing the thermostat valves on the radiators it is possible frequently to regulate the room temperature and to use the heat gains, obtaining comfortable climate in the apartments and saving the energy. Thermostat valves give the possibility to use the heat energy rationally and save the energy, and these way and users can regulate the heat energy consumption according to their own level of thermal comfort. (Author)

  6. End users heat energy savings using thermostat regulation valves radiators, v. 16(63)

    International Nuclear Information System (INIS)

    Jakimovska, Emilija Misheva; Potsev, Eftim

    2008-01-01

    Billing the used heat energy offers the opportunity to motivate end users to use the heat energy rationally and to save the energy. Installing the thermostat valves on the radiators it is possible frequently to regulate the room temperature and to use the heat gains, obtaining comfortable climate in the apartments and saving the energy. Thermostat valves give the possibility to use the heat energy rationally and save the energy, and these way and users can regulate the heat energy consumption according to their own level of thermal comfort. (Author)

  7. Effect that radiation exerts to insulation breakdown of heat resistant polymer materials

    International Nuclear Information System (INIS)

    Fujita, Shigetaka; Baba, Makoto; Noto, Fumitoshi; Ruike, Mitsuo.

    1990-01-01

    Artificial satellites are always exposed to cosmic rays which contain the radiations which do not reach the ground, therefore, the radiation resistance of the polymer insulators for cables and others used in such environment becomes a problem. Also the polymer insulator materials used for nuclear facilities require excellent radiation resistance. It is important to examine the effect that radiation exerts to electric insulation characteristics from the viewpoint of material development. In this paper, the insulation breakdown characteristics of heat resistant polymer films and the mini-cables made for trial of heat resistant polymer materials in the case without irradiation and in the case of gamma ray irradiation, and the results of the structural analysis are reported. The specimens tested, the experimental method and the results are described. The insulation breakdown strength of PFA and FEP films lowered from 0.15-0.2 MGy, but that of PEEK film did not change up to 5 MGy. It was found that fluorine group resins were apt to deteriorate by oxidation as dose increased. (K.I.)

  8. Second law analysis of coupled conduction-radiation heat transfer with phase change

    International Nuclear Information System (INIS)

    Makhanlall, D.; Liu, L.H.

    2010-01-01

    This work considers an exergy-based analysis of two-dimensional solid-liquid phase change processes in a square cavity enclosure. The phase change material (PCM) concerns a semi-transparent absorbing, emitting and anisotropically scattering medium with constant thermodynamic properties. The enthalpy-based energy equation is solved numerically using computational fluid dynamics. Once the energy equation is solved, local exergy loss due to heat conduction and radiative heat transfer during the phase change process is calculated by post processing procedures. In this work, the radiation exergy loss in the medium and at the enclosure boundary is taken into consideration. It is found that radiation exergy loss is significant in the high-temperature phase change process. Parametric investigation is also carried out to study the effects of Stefan number, Biot number, Planck number, single scattering albedo and wall emissivity on exergy loss. The results show that the total exergy loss increases with Biot number, single scattering albedo and wall emissivity. The second law effects of the conduction-radiation coupling in the energy equation are also shown in this work. (authors)

  9. A new method for simultaneous measurement of convective and radiative heat flux in car underhood applications

    International Nuclear Information System (INIS)

    Khaled, M; Garnier, B; Peerhossaini, H; Harambat, F

    2010-01-01

    A new experimental technique is presented that allows simultaneous measurement of convective and radiative heat flux in the underhood. The goal is to devise an easily implemented and accurate experimental method for application in the vehicle underhood compartment. The new method is based on a technique for heat-flux measurement developed by the authors (Heat flow (flux) sensors for measurement of convection, conduction and radiation heat flow 27036-2, © Rhopoint Components Ltd, Hurst Green, Oxted, RH8 9AX, UK) that uses several thermocouples in the thickness of a thermal resistive layer (foil heat-flux sensor). The method proposed here uses a pair of these thermocouples with different radiative properties. Measurements validating this novel technique are carried out on a flat plate with a prescribed constant temperature in both natural- and forced-convection flow regimes. The test flat plate is instrumented by this new technique, and also with a different technique that is intrusive but very accurate, used as reference here (Bardon J P and Jarny Y 1994 Procédé et dispositif de mesure transitoire de température et flux surfacique Brevet n°94.011996, 22 February). Discrepancies between the measurements by the two techniques are less than 10% for both convective and radiative heat flux. Error identification and sensitivity analysis of the new method are also presented

  10. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Montan, D.N.

    1980-01-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation and ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation

  11. Calculations of combined radiation and convection heat transfer in rod bundles under emergency cooling conditions

    International Nuclear Information System (INIS)

    Sun, K.H.; Gonzalez-Santalo, J.M.; Tien, C.L.

    1976-01-01

    A model has been developed to calculate the heat transfer coefficients from the fuel rods to the steam-droplet mixture typical of Boiling Water Reactors under Emergency Core Cooling System (ECCS) operation conditions during a postulated loss-of-coolant accident. The model includes the heat transfer by convection to the vapor, the radiation from the surfaces to both the water droplets and the vapor, and the effects of droplet evaporation. The combined convection and radiation heat transfer coefficient can be evaluated with respect to the characteristic droplet size. Calculations of the heat transfer coefficient based on the droplet sizes obtained from the existing literature are consistent with those determined empirically from the Full-Length-Emergency-Cooling-Heat-Transfer (FLECHT) program. The present model can also be used to assess the effects of geometrical distortions (or deviations from nominal dimensions) on the heat transfer to the cooling medium in a rod bundle

  12. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    International Nuclear Information System (INIS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-01-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  13. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    Science.gov (United States)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  14. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath

    2018-05-01

    This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.

  15. Importance of thermal radiation from heat sink in cooling of three phase PWM inverter kept inside an evacuated chamber

    Directory of Open Access Journals (Sweden)

    Anjan Sarkar

    2017-04-01

    Full Text Available The paper describes a thermal analysis of a three-phase inverter operated under a Sinusoidal Pulse Width Modulation (SPWM technique which used three sine waves displaced in 120° phase difference as reference signals. The IGBT unit is assumed to be placed with a heat sink inside an evacuated chamber and the entire heat has to be transferred by conduction and radiation. The main heat sources present here are the set of IGBTs and diodes which generates heat on a pulse basing on their switching frequencies. Melcosim (a well-known tool developed by Mitsubishi Electric Corporation has been used to generate the power pulse from one set of IGBT and diode connected to a phase. A Scilab code is written to study the conduction and thermal radiation of heat sink and their combined effect on transient growth of the junction temperature of IGBT unit against complex switching pulses. The results mainly show that how thermal radiation from heat sink plays a crucial role in maintaining the junction temperature of IGBT within a threshold limit by adjusting various heat sink parameters. As the IGBT heat generation rate becomes higher, radiative heat transfer of the heat sink increases sharply which enhances overall cooling performance of the system.

  16. Assessment of Haar Wavelet-Quasilinearization Technique in Heat Convection-Radiation Equations

    Directory of Open Access Journals (Sweden)

    Umer Saeed

    2014-01-01

    Full Text Available We showed that solutions by the Haar wavelet-quasilinearization technique for the two problems, namely, (i temperature distribution equation in lumped system of combined convection-radiation in a slab made of materials with variable thermal conductivity and (ii cooling of a lumped system by combined convection and radiation are strongly reliable and also more accurate than the other numerical methods and are in good agreement with exact solution. According to the Haar wavelet-quasilinearization technique, we convert the nonlinear heat transfer equation to linear discretized equation with the help of quasilinearization technique and apply the Haar wavelet method at each iteration of quasilinearization technique to get the solution. The main aim of present work is to show the reliability of the Haar wavelet-quasilinearization technique for heat transfer equations.

  17. On the importance of radiative heat exchange during nocturnal flight in birds.

    Science.gov (United States)

    Léger, Jérôme; Larochelle, Jacques

    2006-01-01

    Many migratory flights take place during cloudless nights, thus under conditions where the sky temperature can commonly be 20 degrees C below local air temperature. The sky then acts as a radiative sink, leading objects exposed to it to have a lower surface temperature than unexposed ones because less infrared energy is received from the sky than from the surfaces that are isothermic to air. To investigate the significance of this effect for heat dissipation during nocturnal flight in birds, we built a wind tunnel with the facility to control wall temperature (TASK) and air temperature (TAIR) independently at air speeds (UWIN) comparable to flying speeds. We used it to measure the influence of TASK, TAIR and UWIN on plumage and skin temperatures in pigeons having to dissipate a thermal load while constrained at rest in a flight posture. Our results show that the temperature of the flight and insulation plumages exposed to a radiative sink can be accurately described by multiple regression models (r2>0.96) based only on TAIR, TASK and UWIN. Predictions based on these models indicate that while convection dominates heat loss for a plumage exposed to air moving at flight speed in a thermally uniform environment, radiation may dominate in the presence of a radiative sink comparable to a clear sky. Our data also indicate that reducing TASK to a temperature 20 degrees C below TAIR can increase the temperature difference across the exposed plumage by at least 13% and thus facilitate heat flow through the main thermal resistance to the loss of internally produced heat in birds. While extrapolation from our experimentally constrained conditions to free flight in the atmosphere is difficult, our results suggest that the sky temperature has been a neglected factor in determining the range of TAIR over which prolonged flight is possible.

  18. Casimir friction and near-field radiative heat transfer in graphene structures

    Energy Technology Data Exchange (ETDEWEB)

    Volokitin, A.I. [Forschungszentrum Juelich (Germany). Peter Gruenberg Inst.; Samara State Technical Univ. (Russian Federation). Physical Dept.

    2017-05-01

    The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO{sub 2} substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO{sub 2} substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO{sub 2} substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO{sub 2} substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.

  19. Casimir friction and near-field radiative heat transfer in graphene structures

    International Nuclear Information System (INIS)

    Volokitin, A.I.; Samara State Technical Univ.

    2017-01-01

    The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO 2 substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO 2 substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO 2 substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO 2 substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.

  20. A transition radiation tracker (TRT) for the Atlas experiment

    International Nuclear Information System (INIS)

    Fuchs, W.

    1995-05-01

    The LHC (Large Hadron Collider) foresees two general purpose detectors, CMS and ATLAS. The inner ATLAS detector will make use of a Transition Radiation Tracker (TRT), which consists of a barrel TRT and a forward TRT. The TRT will provide additional rejection power in order to reduce the jet background to less than 10 % of the inclusive isolated electron signal. Transition Radiation (TR) is generated by charged particles when they cross an interface of changing dielectric behaviour (radiator). The intensity of TR produced is proportional to the γ-factor (γ=E/mc 2 ). A short introduction of TR theory is followed by optimization studies of the radiator and the working gas mixture. TR is detected by gas proportional counters (straws). The electrical and mechanical characteristics of the straws were studied. Furthermore, the straw's operation at the presence of the 2 T magnetic field was investigated. Any signal corresponds to a heat load which has to be cooled in order to provide stable conditions. A cooling system is presented. The induced signal exhibits a long lasting component (ion tail). This ion tail tends to influence signals which are closely spaced in time. A filter was designed which suppresses the ion tail (pole/zero network). The physics performance of some prototypes was studied, in particular the hadron rejection and the tracking capability. A full-scale prototype (9600 channels) was designed and manufactured. A summary of the machinery and tooling involved is presented. (author)

  1. Understanding Rejection between First-and-Second-Grade Elementary Students through Reasons Expressed by Rejecters.

    Science.gov (United States)

    García Bacete, Francisco J; Carrero Planes, Virginia E; Marande Perrin, Ghislaine; Musitu Ochoa, Gonzalo

    2017-01-01

    Objective: The aim of this research was to obtain the views of young children regarding their reasons for rejecting a peer. Method: To achieve this goal, we conducted a qualitative study in the context of theory building research using an analysis methodology based on Grounded Theory. The collected information was extracted through semi-structured individual interviews from a sample of 853 children aged 6 from 13 urban public schools in Spain. Results: The children provided 3,009 rejection nominations and 2,934 reasons for disliking the rejected peers. Seven reason categories emerged from the analysis. Four categories refer to behaviors of the rejected children that have a cost for individual peers or peer group such as: direct aggression, disturbance of wellbeing, problematic social and school behaviors and dominance behaviors. A further two categories refer to the identities arising from the preferences and choices of rejected and rejecter children and their peers: personal identity expressed through preferences and disliking, and social identity expressed through outgroup prejudices. The "no-behavior or no-choice" reasons were covered by one category, unfamiliarity. In addition, three context categories were found indicating the participants (interpersonal-group), the impact (low-high), and the subjectivity (subjective-objective) of the reason. Conclusion: This study provides researchers and practitioners with a comprehensive taxonomy of reasons for rejection that contributes to enrich the theoretical knowledge and improve interventions for preventing and reducing peer rejection.

  2. Antenna-coupled terahertz radiation from joule-heated single-wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    M. Muthee

    2011-12-01

    Full Text Available In this letter an experimental method is introduced that allows detection of terahertz (THz radiation from arrays of joule-heated Single-Walled Carbon Nanotubes (SWCNTs, by coupling this radiation through integrated antennas and a silicon lens. The radiation forms a diffraction-limited beam with a total maximum radiated power of 450 nW, significantly greater than the power estimated from Nyquist thermal noise (8 nW. The physical radiation process is unknown at this stage, but possible explanations for the high radiated power are discussed briefly. The emission has a typical bandwidth of 1.2 THz and can be tuned to different frequencies by changing the dimensions of the antennas. Arrays of the devices could be integrated in CMOS integrated circuits, and find application in THz systems, such as in near-range medical imaging.

  3. Radiation and heat sensitivity of microflora in mixed spices

    International Nuclear Information System (INIS)

    Alam, M. K.; Choudhury, N.; Chowdhury, N. A.; Youssouf, Q.M.

    1994-01-01

    Spices such as coriander, cumin, turmeric, chilli collected from local market were found to be highly contaminated with bacteria and fungi. A dose of 3 kGy without heat treatment reduced the microbial load from 6 log to 3 log and from 5 log to 2 log units depending on the storage temperature whereas the same dose of radiation combined with heat treatment reduced the microbial load from 6 log to 2 log units and from 4 log to below detectable level depending on storage condition. The combination treated spices retained good organoleptic quality in comparison to that of only irradiated species with higher dose. 11 refs., 2 tables (author)

  4. Analysis of radiative heat transfer in the presence of obscurations

    International Nuclear Information System (INIS)

    Finkelstein, L.; Weissman, Y.

    1981-05-01

    Numerical simulation of radiative heat transfer problems in general axisymmetric geometry in the presence of an active gas is considered. Such simulation requires subdivision of the radiating surfaces into discrete elements, which are in the present case radiating rings. While the effect of a participating medium is easily taken into account by integration along the lines of vision between the surface elements, the calculation of the different obscurations poses the main difficulty. We have written a closed expression which formulates the problem exactly, and then developed a systematic and compact computational approach to the obscuration problem in complex configurations. The present procedure is particularly suited to computer calculations associated with engineering applications in the aircraft and furnace industries. (author)

  5. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  6. Report of research and investigation committee for infrared radiation heating technology. Sekigai hosha kanetsu gijutsu kenkyu chosa iinkai hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M. (Fukuyama Univ., Hiroshima (Japan). Faculty of Engineering)

    1994-07-01

    The committee was established in July 1990 for research and investigation of infrared (IR) heating technology and finished its activity in March 1993. This report describes the committee members and the results of research and investigation. (1) Application of IR radiation (sensing): the research and investigation results were reported on the following items; the recognition of letters and patterns on cultural properties by IR radiation, the passive sensor (detecting the IR radiated from the object without emitting from the sensor), the IR image system, and the diagnosis of outer wail of buildings. (2) The following were researched on the IR radiation source and IR emitting material; multi-functional heating element having far infrared radiation function and deodorant function, the emissivity of far IR radiation, and the evaluation of the functions by the difference in emissivity. (3) The IR heating technology was described on the following: drying the persimmon using far IR radiation, the present situation of research on IR heating done by foreign power supply companies, and the feature and the application of far IR heater. In addition to these, the following were also reported; (4) measurement of IR radiation and (5) effect of living body and organism.

  7. Steady state ensembles of thermal radiation in a layered media with a constant heat flux

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Bogy, David B.

    2013-01-01

    This paper describes steady-state ensembles of thermally excited electromagnetic radiation in nano-scale layered media with a constant non-vanishing heat flux across the layers. It is shown that Planck's law of thermal radiation, the principle of equivalence, and the laws of wave propagation in layered media, imply that in order for the ensemble of thermally excited electromagnetic fields to exist in a medium consisting of a stack of layers between two half-space, the net heat flux across the layers must exceed a certain threshold that is determined by the temperatures of the half spaces and by the reflective properties of the entire structure. The obtained results provide a way for estimating the radiative heat transfer coefficient of nano-scale layered structures. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  9. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  10. Binary blend of carbon dioxide and fluoro ethane as working fluid in transcritical heat pump systems

    Directory of Open Access Journals (Sweden)

    Zhang Xian-Ping

    2015-01-01

    Full Text Available As an eco-friendly working fluid, carbon dioxide or R744 is expected to substitute for the existing working fluids used in heat pump systems. It is, however, challenged by the much higher heat rejection pressure in transcritical cycle compared with the traditional subcritical cycle using freons. There exists a worldwide tendency to utilize blend refrigerants as alternatives. Therefore, a new binary blend R744/R161 in this research is proposed in order to decrease the heat rejection pressure. Meanwhile, on mixing R744 with R161, the flammability and explosivity of R161 can be suppressed because of the extinguishing effect of R744. A transcritical thermodynamic model is developed, and then the system performances of heat pump using R744/R161 blend are investigated and compared with those of pure R744 system under the same operation conditions. The variations of heat rejection pressure, heating coefficient of performance, unit volumetric heating capacity, discharge temperature of compressor and the mass fraction of R744/R161 are researched. The results show that R744/R161 mixture can reduce the heat rejection pressure of transcritical heat pump system.

  11. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Science.gov (United States)

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-01-01

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601

  12. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Directory of Open Access Journals (Sweden)

    Marijn Billiet

    2015-10-01

    Full Text Available Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  13. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.; Armeli, Y. P. [Department of Chemical Engineering, University of Diponegoro Prof. Soedarto, Tembalang, Semarang, 50239, Phone/Fax : (024) 7460058 (Indonesia)

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  14. Cryogenic germanium detectors for dark matter search: Surface events rejection by charge measurements

    International Nuclear Information System (INIS)

    Broniatowski, A.; Censier, B.; Juillard, A.; Berge, L.

    2006-01-01

    Test experiments have been performed on a Ge detector of the Edelweiss collaboration, combining time-resolved acquisition of the ionization signals with heat measurements. Pulse-shape analysis of the charge signals demonstrates the capability to reject surface events of poor charge collection with energies larger than 50 keV in ionization

  15. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    Science.gov (United States)

    Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.

    2012-09-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  16. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    International Nuclear Information System (INIS)

    Zhang, L.; Zhao, J.M.; Liu, L.H.; Wang, S.Y.

    2012-01-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  17. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  18. ‘Healthy’ identities? : Revisiting rejection-identification and rejection-disidentification models among voluntary and forced immigrants

    NARCIS (Netherlands)

    Bobowik, Magdalena; Martinovic, Borja; Basabe, Nekane; Barsties, Lisa S.; Wachter, Gusta

    2017-01-01

    Rejection-identification and rejection-disidentification models propose that low-status groups identify with their in-group and disidentify with a high-status out-group in response to rejection by the latter. Our research tests these two models simultaneously among multiple groups of foreign-born

  19. Hazards of X-ray diagnosis: Between rejection and exaggeration

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    The exaggeration and rejection of radiological protection has become a problem during the last decade. This has given rise to controversies which have occupied the scientific world and the public (eg. nuclear energy, low-dose debates, disputes over mammography). The observed deviations from interrationally accepted standard values overstep the domain of constructive and critical furtherance of the state of scientific knowledge. Extreme views are commonly represented by a biased choice of references, one-sided interpretation of available data or clearly false argumentation. Rejection and exaggeration are frequently practised by groups of people whose aims are non-scientific. The giudelines of leading international organisations (eg. UNSCEAR and ICRP) represent a consensus of opinion of numerous nations with extensive radiation research programmes but with entirely different social systems. For this reason it is likely that this consensus reflects most plausibly the assumptions of the present time. (orig.) [de

  20. The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames

    Science.gov (United States)

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington

    2012-01-01

    Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...

  1. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating

    Science.gov (United States)

    Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.

    2017-10-01

    We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.

  2. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  3. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  4. Effect of heat and ionizing radiation on normal and neoplastic tissue of the C3H mouse

    International Nuclear Information System (INIS)

    Thrall, D.E.; Gillette, E.L.; Dewey, W.C.

    1975-01-01

    The radiation response of the skin of the C3H mouse was evaluated in terms of the dose of radiation required to produce moist desquamation completely surrounding the lower aspect of the hind leg by 21 days following irradiation (DD50-21). Irradiation of the leg under various conditions of local tissue oxygenation indicated that when the animals were breathing air (ambient conditions), the cells in the skin were not fully oxygenated. Heat was administered by immersing the leg for 15 min in 44.5 0 C water either immediately prior to or immediately following irradiation under various conditions of local tissue oxygenation. Heat administered following irradiation reduced the DD50-21 values by 724 rad for hyperbaric O 2 , 1210 rad for ambient, and 1656 rad for hypoxic conditions. Approximately these same rad equivalents were observed when heat was administered prior to irradiation, under hyperbaric O 2 and hypoxic conditions. However, administration of heat prior to irradiation under ambient conditions sensitized the cells to the effects of ionizing radiation. This sensitization was assumed to result from heat causing an increase in local tissue oxygenation prior to and at the time of irradiation. The effect of the heat dose administered under acute hypoxic conditions immediately prior to acute hypoxic irradiation was not significantly different from the protocol where heat was administered under ambient conditions immediately prior to acute hypoxic irradiation. This indicates an independence of the magnitude of the heat effect on the tissue oxygenation status at the time of heating. The response of the C3H mouse mammary adenocarcinoma to combined wet heat (Δ) and x radiation (X) administered under either hypoxic, ambient, or hyperbaric O 2 conditions of local tissue oxygenation was studied. (U.S.)

  5. Optimization of the energy resolution and of the radioactive background rejection for ionization-heat detectors equipped with thermometric thin films for the direct WIMPs detection

    International Nuclear Information System (INIS)

    Dolgorouky, Y.W.

    2008-09-01

    The EDELWEISS experiment aims at the direct detection of WIMPs as possible candidates for dark matter. It uses heat-and-ionization detectors that can discriminate these particles from the radioactive background. To date, this method is limited by events with incomplete charge collection that occur just beneath the detectors electrodes. In order to identify and reject these undesirable events, we have developed detectors equipped with thin films used both as thermometers - and hence sensitive to the transient athermal regime - and as electrodes for the charge collection. This thesis focuses on the optimization of such thin films regarding surface events rejection and on the modelling of the physical processes enabling this identification. The optimization must both maximize the fiducial volume and conserve an energy resolution such that the recoil energy threshold is of the order of 30 keV. Our work explores four generations of detectors each of which corresponds to successive evolutions in their conception. In all cases, the electrode-thermometer is an amorphous Anderson insulator NbSi thin film polarized by two interleaved comb-shaped niobium electrodes. In spite of constant progress in the successive detectors performances, the latest generation does not display the performances required for the EDELWEISS II experiment. Our work has shown the difficulty of the transient thermal signal modelling due to the complex contribution of the charge collection. This works has lead to new ideas regarding the detectors configuration, so that the athermal regime can be optimized to enhance both the rejection capability and the resolution. (author)

  6. Feasibility of Jujube peeling using novel infrared radiation heating technology

    Science.gov (United States)

    Infrared (IR) radiation heating has a promising potential to be used as a sustainable and effective method to eliminate the use of water and chemicals in the jujube-peeling process and enhance the quality of peeled products. The objective of this study was to investigate the feasibility of use IR he...

  7. Application of solar radiation for heating and preparation of warm water in an individual house

    International Nuclear Information System (INIS)

    Kozak, Tadeeusz; Majchrzycka, Anna

    2009-01-01

    The paper is aimed at analysis of application of the solar collectors array for preparing of warm water and space heating in an individual house. Keywords: application of solar radiation, preparation of warm water, heating

  8. Thermal radiosensitization in heat- and radiation-sensitive mutants of CHO cells

    International Nuclear Information System (INIS)

    Kampinga, H.H.; Kanon, B.; Konings, A.W.T.; Stackhouse, M.A.; Bedford, J.S.

    1993-01-01

    In the current study, the extent of hyperthermic radiosensitization in a new γ-radiation-sensitive cell line, irs-20, recently isolated by Stackhouse and Bedford (1991) and a heat-sensitive mutant hs-36 (Harvey and Bedford 1988) was compared with the radiosensitization of their mutual parent CHO 10B12 cell line. The irs-20 and CHO 10B12 cells have comparable heat (43.5 o C) sensitivities, whereas hs-36 and CHO 10B12 show a similar sensitivity to γ- and X-rays. Radiosensitization due to pre-exposure to 43.5 o C heating of plateau phase cultures was found for all three cell lines, even after relatively mild heat treatment killing <20% of cells. Experiments using CHEF electrophoresis confirmed the dsb repair deficiency of the irs-20 cells (Stackhouse and Bedford 1992) and showed that heat inhibited dsb repair in all three cell lines. (Author)

  9. EFFECT OF A RADIATION COOLING AND HEATING FUNCTION ON STANDING LONGITUDINAL OSCILLATIONS IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J., E-mail: sanjaykumar@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2016-06-10

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  10. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    Science.gov (United States)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  11. Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film

    International Nuclear Information System (INIS)

    Wong, Basil T.; Francoeur, Mathieu; Bong, Victor N.-S.; Mengüç, M. Pinar

    2014-01-01

    Near-field thermal radiative exchange between two objects is typically more effective than the far-field thermal radiative exchange as the heat flux can increase up to several orders higher in magnitudes due to tunneling of evanescent waves. Such an interesting phenomenon has started to gain its popularity in nanotechnology, especially in nano-gap thermophotovoltaic systems and near-field radiative cooling of micro-/nano-devices. Here, we explored the existence of thermal gradient within an n-doped silicon thin film when it is subjected to intensive near-field thermal radiative heating. The near-field radiative power density deposited within the film is calculated using the Maxwell equations combined with fluctuational electrodynamics. A phonon Monte Carlo simulation is then used to assess the temperature gradient by treating the near-field radiative power density as the heat source. Results indicated that it is improbable to have temperature gradient with the near-field radiative heating as a continuous source unless the source comprises of ultra-short radiative pulses with a strong power density. - Highlights: • This study investigates temperature distribution in an n-doped silicon thin film. • Near-field radiative heating is treated as a volumetric phenomenon. • The temperature gradient is computed using phonon MC simulation. • Temperature of thin film can be approximated as uniform for radiation calculations. • If heat source is a pulsed radiation, a temperature gradient can be established

  12. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    International Nuclear Information System (INIS)

    Detwiler, R.S.; Pfund, D.M.; Myjak, M.J.; Kulisek, J.A.; Seifert, C.E.

    2015-01-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land–water interfaces

  13. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  14. Thermal radiation influence on MHD flow of a rotating fluid with heat transfer through EFGM solutions

    Science.gov (United States)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.

  15. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    International Nuclear Information System (INIS)

    Pilyugin, N.N.; Chernova, T.A.

    1986-01-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted

  16. Active control of near-field radiative heat transfer between graphene-covered metamaterials

    Science.gov (United States)

    Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua

    2017-04-01

    In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.

  17. Active control of near-field radiative heat transfer between graphene-covered metamaterials

    International Nuclear Information System (INIS)

    Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua

    2017-01-01

    In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer. (paper)

  18. Influences of deforestation on radiation and heat balances in tropical peat swamp forest in Thailand

    International Nuclear Information System (INIS)

    Suzuki, S.; Ishida, T.; Nagano, T.; Matsukawa, S.

    1997-01-01

    The difference of radiation and heat balances between a natural peat swamp forest and a deforested secondary forest has been investigated in Narathiwat Province, Thailand. Micrometeorological measurements were conducted continuously on observation towers 38 m and 4 m in heights in the primary forest and the secondary forest respectively. Results show that the deforestation of peat swamp forest leads to an increase in the sensible heat flux in the secondary forest. The yearly average ratio of the sensible heat flux to the net radiation was 20.9% in the peat swamp forest, and 33.2% in the secondary forest from Aug. 1995 to Jul. 1996. A ratio more than 40% was observed only in the dry season in the secondary forest. The change in sensible heat flux seemed to be influenced by the change in ground water levels. (author)

  19. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    Science.gov (United States)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  20. Effects on heat transfer of multiphase magnetic fluid due to circular magnetic field over a stretching surface with heat source/sink and thermal radiation

    Directory of Open Access Journals (Sweden)

    A. Zeeshan

    Full Text Available The purpose of the current article is to explore the boundary layer heat transport flow of multiphase magnetic fluid with solid impurities suspended homogeneously past a stretching sheet under the impact of circular magnetic field. Thermal radiation effects are also taken in account. The equations describing the flow of dust particles in fluid along with point dipole are modelled by employing conservation laws of mass, momentum and energy, which are then converted into non-linear coupled differential equations by mean of similarity approach. The transformed ODE’s are tackled numerically with the help of efficient Runga-Kutta method. The influence of ferromagnetic interaction parameter, viscous dissipation, fluid-particle interaction parameter, Eckert number, Prandtl number, thermal radiation parameter and number of dust particles, heat production or absorption parameter with the two thermal process namely, prescribed heat flux (PHF or prescribed surface temperature (PST are observed on temperature and velocity profiles. The value of skin-friction coefficient and Nusselt number are calculated for numerous physical parameters. Present results are correlated with available for a limited case and an excellent agreement is found. Keywords: Ferromagnetic interaction parameter, Dusty magnetic fluid, stretching sheet, Magnetic dipole, Heat source/sink, Thermal radiation

  1. Radiative heat transfer analysis in pure water heater used for semiconductor processing

    International Nuclear Information System (INIS)

    Liu, L.H.; Kudo, K.; Mochida, A.; Ogawa, T.; Kadotani, K.

    2004-01-01

    A simplified one-dimensional model is presented to analyze the non-gray radiative transfer in pure water heater used in the rinsing processes within semiconductor production lines, and the ray-tracing method is extended to simulate the radiative heat transfer. To examine the accuracy of the simplified model, the distribution of radiation absorption is determined by the ray-tracing method based the simplified model and compared with the data obtained by three-dimensional non-gray model in combination with Monte Carlo method in reference, and the effects of the water thickness on the radiation absorption are analyzed. The results show that the simplified model has a good accuracy in solving the radiation absorption in the pure water heater. The radiation absorption increases with the water thickness, but when the water thickness is greater than 50 mm, the radiation absorption increases very slowly with the water thickness

  2. Influence of heat and radiation on the germinability and viability of B. cereus BIS-59 spores

    International Nuclear Information System (INIS)

    Kamat, A.S.; Lewis, N.F.

    1983-01-01

    Spores of Bicillus cereus BIS-59, isolated in this laboratory from shrimps, exhibited an exponential gamma radiation survival curve with a d 10 value of 400 krad as compared with a D 10 value of 30 krad for the vegetative cells. The D 10 value of DPA-depleted spores was also 400 krad indicating that DPA does not influence the radiation response of these spores. Maximum germination monitored with irradiated spores was 60 percent as compared with 80 percent in case of unirradiated spores. Radiation-induced inhibition of the germination processes was not dose dependent. Heat treatment (15 min at 80 C) to spores resulted in activation of the germination process; however, increase in heating time (30 min and 60 min) increased the germination lag period. DPA-depleted spores were less heat resistant than normal spores and exhibited biphasic exponential inactivation. (author)

  3. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    Science.gov (United States)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral

  4. Electricity eliminates rust from district heat pipes. The new deoxidation method works on radiators

    Energy Technology Data Exchange (ETDEWEB)

    Sonninen, R.; Leisio, C.

    1996-11-01

    Oxygen dissolving in district heating water through district heat pipes and pipe joints made of plastic corrodes many small and medium-size district heating systems, resulting in heat cuts in the buildings connected to these systems. IN some cases, corrosion products have even circulated back to district heating power plants, thus hampering heat generation in the worst of cases. People residing in blocks of flats where some radiator components are made of plastic also face a similar problem, though on a smaller scale. A small and efficient electrochemical deoxidation cell has now been invented to eliminate this nuisance, which occurs particularly in cold winter weather. (orig.)

  5. Experimental and numerical investigation of thermal radiator performances as a source of heat energy in design of dryer simulation

    Science.gov (United States)

    Wiryanta, I. K. E. H.; Adiaksa, I. M. A.

    2018-01-01

    The purposes of this research was to investigate the temperature performance of tube and fins car radiator experimentally and numerically. The experiment research was carried out on a simulation design consists of a reservoir water tank, a heater, pump to circulate hot water to the radiator and a cooling fan. The hot water mass flow rate is 0.486 kg/s, and the cooling air velocity of the fan is 1 m/s. The heat transfer rate and the effectiveness of radiator were investigated. The results showed that the exhaust heat transfer rate from the radiator tended to increase over time, with an average heat transfer rate of 3974.3 Watt. The maximum heat transfer rate was 4680 Watt obtained at 6 minutes. The effectiveness of the radiator (ε) over time tends to increase with an average of ε = 0.3 and the maximum effectiveness value was obtained at 12 minutes i.e. 0.35. The numerical research conducted using CFD method. The geometry and meshing created using ANSYS Workbench and the post processing using Fluent. The simulation result showed the similarity with the experimental research. The temperatures of air-side radiator are about 45°C.

  6. Radiation and Heat Stress Impact on Plasma Levels of Thyroid Hormones, Lipid Fractions, Glucose and Liver Glycogen in rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.

    2003-01-01

    Since Egypt is classified as a hot country, the present work has been directed to study the combined effect of heat stress and gamma radiation exposure on blood thyroid hormonal levels and some other parameters. Four groups of rats were served as: control, whole-body gamma irradiated (6Gy), exposed to ambient heat stress (38 C-40 C) and a group exposed to heat stress and irradiation. Four time intervals 1, 3, 5 and 7 days were determined for heat stress or exposure to heat followed by irradiation. Blood samples and liver specimens were taken at the end of each time interval in the third group and after one hour of irradiation in the second and fourth groups. To detect the radiation effects after the different periods of heat stress, plasma levels of thyroid hormones (T3 and T4), lipid fractions (triglycerides, total cholesterol, HDL- and LDL-cholesterol), glucose and liver glycogen content were determined. The results revealed that exposure to heat and ionizing radiation leads to a decrease in the levels of thyroid hormones, which was mostly pronounced in the T3 levels. Plasma glucose levels showed significant elevations in both, the heat-stressed group and the heat-treated then irradiated group. While, liver glycogen content exhibited similar elevations only during the 1st, 3 rd and 5 th days of heating followed by irradiation treatment as compared to the heat stressed group. Yet, it showed significant declines in comparison with both control and irradiated groups. Enormous increments in all determined plasma lipid fractions were induced by heat stress and / or gamma radiation

  7. Experimental studies on radiation heat transfer enhancement on a standard muffle furnace

    Directory of Open Access Journals (Sweden)

    Minea Alina Adriana

    2013-01-01

    Full Text Available One of the sources of increased industrial energy consumption is the heating equipment, e.g., furnaces. Their domain of use is very wide and due to its abundance of applications it is key equipment in modern civilization. The present experimental investigations are related to reducing energy consumptions and started from the geometry of a classic manufactured furnace. During this experimental study, different cases have been carefully chosen in order to compare and measure the effects of applying different enhancement methods of the radiation heat transfer processes. The main objective work was to evaluate the behavior of a heated enclosure, when different radiant panels were introduced. The experimental investigation showed that their efficiency was influenced by their position inside the heating area. In conclusion, changing the inner geometry by introducing radiant panels inside the heated chamber leads to important time savings in the heating process.

  8. Framing the performance of heat absorption/generation and thermal radiation in chemically reactive Darcy-Forchheimer flow

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present work aims to report the consequences of heterogeneous-homogeneous reactions in Darcy-Forchheimer flow of Casson material bounded by a nonlinear stretching sheet of variable thickness. Nonlinear stretched surface with variable thickness is the main agent for MHD Darcy-Forchheimer flow. Impact of thermal radiation and non-uniform heat absorption/generation are also considered. Flow in porous space is characterized by Darcy-Forchheimer flow. It is assumed that the homogeneous process in ambient fluid is governed by first order kinetics and the heterogeneous process on the wall surface is given by isothermal cubic autocatalator kinetics. The governing nonlinear ordinary differential equations are solved numerically. Effects of physical variables such as thickness, Hartman number, inertia and porous, radiation, Casson, heat absorption/generation and homogeneous-heterogeneous reactions are investigated. The variations of drag force (skin friction and heat transfer rate (Nusselt numberfor different interesting variables are plotted and discussed. Keywords: Casson fluid, Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Heat generation/absorption, Thermal radiation

  9. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Piñeiro, Carolina; Alberto Dopazo, J.; Fernandes, F.; Sousa, Paulo X.B.

    2012-01-01

    Highlights: ► We analyze a direct expansion solar assisted heat pump under zero solar radiation. ► We determine the COP and equivalent seasonal performance factors (SPFe). ► We determine the main components’ performance under transient operating conditions. ► The Huang and Lee performance evaluation method provides a characteristic COP of 3.23. - Abstract: This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a R134a rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

  10. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  11. Heat and nuclear radiation as risk factors for male infertility: results of a French case-control study

    International Nuclear Information System (INIS)

    Thonneau, P.F.; Rachou, E.; Ducot, B.; Multigner, L.; Velez de la Calle, J.P.; Le Martelot, M.T.

    1998-01-01

    Very few studies have investigated the possible effects of environmental radiation and heat exposure on male reproductive function. We conducted a case control study to evaluate the various infertility risk factors in the military population of the french town of Brest to investigate an apparently high incidence of infertility in couples in which the man may have been exposed to occupational nuclear radiation. These findings suggest that in addition to well known medical factors, 'potential' exposure to heat or nuclear radiation could also be risk factors for infertility. (N.C.)

  12. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, M. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ebrahimi, R. [Faculty of Aerospace Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shams, M., E-mail: shams@kntu.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis St., Molla-Sadra Ave, Vanak. Sq., P.O. Box: 19395-1999, Tehran (Iran, Islamic Republic of)

    2011-06-13

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  13. Investigations of Heat Recovery in Different Refrigeration System Solutions in Supermarkets. Effsys2 project final report

    Energy Technology Data Exchange (ETDEWEB)

    Sawalha, Same; Chen, Yang

    2010-07-01

    Supermarkets are intensive energy consumers with constantly increasing number of installations. About 50 % of the energy consumption in the supermarket is absorbed by the refrigeration system to cover the cooling demands. Simultaneously, heating is needed in the supermarket where the rejected heat from the refrigeration system is usually higher than the needs. It is an interesting possibility to utilize the rejected heat from the refrigeration system to cover the heating needs in supermarkets. The objective of this project is to investigate the heat recovery performance of the new refrigeration system solutions in supermarket applications. The focus is on environmentally friendly systems with natural working fluids, mainly CO{sub 2} trans-critical systems. The project analyzes the temperature levels and capacities of rejected heat from different system solutions and investigates its matching with the heating needs in supermarkets. Using simulation tools this project also aims at defining the system solution/s which has good energy efficiency for simultaneous cooling and heat recovery.

  14. Heat-flow patterns in Tian-Calvet microcalorimeters: Conductive, convective, and radiative transport in gas dosing experiments

    International Nuclear Information System (INIS)

    Vilchiz, Luis Enrique; Pacheco-Vega, Arturo; Handy, Brent E.

    2005-01-01

    Mathematical models of a Tian-Calvet microcalorimeter were solved numerically by the finite-element method in an effort to understand the relative importance of the three basic heat transfer mechanisms operative during gas dosing experiments typically used to determine heats of adsorption on catalysts and adsorbents. The analysis pays particular attention to the quantitative release of heat through various elements of the cell and sensor cups to assess time delays and the deg.ree of thermal shunting that may result in inaccuracies in calorimetric measurements. Conductive transfer predominates in situations where there is high gas headspace pressure. The convection currents that arise when dosing with considerable gas pressure in the cell headspace region are not sufficiently strong to shunt significant amounts of sample heat away from being sensed by the surrounding thermopiles. Therefore, the heat capture fraction (heat sensed/heat produced) does not vary significantly with gas headspace pressure. During gas dosing under very low gas headspace pressure, radiation losses from the top of the sample bed may significantly affect the heat capture fraction, leading to underestimations of adsorption heats, unless the heat radiated from the top of the catalyst bed is effectively reflected back to the sample region or absorbed by an inert packing layer also in thermal contact with the thermopile wall

  15. Radionuclide diagnosis of allograft rejection

    International Nuclear Information System (INIS)

    George, E.A.

    1982-01-01

    Interaction with one or more anatomical and physiopathological characteristics of the rejecting renal allograft is suggested by those radioagents utilized specifically for the diagnosis of allograft rejection. Rejection, the most common cause of declining allograft function, is frequently mimicked clinically or masked by other immediate or long term post transplant complications. Understanding of the anatomical pathological features and kinetics of rejection and their modification by immunosuppressive maintenance and therapy are important for the proper clinical utilization of these radioagents. Furthermore, in selecting these radionuclides, one has to consider the comparative availability, preparatory and procedural simplicity, acquisition and display techniques and the possibility of timely report. The clinical utilities of radiofibrinogen, /sup 99m/Tc sulfur colloid and 67 Ga in the diagnosis of allograft rejection have been evaluated to a variable extent in the past. The potential usefulness of the recently developed preparations of 111 In labeled autologous leukocytes and platelets are presently under investigation

  16. Optimization of the Mu2e Production Solenoid Heat and Radiation Shield

    Science.gov (United States)

    Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.

    2014-03-01

    The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.

  17. Design and calculation of low infrared transmittance and low emissivity coatings for heat radiative applications

    Science.gov (United States)

    Wang, Guang-Hai; Zhang, Yue; Zhang, Da-Hai; Fan, Jin-Peng

    2012-02-01

    The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low transmittance and low emissivity coatings to reduce the heat transfer by thermal radiation for high-temperature applications. In the case of silica coating layers constituted with various structural titania particles (solid, hollow, and core-shell spherical), the dependence of transmittance and emissivity of the coating layer on the particle structure and the layer thickness was investigated and optimized. The results indicate that the coating pigmented with core-shell titania particles exhibits a lower infrared transmittance and a lower emissivity value than that with other structural particles and is suitable to radiative heat-insulating applications.

  18. Verification of radiation heat transfer analysis in KSTAR PFC and vacuum vessel during baking

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.Y. [Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 34167 (Korea, Republic of); Kim, Y.J., E-mail: k43689@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahang-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of); Kim, S.T.; Jung, N.Y.; Im, D.S.; Gong, J.D.; Lee, J.M.; Park, K.R.; Oh, Y.K. [National Fusion Research Institute, 169-148 Gwahang-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2016-11-01

    Highlights: • Thermal network is used to analyze heat transfer from PFC to VV. • Three heat transfer rate equations are derived based on the thermal network. • The equations is verified using Experimental data and design documents. • Most of the heat lost in tokamak is transferred to experimental room air. • The heat loss to the air is 101 kW of the total heat loss of 154 kW in tokamak. - Abstract: KSTAR PFC (Plasma Facing Component) and VV (Vacuum Vessel) were not arrived at the target temperatures in bake-out phase, which are 300 °C and 110 °C, respectively. The purpose of this study is to find out the reason why they have not been reached the target temperature. A thermal network analysis is used to investigate the radiation heat transfer from PFC to VV, and the thermal network is drawn up based on the actual KSTAR tokamak. The analysis model consists of three equations, and is solved using the EES (Engineering Equation Solver). The heat transfer rates obtained with the analysis model is verified using the experimental data at the KSTAR bake-out phase. The analyzed radiation heat transfer rates from PFC to VV agree quite well with those of experiment throughout the bake-out phase. Heat loss from PFC to experimental room air via flange of VV is also calculated and compared, which is found be the main reason of temperature gap between the target temperature and actually attained temperature of KSTAR PFC.

  19. Verification of radiation heat transfer analysis in KSTAR PFC and vacuum vessel during baking

    International Nuclear Information System (INIS)

    Yoo, S.Y.; Kim, Y.J.; Kim, S.T.; Jung, N.Y.; Im, D.S.; Gong, J.D.; Lee, J.M.; Park, K.R.; Oh, Y.K.

    2016-01-01

    Highlights: • Thermal network is used to analyze heat transfer from PFC to VV. • Three heat transfer rate equations are derived based on the thermal network. • The equations is verified using Experimental data and design documents. • Most of the heat lost in tokamak is transferred to experimental room air. • The heat loss to the air is 101 kW of the total heat loss of 154 kW in tokamak. - Abstract: KSTAR PFC (Plasma Facing Component) and VV (Vacuum Vessel) were not arrived at the target temperatures in bake-out phase, which are 300 °C and 110 °C, respectively. The purpose of this study is to find out the reason why they have not been reached the target temperature. A thermal network analysis is used to investigate the radiation heat transfer from PFC to VV, and the thermal network is drawn up based on the actual KSTAR tokamak. The analysis model consists of three equations, and is solved using the EES (Engineering Equation Solver). The heat transfer rates obtained with the analysis model is verified using the experimental data at the KSTAR bake-out phase. The analyzed radiation heat transfer rates from PFC to VV agree quite well with those of experiment throughout the bake-out phase. Heat loss from PFC to experimental room air via flange of VV is also calculated and compared, which is found be the main reason of temperature gap between the target temperature and actually attained temperature of KSTAR PFC.

  20. Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition

    Science.gov (United States)

    Khan, M.; Irfan, M.; Khan, W. A.

    2018-06-01

    Nanofluids retain noteworthy structure that have absorbed attentions of numerous investigators because of their exploration in nanotechnology and nanoscience. In this scrutiny a mathematical computation of 2D flows of Maxwell nanoliquid influenced by a stretched cylinder has been established. The heat transfer structure is conceded out in the manifestation of thermal radiation and heat source/sink. Moreover, the nanoparticles mass flux condition is engaged in this exploration. This newly endorsed tactic is more realistic where the conjecture is made that the nanoparticle flux is zero and nanoparticle fraction regulates itself on the restrictions consequently. By utilizing apposite conversion the governing PDEs are transformed into ODEs and then tackled analytically via HAM. The attained outcomes are plotted and deliberated in aspect for somatic parameters. It is remarked that with an intensification in the Deborah number β diminish the liquid temperature while it boosts for radiation parameter Rd . Furthermore, the concentration of Maxwell liquid has conflicting impact for Brownian motion Nb and thermophoresis parameters Nt .

  1. Modeling of quench front progression and heat transfer by radiation during reflooding of a tubular test section

    International Nuclear Information System (INIS)

    Clement, P.; Deruaz, R.

    1976-01-01

    Heat transfer modeling is presented in the scope of emergency core cooling. The rewetting of a hot dry wall during reflooding is a conduction-controlled phenomenon described by a model of heat-transfer coefficient. Upstream of the quench front, a two-dimensional approach involving both axial and transverse (or radial) heat conduction is discussed in view of thick walls, high quench front velocities and nucleate boiling. Downstream of the quench-front, high wall temperatures are reached so that a thermal radiation model is required to separate the different mechanisms of heat transfer. An attempt is made to consider radiation between walls, water droplets and vapor, with scattering emission and absorption of the two phases

  2. Preemptive scheduling with rejection

    NARCIS (Netherlands)

    Hoogeveen, H.; Skutella, M.; Woeginger, Gerhard

    2003-01-01

    We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-dependent penalties for each rejected job, and he must construct a schedule for the remaining

  3. Preemptive scheduling with rejection

    NARCIS (Netherlands)

    Hoogeveen, J.A.; Skutella, M.; Woeginger, G.J.; Paterson, M.

    2000-01-01

    We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-dependent penalties for each rejected job, and he must construct a schedule for the remaining

  4. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  5. Safety verification of radiation shielding and heat transfer for a model for dry

    International Nuclear Information System (INIS)

    Yu, Haiyan; Tang, Xiaobin; Wang, Peng; Chen, Feida; Chai, Hao; Chen, Da

    2015-01-01

    Highlights: • New type of dry spent fuel storage was designed. • MC method and FEM were used to verify the reliability of new storage. • Radiation shield and heat transfer both meet IAEA standards: 2 mSv/h, 0.1 mSv/h and 190 °C, 85 °C. • Provided possibilities for future implementation of this type of dry storage. - Abstract: The goal of this research is to develop a type of dry spent fuel storage called CHN-24 container, which could contain an equivalent load of 45 GWD/MTU of spent fuel after 10 years cooling. Basically, radiation shielding performance and safe removal of decay heat, which play important roles in the safety performance, were checked and validated using the Monte Carlo method and finite element analysis to establish the radiation dose rate calculation model and three-dimensional heat transfer model for the CHN-24 container. The dose rates at the surface of the container and at a distance of 1 m from the surface were 0.42 mSv/h and 0.06 mSv/h, respectively. These conform to the International Atomic Energy Agency (IAEA) radioactive material transportation safety standards 2 mSv/h and 0.1 mSv/h. The results shows that the CHN-24 container maintains its structural and material integrity under the condition of normal thermal steady-state heat transfer as well as in case of extreme fire as evinced by transient-state analysis. The temperature inside and on the surface of the container were 150.91 °C and 80 °C under normal storage conditions, which indicated that the design also conform to IAEA heat transfer safety standards of 190 °C and 85 °C

  6. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method

    International Nuclear Information System (INIS)

    Mishra, Subhash C.; Roy, Hillol K.

    2007-01-01

    The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable

  7. Investigation of transient conduction–radiation heat transfer in a ...

    Indian Academy of Sciences (India)

    Mohammad Mehdi Keshtkar

    2018-04-17

    Apr 17, 2018 ... For absorbing, emitting and anisotropically scattering medium, the radiative heat transfer in any discrete direction s_m with direction index m is given as. dIm dsm. ¼ s_m. :rImрr; s_m. ЮјАbIm ю Sm. р16Ю .... thermore, V is the volume of the cell defined as dx В dy and. Im p and Sm p are the intensities and ...

  8. Radiative Heat Transfer with Nanowire/Nanohole Metamaterials for Thermal Energy Harvesting Applications

    Science.gov (United States)

    Chang, Jui-Yung

    Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck's blackbody limit has also become a hot topic in the field. This PhD dissertation aims to obtain a deep fundamental understanding of nanowire/nanohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire/nanohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat

  9. The development of harmonic rejection mirror on XAFS beamline at SSRF

    International Nuclear Information System (INIS)

    Fu Yuan; Xue Song; Wei Xiangjun; Jiang Zheng; Gu Songqi; Chen Ming; Huang Yuying; Yu Xiaohan

    2009-01-01

    This article discusses the development of harmonic rejection mirror (HRM) on the XAFS beamline at Shanghai Synchrotron Radiation Facility (SSRF). The HRM can apply pure spectrum for XAFS experiment. The HRM mechanism includes mirror holding system, horizontal switch system and three-points adjustment system. We make analysis and calculation in mechanism design. At last we evaluate the HRM capability based on the rocking curve got in test. (authors)

  10. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model

    International Nuclear Information System (INIS)

    Sheikholeslami, Mohsen; Domiri Ganji, Davood; Younus Javed, M.; Ellahi, R.

    2015-01-01

    In this study, effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied. The significant effects of Brownian motion and thermophoresis have been included in the model of nanofluid. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer are reduced to a set of ordinary differential equations. These equations, subjected to the associated boundary conditions are solved numerically using the fourth-order Runge–Kutta method. The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number, thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. Results show that Nusselt number has direct relationship with radiation parameter and Reynolds number while it has reverse relationship with other active parameters. It can also be found that concentration boundary layer thickness decreases with the increase of radiation parameter. - Highlights: • This paper analyses thermal radiation on magnetohydrodynamic nanofluid. • Fourth-order Runge–Kutta method is used. • The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. • Comparison is also made with the existing literature

  11. LATE RENAL GRAFT REJECTION: PATHOLOGY AND PROGNOSIS

    Directory of Open Access Journals (Sweden)

    E.S. Stolyarevich

    2014-01-01

    Full Text Available Rejection has always been one of the most important cause of late renal graft dysfunction. Aim of the study was to analyze the prevalence of different clinico-pathological variants of rejection that cause late graft dysfunction, and evaluate their impact on long-term outcome. Materials and methods. This is a retrospective study that analyzed 294 needle core biopsy specimens from 265 renal transplant recipients with late (48,8 ± 46,1 months after transplantation allograft dysfunction caused by late acute rejection (LAR, n = 193 or chronic rejection (CR, n = 78 or both (n = 23. C4d staining was performed by immunofl uorescence (IF on frozen sections using a standard protocol. Results. Peritubular capillary C4d deposition was identifi ed in 36% samples with acute rejection and in 62% cases of chronic rejection (including 67% cases of transplant glomerulopathy, and 50% – of isolated chronic vasculopathy. 5-year graft survival for LAR vs CR vs their combination was 47, 13 and 25%, respectively. The outcome of C4d– LAR was (p < 0,01 better than of C4d+ acute rejection: at 60 months graft survival for diffuse C4d+ vs C4d− was 33% vs 53%, respectively. In cases of chronic rejection C4d+ vs C4d– it was not statistically signifi cant (34% vs 36%. Conclusion. In long-term allograft biopsy C4d positivity is more haracteristic for chronic rejection than for acute rejection. Only diffuse C4d staining affects the outcome. C4d– positivity is associated with worse allograft survival in cases of late acute rejection, but not in cases of chronic rejection

  12. Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator

    International Nuclear Information System (INIS)

    Oliveira, Guilherme Azevedo; Cardenas Contreras, Edwin Martin; Bandarra Filho, Enio Pedone

    2017-01-01

    This study is concerned with an experimental evaluation of the thermal performance of multi-walled carbon nanotubes (MWCNT) dispersed in distilled water flowing inside an automotive radiator. A two-step method called high-pressure homogenization was used to disperse the MWCNT nanoparticles in water, in concentrations varying between 0.05 and 0.16 wt%. Experiments have been carried out in an experimental set up composed by a wind tunnel that simulates the air flow through a car radiator, and a hot fluid circuit, that circulates the nanofluid inside the radiator. The air flow rate was maintained constant at 0.175 kg/s. The mass flow rate of the hot fluid varied from 30 up to 70 g/s and the inlet temperature was maintained constant at 50, 60, 70 and 80 °C, respectively. The temperature drop and heat transfer rate have been investigated. A slight-decrease on the heat transfer rate, up to 5%, was found for all test conditions. On the other hand as the nanoparticle concentration increased, the heat transfer rate decreased.

  13. Immunizing potential of sporulated oocysts of Eimeria nieschulzi exposed to heat and 60Co gamma-radiation

    International Nuclear Information System (INIS)

    Conder, G.A.; Duszynski, D.W.

    1977-01-01

    Sporulated oocysts of Eimeria nieschulzi Dieben 1924, a rat coccidium, were exposed to radiation, heat, or both in an effort to attenuate the parasite. Moderate levels of each treatment or combination thereof attenuated the parasite, reduced pathogenesis (as judged by oocyst discharge during primary infection), and produced immunity to challenge when the oocysts were subsequently inoculated into rats. Thus, heat- and/or radiation-treated E. nieschulzi oocysts fed to rats could reduce pathogenesis during a primary infection and yet give good homologous protection

  14. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  15. Effects of combined heat and ionizing radiation on thiamine (Vitamin B1) content in model systems and food matrices

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.; Shoemaker, L.; McDougall, T.

    1989-01-01

    The effects of heat and radiation on thiamine stability are being studied both singly and in combination. Heat, γ-radiation and a combination of them were applied to a model system consisting of 2 x 10 -5 M thiamine hydrochloride in 0.01N HCl (pH=2.5), and their effects are reported. The effects of these two agents on thiamine in two food matrices, concentrated orange juice and green peas, are also reported. Heat was not found to have a significant effect on thiamine in the model system at temperatures up to 120 0 C for up to 60 min of treatment. A small, but significant heat effect was found in the two foods. The retention of thiamine in the model system and in the two foods decreased exponentially as the radiation dose increased. The degradation of thiamine by γ-radiation in both foods was a factor of 10 less than that observed in the model system. A small, but significant synergistic effect was found when samples of the model system were heated at 120 0 C for one hour 24 h after irradiation. (author)

  16. Heat radiation approach for harnessing heat of the cook stove to generate electricity for lighting system and charging of mobile phone

    Science.gov (United States)

    Muñoz, Rodrigo C., Jr.; Manansala, Chad Deo G.

    2018-01-01

    This study is based on the potential of thermoelectric coupling such as the thermoelectric cooler module. A thermoelectric cooler converts the heat coming from the cook stove into electricity and store in a battery. A dc-dc boost converter will be used to produce enough voltage to light a minimum house dwelling or charge phone battery. This device will be helpful to those that faces a problem on electricity especially in the isolated areas. The study aims (1) to harness heat from the cook stove up to 110 °C (2) To automatically cool-off the system to protect the thermoelectric cooler from damage due to excessive heat using an electronic solenoid; (3) To store energy harnessed in the battery; (4) To amplify the output voltages of the battery using DC to DC boost converter for lighting system and charging of mobile phone battery. From various tests conducted, it can fully charge a mobile phone in 3 hours observing the unit’s battery voltage drop from 4.06V to 3.98V. In the testing it used different orientation of steel rod by conduction to transfer heat and by radiation through tubular steel with its different dimensions. Most recent testing proved that the 2x2x9 tubular steel by radiation had the best result. The temperature reached more than a hundred degree Celsius that met the objective. The test resulted of boosting the voltage of the battery output from 3.7V to 4.96V on the average. The boosted voltage decrease as the system’s cool-off mechanism operated when the temperature reached above 110 degree Celsius decreasing output voltage to 0.8V resulting the boosted voltage to drop to zero. Therefore, the proponents concluded that heat waste can be converted to electrical energy by harnessing heat through radiation, with the help of TEC that generates voltage for lighting and can be boosted to be used for mobile charging. Furthermore, the study proved that the excess heat can damaged the TEC which was prevented by using of cooling-off mechanism, making it more

  17. 7 CFR 58.136 - Rejected milk.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rejected milk. 58.136 Section 58.136 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Milk § 58.136 Rejected milk. A plant shall reject specific milk from a producer if the milk fails to...

  18. Long-term results of total lymphoid irradiation in the treatment of cardiac allograft rejection

    International Nuclear Information System (INIS)

    Wolden, Suzanne L.; Tate, David J.; Hunt, Sharon A.; Strober, Samuel; Hoppe, Richard T.

    1997-01-01

    Purpose: To evaluate the short and long-term effects of total lymphoid irradiation (TLI) in the treatment of cardiac transplant rejection. Methods and Materials: Between 1986 and 1995, 48 courses of TLI were delivered to 47 cardiac transplant patients. In 37 patients, TLI was administered for intractable allograft rejection despite conventional therapy while 10 patients received TLI prophylactically. The prescribed radiation dose was 8 Gy in 0.8 Gy fractions twice weekly to mantle and inverted-Y plus spleen fields. Postirradiation follow-up ranged from 6 months to 9.1 years, with a mean of 3.1 years. Results: The actual mean dose was 7.3 Gy delivered over a mean of 39 days. Fifty-six percent of patients required treatment delay or abbreviation because of thrombocytopenia, leukopenia, infection, or unrelated problems. In patients treated for intractable rejection, rejection rates dropped from 0.46 to 0.14 and to 0.06 episodes/patient/month before, during, and after TLI (p < 0.0001). Rejection rates continued to drop throughout follow-up. Prednisone requirements decreased from 0.41 mg/kg before treatment to 0.21 mg/kg afterward (p < 0.0001). The ratio of helper to cytotoxic-suppressor T-cells decreased during TLI from 1.33 to 0.89, and remained low at 0.44, 2-4 months after treatment. Infection rates were not increased and two patients developed malignancy. Rejection rates were high during prophylactic treatment and this protocol was abandoned. Three-year actuarial survival after irradiation was 60% for patients with intractable rejection and 70% for the prophylactic cohort. Conclusion: TLI is an effective treatment for control of intractable cardiac rejection. Episodes of rejection and steroid dosage requirements are decreased for up to 9.1 years. A possible mechanism of action is long term alteration in T-lymphocyte subsets. Patients experience transient bone marrow suppression but no increase in infection or bleeding. Long-term complications of TLI are not

  19. A novel monochromator for high heat-load synchrotron x-ray radiation

    International Nuclear Information System (INIS)

    Khounsary, A.M.

    1992-01-01

    The high heat load associated with the powerful and concentrated x-ray beams generated by the insertion devices at a number of present and many of the future (planned or under construction) synchrotron radiation facilities pose a formidable engineering challenge in the designer of the monochromators and other optical devices. For example, the Undulator A source on the Advanced Photon Source (APS) ring (being constructed at the Argonne National Laboratory) will generate as much as 10 kW of heat deposited on a small area (about 1 cm 2 ) of the first optics located some 24 m from the source. The peak normal incident heat flux can be as high as 500 W/mm 2 . Successful utilization of the intense x-ray beams from insertion devices critically depends on the development, design, and availability of optical elements that provide acceptable performance under high heat load. Present monochromators can handle, at best, heat load levels that are an order of magnitude lower than those generated by such sources. The monochromator described here and referred to as the open-quote inclinedclose quotes monochromator can provide a solution to high heat-load problems

  20. Radiation heat transfer model in a spent fuel pool by TRACE code

    International Nuclear Information System (INIS)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J.F.; Martorell, S.

    2014-01-01

    Nuclear policies have experienced an important change since Fukushima Daiichi nuclear plant accident and the safety of spent fuels has been in the spot issue among all the safety concerns. The work presented consists of the thermohydraulic simulation of spent fuel pool behavior after a loss of coolant throughout transfer channel with loss of cooling transient is produced. The simulation is done with the TRACE code. One of the most important variables that define the behavior of the pool is cladding temperature, which evolution depends on the heat emission. In this work convection and radiation heat transfer is considered. When both heat transfer models are considered, a clear delay in achieving the maximum peak cladding temperature (1477 K) is observed compared with the simulation in which only convection heat transfer is considered. (authors)

  1. Morphological response of human rotavirus to ultra-violet radiation, heat and disinfectants

    International Nuclear Information System (INIS)

    Rodgers, F.G.; Hufton, P.; Kurzawska, E.; Molloy, C.; Morgan, S.

    1985-01-01

    The morphological damage induced in human rotavirus particles by exposure to UV radiation (254 nm) increased progressively with length of treatment. Exposure of the virus in suspension to 9000 ergs/cm 2 /s removed the smooth capsid layer from 50% of particles after 1 min and from all the virions within 10 min. By this time, the number of stain-penetrated or empty particles increased markedly, along with the appearance of virus-derived debris in the form of disrupted and isolated capsomeres. After treatment for 120 min no intact virus particles were observed. The action of wet (100 0 C) or dry (60 0 C) heat resulted in changes similar to those effected by UV radiation. Sodium hypochlorite, cetrimide and 70% ethanol induced a rapid loss of the outer capsid layer, but, compared with UV radiation or heat, a slower increase in the number of stain-penetrated particles was noted. Chlorhexidine and phenol had effects on virus structure only after extended periods of exposure, whilst glutaraldehyde treatment had little influence on virus morphology. Glutaraldehyde 2% v/v would appear to be most suitable for the disinfection of rotavirus-containing electron microscope grids before their examination. (author)

  2. Study on hybrid ground-coupled heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Man; Hongxing, Yang [Renewable Energy Research Group, The Hong Kong Polytechnic University, Hong Kong (China); Zhaohong, Fang [School of Thermal Energy Engineering, Shandong Architecture University, Jinan (China)

    2008-07-01

    Although ground-coupled heat pump (GCHP) systems are becoming attractive air-conditioning systems in some regions, the significant drawback for their wider application is the high initial cost. Besides, more energy is rejected into ground by the GCHP system installed in cooling-dominated buildings than the energy extracted from ground on an annual basis and this imbalance can result in the degradation of system performance. One of the available options that can resolve these problems is to apply the hybrid ground-coupled heat pump (HGCHP) systems, with supplemental heat rejecters for rejecting extra thermal energy when they are installed in cooling-dominated buildings. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer of its main components. The computer program developed on this hourly simulation model can be used to calculate the operating data of the HGCHP system according to the building load. The design methods and running control strategies of the HGCHP system for a sample building are investigated. The simulation results show that proper HGCHP system can effectively reduce both the initial cost and the operating cost of an air-conditioning system compared with the traditional GCHP system used in cooling-dominated buildings. (author)

  3. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  4. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1983-01-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho 0 strain) were used to assess the role of O 2 , mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho 0 yeast grown and heat shocked in either the presence or absence of O 2 are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O 2 , mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes

  5. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    Science.gov (United States)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  6. Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1981-08-01

    RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium

  7. Heat transfer analysis in a calorimeter for concentrated solar radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, C.A.; Jaramillo, O.A.; Arancibia-Bulnes, C.A. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Privada Xochicalco S/N, Col. Centro. Temixco, Morelos 62580 (Mexico); Acosta, R. [Universidad de Quintana Roo, Boulevard Bahia s/n Esq. I. Comonfort, Chetumal Quintana Roo 77019 (Mexico)

    2007-10-15

    A calorimeter was built for measuring the concentrated solar power produced by a point focus solar concentrator that was developed at CIE - UNAM. In order to obtain a thermal characterization of the calorimeter a theoretical and experimental heat transfer study is carried out. This study addresses the heat transfer in the circular flat plate of the calorimeter, which acts as receiver for the concentrating system. Temperatures are measured at different points of this plate and fit with a theoretical model that considers heat conduction with convective and radiative boundary conditions. In particular, it is possible to calculate the temperature distribution on the irradiated surface. This allows to examine the validity of the assumptions of cold water calorimetry, which was the technique applied to this system in previous works. (author)

  8. The effect of heat radiation on the evolution of the Tsallis entropy in self-gravitating systems and plasmas

    Science.gov (United States)

    Zheng, Yahui; Hao, Binzheng; Wen, Yaxiang; Liu, Xiaojun

    2018-01-01

    The evolution of the Tsallis entropy in self-gravitating systems and plasmas is studied in this letter, which is determined by two factors. The first factor is the change of the microstate number of systems, whose spontaneous increase leads to the entropy's increase, consistent with the standard text book. The second is the evolution of the nonextensive parameter, whose evolution rate to time is opposite to the one of entropy. We find the correlation between heat radiation and time evolution of the nonextensive parameter in the self-gravitating systems and plasmas. In such systems, the emission of radiation heat leads to the increase of the parameter while the absorption of radiation heat results in the decrease of this parameter. This is consistent with the inference derived from the Clausius' definition of entropy. In order to evolve to the current state, the solar corona should absorb a large amount of radiation heat, which might be originated from the energy released by solar flare. The magnetic connection probably plays a role in the conversion of energy. A correct dynamics theory of magnetic connection should explain how the energy conversion is achieved.

  9. Thermal degradation and kinetic study for different waste/rejected plastic materials

    International Nuclear Information System (INIS)

    Rana, Srujal; Parikh, Jigisha Kamal; Mohanty, Pravakar

    2013-01-01

    A kinetic analysis based on thermal decomposition of rejected polypropylene, plastic film and plastic pellets collected from different industrial outlet has been carried out. Non-isothermal experiments using different heating rates of 5, 10, 20, 30, 40 and 50 .deg. C min"−"1 have been performed from ambient to 700 .deg. C in a thermo-balance with the objective of determining the kinetic parameters. The values of activation energy and frequency factor were found to be in the range of 107-322 kJ/mol, 85-331 kJ/mol, 140-375 kJ/mol and 3.49E+07-4.74E+22 min⌃(-1), 3.52E+06-2.88E+22min⌃(-1), 7.28E+13-1.17E+25 min⌃(-1) for rejected polypropylene, plastic film and plastic pellets, respectively, by Coats-Redfern and Ozawa methods including different models. Kissinger method, a model free analysis is also adopted to find the kinetic parameters. Activation energy and frequency factor were found to be 108 kJ/mol, 98 kJ/mol, 132 kJ/mol and 6.89E+03, 2.12E+02, 8.06E+05 min⌃(-1) for rejected polypropylene, plastic film and plastic pellets, respectively, by using the Kissinger method

  10. An Iterative Method for Solving of Coupled Equations for Conductive-Radiative Heat Transfer in Dielectric Layers

    Directory of Open Access Journals (Sweden)

    Vasyl Chekurin

    2017-01-01

    Full Text Available The mathematical model for describing combined conductive-radiative heat transfer in a dielectric layer, which emits, absorbs, and scatters IR radiation both in its volume and on the boundary, has been considered. A nonlinear stationary boundary-value problem for coupled heat and radiation transfer equations for the layer, which exchanges by energy with external medium by convection and radiation, has been formulated. In the case of optically thick layer, when its thickness is much more of photon-free path, the problem becomes a singularly perturbed one. In the inverse case of optically thin layer, the problem is regularly perturbed, and it becomes a regular (unperturbed one, when the layer’s thickness is of order of several photon-free paths. An iterative method for solving of the unperturbed problem has been developed and its convergence has been tested numerically. With the use of the method, the temperature field and radiation fluxes have been studied. The model and method can be used for development of noncontact methods for temperature testing in dielectrics and for nondestructive determination of its radiation properties on the base of the data obtained by remote measuring of IR radiation emitted by the layer.

  11. Superconductor Particles As The Working Media Of A Heat Engine

    Science.gov (United States)

    Keefe, Peter D.

    2011-12-01

    A heat engine is presented in which the working media comprises a multiplicity of mutually isolated particles of Type I superconductor which are selectively processed through H-T phase space so as to convert a heat influx from a high temperature heat reservoir into a useful work output, wherein no heat is rejected to a low temperature heat reservoir.

  12. Numbers game : using aluminum helps Global Heat Transfer develop new frac radiators

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2009-11-15

    Aluminum is thought to be a beneficial new option for the construction of frac radiators. This article discussed how aluminum has been used to help Global Heat Transfer Ltd. (GHT) develop new frac radiators. The company developed the Jumbotron, an all-aluminum frac radiator that achieved 3,000 horsepower, but with less weight than a typical 2,250 horsepower package. The article provided information on Jumbotron, including how it was conceptualized, its features, applications, and other details. Background information on GHT was also presented. GHT focuses on the oil and gas and mining sectors and has over 500 employees worldwide in 15 locations. The aluminum parts for the Jumbotron frac radiator are produced at one of GHT's China facilities and brought to Canada for final assembly. 1 fig.

  13. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S., E-mail: sajidshah313@yahoo.com; Hussain, S.; Sagheer, M. [Department of Mathematics, Capital University of Science and Technology, Islamabad (Pakistan)

    2016-08-15

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity and temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.

  14. Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO2-Nanofluid Coolant

    Science.gov (United States)

    Salamon, V.; Senthil kumar, D.; Thirumalini, S.

    2017-08-01

    The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.

  15. Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators

    Energy Technology Data Exchange (ETDEWEB)

    Sevilgen, Goekhan; Kilic, Muhsin [Uludag University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, TR-16059 Bursa (Turkey)

    2011-01-15

    A three-dimensional steady-state numerical analysis was performed in a room heated by two-panel radiators. A virtual sitting manikin with real dimensions and physiological shape was added to the model of the room, and it was assumed that the manikin surfaces were subjected to constant temperature. Two different heat transfer coefficients for the outer wall and for the window were considered. Heat interactions between the human body surfaces and the room environment, the air flow, the temperature, the humidity, and the local heat transfer characteristics of the manikin and the room surfaces were computed numerically under different environmental conditions. Comparisons of the results are presented and discussed. The results show that energy consumption can be significantly reduced while increasing the thermal comfort by using better-insulated outer wall materials and windows. (author)

  16. MR imaging of renal transplant rejection

    International Nuclear Information System (INIS)

    Hanna, S.; Helenon, O.; Legendre, C.; Chichie, J.F.; Di Stefano, D.; Kreis, H.; Moreau, J.F.; Hopital Necker, 75 - Paris

    1991-01-01

    The results of 62 consecutive MR examinations were correlated with the subsequent clinical course and histologic results. Twenty-six cases of rejection showed a marked diminution of cortico-medullary differentiation (CMD). The renal parenchymal vascular pattern and visibility of renal sinus fat were not markedly altered in rejection and there was no difference between normal and rejected allograft shape. The ability of MR imaging to diagnose renal transplant rejection is only based on CMD, which, however, is non-specific. In 2 cases of severe rejection, T2 weighted images showed an abnormal signal intensity of the cortex due to renal infarction. Our preliminary results in 8 patients with Gd-DOTA injection showed 2 cases with necrosis seen as areas with absent contrast enhancement. This technique seems to be promising in the detection of perfusion defects. (orig.)

  17. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    Science.gov (United States)

    Liu, L. H.; Tan, J. Y.

    2007-02-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.

  18. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    International Nuclear Information System (INIS)

    Liu, L.H.; Tan, J.Y.

    2007-01-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media

  19. Effects of heat, radiation, and thermoradiation on the filterability of sewage sludge

    International Nuclear Information System (INIS)

    Carter, C.V.

    1978-01-01

    The effects of heat, radiation and thermoradiation processes on the dewatering properties of raw and primary digested sewage sludges were investigated. These effects were measured by observing the changes in filterability subsequent to treatment. Thermal treatment (40 0 to 95 0 C) of the sewage sludge resulted in decreased filterability. Radiation and thermoradiation treatment increased the filterability, the increase being dose and temperature dependent. These treatment methods are not as effective as chemical additives in increasing the filterability of sewage sludge. The combined use of radiation and organic polymer conditioner shows no significant improvement in the filterability of sewage sludge over the use of polymer alone. There appears to be some interaction; however, it shows no useful synergistic effect

  20. Unsteady coupling of Navier-Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow

    International Nuclear Information System (INIS)

    Amaya, J.; Cabrit, O.; Poitou, D.; Cuenot, B.; El Hafi, M.

    2010-01-01

    Direct numerical simulations (DNS) of an anisothermal reacting turbulent channel flow with and without radiative source terms have been performed to study the influence of the radiative heat transfer on the optically non-homogeneous boundary layer structure. A methodology for the study of the emitting/absorbing turbulent boundary layer (TBL) is presented. Details on the coupling strategy and the parallelization techniques are exposed. An analysis of the first order statistics is then carried out. It is shown that, in the studied configuration, the global structure of the thermal boundary layer is not significantly modified by radiation. However, the radiative transfer mechanism is not negligible and contributes to the heat losses at the walls. The classical law-of-the-wall for temperature can thus be improved for RANS/LES simulations taking into account the radiative contribution.

  1. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: rabiamalik.qau@gmail.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)

    2016-05-15

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  2. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Directory of Open Access Journals (Sweden)

    Masood Khan

    2016-05-01

    Full Text Available In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  3. Comparisons of changes in the duration of hexenal dream induced by the effect of acute radiation and a mixture of radiation and heat

    International Nuclear Information System (INIS)

    Moiseeva, L.A.; Budagov, R.S.; Khlopovskaya, E.I.

    1992-01-01

    In experiments with Wistar rats it was found that the increase in the length of the hexenal dream during the first week after the effect of a mixture of radiation and heat is much more pronounced than that observed after exposure to radiation alone and independent of the severity of a radiation component (gamma-radiation, 4, 6 and 7.5 Gy). The peculiarities revealed in the hypnotic effect of hexenal develop against the background of the postirradiation aggravation of hypoalbuminemia and decrease in the lever ATP

  4. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  5. Thermal performance of a porus radial fin with natural convection and radiative heat losses

    Directory of Open Access Journals (Sweden)

    Darvishi M.T.

    2015-01-01

    Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.

  6. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    Science.gov (United States)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-06-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.

  7. Effects of combined heat and ionizing radiation on thiamine (Vitamin B sub 1 ) content in model systems and food matrices

    Energy Technology Data Exchange (ETDEWEB)

    Chuaqui-Offermanns, N.; Shoemaker, L.; McDougall, T. (Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Nuclear Research Establishment)

    1989-01-01

    The effects of heat and radiation on thiamine stability are being studied both singly and in combination. Heat, {gamma}-radiation and a combination of them were applied to a model system consisting of 2 x 10{sup -5}M thiamine hydrochloride in 0.01N HCl (pH=2.5), and their effects are reported. The effects of these two agents on thiamine in two food matrices, concentrated orange juice and green peas, are also reported. Heat was not found to have a significant effect on thiamine in the model system at temperatures up to 120{sup 0}C for up to 60 min of treatment. A small, but significant heat effect was found in the two foods. The retention of thiamine in the model system and in the two foods decreased exponentially as the radiation dose increased. The degradation of thiamine by {gamma}-radiation in both foods was a factor of 10 less than that observed in the model system. A small, but significant synergistic effect was found when samples of the model system were heated at 120{sup 0}C for one hour 24 h after irradiation. (author).

  8. Radiation heat transfer through the gas of a sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Pradel, P.; Frachet, S.; Petit, D.

    1984-04-01

    Analysis based on results from the COCA test campaign and Germinal mockup of Super Phenix upper shuttings, of the heat transfers and radiation attenuation due to sodium aerosols between the free surface of sodium and the upper shuttings

  9. Changing transport processes in the stratosphere by radiative heating of sulfate aerosols

    Directory of Open Access Journals (Sweden)

    U. Niemeier

    2017-12-01

    Full Text Available The injection of sulfur dioxide (SO2 into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. Sulfate aerosol scatters solar radiation and absorbs infrared radiation, which warms the stratospheric sulfur layer. Simulations with the general circulation model ECHAM5-HAM, including aerosol microphysics, show consequences of this warming, including changes of the quasi-biennial oscillation (QBO in the tropics. The QBO slows down after an injection of 4 Tg(S yr−1 and completely shuts down after an injection of 8 Tg(S yr−1. Transport of species in the tropics and sub-tropics depends on the phase of the QBO. Consequently, the heated aerosol layer not only impacts the oscillation of the QBO but also the meridional transport of the sulfate aerosols. The stronger the injection, the stronger the heating and the simulated impact on the QBO and equatorial wind systems. With increasing injection rate the velocity of the equatorial jet streams increases, and the less sulfate is transported out of the tropics. This reduces the global distribution of sulfate and decreases the radiative forcing efficiency of the aerosol layer by 10 to 14 % compared to simulations with low vertical resolution and without generated QBO. Increasing the height of the injection increases the radiative forcing only for injection rates below 10 Tg(S yr−1 (8–18 %, a much smaller value than the 50 % calculated previously. Stronger injection rates at higher levels even result in smaller forcing than the injections at lower levels.

  10. Heat resistant wire and cable and heat shrinkable tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Keiji [Sumitomo Electric Industries Ltd. (Japan)

    1994-12-31

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR`s, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of E{beta} radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 {approx} 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented.

  11. Heat resistant wire and cable and heat shrinkable tubes

    International Nuclear Information System (INIS)

    Keiji Ueno

    1994-01-01

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR's, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of Eβ radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 ∼ 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented

  12. Effects of radiation and high heat flux on the performance of first-wall components. Final report

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1985-10-01

    The performance of high-heat-flux components in present and future fusion devices is strongly affected by materials properties and their changes with radiation exposure and helium content. In addition, plasma disruptions and thermal fatigue are major life-limiting aspects. A multidisciplinary approach is therefore required in the performance analysis, and the following results have been accomplished. An equation of state for helium has been derived and applied to helium bubble formation by various growth processes. Models for various radiation effects have been developed and perfected to analyze radiation-induced swelling and embrittlement for high-heat flux materials. Computer codes have been developed to predict melting, evaporation, and melt-layer stability during plasma disruptions. A structural analysis code was perfected to evaluate the stress distribution and crack propagation in a high-heat-flux component or first wall. This code was applied to a duplex structure consisting of a beryllium coating on a copper substrate. It was also used to compare the lifetimes of a first wall in a tokamak reactor made of ferritic or austenitic steel

  13. Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s

    International Nuclear Information System (INIS)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    Low-temperature district heating is a promising technology for providing homes with energy-efficient heating in the future. However, it is of great importance to maintain thermal comfort in existing buildings when district heating temperatures are lowered. This case study evaluated the actual radiator sizes and heating demands in 4 existing Danish single-family houses from the 1930s. A year-long dynamic simulation was performed for each of the houses to evaluate the potential to lower the heating system temperatures. The results indicate that there is a large potential to use low-temperature district heating in existing single-family houses. In order to obtain the full potential of low-temperature district heating, critical radiators must be replaced. Based on a novel method, a total of nine radiators were identified to be critical to ensure thermal comfort and low return temperatures in two of the case-houses. If these radiators were replaced it would be possible to lower the average heating system temperatures to 50 °C/27 °C in all four houses. - Highlights: • Comparison of dynamically calculated heat demands and radiator sizes. • Method for identification and evaluation of critical radiators was tested. • Existing houses can be heated with low-temperature heating for most of the year. • Replacing critical radiators helps ensure comfort and low return temperatures.

  14. Heat- and radiation-induced radio- and thermo-tolerance of Zea mays seedlings

    International Nuclear Information System (INIS)

    Gikoshvili, T.I.; Vagabova, M.Eh.; Vilenchik, M.M.; Kuzin, A.M.

    1985-01-01

    It was shown that γ-irradiation of Zea mays seedlings with low doses (1-3 Gy) induced thermotolerance, and preheating up to 43 deg C increased their radioresistance and thermotolerance. A hypothesis of the formation of common protective proteins after exposure to low - level radiation and heat is discussed

  15. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

    Directory of Open Access Journals (Sweden)

    Avez Syed

    2016-01-01

    Full Text Available A low-cost coplanar waveguide fed compact ultrawideband (UWB antenna with band rejection characteristics for wireless local area network (WLAN is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9–13.7 GHz with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1–5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications.

  16. Radiative heat transfer and water content in atmosphere of Venus

    International Nuclear Information System (INIS)

    Yarov, M.Y.; Gal'stev, A.P.; Shari, V.P.

    1985-01-01

    The authors present the procedure for calculating optical characteristics of the main components and the effective fluxes in the atmosphere of Venus, and concrete results of the calculations. They are compared to the results of other authors and to the experimantal data. Integration was carried out by the Simpson method with automatic selection of the step or interval for a given relative integrating accuracy delta. The calculations were done with a BESM-6 computer. Using this procedure and data on absorbtion coefficients, calculations of the spectrum of effective flux were carried out for a pure carbon dioxide atmosphere and for an atmosphere containing water vapor at various relative admixtures, for different altitude profiles of temperature and cloudiness albedo. Thus, the comparisons made, enable the authors to judge about the degree of agreement of the F(z) altitude profile, in some regions of the planet where measurements have been made, rather than about the absolute values of the heat fluxes. In conclusion, the authors point out that the task of calculating in detail the radiation balance in Venus' lower atmosphere, as also the problem of a more reliable interpretation of the experimantal data, is coupled with the necessity of elaborating reliable models of the atmospheric components' optical characteristics, which determine the radiative transfer of heat

  17. Concrete Hydration Heat Analysis for RCB Basemat Considering Solar Radiation

    International Nuclear Information System (INIS)

    Lee, Seong-Cheol; Son, Yong-Ki; Choi, Seong-Cheol

    2015-01-01

    The NPP especially puts an emphasis on concrete durability for structural integrity. It has led to higher cementitious material contents, lower water-cementitious-material ratios, and deeper cover depth over reinforcing steel. These requirements have resulted in more concrete placements that are subject to high internal temperatures. The problem with high internal temperatures is the increase in the potential for thermal cracking that can decrease concrete's long-term durability and ultimate strength. Thermal cracking negates the benefits of less permeable concrete and deeper cover by providing a direct path for corrosion-causing agents to reach the reinforcing steel. The purpose of this study is to develop how to analyze and estimate accurately concrete hydration heat of the real-scale massive concrete with wide large plane. An analysis method considering concrete placement sequence was studied and solar radiation effects on the real-scale massive concrete with wide large plane were reviewed through the analytical method. In this study, the measured temperatures at the real scale structure and the analysis results of concrete hydration heat were compared. And thermal stress analysis was conducted. Through the analysis, it was found that concrete placement duration, sequence and solar radiation effects should be considered to get the accurate concrete peak temperature, maximum temperature differences and crack index

  18. The significance of parenchymal changes of acute cellular rejection in predicting chronic liver graft rejection

    NARCIS (Netherlands)

    Gouw, ASH; van den Heuvel, MC; van den Berg, AP; Slooff, NJH; de Jong, KP; Poppema, S

    2002-01-01

    Background. Chronic rejection (CR) in liver allografts shows a rapid onset and progressive course, leading to graft failure within the first year after transplantation. Most cases are preceded by episodes of acute cellular rejection (AR), but histological features predictive for the transition

  19. Preventing Rejection

    Science.gov (United States)

    ... After the transplant Preventing rejection Post-transplant medications Types of immunosuppressants Switching immunosuppressants Side effects Other medications Generic and brand name drugs Post-transplant tests Infections and immunity Lifestyle changes Health concerns Back to work or ...

  20. Effect of radiation on the laminar convective heat transfer through a layer of highly porous medium

    International Nuclear Information System (INIS)

    Lee, K.; Howell, J.R.

    1986-01-01

    A numerical investigation is reported of the coupled forced convective and radiative transfer through a highly porous medium. The porosity range investigated is high enough that the fluid inertia terms in the momentum equation cannot be neglected; i.e., the simple form of Darcy's law is invalid. The geometry studied is a plane layer of highly porous medium resting on one impermeable boundary and exposed to a two-dimensional laminar external flow field. The objective is to determine the effective overall heat transfer coefficients for such a geometry. The results are applicable to diverse situations, including insulation batts exposed to external flow, the heat loss and drying rates of grain fields and forest areas, and the drying of beds of porous material exposed to convective and radiative heating

  1. Radiation heat transfer of arbitrary axisymmetric bodies with specular and diffuse surfaces; Kyomen ranhanshamen wo motsu nin`i keijo jikutaishobuttai no hosha dennetsu

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, S.; Aihara, T. [Tohoku University, Sendai (Japan). Institute of Fluid Sceince

    1993-10-25

    A radiation light tracking method was used to derive shape factors of arbitrary axisymmetric bodies consisted of specular and diffuse surfaces or an annular face element as a composite surface of the former surfaces. This paper illustrates the summary of an analytical method to calculate radiation heat transfer amount of these bodies using the shape factors, and describes the following matters: The difference between the shape factor obtained by applying this method to the inner face of a cylindrical body and conventional analytical solution can be reduced by increasing the number of splits in outgoing light. The numerical solution from this method on radiation heat transfer amount in the particular body agrees well with the conventional analytical solution. Radiation heat transfer amount when the specular reflectivity was increased either increases or decreases depending on the face shape, not necessarily changing monotonously. The paper further describes briefly a composite heat transfer analysis applied to a silicon crystal growing equipment using the Czochralski method, the analysis combining a radiation heat transfer analysis that splits the equipment interior into 88 annular elements with a general purpose heat transfer analysis. 13 refs., 11 figs., 1 tab.

  2. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    Science.gov (United States)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  3. Heterosexual Rejection and Mate Choice: A Sociometer Perspective

    Directory of Open Access Journals (Sweden)

    Lin eZHANG

    2015-12-01

    Full Text Available Previous studies about the effects of social rejection on individuals’ social behaviors have produced mixed results and tend to study mating behaviors from a static point of view. However, mate selection in essence is a dynamic process, and therefore sociometer theory opens up a new perspective for studying mating and its underlying practices. Based on this theory and using self-perceived mate value in the relationship between heterosexual rejection and mate choice as a mediating role, this current study examined the effects of heterosexual rejection on mate choice in two experiments. Results showed that heterosexual rejection significantly reduced self-perceived mate value, expectation, and behavioral tendencies, while heterosexual acceptance indistinctively increased these measures. Self-perceived mate value did not serve as a mediator in the relationship between heterosexual rejection and mate expectation, but it mediated the relationship between heterosexual rejection and mating behavior tendencies towards potential objects. Moreover, individuals evaded both rejection and irrelevant people when suffering from rejection.

  4. Modeling of radiation heat transport in complex ladder-like structures placed in rectangular enclosures

    International Nuclear Information System (INIS)

    Unal, C.; Bohl, W.R.; Pasamehmetoglu, K.O.

    1999-01-01

    Complex ladder-like structures recently have been considered as the target design for accelerator applications. The decay heat, during a postulated beyond design-basis loss-of-coolant accident in the target where all normal and emergency cooling fails, is removed mainly by radiation heat transfer. Modeling of the radiation transport in complex ladder-like structures has several challenges and limitations when the standard net-radiation model is used. This paper proposes a simplified lumped, or 'hot-rung' model, that considers the worst elements and utilizes the standard net-radiation method. The net-radiation model would under-predict structure temperatures if surfaces were subject to non-uniform radiosity. The proposed model was assessed to suggest corrections to account for the non-uniform radiosity. The non-uniform radiosity effect causes the proposed hot-rung model to under-predict the center-rung temperatures by ∼4-74 C when all parametrics, including temperatures up to 1500 C, were considered. These temperatures are small. The proposed model predicted that an important effect of decreasing the emissivity was smoothing of non-isothermal effects. The radiosity effects are more pronounced when there are strong temperature gradients. Uniform rung temperatures tend to decrease the radiosity effects. We concluded that a relatively simple model that is conservative with respect to radiosity effects could be developed. (orig.)

  5. An audit of rejected repeated x-ray films as a quality assurance element in a radiology department.

    Science.gov (United States)

    Eze, K C; Omodia, N; Okegbunam, B; Adewonyi, T; Nzotta, C C

    2008-12-01

    To find out the causes, number, percentage and sizes of rejected radiographic films with a view of adopting measures that will reduce the rate and number of rejected films. Radiology Department of a University Teaching Hospital. Over a two-year period (1st April 2002 to 31st March 2004), the total number of x-ray films utilized for radiographic examinations, rejected films and sizes of rejected films were collected retrospectively from the medical record of radiology department. All the rejected films were viewed by a radiologist and three radiographers for the causes of the rejects which was arrived at by consensus. The data was analysed. A total of 15,095 films were used in the study period and 1,338 films (8.86%) were rejected or wasted. The rate of rejected films varied from 7.69% to 13.82% with average of 8.86%. The greatest cause of film rejects was radiographers' faults 547 (40.88%), followed by equipments faults 255 (19.06%), and patients' faults 250 (18.90%). The highest reject rate (13.82%) was for films used for examination of the spine (15 x 30) cm size. This is followed by 9.92% for skull (18 x 24) cm films and 8.83% for small sized films (24 x 30) cm used for paediatric patients. Of a total of 1,338 rejected films, 1276 (95.37%) additional exposure were done to obtain the basic desired diagnostic information involving 1151 patients; 885 (76.89%) of these patients needed at least one additional hospital visit to take the repeat exposure. Rejected films are not billable; patients receive additional radiation and may even come to hospital in another day for the repeat. Radiographer's work is increased as well as that of the support staff. The waiting room may be congested and waiting time increased. The cost of processing chemical and films are increased, thus if work is quantified in monetary terms, the cost of repeats is high. Rejected-repeated film analysis is cheap, simple, practicable, easy to interpret and an effective indictor of quality assurance

  6. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-01-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case

  7. Coupling heat conduction and radiation in complex 2D and 3D geometries

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I [SIMULOG, 78 - Guyancourt (France)

    1998-12-31

    Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author) 6 refs.

  8. Coupling heat conduction and radiation in complex 2D and 3D geometries

    International Nuclear Information System (INIS)

    Peniguel, C.

    1997-01-01

    Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author)

  9. Response of melanoma to heat and radiation therapy--a review of the literature and experience from The Prince of Wales Hospital, Sydney.

    Science.gov (United States)

    Mameghan, H; Knittel, T

    1988-11-07

    Our review of the literature indicates that radiotherapy and/or heat therapy can provide local control of recurrent or metastatic melanoma in a large proportion of patients. This has undoubted value in the local palliation of symptoms and, in the absence of disseminated disease, can be curative. At The Prince of Wales Hospital, Sydney, we have studied the response of melanoma lesions to heat and radiation therapy and have assessed the reaction in the adjacent normal skin. Thirty-two melanoma lesions that were measurable in 12 patients received radiotherapy and heat therapy in different combinations and dose schedules (15 lesions received radiotherapy alone, six lesions received heat therapy alone, and 11 lesions received combined radiation and heat therapy). The acute normal skin reaction was compared between lesions that received single modality radiation or heat therapy and those that received the combination of heat and radiation therapy. A moderate or severe reaction developed at six of the 21 sites that were treated by a single modality, and at four of the 11 sites that received combined heat and radiation therapy (P = 0.7), and all healed within a few days. Evaluation of the melanoma response to therapy was possible only in 26 of the 32 lesions that were treated because two patients died soon after therapy and the response of their six lesions was not evaluable. A complete response occurred in 14 (54%) of 26 lesions and a partial response occurred in 10 (38%) of 26 lesions. The objective response by treatment modality was 10 of 15 lesions for radiotherapy, six of six lesions for heat therapy and eight of 11 lesions for both therapies combined. We conclude that radiotherapy and heat therapy, separately or combined, produce acceptably-low damage to normal tissue and highly-satisfactory local control of melanoma.

  10. Injury to Allografts: innate immune pathways to acute and chronic rejection

    International Nuclear Information System (INIS)

    Land, W. G.

    2005-01-01

    An emerging body of evidence suggests that innate immunity, as the first line of host defense against invading pathogens or their components [pathogen-associated molecular patterns, (PAMPs)], plays also a critical role in acute and chronic allograft rejection. Injury to the donor organ induces an inflammatory milieu in the allograft, which appears to be the initial key event for activation of the innate immune system. Injury-induced generation of putative endogenous molecular ligand, in terms of damaged/danger-associated molecular patterns (DAMPs) such as heat shock proteins, are recognized by Toll-like receptors (TLRs), a family of pattern recognition receptors on cells of innate immunity. Acute allograft injury (e.g. oxidative stress during donor brain-death condition, post-ischemic reperfusion injury in the recipient) includes DAMPs which may interact with, and activate, innate TLR-bearing dendritic cells (DCs) which, in turn, via direct allo-recognition through donor-derived DCs and indirect allo-recogntion through recipient-derived DCs, initiate the recipient's adaptive alloimmune response leading to acute allograft rejection. Chronic injurious events in the allograft (e.g. hypertension, hyperlipidemia, CMV infection, administration of cell-toxic drugs [calcineurin-inhibitors]) induce the generation of D AMPs , which may interact with and activate innate TLR-bearing vascular cells (endothelial cells, smooth muscle cells) which, in turn, contribute to the development of atherosclerosis of donor organ vessels (alloatherosclerosis), thus promoting chronic allograft rejection. (author)

  11. Circular heat and momentum flux radiated by magneto-optical nanoparticles

    Science.gov (United States)

    Ott, A.; Ben-Abdallah, P.; Biehs, S.-A.

    2018-05-01

    In the present article we investigate the heat and momentum fluxes radiated by a hot magneto-optical nanoparticle in its surroundings under the action of an external magnetic field. We show that the flux lines circulate in a confined region at a nanometric distance from the particle around the axis of the magnetic field in a vortexlike configuration. Moreover we prove that the spatial orientation of these vortices (clockwise or counterclockwise) is associated with the contribution of optical resonances with topological charges m =+1 or m =-1 to the thermal emission. This work paves the way for a geometric description of heat and momentum transport in lattices of magneto-optical particles. Moreover it could have important applications in the field of energy storage as well as in thermal management at nanoscale.

  12. Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation

    Science.gov (United States)

    Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.

    2016-11-01

    A mathematical model has been developed for studying the electro-osmotic flow and heat transfer of bio-fluids in a micro-channel in the presence of Joule heating effects. The flow of bio-fluid is governed by the non-Newtonian power-law fluid model. The effects of thermal radiation and velocity slip condition have been examined in the case of hydrophobic channel. The Poisson-Boltzmann equation governing the electrical double layer field and a body force generated by the applied electric potential field are taken into consideration. The results presented here pertain to the case where the height of the channel is much greater than the thickness of electrical double layer comprising the Stern and diffuse layers. The expressions for flow characteristics such as velocity, temperature, shear stress and Nusselt number have been derived analytically under the purview of the present model. The results estimated on the basis of the data available in the existing scientific literatures are presented graphically. The effects of thermal radiation have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding the heat transfer in micro-channel in the presence of electric potential. The dimensionless Joule heating parameter has a reducing impact on Nusselt number for both pseudo-plastic and dilatant fluids, nevertheless its impact on Nusselt number is more pronounced for dilatant fluid. Furthermore, the effect of viscous dissipation has a significant role in controlling heat transfer and should not be neglected.

  13. Study of radiation heat transfer between PFC and vacuum vessel during SST-1 baking

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Paritosh E-mail: paritosh@ipr.res.in; Chenna Reddy, D.; Santra, P.; Khirwadkar, S.; Ravi Pragash, N.; Saxena, Y.C

    2003-01-01

    Steady-state superconducting tokamak (SST-1) is a medium size tokamak with superconducting magnetic field coils. Plasma facing components (PFC) of SST-1 are placed inside the vacuum vessel (VV) of the tokamak and are designed to be compatible for steady-state operation. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m{sup 2}. In addition to remove high heat fluxes, the PFC are also designed to be compatible for baking at high temperature. Since it is difficult to calculate the radiation heat loads between PFC and VV in a 3-D irregular geometry, a simplified model of concentric cylinders has been chosen for the purpose of estimation of the power requirements and the thermal responses of PFC and VV during their bakeout phases. Thermal responses of the PFC and VV have been analysed and the analytical results have been compared with 2-D finite element analysis using ANSYS. The radiation losses between PFC and VV also have been evaluated on the actual model containing all PFC inside the VV.

  14. Processing summary report: Fabrication of cesium and strontium heat and radiation sources

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Surma, J.E.; Allen, R.P.

    1989-02-01

    The Pacific Northwest Laboratory (PNL), has produced 30 isotopic heat sources (canisters) for the Federal Republic of Germany (FRG) to be used as part of a repository testing program in the Asse Salt Mine. PNL program work involved the filling, closure, and decontamination of the 30 canisters. The canisters were fabricated (filled) in three separate processing campaigns using the radioactive liquid-fed ceramic melter to produce a borosilicate glass. Within the borosilicate glass matrix radiochemical constituents ( 137 Cs and 90 Sr) were immobilized to yield a product with a predetermined decay heat and surface radiation exposure rate

  15. Heat performance resulting from combined effects of radiation and mixed convection in a rectangular cavity ventilated by injection or suction

    Science.gov (United States)

    Ezzaraa, K.; Bahlaoui, A.; Arroub, I.; Raji, A.; Hasnaoui, M.; Naïmi, M.

    2018-05-01

    In this work, we investigated numerically heat transfer by mixed convection coupled to thermal radiation in a vented rectangular enclosure uniformly heated from below with a constant heat flux. The fresh fluid is admitted into the cavity by injection or suction, by means of two openings located on the lower part of both right and left vertical sides. Another opening is placed on the middle of the top wall to ensure the ventilation. Air, a radiatively transparent medium, is considered to be the cooling fluid. The inner surfaces, in contact with the fluid, are assumed to be gray, diffuse emitters and reflectors of radiation with identical emissivities. The effects of some pertinent parameters such as the Reynolds number, 300 ≤ Re ≤ 5000, and the emissivity of the walls, 0 ≤ ɛ ≤ 0.85, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes (injection and suction). The results indicate that the flow and thermal structures are affected by the thermal radiation for the two modes of imposed flow. However, the suction mode is found to be more favorable to the heat transfer in comparison with the injection one.

  16. The Performance Evaluation of Overall Heat Transfer and Pumping Power of γ-Al2O3/water Nanofluid as Coolant in Automotive Diesel Engine Radiator

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2013-05-01

    Full Text Available The efficiency of γ-Al2O3/water nanofluid as coolant is investigated in the present study. γ-Al2O3 nanoparticles with diameters of 20 nm dispersed in water with volume concentrations up 2% are selected and their performance in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions are numerically studied. The performance of an automobile radiator is a function of overall heat transfer coefficient and total heat transfer area. The heat transfer relations between nanofluid and airflow have been investigated to evaluate the overall heat transfer and the pumping power of γ-Al2O3/water nanofluid in the radiator with a given heat exchange capacity. In the present paper, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. As an example, the results show that for 2% γ-Al2O3 nanoparticles in water with Renf=6000 in the radiator while the automotive speed is 50 mph, the overall heat transfer coefficient and pumping power are approximately 11.11% and 29.17% more than that of water for given conditions, respectively. These results confirm that γ-Al2O3/water nanofluid offers higher overall heat transfer performance than water and can be reduced the total heat transfer area of the radiator.

  17. Engineering aspects of a thermal control subsystem for the 25 kW power module

    Science.gov (United States)

    Schroeder, P. E.

    1979-01-01

    The paper presents the key trade study results, analysis results, and the recommended thermal control approach for the 25 kW power module defined by NASA. Power conversion inefficiencies and component heat dissipation results in a minimum heat rejection requirement of 9 kW to maintain the power module equipment at desired temperature levels. Additionally, some cooling capacity should be provided for user payloads in the sortie and free-flying modes. The baseline thermal control subsystem includes a dual-loop-pumped Freon-21 coolant with the heat rejected from deployable existing orbiter radiators. Thermal analysis included an assessment of spacecraft orientations, radiator shapes and locations, and comparison of hybrid heat pipe and all liquid panels.

  18. The effect of heat and radiation on the initiation and elongation processes of DNA synthesis

    International Nuclear Information System (INIS)

    Davies, R.C.; Bowden, G.T.; Cress, A.E.

    1983-01-01

    The pH step alkaline elution and alkaline sucrose gradient techniques were utilized to evaluate alterations in DNA replication (initiation and elongation) induced by heat and low dose X-irradiation in synchronized Chinese hamster ovary cells. The initiation and elongation processes of DNA synthesis were radioresistant at the G 1 /S boundary (4 hours after mitosis) while in mid S phase (9 hours after mitosis) DNA initiation and elongation were sensitive to X-irradiation. The initiation and elongation processes of DNA synthesis which were radiation resistant at the G 1 /S boundary could be inhibited by a hyperthermia treatment (43 0 C for 1 hour beginning at 4 hours after mitosis). The impairment of initiation in the heated cells was maintained through late S phase while that of elongation was reversible as judged by full recovery at 15 hours after mitosis. These data suggest that the known synergistic lethality of heat and radiation may be mediated by an impairment of initiation of DNA synthesis. (author)

  19. Radiative and conductive heat transfer in a nongrey semitransparent medium. Application to fire protection curtains

    Energy Technology Data Exchange (ETDEWEB)

    Berour, Nacer; Lacroix, David E-mail: david.lacroix@lemta.uhp-nancy.fr; Boulet, Pascal; Jeandel, Gerard

    2004-06-01

    This paper deals with heat transfer in nongrey media which scatter, absorb and emit radiation. Considering a two dimensional geometry, radiative and conductive phenomena through the medium have been taken into account. The radiative part of the problem was solved using the discrete ordinate method with classical S{sub n} quadratures. The absorption and scattering coefficients involved in the radiative transfer equation (RTE) were obtained from the Mie theory. Conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model has been achieved with several simulation of water spray curtains used as fire protection walls.

  20. Social Causes and Consequences of Rejection Sensitivity

    Science.gov (United States)

    London, Bonita; Downey, Geraldine; Bonica, Cheryl; Paltin, Iris

    2007-01-01

    Predictions from the Rejection Sensitivity (RS) model concerning the social causes and consequences of RS were examined in a longitudinal study of 150 middle school students. Peer nominations of rejection, self-report measures of anxious and angry rejection expectations, and social anxiety, social withdrawal, and loneliness were assessed at two…

  1. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  2. Heat transfer and thermodynamic performance of convective–radiative cooling double layer walls with temperature-dependent thermal conductivity and internal heat generation

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2015-01-01

    Highlights: • First and second laws of thermodynamics have been investigated in a composite wall. • Convective–radiative heat transfer is assumed on both surfaces. • Optimum interface location is calculated to minimize the total entropy generation rate. • Thermal conductivities ratio has great effects on the temperature and entropy generation. - Abstract: Composite geometries have numerous applications in industry and scientific researches. This work investigates the temperature distribution, and local and total entropy generation rates within two-layer composite walls using conjugate convection and radiation boundary conditions. Thermal conductivities of the materials of walls are assumed temperature-dependent. Temperature-dependent internal heat generations are also incorporated into the modeling. The differential transformation method (DTM) is used as an analytical technique to tackle the highly nonlinear system of ordinary differential equations. Thereafter, the local and total entropy generation rates are calculated using the DTM formulated temperature distribution. An exact analytical solution, for the temperature-independent model without radiation effect, is also derived. The correctness and accuracy of the DTM solution are checked against the exact solution. After verification, effects of thermophysical parameters such as location of the interface, convection–conduction parameters, radiation–conduction parameters, and internal heat generations, on the temperature distribution, and both local and total entropy generation rates are examined. To deliver the minimum total entropy generation rate, optimum values for some parameters are also found. Since composite walls are widely used in many fields, the abovementioned investigation is a beneficial tool for many engineering industries and scientific fields to minimize the entropy generation, which is the exergy destruction, of the system

  3. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  4. The pretective effects of heat shock protein 70 on radiation injury of V79 cells

    International Nuclear Information System (INIS)

    Qin Yongchun; Zhang Baoguo; Hong Chengjiao

    2008-01-01

    Westem blot was used to detect the expression of heat shock protein 70 in V79 cells after heat shock pretreatment; V79 cells were irradiated using γ-ray after heat shock pretreatment, survival rate was observed using Colony formation assay. Our study shows that 1) the overexpression of heat shock protein 70 was observed in cells recovering for 1 hour after heat shock pretreatment, with peak expression in cells recovering for 4 hours, and could last for 24 hours; 2) heat shock pretreatment was able to elevate survival rate of V79 cells after irradiation by 60 Co γ ray (when the irradiation dose was less than 6 Gy). The results indicate that heat shock protein 70 has protective effect on radiation induced cell death of V79 cells (when the irradiation dose was less than 6 Gy). (authors)

  5. Peer Group Rejection and Children's Outgroup Prejudice

    Science.gov (United States)

    Nesdale, Drew; Durkin, Kevin; Maass, Anne; Kiesner, Jeff; Griffiths, Judith; Daly, Josh; McKenzie, David

    2010-01-01

    Two simulation studies examined the effect of peer group rejection on 7 and 9 year old children's outgroup prejudice. In Study 1, children (n = 88) pretended that they were accepted or rejected by their assigned group, prior to competing with a lower status outgroup. Results indicated that rejected versus accepted children showed increased…

  6. Optical performance of the SO/PHI full disk telescope due to temperature gradients effect on the heat rejection entrance window

    Science.gov (United States)

    Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.

    2017-11-01

    The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude

  7. Risk of renal allograft rejection following angiography

    International Nuclear Information System (INIS)

    Heideman, M.; Claes, G.; Nilson, A.E.

    1976-01-01

    In a retrospective study of 173 immediately functioning primary kidney transplants, correlation between angiography and renal allograft rejection was studied during the first 14 days. It was found that rejection was more frequent in kidneys undergoing angiography than in those not undergoing angiography. It was also found that in kidneys undergoing angiography an overwhelming number of the rejections started the day after angiography. These differences in rejection frequency could not be explained by differences in HLA matching or the origin of the kidneys. These findings suggest a possible connection indicating that the angiography might elicit an acute rejection episode. A possible mechanism for starting this reaction might be activation of the complement system which was found in 50 percent of the patients undergoing angiography in peripheral blood and in 100 percent when studied in vitro

  8. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  9. Conversion of NIR-radiation to Electric Power in a Solar Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; Bot, G. P. A.; Flamand, G.

    2007-02-01

    The scope of this investigation is the development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high outdoor temperatures. As a first measure, the spectral selective cover material, which prevents the entrance of NIR radiation, is investigated. The special spectral selective reflectivity of these materials has to block up to 50% of the solar energy outside the greenhouse, which will reduce the needed cooling capacity. The second measure is the integration of a solar energy system. When the NIR reflecting coating is designed as a parabolic or circular shaped reflector integrated in the greenhouse, the reflected solar energy of a PV cell in the focus point delivers electric energy. With a ray tracing computer program the geometry of the reflector was optimally designed with respect to the maximum power level. The PV or TPV cells mounted in the focal point require cooling due to the high heat load of the concentrated radiation (concentration factor of 40-80). The properties of different materials, Ge, GaSb, CIS and Si cells were investigated to find the optimal cell for this application. For the second option a tubular collector is placed in the focus of the reflector. The collector contains thermal oil, which is heated up to a temperature of 400°C. This hot oil can be used for heating a Stirling motor or an Organic Rankine Cycle (ORC). The typical efficiencies and economic achievement of these systems including the tube collector are compared with the efficiencies of the TPV cells.

  10. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  11. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

  12. Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2016-03-01

    Full Text Available A ground-coupled heat pump (GCHP system used to provide the space heating for an office room is a renewable, high performance technology. This paper discusses vapour compression-based HP systems, briefly describing the thermodynamic cycle calculations, as well as the coefficient of performance (COP and CO2 emissions of a HP with an electro-compressor and compares different heating systems in terms of energy consumption, thermal comfort and environmental impact. It is focused on an experimental study performed to test the energy efficiency of the radiator or radiant floor heating system for an office room connected to a GCHP. The main performance parameters (COP and CO2 emissions are obtained for one month of operation of the GCHP system, and a comparative analysis of these parameters is presented. Additionally, two numerical simulation models of useful thermal energy and the system COP in heating mode are developed using the Transient Systems Simulation (TRNSYS software. Finally, the simulations obtained from TRNSYS software are analysed and compared to the experimental data, showing good agreement and thus validating the simulation models.

  13. Uncertainty and Sensitivity Analysis of Afterbody Radiative Heating Predictions for Earth Entry

    Science.gov (United States)

    West, Thomas K., IV; Johnston, Christopher O.; Hosder, Serhat

    2016-01-01

    The objective of this work was to perform sensitivity analysis and uncertainty quantification for afterbody radiative heating predictions of Stardust capsule during Earth entry at peak afterbody radiation conditions. The radiation environment in the afterbody region poses significant challenges for accurate uncertainty quantification and sensitivity analysis due to the complexity of the flow physics, computational cost, and large number of un-certain variables. In this study, first a sparse collocation non-intrusive polynomial chaos approach along with global non-linear sensitivity analysis was used to identify the most significant uncertain variables and reduce the dimensions of the stochastic problem. Then, a total order stochastic expansion was constructed over only the important parameters for an efficient and accurate estimate of the uncertainty in radiation. Based on previous work, 388 uncertain parameters were considered in the radiation model, which came from the thermodynamics, flow field chemistry, and radiation modeling. The sensitivity analysis showed that only four of these variables contributed significantly to afterbody radiation uncertainty, accounting for almost 95% of the uncertainty. These included the electronic- impact excitation rate for N between level 2 and level 5 and rates of three chemical reactions in uencing N, N(+), O, and O(+) number densities in the flow field.

  14. Differences in the immunologic reactivity of mice treated with UVB or methoxsalen plus UVA radiation

    International Nuclear Information System (INIS)

    Kripke, M.L.; Morison, W.L.; Parrish, J.A.

    1981-01-01

    Skin tumors induced in mice by chronic exposure to UVB radiation are often highly antigenic and regress when transplanted into normal syngeneic animals, but grow progressively in immunosuppressed mice. Exposure of mice to subtumorigenic doses of UVB radiation can abolish this immunologic rejection phenomenon. In this study, we have investigated the effects of treatment with 8-methoxypsoralen plus UVA radiation (PUVA) on the rejection of antigenic UVB-induced tumors. PUVA treatment, with either topical or systemic administration of the psoralen, did not alter the normal process of rejection of UVB-induced tumors. Mice treated with both minimally and markedly phototoxic doses of PUVA rejected tumors with a frequency similar to that seen in untreated animals, although these tumors grew progressively in UVB-irradiated mice. These results indicate that the effects of PUVA treatment differ from those of UVB irradiation in that PUVA treatment does not alter the immunologic rejection of UVB-induced tumors

  15. Combined effect of heat sterilization and ionizing radiation on folacin in canned food

    International Nuclear Information System (INIS)

    Hozova, B.; Sorman, L.

    1986-01-01

    The results are reported of a study in folacin changes following heat sterilization at reduced intensity combined with irradiation of model food products, such as pickled cauliflower and beef in gravy. The folacin content in cauliflower was found to vary with the intensity of heat sterilization; no significant effect was observed of varying radiation doses. With respect to beef in gravy, the study confirmed the suitability of the combined preservation process in view of the higher folacin retention in the given food type. (author). 3 tabs., 14 refs

  16. Radiative heat transfer in coal-fired furnaces and oxycoal retrofit considerations

    Energy Technology Data Exchange (ETDEWEB)

    Erfurth, Jens

    2012-07-01

    Oxycoal combustion is the combustion of coal using a mixture of oxygen and cooled recycled flue gas in place of air. In the last years it has gained interest as a means of CO{sub 2} capture from stationary point sources. In particular, under emission mitigation regimes the retrofit of existing coal-fired power plants may help avoid ''stranded assets'' through lower emissions and thus costs if certain technical criteria can be met. Among these is the need to keep total heat transfer in the boiler constant while not raising the furnace exit temperature. The altered gas composition in oxycoal combustion leads to changes in both convective and radiative heat transfer, of which the latter, while of overwhelming importance in the furnace, poses a particular challenge to modellers. This work is thus primarily concerned with the simulation of radiative heat transfer. After a short introduction to oxycoal combustion, a general discussion of Computational Fluid Dynamics (CFD) models for coal combustion is given. Emphasis is placed on the physics of molecular gas band radiation, respective modelling approaches and their application within a CFD context. Based on this analysis, it is concluded that for the purposes of this work, a non-grey CFD implementation of the Exponential Wide Band Model is most suitable. Then the results of CFD simulations of the furnace of a state-of-the-art coal-fired USC boiler with a thermal power of 1,210 MW are presented, which were carried out using the commercial software FLUENT {sup registered} 6.3, combined with some User-Defined Functions. In addition to air combustion, the cases studied include variations of the burner oxygen concentration and the mode of flue gas recycling (wet and dry), the two additional parameters that present themselves in oxycoal combustion to meet the retrofit criteria. The same burner geometry optimised for oxycoal combustion was used in all cases, while the overall boiler geometry designed for air

  17. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2018-03-01

    Full Text Available Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy’s law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined. Keywords: Porous medium, Heat generation/absorption, SWCNTs and MWCNTs, Nonlinear radiation

  18. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU

    2010-12-01

    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  19. Heat transfer enhancement of automobile radiator using H2O–CuO nanofluid

    Directory of Open Access Journals (Sweden)

    M. Sabeel Khan

    2017-04-01

    Full Text Available In this article, we study heat transfer enhancement of water based nanofluids with application to automotive radiators. In this respect, we consider here three types of different nanoparticles viz. copper oxide (CuO, Titanium dioxide (TiO2 and Aluminum oxide (Al2O3. The dynamics of the flow in a radiator is governed by set of partial differential equations (PDEs along with boundary conditions which are formulated. Suitable similarity transformations are utilized to convert the PDEs into their respective system of coupled nonlinear ordinary differential equations (ODEs. The boundary value problem is solved using Shooting method embedded with Runge-Kutta-Fehlberg (RK-5 numerical scheme. Effects of different physical parameters are studied on profiles of velocity and temperature fields at boundary. In addition, influence of nanoparticle concentration factor on the local coefficient of skin-friction and Nusselt number is analyzed. We conclude that water based nanofluids with copper oxide nano-particles have a much higher heat transfer rate than the Al2O3-water and TiO2-water nanofluids. Moreover, larger the concentration of the CuO nanoparticles in the base fluid higher is the heat transfer rate of CuO-water nanofluid.

  20. Structures to radiate heat softly

    Energy Technology Data Exchange (ETDEWEB)

    Perilae, T.; Wikstroem, T. [ed.

    1997-11-01

    Over the past fifty years, heating systems in single-family houses have taken a great leap forward. First wood-burning stoves gave way to oil heaters; then these were superseded by central heating systems; and now conventional central heating systems have lost their way with the increasingly widespread use of room-specific heating systems