WorldWideScience

Sample records for heat protection tiles

  1. The design of central column protection tiles for the TCV tokamak

    International Nuclear Information System (INIS)

    Pitts, R.A.; Chavan, R.; Moret, J.M.

    1999-01-01

    The large variety of plasma shapes produced in the TCV tokamak places unique demands on the plasma facing surfaces. In particular, the central column graphite armour tiles are solicited during the creation of all TCV plasmas and function as power handling surfaces for both limited and diverted discharges. The higher power flux densities accompanying the addition of electron cyclotron heating systems have necessitated a new, optimized, design for these tiles. The optimization process and the subsequent new tile design are described. A basic 'two point' model of the scrape-off layer plasma in conjunction with TCV equilibrium reconstructions and a simplified representation of the local magnetic field line geometry are used to impose simulated power flux densities onto a parametric toroidal tile contour. The thermo-mechanical response of the tile is then investigated via full 3-D finite element simulations accounting for the non-linear temperature dependence of the graphite thermal diffusivity and radiation from the tile surface. The final design choice is a compromise between the requirements for adequate power handling for a range of magnetic configurations, the need to protect against tile edge misalignment in the presence of grazing field line angles of incidence and the space restrictions imposed by vacuum vessel design. (author)

  2. On the use of flat tile armour in high heat flux components

    Science.gov (United States)

    Merola, M.; Vieider, G.

    1998-10-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution.

  3. On the use of flat tile armour in high heat flux components

    International Nuclear Information System (INIS)

    Merola, M.; Vieider, G.

    1998-01-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution. (orig.)

  4. On the use of flat tile armour in high heat flux components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M.; Vieider, G

    1998-10-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution. (orig.) 7 refs.

  5. Allowable heat load on the edge of the ITER first wall panel beryllium flat tiles

    Directory of Open Access Journals (Sweden)

    R. Mitteau

    2017-08-01

    Full Text Available Plasma facing components are usually qualified to a given heat load density applied at the top face of the armour tiles with normal incidence angle. When employed in tokamak fusion machines, heat loading on the tile sides is possible due to optimised shaping, that doesn't provide edge shadowing for all design situations. An edge heat load may occur both at the tile and component scales. The edge load needs to be controlled and quantified. The adequate control of edge heat loads is especially critical for water cooled components that uses armour tiles which are bonded to the heat sink, for ensuring the long-term integrity of the tile bonding. An edge heat load allowance criterion of 10% of the top heat load is proposed. The 10% criterion is supported by experimental heat flux tests.

  6. PROTECTIVE TREATMENTS FOR LAPPED PORCELAIN STONEWARE TILES AND EVALUATION OF THEIR CLEANABILITY

    Directory of Open Access Journals (Sweden)

    Elisa Rambaldi

    2017-09-01

    Full Text Available Since the arrival of lapped porcelain stoneware tiles on the market, several studies have been focused on the improvement of the technical characteristics of the surfaces of these products. Surface lapping induces aesthetical improvements, but can at the same time deteriorate the performance of porcelain stoneware tiles. To overcome this problem, it is possible to protect the lapped surface with commercial waterproofing materials. In this work, lapped commercial porcelain stoneware tiles with protective stain proofing agents (FILA PD15 and FILA 1239 Plus were evaluated. The stain resistance and chemical resistance results were correlated to the morphological surface characteristics of the products with and without protection. A systematic study of the surface porosity of the tiles was carried out. Results showed that unprotected surface pores tend to fill with dirt that is hardly removable by ordinary maintenance. If the pores are protected, the dirt from foot traffic is deposited only superficially and can be removed.

  7. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  8. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  9. Upgrade of the protection system for the first wall at JET in the ITER Be and W tiles perspective

    International Nuclear Information System (INIS)

    Piccolo, F.; Sartori, F.; Zabeo, L.; Conte, G.; Gauthier, E.

    2006-01-01

    At JET the increase of the additional heating power and the first wall upgrade with a new Be and W tiles in preparation for ITER will require improving the protection system in order to guarantee the integrity of the wall. An accurate estimation of the power load and the temperature of the tiles during a discharge will become crucial to prevent damage to the structure. In that perspective the JET protection system (WALLS) has been substantially improved and is now running at JET. The plasma magnetic information and the input power to the plasma are used to evaluate the thermal load all along the first wall. The evolution of the power distribution and tile temperature during and after a discharge are then calculated by the system. A termination of the discharge is required if a thermal limit is reached or if a vulnerable area of the vessel is exposed to an excessive level of power. An improvement in the results has been obtained using more accurate plasma boundary and magnetic information [L.Zabeo et al.'A new approach to the solution of the vacuum magnetic problem in fusion machines' this conference], developing a detailed physical model (state space) for the heat diffusion for the tiles and having a better estimation of the power deposition and distribution. The real-time data provided by the bolometry has also been taken into the account in order to evaluate the radiated power. The calibration and validation of the system have been achieved with a systematic comparison between the implemented models and the temperatures provided by the thermocouples and the new Infrared Camera. In this paper a description of the structure of the system will be briefly summarized. The models adopted to estimate the power distribution and the thermal diffusion and the comparison with IR camera will be also reported, followed by some experimental examples. (author)

  10. Examination of C/C flat tile mock-ups with hypervapotron cooling after high heat flux testing

    International Nuclear Information System (INIS)

    Schedler, B.; Friedrich, T.; Traxler, H.; Eidenberger, E.; Scheu, C.; Clemens, H.; Pippan, R.; Escourbiac, F.

    2007-01-01

    Two C/C flat tile mock-ups with a hypervapotron cooling concept, have been successfully tested beyond ITER specification (3000 cycles at 15 MW/m 2 , 300 cycles at 20 MW/m 2 and 800-1000 cycles at 25 MW/m 2 ) in two electron beam testing facilities [F. Escourbiac, et al., Experimental simulation of cascade failure effect on tungsten and CFC flat tile armoured HHF components, Fusion Eng. Des., submitted for publication; F. Escourbiac, et al., A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology, Fusion Eng. Des. 75-79 (2005) 387-390]. Both mock-ups provide a SNECMA SEPCARB NS31 armour, which has been joined onto the CuCrZr heat sink by active metal casting (AMC) and electron beam welding (EBW). No tile detachment or sudden loss of single tiles has been observed; a cascade-like failure of flat tile armours was impossible to generate. At the maximum cyclic heat flux load of 25 MW/m 2 all tested tiles performed well except one, which revealed already a clear indication in the thermographic examination at the end of the manufacture. Visual examination and analysis of metallographic cuts of the remaining tiles demonstrated that the interface has not been altered. In addition, the shear strength of the C/C to copper joints measured after the high heat flux (HHF) test has been found to be still above the interlamellar shear strength of the used C/C material. The high resistance of the interface is explained by a modification of the C/C to copper joint interface due to silicon originating from the used C/C material

  11. Examination of C/C flat tile mock-ups with hypervapotron cooling after high heat flux testing

    Energy Technology Data Exchange (ETDEWEB)

    Schedler, B. [Technology Centre of PLANSEE SE, A-6600 Reutte (Austria)], E-mail: bertram.schedler@plansee.com; Friedrich, T.; Traxler, H. [Technology Centre of PLANSEE SE, A-6600 Reutte (Austria); Eidenberger, E.; Scheu, C.; Clemens, H. [Department of Physical Metallurgy and Materials Testing, University of Leoben, A-8700 Leoben (Austria); Pippan, R. [Austrian Academy of Sciences, Erich-Schmid-Institute of Material Science, A-8700 Leoben (Austria); Escourbiac, F. [Association EURATOM-CEA, DSM/DRFC, CEA Cadarache, F-13108 St. Paul Lez Durance (France)

    2007-04-15

    Two C/C flat tile mock-ups with a hypervapotron cooling concept, have been successfully tested beyond ITER specification (3000 cycles at 15 MW/m{sup 2}, 300 cycles at 20 MW/m{sup 2} and 800-1000 cycles at 25 MW/m{sup 2}) in two electron beam testing facilities [F. Escourbiac, et al., Experimental simulation of cascade failure effect on tungsten and CFC flat tile armoured HHF components, Fusion Eng. Des., submitted for publication; F. Escourbiac, et al., A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology, Fusion Eng. Des. 75-79 (2005) 387-390]. Both mock-ups provide a SNECMA SEPCARB NS31 armour, which has been joined onto the CuCrZr heat sink by active metal casting (AMC) and electron beam welding (EBW). No tile detachment or sudden loss of single tiles has been observed; a cascade-like failure of flat tile armours was impossible to generate. At the maximum cyclic heat flux load of 25 MW/m{sup 2} all tested tiles performed well except one, which revealed already a clear indication in the thermographic examination at the end of the manufacture. Visual examination and analysis of metallographic cuts of the remaining tiles demonstrated that the interface has not been altered. In addition, the shear strength of the C/C to copper joints measured after the high heat flux (HHF) test has been found to be still above the interlamellar shear strength of the used C/C material. The high resistance of the interface is explained by a modification of the C/C to copper joint interface due to silicon originating from the used C/C material.

  12. The JET belt limiter tiles

    International Nuclear Information System (INIS)

    Deksnis, E.

    1988-09-01

    The belt limiter system, comprising two full toroidal rings of limiter tiles, was installed in JET in 1987. In consists of water-cooled fins with the limiter material in form of tile inbetween. The tiles are designed to absorb heat fluxes during irradiation without the surface temperature exceeding 2000 0 C and to radiate this heat between pulses to the water cooled sink whose temperature is lower than that of the vacuum vessel. An important feature of the design is to maximise the area of the radiating surface facing the water cooled fin. This leads to a tile depth much greater than the width of the tile facing the heat flux. Limiter tiles intercept particles flowing out of the plasma through the area between the two belt limiter rings and through remaining surface area of the plasma column. Power deposition to a limiter tile depends strongly on the shape of the plasma, the edge plasma properties as well as on the surface profile of the tiles. This paper will discuss the methodology that was followed in producing an optimized surface profile of the tiles. This shaped profile has the feature that the resulting power deposition profile is roughly similar for a wide range of plasma parameters. (author)

  13. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    International Nuclear Information System (INIS)

    Chen Lei; Liu Xiang; Lian Youyun; Cai Laizhong

    2015-01-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal–mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. (paper)

  14. Fabrication of mock-up with Be armour tiles diffusion bonded to the CuCrZr heat sink

    International Nuclear Information System (INIS)

    Moreschi, L.F.; Pizzuto, A.; Alessandrini, I.; Agostini, M.; Visca, E.; Merola, M.

    2001-01-01

    The aim of this work is the manufacture of high heat flux mock-ups with Be armour tiles on a CuCrZr heat sink for fabricating the beryllium section of the divertor vertical target (DVT) in the ITER reactor. Diffusion bonding between the CuCrZr bar and the beryllium tiles was obtained by inserting an aluminium interlayer to accommodate surface irregularities as well as to provide a compliant layer for accommodating thermal mismatches during both manufacturing and operation and cycles

  15. Heat transfer to surface and gaps of RSI tile arrays in turbulent flow at Mach 10.3

    Science.gov (United States)

    Throckmorton, D. A.

    1974-01-01

    Heat transfer to gap walls and surface of a simulated reusable surface insulation (RSI) tile array are presented. The data were obtained in the thick, turbulent tunnel wall boundary layer of the Langley Continuous Flow Hypersonic Tunnel at a freestream Mach number of 10.3 and a freestream unit Reynolds number of one million. Pertinent test variables were: (1) tile array orientation (staggered and in-line), (2) gap width, (3) flow angularity, and (4) tile mismatch.

  16. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    Science.gov (United States)

    Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong

    2015-09-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)

  17. Optimization of the JET Beryllium tile profile for power handling

    International Nuclear Information System (INIS)

    Nunes, I.; Vries, P. de; Lomas, P.J.; Loarte, A.

    2006-01-01

    The primary objective of the ITER-like wall project is to install a beryllium main wall and a tungsten divertor. From the point of view of plasma operations, the power handling properties of the new Be tiles may affect the operational space. The tiles design has to be such that it allows routine plasma operation for ITER relevant scenarios, i.e., 3-5 MA ELMy H-modes with high power input (P in > 30 MW) for lengths of time of ∼ 10 s. Due to the constrains imposed by heat conductivity, eddy current and stress torques on a Be tile, a single Be tile must be an assembly of castellated slices [Thompson V. et al, this conference]. From the point of view of plasma operations, the power handling properties of the new Be tiles can restrict the operational space of JET, if considerable melting of the tiles is to be avoided. This paper describes the power handling studies for the beryllium wall tiles and the optimisation of their design to achieve the operation goal described above. The melting temperature for Be is 1289 o C, corresponding to a energy limit of 60 MJ/m 2 for 10 s [Thompson V. et al, this conference]. For low field line angles, the power density on the toroidally facing surfaces is several times higher than the power density on the tile face requiring these to be shadowed. Furthermore the poloidally facing surfaces also have to be shadowed from assembly to assembly due to the large gap between assemblies. The tiles have been designed taking into account these limits and with a geometrical design such as to avoid exposed surfaces at high angles to the magnetic field being melted due to the expected loads. This has been achieved after detailed studies of the power handling of the various limiters and protections, including the effect of the curvature of the flux surfaces, shadowing and tolerance to misalignment. The surface of the tiles is defined such that, when possible, there is an even distribution of power density over the entire tile surface, and that

  18. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jaksic, Nikola, E-mail: nikola.jaksic@ipp.mpg.de; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-10-15

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m{sup 2} and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first

  19. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-01-01

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m"2 and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first results

  20. Effects of the divertor tile geometries and magnetic field angles on the heat fluxes to the surface

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wanpeng; Sang, Chaofeng; Sun, Zhenyue; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn

    2017-03-15

    Highlights: • Simulation of the plasma behaviors in the divertor gap region is done by using a 2d3 v Particle-In-Cell code. • Heat fluxes on the wall surface in different gap geometries are studied. • The effect of the magnetic field angle on the heat flux is investigated. - Abstract: A two dimension-in-space and three dimension-in-velocity (2d3v) Particle-In-Cell (PIC) code is applied to investigate the plasma behaviors at the divertor gaps region in this work. Electron and D{sup +} ion fluxes to the tile surface in the poloidal and toroidal gaps for different shaped edges are compared to demonstrate the optimized tile geometry. For poloidal gap, shaped edge in the shadowing side makes more ions penetrate into the gap, while shaped edge in the wetted side can mitigate the peak flux value. For toroidal gap, most ions entering the gap impinge on the side tile mainly due to the E × B drift, and shaped wetted edges also can mitigate the peak heat fluxes. In addition, effects of magnetic field inclination angle from toroidal direction on the plasma behaviors are simulated for poloidal and toroidal gaps, respectively. It is found that the magnetic field angles don’t influence the plasma behaviors in poloidal gap; while significant changes have been observed in the toroidal gap.

  1. 40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile subcategory... manufacture of asbestos floor tile. ...

  2. ALT-II armor tile design for upgraded TEXTOR operation

    International Nuclear Information System (INIS)

    Newberry, B.L.; McGrath, R.T.; Watson, R.D.; Kohlhaas, W.; Finken, K.H.

    1994-01-01

    The upgrade of the TEXTOR tokamak at KFA Juelich was recently completed. This upgrade extended the TEXTOR pulse length from 5 seconds to 10 seconds. The auxiliary heating was increased to a total of 8.0 MW through a combination of neutral beam injection and radio frequency heating. Originally, the inertially cooled armor tiles of the full toroidal belt Advanced Limiter Test -- II (ALT-II) were designed for a 5-second operation with total heating of 6.0 MW. The upgrade of TEXTOR will increase the energy deposited per pulse onto the ALT-II by about 300%. Consequently, the graphite armor tiles for the ALT-II had to be redesigned to avoid excessively high graphite armor surface temperatures that would lead to unacceptable contamination of the plasma. This redesign took the form of two major changes in the ALT-II armor tile geometry. The first design change was an increase of the armor tile thermal mass, primarily by increasing the radial thickness of each tile from 17 mm to 20 mm. This increase in the radial tile dimension reduces the overall pumping efficiency of the ALT-II pump limiter by about 30%. The reduction in exhaust efficiency is unfortunate, but could be avoided only by active cooling of the ALT-II armor tiles. The active cooling option was too complicated and expensive to be considered at this time. The second design change involved redefining the plasma facing surface of each armor tile in order to fully utilize the entire surface area. The incident charged particle heat flux was distributed uniformly over the armor tile surfaces by carefully matching the radial, poloidal and toroidal curvature of each tile to the plasma flow in the TEXTOR boundary layer. This geometry redefinition complicates the manufacturing of the armor tiles, but results in significant thermal performance gains. In addition to these geometry upgrades, several material options were analyzed and evaluated

  3. ALT-II armor tile design for upgraded TEXTOR operation

    International Nuclear Information System (INIS)

    Newberry, B.L.; McGrath, R.T.; Watson, R.D.

    1994-01-01

    The upgrade of the TEXTOR tokamak at KFA Julich will be completed in the spring of 1994. The upgrade will extend the TEXTOR pulse length from 5 seconds to 10 seconds. The auxiliary heating systems are also scheduled to be upgraded so that eventually a total of 8.0 MW auxiliary heating will be available through a combination of neutral beam injection and radio frequency heating. Originally, the inertially cooled armor tiles on the full toroidal belt Advanced Limiter Test - II (ALT-II) were designed for 5-second operation with a total heating power of 6.0 MW. The upgrade of TEXTOR will increase the energy deposited per pulse onto ALT-II by more than 300%. Consequently, the graphite armor tiles for ALT-II had to be redesigned in order to increase their thermal inertia and, thereby, avoid excessively high graphite armor surface temperatures that would lead to unacceptable contamination of the plasma. The armor tile thermal inertia had been increase primarily by expanding the radial thickness of the tiles from 17 mm to 20 mm. This increase in radial tile dimension will reduce the overall pumping efficiency of the ALT-II pump limiter by about 30%. The final armor tile design was a compromise between increasing the power handling capability and reducing the particle exhaust efficiency of ALT-II. The reduction in exhaust efficiency is unfortunate, but could only be avoided by active cooling of the ALT-II armor tiles. The active cooling option was too complicated and expensive to be considered at this time

  4. In-situ change and repairing method of armour tile made of carbon fiber composite material in divertor

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro.

    1994-01-01

    A joint portion of a damaged armour tile of a carbon fiber composite material and a divertor substrate is locally heated spontaneously to re-melt the soldering. Then, the damaged tile is removed and the portion where the tile is removed is heated again to melt the soldering, then a tile for exchange is joined. Alternatively, a thermosetting type adhesive is coated on the surface of the damaged armour tile made of carbon fiber composite material on the divertor, and a tile for repairing is adhered thereon then the joint surface is locally heated to cure the adhesive. For local heating, for example, high frequency heating or dielectric heating is used. It is preferably conducted by remote handling by using robot arms under vacuum in an vacuum vessel of the thermonuclear device. The operations of the heating and pressurization for the joint surface are preferably repeated for several times. (N.H.)

  5. Flat tile armour cooled by hypervapotron tube: a possible technology for ITER

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Bayetti, P.; Missirlian, M.; Mitteau, R.; Schedler, B.; Bobin-Vastra, I.

    2003-01-01

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC's) are an important challenge for controlled fusion machine. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally experienced with success in Tore Supra. The components were designed for 10 MW/m 2 and mock-ups were successfully fatigue tested at 15 MW/m 2 , 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m 2 for 1000 cycles without failure. Recently flat tile armored mock-ups cooled by Hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m 2 but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by Hypervapotron tube. New tests are now scheduled to investigate these limits notably in regards to the ITER requirements. The concept could also be experimented in Tore Supra by installing a new limiter into the machine. (authors)

  6. Analysis and design of the beryllium tiles for the JET ITER-like wall project

    International Nuclear Information System (INIS)

    Thompson, V.; Krivchenkov, Y.; Riccardo, V.; Vizvary, Z.

    2007-01-01

    Work is in progress to completely replace, in 2008/9, the existing JET CFC tiles with a configuration of plasma facing materials consistent with the ITER design. The ITER-like wall (ILW) will be created with a combination of beryllium (Be), tungsten (W), W-coated CFC and Be-coated inconel tiles, with the material depending on the local anticipated heat flux and geometry. Over 4000 tiles will be replaced and the ILW will accommodate additional heating up to at least 50 MW for 10 s. One of the objectives is to maintain or improve the existing CFC tile power handling performance which has been achieved in most cases by hiding bolt holes, optimising tile size and profile and introducing castellations on plasma facing surfaces. This paper describes the generic problems associated with the Be tiles (power handling capacity and disruption induced eddy currents) and illustrates the solution selected for the inner wall guard limiter (IWGL) where the present CFC tiles will be replaced with Be

  7. Flat tile armour cooled by hypervapotron tube: a possible technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J.; Escourbiac, F.; Bayetti, P.; Missirlian, M.; Mitteau, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [European Fusion Development Agreement - Close Support Unit (EFDA), Garching (Germany); Schedler, B. [Plansee Aktiengesellschaft, Technology Center, Reutte/Tirol (Austria); Bobin-Vastra, I. [FRAMATOME-ANP, Centre Technique, 71 - Le Creusot (France)

    2003-07-01

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC's) are an important challenge for controlled fusion machine. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally experienced with success in Tore Supra. The components were designed for 10 MW/m{sup 2} and mock-ups were successfully fatigue tested at 15 MW/m{sup 2}, 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m{sup 2} for 1000 cycles without failure. Recently flat tile armored mock-ups cooled by Hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m{sup 2} but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by Hypervapotron tube. New tests are now scheduled to investigate these limits notably in regards to the ITER requirements. The concept could also be experimented in Tore Supra by installing a new limiter into the machine. (authors)

  8. Flat Tile Armour Cooled by Hypervapotron Tube: a Possible Technology for ITER

    Science.gov (United States)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Schedler, B.; Bayetti, P.; Missirlian, M.; Mitteau, R.; Robin-Vastra, I.

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC’s) are an important challenge for controlled fusion machines. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally operated with success in Tore Supra. The components were designed for 10 MW/m2 and mock-ups were successfully fatigue tested at 15 MW/m2, 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m2 for 1000 cycles without failure. Recently flat tile armoured mock-ups cooled by a hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m2 but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by hypervapotron (HV) tube. New tests are now scheduled to investigate these limits in regard to the ITER requirements. Experimental evidence of the concept could be gained in Tore Supra by installing a new limiter into the machine.

  9. Flat Tile Armour Cooled by Hypervapotron Tube: a Possible Technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J.; Escourbiac, F.; Bayetti, P.; Missirlian, M.; Mitteau, R. [Association Euratom CEA, DSM/DRFC/SIPP, St Paul lez Durance (France); Merola, M. [EFDA Close Support Unit, Garching (Germany); Schedler, B. [Plansee Aktiengesellschaft, Reutte (Austria). Technology Center; Bobin-Vastra, I. [Framatome-ANP, Le Creusot (France). Centre Technique

    2004-08-01

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC's) are an important challenge for controlled fusion machines. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally operated with success in Tore Supra. The components were designed for 10MW/m{sup 2} and mock-ups were successfully fatigue tested at 15MW/m{sup 2}; 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25MW/m{sup 2} for 1000 cycles without failure. Recently flat tile armoured mock-ups cooled by a hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10MW/m{sup 2} but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by hypervapotron (HV) tube. New tests are now scheduled to investigate these limits in regard to the ITER requirements. Experimental evidence of the concept could be gained in Tore Supra by installing a new limiter into the machine.

  10. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    International Nuclear Information System (INIS)

    Bortoloni, M; Bottarelli, M; Piva, S

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles. (paper)

  11. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    Science.gov (United States)

    Bortoloni, M.; Bottarelli, M.; Piva, S.

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.

  12. Frost damage of roof tiles: A study on moisture boundary conditions

    OpenAIRE

    Iba, Chiemi; Ueda, Ayumi; Hokoi, Shuichi

    2015-01-01

    Freeze-thaw cycles are the most serious cause of roof tile deterioration; thus, it is important to know the temperature and moisture distributions in tile materials for protection against frost damage. This study focused on moisture boundary conditions for air layers under the tile. Temperature and humidity were measured using model structures with different types of roof tiles. The results showed that the temperatures around the roof were strongly influenced by solar and longwave radiation, ...

  13. ATLAS TileCal LVPS Upgrade Hardware and Testing

    CERN Document Server

    Hibbard, Michael James; The ATLAS collaboration; Hadavand, Haleh Khani

    2018-01-01

    UTA (University of Texas at Arlington) has been designing and producing new testing stations to ensure the reliability and quality of new TileLVPS (Low Voltage Power Supplies), also produced at UTA, which will power the next generation of upgraded hardware in the TileCal (Tile Calorimeter) system of ATLAS at CERN. UTA has produced two new types of testing stations, which build upon the previous generation of testing stations used in the initial production of the TileCal system. The first station is the Initial Test Station, and quickly quantifies a multitude of performance metrics of a LVPS. We have developed our own PC based program which graphically display and records onto file these metrics. A few notable metrics we are measuring are the system clock and its jitter. Excessive clock jitter in LVPS can affect system stability and derate the working range of the system duty cycle. This station also verifies protection circuitry of LVPS, which protects it from over temperature, current and voltage. The second...

  14. Plasma surface interactions at the JET X-point tiles

    International Nuclear Information System (INIS)

    Martinelli, A.P.; Behrisch, R.; Coad, J.P.; Kock, L. de

    1989-01-01

    Operation with a magnetic divertor, which leads to a zero poloidal field inside the volume of the discharge vessel (the X-point) has led to substantial improvements in confinement time in JET. In this mode the diverted plasma is conducted to a large number of graphite tiles (X-point tiles) near the top of the vessel. The power handling capability of these tiles limits the maximum additional heating power to the discharge. The study of the surface modifications of the X-point tiles of JET is therefore of interest both to correlate the magnetic configuration and plasma particle and energy fluxes with the surface modifications, and also to get information about the erosion and deposition at these wall areas. (author) 5 refs., 4 figs

  15. Kinetic calculation of plasma deposition in castellated tile gaps

    International Nuclear Information System (INIS)

    Dejarnac, R.; Gunn, J.P.

    2007-01-01

    Plasma-facing divertors and limiters are armoured with castellated tiles to withstand intense heat fluxes. Recent experimental studies show that a non-negligible amount of deuterium is deposited in the gaps between tiles. We present here a numerical study of plasma deposition in this critical region. For this purpose we have developed a particle-in-cell code with realistic boundary conditions determined from kinetic calculations. We find a strong asymmetry of plasma deposition into the gaps. A significant fraction of the plasma influx is expelled from the gap to be deposited on the leading edge of the downstream tile

  16. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.

    Science.gov (United States)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-02-21

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  17. Geopolymers as potential repair material in tiles conservation

    Science.gov (United States)

    Geraldes, Catarina F. M.; Lima, Augusta M.; Delgado-Rodrigues, José; Mimoso, João Manuel; Pereira, Sílvia R. M.

    2016-03-01

    The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles ( azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as "cold" cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.

  18. The house, the tile stove and the climate change

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2014-01-01

    The tile stove was invented in the North Alpine area between the 8th and 10th century. Apart from convection air heating and clay cupola ovens, this system provided the only possibility for a smoke-free heated living room. The innovation of the tile stove heating system itself did not reach...... the Southern Scandinavian region until the 12th century. In the Upper German speaking area, this heating system had been connected to a characteristic ground plan since the 14th century. This so-called ninefold ground plan consisted of the "stube" and the adjacent kitchen, a central corridor and unheated...... chambers in three bays and two or three aisles. It probably originated from the "appartement" in a noble context, but "trickled down" to urban and rural housing. In contrast to the quick spread of the heating system, this ground plan was only gradually adopted in the Lower Mountain Range, Northern Germany...

  19. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy

    International Nuclear Information System (INIS)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-01-01

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA ‘sub-tile’ strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs. (paper)

  20. Measurements of heat transfer coefficients at low contact pressures for actively cooled bolted armour concepts in Tore Supra

    International Nuclear Information System (INIS)

    Lipa, M.; Chappuis, Ph.; Dufayet, A.

    2000-01-01

    For the future upgrade of inner vessel components (CIEL project) a guard limiter for plasma ramp-up and disruption protection will be installed on the high field side of the vacuum vessel. Among transient heat loads, this structure has to sustain a moderate heat flux in the range of ≤0.5 MW/m 2 during quasi steady state operation (1000 s). A bolted carbon-carbon (C-C) tile is preferred compared with a brazed tile solution due to the expected moderate heat fluxes, costs and the possibility of rapid replacement of individual tiles. Large flat tile assemblies require a sufficient soft and conductive compliant layer enclosed between tile and heat sink in order to avoid thermal contact loss of the assembly during heat loads and therefore minimising the tile surface temperature. The global heat transfer coefficient (H gl ) under vacuum at low contact pressures (0.5-1.5 MPa) between C-C and CuCrZr heat sink substrata has been measured in the experimental device, installation of contact heat transfer measurements (ITTAC), using different compliant materials. It appears that the best compliant layer is a graphite sheet (PAPYEX), compared with copper-felt/foam material. As an example, a H gl number of ∼10 4 W/m 2 K at an average contact pressure of 0.5 MPa has been measured near room temperature between C-C (SEP N11) and CuCrZr substrata using a 0.5-mm thick PAPYEX layer. Thermohydraulic calculations (2D) of the guard limiter design show an expected tile surface temperature of about 550 deg. C in steady state regime for an incident heat flux of 0.5 MW/m 2

  1. Progress in the design of mechanically attached, conductively cooled low-Z armour tiles for the NET integrated first wall

    International Nuclear Information System (INIS)

    Shaw, R.; Vieider, G.

    1991-01-01

    For the NET device complete or extensive coverage of the first wall with a low-Z armour is envisaged. This armour may comprise a general protection, ∝90% total first-wall surface, of low-temperature conductively cooled tiles, complemented by a local protection of radiatively cooled tiles in regions where near peak fluxes are incident. A low-temperature (∝1000deg C) carbon-based armour, cooled via conduction to the reference NET integrated first wall, has been developed using currently available materials. The armour comprises a small square tile fabricated in high-conductivity 3-D or random-fibre carbon fibre reinforced carbon composite attached to the steel first wall via a stainless-steel/refractory metal stud assembly. Attachment forces are maintained within acceptable limits, particularly during baking, through material selection and component geometry. To ensure effective heat transfer throughout the duty cycle an intermediate conductive layer of a highly compliant material is foreseen. The scope of the paper covers the design of the armour assembly for proof of principle testing with the NET first-wall test section, TS1, and reports the results of supporting thermomechanical analyses. (orig.)

  2. Centralized coordinated control to protect the JET ITER-like wall

    International Nuclear Information System (INIS)

    Stephen, A.V.; Arnoux, G.; Budd, T.; Card, P.; Felton, R.; Goodyear, A.; Harling, J.; Kinna, D.; Lomas, P.; McCullen, P.; Thomas, P.; Young, I.; Zastrow, K.D.; Neto, A.; Alves, D.; Valcarcel, D.F.; Jachmich, S.; Devaux, S.

    2012-01-01

    The JET ITER-like wall project (ILW) replaces the first wall carbon fibre composite tiles with beryllium and tungsten tiles which should have improved fuel retention characteristics but are less thermally robust. An enhanced protection system using new control and diagnostic systems has been designed which can modify the pre-planned experimental control to protect the new wall. Key design challenges were to extend the Level-1 supervisory control system to allow configurable responses to thermal problems to be defined without introducing excessive complexity, and to integrate the new functionality with existing control and protection systems efficiently and reliably. Alarms are generated by the vessel thermal map (VTM) system if infra-red camera measurements of tile temperatures are too high and by the plasma wall load system (WALLS) if component power limits are exceeded. The design introduces two new concepts: local protection, which inhibits individual heating components but allows the discharge to proceed, and stop responses, which allow highly configurable early termination of the pulse in the safest way for the plasma conditions and type of alarm. These are implemented via the new real-time protection system (RTPS), a centralized controller which responds to the VTM and WALLS alarms by providing override commands to the plasma shape, current, density and heating controllers. This paper describes the design and implementation of the RTPS system which is built with the Multi-threaded Application Real-Time executor (MARTe) and will present results from initial operations. (authors)

  3. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model.

    Science.gov (United States)

    Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C

    2012-06-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.

  4. Two-dimensional numerical study of ELMs-induced erosion of tungsten divertor target tiles with different edge shapes

    International Nuclear Information System (INIS)

    Huang, Yan; Sun, Jizhong; Hu, Wanpeng; Sang, Chaofeng; Wang, Dezhen

    2016-01-01

    Highlights: • Thermal performance of three edge-shaped divertor tiles was assessed numerically. • All the divertor tiles exposed to type-I ELMs like ITER's will melt. • The rounded edge tile thermally performs the best in all tiles of interest. • The incident energy flux density was evaluated with structural effects considered. - Abstract: Thermal performance of the divertor tile with different edge shapes was assessed numerically along the poloidal direction by a two-dimensional heat conduction model with considering the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma. The energy flux density distribution arriving at the castellated divertor tile surface was evaluated by a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo Collisions code and then the obtained energy flux distribution was used as input for the heat conduction model. The simulation results showed that the divertor tiles with any edge shape of interest (rectangular edge, slanted edge, and rounded edge) would melt, especially, in the edge surface region of facing plasma poloidally under typical heat flux density of a transient event of type-I ELMs for ITER, deposition energy of 1 MJ/m"2 in a duration of 600 μs. In comparison with uniform energy deposition, the vaporizing erosion was reduced greatly but the melting erosion was aggravated noticeably in the edge area of plasma facing diveror tile. Of three studied edge shapes, the simulation results indicated that the divertor plate with rounded edge was the most resistant to the thermal erosion.

  5. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    Ryzhov, Andrey; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's last radial layer can assist in muon tagging using Level-1 muon trigger. It can help in the rejection of fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for Phase-0 upgrade ATLAS program (2013-2014) was the activation of the TileCal third layer signal for assisting the muon trigger at 1.0<|η|<1.3 (Tile-Muon Trigger). This report describes the Tile-Muon Trigger at TileCal upgrade activities, focusing on the new on-detector electronics such as Tile Muon Digitizer Board (TMDB) to provide (receive and digitize) the signal from eight TileCal modules to three Level-1 muon endcap sector logic blocks.

  6. The Level-1 Tile-Muon Trigger in the Tile Calorimeter upgrade program

    International Nuclear Information System (INIS)

    Ryzhov, A.

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers due to slow charged particles (typically protons) without degrading the efficiency of the trigger. The main activity of the Tile-Muon Trigger in the ATLAS Phase-0 upgrade program was to install and to activate the TileCal signal processor module for providing trigger inputs to the Level-1 Muon Trigger. This report describes the Tile-Muon Trigger, focusing on the new detector electronics such as the Tile Muon Digitizer Board (TMDB) that receives, digitizes and then provides the signal from eight TileCal modules to three Level-1 muon endcap Sector-Logic Boards.

  7. Triangular spiral tilings

    International Nuclear Information System (INIS)

    Sushida, Takamichi; Hizume, Akio; Yamagishi, Yoshikazu

    2012-01-01

    The topology of spiral tilings is intimately related to phyllotaxis theory and continued fractions. A quadrilateral spiral tiling is determined by a suitable chosen triple (ζ, m, n), where ζ element of D/R, and m and n are relatively prime integers. We give a simple characterization when (ζ, m, n) produce a triangular spiral tiling. When m and n are fixed, the admissible generators ζ form a curve in the unit disk. The family of triangular spiral tilings with opposed parastichy pairs (m, n) is parameterized by the divergence angle arg (ζ), while triangular spiral tilings with non-opposed parastichy pairs are parameterized by the plastochrone ratio 1/|ζ|. The generators for triangular spiral tilings with opposed parastichy pairs are not dense in the complex parameter space, while those with non-opposed parastichy pairs are dense. The proofs will be given in a general setting of spiral multiple tilings. We present paper-folding (origami) sheets that build spiral towers whose top-down views are triangular tilings. (paper)

  8. Thermal-stress analysis and testing of DIII-D armor tiles

    International Nuclear Information System (INIS)

    Baxi, C.B.; Anderson, P.M.; Reis, E.E.; Smith, J.P.; Smith, P.D.; Croesmann, C.; Watkins, J.; Whitley, J.

    1987-10-01

    It is planned to install about 1500 new armor tiles in the DIII-D tokamak. The armor tiles currently installed in DIII-D are made by brazing Poco AXF-5Q graphite onto Inconel X-750 stock. A small percentage of these have failed by breakage of graphite. These failures were believed to be related to significant residual stress remaining in graphite after brazing. Hence, an effort was undertaken to improve the design with all-graphite tiles. Three criteria must be satisfied by the armor tiles and the hardware used to attach the tiles to the vessel walls: tiles should not structurally fail, peak tile temperature must be less than 2500 K, and peak vessel stresses must be below acceptable levels. A number of alternate design concepts were first analyzed with the two-dimensional finite element codes TOPAZ2D and NIKE2D. Promising designs were optimized for best parameters such as thicknesses, etc. The two best designs were further analyzed for thermal stresses with the three-dimensional codes P/THERMAL and P/STRESS. Prototype tiles of a number of materials were fabricated by GA and tested at the Plasma Materials Test Facility of the Sandia National Laboratory at Albuquerque. The tests simulated the heat flux and cooling conditions in DIII-D. This paper describes the 2-D and 3-D thermal stress analyses, the test results and logic which led to the selected design of the DIII-D armor tiles. 5 refs., 7 figs., 3 tabs

  9. Topology of tiling spaces

    CERN Document Server

    Sadun, Lorenzo

    2008-01-01

    Aperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden "symmetries" that were previously considered impossible, while the tilings themselves were quite striking. The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed. This broader study naturally leads to the topology of tiling spaces. This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to ...

  10. Assessment of Thermal Comfort in a Building Heated with a Tiled Fireplace with the Function of Heat Accumulation

    Science.gov (United States)

    Telejko, Marek; Zender-Świercz, Ewa

    2017-10-01

    Thermal comfort determines the state of satisfaction of a person or group of people with thermal conditions of the environment in which the person or group of persons is staying. This state of satisfaction depends on the balance between the amount of heat generated by the body’s metabolism, and the dissipation of heat from the body to the surrounding environment. Due to differences in body build, metabolism, clothing etc. individuals may feel the parameters of the environment in which they are staying differently. Therefore, it is impossible to ensure the thermal comfort of all users of the room. However, properly designed building systems (heating, ventilation, air conditioning) allow for creating optimal thermal conditions that will evaluated positively by the vast majority of users. Due to the fact that currently we spend even 100% of the day indoors, the subject becomes extremely important. The article presents the evaluation of thermal comfort in rooms heated with a tiled fireplace with the function of accumulation of heat using the PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) indices. It also presents the results of studies, on the quality of the micro-climate in such spaces. The system of heating premises described in the article is not a standard solution, but is now more and more commonly used as a supplement to the heating system, or even as a primary heating system in small objects, e.g. single-family houses, seasonal homes, etc. The studies comprised the measurements and analysis of typical internal micro-climate parameters: temperature, relative humidity and CO2 concentration. The results obtained did not raise any major reservations. In order to fully assess the conditions of use, the evaluation of thermal comfort of the analyzed rooms was made. Therefore, additionally the temperature of radiation of the surrounding areas, and the insulation of the users’ clothing was determined. Based on the data obtained, the PPD and PMV

  11. Recycling Roof Tile Waste Material for Wall Cover Tiles

    Directory of Open Access Journals (Sweden)

    Ambar Mulyono

    2014-02-01

    Full Text Available Prior research on roof tile waste treatment has attempted to find the appropriate technology to reuse old roof tile waste by  create  wall  cladding  materials  from  it.  Through  exploration  and  experimentation,  a  treatment  method  has  been discovered  to  transform  the  tile  fragments  into  artificial  stone  that  resembles  the  shape  of  coral.  This  baked  clay artificial stone material is then processed as a decorative element for vertical surfaces that are not load-bearing, such as on the interior and exterior walls of a building. Before applying the fragments as wall tiles, several steps must be taken: 1  Blunting,  which  changes  the  look  of  tile  fragments  using  a  machine  created  specifically  to  blunt  the  roof-tile fragment  edges,  2  Closing  the  pores  of  the  blunted  fragments  as  a  finishing  step  that  can  be  done  with  a  transparent coat or a solid color of paint, 3 Planting the transformed roof-tile fragments on a prepared tile body made of concrete. In this study, the second phase is done using the method of ceramics glazing at a temperature of 700 °C. The finishing step is the strength of this product because it produces a rich color artificial pebble.

  12. Development, installation, and initial operation of DIII-D graphite armor tiles

    International Nuclear Information System (INIS)

    Anderson, P.M.; Baxi, C.B.; Reis, E.E.; Smith, J.P.; Smith, P.D.

    1988-04-01

    An upgrade of the DIII-D vacuum vessel protection system has been completed. The ceiling, floor, and inner wall have been armored to enable operation of CIT-relevant doublenull diverted plasmas and to enable the use of the inner wall as a limiting surface. The all- graphite tiles replace the earlier partial coverage armor configuration which consisted of a combination of Inconel tiles and graphite brazed to Inconel tiles. A new all-graphite design concept was chosen for cost and reliability reasons. The 10 minute duration between plasma discharges required the tiles to be cooled by conduction to the water-cooled vessel wall. Using two and three- dimensional analyses, the tile design was optimized to minimize thermal stresses with uniform thermal loading on the plasma-facing surface. Minimizing the stresses around the tile hold-down feature and eliminating stress concentrators were emphasized in the design. The design of the tile fastener system resulted in sufficient hold-down forces for good thermal conductance to the vessel and for securing the tile against eddy current forces. The tiles are made of graphite, and a program to select a suitable grade of graphite was undertaken. Initially, graphites were compared based on published technical data. Graphite samples were then tested for thermal shock capacity in an electron beam test facility at the Sandia National Laboratory (SNLA) in Albuquerque, New Mexico, USA. 4 refs., 6 figs

  13. Wang Tiles in Computer Graphics

    CERN Document Server

    Lagae, Ares

    2009-01-01

    Many complex signals in computer graphics, such as point distributions and textures, cannot be efficiently synthesized and stored. This book presents tile-based methods based on Wang tiles and corner tiles to solve both these problems. Instead of synthesizing a complex signal when needed, the signal is synthesized beforehand over a small set of Wang tiles or corner tiles. Arbitrary large amounts of that signal can then efficiently be generated when needed by generating a stochastic tiling, and storing only a small set of tiles reduces storage requirements. A tile-based method for generating a

  14. Tritium distribution on plasma facing graphite tiles of JT-60U

    International Nuclear Information System (INIS)

    Tanabe, T.; Sugiyama, K.; Masaki, K.; Gotoh, Y.; Tobita, K.; Miya, N.

    2003-01-01

    Tritium distributions on the graphite divertor tiles, the dome units and the baffle plates of JT-60U were successfully measured. Poloidally, the highest tritium level was found at the dome top tiles and the outer baffle plates, where the plasma did not hit directly. On the other hand, although the toroidal tritium profiles on each tiles appeared uniform, detailed profiles in full toroidal direction clearly showed a periodic variation corresponding to the position of the magnetic field coils, indicating the ripple loss of high energy tritons as suggested by the OFMC code. Finally, the temperature increase owing to the plasma heat load was found to release the once retained tritium. (author)

  15. Analysis and Design of the Beryllium Tiles for the JET ILW Project

    International Nuclear Information System (INIS)

    Thompson, V.; Krivchenkov, Y.; Riccardo, V.; Vizvary, Z.

    2006-01-01

    Work is in progress to completely replace, in 2008, the JET existing CFC tiles with a configuration of plasma facing materials consistent with the ITER design. The ITER-like Wall (ILW) will be created with a combination of beryllium (Be), tungsten (W), W-Coated CFC and Be-Coated inconel tiles, with the material depending on the local anticipated heat flux and geometry required. Over 2000 tiles will be replaced and the ILW will accommodate additional heating up to at least 50 MW for 10 s. This paper describes the generic problems associated with Be tiles (power handling capacity and disruption induced eddy currents) and illustrates specific design cases. As with the existing first wall components, the Be tiles will be inertially cooled and the Be melting temperature of only 1289 o C will drive their power handling performance. At 40 mm typical thickness, the tiles are '' thermally thick '' for typical 10 s. shots and will handle about 60 MJ/m 2 without melting. Surface castellations and kinematic restraints minimise thermally induced stresses. As the thermal flux arrives along near toroidal directions, the design keeps the exposed depth of poloidally running edges to low levels: down to 40 microns in the most severe positions. This limit strongly constrains the dimensions of the castellation grooves and the placing of the cuts described below. During disruptions, Be tiles are subjected to eddy current torques due to the combination of large changes in magnetic field (typically 100 T/s), high magnetic fields (B(tor) ∼ 4 T in the centre of the plasma) and the low resistivity of Be (8 E-8 Ohm-m at 200 o C, the minimum operating temperature of JET). The ILW Be tiles will manage these torques via a combination of the castellations, along with cuts which will interrupt the eddy current loops. The cuts result in the division of the tiles into several slices which require inconel carrier '' toast racks '' for support. Example cases will show FEA results of eddy current

  16. Miles of tiles

    CERN Document Server

    Radin, Charles

    1999-01-01

    "In this book, we try to display the value (and joy!) of starting from a mathematically amorphous problem and combining ideas from diverse sources to produce new and significant mathematics--mathematics unforeseen from the motivating problem ..." --from the Preface The common thread throughout this book is aperiodic tilings; the best-known example is the "kite and dart" tiling. This tiling has been widely discussed, particularly since 1984 when it was adopted to model quasicrystals. The presentation uses many different areas of mathematics and physics to analyze the new features of such tilings. Although many people are aware of the existence of aperiodic tilings, and maybe even their origin in a question in logic, not everyone is familiar with their subtleties and the underlying rich mathematical theory. For the interested reader, this book fills that gap. Understanding this new type of tiling requires an unusual variety of specialties, including ergodic theory, functional analysis, group theory and ring the...

  17. Deposition of deuterium and metals on divertor tiles in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Jackson, G.L.

    1991-01-01

    Hydrogen recycling and impurity influx are important issues in obtaining high confinement discharges in the D3-D tokamak. To reduce metallic impurities in D3-D, 40% of the wall area, including the highest heat flux zones, have been covered with graphite tiles. However erosion, redeposition and hydrogen retention in the tiles, as well as metal transport from the remaining Inconel walls can lead to enhanced recycling and impurity influx. Hydrogen and metal retention in divertor floor tiles have been measured using external ion beam analysis techniques following four campaigns where tiles were exposed to several thousand tokamak discharges. The areal density of deuterium retained following exposure to tokamak plasmas was measured with external nuclear reaction analysis. External proton-induced x-ray emission analysis was used to measure the areal densities of metallic impurities deposited upon the divertor tiles either by sputtering of metallic components during discharges or as contamination during tile fabrication. Measurements for both deuterium and metallic impurities were taken on both the tile surfaces which face the operating plasma and the surfaces on the side of the tiles which form the small gaps separating each of the tiles in the divertor. The highest areal densities of both deuterium and metals were found on the plasma-facing surface near the inner strike point region of each set of divertor tiles. Significant deposits, extending as fast a 1 cm from the plasma-facing and containing up to forty percent of the total divertor deposition, were also observed on the gap-forming surfaces of the tiles

  18. Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method.

    Science.gov (United States)

    Huh, Kyung-Hoe; Baik, Jee-Seon; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo

    2011-06-01

    This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.

  19. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Preynas, M.; Laqua, H. P.; Marsen, S.; Reintrog, A. [Max-Planck-Institut für Plasmaphysik (IPP), D-17491 Greifswald (Germany); Corre, Y.; Moncada, V.; Travere, J.-M. [IRFM, CEA-Cadarache, 13108 Saint Paul lez Durance Cedex (France)

    2015-11-15

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

  20. Weight change measurements of erosion/deposition at beryllium limiter tiles in ISX-B

    International Nuclear Information System (INIS)

    Roberto, J.B.; Edmonds, P.H.; England, A.C.; Gabbard, A.; Zuhr, R.A.

    1985-07-01

    The weight changes of Be tiles which functioned as a rail limiter in ISX-B for more than 3500 beam-heated discharges have been determined. The net weight loss for the limiter was 2.0 g, with the central tiles losing a total of 3.2 g and inboard tiles gaining 1.2 g. The weight loss is attributed primarily to the release of Be droplets as a result of limiter surface melting. The weight gains resulted from an inward flow of molten material along the limiter surface. The results indicate high erosion (melt loss) with incomplete and nonuniform redeposition (melt flow) of limiter material during periods of limiter melting

  1. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    OpenAIRE

    Carrio Argos, Fernando; Valero, Alberto

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configur...

  2. OPTIMIZATION-BASED APPROACH TO TILING OF FINITE AREAS WITH ARBITRARY SETS OF WANG TILES

    Directory of Open Access Journals (Sweden)

    Marek Tyburec

    2017-11-01

    Full Text Available Wang tiles proved to be a convenient tool for the design of aperiodic tilings in computer graphics and in materials engineering. While there are several algorithms for generation of finite-sized tilings, they exploit the specific structure of individual tile sets, which prevents their general usage. In this contribution, we reformulate the NP-complete tiling generation problem as a binary linear program, together with its linear and semidefinite relaxations suitable for the branch and bound method. Finally, we assess the performance of the established formulations on generations of several aperiodic tilings reported in the literature, and conclude that the linear relaxation is better suited for the problem.

  3. Deposition of deuterium and metals on divertor tiles in the DIII--D tokamak

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Jackson, G.L.

    1992-01-01

    Hydrogen recycling and impurity influx are important issues in obtaining high confinement discharges in the DIII--D tokamak. To reduce metallic impurities in DIII--D, 40% of the wall area, including the highest heat flux zones, have been covered with graphite tiles. However, erosion, redeposition, and hydrogen retention in the tiles, as well as metal transport from the remaining Inconel walls, can lead to enhanced recycling and impurity influx. Hydrogen and metal retention in divertor floor tiles have been measured using external ion beam analysis techniques following four campaigns where tiles were exposed to several thousand tokamak discharges. The areal density of deuterium retained following exposure to tokamak plasmas was measured with external nuclear reaction analysis. External proton-induced x-ray emission analysis was used to measure the areal densities of metallic impurities deposited upon the divertor tiles either by sputtering of metallic components during discharges or as contamination during tile fabrication. Measurements for both deuterium and metallic impurities were taken on both the tile surfaces which face the operating plasma and the surfaces on the sides of the tiles which form the small gaps separating each of the tiles in the divertor. The highest areal densities of both deuterium (from 2 to 8 x 10 18 atoms/cm 2 ) and metals (from 0.2 to 1 x 10 18 atoms/cm 2 ) were found on the plasma-facing surface near the inner strike point region of each set of divertor tiles. Significant deposits, extending as far as 1 cm from the plasma-facing surface and containing up to 40% of the total divertor deposition, were also observed on the gap-forming surfaces of the tiles

  4. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  5. Comparison of medieval decorated floor-tiles with clay and tile fragments from the kilns at Bistrup

    International Nuclear Information System (INIS)

    Als Hansen, B.; Aaman Soerensen, M.; McKerrell, H.; Mejdahl, V.

    1977-01-01

    In 1976 two tile kilns with numerous wasters of ornamented tiles were excavated at Bistrup near Roskilde. Identical ornaments had earlier been found on floor-tiles from seven sites, mainly churches, in north and east Zealand. The question arose whether some of these tiles were made locally or whether all tiles carrying this particular ornamentation were made at Bistrup. Preliminary results obtained from a comparison of the tiles with material from Bistrup means of neutron activation analysis indicate that not all tiles were made at Bistrup. (author)

  6. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  7. SiC Armor Tiles via Magnetic Compaction and Pressureless Sintering

    National Research Council Canada - National Science Library

    Chelluri, Bhanu; Knoth, Ed A; Franks, L. P

    2008-01-01

    The purpose of the SBIR, entitled "Continuous Dynamic Processing of Ceramic Tiles for Ground Vehicle Protection", was to create a high rate, cost effective manufacturing method for producing silicon carbide (SiC...

  8. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  9. Tile Patterns with Logo--Part I: Laying Tile with Logo.

    Science.gov (United States)

    Clason, Robert G.

    1990-01-01

    Described is a method for drawing periodic tile patterns using LOGO. Squares, triangles, hexagons, shape filling, and random tile laying are included. These activities incorporate problem solving, programing methods, and the geometry of angles and polygons. (KR)

  10. Performance Evaluation of Nose Cap to Silica Tile Joint of RLV-TD under the Simulated Flight Environment using Plasma Wind Tunnel Facility

    Science.gov (United States)

    Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen

    2017-12-01

    Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.

  11. Brane tilings and their applications

    International Nuclear Information System (INIS)

    Yamazaki, M.

    2008-01-01

    We review recent developments in the theory of brane tilings and four-dimensional N=1 supersymmetric quiver gauge theories. This review consists of two parts. In part I, we describe foundations of brane tilings, emphasizing the physical interpretation of brane tilings as fivebrane systems. In part II, we discuss application of brane tilings to AdS/CFT correspondence and homological mirror symmetry. More topics, such as orientifold of brane tilings, phenomenological model building, similarities with BPS solitons in supersymmetric gauge theories, are also briefly discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Protect Yourself from Heat Stress

    Centers for Disease Control (CDC) Podcasts

    2016-07-19

    Heat stress can be a major concern for indoor and outdoor workers, especially during the hot summer months. Learn how to identify the symptoms and protect yourself from heat stress.  Created: 7/19/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 7/19/2016.

  13. Explosion-protected electric heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, H

    1984-02-01

    Different constructions of explosion-protected heating systems are described concerning the different types of protection, the service conditions, the installation and the surveillance devices. Interpretations and regulations derived from the VDE Standards are discussed and their relation to the European Standards EN 50014 ... 50020 is considered in a survey.

  14. Protect Your Heart in the Heat

    Science.gov (United States)

    ... Aortic Aneurysm More Protect Your Heart in the Heat Updated:Jul 5,2017 Whatever brings you outside — ... might need to take special precautions in the heat, according to Gerald Fletcher, M.D., professor of ...

  15. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    Science.gov (United States)

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All

  16. High heat flux device of thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo.

    1994-01-01

    The present invention provides an equipments for high heat flux device (divertor) of a thermonuclear device, which absorbs thermal deformation during operation, has a high installation accuracy, and sufficiently withstands for thermal stresses. Namely, a heat sink member is joined to a structural base. Armour tiles are joined on the heat sink member. Cooling pipes are disposed between the heat sink member and the armour tiles. With such a constitution, the heat sink member using a highly heat conductive material having ductility, such as oxygen free copper, the cooling pipes using a material having excellent high temperature resistance and excellent elongation, such as aluminum-dispersed reinforced copper, and the armour tiles are completely joined on the structural base. Therefore, when thermal deformation tends to cause in the high heat flux device such as a divertor, cooling pipes cause no plastic deformation because of their high temperature resistance, but the heat sink member such as a oxygen free copper causes plastic deformation to absorb thermal deformation. As a result, the high heat flux device such as a divertor causes no deformation. (I.S.)

  17. Effects of roof tile permeability on the thermal performance of ventilated roofs. Analysis of annual performance

    Energy Technology Data Exchange (ETDEWEB)

    D' Orazio, M.; Di Perna, C.; Principi, P.; Stazi, A. [DACS, Universita politecnica delle Marche, 60100 Ancona (Italy)

    2008-07-01

    This paper shows the results of the second part of an experimental study aimed at analysing the effects of roof tile permeability on the thermal performances of ventilation ducts. Ventilation ducts under the layer of tiles are typically used in south European countries to limit the energy load during the summer period. The results of the first part of the study, carried out by analysing 14 different types of roof, proved that the air permeability of the layer of tiles determines a certain amount of heat to be released, in addition to the release connected with the stack effect, in ventilation ducts which have the same characteristics but are perfectly airtight. However, the study did not completely resolve some issues since it was carried out on a model roof (6 m x 1.5 m) with devices to raise the layer of tiles and to create the ventilation duct but without those building elements which are present in real roofs and are used to stop insects and small animals from entering the ventilation duct. These elements narrow the inlet and outlet and consequently cause important reductions in pressure. Moreover, the measurements were based on data collected for limited periods of time during the summer season. So as to eliminate any possible uncertainty from the results of the research, the study continued with the creation of a model building on which five types of ventilated roof with different cross sections of the ventilation duct were analysed. The results show that the presence of air permeable layers and elements to protect the ventilation duct eliminate any differences in performance which were due to the cross section of the ventilation duct. (author)

  18. Kinetics of DNA tile dimerization.

    Science.gov (United States)

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.

  19. THE TILES FROM THE STOVES OF K. ROZUMOVSKYI’S PALACE AND PARK ENSEMBLE IN BATURYN HISTORICAL AND CULTURAL PRESERVE

    Directory of Open Access Journals (Sweden)

    М. А. Герасько

    2013-10-01

    Full Text Available The theme of this article is the research of the artistic design of the heating system of K. Rozumovskyi’s palace in Baturyn. The object of the research of this theme is thorough study of the production and application of Baturyn tiles in the heating system of the last Ukrainian hetman’s palace. The method of the research of this theme is study of the written sources: the archival documents, the reports of the archaeological expeditions, popular scientific literature, the periodical press and study of the explored material (tiles, made the visual comparative analysis, visiting the museums of local lore. The results of the research can be used in the study of the tiles production and their application in the artistic design of the stove system heating in the 2nd half of the ХVІІІ –beginning ХІХ cent.Purchase on Elibrary.ru > Buy now

  20. Failure analysis of beryllium tile assembles following high heat flux testing for the ITER program

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C. H.; Yang, N. Y. C.

    2000-01-01

    The following document describes the processing, testing and post-test analysis of two Be-Cu assemblies that have successfully met the heat load requirements for the first wall and dome sections for the ITER (International Thermonuclear Experimental Reactor) fusion reactor. Several different joint assemblies were evaluated in support of a manufacturing technology investigation aimed at diffusion bonding or brazing a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Judicious selection of materials and coatings for these assemblies was essential to eliminate or minimize interactions with the highly reactive beryllium armor material. A thin titanium layer was used as a diffusion barrier to isolate the copper heat sink from the beryllium armor. To reduce residual stresses produced by differences in the expansion coefficients between the beryllium and copper, a compliant layer of aluminum or aluminum-beryllium (AlBeMet-150) was used. Aluminum was chosen because it does not chemically react with, and exhibits limited volubility in, beryllium. Two bonding processes were used to produce the assemblies. The primary process was a diffusion bonding technique. In this case, undesirable metallurgical reactions were minimized by keeping the materials in a solid state throughout the fabrication cycle. The other process employed an aluminum-silicon layer as a brazing filler material. In both cases, a hot isostatic press (HIP) furnace was used in conjunction with vacuum-canned assemblies in order to minimize oxidation and provide sufficient pressure on the assemblies for full metal-to-metal contact and subsequent bonding. The two final assemblies were subjected to a suite of tests including: tensile tests and electron and optical metallography. Finally, high heat flux testing was conducted at the electron beam testing system (EBTS) at Sandia National Laboratories, New Mexico. Here, test mockups were fabricated and subjected to normal heat loads to

  1. Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Luitjohan, K.E. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Heim, B. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Kollar, L. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Skinner, C.H.; Kugel, H.W.; Kaita, R.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-12-15

    Lithium wall conditioning in NSTX has resulted in reduced divertor recycling, improved energy confinement, and reduced frequency of edge-localized modes (ELMs), up to the point of complete ELM suppression. NSTX tiles were removed from the vessel following the 2008 campaign and subsequently analyzed using X-ray photoelectron spectroscopy as well as nuclear reaction ion beam analysis. In this paper we relate surface chemistry to deuterium retention/recycling, develop methods for cleaning of passivated NSTX tiles, and explore a method to effectively extract bound deuterium from lithiated graphite. Li–O–D and Li–C–D complexes characteristic of deuterium retention that form during NSTX operations are revealed by sputter cleaning and heating. Heating to ∼850 °C desorbed all deuterium complexes observed in the O 1s and C 1s photoelectron energy ranges. Tile locations within approximately ±2.5 cm of the lower vertical/horizontal divertor corner appear to have unused Li-O bonds that are not saturated with deuterium, whereas locations immediately outboard of this region indicate high deuterium recycling. X-ray photo electron spectra of a specific NSTX tile with wide ranging lithium coverage indicate that a minimum lithium dose, 100–500 nm equivalent thickness, is required for effective deuterium retention. This threshold is suspected to be highly sensitive to surface morphology. The present analysis may explain why plasma discharges in NSTX continue to benefit from lithium coating thickness beyond the divertor deuterium ion implantation depth, which is nominally <10 nm.

  2. Test of 1D carbon-carbon composite prototype tiles for the SPIDER diagnostic calorimeter

    Science.gov (United States)

    Serianni, G.; Pimazzoni, A.; Canton, A.; Palma, M. Dalla; Delogu, R.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Tollin, M.

    2017-08-01

    Additional heating will be provided to the thermonuclear fusion experiment ITER by injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction at Consorzio RFX in Padova (Italy), the production of negative ions will be studied and optimised. To this purpose the STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) diagnostic will be used to characterise the SPIDER beam during short operation (several seconds) and to verify if the beam meets the ITER requirement regarding the maximum allowed beam non-uniformity (below ±10%). The most important measurements performed by STRIKE are beam uniformity, beamlet divergence and stripping losses. The major components of STRIKE are 16 1D-CFC (Carbon matrix-Carbon Fibre reinforced Composite) tiles, observed at the rear side by a thermal camera. The requirements of the 1D CFC material include a large thermal conductivity along the tile thickness (at least 10 times larger than in the other directions); low specific heat and density; uniform parameters over the tile surface; capability to withstand localised heat loads resulting in steep temperature gradients. So 1D CFC is a very anisotropic and delicate material, not commercially available, and prototypes are being specifically realised. This contribution gives an overview of the tests performed on the CFC prototype tiles, aimed at verifying their thermal behaviour. The spatial uniformity of the parameters and the ratio between the thermal conductivities are assessed by means of a power laser at Consorzio RFX. Dedicated linear and non-linear simulations are carried out to interpret the experiments and to estimate the thermal conductivities; these simulations are described and a comparison of the experimental data with the simulation results is presented.

  3. Tile-Packing Tomography Is NP-hard

    DEFF Research Database (Denmark)

    Chrobak, Marek; Dürr, Christoph; Guíñez, Flavio

    2010-01-01

    Discrete tomography deals with reconstructing finite spatial objects from their projections. The objects we study in this paper are called tilings or tile-packings, and they consist of a number of disjoint copies of a fixed tile, where a tile is defined as a connected set of grid points. A row...

  4. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  5. Geometrical tile design for complex neighborhoods.

    Science.gov (United States)

    Czeizler, Eugen; Kari, Lila

    2009-01-01

    Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.

  6. Tritium Removal from Codeposits on Carbon Tiles by a Scanning Laser

    International Nuclear Information System (INIS)

    C.H. Skinner; C.A. Gentile; A. Carpe; G. Guttadora; S. Langish; K.M. Young; W.M. Shu; H. Nakamura

    2001-01-01

    A novel method for tritium release has been demonstrated on codeposited layers on graphite and carbon-fiber-composite tiles from the Tokamak Fusion Test Reactor (TFTR). A scanning continuous wave Nd laser beam heated the codeposits to a temperature of 1200-2300 degrees C for 10 to 200 milliseconds in an argon atmosphere. The temperature rise of the codeposit was significantly higher than that of the manufactured tile material (e.g., 1770 degrees C cf. 1080 degrees C). A major fraction of tritium was thermally desorbed with minimal change to the surface appearance at a laser intensity of 8 kW/cm(superscript ''2''), peak temperatures above 1230 degrees C and heating duration 10-20 milliseconds. In two experiments, 46% and 84% of the total tritium was released during the laser scan. The application of this method for tritium removal from a tokamak reactor appears promising and has significant advantages over oxidative techniques

  7. Development of a remote handling system for replacement of armor tiles in the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Adachi, J.; Kakudate, S.; Oka, K.; Seki, M.

    1995-01-01

    The armor tiles of the Fusion Experimental Reactor (FER) planned by JAERI are categorized as scheduled maintenance components, since they are damaged by severe heat and particle loads from the plasma during operation. A remote handling system is thus required to replace a large number of tiles rapidly in the highly activated reactor. However, the simple teaching-playback method cannot be adapted to this system because of deflection of the tiles caused by thermal deformation and so on. We have developed a control system using visual feedback control to adapt to this deflection and an end-effector for a single arm. We confirm their performance in tests. (orig.)

  8. Weight change measurements of erosion/deposition at beryllium limiter tiles in the Impurity Study Experiment-B

    International Nuclear Information System (INIS)

    Roberto, J.B.; Edmonds, P.H.; England, A.C.; Gabbard, A.; Zuhr, R.A.

    1986-01-01

    The weight changes of Be tiles which functioned as a rail limiter in ISX-B for more than 3500 beam-heated discharges have been determined. The net weight loss for the limiter was 2.0 g, with the central tiles losing a total of 3.2 g, and the inboard tiles gaining 1.2 g. The weight loss is attributed primarily to the release of Be droplets as a result of limiter surface melting. The weight gains resulted from an inward flow of molten material along the limiter surface. The results indicate high erosion (melt loss) with incomplete and nonuniform redeposition (melt flow) of limiter material during periods of limiter melting

  9. Nonablative lightweight thermal protection system for Mars Aeroflyby Sample collection mission

    Science.gov (United States)

    Suzuki, Toshiyuki; Aoki, Takuya; Ogasawara, Toshio; Fujita, Kazuhisa

    2017-07-01

    In this study, the concept of a nonablative lightweight thermal protection system (NALT) were proposed for a Mars exploration mission currently under investigation in Japan. The NALT consists of a carbon/carbon (C/C) composite skin, insulator tiles, and a honeycomb sandwich panel. Basic thermal characteristics of the NALT were obtained by conducting heating tests in high-enthalpy facilities. Thermal conductivity values of the insulator tiles as well as the emissivity values of the C/C skin were measured to develop a numerical analysis code for predicting NALT's thermal performance in flight environments. Finally, a breadboard model of a 600-mm diameter NALT aeroshell was developed and qualified through vibration and thermal vacuum tests.

  10. Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2014-04-01

    Full Text Available Cool roofs represent an acknowledged passive cooling technique to reduce building energy consumption for cooling and to mitigate urban heat island effects. This paper concerns the evaluation of the dynamic effect of new cool roof clay tiles on building thermal performance in summer and winter conditions. To this end, these properties have been analyzed on traditional roof brick tiles through an indoor and outdoor two-year long continuous monitoring campaign set up in a residential building located in central Italy. The analysis and the cooperation with industrial companies producing brick tiles and reflective coatings allowed the production of a new tile with notable “cool roof” properties through the traditional industrial manufacturing path of such tiles. Notable results show that during summer the high reflection tiles are able to decrease the average external roof surface temperature by more than 10 °C and the indoor operative temperature by more than 3 °C. During winter the average external surface temperature is lower with high reflection tiles by about 1 °C. Singular optic-thermal phenomena are registered while evaluating the dynamics of the cool roof effect. Interesting findings show how the sloped cool roof application could suggest further considerations about the dynamic effect of cool roofs.

  11. Heat Exchange in “Human body - Thermal protection - Environment” System

    Science.gov (United States)

    Khromova, I. V.

    2017-11-01

    This article is devoted to the issues of simulation and calculation of thermal processes in the system called “Human body - Thermal protection - Environment” under low temperature conditions. It considers internal heat sources and convective heat transfer between calculated elements. Overall this is important for the Heat Transfer Theory. The article introduces complex heat transfer calculation method and local thermophysical parameters calculation method in the system called «Human body - Thermal protection - Environment», considering passive and active thermal protections, thermophysical and geometric properties of calculated elements in a wide range of environmental parameters (water, air). It also includes research on the influence that thermal resistance of modern materials, used in special protective clothes development, has on heat transfer in the system “Human body - Thermal protection - Environment”. Analysis of the obtained results allows adding of the computer research data to experiments and optimizing of individual life-support system elements, which are intended to protect human body from exposure to external factors.

  12. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  13. Tritium in the DIII-D carbon tiles

    International Nuclear Information System (INIS)

    Taylor, P.L.; Kellman, A.G.; Lee, R.L.

    1993-06-01

    The amount of tritium in the carbon tiles used as a first wall in the DIII-D tokamak was measured recently when the tiles were removed and cleaned. The measurements were made as part of the task of developing the appropriate safety procedures for processing of the tiles. The surface tritium concentration on the carbon tiles was surveyed and the total tritium released from tile samples was measured in test bakes. The total tritium in all the carbon tiles at the time the tiles were removed for cleaning is estimated to be 15 mCi and the fraction of tritium retained in the tiles from DIII-D operations has a lower bound of 10%. The tritium was found to be concentrated in a narrow surface layer on the plasma facing side of the tile, was fully released when baked to 1,000 degree C, and was released in the form of tritiated gas (DT) as opposed to tritiated water (DTO) when baked

  14. FEM investigation and thermo-mechanic tests of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht

    2013-01-01

    Highlights: • New solid tungsten divertor for fusion experiment ASDEX Upgrade. • Design validation in the high heat flux (HHF) test facility GLADIS (Garching Large Divertor Sample Test Facility). • FEA simulation. -- Abstract: A new solid tungsten divertor for the fusion experiment ASDEX Upgrade is under construction at present. A new divertor tile design has been developed to improve the thermal performance of the current divertor made of tungsten coated fine grain graphite. Compared to thin tungsten coatings, divertor tiles made of massive tungsten allow to extend the operational range and to study the plasma material interaction of tungsten in more detail. The improved design for the solid tungsten divertor was tested on different full scale prototypes with a hydrogen ion beam. The influence of a possible material degradation due to thermal cracking or recrystallization can be studied. Furthermore, intensive Finite Element Method (FEM) numerical analysis with the respective test parameters has been performed. The elastic–plastic calculation was applied to analyze thermal stress and the observed elastic and plastic deformation during the heat loading. Additionally, the knowledge gained by the tests and especially by the numerical analysis has been used to optimize the shape of the divertor tiles and the accompanying divertor support structure. This paper discusses the main results of the high heat flux tests and their numerical simulations. In addition, results from some special structural mechanic analysis by means of FEM tools are presented. Finally, first results from the numerical lifecycle analysis of the current tungsten tiles will be reported

  15. Design of a 2 x 2 scintillating tile package for the SDC barrel electromagnetic tile/fiber calorimeter

    International Nuclear Information System (INIS)

    Hara, K.; Maekoba, H.; Minato, H.; Miyamoto, Y.; Nakano, I.; Okabe, M.; Seiya, Y.; Takano, T.; Takikawa, K.; Yasuoka, K.

    1996-01-01

    We describe R and D results on optical properties of a scintillating tile/fiber system for the SDC barrel electromagnetic calorimeter. The tile/fiber system uses a wavelength shifting fiber to read out the signal of a scintillating plate (tile) and a clear fiber to transmit the signal to a phototube. In the SDC calorimeter design, four of tile/fiber systems are grouped as a 2 x 2 tile package so that the gap width between and the location of the tiles in the absorber slot can be controlled. Optical properties of the tile package such as the light yield, its uniformity, and cross talk were measured in a test bench with a β-ray source and in a 2-GeV/c π + test beam. The performance as an electromagnetic calorimeter was evaluated by a GEANT simulation using the measured response map. We discuss a method of correction for the calorimeter non-uniformity. (orig.)

  16. Composite treatment of ceramic tile armor

    Science.gov (United States)

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  17. NUMERICAL ANALYSIS OF HEAT STORAGE OF SOLAR HEAT IN FLOOR CONSTRUCTION

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Holck, Ole; Svendsen, Svend

    2003-01-01

    with the highest energy con-sumption. The reduction depends on the solar collector area, distribution of the insulation thickness, heat-ing demand and control strategy, but not on pipe spacing and layer thickness and material. Finally, it is shown that the system can also be used for comfort heating of tiled...

  18. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes

    used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...... was based on a polynomial regression predicting yearly tile drain discharge values using site specific parameters such as soil type, catchment topography, etc. as predictors. Values of calibrated model parameters from the dynamic modelling were compared to the same site specific parameter as used...

  19. Microstructural characterization of ceramic floor tiles with the incorporation of wastes from ceramic tile industries

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2010-09-01

    Full Text Available Ceramic floor tiles are widely used in buildings. In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The introduction of the crustiness surface on the ceramic floor tiles interfere in the contact temperature and also it can be an strategy to obtain ceramic tiles more comfortable. In this work, porous ceramic tiles were obtained by pressing an industrial atomized ceramic powder incorporated with refractory raw material (residue from porcelainized stoneware tile polishing and changing firing temperature. Raw materials and obtained compacted samples were evaluated by chemical analysis, scanning electron microscopy (SEM, energy-dispersive spectrometry (EDS, thermogravimetric analysis (TGA, and differential thermal analysis (DTA. Thermal (thermal conductivity and effusivity and physical (porosity measurements were also evaluated.

  20. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    International Nuclear Information System (INIS)

    Escourbiac, F.; Missirlian, M.; Schlosser, J.; Bobin-Vastra, I.; Kuznetsov, V.; Schedler, B.

    2004-01-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m 2 with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m 2 . These results highlight the high potential of this technology for ITER divertor application

  1. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F.; Missirlian, M.; Schlosser, J. [Association EURATOM-CEA Cadarache, Departement de Recherches sur la Fusion Controlee, 13 - Saint Paul lez Durance (France); Bobin-Vastra, I. [AREVA Centre Technique de Framatome, 71 - Le Creusot (France); Kuznetsov, V. [Efremov Institute, Doroga na Metallostroy, St. Petersburg (Russian Federation); Schedler, B. [Plansee AG, Reutte (Austria)

    2004-07-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m{sup 2} with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m{sup 2}. These results highlight the high potential of this technology for ITER divertor application.

  2. Quality control in tile production

    Science.gov (United States)

    Kalviainen, Heikki A.; Kukkonen, Saku; Hyvarinen, Timo S.; Parkkinen, Jussi P. S.

    1998-10-01

    This work studies visual quality control in ceramics industry. In tile manufacturing, it is important that in each set of tiles, every single tile looks similar. For example, the tiles should have similar color and texture. Our goal is to design a machine vision system that can estimate the sufficient similarity or same appearance to the human eye. Currently, the estimation is usually done by human vision. Differing from other approaches our aim is to use accurate spectral representation of color, and we are comparing spectral features to the RGB color features. A laboratory system for color measurement is built. Experimentations with five classes of brown tiles are presented. We use chromaticity RGB features and several spectral features for classification with the k-NN classifier and with a neural network, called Self-Organizing Map. We can classify many of the tiles but there are several problems that need further investigations: larger training and test sets are needed, illuminations effects must be studied further, and more suitable spectral features are needed with more sophisticated classifiers. It is also interesting to develop further the neural approach.

  3. Modeling the effects of tile drain placement on the hydrologic function of farmed prairie wetlands

    Science.gov (United States)

    Werner, Brett; Tracy, John; Johnson, W. Carter; Voldseth, Richard A.; Guntenspergen, Glenn R.; Millett, Bruce

    2016-01-01

    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change.

  4. Improvement of PVC floor tiles by gamma radiation

    International Nuclear Information System (INIS)

    Plessis, T.A. du; Badenhorst, F.

    1988-01-01

    Gamma radiation presents a unique method of transforming highly plasticized PVC floor tiles, manufactured at high speed through injection moulding, into a high quality floor covering at a cost at least 30% less than similarly rated rubber tiles. A specially formulated PVC compound was developed in collaboration with a leading manufacturer of floor tiles. These tiles are gamma crosslinked in its shipping cartons to form a dimensionally stable product which is highly fire resistant and inert to most chemicals and solvents. These crosslinked tiles are more flexible than the highly filled conventional PVC floor tiles, scratch resistant and have a longer lifespan and increased colour fastness. These tiles are also less expensive to install than conventional rubber tiles. (author)

  5. Conceptual design for a bulk tungsten divertor tile in JET

    International Nuclear Information System (INIS)

    Mertens, Ph.; Hirai, T.; Linke, J.; Neubauer, O.; Pintsuk, G.; Philipps, V.; Sadakov, S.; Samm, U.; Schweer, B.

    2007-01-01

    The ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant for the actual first wall construction on ITER. Tungsten plays a key role in the divertor cladding. For the central tile, also called LB-SRP for 'load-bearing septum replacement plate', bulk tungsten is envisaged in order to cope with the high heat loads expected (up to 10 MW/m 2 for 10 s). The outer strike-point in the divertor will be positioned on this tile for the most relevant configurations. Forschungszentrum Juelich (FZJ) has developed a conceptual design based on an assembly of tungsten blades or lamellae. An appropriate interface with the base carrier of JET, on which modules of two tiles are positioned and fixed by remote handling procedures, is a substantial part of the integral design. Important issues are the electromagnetic forces and expected temperature distributions. Material choices combine tungsten, TZM TM , Inconel and ceramic parts. The completed design has been finalised in a proposal to the ILW project, with utmost ITER-relevance

  6. Investigating critical success factors in tile industry

    Directory of Open Access Journals (Sweden)

    Davood Salmani

    2014-04-01

    Full Text Available This paper presents an empirical investigation to determine critical success factors influencing the success of tile industry in Iran. The study designs a questionnaire in Likert scale, distributes it among some experts in tile industry. Using Pearson correlation test, the study has detected that there was a positive and meaningful relationship between marketing planning and the success of tile industry (r = 0.312 Sig. = 0.001. However, there is not any meaningful relationship between low cost production and success of tile industry (r = 0.13 Sig. = 0.12 and, there is a positive and meaningful relationship between organizational capabilities and success of tile industry (r = 0.635 Sig. = 0.000. Finally, our investigation states that technology and distributing systems also influence on the success of tile industry, positively. The study has also used five regression analyses where the success of tile industry was the dependent variable and marketing planning, low cost production and organizational capabilities are independent variables and the results have confirmed some positive and meaningful relationship between the successes of tile industry with all independent variables.

  7. Heat transfer characteristics and limitations analysis of heat-pipe-cooled thermal protection structure

    International Nuclear Information System (INIS)

    Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei

    2014-01-01

    The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed

  8. Physical principles for DNA tile self-assembly.

    Science.gov (United States)

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  9. ATLAS Rewards Russian Supplier for Scintillating Tile Production

    CERN Multimedia

    2001-01-01

    At a ceremony held at CERN on 30 July, the ATLAS collaboration awarded Russian firm SIA Luch from Podolsk in the Moscow region an ATLAS Suppliers Award. This follows delivery by the company of the final batch of scintillating tiles for the collaboration's Tile Calorimeter some six months ahead of schedule.   Representatives of Russian firm Luch Podolsk received the ATLAS Suppliers Award in the collaboration's Tile Calorimeter instrumentation plant at CERN on 30 July. In front of one Tile Calorimeter module instrumented by scintillating tiles are (left to right) IHEP physicists Evgueni Startchenko and Andrei Karioukhine, Luch Podolsk representatives Igor Karetnikov and Yuri Zaitsev, Tile Calorimeter Project Leader Rupert Leitner, ATLAS spokesperson Peter Jenni, and CERN Tile Calorimeter group leader Ana Henriques-Correia. Scintillating tiles form the active part of the ATLAS hadronic Tile Calorimeter, which will measure the energy and direction of particles produced in LHC collisions. They are emb...

  10. ATLAS rewards Russian supplier for scintillating tile production

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The ATLAS collaboration has awarded Russian firm SIA Luch from Podolsk in the Moscow region an ATLAS Supplier Award. This follows delivery by the company of the final batch of scintillating tiles for the collaboration's tile calorimeter some six months ahead of schedule. Representatives of the firm are seen here receiving the award at a ceremony held in the collaboration's tile calorimeter instrumentation plant at CERN on 30 July. In front of one tile calorimeter module instrumented by scintillating tiles are (left to right) IHEP physicists Evgueni Startchenko and Andrei Karioukhine, Luch Podolsk representatives Igor Karetnikov and Yuri Zaitsev, tile calorimeter project leader Rupert Leitner, ATLAS spokesperson Peter Jenni, and CERN tile calorimeter group leader Ana Henriques-Correia.

  11. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    Science.gov (United States)

    Guo, Tian; Gitau, Margaret; Merwade, Venkatesh; Arnold, Jeffrey; Srinivasan, Raghavan; Hirschi, Michael; Engel, Bernard

    2018-01-01

    Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT) has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991-2003) field site and river station data from the Little Vermilion River (LVR) watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine) and SWAT2012 revisions 615 and 645 (the new routine). Both the old and new routines provided reasonable but unsatisfactory (NSE runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE = 0.48-0.65) and nitrate in tile flow (NSE = 0.48-0.68) for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE = 0.00-0.32 and -0.29-0.06, respectively). The new modified curve number calculation method in revision 645 (NSE = 0.50-0.81) better simulated surface runoff than revision 615 (NSE = -0.11-0.49). The calibration provided reasonable parameter sets for the old and new routines in the LVR watershed, and the validation results showed that the new routine has the potential to accurately

  12. Electrokinetic desalination of glazed ceramic tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Ferreira, Celia; Christensen, Iben Vernegren

    2010-01-01

    Electrokinetic desalination is a method where an applied electric DC field is the driving force for removal of salts from porous building materials. In the present paper, the method is tested in laboratory scale for desalination of single ceramic tiles. In a model system, where a tile...... was contaminated with NaCl during submersion and subsequently desalinated by the method, the desalination was completed in that the high and problematic initial Cl(-) concentration was reduced to an unproblematic concentration. Further conductivity measurements showed a very low conductivity in the tile after...... treatment, indicating that supply of ions from the poultice at the electrodes into the tile was limited. Electroosmotic transport of water was seen when low ionic content was reached. Experiments were also conducted with XVIII-century tiles, which had been removed from Palacio Centeno (Lisbon) during...

  13. Investigations on in situ diagnostics by an infrared camera to distinguish between the plasma facing tiles with carbonaceous surface layer and defect in the underneath junction

    International Nuclear Information System (INIS)

    Cai, Laizhong; Gauthier, Eric; Corre, Yann; Liu, Jian

    2013-01-01

    Both a deposition surface layer and a delamination underneath junction existing on plasma facing components (PFCs) can result in abnormal high surface temperature under normal heating conditions. The tile with delamination has to be replaced to prevent from a critical failure (complete delamination) during plasma operation while the carbon deposit can be removed without any repairing. Therefore, distinguishing in situ deposited tiles and junction defect tiles is crucial to avoid the critical failure without unwanted shutdown. In this paper, the thermal behaviors of junction defect tiles and carbon deposit tiles are simulated numerically. A modified time constant method is then introduced to analyze the thermal behaviors of deposited tiles and junction defect tiles. The feasibility of discrimination by analyzing the thermal behaviors of tiles is discussed and the requirements of this method for discrimination are described. Finally, the time resolution requirement of IR cameras to do the discrimination is mentioned

  14. Evaluation of tile layer productivity in construction project

    Science.gov (United States)

    Aziz, Hamidi Abdul; Hassan, Siti Hafizan; Rosly, Noorsyalili; Ul-Saufie, Ahmad Zia

    2017-10-01

    Construction is a key sector of the national economy for countries all over the world. Until today, construction industries are still facing lots of problems concerning the low productivity, poor safety and insufficient quality. Labour productivity is one of the factors that will give impact to the quality of projects. This study is focusing on evaluating the tile layer productivity in the area of Seberang Perai, Penang. The objective of this study is to determine the relationship of age and experience of tile layers with their productivity and to evaluate the effect of nationality to tile layers productivity. Interview and site observation of tile layers has been conducted to obtain the data of age, experience and nationality of tile layers. Site observation is made to obtain the number of tiles installed for every tile layer for the duration of 1 hour, and the data were analysed by using Statistical Package for Social Science (IBM SPSS Statistic 23) software. As a result, there is a moderate linear relationship between age and experience of tile layers with their productivity. The age of 30 and the experience of 4 years give the highest productivity. It also can be concluded that the tile layers from Indonesia tend to have higher productivity compared to tile layers from Myanmar.

  15. Design of TFTR movable limiter blades for ohmic and neutral-beam-heated plasmas

    International Nuclear Information System (INIS)

    Doll, D.W.; Ulrickson, M.A.; Cecchi, J.L.; Citrolo, J.C.; Weissenburger, D.; Bialek, J.

    1981-10-01

    A new set of movable limiter blades has been designed for TFTR that will meet both the requirements of the 4 MW ohmic heated and the 33 MW neutral beam heated plasmas. This is accomplished with three limiter blades each having and elliptical shape along the toroidal direction. Heat flux levels are acceptable for both ohmic heated and pre-strong compression plasmas. The construction consists of graphite tiles attached to cooled backing plates. The tiles have an average thickness of approx. 4.7 cm and are drawn against the backing plate with spring loaded fasteners that are keyed into the graphite. The cooled backing plate provides the structure for resisting disruption and fault induced loads. A set of rollers attached to the top and bottom blades allow them to be expanded and closed in order to vary the plasma surface for scaling experiments. Water cooling lines penetrate only the mid-plane port cover/support plate in such a way as to avoid bolted water connections inside the vacuum boundary and at the same time allow blade movement. Both the upper and lower blades are attached to the mid-plane limiter blade through pivots. Pivot connections are protected against arcing with an alumina coating and a shunt bar strap. Remote handling is considered throughout the design

  16. Porcelain tiles by the dry route

    International Nuclear Information System (INIS)

    Melchiades, F. G.; Daros, M. T.; Boschi, A. O.

    2010-01-01

    In Brazil, the second largest tile producer of the world, at present, 70% of the tiles are produced by the dry route. One of the main reasons that lead to this development is the fact that the dry route uses approximately 30% less thermal energy them the traditional wet route. The increasing world concern with the environment and the recognition of the central role played by the water also has pointed towards privileging dry processes. In this context the objective of the present work is to study the feasibility of producing high quality porcelain tiles by the dry route. A brief comparison of the dry and wet route, in standard conditions industrially used today to produce tiles that are not porcelain tiles, shows that there are two major differences: the particle sizes obtained by the wet route are usually considerably finer and the capability of mixing the different minerals, the intimacy of the mixture, is also usually better in the wet route. The present work studied the relative importance of these differences and looked for raw materials and operational conditions that would result in better performance and glazed porcelain tiles of good quality. (Author) 7 refs.

  17. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  18. The ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Henriques, A.

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  19. Hydrogen isotope distributions and retentions in the inner divertor tile of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Y. [Radioisotope Center, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)]. E-mail: yoya@ric.u-tokyo.ac.jp; Hirohata, Y. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Tanabe, T. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Shibahara, T. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, H. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Oyaidzu, M. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Arai, T. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Masaki, K. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Gotoh, Y. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Okuno, K. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Miya, N. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Hino, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Tanaka, S. [Graduate School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2005-11-15

    Retention profiles of hydrogen and deuterium in graphite tiles placed in the inner divertor region of JT-60U were analyzed by secondary ion mass spectroscopy (SIMS) and thermal desorption spectroscopy (TDS). The difference in hydrogen and deuterium retention behaviour is discussed considering the frequency of the strike-point hit and history of NBI heating power. It was found that most of hydrogen/deuterium was retained in the deposited layers, HH deposition layers/DD deposition layers or co-deposited with carbon. Owing to the higher heating power of DD discharges, the deuterium concentration in the DD deposition layers was much lower than that of hydrogen in the HH deposition layers. On the area showing no deposition, very shallow profile of deuterium dominated hydrogen profile. These results indicate that the tritium retention is strongly influenced by the history of discharge and temperatures. Tritium retention on graphite tiles and deposition layers could be significantly reduced with increasing the operation temperature.

  20. Hydrogen isotope distributions and retentions in the inner divertor tile of JT-60U

    International Nuclear Information System (INIS)

    Oya, Y.; Hirohata, Y.; Tanabe, T.; Shibahara, T.; Kimura, H.; Oyaidzu, M.; Arai, T.; Masaki, K.; Gotoh, Y.; Okuno, K.; Miya, N.; Hino, T.; Tanaka, S.

    2005-01-01

    Retention profiles of hydrogen and deuterium in graphite tiles placed in the inner divertor region of JT-60U were analyzed by secondary ion mass spectroscopy (SIMS) and thermal desorption spectroscopy (TDS). The difference in hydrogen and deuterium retention behaviour is discussed considering the frequency of the strike-point hit and history of NBI heating power. It was found that most of hydrogen/deuterium was retained in the deposited layers, HH deposition layers/DD deposition layers or co-deposited with carbon. Owing to the higher heating power of DD discharges, the deuterium concentration in the DD deposition layers was much lower than that of hydrogen in the HH deposition layers. On the area showing no deposition, very shallow profile of deuterium dominated hydrogen profile. These results indicate that the tritium retention is strongly influenced by the history of discharge and temperatures. Tritium retention on graphite tiles and deposition layers could be significantly reduced with increasing the operation temperature

  1. Performance of the ATLAS Tile calorimeter

    CERN Document Server

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front­end electronics read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read­out system is responsible for reconstructing the data in real­time. The digitized signals are reconstructed with the Optimal Filtering algorithm, which computes for each channel the signal amplitude, time and quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  2. Tiling arbitrarily nested loops by means of the transitive

    Directory of Open Access Journals (Sweden)

    Bielecki Włodzimierz

    2016-12-01

    Full Text Available A novel approach to generation of tiled code for arbitrarily nested loops is presented. It is derived via a combination of the polyhedral and iteration space slicing frameworks. Instead of program transformations represented by a set of affine functions, one for each statement, it uses the transitive closure of a loop nest dependence graph to carry out corrections of original rectangular tiles so that all dependences of the original loop nest are preserved under the lexicographic order of target tiles. Parallel tiled code can be generated on the basis of valid serial tiled code by means of applying affine transformations or transitive closure using on input an inter-tile dependence graph whose vertices are represented by target tiles while edges connect dependent target tiles. We demonstrate how a relation describing such a graph can be formed. The main merit of the presented approach in comparison with the well-known ones is that it does not require full permutability of loops to generate both serial and parallel tiled codes; this increases the scope of loop nests to be tiled.

  3. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  4. Thermal protection from a finite period of heat exposure – Heat survival of flight data recorders

    International Nuclear Information System (INIS)

    Rana, Ruhul Amin; Li, Ri

    2015-01-01

    This work relates to developing thermal protection for a finite period of exposure to a high temperature environment. This type of transient heat transfer problem starts with a heating period, which is then followed by a cooling period once the high temperature environment disappears. The study is particularly relevant to the thermal protection of flight data recorders from high temperature flame. In this work, transient heat conduction through a three-concentric-layer configuration is numerically studied, which includes a metal housing, a thermal insulation, and a phase change material. The thermal performance is evaluated using the center temperature changing with time. It is found that the center temperature reaches a peak during cooling period rather than heating period. Time taken to reach the peak and the peak value depend on the sizes and properties of the layers. The properties include latent heat of fusion, melting temperature, heat capacities, and thermal conductivities. Parametric study is conducted to analyze and distinguish the influence of these parameters. The study provides general guidance for determining sizes and selecting materials for the thermal design of flight data recorders. Additionally, the study is also useful for other similar applications, for which thermal management and protection over a period of time is needed. In this paper, analysis starts with a baseline configuration composed of specific materials and sizes. Finite changes are applied to sizes, properties of the materials, and the results are compared to understand the roles of the varied parameters in affecting the thermal protection performance. - Highlights: • We study the thermal design of flight data recorders for heat survival. • Consecutive heating and cooling of 3-layer configuration is investigated. • Influences of sizes and material properties on thermal protection are explored

  5. TileDCS web system

    International Nuclear Information System (INIS)

    Maidantchik, C; Ferreira, F; Grael, F

    2010-01-01

    The web system described here provides features to monitor the ATLAS Detector Control System (DCS) acquired data. The DCS is responsible for overseeing the coherent and safe operation of the ATLAS experiment hardware. In the context of the Hadronic Tile Calorimeter Detector (TileCal), it controls the power supplies of the readout electronics acquiring voltages, currents, temperatures and coolant pressure measurements. The physics data taking requires the stable operation of the power sources. The TileDCS Web System retrieves automatically data and extracts the statistics for given periods of time. The mean and standard deviation outcomes are stored as XML files and are compared to preset thresholds. Further, a graphical representation of the TileCal cylinders indicates the state of the supply system of each detector drawer. Colors are designated for each kind of state. In this way problems are easier to find and the collaboration members can focus on them. The user selects a module and the system presents detailed information. It is possible to verify the statistics and generate charts of the parameters over the time. The TileDCS Web System also presents information about the power supplies latest status. One wedge is colored green whenever the system is on. Otherwise it is colored red. Furthermore, it is possible to perform customized analysis. It provides search interfaces where the user can set the module, parameters, and the time period of interest. The system also produces the output of the retrieved data as charts, XML files, CSV and ROOT files according to the user's choice.

  6. An investigation of pulsed phase thermography for detection of disbonds in HIP-bonded beryllium tiles in ITER normal heat flux first wall (NHF FW) components

    Energy Technology Data Exchange (ETDEWEB)

    Bushell, J., E-mail: joe.bushell@amec.com [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Sherlock, P. [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Mummery, P. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, England (United Kingdom); Bellin, B.; Zacchia, F. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona (Spain)

    2015-10-15

    Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.

  7. An investigation of pulsed phase thermography for detection of disbonds in HIP-bonded beryllium tiles in ITER normal heat flux first wall (NHF FW) components

    International Nuclear Information System (INIS)

    Bushell, J.; Sherlock, P.; Mummery, P.; Bellin, B.; Zacchia, F.

    2015-01-01

    Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.

  8. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    Directory of Open Access Journals (Sweden)

    T. Guo

    2018-01-01

    Full Text Available Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991–2003 field site and river station data from the Little Vermilion River (LVR watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine and SWAT2012 revisions 615 and 645 (the new routine. Both the old and new routines provided reasonable but unsatisfactory (NSE  <  0.5 uncalibrated flow and nitrate loss results for a mildly sloped watershed with low runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE  =  0.48–0.65 and nitrate in tile flow (NSE  =  0.48–0.68 for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE  =  0.00–0.32 and −0.29–0.06, respectively. The new modified curve number calculation method in revision 645 (NSE  =  0.50–0.81 better simulated surface runoff than revision 615 (NSE  =  −0.11–0.49. The calibration

  9. 29 CFR 1915.51 - Ventilation and protection in welding, cutting and heating.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ventilation and protection in welding, cutting and heating... Welding, Cutting and Heating § 1915.51 Ventilation and protection in welding, cutting and heating. (a) The... dust or dirt from clothing, or for cleaning the work area. (c) Welding, cutting and heating in confined...

  10. The remote maintenance of mechanically attached first wall armour tiles in NET

    International Nuclear Information System (INIS)

    Reeve, T.; Shaw, R.; Suppan, A.; Haferkamp, B.

    1991-01-01

    Protection of a substantial proportion of the NET First Wall (FW) with low-Z armour is envisaged for at least the early operating period of the machine. This armour will take the form of carbon tiles directly attached to the FW. Complete coverage of the FW will require the installation of 20 000-40 000 tiles. The uncertainties existing in FW operating conditions make it difficult to predict the lifetime of the armour components. However, based on present experience, a number of component failures is to be expected in addition to the general wear by plasma erosion. Bearing in mind the hostile environment within the machine, the remote maintainability of these components is thus of fundamental importance and has strongly influenced their design. Mechanical attachment is considered to be the only viable approach for remotely maintainable armour tiles. A series of tools for mounting and demounting such tiles is currently under development at KfK, Karlsruhe. Handling trials are being carried out on a local FW mock-up to optimise the tile attachment designs for efficient remote handling, to provide input to the overall system design and to facilitate the progressive evolution of effective remote handling tools. Such, tools will subsequently be tested in conjunction with The NET Articulated Boom prototype articulated boom transporter to prove their fitness for purpose. The paper reports the current status of this work and outlines the design and principles of operation of the tools developed. The results and conclusions of the investigations to date, including any practical modifications considered necessary to either the original tile attachment arrangements or the preliminary tool designs, are presented. The philosophy behind the attachment and detachment procedures envisaged is also described. (orig.)

  11. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    Science.gov (United States)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  12. Deuterium depth profiling in JT-60U W-shaped divertor tiles by nuclear reaction analysis

    International Nuclear Information System (INIS)

    Hayashi, T.; Ochiai, K.; Masaki, K.; Gotoh, Y.; Kutsukake, C.; Arai, T.; Nishitani, T.; Miya, N.

    2006-01-01

    Deuterium concentrations and depth profiles in plasma-facing graphite tiles used in the divertor of JAERI Tokamak-60 Upgrade (JT-60U) were investigated by nuclear reaction analysis (NRA). The highest deuterium concentration of D/ 12 C of 0.053 was found in the outer dome wing tile, where the deuterium accumulated probably through the deuterium-carbon co-deposition. In the outer and inner divertor target tiles, the D/ 12 C data were lower than 0.006. Additionally, the maximum (H + D)/ 12 C in the dome top tile was estimated to be 0.023 from the results of NRA and secondary ion mass spectroscopy (SIMS). Orbit following Monte-Carlo (OFMC) simulation showed energetic deuterons caused by neutral beam injections (NBI) were implanted into the dome region with high heat flux. Furthermore, the surface temperature and conditions such as deposition and erosion significantly influenced the accumulation process of deuterium. The deuterium depth profile, scanning electron microscope (SEM) observation and OFMC simulation indicated the deuterium was considered to accumulate through three processes: the deuterium-carbon co-deposition, the implantation of energetic deuterons and the deuterium diffusion into the bulk

  13. High thermal load receiving heat plate

    International Nuclear Information System (INIS)

    Shibutani, Jun-ichi; Shibayama, Kazuhito; Yamamoto, Keiichi; Uchida, Takaho.

    1993-01-01

    The present invention concerns a high thermal load heat receiving plate such as a divertor plate of a thermonuclear device. The high thermal load heat receiving plate of the present invention has a cooling performance capable of suppressing the temperature of an armour tile to less than a threshold value of the material against high thermal loads applied from plasmas. Spiral polygonal pipes are inserted in cooling pipes at a portion receiving high thermal loads in the high temperature load heat receiving plate of the present invention. Both ends of the polygonal pipes are sealed by lids. An area of the flow channel in the cooling pipes is thus reduced. Heat conductivity on the cooling surface of the cooling pipes is increased in the high thermal load heat receiving plate having such a structure. Accordingly, temperature elevation of the armour tile can be suppressed. (I.S.)

  14. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  15. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss.

    Science.gov (United States)

    Drury, C F; Tan, C S; Reynolds, W D; Welacky, T W; Oloya, T O; Gaynor, J D

    2009-01-01

    Improving field-crop use of fertilizer nitrogen is essential for protecting water quality and increasing crop yields. The objective of this study was to determine the effectiveness of controlled tile drainage (CD) and controlled tile drainage with subsurface irrigation (CDS) for mitigating off-field nitrate losses and enhancing crop yields. The CD and CDS systems were compared on a clay loam soil to traditional unrestricted tile drainage (UTD) under a corn (Zea Mays L.)-soybean (Glycine Max. (L.) Merr.) rotation at two nitrogen (N) fertilization rates (N1: 150 kg N ha(-1) applied to corn, no N applied to soybean; N2: 200 kg N ha(-1) applied to corn, 50 kg N ha(-1) applied to soybean). The N concentrations in tile flow events with the UTD treatment exceeded the provisional long-term aquatic life limit (LT-ALL) for freshwater (4.7 mg N L(-1)) 72% of the time at the N1 rate and 78% at the N2 rate, whereas only 24% of tile flow events at N1 and 40% at N2 exceeded the LT-ALL for the CDS treatment. Exceedances in N concentration for surface runoff and tile drainage were greater during the growing season than the non-growing season. At the N1 rate, CD and CDS reduced average annual N losses via tile drainage by 44 and 66%, respectively, relative to UTD. At the N2 rate, the average annual decreases in N loss were 31 and 68%, respectively. Crop yields from CDS were increased by an average of 2.8% relative to UTD at the N2 rate but were reduced by an average of 6.5% at the N1 rate. Hence, CD and CDS were effective for reducing average nitrate losses in tile drainage, but CDS increased average crop yields only when additional N fertilizer was applied.

  16. Solving Vertex Cover Problem Using DNA Tile Assembly Model

    Directory of Open Access Journals (Sweden)

    Zhihua Chen

    2013-01-01

    Full Text Available DNA tile assembly models are a class of mathematically distributed and parallel biocomputing models in DNA tiles. In previous works, tile assembly models have been proved be Turing-universal; that is, the system can do what Turing machine can do. In this paper, we use tile systems to solve computational hard problem. Mathematically, we construct three tile subsystems, which can be combined together to solve vertex cover problem. As a result, each of the proposed tile subsystems consists of Θ(1 types of tiles, and the assembly process is executed in a parallel way (like DNA’s biological function in cells; thus the systems can generate the solution of the problem in linear time with respect to the size of the graph.

  17. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    Science.gov (United States)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  18. 2-D tiles declustering method based on virtual devices

    Science.gov (United States)

    Li, Zhongmin; Gao, Lu

    2009-10-01

    Generally, 2-D spatial data are divided as a series of tiles according to the plane grid. To satisfy the effect of vision, the tiles in the query window including the view point would be displayed quickly at the screen. Aiming at the performance difference of real storage devices, we propose a 2-D tiles declustering method based on virtual device. Firstly, we construct a group of virtual devices which have same storage performance and non-limited capacity, then distribute the tiles into M virtual devices according to the query window of 2-D tiles. Secondly, we equably map the tiles in M virtual devices into M equidistant intervals in [0, 1) using pseudo-random number generator. Finally, we devide [0, 1) into M intervals according to the tiles distribution percentage of every real storage device, and distribute the tiles in each interval in the corresponding real storage device. We have designed and realized a prototype GlobeSIGht, and give some related test results. The results show that the average response time of each tile in the query window including the view point using 2-D tiles declustering method based on virtual device is more efficient than using other methods.

  19. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  20. Modular robotic tiles: experiments for children with autism

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Dam Pedersen, Martin; Beck, Richard

    2009-01-01

    rehabilitation), and with the proper radio communication mechanism they may give unique possibilities for documentation of the physical activity (e.g., therapeutic treatment). A major point of concern in modular robotics is the connection mechanism, so we investigated different solutions for the connection......We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment. The modular robotic tiles motivate the user...... to perform physical activities by providing immediate feedback based upon their physical interaction with the system. With the modular robotic tiles, the user is able to make new physical set-ups within less than a minute. The tiles are applicable for different forms of physical activities (e.g., therapeutic...

  1. Carbon tiles as spectral-shifter for long-life liquid blanket in LHD-type reactor FFHR

    International Nuclear Information System (INIS)

    Sagara, A.; Imagawa, S.; Tanaka, T.; Muroga, T.; Kubota, Y.; Dolan, T.; Hashizume, H.; Kunugi, T.; Fukada, S.; Shimizu, A.; Terai, T.; Mitarai, O.

    2006-01-01

    In terms of engineering feasibility for long-life Flibe blanket in LHD-type reactor FFHR, the Spectral-shifter and Tritium breeder Blanket (STB) concept is evaluated by taking neutron irradiation effects into account under system integration such as Flibe cooling and components replacement. FEM calculations for the neutron wall loading of 1.5 MW/m 2 show that the temperature of the STB armor tile can be kept below 2000 K by optimizing the first metal wall thickness. The heat load experiment on the STB armor mockup confirms feasibility of the temperature control and mechanical joining. Degradation of STB armor tiles due to neutron irradiation requires replacement of them every few years by means of remote handling 'screw coasters' using helical winding, where the replaced tiles are low level wastes. Although the STB concept is feasible within nuclear and thermal properties, more detailed structural optimization is needed including the mechanical and chemical properties

  2. Introductory Tiling Theory for Computer Graphics

    CERN Document Server

    Kaplan, Craig

    2009-01-01

    Tiling theory is an elegant branch of mathematics that has applications in several areas of computer science. The most immediate application area is graphics, where tiling theory has been used in the contexts of texture generation, sampling theory, remeshing, and of course the generation of decorative patterns. The combination of a solid theoretical base (complete with tantalizing open problems), practical algorithmic techniques, and exciting applications make tiling theory a worthwhile area of study for practitioners and students in computer science. This synthesis lecture introduces the math

  3. Glazed Tiles as Floor Finish in Nigeria

    Directory of Open Access Journals (Sweden)

    Toyin Emmanuel AKINDE

    2013-09-01

    Full Text Available Tile is no doubt rich in antiquity; its primordial  show, came as mosaic with primary prospect in sacred floor finish before its oblivion, courtesy of, later consciousness towards wall finish in banquets, kitchens, toilets, restaurants and even bars. Today, its renaissance as floor finish is apparent in private and public architectural structures with prevalence in residential, recreational, commercial, governmental and other spaces. In Nigeria, the use of glazed tiles as floor finish became apparent, supposedly in mid-twentieth century; and has since, witnessed ever increasing demands from all sundry; a development that is nascent and has necessitated its mass  production locally with pockets of firms in the country. The latter however, is a resultant response to taste cum glazed tiles affordability, whose divergent sophistication in design, colour, size and shape is believed preferred to terrazzo, carpet and floor flex tile. Accessible as glazed tile and production is, in recent times; its dearth of a holistic literature in Nigeria is obvious. In the light of the latter, this paper examine glazed tiles as floor finish in Nigeria, its advent, usage, production, challenge, benefit and prospect with the hope of opening further frontier in discipline specifics.

  4. 29 CFR 1926.353 - Ventilation and protection in welding, cutting, and heating.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ventilation and protection in welding, cutting, and heating... Welding and Cutting § 1926.353 Ventilation and protection in welding, cutting, and heating. (a) Mechanical... the work area. (b) Welding, cutting, and heating in confined spaces. (1) Except as provided in...

  5. 2-D temperature distribution and heat flux of PFC in 2011 KSTAR campaign

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Eunnam, E-mail: bang14@nfri.re.kr; Hong, Suk-Ho; Yu, Yaowei; Kim, Kyungmin; Kim, Hongtack; Kim, Hakkun; Lee, Kunsu; Yang, Hyunglyul

    2013-10-15

    Highlights: • The heat flux on PFC tiles of 12 s pulse duration and 630 kA plasma current is about 0.02 MW/m{sup 2}. • When the cryopump is operated, the heat flux of CD is higher than without cryopump. • The more H-mode duration is long, the more heat flux on divertor is high. -- Abstract: KSTAR has reached a plasma current up to 630 kA, plasma duration up to 12 s, and has achieved high confinement mode (H-mode) in 2011 campaign. The heat flux of PFC tile was estimated from the temperature increase of PFC since 2010. The heat flux of PFC tiles increases significantly with higher plasma current and longer pulse duration. The time-averaged heat flux of shots in 2010 campaign (with 3 s pulse durations and I{sub p} of 611 kA) is 0.01 MW/m{sup 2} while that in 2011 campaign (with 12 s pulse duration and I{sub p} of 630 kA) is about 0.02 MW/m{sup 2}. The heat flux at divertor is 1.4–2 times higher than that at inboard limiter or passive stabilizer. With the cryopump operation, the heat flux at the central divertor is higher than that without cryopump. The heat flux at divertor is proportional to, of course, the duration of H-mode. Furthermore, a software tool, which visualizes the 2D temperature distribution of PFC tile and estimates the heat flux in real time, is developed.

  6. Measurement of the nonaxisymmetric heat load distribution on the first wall of TFTR due to locked modes

    International Nuclear Information System (INIS)

    Janos, A.C.; Fredrickson, E.; McGuire, K.M.; Nagayama, Y.; Owens, D.K.

    1992-01-01

    The first wall of TFTR is covered in large part (23%) by an inner-wall bumper limiter which is the primary power handling structure in TFTR. The limiter is comprised of more than 2000 tiles, and is instrumented with a large number (>100) of thermocouples in a two-dimensional (2D) array, primarily for protection of the wall. While only about 5% of the tiles are monitored, this thermocouple system is nevertheless capable of mapping details in the nonaxisymmetric, as well as symmetric, heat load patterns encountered under different conditions. In particular, helical heating patterns are observed in discharges which have locked modes. The helical patterns clearly match the expected trajectories based on the m/n mode numbers obtained from Mirnov coils (m/n=2/1 and 4/1), so that the thermocouple system can and was used to identify the existence and mode number of a locked mode. While TFTR discharges rarely suffer from locked modes, locked modes always alter the heating pattern. The locked modes are found to very significantly redistribute the heat load for both ohmic and NBI heated discharges. Locked modes can make what were the coldest areas into the hottest areas, and vice versa. Locked modes also can alter the heat pattern resulting from the frequent disruptions which occur as a result of a locked mode

  7. Detection of beta radiation emitted from painted tiles

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1987-01-01

    At the Krafwerk Union (KWU), Erlangen, Germany, it was confirmed that some types of painted tiles of italian origin were radioactive. In this Work, performed at Institut fur Strahlenschutz, GSF, Germany, ultrathin 60μm) thermoluminescent samples of CaSO 4 :Tm were used for the determination of absorved dose rates in air (at the tile surface and at distance of 5cm from it) and of transmission factors for different tissue equivalent material thicknesses. For comparison the absorved dose rates in air from cement walls without tile revestment and with simple tile revestment (tiles without painted ornaments) were also determined. In these cases the results were the same as those obtained normally from building materials. (Author) [pt

  8. Tile Drainage Expansion Detection using Satellite Soil Moisture Dynamics

    Science.gov (United States)

    Jacobs, J. M.; Cho, E.; Jia, X.

    2017-12-01

    In the past two decades, tile drainage installation has accelerated throughout the Red River of the North Basin (RRB) in parts of western Minnesota, eastern North Dakota, and a small area of northeastern South Dakota, because the flat topography and low-permeability soils in this region necessitated the removal of excess water to improve crop production. Interestingly, streamflow in the Red River has markedly increased and six of 13 major floods during the past century have occurred since the late 1990s. It has been suggested that the increase in RRB flooding could be due to change in agricultural practices, including extensive tile drainage installation. Reliable information on existing and future tile drainage installation is greatly needed to capture the rapid extension of tile drainage systems and to locate tile drainage systems in the north central U.S. including the RRB region. However, there are few reliable data of tile drainage installation records, except tile drainage permit records in the Bois de Sioux watershed (a sub-basin in southern part of the RRB where permits are required for tile drainage installation). This study presents a tile drainage expansion detection method based on a physical principle that the soil-drying rate may increase with increasing tile drainage for a given area. In order to capture the rate of change in soil drying rate with time over entire RRB (101,500 km2), two satellite-based microwave soil moisture records from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and AMSR2 were used during 2002 to 2016. In this study, a sub-watershed level (HUC10) potential tile drainage growth map was developed and the results show good agreement with tile drainage permit records of six sub-watersheds in the Bois de Sioux watershed. Future analyses will include improvement of the potential tile drainage map through additional information using optical- and thermal-based sensor products and evaluation of its

  9. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    Science.gov (United States)

    Greenberg, H. S.

    1994-01-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  10. Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.

    Science.gov (United States)

    Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan

    2015-01-01

    The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&A “Beautiful Math” articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry.

  11. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Van Daalen, Tal Roelof; The ATLAS collaboration

    2018-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for the reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized every 25 ns by sampling the signal. About 10000 channels of the front-end electronics measure the signals of the calorimeter with energies ranging from ~30 MeV to ~2 TeV. Each step of the signal reconstruction from scintillation light to the digital pulse reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations...

  12. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum fro...

  13. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from elec...

  14. Detection of beta radiation emitted from painted tiles

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1988-06-01

    At the Kraftwerk Union (KWU), Erlangen, Federal Republic of Germany, it was confirmed that some types of painted tiles of italian origin were radioactive. In this work, performed at Institut fur Strahlenschutz, GSF, Munich, Germany, ultra-thin (60μm) thermoluminescent samples of CaSO 4 :Tm were used for the determination of absorved dose rates in air (at the tile surface and at the distance of 5 cm from it) and of transmission factors for different tissue equivalent material thicknesses. For comparison the absorved dose rates in air from cement walls without tile revestment and with simple tile revestment (tiles without painted ornaments) were also determined. In these cases the results were the same as those obtained normally from building materials. (author) [pt

  15. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  16. Tiling by rectangles and alternating current

    KAUST Repository

    Prasolov, M. V.; Skopenkov, Mikhail

    2011-01-01

    This paper is on tilings of polygons by rectangles. A celebrated physical interpretation of such tilings by R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte uses direct-current circuits. The new approach of this paper is an application

  17. High thermal load structure

    International Nuclear Information System (INIS)

    Tsujimura, Seiichi; Toyota, Masahiko.

    1995-01-01

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.)

  18. High thermal load structure

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Seiichi; Toyota, Masahiko

    1995-06-16

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.).

  19. Thermal Protection Test Bed Pathfinder Development Project

    Science.gov (United States)

    Snapp, Cooper

    2015-01-01

    In order to increase thermal protection capabilities for future reentry vehicles, a method to obtain relevant test data is required. Although arc jet testing can be used to obtain some data on materials, the best method to obtain these data is to actually expose them to an atmospheric reentry. The overprediction of the Orion EFT-1 flight data is an example of how the ground test to flight traceability is not fully understood. The RED-Data small reentry capsule developed by Terminal Velocity Aerospace is critical to understanding this traceability. In order to begin to utilize this technology, ES3 needs to be ready to build and integrate heat shields onto the RED-Data vehicle. Using a heritage Shuttle tile material for the heat shield will both allow valuable insight into the environment that the RED-Data vehicle can provide and give ES3 the knowledge and capability to build and integrate future heat shields for this vehicle.

  20. Thermal performance of sisal fiber-cement roofing tiles for rural constructions

    OpenAIRE

    Tonoli,Gustavo Henrique Denzin; Santos,Sérgio Francisco dos; Rabi,José Antonio; Santos,Wilson Nunes dos; Savastano Junior,Holmer

    2011-01-01

    Roofing provides the main protection against direct solar radiation in animal housing. Appropriate thermal properties of roofing materials tend to improve the thermal comfort in the inner ambient. Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana) were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers. Nonasbestos tiles were evaluated and compared with commercially available asbestos-cement sheet...

  1. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  2. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Hrynevich, Aliaksei; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  3. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.

    Science.gov (United States)

    Moriasi, Daniel N; Gowda, Prasanna H; Arnold, Jeffrey G; Mulla, David J; Ale, Srinivasulu; Steiner, Jean L; Tomer, Mark D

    2013-11-01

    Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Heat strain in protective clothing - challenges and intervention strategies

    NARCIS (Netherlands)

    McLellan, T.M.; Daanen, H.A.M.; Kiekens, P.; Jayaraman, S.

    2012-01-01

    Humans rely on sweat evaporation during exercise in the heat to promote cooling and to maintain thermal homeostasis. In protective clothing, however, sweat evaporation is severely hampered and this may lead to uncompensable heat strain, where core body temperature continues to rise leading to

  5. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS sub-detectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. Seventy thousand (70000) parameters are used for control and monitoring purposes of TileCal, requiring an automated system. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCa...

  6. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.

    Science.gov (United States)

    Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan

    2017-09-26

    Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.

  7. Large-Aperture Grating Tiling by Interferometry for Petawatt Chirped-Pulse--Amplification Systems

    International Nuclear Information System (INIS)

    Qiao, J.; Kalb, A.; Guardalben, M.J.; King, G.; Canning. D.; Kelly, J.H.

    2007-01-01

    A tiled-grating assembly with three large-scale gratings is developed with real-time interferometric tiling control for the OMEGA EP Laser Facility. An automatic tiling method is achieved and used to tile a three-tile grating assembly with the overall wavefront reconstructed. Tiling parameters sensitivity and focal-spot degradation from all combined tiling errors are analyzed for a pulse compressor composed of four such assemblies

  8. Electro-desalination of glazed tile panels - discussion of possibilities

    DEFF Research Database (Denmark)

    Dias-Ferreira, Célia; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2016-01-01

    . In the few experiments conducted on tiles with attached mortar, the mortar was desalinated to a higher degree than the biscuit and successful desalination of the biscuit through the mortar requires further research. In-situ pilot scale tests were performed on highly salt-contaminated walls without tiles...... by placing electrodes at the same side of the wall. Thus it may be possible to desalinate tile panels, without any physical damage of the fragile glaze, by placing electrodes on the back of the wall or by removing some tiles, placing electrodes in their spaces, and extracting the salts from there before...... the tiles are placed back again....

  9. Oxidation protection of austenite steels by heat-resisting glass-and-enamel coatings

    International Nuclear Information System (INIS)

    Lobzhanidze, V.N.; Korchagin, V.S.

    1977-01-01

    The use of glass-enamel coatings for corrosion protection of austenitic steels during heat treatment has been investigated. When working out the composition of the protective coating, the method of mathematical planning of experiments has been used. It is shown that the coating under investigation can best be used in heat treatment of items with a prolonged time of heating to 1050 deg C (18-20 hr). The savings resulting from the introduction of the heat-resistant glass-enamel coating exceed 30000 roubles

  10. Heat removal in INTOR via a toroidal limiter

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1981-01-01

    In the present paper the potential of removing about 100 MW of thermal plasma power via a toroidal limiter in INTOR is studied. The heat flux distributions on various limiter configurations are calculated and the thermal response of a graphite tile limiter is estimated on the base of a one-dimensional heat conduction approach. The evaporation rates which have to be expected for the given energy flux densities and radiation cooled graphite tiles are evaluated. According to the present understanding it should be possible to remove 100 MW power from the INTOR plasma via a radiation cooled toroidal limiter. (author)

  11. 9 CFR 91.22 - Protection from heat of boilers and engines.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Protection from heat of boilers and... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the engine or boiler rooms unless the sides of said engine or boiler rooms are covered by a tongue and groove...

  12. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  13. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    Science.gov (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  14. Performance of the ATLAS Tile Calorimeter

    Science.gov (United States)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  15. Glutamine's protection against cellular injury is dependent on heat shock factor-1.

    Science.gov (United States)

    Morrison, Angela L; Dinges, Martin; Singleton, Kristen D; Odoms, Kelli; Wong, Hector R; Wischmeyer, Paul E

    2006-06-01

    Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1(+/+)) and knockout (HSF-1(-/-)) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1(+/+) cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1(-/-) cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1(-/-) cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.

  16. NANO-SIZED PIGMENT APPLICATIONS IN İZNİK TILES

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2012-12-01

    Full Text Available Traditional İznik tiles are known as “unproducable” due to its high quartz content. İznik tiles contain four different layers as “body, engobe (slip, decors and glaze” and each one has some different starting materials. Recent studies have showed that the production techniques and the particle size of pigments are important parameters in development of colours. TUBITAK MRC and İznik Foundation carried out an experimental work to improve and understand the effects of nanotechnology application to İznik tiles. High quartz content was kept as it is and pigments were applied in decorationas nano-sized pigments.İznik tiles were produced and comparison was carried out between traditional and modern İznik tiles in colour and brightness. Characterization techniques were used in order to understand andcompare the results and also the effects of nano-sized pigments to İznik tiles.

  17. Data Quality system of the ATLAS hadronic Tile calorimeter

    International Nuclear Information System (INIS)

    Nemecek, Stanislav

    2012-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. It is subdivided into a large central barrel and two smaller lateral extended barrels. Each barrel consists of 64 wedges, made of iron plates and scintillating tiles. Two edges of each scintillating tile are air-coupled to wave-length shifting (WLS) fibres which collect the scintillating light and transmit it to photo-multipliers. The total number of channels is about 10000. An essential part of the TileCal detector is the Data Quality (DQ) system. The DQ system is designed to check the status of the electronic channels. It is designed to provide information at two levels - online and offline. The online TileCal DQ system monitors continuously the data while they are recorded and provides a fast feedback. The offline DQ system allows a detailed study, if needed it provides corrections to be applied to the recorded data and it allows to validate the data for physics analysis. In addition to the check of physics data the TileCal DQ systems also operate with calibration data. The TileCal calibration system provides well defined signals and the response to the calibration signals allows checking the behaviour of the electronic channels in detail. The Monitoring and Calibration Web System supports data quality analyses at the level of channels. All online, offline and calibration versions of the TileCal DQ system also provide automatic tests, the results of which allow fast and robust feedback.

  18. Heat stress protection in abnormally hot environments.

    CSIR Research Space (South Africa)

    Schutte, PC

    1994-11-01

    Full Text Available The present report presents the findings of SIMRAC project GAP 045 entitled ‘Heat stress protection in abnormally hot environments’. It is intended as a reference to develop guidelines which, in turn would assist mine management in establishing safe...

  19. Formulations development for improving the classification of ceramic tile manufactured in the Sergipe state - part one: mineralogical characterization

    International Nuclear Information System (INIS)

    Goes, J.R.; Azevedo, T.F.; Barreto, L.S.

    2011-01-01

    The ceramic tiles manufactured in Sergipe State are classified in Absorption 'BIIb' Group. Studies have been developed to obtain the classification 'BIIa' Group. This first part is about the mineralogical characterization of raw materials used for ceramics tiles, collected for three different fields. The mineralogical characterization was made with: X-ray Diffraction, Infrared, Thermogravimetric and Differential Thermal Analysis, and was also obtained clays plasticity indices. The samples were heated up to 500 deg C, 900° C and 1100° C. Clays were classified as highly plastics and moderately plastics with a large number of grain with size order smaller than 0,074 mm. The main minerals identified were: kaolinite, illite, montmorillonite, quartz, feldspar and calcite. Two of the three studied fields had high calcite content. The Calcite retards the sintering process causing higher porosity to the ceramic tiles. (author)

  20. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  1. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase 2) where the peak luminosity will increase 5$\\times$ compared to the design luminosity ($10^{34} cm^{-2}s^{-1}$) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, c...

  2. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2023, after the upgrade of the LHC (High Luminosity LHC, phase 2) the peak luminosity will increase by a factor of 5 compared to the design value (1034 cm-2 s-1), thus requiring an upgrade of the TileCal readout electronics. Except the 9852 photomultipliers (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at 40 MHz at the front-end level and sending them with 10 Gbps optical links to the back-end electronics. Moreover, to increase reliability, redundancy will be introduced at different levels. Three different options are currently being investigated for the front-end electronics and extensive test beam studies are planned to select the best option. One demonstrator prototype module is also planned to be inserted in TileCal in 2014 that will include hybrid electronic components able to probe the new design, but still compatible with the presen...

  3. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  4. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... the electrochemical treatment. The removal rate was similar for the two anions so the chloride concentration reached the lowest concentration level first. At this point the electric resistance increased, but the removal of nitrate continued unaffected till similar low concentration. The sulfate concentration...... was successful. Based on the obtained results an important step is taken towards development of an electrochemical technique for desalination of tile panels....

  5. Upgrading the Atlas Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    Tile Calorimeter is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2024, after the upgrade of the LHC the peak luminosity will increase by a factor of 5 compared to the design value, thus requiring an upgrade of the Tile Calorimeter readout electronics. Except the photomultipliers tubes (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at the front-end level and sending them with 10 Gb/s optical links to the back-end electronics. One demonstrator prototype module is planned to be inserted in Tile Calorimeter in 2015 that will include hybrid electronic components able to probe the new design.

  6. A review of heat transfer phenomena and the impact of moisture on firefighters' clothing and protection.

    Science.gov (United States)

    Morel, Aude; Bedek, Gauthier; Salaün, Fabien; Dupont, Daniel

    2014-01-01

    Protective clothing with high insulation properties helps to keep the wearer safe from flames and other types of hazards. Such protection presents some drawbacks since it hinders movement and decreases comfort, in particular due to heat stress. In fact, sweating causes the accumulation of moisture which directly influences firefighters' performance, decreasing protection due to the increase in radiant heat flux. Vaporisation and condensation of hot moisture also induces skin burn. To evaluate the heat protection of protective clothing, Henrique's equation is used to predict the time leading to second-degree burn. The influence of moisture on protection is complex, i.e., at low radiant heat flux, an increase in moisture content increases protection, and also changes thermal properties. Better understanding of heat and mass transfer in protective clothing is required to develop enhanced protection and to prevent burn injuries. This paper aims to contribute to a better understanding of heat and mass transfer inside firefighters' protective clothing to enhance safety. The focus is on the influence of moisture content and the prevention of steam burn.

  7. Review Article: Heat stress and the role of protective clothing in ...

    African Journals Online (AJOL)

    Background: The body heat exchange, environmental stress and protective clothing becomes stressful in military service too. The use of microporous material and ventilation of garment significantly improve heat exchange, hence reducing physiological strain and improving tolerance to the heat. Moisture absorption ...

  8. The Mu3e Tile Detector

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Hans Patrick

    2015-05-06

    The Mu3e experiment is designed to search for the lepton flavour violating decay μ→e{sup +}e{sup +}e{sup -} with a sensitivity of one in 10{sup 16} decays. An observation of such a decay would be a clear sign of physics beyond the Standard Model. Achieving the targeted sensitivity requires a high precision detector with excellent momentum, vertex and time resolution. The Mu3e Tile Detector is a highly granular sub-detector system based on scintillator tiles with Silicon Photomultiplier (SiPM) readout, and aims at measuring the timing of the muon decay products with a resolution of better than 100 ps. This thesis describes the development of the Tile Detector concept and demonstrates the feasibility of the elaborated design. In this context, a comprehensive simulation framework has been developed, in order to study and optimise the detector performance. The central component of this framework is a detailed simulation of the SiPM response. The simulation model has been validated in several measurements and shows good agreement with the data. Furthermore, a 16-channel prototype of a Tile Detector module has been constructed and operated in an electron beam. In the beam tests, a time resolution up to 56 ps has been achieved, which surpasses the design goal. The simulation and measurement results demonstrate the feasibility of the developed Tile Detector design and show that the required detector performance can be achieved.

  9. The optical instrumentation of the ATLAS Tile Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Alves, R [LIP and FCTUC Univ. of Coimbra (Portugal); Amaral, P; Andresen, X [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois 60637 (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal / CNRS-IN2P3, Clermont-Ferrand (France); Blanch, O; Blanchot, G; Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, Michigan 48824 (United States); others, and

    2013-01-15

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of {+-}1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  10. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  11. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  12. Some comments on pinwheel tilings and their diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Uwe [Department of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Deng Xinghua, E-mail: u.g.grimm@open.ac.uk [University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)

    2011-03-01

    The pinwheel tiling is the paradigm for a substitution tiling with circular symmetry, in the sense that the corresponding autocorrelation is circularly symmetric. As a consequence, its diffraction measure is also circularly symmetric, so the pinwheel diffraction consists of sharp rings and, possibly, a continuous component with circular symmetry. We consider some combinatorial properties of the tiles and their orientations, and a numerical approach to the diffraction of weighted pinwheel point sets.

  13. Modular Interactive Tiles for Rehabilitation – Evidence and Effect

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2010-01-01

    years) in daily use in a hospital rehabilitation unit e.g. for cardiac patients. Also, the tiles were tested for performing physical rehabilitation of stroke patients both in hospital, rehabilitation centre and in their private home. In all test cases qualitative feedback indicate that the patients find......We developed modular interactive tiles to be used for playful physiotherapy, which is supposed to motivate patients to engage in and perform physical rehabilitation exercises. We report on evidence for elderly training. We tested the modular interactive tiles for an extensive period of time (4...... the playful use of modular interactive tiles engaging and motivating for them to perform the rehabilitation. Also, test data suggest that some playful exercises on the tiles demand an average heart rate of 75% and 86% of the maximum heart rate....

  14. Examination of W7-X target elements after high heat flux testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Durocher, A.; Schlosser, J.; Greuner, H.; Schedler, B.

    2007-01-01

    Full text of publication follows: The target elements of Wendelstein 7-X (W7-X) divertor are designed to sustain a stationary heat flux of 10 MW/m 2 and to remove a maximum power load up to 100 kW. The plasma-facing material is made of CFC NB31 flat tiles bonded to a CuCrZr copper alloy water-cooled heat sink. Before launching the serial fabrication, pre-series activities aimed at qualifying the design, the manufacturing route, the relevant non-destructive examination (NDE) methods, and at defining the acceptance criteria for the serial production. High heat flux (HHF) testing is the central activity of this qualification phase and represents a fundamental tool to predict 'critical' defects assembling. Within the framework of this qualification activity, the reception tests performed in the transient infrared thermography test bed SATIR at CEA-Cadarache and HHF testing carried out in the ion beam facility GLADIS at IPP-Garching, exhibited some tiles with thermal inhomogeneities, which initiated and developed during high heat flux testing. Hence, studies were launched in order to better understand this behaviour during cyclic heat loading. This post testing examination was mainly focused on the interface between CFC flat tiles and CuCrZr heat sink to improve if necessary the current design. HHF thermal cycling tests at ∼10 MW/m 2 for 10 s pulse duration each, allowed to assess the performances of target elements and showed some tiles with hot spots close to the edge (stable or progressing). Finally, after the HHF experimental campaign, a comprehensive analysis of some tested elements was carried out by means of infrared thermography inspection SATIR and metallographic examinations. Afterwards correlations between the non destructive SATIR inspection, HHF testing GLADIS and metallographic observation were investigated to assess damage detection, to analyse defect propagation, and to adjust the acceptance criteria valuable for the serial production. This paper will

  15. Status of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Leitner, R.

    2005-01-01

    Short status of the Tile Calorimeter project is given. Major achievements in the mechanical construction of the detector modules, their instrumentation, cylinders assembly, as well as the principles of the detector front-end electronics, are described. The ideas of Tile Calorimeter module calibration are presented

  16. Gamma radiation scanning of nuclear waste storage tile holes

    International Nuclear Information System (INIS)

    Das, A.; Yue, S.; Sur, B.; Johnston, J.; Gaudet, M.; Wright, M.; Burton, N.

    2010-01-01

    Nuclear waste management facilities at Chalk River Laboratories use below-ground 'tile holes' to store solid waste from various activities such as medical radioisotope production. A silicon PIN (p-type-intrinsic-n-type semiconductor) diode based gamma radiation scanning system has been developed and used to profile the gamma radiation fields along the depth of waste storage tile holes by deploying the sensor into verification tubes adjacent to the tile holes themselves. The radiation field measurements were consistent with expected radiation fields in the tile holes based on administrative knowledge of the radioactive contents and their corresponding decay rates. Such measurements allow non-invasive verification of tile hole contents and provide input to the assessment of radiological risk associated with removal of the waste. Using this detector system, radioactive waste that has decayed to very low levels may be identified based on the radiation profile. This information will support planning for possible transfer of this waste to a licensed waste storage facility designed for low level waste, thus freeing storage space for possible tile hole re-use for more highly radioactive waste. (author)

  17. Heat stress in chemical protective clothing: Porosity and vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Hartog, E.A. den; Martini, S.

    2011-01-01

    Heat strain in chemical protective clothing is an important factor in industrial and military practice. Various improvements to the clothing to alleviate strain while maintaining protection have been attempted. More recently, selectively permeable membranes have been introduced to improve

  18. On the possibilities of reduction in emission caused by home tile stoves in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Szewczyk, W. [Academy of Mining and Metallurgy, Cracow (Poland)

    1995-12-31

    The coal-fired tile stoves are still very popular in Poland. The estimated total number of such home stoves operated in Cracow reaches ca. 100 000. Operation of these stoves during the heating season belongs to the most significant sources of air pollution. Type and scale of emission of the most important pollutants, caused by coal combustion in home stoves in Cracow has been determined basing upon the investigations carried out at the laboratory of the Department of Power Engineering Machines and Devices, Academy of Mining and Metallurgy, Cracow, Poland within the American-Polish Program of Elimination of Low Emission Sources in Cracow. Further experiments included in this Program allowed to estimate the attainable efficiency of home tile stoves and possible reduction in pollutant emission resulting from their operation. A short discussion of these data and capacities is presented in this lecture.

  19. Construction of 2D quasi-periodic Rauzy tiling by similarity transformation

    International Nuclear Information System (INIS)

    Zhuravlev, V. G.; Maleev, A. V.

    2009-01-01

    A new approach to constructing self-similar fractal tilings is proposed based on the construction of semigroups generated by a finite set of similarity transformations. The Rauzy tiling-a 2D analog of 1D Fibonacci tiling generated by the golden mean-is used as an example to illustrate this approach. It is shown that the Rauzy torus development and the elementary fractal boundary of Rauzy tiling can be constructed in the form of a set of centers of similarity semigroups generated by two and three similarity transformations, respectively. A centrosymmetric tiling, locally dual to the Rauzy tiling, is constructed for the first time and its parameterization is developed.

  20. The optical instrumentation of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G; Bosman, M; Bromberg, C

    2013-01-01

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  1. Spectral response data for development of cool coloured tile coverings

    Science.gov (United States)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  2. Hydrogen isotopes retention in divertor tiles of DIII-D tokamak

    International Nuclear Information System (INIS)

    Skorodumov, B.G.; Buzhinskij, O.I.; West, W.P.; Ulanov, V.G.

    1996-01-01

    The absolute concentration of hydrogen isotopes in graphite divertor tiles coated with boron carbide after the exposure in DIII-D during 16 operational weeks of the 1993 campaign was obtained using the 14 MeV neutron-induced recoil detection (NERD) method. It is shown that the absolute concentration of H in tile's surface layers correlates with thickness of the deposited layers. The graphite tile without boron carbide coating had a H concentration similar to that of the tile with the thickest deposited layer. Deuterium and tritium were not detected in any of the investigated tiles. The proposed method can be used for the determination of the thickness of coatings without sample destruction. Thus, the thickness of boron carbide coatings on the tiles obtained with this method varied from 80 to 115 μm, which corresponded well to electron microscope data. (orig.)

  3. The Sad Case of the Columbine Tiles.

    Science.gov (United States)

    Dowling-Sendor, Benjamin

    2003-01-01

    Analyzes free-speech challenge to school district's guidelines for acceptable expressions on ceramic tiles painted by Columbine High School students to express their feelings about the massacre. Tenth Circuit found that tile painting constituted school-sponsored speech and thus district had the constitutional authority under "Hazelwood School…

  4. Heat strain in personal protective clothing: Challenges and intervention strategies

    NARCIS (Netherlands)

    McLellan, T.M.; Daanen, H.A.M.

    2012-01-01

    Humans rely on sweat evaporation during exercise in the heat to promote cooling and to maintain thermal homeostasis. In protective clothing, however, sweat evaporation is severely hampered and this may lead to uncompensable heat strain, where core body temperature continues to rise leading to

  5. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Marjanovic, Marija; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of the full readout chain during the data taking, a set of calibration sub-systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements, and an integrator based readout system. Combined information from all systems allows to monitor and to equalize the calorimeter response at each stage of the signal evolution, from scintillation light to digitization. Calibration runs are monitored from a data quality perspective and u...

  6. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  7. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (P hase - II ) where the pea k luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expe cted to happen around 202 4 . The TileCal upgrade aims at replacing the majority of the on - and off - detector electronics to the extent that all calorimeter signals will be digitized and sent to the off - detector electronics in the counting room. To achieve th e required reliability, redundancy has been introduced at different levels. Three different options are presently being investiga...

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  9. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  10. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS subdetectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. Seventy thousand (70000) parameters are used for control and monitoring purposes, requiring an automated system. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCal detector. ...

  11. An efficient pseudomedian filter for tiling microrrays.

    Science.gov (United States)

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-06-07

    Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result

  12. An efficient pseudomedian filter for tiling microrrays

    Directory of Open Access Journals (Sweden)

    Gerstein Mark B

    2007-06-01

    Full Text Available Abstract Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. Results We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn from O(n2logn. For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Conclusion Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that

  13. Spatial chaos of Wang tiles with two symbols

    Science.gov (United States)

    Chen, Jin-Yu; Chen, Yu-Jie; Hu, Wen-Guei; Lin, Song-Sun

    2016-02-01

    This investigation completely classifies the spatial chaos problem in plane edge coloring (Wang tiles) with two symbols. For a set of Wang tiles B , spatial chaos occurs when the spatial entropy h ( B ) is positive. B is called a minimal cycle generator if P ( B ) ≠ 0̸ and P ( B ' ) = 0̸ whenever B ' ⫋ B , where P ( B ) is the set of all periodic patterns on ℤ2 generated by B . Given a set of Wang tiles B , write B = C 1 ∪ C 2 ∪ ⋯ ∪ C k ∪ N , where Cj, 1 ≤ j ≤ k, are minimal cycle generators and B contains no minimal cycle generator except those contained in C1∪C2∪⋯∪Ck. Then, the positivity of spatial entropy h ( B ) is completely determined by C1∪C2∪⋯∪Ck. Furthermore, there are 39 equivalence classes of marginal positive-entropy sets of Wang tiles and 18 equivalence classes of saturated zero-entropy sets of Wang tiles. For a set of Wang tiles B , h ( B ) is positive if and only if B contains a MPE set, and h ( B ) is zero if and only if B is a subset of a SZE set.

  14. Bio deterioration behaviour in different colour roofing tiles (red and straw coloured)

    International Nuclear Information System (INIS)

    Guzulla, M. F.; Sanchez, E.; Gonzalez, J. M.; Orduna, M.

    2014-01-01

    Bio colonization of building materials is a critical problem for the durability of constructions. Industrial experience shows that straw coloured roofing tiles are more prone to colonization than red roofing tiles, even having similar characteristics. The aim of this work is to explain the difference of bio colonization between different colour roofing tiles. The chemical composition of the surface of straw coloured and red roofing tiles, the phase composition and the microstructure of the roofing tiles were determined by WD-XRF, XRD and SEM-EDX, respectively. The pore size distribution was carried out by Hg porosimetry. The solubility was studied by determining the soluble salts (Ca, Mg, Na, K, Cl and SO 4 2-) by ICP-OES and ionic chromatography. Roofing tile bio receptivity was evaluated by determining fluorescence intensity using a pulse amplitude- modulated (PAM) fluoro meter, and cyanobacteria Oscillator sp. The results obtained show higher concentration of calcium and sulphur in straw coloured roofing tiles surface, and higher solubility than red roofing tiles. Moreover, according to the results obtained in bio receptivity assays, straw coloured roofing tiles are more prone to colonization than red roofing tiles, so, there is a relationship between surface properties of roofing tiles and bio colonization, as it is observed in industrial products. (Author)

  15. Fiber-tile optical studies at Argonne

    International Nuclear Information System (INIS)

    Underwood, D.G.; Morgan, D.J.; Proudfoot, J.

    1991-01-01

    In support of a fiber-tile calorimeter for SDC, we have done studies on a number of topics. The most basic problems were light output and uniformity of response. Using a small electron beam, we have studied fiber placement, tile preparation, wrapping and masking, fiber splicing, fiber routing, phototube response, and some degradation factors. We found two configurations which produced more light output than the others and reasonably uniform response. We have chosen one of these to go into production for the EM test module on the basis of fiber routing for ease of assembly of the calorimeter. We have also applied some of the tools we developed to CDF end plug tile uniformity, shower max testing and development for a couple of detectors, and development of better techniques for radiation damage studies. 18 figs

  16. Remotely replaceable Tokamak plasma limiter tiles

    International Nuclear Information System (INIS)

    Remy, G.

    1989-01-01

    U-shaped limiter tiles placed end-to-end over a pair of parallel runners secured to a wall have two rods which engage L-shaped slots in the runners. The short receiving legs of the L-shaped slots are perpendicular to the wall and open away from the wall, while long retaining legs are parallel to and adjacent the wall. A sliding bar between the runners has grooves with clips to retain the rods pressed into receiving legs of the L-shaped slots in the runners. Sliding the bar in the direction of retaining legs of the L-shaped slots latches the tiles in place over the runners. Resilient contact strips between the parallel arms of the U-shaped tiles and the wall assure thermal and electrical contact with the wall

  17. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in

  18. Real-time biscuit tile image segmentation method based on edge detection.

    Science.gov (United States)

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Elastic-plastic-creep analysis of brazed carbon-carbon/OFHC divertor tile concepts for TPX

    International Nuclear Information System (INIS)

    Chin, E.; Reis, E.E.

    1995-01-01

    The 7.5 MW/m 2 heat flux requirements for the TPX divertor necessitate the use of high conductivity carbon-carbon (C-C) tiles that are brazed to annealed copper (OFHC) coolant tubes. Significant residual stresses are developed in the C-C tiles during the braze process due to large differences in the thermal expansion coefficients between these materials. Analyses which account for only the elastic-plastic strains developed in the OFHC tube may not accurately characterize the behavior of the tube during brazing. The elevated temperature creep behavior of the copper coolant tubes intuitively should reduce the calculated residual stresses in the C-C tiles. Two divertor tile concepts, the monoblock and the archblock, were analyzed for residual stress using 2-D finite element analysis for elastic-plastic-creep behavior of the OFHC tube during an assumed braze cooldown cycle. The results show that the inclusion of elevated temperature creep effects decrease the calculated residual stresses by only about 10% when compared to those analyses in which only elastic-plastic behavior of the OFHC is accounted for. The primary reason that creep effects at higher temperatures are not more significant is due to the low yield stress and nearly flat-top stress-strain curve of annealed OFHC. Since high temperature creep plays less of a role in the residual stress levels than previously thought, future scoping studies can be done in an elastic-plastic analysis with confidence that the stresses will be within approximately 10% of an elastic-plastic-creep analysis

  20. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    Science.gov (United States)

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  1. Self Cleanable Tile Grout

    Directory of Open Access Journals (Sweden)

    Mehmet CANBAZ

    2016-03-01

    Full Text Available In this study, In this study, self-cleaning tile grout and white cement specimens are produced and the effect of self-cleaning mechanism of TiO2 is tested. Effects of TiO2 amount and TiO2 type are tested and compared. Anatase form and rutile TiO2 additive are used in the study. In addition, effects of silicate additives on the self-cleaning mechanism is determined. Studies are conducted with respect to Italian UNI code. This study presents a method for solving rust between the tiles of ceramic wet floor coverings with photocatalysis method and then removing the dirt with secondary effects such as water, wind etc.

  2. Evaluation of the thermal comfort of ceramic floor tiles

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2007-09-01

    Full Text Available In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The uncomforting can be characterized by heated floor surfaces in external environments which are exposed to sun radiation (swimming polls areas or by cold floor surfaces in internal environments (bed rooms, path rooms. The property named thermal effusivity which defines the interface temperature when two semi-infinite solids are putted in perfect contact. The introduction of the crustiness surface on the ceramic tiles interferes in the contact temperature and also it can be a strategy to obtain ceramic tiles more comfortable. Materials with low conductivities and densities can be obtained by porous inclusion are due particularly to the processing conditions usually employed. However, the presence of pores generally involves low mechanical strength. This work has the objective to evaluate the thermal comfort of ceramics floor obtained by incorporation of refractory raw materials (residue of the polishing of the porcelanato in industrial atomized ceramic powder, through the thermal and mechanical properties. The theoretical and experimental results show that the porosity and crustiness surface increases; there is sensitive improvement in the comfort by contact.

  3. Coal fly ash utilization: Low temperature sintering of wall tiles

    International Nuclear Information System (INIS)

    Chandra, Navin; Sharma, Priya; Pashkov, G.L.; Voskresenskaya, E.N.; Amritphale, S.S.; Baghel, Narendra S.

    2008-01-01

    We present here a study of the sintering of fly ash and its mixture with low alkali pyrophyllite in the presence of sodium hexa meta phosphate (SHMP), a complex activator of sintering, for the purpose of wall tile manufacturing. The sintering of fly ash with SHMP in the temperature range 925-1050 deg. C produces tiles with low impact strength; however, the incremental addition of low alkali pyrophyllite improves impact strength. The impact strength of composites with ≥40% (w/w) pyrophyllite in the fly ash-pyrophyllite mix satisfies the acceptable limit (19.6 J/m) set by the Indian Standards Institute for wall tiles. Increasing the pyrophyllite content results in an increase in the apparent density of tiles, while shrinkage and water absorption decrease. The strength of fly ash tiles is attributed to the formation of a silicophosphate phase; in pyrophyllite rich tiles, it is attributed to the formation of a tridymite-structured T-AlPO 4 phase. Scanning electron micrographs show that the reinforcing rod shaped T-AlPO 4 crystals become more prominent as the pyrophyllite content increases in the sintered tiles

  4. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in Midwest

    Science.gov (United States)

    Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern U.S. Tile drainage systems enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage w...

  5. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Wood, Kurt; Skilton, Wayne; Petersheim, Jerry [Arkema, Inc., Philadelphia, PA (United States)

    2010-06-15

    The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a ''cool'' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool colored prototype tiles and 24 cool colored prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L{sup *}=29) to 0.57 (light green; L{sup *}=76); those of the shingles ranged from 0.18 (dark brown; L{sup *}=26) to 0.34 (light green; L{sup *}=68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25. (author)

  6. Healing assessment of tile sets for error tolerance in DNA self-assembly.

    Science.gov (United States)

    Hashempour, M; Mashreghian Arani, Z; Lombardi, F

    2008-12-01

    An assessment of the effectiveness of healing for error tolerance in DNA self-assembly tile sets for algorithmic/nano-manufacturing applications is presented. Initially, the conditions for correct binding of a tile to an existing aggregate are analysed using a Markovian approach; based on this analysis, it is proved that correct aggregation (as identified with a so-called ideal tile set) is not always met for the existing tile sets for nano-manufacturing. A metric for assessing tile sets for healing by utilising punctures is proposed. Tile sets are investigated and assessed with respect to features such as error (mismatched tile) movement, punctured area and bond types. Subsequently, it is shown that the proposed metric can comprehensively assess the healing effectiveness of a puncture type for a tile set and its capability to attain error tolerance for the desired pattern. Extensive simulation results are provided.

  7. LASER monitoring system for the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Viret, S.

    2010-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) at CERN uses a scintillator-iron technique for its hadronic Tile Calorimeter (TileCal). Scintillating light is readout via 9852 photomultiplier tubes (PMTs). Calibration and monitoring of these PMTs are made using a LASER based system. Short light pulses are sent simultaneously into all the TileCal photomultiplier's tubes (PMTs) during ATLAS physics runs, thus providing essential information for ATLAS data quality and monitoring analyses. The experimental setup developed for this purpose is described as well as preliminary results obtained during ATLAS commissioning phase in 2008.

  8. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Fuchs, J C; Marne, P de; Neu, R

    2009-01-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N 2 -seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  9. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5x compared to the design luminosity (10^34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade is expected to happen around 2023. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 ...

  10. Radioactivity level in Chinese building ceramic tile

    International Nuclear Information System (INIS)

    Xinwei, L.

    2004-01-01

    The activity concentrations of 226 Ra, 232 Th and 40 K have been determined by gamma ray spectrometry. The concentrations of 226 Ra, 232 Th and 40 K range from 158.3 to 1087.6, 91.7 to 1218.4, and 473.8 to 1031.3 Bq kg -1 for glaze, and from 63.5 to 131.4, 55.4 to 106.5, and 386.7 to 866.8 Bq kg -1 for ceramic tile, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and with the typical world values. The radium equivalent activities (Ra eq ), external hazard index (H ex ) and internal hazard index (H in ) associated with the radionuclides were calculated. The Ra eq values of all ceramic tiles are lower than the limit of 370 Bq kg -1 . The values of Hex and H in calculated according to the Chinese criterion for ceramic tiles are less than unity. The Ra eq value for the glaze of glazed tile collected from some areas are >370 Bq kg -1 . (authors)

  11. Robotic system for the servicing of the orbiter thermal protection system

    Science.gov (United States)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  12. Evaluation of the cool-down behaviour of ITER FW beryllium tiles for an early failure detection

    Directory of Open Access Journals (Sweden)

    Thomas Weber

    2016-12-01

    Full Text Available The design of the first wall in ITER foresees several hundred thousand beryllium tiles, which are bonded to the water-cooled CuCrZr supporting structure. Due to the nature of a Tokamak reactor this bonding is faced to thermal fatigue. Since the failure of a single tile might already have a major impact on the operability of ITER, comprehensive high heat flux tests are performed on prototypes prior to the acceptance of manufacturing procedures. For a deeper understanding of the temperature curves, which were and will be measured by IR devices of these first wall prototypes, thermo-mechanical FEM simulations shall demonstrate the possibilities of an early bonding failure detection. Hereby, the maximum temperatures for each cycle as well as the cool-down behaviour are the input data.

  13. An Effective NoSQL-Based Vector Map Tile Management Approach

    Directory of Open Access Journals (Sweden)

    Lin Wan

    2016-11-01

    Full Text Available Within a digital map service environment, the rapid growth of Spatial Big-Data is driving new requirements for effective mechanisms for massive online vector map tile processing. The emergence of Not Only SQL (NoSQL databases has resulted in a new data storage and management model for scalable spatial data deployments and fast tracking. They better suit the scenario of high-volume, low-latency network map services than traditional standalone high-performance computer (HPC or relational databases. In this paper, we propose a flexible storage framework that provides feasible methods for tiled map data parallel clipping and retrieval operations within a distributed NoSQL database environment. We illustrate the parallel vector tile generation and querying algorithms with the MapReduce programming model. Three different processing approaches, including local caching, distributed file storage, and the NoSQL-based method, are compared by analyzing the concurrent load and calculation time. An online geological vector tile map service prototype was developed to embed our processing framework in the China Geological Survey Information Grid. Experimental results show that our NoSQL-based parallel tile management framework can support applications that process huge volumes of vector tile data and improve performance of the tiled map service.

  14. Contributions of systematic tile drainage to watershed-scale phosphorus transport.

    Science.gov (United States)

    King, Kevin W; Williams, Mark R; Fausey, Norman R

    2015-03-01

    Phosphorus (P) transport from agricultural fields continues to be a focal point for addressing harmful algal blooms and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. However, research on the contributions of tile drainage to watershed-scale P losses is limited. The objective of this study was to evaluate long-term P movement through tile drainage and its manifestation at the watershed outlet. Discharge data and associated P concentrations were collected for 8 yr (2005-2012) from six tile drains and from the watershed outlet of a headwater watershed within the Upper Big Walnut Creek watershed in central Ohio. Results showed that tile drainage accounted for 47% of the discharge, 48% of the dissolved P, and 40% of the total P exported from the watershed. Average annual total P loss from the watershed was 0.98 kg ha, and annual total P loss from the six tile drains was 0.48 kg ha. Phosphorus loads in tile and watershed discharge tended to be greater in the winter, spring, and fall, whereas P concentrations were greatest in the summer. Over the 8-yr study, P transported in tile drains represented 90% of all measured concentrations exceeded recommended levels (0.03 mg L) for minimizing harmful algal blooms and nuisance algae. Thus, the results of this study show that in systematically tile-drained headwater watersheds, the amount of P delivered to surface waters via tile drains cannot be dismissed. Given the amount of P loss relative to typical application rates, development and implementation of best management practices (BMPs) must jointly consider economic and environmental benefits. Specifically, implementation of BMPs should focus on late fall, winter, and early spring seasons when most P loading occurs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Science.gov (United States)

    Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John

    2013-01-01

    One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature required to achieve a sterile, stable product. The work. reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Geobacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180deg C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180deg C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130deg C-150deg C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment

  16. TileCal TDAQ/DCS communication

    CERN Document Server

    Solans, C; Arabidze, G; Carneiro Ferreira, B; Sotto-Maior Peralva, B

    2007-01-01

    This document describes the communication between the TDAQ and DCS systems of the Hadronic Tile Calorimeter detector of the ATLAS experiment, currently under commissioning phase at CERN. It is a further step on the TDAQ and DCS communication for TileCal operation. The aim of the implementation is to increase the robustness and understanding of the detector from the two systems involved. The basic principle observed is that the two systems operate independently in parallel. Hence, the knowledge of the status of the whole detector from each of the two systems is required for further analysis of the archived data.

  17. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    Science.gov (United States)

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  18. Characterization of an Ionization Readout Tile for nEXO

    Science.gov (United States)

    Jewell, M.; Schubert, A.; Cen, W. R.; Dalmasson, J.; DeVoe, R.; Fabris, L.; Gratta, G.; Jamil, A.; Li, G.; Odian, A.; Patel, M.; Pocar, A.; Qiu, D.; Wang, Q.; Wen, L. J.; Albert, J. B.; Anton, G.; Arnquist, I. J.; Badhrees, I.; Barbeau, P.; Beck, D.; Belov, V.; Bourque, F.; Brodsky, J. P.; Brown, E.; Brunner, T.; Burenkov, A.; Cao, G. F.; Cao, L.; Chambers, C.; Charlebois, S. A.; Chiu, M.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Côté, M.; Daniels, T.; Daugherty, S. J.; Daughhetee, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; Didberidze, T.; Dilling, J.; Ding, Y. Y.; Dolinski, M. J.; Dragone, A.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fontaine, R.; Fudenberg, D.; Giacomini, G.; Gornea, R.; Hansen, E. V.; Harris, D.; Hasan, M.; Heffner, M.; Hoppe, E. W.; House, A.; Hufschmidt, P.; Hughes, M.; Hößl, J.; Ito, Y.; Iverson, A.; Jiang, X. S.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, S.; Li, Z.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Newby, R. J.; Ning, Z.; Njoya, O.; Nolet, F.; Odgers, K.; Oriunno, M.; Orrell, J. L.; Ostrovskiy, I.; Overman, C. T.; Ortega, G. S.; Parent, S.; Piepke, A.; Pratte, J.-F.; Radeka, V.; Raguzin, E.; Rao, T.; Rescia, S.; Retiere, F.; Robinson, A.; Rossignol, T.; Rowson, P. C.; Roy, N.; Saldanha, R.; Sangiorgio, S.; Schmidt, S.; Schneider, J.; Sinclair, D.; Skarpaas, K.; Soma, A. K.; St-Hilaire, G.; Stekhanov, V.; Stiegler, T.; Sun, X. L.; Tarka, M.; Todd, J.; Tolba, T.; Tsang, R.; Tsang, T.; Vachon, F.; Veeraraghavan, V.; Visser, G.; Vuilleumier, J.-L.; Wagenpfeil, M.; Weber, M.; Wei, W.; Wichoski, U.; Wrede, G.; Wu, S. X.; Wu, W. H.; Yang, L.; Yen, Y.-R.; Zeldovich, O.; Zhang, X.; Zhao, J.; Zhou, Y.; Ziegler, T.

    2018-01-01

    A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3 mm wide, on a 10 cm × 10 cm fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E=5.5% is observed at 570 keV, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936 V/cm.

  19. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  20. Corrosion protected reversing heat exchanger

    International Nuclear Information System (INIS)

    Zawierucha, R.

    1984-01-01

    A reversing heat exchanger of the plate and fin type having multiple aluminum parting sheets in a stacked arrangement with corrugated fins separating the sheets to form multiple flow paths, means for closing the ends of the sheets, an input manifold arrangement of headers for the warm end of of the exchanger and an output manifold arrangement for the cold end of the exchanger with the input air feed stream header and the waste gas exhaust header having an alloy of zinc and aluminum coated on the inside surface for providing corrosion protection to the stack

  1. An automated data management/analysis system for space shuttle orbiter tiles. [stress analysis

    Science.gov (United States)

    Giles, G. L.; Ballas, M.

    1982-01-01

    An engineering data management system was combined with a nonlinear stress analysis program to provide a capability for analyzing a large number of tiles on the space shuttle orbiter. Tile geometry data and all data necessary of define the tile loads environment accessed automatically as needed for the analysis of a particular tile or a set of tiles. User documentation provided includes: (1) description of computer programs and data files contained in the system; (2) definitions of all engineering data stored in the data base; (3) characteristics of the tile anaytical model; (4) instructions for preparation of user input; and (5) a sample problem to illustrate use of the system. Description of data, computer programs, and analytical models of the tile are sufficiently detailed to guide extension of the system to include additional zones of tiles and/or additional types of analyses

  2. Nondeterministic self-assembly of two tile types on a lattice.

    Science.gov (United States)

    Tesoro, S; Ahnert, S E

    2016-04-01

    Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.

  3. Design and Applications of Rapid Image Tile Producing Software Based on Mosaic Dataset

    Science.gov (United States)

    Zha, Z.; Huang, W.; Wang, C.; Tang, D.; Zhu, L.

    2018-04-01

    Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.

  4. DESIGN AND APPLICATIONS OF RAPID IMAGE TILE PRODUCING SOFTWARE BASED ON MOSAIC DATASET

    Directory of Open Access Journals (Sweden)

    Z. Zha

    2018-04-01

    Full Text Available Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.

  5. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    Science.gov (United States)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  6. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  7. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  8. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, K V R, E-mail: drmurthykvr@yahoo.com [Display Materials Laboratory Applied Physics Department Faculty of Technology and Engineering M.S. University of Baroda, Baroda-390 001 (India)

    2009-07-15

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  9. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    International Nuclear Information System (INIS)

    Murthy, K V R

    2009-01-01

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  10. GROWTH EVALUATION OF FUNGI (PENICILLIUM AND ASPERGILLUS SPP.) ON CEILING TILES

    Science.gov (United States)

    The paper gives results of an evaluation of the potential for fungal growth on four different ceiling tiles in static chambers. It was found that even new ceiling tiles supported fungal growth under favorable conditions. Used ceiling tiles appeared to be more susceptible to funga...

  11. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Oreglia, M; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to use will be decided after extensive test beam studies. High speed optical links are used to read out all digitized data to the counting room. For the off-detector electronics a new back-end architecture is being developed, including the initial trigger processing and pipeline memories. A demonstrator prototype read-out for a slice of the ...

  12. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  13. Principal minors and rhombus tilings

    International Nuclear Information System (INIS)

    Kenyon, Richard; Pemantle, Robin

    2014-01-01

    The algebraic relations between the principal minors of a generic n × n matrix are somewhat mysterious, see e.g. Lin and Sturmfels (2009 J. Algebra 322 4121–31). We show, however, that by adding in certain almost principal minors, the ideal of relations is generated by translations of a single relation, the so-called hexahedron relation, which is a composition of six cluster mutations. We give in particular a Laurent-polynomial parameterization of the space of n × n matrices, whose parameters consist of certain principal and almost principal minors. The parameters naturally live on vertices and faces of the tiles in a rhombus tiling of a convex 2n-gon. A matrix is associated to an equivalence class of tilings, all related to each other by Yang–Baxter-like transformations. By specializing the initial data we can similarly parameterize the space of Hermitian symmetric matrices over R,C or H the quaternions. Moreover by further specialization we can parametrize the space of positive definite matrices over these rings. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras mathematical physics’. (paper)

  14. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  15. A Global User-Driven Model for Tile Prefetching in Web Geographical Information Systems.

    Science.gov (United States)

    Pan, Shaoming; Chong, Yanwen; Zhang, Hang; Tan, Xicheng

    2017-01-01

    A web geographical information system is a typical service-intensive application. Tile prefetching and cache replacement can improve cache hit ratios by proactively fetching tiles from storage and replacing the appropriate tiles from the high-speed cache buffer without waiting for a client's requests, which reduces disk latency and improves system access performance. Most popular prefetching strategies consider only the relative tile popularities to predict which tile should be prefetched or consider only a single individual user's access behavior to determine which neighbor tiles need to be prefetched. Some studies show that comprehensively considering all users' access behaviors and all tiles' relationships in the prediction process can achieve more significant improvements. Thus, this work proposes a new global user-driven model for tile prefetching and cache replacement. First, based on all users' access behaviors, a type of expression method for tile correlation is designed and implemented. Then, a conditional prefetching probability can be computed based on the proposed correlation expression mode. Thus, some tiles to be prefetched can be found by computing and comparing the conditional prefetching probability from the uncached tiles set and, similarly, some replacement tiles can be found in the cache buffer according to multi-step prefetching. Finally, some experiments are provided comparing the proposed model with other global user-driven models, other single user-driven models, and other client-side prefetching strategies. The results show that the proposed model can achieve a prefetching hit rate in approximately 10.6% ~ 110.5% higher than the compared methods.

  16. Tiling as a Durable Abstraction for Parallelism and Data Locality

    Energy Technology Data Exchange (ETDEWEB)

    Unat, Didem [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Cy P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Weiqun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shalf, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-11-18

    Tiling is a useful loop transformation for expressing parallelism and data locality. Automated tiling transformations that preserve data-locality are increasingly important due to hardware trends towards massive parallelism and the increasing costs of data movement relative to the cost of computing. We propose TiDA as a durable tiling abstraction that centralizes parameterized tiling information within array data types with minimal changes to the source code. The data layout information can be used by the compiler and runtime to automatically manage parallelism, optimize data locality, and schedule tasks intelligently. In this study, we present the design features and early interface of TiDA along with some preliminary results.

  17. A two-stage ceramic tile grout sealing process using a high power diode laser—Grout development and materials characteristics

    Science.gov (United States)

    Lawrence, J.; Li, L.; Spencer, J. T.

    1998-04-01

    Work has been conducted using a 60 Wcw high power diode laser (HPDL) in order to determine the feasibility and characteristics of sealing the void between adjoining ceramic tiles with a specially developed grout material having an impermeable enamel surface glaze. A two-stage process has been developed using a new grout material which consists of two distinct components: an amalgamated compound substrate and a glazed enamel surface; the amalgamated compound seal providing a tough, heat resistant bulk substrate, whilst the enamel provides an impervious surface. HPDL processing has resulted in crack free seals produced in normal atmospheric conditions. The basic process phenomena are investigated and the laser effects in terms of seal morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O 2 and Ar, during laser processing. Tiles were successfully sealed with power densities as low as 500 W/cm 2 and at rates up to 600 mm/min. Contact angle measurements revealed that due to the wettability characteristics of the amalgamated oxide compound grout (AOCG), laser surface treatment was necessary in order to alter the surface from a polycrystalline to a semi-amorphous structure, thus allowing the enamel to adhere. Bonding of the enamel to the AOCG and the ceramic tiles was identified as being principally due to van der Waals forces, and on a very small scale, some of the base AOCG material dissolving into the glaze.

  18. Research about the number of D-points of -tiling in given ellipse

    Directory of Open Access Journals (Sweden)

    Xianglin WEI

    2017-04-01

    Full Text Available An Archimedean tiling is a tiling of the plane by one type of regular polygon or several types of regular polygons, and every vertex of the tiling has the same vertex characteristics. There are 11 Archimedean tiling, and this paper studies -tiling, which is an Archimedean tiling generated by squares and regular octagons in the plane, and every vertex is associated with one square and two octagons. This paper studies the number of vertices contained in an ellipse in -tiling. Through analysing the sequence of vertices lying on half chord in the ellipse, and using the method of the geometry of number and congruence in number theory, it presents an algorithm about the value of the number of vertices contained in the ellipse, and obtains a formula of limit about the number of vertices and the square of short semi-axis of the ellipse. It is proved that the value of limit is connected with the area of the corresponding central polygon. The algorithm and the formula of limit are very useful for the study of related problems in other Archimedean tilings.

  19. Radioactive sources for ATLAS hadron tile calorimeter calibration

    International Nuclear Information System (INIS)

    Budagov, Yu.; Cavalli-Sforza, M.; Ivanyushenkov, Yu.

    1997-01-01

    The main requirements for radioactive sources applied in the TileCal calibration systems are formulated; technology of the sources production developed in the Laboratory of Nuclear Problems, JINR is described. Design and characteristics of the prototype sources manufactured in Dubna and tested on ATLAS TileCal module 0 are presented

  20. The "Stube" and its Heating

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2014-01-01

    This paper discusses the concept of smoke-free heated living rooms between the Alps and the Norh Sea with a special focus on the tile stove. In the circum-Alpine zone, a new heating system was invented between the 8th and 11th century. It consisted of a clay cupola oven with inserted ceramic vess...... in the area between the Upper German speaking region and Southern Scandinavia until the 16th century...

  1. The Production and Qualification of Scintillator Tiles for the ATLAS Hadronic Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; Diakov, E; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Konsnantinov, V; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lapin, V; LeCompte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, a L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Rusakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tischenko, M; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zaytsev, Yu; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The production of the scintillator tiles for the ATLAS Tile Calorimeter is presented. In addition to the manufacture and production, the properties of the tiles will be presented including light yield, uniformity and stability.

  2. On the algebraic characterization of aperiodic tilings related to ADE-root systems

    International Nuclear Information System (INIS)

    Kellendonk, J.

    1992-09-01

    The algebraic characterization of sets of locally equivalent aperiodic tilings, being examples of quantum spaces, is conducted for a certain type of tilings in a manner proposed by A. Connes. These 2-dimensional tilings are obtained by application of the strip method to the root lattice of an ADE-Coxeter group. The plane along which the strip is constructed is determined by the canonical Coxeter element leading to the result that a 2- dimensional tiling decomposes into a cartesian product of two 1- dimensional tilings. The properties of the tilings are investigated, including selfsimilarity, and the determination of the relevant algebraic is considered, namely the ordered K 0 -group of an algebra naturaly assigned to the quantum space. The result also yields an application of the 2-dimensional abstract gap labelling theorem. (orig.)

  3. Divertor tungsten tiles erosion in the region of the castellated gaps

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wanpeng, E-mail: wangdez@dlut.edu.cn; Sang, Chaofeng; Sun, Zhenyue; Wang, Dezhen

    2016-11-01

    Highlights: • Simulation of the tungsten tiles erosion by different impurities in the divertor gap region is done by using a 2d3v Particle-In-Cell code. • High-Z impurity causes the largest erosion rate on W tile. • The peak physical sputtering erosion rate locates at the plasma-facing corners. - Abstract: Erosion of tungsten (W) is a very important issue for the future fusion device. The castellated divertor makes it more complicated due to complex geometry of the gap between the tiles. In this work, the plasma behaviors and resulting W tile erosion in the divertor tile gap region are studied by using a two dimension-in-space and three dimension-in-velocity (2d3 v) Particle-In-Cell (PIC) code. Deuterium ions (D{sup +}) and electrons are traced self-consistently in the simulation to provide the plasma background. Since there are lots of impurities, which may make a great impact on the tile erosion, in the divertor region to radiate the power, the erosion of W tile by different species are thus considered. The contributions of deuterium and impurities: Li, C, Ne, and Ar, to the W erosion, are studied under EAST conditions to show a straightforward insight. It is observed that the physical sputtering of W tile by impurities is much higher than that by the D ions, and the peak erosion region locates at the plasma-facing corners.

  4. Stoneware tile manufacturing using rice straw ash as feldspar replacement

    International Nuclear Information System (INIS)

    Alvaro Guzman, A.; John Torres, L.; Martha Cedeno, V.; Silvio Delvasto, A.; Vicente Amigo, B.; Enrique Sanchez, V.

    2013-01-01

    In this research are presented the results of using rice straw ash (RSA) in low proportions as substitute of feldspar for manufacturing stoneware tiles. Specimens of semidry triaxial mixtures, where feldspar was substituted for different percentages (25 % and 50 %) of RSA, were prepared by uniaxial pressing, followed by drying and sintering. Physical and mechanical properties of sintered bodies were evaluated. Porcelain stoneware tile specimens C0 and CF25 reached bending strength and water absorption values were in accordance with standard ISO 13006 (Annex G, BIa) ( ≥ 35 MPa and ≤ 0.5 %, respectively). However, in porcelain stoneware tile specimens CF50 due to bloating phenomenon was not possible obtain commercial tiles in accordance with standard ISO 13006. By using Scanning Electron Microscopy (SEM) needles of primary and secondary mullite were identified in a vitreous phase; and by using X-Ray Diffraction (XRD) mullite and quartz phases were identified. It was concluded that feldspar can be substituted positively by RSA in stoneware tile pastes. (Author)

  5. Valorization of rice straw waste: production of porcelain tiles

    Directory of Open Access Journals (Sweden)

    Álvaro Guzmán A

    2015-12-01

    Full Text Available Abstract The rice industry generates huge amounts of rice straw ashes (RSA. This paper presents the results of an experimental research work about the incorporation of RSA waste as a new alternative raw material for production of porcelain tiles. The RSA replaces, partially or completely, the non-plastic raw materials (quartz (feldspathic sand in this research and feldspar, that together with the clays, constitute the major constituents of formulations of porcelain tiles. A standard industrial composition (0% RSA and two more compositions in which feldspar and feldspathic sand were replaced with two percentages of RSA (12.5% RSA and 60% RSA were formulated, keeping the clay content constant. The mixtures were processed, reproducing industrial porcelain tile manufacturing conditions by the dry route and fired at peak temperatures varying from 1140-1260 ºC. The results showed that additions of 12.5% RSA in replacement of feldspar and feldspathic sand allowed producing porcelain tiles that did not display marked changes in processing behaviour, in addition to obtain a microstructure and the typical mineralogical phases of porcelain tile. Thus, an alternative use of an agricultural waste material is proposed, which can be translated into economic and environmental benefits.

  6. Producing superhydrophobic roof tiles

    International Nuclear Information System (INIS)

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-01-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic–inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie–Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol–gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie–Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating. (paper)

  7. Automatic generation of aesthetic patterns on fractal tilings by means of dynamical systems

    International Nuclear Information System (INIS)

    Chung, K.W.; Ma, H.M.

    2005-01-01

    A fractal tiling or f-tiling is a tiling which possesses self-similarity and the boundary of which is a fractal. In this paper, we investigate the classification of fractal tilings with kite-shaped and dart-shaped prototiles from which three new f-tilings are found. Invariant mappings are constructed for the creation of aesthetic patterns on such tilings. A modified convergence time scheme is described, which reflects the rate of convergence of various orbits and at the same time, enhances the artistic appeal of a generated image. A scheme based on the frequency of visit at a pixel is used to generate chaotic attractors

  8. Batched Tile Low-Rank GEMM on GPUs

    KAUST Repository

    Charara, Ali

    2018-02-01

    Dense General Matrix-Matrix (GEMM) multiplication is a core operation of the Basic Linear Algebra Subroutines (BLAS) library, and therefore, often resides at the bottom of the traditional software stack for most of the scientific applications. In fact, chip manufacturers give a special attention to the GEMM kernel implementation since this is exactly where most of the high-performance software libraries extract the hardware performance. With the emergence of big data applications involving large data-sparse, hierarchically low-rank matrices, the off-diagonal tiles can be compressed to reduce the algorithmic complexity and the memory footprint. The resulting tile low-rank (TLR) data format is composed of small data structures, which retains the most significant information for each tile. However, to operate on low-rank tiles, a new GEMM operation and its corresponding API have to be designed on GPUs so that it can exploit the data sparsity structure of the matrix while leveraging the underlying TLR compression format. The main idea consists in aggregating all operations onto a single kernel launch to compensate for their low arithmetic intensities and to mitigate the data transfer overhead on GPUs. The new TLR GEMM kernel outperforms the cuBLAS dense batched GEMM by more than an order of magnitude and creates new opportunities for TLR advance algorithms.

  9. ATLAS TileCal submodule B-field measurement

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Fedorenko, S.B.; Kalinichenko, V.V.; Lomakin, Yu.F.; Vorozhtsov, S.B.; Nessi, M.

    1997-01-01

    The work was done to cross check of the previous measurement done at CERN and to simulate the magnetic structure in the vicinity of the symmetry plane of the TileCal. To perform magnetic measurements for submodule the magnet E2 was chosen. The magnetometer used in the magnetic test of the submodule consists of Hall current supply and Hall voltage measuring device. The indium antimonide Hall probe used in this measurement is a model PKhE 606. Experimental set-up provides a true measurement accuracy of order ± 1%. External magnetic field measurements were conducted at the outer surface of the submodule. Two levels of the external field were applied: 108 Gs and 400 Gs. The result of this measurement in general confirms the data, obtained at CERN, but the shielding capability of the submodule under consideration was ∼ 20% higher than there. The field at the tile location is < 150 Gs up to the external field level 500 Gs and the tile field grows much less than the external field level in this range. The data obtained in this measurement could be used as a benchmark when producing a computer model of the TileCal magnetic field distribution

  10. Development of Clay Tile Coatings for Steep-Sloped Cool Roofs

    Directory of Open Access Journals (Sweden)

    Lucia Brinchi

    2013-07-01

    Full Text Available Most of the pitched roofs of existing buildings in Europe are covered by non-white roofing products, e.g., clay tiles. Typical, cost effective, cool roof solutions are not applicable to these buildings due to important constraints deriving from: (i the owners of homes with roofs visible from the ground level; (ii the regulation about the preservation of the historic architecture and the minimization of the visual environment impact, in particular in historic centers. In this perspective, the present paper deals with the development of high reflective coatings with the purpose to elaborate “cool” tiles with the same visual appearance of traditional tiles for application to historic buildings. Integrated experimental analyses of reflectance, emittance, and superficial temperature were carried out. Deep analysis of the reflectance spectra is undertaken to evaluate the effect of different mineral pigments, binders, and an engobe basecoat. Two tile typologies are investigated: substrate-basecoat-topcoat three-layer tile and substrate-topcoat two-layer tile. The main results show that the developed coatings are able to increase the overall solar reflectance by more than 20% with acceptable visual appearance, suitable for application in historic buildings. Additionally, the effect of a substrate engobe layer allows some further contribution to the increase of the overall reflectance characteristics.

  11. The ATLAS Tile Calorimeter Performance at LHC

    CERN Document Server

    Molander, S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment at LHC. The TileCal pays a major role in detecting hadrons, jets, hadronic decays of tau leptons and measuring the missing transverse energy. Due to the very good signal to noise ratio it assists the muon spectrometer in the identification and reconstruction of muons, which are also a tool for the in situ energy scale validation. The results presented here stem from the data collection in dedicated calibration runs, in cosmic rays data-taking and in LHC collisions along 3 years of operation. The uniformity, stability and precision of the energy scale, the time measurement capabilities and the robustness of the performance against pile-up are exposed through the usage of hadronic and muon final states and confirm the design expectations.

  12. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    Science.gov (United States)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  13. Consolidation and upgrades of the ATLAS Tile Calorimeter

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    This is a presentation of the status of the ATLAS Tile Calorimeter during the EYETS and before starting 2017 data-taking. Updates on the upgrade of the readout system such as doubling the RODs output links and the number of processing units (PUs) are being worked on at the moment as well as items concerning the maintenance of the detector which involves issues such as cooling leaks and consolidation of the Low Voltage Power Supplies, which are being replaced if necessary. Other updates include works on the Tile calibration, in particular on the Cesium system. In addition, the whole Tile readout electronics is being replaced for Phase-II and it is being tested in Test Beam area.

  14. Foam-on-Tile Damage Model

    Science.gov (United States)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  15. Quasiperiodic canonical-cell tiling with pseudo icosahedral symmetry

    Science.gov (United States)

    Fujita, Nobuhisa

    2017-10-01

    Icosahedral quasicrystals and their approximants are generally described as packing of icosahedral clusters. Experimental studies show that clusters in various approximants are orderly arranged, such that their centers are located at the nodes (or vertices) of a periodic tiling composed of four basic polyhedra called the canonical cells. This so called canonical-cell geometry is likely to serve as a common framework for modeling how clusters are arranged in approximants, while its applicability seems to extend naturally to icosahedral quasicrystals. To date, however, it has not been proved yet if the canonical cells can tile the space quasiperiodically, though we usually believe that clusters in icosahedral quasicrystals are arranged such that quasiperiodic long-range order as well as icosahedral point symmetry is maintained. In this paper, we report for the first time an iterative geometrical transformation of the canonical cells defining a so-called substitution rule, which we can use to generate a class of quasiperiodic canonical-cell tilings. Every single step of the transformation proceeds as follows: each cell is first enlarged by a magnification ratio of τ3 (τ = golden mean) and then subdivided into cells of the original size. Here, cells with an identical shape can be subdivided in several distinct manners depending on how their adjacent neighbors are arranged, and sixteen types of cells are identified in terms of unique subdivision. This class of quasiperiodic canonical-cell tilings presents the first realization of three-dimensional quasiperiodic tilings with fractal atomic surfaces. There are four distinct atomic surfaces associated with four sub-modules of the primitive icosahedral module, where a representative of the four submodules corresponds to the Σ = 4 coincidence site module of the icosahedral module. It follows that the present quasiperiodic tilings involve a kind of superlattice ordering that manifests itself in satellite peaks in the

  16. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Souza, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5-fold compared to the design luminosity (10exp34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2023. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. The smallest independent on-detector electronics module has been reduced from 45 channels to 6, greatly reducing the consequences of a failure in the on-detector electronics. The size of t...

  17. Experimental determination of the transient heat absorption of W divertor materials

    International Nuclear Information System (INIS)

    Greuner, H; Böswirth, B; Eich, T; Herrmann, A; Maier, H; Sieglin, B

    2014-01-01

    Fast infrared (IR) thermography resolves the transient edge localized mode (ELM) induced heat fluxes on divertor components on time scales of a few hundred microseconds. These heat loads range from 10 to several 100 MW m −2 and energy densities of 15–200 kJ m −2 . The calculation of the local ELM heat flux depends on the so-called surface heat transfer coefficient very sensitively. Therefore we performed dedicated experiments in the high heat flux test facility GLADIS with well-defined temporal and spatial shape of heat fluxes to reduce the uncertainties of the ELM heat flux calculations in JET. We have experimentally determined the surface heat transfer coefficient for the W components used as divertor components of the JET ILW project. Based on the results of the measured transient heat absorption, the coefficient was deduced in a temperature range from 400 to 1200 °C for the bulk W lamella and for 10 and 20 μm W-coated carbon fibre reinforced carbon tiles, respectively. The measurements allow an improved estimation of ELM heat loads in JET on W and W-coated tiles and an error estimate of the absorbed heat flux. (paper)

  18. Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-04-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  19. Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles

    Science.gov (United States)

    Zhou, Chen; Wang, Zhijin; Hou, Tianjiao

    2017-11-01

    This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.

  20. Moisture absorption characteristics of the Orbiter thermal protection system and methods used to prevent water ingestion

    Science.gov (United States)

    Schomburg, C.; Dotts, R. L.; Tillian, D. J.

    1983-01-01

    The Space Shuttle Orbiter's silica tile Thermal Protection System (TPS) is beset by the moisture absorption problems inherently associated with low density, highly porous insulation systems. Attention is presently given to the comparative success of methods for the minimization and/or prevention of water ingestion by the TPS tiles, covering the development of water-repellent agents and their tile application techniques, flight test program results, and materials improvements. The use of external films for rewaterproofing of the TPS tiles after each mission have demonstrated marginal to unacceptable performance. By contrast, a tile interior waterproofing agent has shown promise.

  1. Development of high conductive C/C composite tiles for plasma facing armor

    International Nuclear Information System (INIS)

    Ioki, K.; Namiki, K.; Tsujimura, S.; Toyoda, M.; Seki, M.; Takatsu, H.

    1991-01-01

    C/C composites with high thermal conductivity were developed in unidirectional, two-dimensional and felt types, and were fabricated as full-scale armor tile. Their thermal conductivity in the direction perpendicular to the plasma-side surface is 250∝550 W/mdeg C, that is comparable to that of pyrolytic graphite. It was shown by heat load tests that the C/C composites have low surface erosion characteristics and high thermal shock resistance. Various kinds of C/C composites were successfully bonded to metal substrate, and their mechanical strength and thermal shock resistance were tested. (orig.)

  2. MASHUP SCHEME DESIGN OF MAP TILES USING LIGHTWEIGHT OPEN SOURCE WEBGIS PLATFORM

    Directory of Open Access Journals (Sweden)

    T. Hu

    2018-04-01

    Full Text Available To address the difficulty involved when using existing commercial Geographic Information System platforms to integrate multi-source image data fusion, this research proposes the loading of multi-source local tile data based on CesiumJS and examines the tile data organization mechanisms and spatial reference differences of the CesiumJS platform, as well as various tile data sources, such as Google maps, Map World, and Bing maps. Two types of tile data loading schemes have been designed for the mashup of tiles, the single data source loading scheme and the multi-data source loading scheme. The multi-sources of digital map tiles used in this paper cover two different but mainstream spatial references, the WGS84 coordinate system and the Web Mercator coordinate system. According to the experimental results, the single data source loading scheme and the multi-data source loading scheme with the same spatial coordinate system showed favorable visualization effects; however, the multi-data source loading scheme was prone to lead to tile image deformation when loading multi-source tile data with different spatial references. The resulting method provides a low cost and highly flexible solution for small and medium-scale GIS programs and has a certain potential for practical application values. The problem of deformation during the transition of different spatial references is an important topic for further research.

  3. Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.

    Science.gov (United States)

    Pinheiro, B C A; Holanda, J N F

    2013-03-30

    This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Preparation of porcelain tile granulates by more environmentally sustainable processes

    Energy Technology Data Exchange (ETDEWEB)

    Gil, C.; Silvestre, D.; Piquer, J.; Garcia-Ten, J.; Quereda, E.; Vicente, M. J.

    2012-07-01

    This study examines the feasibility of manufacturing glazed porcelain tiles with a more environmentally friendly manufacturing process, by reducing water and thermal energy consumption. The process studied in this paper is dry milling in a pendulum mill, with subsequent granulation (in order to obtain a press powder with similar flow ability to that of spray dried powders). The different morphology of the new granulate with respect to the standard spray-dried granulate modifies the microstructure of the green compacts and thus, their behaviour and fired tile properties. In order to obtain porcelain tiles with the required properties (water absorption, mechanical strength,) changes have been made in the raw materials mixture and in the processing variables. Finally, porcelain tiles measuring 50x50 cm have been manufactured at industrial scale with the new granulate using a conventional firing cycle, obtaining quality levels identical to those provided by the spray-dried granulate. These results open the possibility of preparing porcelain tile body compositions through a manufacturing process alternative to the standard one, more environmentally friendly and with lower costs. (Author)

  5. Research on Reasons for Repeated Falling of Tiles in Internal Walls of Construction

    Science.gov (United States)

    Xu, LiBin; Chen, Shangwei; He, Xinzhou; Zhu, Guoliang

    2018-03-01

    In view of the quality problem of repeated falling of facing tiles in some construction, the essay had a comparative trial in laboratory on cement mortar which is often used to paste tiles, special tile mortar and dry-hang glue, and measured durability of tile adhesive mortar through freezing and thawing tests. The test results indicated that ordinary cement mortar cannot meet standards due to reasons like big shrinkage and low adhesive. In addition, the ten times of freezing and thawing tests indicated that ordinary cement mortar would directly shell and do not have an adhesive force, and moreover, adhesive force of special tile mortar would reduce. Thus, for tiles of large size which are used for walls, dry-hang techniques are recommended to be used.

  6. Military Curriculum Materials for Vocational and Technical Education. Builders School, Ceramic Tile Setting 3-9.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, for individualized or group instruction on ceramic tile setting, was developed from military sources for use in vocational education. The course provides students with skills in mortar preparation, surface preparation, tile layout planning, tile setting, tile cutting, and the grouting of tile joints. Both theory and shop assignments…

  7. Porcelain tiles by the dry route

    Directory of Open Access Journals (Sweden)

    Boschi, A. O.

    2010-10-01

    Full Text Available In Brazil, the second largest tile producer of the world, at present, 70% of the tiles are produced by the dry route. One of the main reasons that lead to this development is the fact that the dry route uses approximately 30% less thermal energy them the traditional wet route. The increasing world concern with the environment and the recognition of the central role played by the water also has pointed towards privileging dry processes. In this context the objective of the present work is to study the feasibility of producing high quality porcelain tiles by the dry route. A brief comparison of the dry and wet route, in standard conditions industrially used today to produce tiles that are not porcelain tiles, shows that there are two major differences: the particle sizes obtained by the wet route are usually considerably finer and the capability of mixing the different minerals, the intimacy of the mixture, is also usually better in the wet route. The present work studied the relative importance of these differences and looked for raw materials and operational conditions that would result in better performance and glazed porcelain tiles of good quality.

    En Brasil, en este momento segundo productor mundial, el 70% de los pavimentos cerámicos se obtiene por vía seca. Una de las razones fundamentales se debe a que esta vía supone un consumo energético inferior, en un 30%, a la via húmeda tradicional. La creciente preocupación mundial sobre los problemas medioambientales y el reconocimiento del papel central que juega el agua en este proceso han favorecido el desarrollo de la vía seca. En este contexto, el objetivo del presente trabajo es estudiar la viabilidad de la producción de pavimentos porcelánicos de alta calidad por vía seca. Una breve comparación entre ambas vías, en las condiciones standard de producción vigentes para producciones que no son de porcelánico, indican que existen dos diferencias substanciales; el tamaño de

  8. Tile-based parallel coordinates and its application in financial visualization

    Science.gov (United States)

    Alsakran, Jamal; Zhao, Ye; Zhao, Xinlei

    2010-01-01

    Parallel coordinates technique has been widely used in information visualization applications and it has achieved great success in visualizing multivariate data and perceiving their trends. Nevertheless, visual clutter usually weakens or even diminishes its ability when the data size increases. In this paper, we first propose a tile-based parallel coordinates, where the plotting area is divided into rectangular tiles. Each tile stores an intersection density that counts the total number of polylines intersecting with that tile. Consequently, the intersection density is mapped to optical attributes, such as color and opacity, by interactive transfer functions. The method visualizes the polylines efficiently and informatively in accordance with the density distribution, and thus, reduces visual cluttering and promotes knowledge discovery. The interactivity of our method allows the user to instantaneously manipulate the tiles distribution and the transfer functions. Specifically, the classic parallel coordinates rendering is a special case of our method when each tile represents only one pixel. A case study on a real world data set, U.S. stock mutual fund data of year 2006, is presented to show the capability of our method in visually analyzing financial data. The presented visual analysis is conducted by an expert in the domain of finance. Our method gains the support from professionals in the finance field, they embrace it as a potential investment analysis tool for mutual fund managers, financial planners, and investors.

  9. GCD TechPort Data Sheets Thermal Protection System Materials (TPSM) Project

    Science.gov (United States)

    Chinnapongse, Ronald L.

    2014-01-01

    The Thermal Protection System Materials (TPSM) Project consists of three distinct project elements: the 3-Dimensional Multifunctional Ablative Thermal Protection System (3D MAT) project element; the Conformal Ablative Thermal Protection System (CA-TPS) project element; and the Heatshield for Extreme Entry Environment Technology (HEEET) project element. 3D MAT seeks to design, develop and deliver a game changing material solution based on 3-dimensional weaving and resin infusion approach for manufacturing a material that can function as a robust structure as well as a thermal protection system. CA-TPS seeks to develop and deliver a conformal ablative material designed to be efficient and capable of withstanding peak heat flux up to 500 W/ sq cm, peak pressure up to 0.4 atm, and shear up to 500 Pa. HEEET is developing a new ablative TPS that takes advantage of state-of-the-art 3D weaving technologies and traditional manufacturing processes to infuse woven preforms with a resin, machine them to shape, and assemble them as a tiled solution on the entry vehicle substructure or heatshield.

  10. Characterization of ancient ceramic tiles using XRF = = = =

    International Nuclear Information System (INIS)

    Ben Abdelwahed, Haifa

    2002-01-01

    The measurement of energies and intensities of fluorescent X-rays emitted from a given material when atoms are bombarded with suitable projectiles like electrons, protons, particles or photons has been successfully used for non-destructive elemental analysis in many applications, especially in the analysis of ceramic glasses. Use of radioisotopes as a source of excitation radiation in combination with high resolution semiconductor detectors in x-ray fluorescence has found wide applications in elemental analysis. A radioisotope excited X-ray fluorescence spectrometer consisting of a standard 5.45mm Si(Li) detector having a resolution of 200 eV at 5.9 keV coupled to a TRUMP-8K multichannel analyzer has been used. Tow sources of annular geometry using 10 mCi 109Cd and 10 mCi 55Fe together with PC AXIL software have been used for this study of tile-pavement glasses of ''Ksar Said'' in Tunisia. Analytical data shows that those tile pavement witch are broken in the 19th century from France (Marseille) have not the same composition of Tunisian tile pavement. Referring to our data, The kind of that analyzed glasses is of alkaline lead. we found also, through this study, the elemental compositions of different pigments (green, blue, brownish, yellow, white and red) used to color that tile-pavement glasses. (author). 21 refs

  11. Similarity of eigenstates in generalized labyrinth tilings

    International Nuclear Information System (INIS)

    Thiem, Stefanie; Schreiber, Michael

    2010-01-01

    The eigenstates of d-dimensional quasicrystalline models with a separable Hamiltonian are studied within the tight-binding model. The approach is based on mathematical sequences, constructed by an inflation rule P = {w → s,s → sws b-1 } describing the weak/strong couplings of atoms in a quasiperiodic chain. Higher-dimensional quasiperiodic tilings are constructed as a direct product of these chains and their eigenstates can be directly calculated by multiplying the energies E or wave functions ψ of the chain, respectively. Applying this construction rule, the grid in d dimensions splits into 2 d-1 different tilings, for which we investigated the characteristics of the wave functions. For the standard two-dimensional labyrinth tiling constructed from the octonacci sequence (b = 2) the lattice breaks up into two identical lattices, which consequently yield the same eigenstates. While this is not the case for b ≠ 2, our numerical results show that the wave functions of the different grids become increasingly similar for large system sizes. This can be explained by the fact that the structure of the 2 d-1 grids mainly differs at the boundaries and thus for large systems the eigenstates approach each other. This property allows us to analytically derive properties of the higher-dimensional generalized labyrinth tilings from the one-dimensional results. In particular participation numbers and corresponding scaling exponents have been determined.

  12. Evaluation of Salt Removal from Azulejo Tiles and Mortars using Electrodesalination

    DEFF Research Database (Denmark)

    Ferreira, Célia Maria Dias; Ottosen, Lisbeth M.; Christensen, Iben Vernegren

    2011-01-01

    Azulejo tiles are part of the Portuguese cultural heritage and are worldwide appreciated. The durability of this building material is affected by the accumulation of salts, causing fractures and peeling of the glazing and ultimately leading to the degradation of the tile panels and the irremediable...... loss of historic value. In this work preliminary studies with single tiles presenting an underlying layer of mortar have been conducted to assess the amount of salts that can be removed from the building material using a new technique called “electrodesalination”, in which the salt’s ions...... are transported out from the tiles by applying an electric current on the backside. Results shown here include an assessment of how much of the salts did come out in comparison to what was originally there, and additionally if the electrodesalination succeeded in removing salts down to a point where the tile...

  13. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  14. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  15. Detritiation of tiles from tokamaks by laser cleaning

    International Nuclear Information System (INIS)

    Coad, J. Paul; Widdowson, Anna; Farcage, Daniel; Semerok, Alexander; Thro, P.-Y.; Likonen, Jari; Renvall, Tommi

    2007-01-01

    Laser ablation has been used to clean surfaces or to decontaminate hot cells by removing paint, and has been tested on deposited carbon layers from the TEXTOR tokamak. This paper reports on successful trials in the Beryllium Handling Facility of a pulsed laser cleaning system to remove H-isotope containing carbon deposits on tiles from the JET tokamak. The laser beam is rastered over the surface of the tiles to remove the deposit. Two types of JET carbon-fibre composite (CFC) tiles were treated. The first was covered with carbon-based deposits up to 300 μm thick with high H-isotope content, the other was covered with a mixed Be/C film ∼ 50 microns thick. One scan of the laser was sufficient to completely change the appearance and expose the fibre planes. From cross-sectional micrographs, it was found that overall three scans provided the most effective settings for complete film removal. An area 250 cm 2 of the second tile was cleaned in 20 minutes, clearly demonstrating the efficiency of laser cleaning for the removal of tokamak deposits such as likely to occur in ITER. (authors)

  16. Measurement of Tritium Surface Distribution on TFTR Bumper Limiter Tiles

    International Nuclear Information System (INIS)

    Sugiyama, K.; Tanabe, T.; Skinner, C.H.; Gentile, C.A.

    2004-01-01

    The tritium surface distribution on graphite tiles used in the Tokamak Fusion Test Reactor (TFTR) bumper limiter and exposed to TFTR deuterium-tritium (D-T) discharges from 1993 to 1997 was measured by the Tritium Imaging Plate Technique (TIPT). The TFTR bumper limiter shows both re-/co-deposition and erosion. The tritium images for all tiles measured are strongly correlated with erosion and deposition patterns, and long-term tritium retention was found in the re-/co-depositions and flakes. The CFC tiles located at erosion dominated areas clearly showed their woven structure in their tritium images owing to different erosion yields between fibers and matrix. Significantly high tritium retention was observed on all sides of the erosion tiles, indicating carbon transport via repetition of local erosion/deposition cycles

  17. Thermal load resistance of erosion-monitoring beryllium maker tile for JET ITER like wall project

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Sundelin, P.; Rubel, M.; Coad, J.P.; Matthews, G.F.; Lungu, C.P.

    2007-01-01

    The ITER reference materials, beryllium (Be), carbon fibre composite (CFC) and tungsten (W), have been tested separately in tokamaks. An integrated test demonstrating both compatibility of metal plasma facing components with high-power operation and acceptable tritium retention has not yet been carried out. At JET, the size, magnetic field strength and high plasma current allow to conducting tests with the combination of the materials. Thus, the ITER-like Wall (ILW) project has been launched. In the project, Be will be the plasmafacing material on the main chamber wall of JET. To assess the erosion of the Be tiles, a Be marker tile was proposed and designed. The test samples which simulate the JET Be marker tile have been produced in MEdC, Romania in order to study the thermal load resistance of the JET Be marker (20 x 20 mm 2 size with 30 mm height). The marker tile sample consists of bulk Be, high-Z interlayer (2-3 μm Ni coating) and 8-9 μm Be coating. Thermionic Vacuum Arc (TVA) techniques based on the electron-induced evaporation have been selected for this purpose. In the present work, the global characterization of the maker tile samples and thermal load tests were performed. After the pre-characterization (microstructure observation by scanning electron microscope and elemental analysis by means of Wavelength Dispersive X-ray Spectroscopy and Energy Dispersive X-ray Spectroscopy), the thermal loading tests were performed in the electron beam facility JUDITH. The coating consisted of tiny platelets of ∝0.1 um in diameter and localized larger platelets of 1 um in diameter. The surface and bulk temperature were observed during the tests. In the screening thermal load test, the samples were loaded to 6 MW/m 2 for 10 s. The layers did not show any macroscopic damages at up to 4.5 MW/m 2 for 10 s (45 MJ/m 2 ). However, the coating delaminated and the maker was damaged when the thermal loading reached at 5 MW/m 2 (∝50 MJ/m 2 ). Cyclic heat load tests were

  18. SPECTRAL SETS AND TILES IN CARTESIAN PRODUCTS OVER ...

    Indian Academy of Sciences (India)

    41

    Spectral set conjecture: A Borel set Ω ⊂ Rd of positive and finite. Lebesgue measure is a spectral set if and only if it ... Ω ⊂ G of positive and finite Haar measure is a spectral set if and only if it is a translational tile. ... Key words and phrases. p-adic number field, Cartesian product, tile, spectral set. This work was supported by ...

  19. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  20. Power handling of a segmented bulk W tile for JET under realistic plasma scenarios

    Science.gov (United States)

    Jet-Efda Contributors Mertens, Ph.; Coenen, J. W.; Eich, T.; Huber, A.; Jachmich, S.; Nicolai, D.; Riccardo, V.; Senik, K.; Samm, U.

    2011-08-01

    A solid tungsten divertor row has been designed for JET in the frame of the ITER-like Wall project (ILW). The plasma-facing tiles are segmented in four stacks of tungsten lamellae oriented in the toroidal direction. Earlier estimations of the expected tile performance were carried out mostly for engineering purposes, to compare the permissible heat load with the power density of 7 MW/m2 originally specified for the ILW as a uniform load for 10 s.The global thermal model developed for the W modules delivers results for more realistic plasma footprints: the poloidal extension of the outer strike point was reduced from the full lamella width of 62 mm to ⩾15 mm. Model validation is given by the experimental exposure of a 1:1 prototype stack in the ion beam facility MARION (incidence ˜6°, load E ⩽ 66 MJ/m2 on the wetted surface). Spreading the deposited energy by appropriate sweeping over one or several stacks in the torus is beneficial for the tungsten lamellae and for the support structure.

  1. Occupational heat stress assessment and protective strategies in the context of climate change

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  2. Multi-application inter-tile synchronization on ultra-high-resolution display walls

    KAUST Repository

    Nam, Sungwon

    2010-01-01

    Ultra-high-resolution tiled-display walls are typically driven by a cluster of computers. Each computer may drive one or more displays. Synchronization between the computers is necessary to ensure that animated imagery displayed on the wall appears seamless. Most tiled-display middleware systems are designed around the assumption that only a single application instance is running in the tiled display at a time. Therefore synchronization can be achieved with a simple solution such as a networked barrier. When a tiled display has to support multiple applications at the same time, however, the simple networked barrier approach does not scale. In this paper we propose and experimentally validate two synchronization algorithms to achieve low-latency, intertile synchronization for multiple applications with independently varying frame rates. The two-phase algorithm is more generally applicable to various highresolution tiled display systems. The one-phase algorithm provides superior results but requires support for the Network Time Protocol and is more CPU-intensive. Copyright 2010 ACM.

  3. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00075913; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  4. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal.

    Science.gov (United States)

    Jaynes, D B; Isenhart, T M

    2014-03-01

    Riparian buffers are a proven practice for removing NO from overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage, most of the subsurface flow leaving fields is passed through the buffers in drainage pipes, leaving little opportunity for NO removal. We investigated the feasibility of re-routing a fraction of field tile drainage as subsurface flow through a riparian buffer for increasing NO removal. We intercepted an existing field tile outlet draining a 10.1-ha area of a row-cropped field in central Iowa and re-routed a fraction of the discharge as subsurface flow along 335 m of an existing riparian buffer. Tile drainage from the field was infiltrated through a perforated pipe installed 75 cm below the surface by maintaining a constant head in the pipe at a control box installed in-line with the existing field outlet. During 2 yr, >18,000 m (55%) of the total flow from the tile outlet was redirected as infiltration within the riparian buffer. The redirected water seeped through the 60-m-wide buffer, raising the water table approximately 35 cm. The redirected tile flow contained 228 kg of NO. On the basis of the strong decrease in NO concentrations within the shallow groundwater across the buffer, we hypothesize that the NO did not enter the stream but was removed within the buffer by plant uptake, microbial immobilization, or denitrification. Redirecting tile drainage as subsurface flow through a riparian buffer increased its NO removal benefit and is a promising management practice to improve surface water quality within tile-drained landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. R and D and maintenance on graphite tile of divertor region at EAST

    International Nuclear Information System (INIS)

    Ji, X.; Song, Y.T.; Wu, S.T.; Hao, J.; Du, S.; Peng, Y.; Cao, L.; Wang, S.

    2012-01-01

    Highlights: ► Find out the reason of damage of graphite tile. ► Simulation the halo current. ► Stress analysis of graphite tile by ANSYS. ► Do the experiments to test the strength of graphite tile. ► Do the optimization and maintenance of graphite tile. - Abstract: EAST, with full superconducting magnetic coils, had been designed and constructed to address the scientific and engineering issues under steady state operation. The in-vessel components are full graphite tiles as first wall had been operated successfully. In the experiment campaign of 2010, the H mode operation and 1 MA operation have been gotten on EAST. However, in some case, some of the graphite tiles of divertor region are damaged with the plasma parameter enhanced. As most of the damaged graphite tiles are in the divertor region, they are probably damaged by the electro-magnetic force of the halo current when the VDEs occur. The force of the halo current is re-estimated. The structure analysis has been done by the ANSYS software. From the analysis result. It can be obtained that the stress is larger than the allowable stress when the halo current on the graphite tile is larger than 2.7 kA. The tensile testing of the graphite also has been done. As the result, the graphite tiles are damaged when the forces are up to 2400 N. To deal with the problem, two proposes are accepted. In the one hand, the new type graphite material is used, whose tensile strength is up to 45 MPa. In the other hand, the structure of the graphite tiles is optimized.

  6. Color features for quality control in ceramic tile industry

    Science.gov (United States)

    Kukkonen, Saku; Kaelviaeinen, Heikki; Parkkinen, Jussi P.

    2001-02-01

    We study visual quality control in the ceramics industry. In the manufacturing, it is important that in each set of tiles, every single tile looks similar. Currently, the estimation is usually done by human vision. Our goal is to design a machine vision system that can estimate the sufficient similarity, or same appearance, to the human eye. Our main approach is to use accurate spectral representation of color, and compare spectral features to the RGB color features. A laboratory system for color measurements is built. Experimentations with five classes of brown tiles are presented and discussed. In addition to the k-nearest neighbor (k-NN) classifier, a neural network called the self-organizing map (SOM) is used to provide understanding of the spectral features. Every single spectrum in each tile of a training set is used as input to a 2D SOM. The SOM is analyzed to understand how spectra are clustered. As a result, tiles are classified using a trained 2D SOM. It is also of interest to know whether the order of spectral colors can be determined. In our approach, all spectra are clustered in a 1D SOM, and each pixel spectrum) is presented by pseudocolors according to the trained nodes. Finally, the results are compared to experiments with human vision.

  7. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    Science.gov (United States)

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  8. Design study of an armor tile handling manipulator for the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Shibanuma, K.; Honda, T.; Satoh, K.; Terakado, T.; Kondoh, M.; Sasaki, N.; Munakata, T.; Murakami, S.

    1991-01-01

    A conceptual design of the Fusion Experimental Reactor (FER), which is a D-T burning reactor following on JT-60 in Japan, has been developed by Japan Atomic Energy Research Institute (JAERI). In FER, a rail-mounted vehicle concept is planned to be adopted for in-vessel maintenance, such as maintenance of divertor plates and armor tiles. Advantages of this concept are the high stiffness of the rail as a base structure for maintenance and the high mobility of the vehicle along the rail. Twin armor tile handling manipulators installed on both sides of the vehicle have been designed. The respective manipulators for armor tile handling have 8 degrees of freedom in order to have access to any place of the first wall and to go through the horizontal port by operating manipulator joints. If the two types of manipulators for divertor plates and armor tiles are installed on the vehicle and the divertor handling manipulator carries a case filled with armor tiles, the replacement time of armor tiles will be reduced. In FER, moreover, maintenance of armor tiles, which is a scheduled maintenance, is planned to be carried out by the autonomous control using position sensors etc. In order to accumulate the data base for the development of the autonomous control of the manipulator in armor tile maintenance, the present paper describes basic mechanical characteristics (stress, deflection and natural frequency) of the armor tile handling manipulator calculated by static stress and dynamic eigenvalue analyses. (orig.)

  9. Study of the pressing operation of large-sized tiles using X-ray absorption

    International Nuclear Information System (INIS)

    Amoros, J. L.; Mallol, G.; Llorens, D.; Boix, J.; Arnau, J. M.; Feliu, C.; Cerisuelo, J. A.; Gargallo, J. J.

    2010-01-01

    An apparatus for X-Ray non destructive inspection of bulk density distribution in large ceramic tiles has been designed, built and patented. This technique has many advantages compared with other methods: it allows tile bulk density distribution to be mapped and is neither destructive nor toxic, provided the X-ray tube and detector area are shielded to prevent leakage. In the present study, this technique, whose technical feasibility and accuracy had been verified in previous studies, has been used to scan ceramic tiles formed under different industrial conditions, modifying press working parameters. The use of high-precision laser telemeters allows tile thicknesses to be mapped, facilitating the interpretation of manufacturing defects produced in pressing, which cannot be interpreted by just measuring bulk density. The bulk density distributions obtained in the same unfired and fired tiles are also compared, a possibility afforded only by this measurement method, since it is non-destructive. The comparison of both unfired and fired tile bulk density distributions allows the influence of the pressing and firing stages on tile end porosity to be individually identified. (Author) 12 refs.

  10. Thermodynamical Approach for The Determination of The Speed of Heat Propagation in Heat Conduction

    International Nuclear Information System (INIS)

    Shnaid, I.

    1998-01-01

    In this work, a thermodynamical approach for the determination of the speed of heat propagation in a heat conductive body is developed. It employs equations of the First and the Second Laws of thermodynamics. The present analyses show that no time delay exists between time moments of heat extraction and heat supply. Therefore, an infinite speed of heat propagation is proven. It is also predicted that there is no time lag between heat flow and temperature difference. A theoretical approach straightforwardly leading from basic equations of the First and the Second Laws of thermodynamics to a kinetic equation describing heat conduction in an isotropic continuum is also developed. It is shown that Fourier's equation is a particular case of the derived kinetic equation. Based on the kinetic equation, the governing heat conduction equation is of tile parabolic type, thus, confirming that speed of heat propagation is infinite

  11. Porcelain tiles using nepheline as alternative source of alkalis

    International Nuclear Information System (INIS)

    Cruz, C.M. da; Oliveira, D.C. de; Faustino, L.M.; Maestrelli, S.C.; Roveri, C.D.

    2016-01-01

    Porcelain tiles present good aesthetical properties, low water absorption and high mechanical and chemical attack resistance. The feldspar, one of its raw materials, is responsible form diminishing porosity and enhance mechanical resistance. It is normally imported, making the production more expensive. In this paper, it was studied the substitution of feldspar by nepheline under the rheological point of view, determining the optimum amount of deffloculant and the maximum concentration of solids of the suspensions. The results showed similar rheological behaviour, with a small reduction on the maximum concentration of solids as the proportion of nepheline increases. The pieces made with nepheline are darker than the ones made of feldspar; however, the magnetic separation results in lighter pieces. The formulations with nepheline as alkalis source presented a high increase of the density after heating. (author)

  12. An Analysis on the Moisture and Thermal Protective Performance of Firefighter Clothing Based on Different Layer Combinations and Effect of Washing on Heat Protection and Vapour Transfer Performance

    Directory of Open Access Journals (Sweden)

    Ozgur Atalay

    2015-01-01

    Full Text Available Fabric assemblies for firefighting clothing have been tested for heat protection and comfort. The constituent materials and fabric structures have been specifically selected and tailored for firefighters’ clothing. In order to do this, four types of outer shell fabrics, four types of moisture barrier fabrics, and four types of heat barriers with different weights and material compositions were used to make a multilayered fabric assembly. Heat transfer (flame, heat transfer (radiant, and water vapour resistance tests were conducted according to the latest EN469 test standard which also recommends washing tests. These tests reveal that material content and material brand have considerable effect on the required performance levels of heat protection. In addition, while washing tests have improved water vapor transfer properties, they have a deteriorating effect on heat protection performance. Considering heat protection and moisture comfort properties, the optimal assemblies are thereby identified.

  13. Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.

    Science.gov (United States)

    Evans, Constantine G; Hariadi, Rizal F; Winfree, Erik

    2012-06-27

    While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.

  14. The ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator Data Acquisition and Software

    CERN Document Server

    Little, Jared David; The ATLAS collaboration

    2018-01-01

    The LHC plans a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the design LHC value. The electronics of the hadronic Tile Calorimeter (TileCal) will undergo a substantial upgrade to accommodate to the HL-LHC parameters. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. The photomultiplier signals will be digitized and transferred off-detector to the TileCal PreProcessors (TilePPr) for every bunch crossing, requiring a data bandwidth of 40 Tbps. The TilePPr will reconstruct, store and send the calorimeter signals to first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. In parallel, the data samples will be stored in pipeline memories and the data of the events selected by the ATLAS central trigger system and transferred to the ATLAS global Da...

  15. Characterization of particulate and dissolved phosphorus in tile and nearby riverine systems

    Science.gov (United States)

    Jiang, X.; Arai, Y.; David, M.; Gentry, L.

    2017-12-01

    In the Midwestern U.S., the drainage of agricultural land is predominantly managed by the tile drain system because of its poorly drain properties of clay rich indigenous soils. An accelerated subsurface flow of phosphorus (P) has recently been documented as a primary P transport path in contrast to the typical surface runoff events observed in the Eastern U.S. Recent studies suggested the important role of particulate P (PP) load in agricultural tile drainage water during high flow events. It was hypothesized that PP in the tile water is transported to riverine system contributing to the negative environmental impacts in the Midwestern U.S. In this study, correlation assessment of physicochemical properties of PP in agricultural tile drainage and nearby river samples after a storm event was conducted using a combination of 31P-nuclear magnetic resonance spectroscopy, P K-edge X-ray absorption near edge structure spectroscopy, X-ray diffraction, zetasizer, and transmission electron microscopy. Results show that significantly more colloidal (i.e. 1 nm- 2 µm) and silt-sized (i.e. > 2 µm) particles as well as higher dissolved total P (DTP) and dissolved reactive P (DRP) concentrations existed in river samples than tile samples. Tile and river samples showed similar zeta potential in each particle-size fraction and similar element distributions on colloidal fraction. However, colloidal P concentration and distribution are slightly different between tile and river samples: more colloidal total P and organic P existed in tile colloids than river colloids. The results of P speciation and mineralogical assessment will also be discussed.

  16. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    Science.gov (United States)

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  17. PROTECTION OF WORKS TITLES FROM THE PERSPECTIVE OF COPYRIGHT PROTECTION AND TRADEMARK PROTECTION

    Directory of Open Access Journals (Sweden)

    George-Mihai IRIMESCU

    2017-05-01

    Full Text Available The main purpose of the paper is assessing the possibilities of protecting the titles of works. One possibility is the protection by means of registered or unregistered trademarks. This route presents difficulties because of the distinctiveness perspective. In this sense, the European case-law has recently developed a constant practice and outlined a series of criteria that should be taken into consideration when examining a trademark consisting of a title. Another possibility is protecting the title under the provisions of the copyright law. From this respect, the practice has not yet determined a constant practice. However, the dominant opinion is that the originality criterion should be taken into consideration when assessing the protection of a tile. Finally, brief conclusion are made, including short remarks on the cumulative protection of titles, both as trademarks and under the copyright law.

  18. Development of remote replacement system for armor tiles of first wall of FER

    International Nuclear Information System (INIS)

    Adachi, Junichi; Yoshizawa, Shunji; Nakano, Yasuo; Kuboyama, Takashi; Shibanuma, Kiyoshi; Kakudate, Satoshi; Oka, Kiyoshi.

    1993-01-01

    A remote system has been developed to replace automatically armor tiles of first walls with a single manipulator arm for the Fusion Experimental Reactor (FER). The system is composed of a manipulator arm and an end-effector (a tile replacement hand), which have a gripper of the tiles, a nutrunner to rotate attatching bolts of them and a vision sensor to measure positions of them. The system can replace the tiles by means of a visual feedback system using vision sensor, even if the positions of the tiles would have changed. As a result of tests, it has been proved that the end-effector is useful and the control system is practicable. (author)

  19. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index; Influencia das caracteristicas da superficie no indice de refletancia solar de telhas ceramicas esmaltadas

    Energy Technology Data Exchange (ETDEWEB)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M., E-mail: luciana.maccarini@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil)

    2016-07-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  20. Calculation of heat fluxes induced by radio frequency heating on the actively cooled protections of ion cyclotron resonant heating (ICRH) and lower hybrid (LH) antennas in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, G., E-mail: Guillaume.ritz@gmail.com [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Corre, Y., E-mail: Yann.corre@cea.fr [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Rault, M.; Missirlian, M. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint Paul-lez-Durance (France); Martinez, A.; Ekedahl, A.; Colas, L.; Guilhem, D.; Salami, M.; Loarer, T. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► The heat flux generated by radiofrequency (RF) heating was calculated using Tore Supra's heating antennas. ► The highest heat flux value, generated by ions accelerated in RF-rectified sheath potentials, was 5 MW/m{sup 2}. ► The heat flux on the limiters of antennas was in the same order of magnitude as that on the toroidal pumping limiter. -- Abstract: Lower hybrid current drive (LHCD) and ion cyclotron resonance heating (ICRH) are recognized as important auxiliary heating and current drive methods for present and next step fusion devices. However, these radio frequency (RF) systems generate a heat flux up to several MW/m{sup 2} on the RF antennas during plasma operation. This paper focuses on the determination of the heat flux deposited on the lateral protections of the RF antennas in Tore Supra. The heat flux was calculated by finite element method (FEM) using a model of the lateral protection. The FEM calculation was based on surface temperature measurements using infrared cameras monitoring the RF antennas. The heat flux related to the acceleration of electrons in front of the LHCD grills (LHCD active) and to the acceleration of ions in RF-rectified sheath potentials (ICRH active) were calculated. Complementary results on the heat flux related to fast ions (ICRH active with a relatively low magnetic field) are also reported in this paper.

  1. A radiation tolerant Data link board for the ATLAS Tile Cal upgrade

    Science.gov (United States)

    Åkerstedt, H.; Bohm, C.; Muschter, S.; Silverstein, S.; Valdes, E.

    2016-01-01

    This paper describes the latest, full-functionality revision of the high-speed data link board developed for the Phase-2 upgrade of ATLAS hadronic Tile Calorimeter. The link board design is highly redundant, with digital functionality implemented in two Xilinx Kintex-7 FPGAs, and two Molex QSFP+ electro-optic modules with uplinks run at 10 Gbps. The FPGAs are remotely configured through two radiation-hard CERN GBTx deserialisers (GBTx), which also provide the LHC-synchronous system clock. The redundant design eliminates virtually all single-point error modes, and a combination of triple-mode redundancy (TMR), internal and external scrubbing will provide adequate protection against radiation-induced errors. The small portion of the FPGA design that cannot be protected by TMR will be the dominant source of radiation-induced errors, even if that area is small.

  2. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Scuri, Fabrizio; The ATLAS collaboration

    2018-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMTs). The analogue signals from the PMTs are amplified, shaped, digitized by sampling the signal every 25 ns and stored on detector until a trigger decision is received. The High-Luminosity phase of LHC (HL-LHC) expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under high pileup. Both the on- and off-detector TileCal electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precis...

  3. On residual gas analysis during high temperature baking of graphite tiles

    International Nuclear Information System (INIS)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C; Chauhan, N; Raole, P M

    2008-01-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles

  4. On residual gas analysis during high temperature baking of graphite tiles

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C [Institute for Plasma Research, Bhat, Gandhinagar - 382 428 (India); Chauhan, N; Raole, P M [Facilitation Center for Industrial Plasma Technologies, IPR, Gandhinagar (India)], E-mail: arun@ipr.res.in

    2008-05-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles.

  5. Noise dependence with pile-up in the ATLAS Tile calorimeter

    CERN Document Server

    Araque Espinosa, Juan Pedro; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment and comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. Under these challenging conditions not only the energy from an interesting event will be measured but also a component coming from other collisions. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described.

  6. Host immunity in the protective response to vaccination with heat-killed Burkholderia mallei

    Directory of Open Access Journals (Sweden)

    Paessler Slobodan

    2008-09-01

    Full Text Available Abstract Background We performed initial cell, cytokine and complement depletion studies to investigate the possible role of these effectors in response to vaccination with heat-killed Burkholderia mallei in a susceptible BALB/c mouse model of infection. Results While protection with heat-killed bacilli did not result in sterilizing immunity, limited protection was afforded against an otherwise lethal infection and provided insight into potential host protective mechanisms. Our results demonstrated that mice depleted of either B cells, TNF-α or IFN-γ exhibited decreased survival rates, indicating a role for these effectors in obtaining partial protection from a lethal challenge by the intraperitoneal route. Additionally, complement depletion had no effect on immunoglobulin production when compared to non-complement depleted controls infected intranasally. Conclusion The data provide a basis for future studies of protection via vaccination using either subunit or whole-organism vaccine preparations from lethal infection in the experimental BALB/c mouse model. The results of this study demonstrate participation of B220+ cells and pro-inflammatory cytokines IFN-γ and TNF-α in protection following HK vaccination.

  7. Fabrication of ceramic wall tiles and their use in the uptake of radioactive 137Cs, 90Sr and 57Co

    International Nuclear Information System (INIS)

    Khalil, T.K.; El-Gammal, B.; Abou El-Nour, F.; Bossert, J.

    2003-01-01

    Egyptian waste materials as air cooled blast furanace slag's were added in different quantities to mixtures of egyptian raw materials applying the single fast firing technique for producing wall tiles. The physico-chemical characteristics of the waste materials as well as the raw materials were studied before and after the thermal treatment. The reactions occurred during the firing procces and the formation of the end phases were followed using DTA-TG, X-ray diffractometry and heating microscopy. The effect of composition on bend strength, water absorption and firing shrinkage was studied. As a result, promising wall tiles with high bend strength, low water absorption and low firing shrinkage, containing high percentage of waste materials (50 wt% of the slag) and fired at 1100degree C for 30 minures were fabricated

  8. Direct Atomic Force Microscopy Observation of DNA Tile Crystal Growth at the Single-Molecule Level

    OpenAIRE

    Evans, Constantine G.; Hariadi, Rizal F.; Winfree, Erik

    2012-01-01

    While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detach...

  9. Tritium Removal by Laser Heating and Its Application to Tokamaks

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Guttadora, G.; Carpe, A.; Langish, S.; Young, K.M.; Nishi, M.; Shu, W.

    2001-01-01

    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm 2 , and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed

  10. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  11. Structures for handling high heat fluxes

    International Nuclear Information System (INIS)

    Watson, R.D.

    1990-01-01

    The divertor is recognized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand heat fluxes >5 MW/m 2 . High velocity, sub-cooled water with twisted tape inserts for enhanced heat transfer provides a critical heat flux limit of 40-60 MW/m 2 . Uncertainties in physics and engineering heat flux peaking factors require that the design heat flux not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and heat sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high heat flux components. (orig.)

  12. Study of the effect of nano surface morphology on the stain-resistant property of ceramic tiles

    International Nuclear Information System (INIS)

    Pan, S P; Hung, J K; Liu, Y T

    2014-01-01

    In this study, six types of commercially available ceramic tiles, including nano-structured ceramic tiles and regular ceramic tiles, were selected to investigate the effect of surface morphology on their stain-resistant property. The stain-resistant efficiencies of various ceramic tiles with nano-size surface were measured in order to determine the appropriate method for testing ceramic tiles with nano-structure surface

  13. Coverage percentage and raman measurement of cross-tile and scaffold cross-tile based DNA nanostructures.

    Science.gov (United States)

    Gnapareddy, Bramaramba; Ahn, Sang Jung; Dugasani, Sreekantha Reddy; Kim, Jang Ah; Amin, Rashid; Mitta, Sekhar Babu; Vellampatti, Srivithya; Kim, Byeonghoon; Kulkarni, Atul; Kim, Taesung; Yun, Kyusik; LaBean, Thomas H; Park, Sung Ha

    2015-11-01

    We present two free-solution annealed DNA nanostructures consisting of either cross-tile CT1 or CT2. The proposed nanostructures exhibit two distinct structural morphologies, with one-dimensional (1D) nanotubes for CT1 and 2D nanolattices for CT2. When we perform mica-assisted growth annealing with CT1, a dramatic dimensional change occurs where the 1D nanotubes transform into 2D nanolattices due to the presence of the substrate. We assessed the coverage percentage of the 2D nanolattices grown on the mica substrate with CT1 and CT2 as a function of the concentration of the DNA monomer. Furthermore, we fabricated a scaffold cross-tile (SCT), which is a new design of a modified cross-tile that consists of four four-arm junctions with a square aspect ratio. For SCT, eight oligonucleotides are designed in such a way that adjacent strands with sticky ends can produce continuous arms in both the horizontal and vertical directions. The SCT was fabricated via free-solution annealing, and self-assembled SCT produces 2D nanolattices with periodic square cavities. All structures were observed via atomic force microscopy. Finally, we fabricated divalent nickel ion (Ni(2+))- and trivalent dysprosium ion (Dy(3+))-modified 2D nanolattices constructed with CT2 on a quartz substrate, and the ion coordinations were examined via Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. CFD analysis and experimental comparison of novel roof tile shapes

    Directory of Open Access Journals (Sweden)

    Michele Bottarelli

    2017-06-01

    Using an experimental rig, the air pressure difference and the volumetric flow rate between tiles have been measured for an existing Portoghese tile design over a range of pressures. Then, in order to understand the air flows under different conditions, a three-dimensional computational fluid dynamics (CFD model has been implemented to recreate the full geometry of the rig. The model was calibrated against the aforementioned experimental results, and run with boundary conditions simulating different wind directions. Even in the low velocities typical of average local wind patterns, the fluid dynamic problem remains complex because of the geometry of the gaps between the tiles. However, it has been possible to assess the coefficient of local head loss and then apply it in an analytical relationship between pressure drop and flow rate, taking into account the open area. The results have shown how the wind direction affects the air permeability and, therefore, important insights have been gathered for the design of novel tiles.

  15. Upgrade of the ATLAS Tile Calorimeter Electronics

    International Nuclear Information System (INIS)

    Carrió, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year

  16. GIBS Web Map Tile Service (WMTS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The WMTS implementation standard provides a standards-based solution for serviing digital maps using predefined image tiles. Through the constructs of the...

  17. Comprehensive nitrogen budgets for controlled tile drainage fields in eastern ontario, Canada.

    Science.gov (United States)

    Sunohara, M D; Craiovan, E; Topp, E; Gottschall, N; Drury, C F; Lapen, D R

    2014-03-01

    Excessive N loading from subsurface tile drainage has been linked to water quality degradation. Controlled tile drainage (CTD) has the potential to reduce N losses via tile drainage and boost crop yields. While CTD can reduce N loss from tile drainage, it may increase losses through other pathways. A multiple-year field-scale accounting of major N inputs and outputs during the cropping season was conducted on freely drained and controlled tile drained agricultural fields under corn ( L.)-soybean [ (L.) Merr.] production systems in eastern Ontario, Canada. Greater predicted gaseous N emissions for corn and soybean and greater observed lateral seepage N losses were observed for corn and soybean fields under CTD relative to free-draining fields. However, observed N losses from tile were significantly lower for CTD fields, in relation to freely drained fields. Changes in residual soil N were essentially equivalent between drainage treatments, while mass balance residual terms were systematically negative (slightly more so for CTD). Increases in plant N uptake associated with CTD were observed, probably resulting in higher grain yields for corn and soybean. This study illustrates the benefits of CTD in decreasing subsurface tile drainage N losses and boosting crop yields, while demonstrating the potential for CTD to increase N losses via other pathways related to gaseous emissions and groundwater seepage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. A portable high-power diode laser-based single-stage ceramic tile grout sealing system

    Science.gov (United States)

    Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.

    2002-02-01

    By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.

  19. Postmortem near surface analysis of beryllium limiter tiles from ISX-B

    International Nuclear Information System (INIS)

    Zuhr, R.A.

    1985-11-01

    Beryllium is a promising material for plasma-side components in magnetic confinement fusion devices and is being considered for possible use in the Joint European Torus (JET). In order to test beryllium as a limiter material, a collaborative JET/ISX-B experiment was carried out in which the ISX-B tokamak was operated for more than 4000 discharges with a beryllium limiter. At the end of the test period the limiter was removed and the composition of the near-surface region of selected tiles was analyzed as a function of position by Rutherford backscattering. The amount of deuterium retained near the surface was measured by nuclear reaction analysis. Chromium, iron, and nickel were the dominant metallic impurities in the surface with a combined concentration on the order of 10 16 cm -2 . Oxygen surface coverages were generally in the mid-10 16 cm -2 range. A consistent trend in the impurity data was that heavily damaged or melted areas generally incorporated more impurities. The amounts of deuterium trapped in the tiles ranged from 1 to 5 x 10 17 cm -2 over all of the surfaces exposed to the plasma. No deuterium was detectable on surfaces (the protected sides) not directly exposed to the plasma

  20. Clock Distribution and Readout Architecture for the ATLAS Tile Calorimeter at the HL-LHC

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2018-01-01

    The Tile Calorimeter (TileCal) is one detector of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter made of steel plates and plastic scintillators which are readout using approximately 10,000 PhotoMultipliers Tubes (PMTs). In 2024, the LHC will undergo a series of upgrades towards a High Luminosity LHC (HL-LHC) to deliver up to 7.5 times the current nominal instantaneous luminosity. The ATLAS Tile Phase II Upgrade will accommodate detector and data acquisition system to the HL-LHC requirements. The detector electronics will be redesigned using a new clock distribution and readout architecture with a full-digital trigger system. After the Long Shutdown 3 (2024-2026), the on-detector electronics will transfer digitized data for every bunch crossing (~25 ns) to the Tile PreProcessors (TilePPr) in the counting rooms with a total data bandwidth of 40 Tbps. The TilePPrs will store the detector data in pipeline memories to cope with the new ATLAS DAQ architecture requirements...

  1. Quality of Experience for Large Ultra-High-Resolution Tiled Displays with Synchronization Mismatch

    Directory of Open Access Journals (Sweden)

    Deshpande Sachin

    2011-01-01

    Full Text Available This paper relates to quality of experience when viewing images, video, or other content on large ultra-high-resolution displays made from individual display tiles. We define experiments to measure vernier acuity caused by synchronization mismatch for moving images. The experiments are used to obtain synchronization mismatch acuity threshold as a function of object velocity and as a function of occlusion or gap width. Our main motivation for measuring the synchronization mismatch vernier acuity is its relevance in the application of tiled display systems, which create a single contiguous image using individual discrete panels arranged in a matrix with each panel utilizing a distributed synchronization algorithm to display parts of the overall image. We also propose a subjective assessment method for perception evaluation of synchronization mismatch for large ultra-high-resolution tiled displays. For this, we design a synchronization mismatch measurement test video set for various tile configurations for various interpanel synchronization mismatch values. The proposed method for synchronization mismatch perception can evaluate tiled displays with or without tile bezels. The results from this work can help during design of low-cost tiled display systems, which utilize distributed synchronization mechanisms for a contiguous or bezeled image display.

  2. Effects of occupational exposures and smoking on lung function in tile factory workers.

    Science.gov (United States)

    Jaakkola, Maritta S; Sripaiboonkij, Penpatra; Jaakkola, Jouni J K

    2011-02-01

    The aims of this study were to investigate the relations of occupational exposures in tile industry to lung function and to evaluate potential interaction between smoking and tile dust exposure containing silica. A cross-sectional study of 232 workers (response rate 100%) in a tile factory and 76 office workers (response rate 73%) from four factories in Thailand was conducted in 2006-2007. Participants answered a questionnaire and performed spirometry. Factory workers had lower spirometric functions than office workers, especially those with high dust exposure. There was a dose-response relation between duration of dust exposure and FEV1 and FVC, the adjusted effect of ≥ 21 years of exposure on FEV1 being -240 ml (-100 to -380) and on FVC -300 ml (-140 to -460). The adverse effect of dust on lung function was larger in current smokers suggesting synergism between smoking and tile dust exposure. This study provides evidence that long-term exposure to dust in tile industry is related to lung function reduction. There was a suggestion of synergistic effect between dust exposure and smoking. Tile factories should consider measures to reduce dust exposure and arrange spirometry surveillance for workers with such exposure. Smoking cessation should be promoted to prevent harmful effects of occupational tile dust exposure.

  3. Flexible and efficient genome tiling design with penalized uniqueness score

    Directory of Open Access Journals (Sweden)

    Du Yang

    2012-12-01

    Full Text Available Abstract Background As a powerful tool in whole genome analysis, tiling array has been widely used in the answering of many genomic questions. Now it could also serve as a capture device for the library preparation in the popular high throughput sequencing experiments. Thus, a flexible and efficient tiling array design approach is still needed and could assist in various types and scales of transcriptomic experiment. Results In this paper, we address issues and challenges in designing probes suitable for tiling array applications and targeted sequencing. In particular, we define the penalized uniqueness score, which serves as a controlling criterion to eliminate potential cross-hybridization, and a flexible tiling array design pipeline. Unlike BLAST or simple suffix array based methods, computing and using our uniqueness measurement can be more efficient for large scale design and require less memory. The parameters provided could assist in various types of genomic tiling task. In addition, using both commercial array data and experiment data we show, unlike previously claimed, that palindromic sequence exhibiting relatively lower uniqueness. Conclusions Our proposed penalized uniqueness score could serve as a better indicator for cross hybridization with higher sensitivity and specificity, giving more control of expected array quality. The flexible tiling design algorithm incorporating the penalized uniqueness score was shown to give higher coverage and resolution. The package to calculate the penalized uniqueness score and the described probe selection algorithm are implemented as a Perl program, which is freely available at http://www1.fbn-dummerstorf.de/en/forschung/fbs/fb3/paper/2012-yang-1/OTAD.v1.1.tar.gz.

  4. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236332; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitized and then...

  5. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. Currently, an analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitiz...

  6. Tests with beam setup of the TileCal Phase-II upgrade electronics

    CERN Document Server

    Hlaluku, Dingane Reward; The ATLAS collaboration

    2017-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile Calorimeter (TileCal) will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal electronics both on- and off-detector will be completely redesigned and a new readout architecture will be adopted. The photomultiplier signals will be digitised and transferred to the TileCal PreProcessors (PPr) located off-detector for every bunch crossing. Then, the PPr will provide preprocessed digital data to the first level trigger with improved spatial granularity and energy resolution with respect to the current analog trigger signals. We plan to insert one TileCal module instrumented with the new electronics in the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new drawer, so-called Hybrid Demonstrator, must provide analog trigger signal fo...

  7. Retention of Hydrogen Isotopes in Divertor Tiles Used in JT-60U

    International Nuclear Information System (INIS)

    Hirohata, Y.; Shibahara, T.; Tanabe, T.; Oya, Y.; Arai, T.; Gotoh, Y.; Masaki, K.; Yagyu, J.; Oyaidzu, M.; Okuno, K.; Nishikawa, M.; Miya, N.

    2005-01-01

    Retention characteristics of deuterium and hydrogen retained in graphite tiles placed in the divertor region of JT-60U were investigated by thermal desorption spectroscopy (TDS). The deuterium retained in the near surface of all graphite tiles was mostly replaced by hydrogen due to exposure to hydrogen plasma at the final stage operations, resulting in main deuterium retention in the deeper region. The dominant species desorbed from the divertor tiles were H 2 , HD, D 2 and CH 4 . The smallest retention of hydrogen isotopes (H+D) was observed in the outer divertor tile which was eroded with maximum of 20 μm depth. The amount of H+D retained in the inner divertor tiles covered by the re-deposited layers increased with the thickness of the re-deposited layers. Hydrogen isotopes concentration ((H+D)/C) in the re-deposited layers was ∼0.02, which was much smaller than those observed in JET and other devices

  8. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F

    2015-03-01

    Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. High-Performance Tiled WMS and KML Web Server

    Science.gov (United States)

    Plesea, Lucian

    2007-01-01

    This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.

  10. Non-Commutative Geometrical Aspects and Topological Invariants of a Conformally Regular Pentagonal Tiling of the Plane

    DEFF Research Database (Denmark)

    Ramirez-Solano, Maria

    automatically has finite local complexity. In this thesis we give a construction of the continuous and discrete hull just from the combinatorial data. For the discrete hull we construct a C-algebra and a measure. Since this tiling possesses no natural R2 action by translation, there is no a priori reason......The article ”A regular pentagonal tiling of the plane” by Philip L. Bowers and Kenneth Stephenson defines a conformal pentagonal tiling. This is a tiling of the plane with remarkable combinatorial and geometric properties.However, it doesn’t have finite local complexity in any usual sense......, and therefore we cannot study it with the usual tiling theory. The appeal of the tiling is that all the tiles are conformally regular pentagons. But conformal maps are not allowable under finite local complexity. On the other hand, the tiling can be described completely by its combinatorial data, which rather...

  11. Data acquisition and processing in the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2016-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile Calorimeter (TileCal) will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The photomultiplier signals will be digitized and transferred to the TileCal PreProcessors (TilePPr) located off-detector for every bunch crossing, requiring a data bandwidth of 80 Tbps. The TilePPr will provide preprocessed information to the first level of trigger and in parallel will store the samples in pipeline memories. The data of the events selected by the trigger system will be transferred to the ATLAS global Data AcQuisition (DAQ) system for further processing. A demonstrator drawer has been built to evaluate the new proposed readout architecture and prototypes of all the components. In the demonstrator, the detector data received in the Til...

  12. Estimation of Tile Drainage Contribution to Streamflow and Nutrient Export Loads

    Science.gov (United States)

    Schilling, K. E.; Arenas Amado, A.; Jones, C. S.; Weber, L. J.

    2015-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  13. Erosion and deposition on JET divertor and limiter tiles during the experimental campaigns 2005–2009

    International Nuclear Information System (INIS)

    Krat, S.; Coad, J.P.; Gasparyan, Yu.; Hakola, A.; Likonen, J.; Mayer, M.; Pisarev, A.; Widdowson, A.

    2013-01-01

    Erosion from and deposition on JET divertor tiles used during the 2007–2009 campaign and on inner wall guard limiter (IWGL) tiles used during 2005–2009 are studied. The tungsten coating on the divertor tiles was mostly intact with the largest erosion ∼30% in a small local area. Locally high erosion areas were observed on the load bearing divertor tile 5 and on the horizontal surface of the divertor tile 8. The IWGL tiles show a complicated distribution of erosion and deposition areas. The total amount of carbon deposited on the all IWGL tiles during the campaign 2005–2009 is estimated to be 65 g. The density of carbon deposits is estimated to be 0.67–0.83 g/cm 3

  14. Tiling by rectangles and alternating current

    KAUST Repository

    Prasolov, M. V.

    2011-04-01

    This paper is on tilings of polygons by rectangles. A celebrated physical interpretation of such tilings by R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte uses direct-current circuits. The new approach of this paper is an application of alternating-current circuits. The following results are obtained: •a necessary condition for a rectangle to be tilable by rectangles of given shapes;•a criterion for a rectangle to be tilable by rectangles similar to it but not all homothetic to it;•a criterion for a "generic" polygon to be tilable by squares. These results generalize those of C. Freiling, R. Kenyon, M. Laczkovich, D. Rinne, and G. Szekeres. © 2010 Elsevier Inc.

  15. Machining of scintillator tiles for the SDC calorimeter

    International Nuclear Information System (INIS)

    Bertoldi, M.; Bartosz, E.; Davis, C.; Hagopian, V.; Hernandez, E.; Hu, K.; Immer, C.; Thomaston, J.

    1992-01-01

    This research and development on the grooving methods for the scintillating tiles of the SDC calorimeter was done to maximize the light output of scintillator plates and improve the uniformity among tiles through machining procedures. Grooves for wavelength shifting fibers in SCSN-81 can be machined from 10,000 to 60,000 RPM with a feed rate of more than 30cm/min if the plate is kept cool and the chips are removed quickly by blowing dry, cold, clean air over the cutting tool. BC499-27, a polystyrene-based scintillator, is softer and more difficult to machine. It allows a maximum rotation speed of 20,000 RPM and a maximum feed rate of 15 cm/min. A new half-keyhole shape was used for grooves, allowing safer, faster top-loading of the fibers. Three hundred tiles were machined, achieving a standard deviation of the light output of less than 7%. (Author)

  16. Inflation and wavelets for the icosahedral Danzer tiling

    International Nuclear Information System (INIS)

    Kramer, Peter; Andrle, Miroslav

    2004-01-01

    The distribution of atoms in quasi-crystals lacks periodicity and displays point symmetry associated with non-crystallographic modules. Often it can be described by quasi-periodic tilings on R 3 built from a finite number of prototiles. The modules and the canonical tilings of five-fold and icosahedral point symmetry admit inflation symmetry. In the simplest case of stone inflation, any prototile when scaled by the golden section number τ can be packed from unscaled prototiles. Observables supported on R 3 for quasi-crystals require symmetry-adapted function spaces. We construct wavelet bases on R 3 for the icosahedral Danzer tiling. The stone inflation of the four Danzer prototiles is given explicitly in terms of Euclidean group operations acting on R 3 . By acting with the unitary representations inverse to these operations on the characteristic functions of the prototiles, we recursively provide a full orthogonal wavelet basis of R 3 . It incorporates the icosahedral and inflation symmetry

  17. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    Science.gov (United States)

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Cellular Uptake of Tile-Assembled DNA Nanotubes.

    Science.gov (United States)

    Kocabey, Samet; Meinl, Hanna; MacPherson, Iain S; Cassinelli, Valentina; Manetto, Antonio; Rothenfusser, Simon; Liedl, Tim; Lichtenegger, Felix S

    2014-12-30

    DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP -expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  19. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  20. Accounting for the risks of phosphorus losses through tile drains in a phosphorus index.

    Science.gov (United States)

    Reid, D Keith; Ball, Bonnie; Zhang, T Q

    2012-01-01

    Tile drainage systems have been identified as a significant conduit for phosphorus (P) losses to surface water, but P indices do not currently account for this transport pathway in a meaningful way. Several P indices mention tile drains, but most account for either the reduction in surface runoff or the enhanced transport through tiles rather than both simultaneously. A summary of the current state of how tile drains are accounted for within P indices is provided, and the challenges in predicting the risk of P losses through tile drains that are relative to actual losses are discussed. A framework for a component P Index is described, along with a proposal to incorporate predictions of losses through tile drains as a component within this framework. Options for calibrating and testing this component are discussed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Numerical modelling of transient heat and moisture transport in protective clothing

    International Nuclear Information System (INIS)

    Łapka, P; Furmański, P; Wisniewski, T S

    2016-01-01

    The paper presents a complex model of heat and mass transfer in a multi-layer protective clothing exposed to a flash fire and interacting with the human skin. The clothing was made of porous fabric layers separated by air gaps. The fabrics contained bound water in the fibres and moist air in the pores. The moist air was also present in the gaps between fabric layers or internal fabric layer and the skin. Three skin sublayers were considered. The model accounted for coupled heat transfer by conduction, thermal radiation and associated with diffusion of water vapour in the clothing layers and air gaps. Heat exchange due to phase transition of the bound water were also included in the model. Complex thermal and mass transfer conditions at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were assumed. Special attention was paid to modelling of thermal radiation which was coming from the fire, penetrated through protective clothing and absorbed by the skin. For the first time non-grey properties as well as optical phenomena at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were accounted for. A series of numerical simulations were carried out and the risk of heat injures was estimated. (paper)

  2. Time Calibration of the ATLAS Hadronic Tile Calorimeter using the Laser System

    CERN Document Server

    Clément, C; Solovyanov, O; Vivarelli, I

    2008-01-01

    The ATLAS Tile Calorimeter (TileCal) will be used to measure i) the energy of hadronic showers and ii) the Time of Flight (ToF) of particles passing through it. To allow for optimal reconstruction of the energy deposited in the calorimeter with optimal filtering, the phase between the signal sampling clock and the maximum of the incoming pulses needs to be minimised and the residual difference needs to be measured for later use for both energy and time of flight measurements. In this note we present the timing equalisation of all TileCal read out channels using the TileCal laser calibration system and a measurement of the time differences between the 4 TileCal TTC partitions. The residual phases after timing equalisation have been measured. Several characteristics of the laser calibration system relevant for timing have also been studied and a solution is proposed to take into account the time difference between the high and low gain paths. Finally we discuss the sources of uncertainties on the timing of the ...

  3. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Asensi Tortajada, Ignacio; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed (at a rate of maximum 100 kHz). The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and of...

  4. Utilization of hard rock dust with red clay to produce roof tiles

    Directory of Open Access Journals (Sweden)

    Mst. Shanjida Sultana

    2015-03-01

    Full Text Available Utilization of rock dust to produce roof tiles and its effects on properties of tiles, mixed with red clay collected from Naogaon district of Bangladesh were investigated. After proper characterization of the raw materials, tiles were prepared with different percentages of rock dust (10-50% mixed with clay sintered from 850-1100 °C temperature. Rock dust has been found good for using as fluxing material after XRF study. The samples were tested for different properties such as water absorption, porosity, mechanical strength, linear shrinkage, and bulk density. The strength values have exceeded the minimum standard requirement for roof tiles with low water absorption in most samples. The results obtained made it possible to conclude about the possibility of producing roof tiles incorporating up to 40% of rock dust having better properties (lower water absorption 6.5%, strength value 31.97 MPa fired at 900 °C. Therefore these dust acts as a fluxing agent and reducing the sinteringtemperature of the clay material.

  5. Tile-in-ONE.cern.ch

    CERN Document Server

    Sivolella Gomes, Andressa; The ATLAS collaboration; Ferreira, Fernando; Solans, Carlos; Solodkov, Alexander

    2015-01-01

    The ATLAS Tile Calorimeter assesses the quality of data in order to ensure its proper operation. A number of tasks are then performed by running several tools and systems, which were independently developed to meet distinct collaboration’s requirements and do not necessarily builds an effective connection among them. Thus, a program is usually implemented without a global perspective of the detector, requiring basic software features. In addition, functionalities may overlap in their objectives and frequently replicate resources retrieval mechanisms. Tile-in-ONE is a unique platform that assembles various web systems used by the calorimeter community through a single framework and a standard technology. It provides an infrastructure to support the code implementation, avoiding duplication of work while integrating with an overall view of the detector status. Database connectors smooth the process of information access since developers do not need to be aware of where records are placed and how to extract th...

  6. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    Science.gov (United States)

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  7. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221190; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton col...

  8. Calibration and Performance of the ATLAS Tile Calorimeter during the LHC Run 2

    CERN Document Server

    Faltova, Jana; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter is established with the large sample of the proton-proton collisions. Isolated hadrons a...

  9. Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons.

    Science.gov (United States)

    Millan, Jaime A; Ortiz, Daniel; van Anders, Greg; Glotzer, Sharon C

    2014-03-25

    Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms. Here, we present experimentally accessible, rational design rules for the self-assembly of the Archimedean tilings from polygonal nanoplates. The Archimedean tilings represent a model set of target patterns that (i) contain both simple and complex patterns, (ii) are comprised of simple regular shapes, and (iii) contain patterns with potentially interesting materials properties. Via Monte Carlo simulations, we propose a set of design rules with general applicability to one- and two-component systems of polygons. These design rules, specified by increasing levels of patchiness, correspond to a reduced set of anisotropy dimensions for robust self-assembly of the Archimedean tilings. We show for which tilings entropic patches alone are sufficient for assembly and when short-range enthalpic interactions are required. For the latter, we show how patchy these interactions should be for optimal yield. This study provides a minimal set of guidelines for the design of anisostropic patchy particles that can self-assemble all 11 Archimedean tilings.

  10. Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation

    Directory of Open Access Journals (Sweden)

    Schubert Martin

    2017-01-01

    Full Text Available The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power.

  11. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    Science.gov (United States)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  12. A simple model for predicting solute concentration in agricultural tile lines shortly after application

    Directory of Open Access Journals (Sweden)

    T. S. Steenhuis

    1997-01-01

    Full Text Available Agricultural tile drainage lines have been implicated as a source of pesticide contamination of surface waters. Field experiments were conducted and a simple model was developed to examine preferential transport of applied chemicals to agricultural tile lines. The conceptual model consists of two linear reservoirs, one near the soil surface and one near the tile drain. The connection between the two reservoirs is via preferential flow paths with very little interaction with the soil matrix. The model assumes that only part of the field contributes solutes to the tile drain. The model was evaluated with data from the field experiments in which chloride, 2,4-D, and atrazine concentrations were measured on eight tile-drained plots that were irrigated twice. Atrazine was applied two months prior to the experiment, 2,4-D was sprayed just before the first irrigation, and chloride before the second irrigation. All three chemicals were found in the tile effluent shortly after the rainfall began. Generally, the concentration increased with increased flow rates and decreased exponentially after the rainfall ceased. Although the simple model could simulate the observed chloride concentration patterns in the tile outflow for six of the eight plots, strict validation was not possible because of the difficulty with independent measurement of the data needed for a preferential flow model applied to field conditions. The results show that, to simulate pesticide concentration in tile lines, methods that can measure field averaged preferential flow characteristics need to be developed.

  13. Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Science.gov (United States)

    Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John

    2013-01-01

    One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste. Reduces volume, removes water and renders a biologically stable and safe product. The HMC compacts and reduces the trash volume as much as 90o/o greater than the current manual compaction used by the crew.The project has three primary goals or tasks. 1. Microbiological analysis of HMC hardware surfaces before and after operation. 2. Microbiological and physical characterizations of heat melt tiles made from trash at different processing times and temperatures. 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?"

  14. Pharmaceutical and personal care products in tile drainage following land application of municipal biosolids.

    Science.gov (United States)

    Lapen, D R; Topp, E; Metcalfe, C D; Li, H; Edwards, M; Gottschall, N; Bolton, P; Curnoe, W; Payne, M; Beck, A

    2008-07-25

    Land application of municipal biosolids (sewage) is a common farming practice in many parts of the world. There is potential for transport of pharmaceuticals and personal care products (PPCPs) from agricultural fields to adjacent surface waters via tile drainage systems. In this study, liquid municipal biosolids (LMB) (total solids=11,933 mg L(-1)), supplemented with selected PPCPs and the fluorescent dye tracer rhodamine WT (RWT), were applied to tile drained fields using two land application approaches. Objectives included evaluating the relative benefits of land application practices with respect to reducing PPCP loadings to tile drains, evaluating PPCP persistence in tile water, and determining whether rhodamine WT can be used to estimate PPCP mass loads in tile. The PPCPs examined included an antibacterial agent used in personal care products (triclosan), a metabolite of nicotine (cotinine), and a variety of drugs including two sulfonamide antimicrobials (sulfapyridine, sulfamethoxazole), a beta-blocker (atenolol), an anti-epileptic (carbamazepine), an antidepressant (fluoxetine), analgesic/anti-inflammatories (acetaminophen, naproxen, ibuprofen), and a lipid-regulator (gemfibrozil). Maximum observed PPCP concentrations in the spiked LMB were about 10(3) ng g(-1) dry weight. PPCPs were shown to move rapidly via soil macropores to tile drains within minutes of the land application. Maximum observed PPCP concentrations in tile effluent associated with the LMB application-induced tile flow event were approximately 10(1) to 10(3) ng L(-1). PPCP mass loads, for the application-induced tile-hydrograph event, were significantly (ptile water during several precipitation-induced tile flow events that occurred post-application, included: triclosan (max. approximately 1.5 x 10(2) ng L(-1)), carbamazepine (max. approximately 7 x 10(1) ng L(-1)), atenolol (max approximately 4 x 10(1) ng L(-1)), and cotinine (max approximately 2 x 10(1) ng L(-1)). In spite of their presence

  15. Classification of Voronoi and Delone tiles of quasicrystals: III. Decagonal acceptance window of any size

    International Nuclear Information System (INIS)

    Masakova, Z; Patera, J; Zich, J

    2005-01-01

    This paper is the last of a series of three articles presenting a classification of Vornoi and Delone tilings determined by point sets Σ(Ω) ('quasicrystals'), built by the standard projection of the root lattice of type A 4 to a two-dimensional plane spanned by the roots of the Coxeter group H 2 (dihedral group of order 10). The acceptance window Ω for Σ(Ω) in the present paper is a regular decagon of any radius 0 k , τ = 1/2(1+√5) and k element of Z. The number of Voronoi tiles in different quasicrystal tilings varies between 3 and 12. Similarly, the number of Delone tiles is varying between 4 and 6. There are 7 VT sets of the 'generic' type and 7 of the 'singular' type. The latter occur for seven precise values of the radius of the acceptance window. Quasicrystals with acceptance windows with radii in between these values have constant VT sets, only the relative densities and arrangement of the tiles in the tilings change. Similarly, we distinguish singular and generic sets DT of Delone tiles

  16. Utilization of Construction Waste Tiles as a Replacement for Fine Aggregates in Concrete

    Directory of Open Access Journals (Sweden)

    A. A. Adekunle

    2017-10-01

    Full Text Available Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates in concrete production. This study is an investigation into the utilization of waste tiles as partial replacement for fine and coarse aggregates in concrete. The control mix and other mixes containing cement, water, granite and partial replacement for sand with crushed tiles (in 5%, 10%, 15% and 20% proportions were cast, cubed, cured and crushed. Also, another mix containing cement, water, sand and partial replacement of granite with crushed tiles (in 25%, 50% and 75% proportions were cast, cubed, cured and crushed. The specimens were tested for their respective compressive strengths using the Universal Testing Machine (UTM on the 7th, 14th, 21st and 28th days of curing. At 28 days, the compressive strength value of 5% of fine-waste tiles replacement was 20.12 N/mm2 while that of 10%, 15% and 20% were 14.24 N/mm2, 11.04 N/mm2 and 10.12 N/mm2 respectively. Moreover, at 28 days, the compressive strength of 25% of coarse-waste tiles replacement shows an increase to 22.45 N/mm2 while that of 50% and 75% were 18.4 N/mm2 and 12.2 N/mm2 respectively. Thus it can be concluded that fine aggregates can be substituted at 5% waste tiles while coarse aggregates can be substituted at 25% waste tiles.>/p>

  17. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  18. Comment on "Decagonal andQuasi-Crystalline Tilings in MedievalIslamic Architecture"

    DEFF Research Database (Denmark)

    Makovicky, Emil

    2007-01-01

    Lu and Steinhardt (Reports, 23 February 2007, p. 1106) claimed the discovery of a large, potentially quasi-crystalline Islamic tiling in the Darb-i Imam shrine but regard the earlier Maragha tiling, previously described as quasiperiodic, as a small isolated motif. We demonstrate that the Darb...

  19. Preliminary test results on tungsten tile with castellation structures in KSTAR

    NARCIS (Netherlands)

    Hong, S. H.; Bang, E. N.; Lim, S. T.; Lee, J. Y.; Yang, S. J.; Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M. A.; Lho, T.; Park, C. R.; Kim, G. H.

    2014-01-01

    A bulk tungsten tile with conventional and shaped castellation structures was exposed to various plasmas in KSTAR during 2012 campaign, in order to verify the functions of the shaped castellation designed for ITER divertor. The thermal response of the tile during the campaign was measured by

  20. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Klimek, Pawel; The ATLAS collaboration

    2018-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. It also assists in muon identification. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. TileCal exploits several calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These systems together with data collected during proton-proton collisions provide extensive monitoring of the instrument and a means...

  1. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region |η| < 1.7. Jointly with the other calorimeters it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sa...

  2. Construction and Performance of an Iron-Scintillator Hadron Calorimeter with Longitudinal Tile Configuration

    CERN Multimedia

    2002-01-01

    % RD34 \\\\ \\\\ In a scintillator tile calorimeter with wavelength shifting fiber readout significant simplifications of the construction and the assembly are possible if the tiles are oriented $^{\\prime\\prime}$longitudinally$^{\\prime\\prime}$, i.e.~in a r-$\\phi$ planes for a barrel configuration. For a hybrid calorimeter consisting of a scintillator tile hadron compartment and a sufficiently containing liquid argon electromagnetic (EM) compartment, as proposed for the ATLAS detector, good jet resolution is predicted by simulations, which is not affected by this particular orientation of the tiles. \\\\ \\\\The aim of the proposed development program is to construct a calorimeter test module with longitudinal tiles and to check the simulation results by test beam measurements. In addition several component tests and further simulations and engineering studies are needed to optimize the design of a large calorimeter structure to be used in collider experiments. The construction of a test module will also provide valua...

  3. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    Science.gov (United States)

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  4. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.

    Directory of Open Access Journals (Sweden)

    Georgios C Antonopoulos

    Full Text Available A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR, or magnetic resonance imaging (MRI enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.

  5. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.

    Science.gov (United States)

    Antonopoulos, Georgios C; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.

  6. Hearing Threshold Level Inworkers of Meybod Tile Factory

    Directory of Open Access Journals (Sweden)

    F Nourani

    2008-04-01

    Full Text Available Introduction: Occupational exposure to excessive noise is commonly encountered in a large number of industries in Iran. This study evaluated the hearing threshold and hearing loss in Meybod tile factory workers. Methods: This cross-sectional study included 371 tile factoryworkers during summer and autumn of 2005. Current noise exposure was estimated using sound level meter .A specially formatted questionnaire was used. Totoscophc examination and conductive air audiometery were used to assess the hearing loss in each subject .Finally data was analyzed using SPSS version 11.5. Results: Occupational noise increased mean of hearing threshold at all frequencies which was significant at 3, 4 KHz in both ears (p<0.05.Prevalence of hearing impairment at high and low frequencies were 39.2% and 46.5%.Prevalence of occupational NIHL was 12.9% and the odds of NIHL significantly increased with noise exposure of more than 10 years. The hearing threshold was worse in both ears of workers with tinnitus. Conclusion: High prevalence of hearing loss and NIHL emphasizes on the necessity of hearing conservational programs in tile factory workers.

  7. Breakthrough of two pesticides into tile drain and shallow groundwater: comparison of tile drain reaction and soil profiles within a field scale irrigation experiment

    Science.gov (United States)

    Klaus, Julian; Zehe, Erwin; Elsner, Martin; Palm, Juliane; Schneider, Dorothee; Schröder, Boris; Steinbeiss, Sibylle; West, Stephanie

    2010-05-01

    Preferential flow in macropores is a key process which strongly affects infiltration and may cause rapid transport of pesticides into depths of 80 to 150 cm. At these depths they experience a much slower degradation, may leach into shallow groundwater or enter a tile-drain and are transported into surface water bodies. Therefore, preferential transport might be an environmental problem, if the topsoil is bypassed, which has been originally thought to act as a filter to protect the subsoil and shallow groundwater. To investigate the behaviour of two pesticides with different chemical characteristics and to compare their transport behaviour in soil and into the tile drain an irrigation experiment was performed on a 400 m² field site. The experimental plot is located in the Weiherbach valley, south-west Germany, which basic geology consists of Loess and Keuper layers, the soil at the test site is a gleyic Colluvisol. The distance of the irrigation site to the Weiherbach brook is approximately 12 m, the field is drained with a tile-drain in about 1.2 m depth and shows discharge over the entire year. Three hours before the irrigation started, the farmer applied a pesticide solution consisting of Isoproturon (80 g) and Flufenacet (20 g) (IPU and FLU) according to conventional agricultural practice on the field plot. The irrigation took place in three time blocks (80 min, 60 min, 80 min) with in total 33.6 mm of precipitation. During the first block 1600 g of Bromide were mixed in the irrigation water. The drainage outlet was instrumented with a pressure probe. About 50 water samples ware taken during the experimental day, and several samples more the days after the experiment. They were analysed for the pesticides, bromide and water isotopes. In the two days after the experiment three soil profiles were excavated and soil samples were taken on a 10x10 cm² scheme. One week after the experiment two additional profiles were excavated. The soil was analysed for IPU, FLU

  8. Calibration and Data Quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00306374; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibres coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as the results on their performance in terms of calibration factors, linearity and stability are given. The data quality procedures and data quality efficiency of the Tile Calorimeter during the LHC data-taking period are presented as well.

  9. Calibration and Data Quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    CERN Document Server

    Zenis, Tibor; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibres coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as results on their performance in terms of calibration factors, linearity and stability will be given. The data quality procedures and data quality efficiency of the Tile Calorimeter during the LHC data-taking period are presented as well.

  10. Thermodynamic behavior of a Penrose-tiling quasicrystal

    International Nuclear Information System (INIS)

    Strandburg, K.J.; Dressel, P.R.

    1990-01-01

    The Penrose tiling provides a prototype for the quasiperiodic crystal model of quasicrystals. We report results of Monte Carlo simulations of a two-dimensional model in which a Penrose tiling is the ground state. A single energy is assigned to any violation of the Penrose matching rules. Our results support the existence of two separate phase transitions, corresponding to single- and double-arrow matching-rule disorder, respectively. Manifestations of these transitions in the behavior of ''perpendicular-space'' quantities are explored. A limited exploration of the effects of unequal double- and single-arrow matching-rule-violation energies is performed. Speculations that the Penrose pattern might be inherently prone to glassy behavior are shown to be incorrect

  11. Pattern overlap implies runaway growth in hierarchical tile systems

    Directory of Open Access Journals (Sweden)

    David Doty

    2015-11-01

    Full Text Available We show that in the hierarchical tile assembly model, if there is a producible assembly that overlaps a nontrivial translation of itself consistently (i.e., the pattern of tile types in the overlap region is identical in both translations, then arbitrarily large assemblies are producible. The significance of this result is that tile systems intended to controllably produce finite structures must avoid pattern repetition in their producible assemblies that would lead to such overlap.This answers an open question of Chen and Doty (SODA 2012, who showed that so-called "partial-order" systems producing a unique finite assembly and avoiding such overlaps must require time linear in the assembly diameter. An application of our main result is that any system producing a unique finite assembly is automatically guaranteed to avoid such overlaps, simplifying the hypothesis of Chen and Doty's main theorem.

  12. Solare Cell Roof Tile And Method Of Forming Same

    Science.gov (United States)

    Hanoka, Jack I.; Real, Markus

    1999-11-16

    A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

  13. Mechanical construction and installation of the ATLAS tile calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [Institute of Atomic Physics, Bucharest (Romania); Alves, R [LIP and FCTUC University of Coimbra (Portugal); Amaral, P; Andresen, X; Behrens, A; Blocki, J [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand (France); Blanch, O; Blanchot, G [Institut de Fisica d' Altes Energies, Universitat Autònoma de Barcelona, Barcelona (Spain); others, and

    2013-11-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.

  14. Mechanical construction and installation of the ATLAS tile calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Behrens, A; Blocki, J; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G

    2013-01-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight

  15. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  16. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.

    Science.gov (United States)

    Schmidt, P J; Pintar, K D M; Fazil, A M; Flemming, C A; Lanthier, M; Laprade, N; Sunohara, M D; Simhon, A; Thomas, J L; Topp, E; Wilkes, G; Lapen, D R

    2013-06-15

    Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify

  17. 単段式スペースプレーンの熱防護システムについての予備検討

    OpenAIRE

    Kudo, Kenji; Kanda, Takeshi; 工藤 賢司; 苅田 丈士

    2000-01-01

    This paper discusses the Thermal Protection System (TPS) of an airframe of the Single Stage To Orbit (SSTO) with a scramjet engine. There is aerodynamic heating to the airframe during flight through the air, especially during hypersonic flight, and this paper examines ceramic tile insulation and hydrogen active cooling. The transient nature of each system was simulated along the ascent trajectory of the SSTO to the low earth orbit of 100 km. When ceramic tiling was used, a tile thickness of a...

  18. Footprint-weighted tile approach for a spruce forest and a nearby patchy clearing using the ACASA model

    Science.gov (United States)

    Gatzsche, Kathrin; Babel, Wolfgang; Falge, Eva; Pyles, Rex David; Tha Paw U, Kyaw; Raabe, Armin; Foken, Thomas

    2018-05-01

    The ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) model, with a higher-order closure for tall vegetation, has already been successfully tested and validated for homogeneous spruce forests. The aim of this paper is to test the model using a footprint-weighted tile approach for a clearing with a heterogeneous structure of the underlying surface. The comparison with flux data shows a good agreement with a footprint-aggregated tile approach of the model. However, the results of a comparison with a tile approach on the basis of the mean land use classification of the clearing is not significantly different. It is assumed that the footprint model is not accurate enough to separate small-scale heterogeneities. All measured fluxes are corrected by forcing the energy balance closure of the test data either by maintaining the measured Bowen ratio or by the attribution of the residual depending on the fractions of sensible and latent heat flux to the buoyancy flux. The comparison with the model, in which the energy balance is closed, shows that the buoyancy correction for Bowen ratios > 1.5 better fits the measured data. For lower Bowen ratios, the correction probably lies between the two methods, but the amount of available data was too small to make a conclusion. With an assumption of similarity between water and carbon dioxide fluxes, no correction of the net ecosystem exchange is necessary for Bowen ratios > 1.5.

  19. Tritium decontamination of TFTR carbon tiles employing ultra violet light

    International Nuclear Information System (INIS)

    Shu, W.M.; Ohira, S.; Gentile, C.A.; Oya, Y.; Nakamura, H.; Hayashi, T.; Iwai, Y.; Kawamura, Y.; Konishi, S.; Nishi, M.F.; Young, K.M.

    2001-01-01

    Tritium decontamination on the surface of Tokamak Fusion Test Reactor (TFTR) bumper limiter tiles used during the Deuterium-Deuterium (D-D) phase of TFTR operations was investigated employing an ultra violet light source with a mean wavelength of 172 nm and a maximum radiant intensity of 50 mW/cm 2 . The partial pressures of H 2 , HD, C and CO 2 during the UV exposure were enhanced more than twice, compared to the partial pressures before UV exposure. In comparison, the amount of O 2 decreased during the UV exposure and the production of a small amount of O 3 was observed when the UV light was turned on. Unlike the decontamination method of baking in air or oxygen, the UV exposure removed hydrogen isotopes from the tile to vacuum predominantly in forms of gases of hydrogen isotopes. The tritium surface contamination on the tile in the area exposed to the UV light was reduced after the UV exposure. The results show that the UV light with a wavelength of 172 nm can remove hydrogen isotopes from carbon-based tiles at the very surface

  20. Tile Drainage Density Reduces Groundwater Travel Times and Compromises Riparian Buffer Effectiveness.

    Science.gov (United States)

    Schilling, Keith E; Wolter, Calvin F; Isenhart, Thomas M; Schultz, Richard C

    2015-11-01

    Strategies to reduce nitrate-nitrogen (nitrate) pollution delivered to streams often seek to increase groundwater residence time to achieve measureable results, yet the effects of tile drainage on residence time have not been well documented. In this study, we used a geographic information system groundwater travel time model to quantify the effects of artificial subsurface drainage on groundwater travel times in the 7443-ha Bear Creek watershed in north-central Iowa. Our objectives were to evaluate how mean groundwater travel times changed with increasing drainage intensity and to assess how tile drainage density reduces groundwater contributions to riparian buffers. Results indicate that mean groundwater travel times are reduced with increasing degrees of tile drainage. Mean groundwater travel times decreased from 5.6 to 1.1 yr, with drainage densities ranging from 0.005 m (7.6 mi) to 0.04 m (62 mi), respectively. Model simulations indicate that mean travel times with tile drainage are more than 150 times faster than those that existed before settlement. With intensive drainage, less than 2% of the groundwater in the basin appears to flow through a perennial stream buffer, thereby reducing the effectiveness of this practice to reduce stream nitrate loads. Hence, strategies, such as reconnecting tile drainage to buffers, are promising because they increase groundwater residence times in tile-drained watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. High heat flux testing of ITER ICH&CD antenna beryllium faraday screen bars mock-ups

    International Nuclear Information System (INIS)

    Courtois, X.; Meunier, L.; Kuznetsov, V.; Beaumont, B.; Lamalle, P.; Conchon, D.; Languille, P.

    2016-01-01

    Highlights: • ITER ICH&CD antenna beryllium faraday screen bars mock-ups were manufactured. • The mock-ups are submitted to high heat loads to test their heat exhaust capabilities. • The mock-ups withstand without damage the design limit load. • Lifetime is gradually reduced when the heat load is augmented beyond the design limit. • Thermal and mechanical behavior are reproducible, and coherent with the calculation. - Abstract: The Faraday Screen (FS) is the plasma facing component of ITER ion cyclotron heating antennas shielding. The requirement for the high heat exhaust, and the limitation of the temperatures to minimize strain and thus offer sufficient resistance to fatigue, imply the need for high conductivity materials and a high cooling flow rate. The FS bars are constructed by a hipping process involving beryllium tiles, a pure copper layer, a copper chrome zirconium alloy for the cooling channel and a stainless steel backing strip. Two FS bars small scale mock-ups were manufactured and tested under high heat flux. They endured 15,000 heating cycles without degradation under nominal heat flux, and revealed growing flaws when the heat flux was progressively augmented beyond. In this case, the ultrasonic test confirms a strong delamination of the Be tiles.

  2. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

    Directory of Open Access Journals (Sweden)

    Sari Saraswati

    2016-01-01

    Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.Keywords: linear equation with one variable, algebra tiles, design research, balancing method, HLT DOI: http://dx.doi.org/10.22342/jme.7.1.2814.19-30

  3. Large TileCal magnetic field simulation

    International Nuclear Information System (INIS)

    Nessi, M.; Bergsma, F.; Vorozhtsov, S.B.; Borisov, O.N.; Lomakina, O.V.; Karamysheva, G.A.; Budagov, Yu.A.

    1994-01-01

    The ATLAS magnetic field map has been estimated in the presence of the hadron tile calorimeter. This is an important issue in order to quantify the needs for individual PMT shielding, the effect on the scintillator light yield and its implications on the calibration. The field source is based on a central solenoid and 8 superconducting air-core toroidal coils. The maximum induction value in the scintillating tiles does not exceed 6 mT. When an iron plate is used to close the open drawer window the field inside the PMT near to the extended barrel edge does not exceed 0.6 mT. Estimation of ponder motive force distribution, acting on individual units of the system was performed. VF electromagnetic software OPERA-TOSCA and CERN POISCR code were used for the field simulation of the system. 10 refs., 4 figs

  4. Heart-pulse Biofeedback in Playful Exercise using a Wearable device and Modular Interactive Tiles

    DEFF Research Database (Denmark)

    Shimokakimoto, Tomoya; Lund, Henrik Hautop; Suzuki, Kenji

    2014-01-01

    interactive tiles. The system consists of a wearable device that measures heart-pulse via ear-mounted sensor, and modular interactive tiles which are used for physical rehabilitation exercise through playing a game. The wearable devise enables detection of heart pulse in real-time and therefore provides heart...... beat rate during playful activities, even if the heart pulse wave have motion artifacts. The tiles are designed to build flexible structures and to provide immediate feedback based on the users’ physical interaction with the tiles. We combine the two systems to provide users with heart pulse...... biofeedback in playful exercise. We show that using the developed system it is possible for the users to regulate the exercise intensity on their own with biofeedback, and also possible to analyze exercise activity using number of steps on the tiles and heart beat rate....

  5. High-performance and anti-stain coating for porcelain stoneware tiles based on nanostructured zirconium compounds.

    Science.gov (United States)

    Ambrosi, Moira; Santoni, Sergio; Giorgi, Rodorico; Fratini, Emiliano; Toccafondi, Nicola; Baglioni, Piero

    2014-10-15

    The technological characteristics of porcelain stoneware tiles make them suitable for a wide range of applications spanning far beyond traditional uses. Due to the high density, porcelain stoneware tiles show high bending strength, wear resistance, surface hardness, and high fracture toughness. Nevertheless, despite being usually claimed as stain resistant, the surface porosity renders porcelain stoneware tiles vulnerable to dirt penetration with the formation of stains that can be very difficult to remove. In the present work, we report an innovative and versatile method to realize stain resistant porcelain stoneware tiles. The tile surface is treated by mixtures of nanosized zirconium hydroxide and nano- and micron-sized glass frits that thanks to the low particle dimension are able to penetrate inside the surface pores. The firing step leads to the formation of a glass matrix that can partially or totally close the surface porosity. As a result, the fired tiles become permanently stain resistant still preserving the original esthetical qualities of the original material. Treated tiles also show a remarkably enhanced hardness due to the inclusion of zirconium compounds in the glass coating. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Reducing phosphorus loss in tile water with managed drainage in a claypan soil.

    Science.gov (United States)

    Nash, Patrick R; Nelson, Kelly A; Motavalli, Peter P; Nathan, Manjula; Dudenhoeffer, Chris

    2015-03-01

    Installing subsurface tile drain systems in poorly drained claypan soils to improve corn ( L.) yields could potentially increase environmental phosphorus (P) loss through the tile drainage system. The objectives of the study were to quantify the average concentration and loss of ortho-P in tile drain water from a claypan soil and to determine whether managed subsurface drainage (MD) could reduce ortho-P loss in tile water compared with free subsurface drainage (FD). Flow-weighted ortho-P concentration in the tile water was significantly lower with MD (0.09 mg L) compared with that of FD (0.15 mg L). Ortho-P loss in the tile water of this study was reduced with MD (36 g ha) by 80% compared with FD (180 g ha). Contrary to previous research, reduced ortho-P loss observed over the 4-yr study was not solely due to the reduced amount of water drained annually (63%) with MD compared with FD. During the spring period, when flow was similar between MD and FD, the concentration of ortho-P in the tile water generally was lower with MD compared with FD, which resulted in significantly less ortho-P loss with MD. We speculate that MD's ability to conserve water during the dry summer months increased corn's uptake of water and P, which reduced the amount of P available for leaching loss in the subsequent springs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Manufacturing of small-scale mock-ups and of a semi-prototype of the ITER Normal Heat Flux First Wall

    International Nuclear Information System (INIS)

    Banetta, S.; Zacchia, F.; Lorenzetto, P.; Bobin-Vastra, I.; Boireau, B.; Cottin, A.; Mitteau, R.; Eaton, R.; Raffray, R.

    2014-01-01

    This paper describes the manufacturing development and fabrication of reduced scale ITER First Wall (FW) mock-ups of the Normal Heat Flux (NHF) design, including a “semi-prototype” with a dimension of 305 mm × 660 mm, corresponding to about 1/6 of a full-scale panel. The activity was carried out in the framework of the pre-qualification of the European Domestic Agency (EU-DA or F4E) for the supply of the European share of the ITER First Wall. The hardware consists of three Upgraded (2 MW/m 2 ) Normal Heat Flux (U-NHF) small-scale mock-ups, bearing 3 beryllium tiles each, and of one Semi-Prototype, representing six full-scale fingers and bearing a total of 84 beryllium tiles. The manufacturing process makes extensive use of Hot Isostatic Pressing, which was developed over more than a decade during ITER Engineering Design Activity phase. The main manufacturing steps for the semi-prototype are described, with special reference to the lessons learned and the implications impacting the future fabrication of the full-scale prototype and the series which consists of 218 panels plus spares. In addition, a “tile-size” mock-up was manufactured in order to assess the performance of larger tiles. The use of larger tiles would be highly beneficial since it would allow a significant reduction of the panel assembly time

  8. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    Science.gov (United States)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  9. Studies of impurity deposition/implantation in JET divertor tiles using SIMS and ion beam techniques

    International Nuclear Information System (INIS)

    Likonen, J.; Lehto, S.; Coad, J.P.; Renvall, T.; Sajavaara, T.; Ahlgren, T.; Hole, D.E.; Matthews, G.F.; Keinonen, J.

    2003-01-01

    At the end of C4 campaign at JET, a 1% SiH 4 /99% D 2 mixture and pure 13 CH 4 were injected into the torus from the outer divertor wall and from the top of the vessel, respectively, in order to study material transport and scrape-off layer (SOL) flows. A set of MkIIGB tiles was removed during the 2001 shutdown for surface analysis. The tiles were analysed with secondary ion mass spectrometry (SIMS) and time-of-flight elastic recoil detection analysis (TOF-ERDA). 13 C was detected in the inner divertor wall tiles implying material transport from the top of the vessel. Silicon was detected mainly at the outer divertor wall tiles and very small amounts were found in the inner divertor wall tiles. Si amounts in the inner divertor wall tiles were so low that rigorous conclusions about material transport from divertor outboard to inboard cannot be made

  10. Reusing Ceramic Tile Polishing Waste In Paving Block Manufacturing

    OpenAIRE

    Giordano Penteado; Carmenlucia Santos; de Carvalho; Eduardo Viviani; Cecche Lintz; Rosa Cristina

    2016-01-01

    Ceramic companies worldwide produce large amounts of polishing tile waste, which are piled up in the open air or disposed of in landfills. These wastes have such characteristics that make them potential substitutes for cement and sand in the manufacturing of concrete products. This paper investigates the use of ceramic tile polishing waste as a partial substitute for cement and sand in the manufacturer of concrete paving blocks. A concrete mix design was defined and then the sand was replaced...

  11. Noise dependency with pile-up in the ATLAS Tile Calorimeter

    CERN Document Server

    Araque Espinosa, Juan Pedro; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions which are difficult to distinguish from the interesting one will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects noise under different circumstances are described.

  12. VB Platinum Tile & Carpet, Inc. Information Sheet

    Science.gov (United States)

    VB Platinum Tile & Carpet, Inc. (the Company) is located in Bristow, Virginia. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Washington, DC.

  13. Standard Test Method for Bond Strength of Ceramic Tile to Portland Cement Paste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the ability of glazed ceramic wall tile, ceramic mosaic tile, quarry tile, and pavers to be bonded to portland cement paste. This test method includes both face-mounted and back-mounted tile. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. Ultrasonic characterization of defective porcelain tiles

    Directory of Open Access Journals (Sweden)

    Eren, E.

    2012-08-01

    Full Text Available The aim of this work is the optimization of ultrasonic methods in the non-destructive testing of sintered porcelain tiles containing defects. For this reason, a silicon nitride ball, carbon black and PMMA (Polymethylmethacrylate were imbedded in porcelain tile granules before pressing to make special defects in tiles. After sintering at 1220ºC, the time of flight of the ultrasonic waves and ultrasonic signal amplitudes through the sintered porcelain tiles were measured by a contact ultrasonic transducer operating on pulse-echo mode. This method can allow for defect detection using the A-scan. The results of the test showed that the amplitude of the received peak for a defective part is smaller than for a part which has no defects. Depending on the size, shape and position of the defect, its peak can be detected. Additionally, an immersion pulse-echo C-scan method was also used to differentiate between defects in porcelain tiles. By using this technique, it is possible to determine the place and shape of defects. To support the results of the ultrasonic investigation, a SEM characterization was also made.

    El fin principal de este trabajo es la optimización de métodos ultrasónicos en la prueba no destructiva de azulejos sinterizados de porcelana que contienen defectos. Por lo tanto, bolas del nitruro de silicio, negros de carbón y PMMA (polimetilmetacrilato fueron encajados en gránulos del azulejo de porcelana antes de presionar para hacer defectos especiales en azulejos. Después de sinterizado en 1220ºC, el tiempo de vuelo de las ondas ultrasónicas fue medido a través del azulejo sinterizado de la porcelana. El tiempo del vuelo de ondas ultrasónicas fue medido por un transductor de contacto ultrasónico operando en modo eco-pulso. Este método puede permitir la detección de defectos usando escaneo-A. Los resultados de la prueba demostraron que la amplitud del pico recibido por partes defectuosas es más pequeño que la parte

  15. Beryllium coating on Inconel tiles

    International Nuclear Information System (INIS)

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M.; Rubel, M.; Coad, J.P.; Matthews, G.; Pedrick, L.; Handley, R.

    2007-01-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 μm of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  16. District heating systems between competition protection and climate protection; Die Fernwaermenetze zwischen Wettbewerbs- und Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, Torsten [Goettingen Univ. (Germany). Lehrstuhl fuer Buergerliches Recht, Kartellrecht, Versicherungs-, Gesellschafts- und Regulierungsrecht

    2012-10-15

    In principle, district heating systems come in the application area of paragraph 19 sect. 4 no. 4 GWB (law against competitive restrictions). However, this regulation has to be interpreted with respect to the legislation of the Court of Justice of the European Union (Luxemburg) to 'essential facilities'. According to this, the claim for antitrust access can be affirmed only in exceptional circumstances. Within the application of this regulation, property rights, competition protection, investment competition, innovation competition as well as energy political evaluations of the energy law under special consideration of ecologic and climate political targets are considered. This has to occur within the testing of the reasonability with respect to paragraph 19 sect. 4 no. 2 GWB. The particularities of the district heating.

  17. Design of the inboard passive stabilizer for TPX

    International Nuclear Information System (INIS)

    Hoffmann, E.; Boonstra, R.; Baxi, C.B.; Chin, E.; Drees, L.; Lee, W.; Redler, K.L.; Reis, E.E.; Bialek, J.

    1995-01-01

    The Inboard Passive Stabilizer (IPS) is part of the plasma stabilizing system built into the TPX. Its purpose is to provide passive stabilization of the plasma vertical instability on short time scales. With carbon fiber composite (CFC) armor tiles it serves as a startup limiter, protects the vacuum vessel from radiation heat load during steady state operation and also functions as Neutral Beam armor. The inboard passive stabilizer is a saddle coil, constructed of a ring of copper plates, armored with CFC tiles, that surrounds the inner vacuum vessel at the midplane. The design of the plates, the support structure, cooling lines, CFC tiles and tile attach method is described. Tiles that experience only the normal heat load of 0.4 MW/m 2 are attached with mechanical fasteners. Tiles in the neutral beam shine through area are exposed to as much as 1.7 MW/m 2 and are brazed to the IPS. Significant forces are generated in the plates by the stabilization currents as well as during the frequent bakeout cycles. These plates are required to be fully remotely handled, including tile replacement, and the influence of this requirement on the design is discussed

  18. Latest news from the Tiles

    CERN Multimedia

    Costanzo, D

    The Tile hadronic calorimeter will be installed in the central region of ATLAS with an inner radius of 2.28 m, an outer radius of 4.25 m, a total length of about 12 m and a weight of about 2300 tons. The calorimeter is mechanically divided in one central barrel and two extended barrels, with a gap in between for the services of the internal part of ATLAS. The construction of the calorimeter is advanced, and installation in the ATLAS pit is foreseen to start in December 2003. After mechanical assembly the modules are instrumented with all the optical components. Scintillating tiles are inserted into the slots, and the read-out Wave Length Shifting fibers are coupled to scintillators and bundled to achieve the quasi-projective cell geometry of the calorimeter. The final modules are stored in bldg 185, shown in the first photo, and in bldg 175 at CERN. The barrel modules are mechanically assembled in Dubna and then transported to CERN to be optically instrumented, while the extended barrels are constructed in t...

  19. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  20. A new read-out architecture for the ATLAS Tile Calorimeter Phase-II Upgrade

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2015-01-01

    TileCal is the Tile hadronic calorimeter of the ATLAS experiment at the LHC. The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will increase of order five times the LHC nominal instantaneous luminosity. TileCal will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The data generated in the detector will be transferred to the new Read-Out Drivers (sRODs) located in off-detector for every bunch crossing before any event selection is applied. Furthermore, the sROD will be responsible of providing preprocessed trigger information to the ATLAS first level of trigger. It will implement pipeline memories to cope with the latencies and rates specified in the new trigger schema and in overall it will represent the interface between the data acquisition, trigger and control systems and the on-detector electronics. The new TileCal read-out architecture will be presented includi...

  1. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

    Directory of Open Access Journals (Sweden)

    Sari Saraswati

    2016-01-01

    Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.

  2. Technical note: comparing von Luschan skin color tiles and modern spectrophotometry for measuring human skin pigmentation.

    Science.gov (United States)

    Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G

    2013-06-01

    Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available. Copyright © 2013 Wiley Periodicals, Inc.

  3. Orion EFT-1 Cavity Heating Tile Experiments and Environment Reconstruction

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Oliver, Brandon; Hyatt, Andrew; Rezin, Marc

    2016-01-01

    Developing aerothermodynamic environments for deep cavities, such as those produced by micrometeoroids and orbital debris impacts, poses a great challenge for engineers. In order to assess existing cavity heating models, two one-inch diameter cavities were flown on the Orion Multi-Purpose Crew Vehicle during Exploration Flight Test 1 (EFT1). These cavities were manufactured with depths of 1.0 in and 1.4 in, and they were both instrumented. Instrumentation included surface thermocouples upstream, downstream and within the cavities, and additional thermocouples at the TPS-structure interface. This paper will present the data obtained, and comparisons with computational predictions will be shown. Additionally, the development of a 3D material thermal model will be described, which will be used to account for the three-dimensionality of the problem when interpreting the data. Furthermore, using a multi-dimensional inverse heat conduction approach, a reconstruction of a time- and space-dependent flight heating distribution during EFT1 will be presented. Additional discussions will focus on instrumentation challenges and calibration techniques specific to these experiments. The analysis shown will highlight the accuracies and/or deficiencies of current computational techniques to model cavity flows during hypersonic re-entry.

  4. Deformation and Heat Transfer on Three Sides Protected Beams under Fire Accident

    Science.gov (United States)

    Imran, M.; Liew, M. S.; Garcia, E. M.; Nasif, M. S.; Yassin, A. Y. M.; Niazi, U. M.

    2018-04-01

    Fire accidents are common in oil and gas industry. The application of passive fire protection (PFP) is a costly solution. The PFP is applied only on critical structural members to optimise project cost. In some cases, beams cannot be protected from the top flange in order to accommodate for the placement of pipe supports and grating. It is important to understand the thermal and mechanical response of beam under such condition. This paper discusses the response of steel beam under ISO 834 fire protected, unprotected and three sides protected beams. The model validated against an experimental study. The experimental study has shown good agreement with FE model. The study revealed that the beams protected from three sides heat-up faster compare to fully protected beam showing different temperature gradient. However, the affects load carrying capacity are insignificant under ISO 834 fire.

  5. Surface impurity removal from DIII-D graphite tiles by boron carbide grit blasting

    International Nuclear Information System (INIS)

    Lee, R.L.; Hollerbach, M.A.; Holtrop, K.L.; Kellman, A.G.; Taylor, P.L.; West, W.P.

    1993-11-01

    During the latter half of 1992, the DIII-D tokamak at General Atomics (GA) underwent several modifications of its interior. One of the major tasks involved the removal of accumulated metallic impurities from the surface of the graphite tiles used to line the plasma facing surfaces inside of the tokamak. Approximately 1500 graphite tiles and 100 boron nitride tiles from the tokamak were cleaned to remove the metallic impurities. The cleaning process consisted of several steps: the removed graphite tiles were permanently marked, surface blasted using boron carbide (B 4 C) grit media (approximately 37 μm. diam.), ultrasonically cleaned in ethanol to remove loose dust, and outgassed at 1000 degrees C. Tests were done using, graphite samples and different grit blaster settings to determine the optimum propellant and abrasive media pressures to remove a graphite layer approximately 40-50 μm deep and yet produce a reasonably smooth finish. EDX measurements revealed that the blasting technique reduced the surface Ni, Cr, and Fe impurity levels to those of virgin graphite. In addition to the surface impurity removal, tritium monitoring was performed throughout the cleaning process. A bubbler system was set up to monitor the tritium level in the exhaust gas from the grit blaster unit. Surface wipes were also performed on over 10% of the tiles. Typical surface tritium concentrations of the tiles were reduced from about 500 dpm/100 cm 2 to less than 80 dpm/100 cm 2 following the cleaning. This tile conditioning, and the installation of additional graphite tiles to cover a high fraction of the metallic plasma facing surfaces, has substantially reduced metallic impurities in the plasma discharges which has allowed rapid recovery from a seven-month machine opening and regimes of enhanced plasma energy confinement to be more readily obtained. Safety issues concerning blaster operator exposure to carcinogenic metals and radioactive tritium will also be addressed

  6. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Ferrándiz-Mas, V., E-mail: v.ferrandiz@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Bond, T., E-mail: t.bond@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Zhang, Z., E-mail: zhen.zhang14@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Melchiorri, J., E-mail: jpmelchiorri@gmail.com [ARBOREA Research, Bessemer Building, Prince Consort Road, London SW7 2AZ (United Kingdom); Cheeseman, C.R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom)

    2016-09-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 μg/cm{sup 2} of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. - Highlights: • Porous tiles made by sintering waste glass at variable temperatures • Bioreceptivity assessed by measuring colonisation by the algae C. vulgaris • Tiles sintered at 700 °C gave

  7. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Ferrándiz-Mas, V.; Bond, T.; Zhang, Z.; Melchiorri, J.; Cheeseman, C.R.

    2016-01-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 μg/cm"2 of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. - Highlights: • Porous tiles made by sintering waste glass at variable temperatures • Bioreceptivity assessed by measuring colonisation by the algae C. vulgaris • Tiles sintered at 700 °C gave maximum

  8. Response and Uniformity Studies of Directly Coupled Tiles

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2010-01-01

    A finely-segmented scintillator-based calorimeter which capitalizes on the marriage of proven detection techniques with novel solid-state photo-detector devices such as Multi-pixel Photon Counters (MPPCs) is an interesting calorimetric system from the point of view of future detector design. A calorimeter system consisting of millions of channels will require a high degree of integration. The first steps towards this integration have already been facilitated by the small size and magnetic field immunity of the MPPCs. The photo-conversion occurs right at the tile, thus obviating the need for routing of long clear fibers. Similar considerations apply to the presence of wave-length shifting (WLS) fibers inside the tiles which couple it to the photo-detectors. Significant simplification in construction and assembly ensue if the MPPCs can be coupled directly to the scintillator tiles. Equally importantly, the total absence of fibers would offer greater flexibility in the choice of the transverse segmentation while enhancing the electro-mechanical integrability of the design. The NIU high-energy physics group has been studying the fiberless or direct-coupling option for some time now. Encouraging results on response and response uniformity have been obtained using radioactive sources. This MOU seeks to set up a framework to extend these tests using beams at the MTBF. The results will be relevant to high granularity scintillator/crystal electromagnetic and hadronic calorimetry. The tests involve a set of small directly-coupled tile counters fabricated at NIU which will be placed in the beam to study their response and response uniformity as a function of the incident position of the particles passing through them.

  9. Response and Uniformity Studies of Directly Coupled Tiles

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu

    2010-04-02

    A finely-segmented scintillator-based calorimeter which capitalizes on the marriage of proven detection techniques with novel solid-state photo-detector devices such as Multi-pixel Photon Counters (MPPCs) is an interesting calorimetric system from the point of view of future detector design. A calorimeter system consisting of millions of channels will require a high degree of integration. The first steps towards this integration have already been facilitated by the small size and magnetic field immunity of the MPPCs. The photo-conversion occurs right at the tile, thus obviating the need for routing of long clear fibers. Similar considerations apply to the presence of wave-length shifting (WLS) fibers inside the tiles which couple it to the photo-detectors. Significant simplification in construction and assembly ensue if the MPPCs can be coupled directly to the scintillator tiles. Equally importantly, the total absence of fibers would offer greater flexibility in the choice of the transverse segmentation while enhancing the electro-mechanical integrability of the design. The NIU high-energy physics group has been studying the fiberless or direct-coupling option for some time now. Encouraging results on response and response uniformity have been obtained using radioactive sources. This MOU seeks to set up a framework to extend these tests using beams at the MTBF. The results will be relevant to high granularity scintillator/crystal electromagnetic and hadronic calorimetry. The tests involve a set of small directly-coupled tile counters fabricated at NIU which will be placed in the beam to study their response and response uniformity as a function of the incident position of the particles passing through them.

  10. Simulation of Heat Transfer and Electromagnetic Fields of Protected Microcomputers

    Directory of Open Access Journals (Sweden)

    Josef Lakatos

    2006-01-01

    Full Text Available The paper presents results of collaboration between Department of mechatronics and electronics at University of Žilina and VÚVT Engineering a.s. Žilina in area of heat transfer simulations and disturbing electromagnetic radiation simulations in computer construction. The simulations results were used in development of protected microcomputer prototypes in frame of applied research at both of workplaces.

  11. TECHNOLOGY OF PRODUCTION OF CERAMIC TILES BASED ON DOLERITE AND FUSIBLE CLAY

    Directory of Open Access Journals (Sweden)

    Pleshko Marianna Viktorovna

    2018-02-01

    Full Text Available The paper presents a completely new composition of the ceramic mass for production of ceramic tiles for interior lining of walls, on the basis of fusible clay. The optimal compositions of jade engobe and glossy glaze, the most suitable for this composition, are determined. A new technological scheme is developed for production of ceramic tiles for interior lining based on dolerite and fusible clay. The curve of firing, which is the most suitable for charge masses and decorative coating compositions being used, has been constructed. Subject: ceramic mass for the production of ceramic facing tiles. Ceramic tiles are the most popular building material in Russia. The most promising technology for its production from the standpoint of technical and economic efficiency is the technology of rapid single firing, which is rarely used at the plants of our country. In this regard, the development and implementation of new effective compositions of ceramic masses and decorative coatings that are the most compatible with the specifics of rapid single firing technology, based on new unconventional raw materials, are very relevant and promising. Research objectives: development of technological parameters, compositions of ceramic masses and decorative coatings of ceramic tiles for the internal wall lining that provide an increase in tiles production efficiency using the technology of rapid single firing through the use of non-traditional plagioclase-pyroxene raw materials: dolerites, loam and technogenic raw materials. Materials and methods: technological, numerical and experimental studies were conducted. To select the optimal composition of the ceramic mass, the method of mathematical planning was used, namely the simplex-centroid design of Scheffe. To identify the scientific foundations of the energy-efficient production technology being developed, differential thermal and X-ray phase, optical, electron microscopic and dilatometric studies were applied

  12. An FPGA based backup version of the TileCal digitizer

    International Nuclear Information System (INIS)

    Eriksson, D; Muschter, S; Bohm, C

    2010-01-01

    The ATLAS Tile Calorimeter front end digitization and readout system comprises about 1800 digitizer boards with two TileDMU ASICs on each board. The TileDMUs are responsible for storing, derandomising and reading out digitized data from twelve ADCs. An ample number of board spares are available. However, a backup solution is desirable in the event of unexpected failure modes. The original version contains both outdated and custom made circuits that are difficult or impossible to find in sufficient numbers. We have developed a new version using inexpensive off the shelf FPGAs (Spartan 6). The FPGAs have all the necessary functionality to emulate the TileDMU and will be readily available for a considerable time. The new board is functionally compatible with the current version and to a large extent uses the same code. The design goal was to leave the digitizer design as intact as possible since it is well tested and performs well. As radiation tolerance is an issue we have implemented triple mode redundancy in the FPGA. To further improve the system we added in system programmability via TTCrx for both the FPGA and the configuration memory using one way JTAG. This provides a way to recover from radiation damage to the configuration PROM or to remotely upgrade system firmware.

  13. An FPGA based backup version of the TileCal digitizer.

    Science.gov (United States)

    Eriksson, D.; Muschter, S.; Bohm, C.

    2010-11-01

    The ATLAS Tile Calorimeter front end digitization and readout system comprises about 1800 digitizer boards with two TileDMU ASICs on each board. The TileDMUs are responsible for storing, derandomising and reading out digitized data from twelve ADCs. An ample number of board spares are available. However, a backup solution is desirable in the event of unexpected failure modes. The original version contains both outdated and custom made circuits that are difficult or impossible to find in sufficient numbers. We have developed a new version using inexpensive off the shelf FPGAs (Spartan 6). The FPGAs have all the necessary functionality to emulate the TileDMU and will be readily available for a considerable time. The new board is functionally compatible with the current version and to a large extent uses the same code. The design goal was to leave the digitizer design as intact as possible since it is well tested and performs well. As radiation tolerance is an issue we have implemented triple mode redundancy in the FPGA. To further improve the system we added in system programmability via TTCrx for both the FPGA and the configuration memory using one way JTAG. This provides a way to recover from radiation damage to the configuration PROM or to remotely upgrade system firmware.

  14. Visual discourse of the clove: An analysis on the Ottoman tile decoration art

    Directory of Open Access Journals (Sweden)

    Nurdan Öncel Taskiran

    2012-12-01

    Full Text Available In tile art, one of the world-famous Turkish Handicrafts, a wide variety of patterns are used on tile objects. The most common of these, after the tulip pattern, is the naturalist clove pattern. Different meanings were assigned to this pattern within the boundaries of form, color and design. Identification and perception of these meanings have a special place within the frame of the culture that they relay. In this present study the fields of meaning of the clove pattern frequently used in tile decoration arts among Turkish handicrafts were tried to be determined. By taking Greimas' Actantial Model as the theoretical model, in the study visual discourse analysis of the clove pattern will be made.Keywords: Clove Pattern, Ottoman Tile Art, Greimas, Visual Discourse.

  15. Dolomite addition effects on the thermal expansion of ceramic tiles

    International Nuclear Information System (INIS)

    Marino, Luis Fernando Bruno; Boschi, Anselmo Ortega

    1997-01-01

    The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)

  16. Standard test method for measurement of light reflectance value and small color differences between pieces of ceramic tile

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of Light Reflectance Value (LRV) and visually small color difference between pieces of glazed or unglazed ceramic tile, using any spectrophotometer that meets the requirements specified in the test method. LRV and the magnitude and direction of the color difference are expressed numerically, with sufficient accuracy for use in product specification. 1.2 LRV may be measured for either solid-colored tile or tile having a multicolored, speckled, or textured surface. For tile that are not solid-colored, an average reading should be obtained from multiple measurements taken in a pattern representative of the overall sample as described in 9.2 of this test method. Small color difference between tiles should only be measured for solid-color tiles. Small color difference between tile that have a multicolored, speckled, or textured surface, are not valid. 1.3 For solid colored tile, a comparison of the test specimen and reference specimen should be made under incandescent, f...

  17. Testosterone Depletion by Castration May Protect Mice from Heat-Induced Multiple Organ Damage and Lethality

    Directory of Open Access Journals (Sweden)

    Ruei-Tang Cheng

    2010-01-01

    Full Text Available When the vehicle-treated, sham-operated mice underwent heat stress, the fraction survival and core temperature at +4 h of body heating were found to be 5 of 15 and 34.4∘C±0.3∘C, respectively. Castration 2 weeks before the start of heat stress decreased the plasma levels of testosterone almost to zero, protected the mice from heat-induced death (fraction survival, 13/15 and reduced the hypothermia (core temperature, 37.3∘C. The beneficial effects of castration in ameliorating lethality and hypothermia can be significantly reduced by testosterone replacement. Heat-induced apoptosis, as indicated by terminal deoxynucleotidyl- transferase- mediatedαUDP-biotin nick end-labeling staining, were significantly prevented by castration. In addition, heat-induced neuronal damage, as indicated by cell shrinkage and pyknosis of nucleus, to the hypothalamus was also castration-prevented. Again, the beneficial effects of castration in reducing neuronal damage to the hypothalamus as well as apoptosis in multiple organs during heatstroke, were significantly reversed by testosterone replacement. The data indicate that testosterone depletion by castration may protect mice from heatstroke-induced multiple organ damage and lethality.

  18. The upgrade of the laser calibration system for the ATLAS hadron calorimeter TileCal

    CERN Document Server

    Spalla, Margherita; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. TileCal is built of steel and scintillating tiles coupled to optical fibers and read‐out by photomultipliers (PMT). The performance of TileCal relies on a continuous, high resolution calibration of the individual response of the 10,000 channels forming the detector. The calibration is based on a three level architecture: a charge injection system used to monitor the full electronics chain including front-end amplifiers, digitizers and event builder blocks for each individual channel; a distributed optical system using laser pulses to excite all PMTs; and a mobile Cesium radiative source which is driven through the detector cell floating inside a pipe system. This architecture allows for a cascade calibration of the electronics, of the PMT and electronics, and of full chain including the active detec...

  19. D III-D divertor target heat flux measurements during Ohmic and neutral beam heating

    International Nuclear Information System (INIS)

    Hill, D.N.; Petrie, T.; Mahdavi, M.A.; Lao, L.; Howl, W.

    1988-01-01

    Time resolved power deposition profiles on the D III-D divertor target plates have been measured for Ohmic and neutral beam injection heated plasmas using fast response infrared thermography (τ ≤ 150 μs). Giant Edge Localized Modes have been observed which punctuate quiescent periods of good H-mode confinement and deposit more than 5% of the stored energy of the core plasma on the divertor armour tiles on millisecond time-scales. The heat pulse associated with these events arrives approximately 0.5 ms earlier on the outer leg of the divertor relative to the inner leg. The measured power deposition profiles are displaced relative to the separatrix intercepts on the target plates, and the peak heat fluxes are a function of core plasma density. (author). Letter-to-the-editor. 11 refs, 7 figs

  20. Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Tokitani, M., E-mail: tokitani.masayuki@LHD.nifs.ac.jp [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, M. [Shimane University, Matsue, Shimane 690-8504 (Japan); Masuzaki, S. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Fujii, Y. [Shimane University, Matsue, Shimane 690-8504 (Japan); Sakamoto, R. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Oya, Y. [Shizuoka University, Shizuoka 422-8529 (Japan); Hatano, Y. [University of Toyama, Toyama 930-8555 (Japan); Otsuka, T. [Kindai University, Higashi-Osaka, Osaka, 577-8502 (Japan); Oyaidzu, M.; Kurotaki, H.; Suzuki, T.; Hamaguchi, D.; Isobe, K.; Asakura, N. [National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Aomori 039-3212 (Japan); Widdowson, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rubel, M. [Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2017-03-15

    Highlights: • Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall were studied. • The stratified mixed-material deposition layer composed by W, C, O, Mo and Be with the thickness of ∼1.5 μm was formed on the apron of Tile 1. • The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. - Abstract: Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation.

  1. A High-Resolution Tile-Based Approach for Classifying Biological Regions in Whole-Slide Histopathological Images.

    Science.gov (United States)

    Hoffman, R A; Kothari, S; Phan, J H; Wang, M D

    Computational analysis of histopathological whole slide images (WSIs) has emerged as a potential means for improving cancer diagnosis and prognosis. However, an open issue relating to the automated processing of WSIs is the identification of biological regions such as tumor, stroma, and necrotic tissue on the slide. We develop a method for classifying WSI portions (512x512-pixel tiles) into biological regions by (1) extracting a set of 461 image features from each WSI tile, (2) optimizing tile-level prediction models using nested cross-validation on a small (600 tile) manually annotated tile-level training set, and (3) validating the models against a much larger (1.7x10 6 tile) data set for which ground truth was available on the whole-slide level. We calculated the predicted prevalence of each tissue region and compared this prevalence to the ground truth prevalence for each image in an independent validation set. Results show significant correlation between the predicted (using automated system) and reported biological region prevalences with p < 0.001 for eight of nine cases considered.

  2. Tile-based self-assembly of a triple-helical polysaccharide into cell wall-like mesoporous nanocapsules.

    Science.gov (United States)

    Wu, Chaoxi; Wang, Xiaoying; Wang, Jianjing; Zhang, Zhen; Wang, Zhiping; Wang, Yifei; Tang, Shunqing

    2017-07-20

    Tile-based self-assembly is a robust system in the construction of three-dimensional DNA nanostructures but it has been rarely applied to other helical biopolymers. β-Glucan is an immunoactive natural polymer which exists in a triple helical conformation. Herein, we report that β-glucan, after modification using two types of short chain acyl groups, can self-assemble into tiles with inactivated sticky ends at the interface of two solvents. These tiles consist of a single layer of helices laterally aligned, and the sticky ends can be activated when a few acyl groups at the ends are removed; these tiles can further pack into mesoporous nanocapsules, in a similar process as the sticky DNA tiles pack into complex polyhedral nano-objects. These nanocapsules were found to have targeted effects to antigen presenting cells in a RAW264.7 cell model. Our study suggests that tile-based self-assembly can be a general strategy for helical biopolymers, and on fully exploiting this strategy, various new functional nanostructures will become accessible in the future.

  3. Light Distribution in the E3 and E4 Scintillation Counters of the ATLAS Tile Calorimeter

    CERN Document Server

    Hsu, Catherine

    2013-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment is an important component of the ATLAS calorimetry because they play a crucial role in the search for new particles. The E3 and E4 are crack scintillators of TileCal that extend into the gap region between the EM barrel and EM endcaps. They thus sample the energy of the EM showers produced by particles interacting with the dead material in the EM calorimeters and with the inner detector cables. This project focuses on the study of the light collection uniformity in the E3 and E4 scintillating tiles using low energy electrons as the ionising particles. It is important to have uniform light response in the tiles because it would ensure a good energy resolution for the dead region. However, many factors affect the uniform light collection within the scintillating tiles.

  4. Pesticide transport to tile-drained fields in SWAT model – macropore flow and sediment

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte

    2015-01-01

    Tool (SWAT) to simulate transport of both mobile (e.g. Bentazon) and strongly sorbed (e.g. Diuron) pesticides in tile drains. Macropore flow is initiated when soil water content exceeds a threshold and rainfall intensity exceeds infiltration capacity. The amount of macropore flow is calculated...... to macropore sediment transport. Simulated tile drain discharge, sediment and pesticide loads are calibrated against data from intensively monitored tile-drained fields and streams in Denmark....

  5. Estimation of exposure to sunlight of the liner under a tiled roof

    DEFF Research Database (Denmark)

    Holck, Ole; Rosenfeld, J.L.J.

    2005-01-01

    One construction for a pitched roof is to use tiles on battens, with a liner attached below the battens. The shape of some types of tiles is such that, at each corner where four tiles overlap, a small gap is formed. At certain positions of the sun solar radiation can penetrate through these gaps....... Simulations were carried out for a roof tilted at 25degrees, 35degrees or 45degrees, facing SE, S, SW or W. For the particular roof construction and gap studied, the maximum annual exposure of a 25 mm(2) piece of the liner placed 150 mm below the gap (corresponding to about 100 mm below the base of the tiles...... to the roof. Analytic expressions for the size of the illuminated area are obtained using a thick slit model. The accuracy of the model was assessed by some experimental measurements. The exposure over one year of the roof liner was calculated using the Design Reference Year for Copenhagen, Denmark...

  6. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Gabriela Huelgas-Morales

    2016-04-01

    Full Text Available In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  7. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    Science.gov (United States)

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.

  8. PROTVINO: Mass-production of scintillator tiles by injection moulding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The technique of the segmented sandwich-calorimeters with wavelength-shifting readout, especially its large-scale application in big detectors, requires enormous quantities of a cheap scintillator tiles of moderate dimensions (20 x 20 cm 2 ). Initial trials carried out in the Institute for High Energy Physics (IHEP), Protvino, Russia almost ten years ago showed that manufacturing such scintillator tiles was possible using an ordinary commercially-available granulated optical polystyrene, an existing technology of plastic dyeing, and a well-known process of the injection moulding, used to produce plastic goods (like buttons!)

  9. Use of biochar amendments for removing bacteria from simulated tile-drainage waters

    Science.gov (United States)

    The addition of biochar has been shown to increase bacterial removal rates by several orders of magnitude in sand-packed columns, suggesting that biochar may be a suitable amendment for use in end-of-tile filter systems to remove indicator and pathogenic microorganisms in tile-drainage waters. Addit...

  10. 2011 Las Conchas Post Fire Tile Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set consists of an orthophotography tile index based on multi-spectral (red, green, blue, near-infrared) digital aerial imagery, collected and processed by...

  11. In-situ Tritium Measurements of the Tokamak Fusion Test Reactor Bumper Limiter Tiles Post D-T Operations

    International Nuclear Information System (INIS)

    C.A. Gentile; C.H. Skinner; K.M. Young; M. Nishi; S. Langish; et al

    1999-01-01

    The Princeton Plasma Physics Laboratory (PPPL) Engineering and Research Staff in collaboration with members of the Japan Atomic Energy Research Institute (JAERI), Tritium Engineering Laboratory have commenced in-situ tritium measurements of the TFTR bumper limiter. The Tokamak Fusion Test Reactor (TFTR) operated with tritium from 1993 to 1997. During this time ∼ 53,000 Ci of tritium was injected into the TFTR vacuum vessel. After the cessation of TFTR plasma operations in April 1997 an aggressive tritium cleanup campaign lasting ∼ 3 months was initiated. The TFTR vacuum vessel was subjected to a regimen of glow discharge cleaning (GDC) and dry nitrogen and ''moist air'' purges. Currently ∼ 7,500 Ci of tritium remains in the vacuum vessel largely contained in the limiter tiles. The TFTR limiter is composed of 1,920 carbon tiles with an average weight of ∼ 600 grams each. The location and distribution of tritium on the TFTR carbon tiles are of considerable interest. Future magnetically confined fusion devices employing carbon as a limiter material may be considerably constrained due to potentially large tritium inventories being tenaciously held on the surface of the tiles. In-situ tritium measurements were conducted in TFTR bay L during August and November 1998. During the bay L measurement campaign open wall ion chambers and ultra thin thermoluminscent dosimeters (TLD) affixed to a boom and end effector were deployed into the vacuum vessel. The detectors were designed to make contact with the surface of the bumper limiter tile and to provide either real time (ion chamber) or passive (TLD) indication of the surface tritium concentration. The open wall ion chambers were positioned onto the surface of the tile in a manner which employed the surface of the tile as one of the walls of the chamber. The ion chambers, which are (electrically) gamma insensitive, were landed at four positions per tile. The geometry for landing the TLD's provided measurement at 24

  12. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    Science.gov (United States)

    Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET

    2017-12-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.

  13. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    International Nuclear Information System (INIS)

    Silburn, S A; Matthews, G F; Challis, C D; Belonohy, E; Iglesias, D; Keeling, D L; King, D; Kirov, K; Lomas, P J; Frigione, D; Graves, J P; Mantsinen, M J; Hobirk, J; Lennholm, M; Moradi, S; Sips, A C C; Tsalas, M

    2017-01-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data. (paper)

  14. A hidden Markov model approach for determining expression from genomic tiling micro arrays

    Directory of Open Access Journals (Sweden)

    Krogh Anders

    2006-05-01

    Full Text Available Abstract Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005 tiling array experiments on ten Human chromosomes 1. Results can be downloaded and viewed from our web site 2. Conclusion The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity.

  15. ASSESSMENT OF CERAMIC TILE FROST RESISTANCE BY MEANS OF THE FREQUENCY INSPECTION METHOD

    Directory of Open Access Journals (Sweden)

    MICHAL MATYSÍK

    2011-06-01

    Full Text Available The paper presents some results of our experimental analysis of ceramic cladding element frost resistance, particular attention being paid to the application of the frequency inspection method. Three different sets of ceramic tiles of the Ia class to EN 14 411 B standard made by various manufacturers have been analyzed. The ceramic tiles under investigation have been subjected to freeze-thaw-cycle-based degradation in compliance with the relevant ČSN EN ISO 10545-12 standard. Furthermore, accelerated degradation procedure has been applied to selected test specimens, consisting in reducing the temperature of water soaked ceramic tiles in the course of the degradation cycles down –70°C. To verify the correctness of the frequency inspection results, additional physical properties of the ceramic tiles under test have been measured, such as, the ceramic tile strength limit, modulus of elasticity and modulus of deformability, resulting from the flexural tensile strength tests, integrity defect and surface micro-geometry tracking. It has been proved that the acoustic method of frequency inspection is a sensitive indicator of the structure condition and can be applied to the ceramic cladding element frost resistance and service life prediction assessment.

  16. Characterization of double face adhesive sheets for ceramic tile installation

    International Nuclear Information System (INIS)

    Nascimento, Otavio L.; Mansur, Alexandra A.P.; Mansur, Herman S.

    2011-01-01

    The main goal of this work was the characterization of an innovative ceramic tile installation product based on double face adhesive sheets. Density, hardness, tensile strength, x-ray diffraction, infrared spectroscopy, and scanning electron microscopy coupled with spectroscopy of dispersive energy assays were conducted. The results are in agreement with some manufacture specifications and the obtained information will be crucial in the analysis of durability and stability of the ceramic tile system installed with this new product. (author)

  17. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2024 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  18. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2023 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  19. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  20. Tile-Based Semisupervised Classification of Large-Scale VHR Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Haikel Alhichri

    2018-01-01

    Full Text Available This paper deals with the problem of the classification of large-scale very high-resolution (VHR remote sensing (RS images in a semisupervised scenario, where we have a limited training set (less than ten training samples per class. Typical pixel-based classification methods are unfeasible for large-scale VHR images. Thus, as a practical and efficient solution, we propose to subdivide the large image into a grid of tiles and then classify the tiles instead of classifying pixels. Our proposed method uses the power of a pretrained convolutional neural network (CNN to first extract descriptive features from each tile. Next, a neural network classifier (composed of 2 fully connected layers is trained in a semisupervised fashion and used to classify all remaining tiles in the image. This basically presents a coarse classification of the image, which is sufficient for many RS application. The second contribution deals with the employment of the semisupervised learning to improve the classification accuracy. We present a novel semisupervised approach which exploits both the spectral and spatial relationships embedded in the remaining unlabelled tiles. In particular, we embed a spectral graph Laplacian in the hidden layer of the neural network. In addition, we apply regularization of the output labels using a spatial graph Laplacian and the random Walker algorithm. Experimental results obtained by testing the method on two large-scale images acquired by the IKONOS2 sensor reveal promising capabilities of this method in terms of classification accuracy even with less than ten training samples per class.

  1. Reduction of recycling in DIII-D by degassing and conditioning of the graphite tiles

    International Nuclear Information System (INIS)

    Jackson, G.L.; Taylor, T.S.; Allen, S.L.

    1988-05-01

    Reduced recycling, reduced edge neutral pressure, improved density control, and improved discharge reproducibility have been achieved in the DIII-D tokamak by in situ helium conditioning of the graphite tiles. An improvement in energy confinement has been observed in hydrogen discharges with hydrogen beam injection after helium preconditioning. After the graphite wall coverage in DIII-D was increased to 40%, helium glow wall conditioning, routinely applied before each tokamak discharge, has been necessary to reduce recycling and obtain H-mode. The utilization of helium glow wall conditioning was an important factor in the achievement of an ohmic H-mode, i.e. no auxillary heating, with significant improvement in ohmic energy confinement. 16 refs., 8 figs

  2. Radiation damage of tile/fiber scintillator modules for the SDC calorimeter

    International Nuclear Information System (INIS)

    Hu, L.; Liu, N.; Mao, H.; Tan, Y.; Wang, G.; Zhang, C.; Zhang, G.; Zhang, L.; Zhang, Z.; Zhao, X.; Zheng, L.; Zhong, X.; Zhou, Y.; Han, S.; Byon, A.; Green, D.; Para, A.; Johnson, K.; Barnes, V.

    1992-02-01

    The measurements of radiation damage of tile/fiber scintillator modules to be used for the SDC calorimeter are described. Four tile/fiber scintillator modules were irradiated up to 6 Mrad with the BEPC 1.1 GeV electron beam. We have studied the light output at different depths in the modules and at different integrated doses, the recovery process and the dependence on the ambient atmosphere

  3. Feasibility of coal fly ash based bricks and roof tiles as construction materials: a review

    Directory of Open Access Journals (Sweden)

    Akhtar M.N.

    2017-01-01

    Full Text Available The aim of present study is to investigate about the potential use of coal fly ash along with other natural and solid wastes for the production of coal fly ash based bricks and roof tiles. The study is based on the comprehensive reviews available from the previous experimental data on coal fly ash based bricks and roof tiles. The study intendeds to provide the essential technical information and data for the use of fly ash mix with other solid wastes and reveal their suitability as construction materials. It has been found that samples were non-hazardous in nature and vigorously used as an additional construction materials and their compositions are perfectly fit to make the strong composite material for bricks and tiles. The three past studies have been demonstrated that, fly ash based bricks and roof tiles provides a sustainable supplement to the traditional clay bricks and roof tiles, that not only increases the efficiency of traditional bricks and roof tiles but also helps significantly to reduce the environmental issues associated with the disposal of these waste materials. In addition to this study highlights the potential use of fly ash for producing sustainable construction materials.

  4. High-accuracy measurement and compensation of grating line-density error in a tiled-grating compressor

    Science.gov (United States)

    Zhao, Dan; Wang, Xiao; Mu, Jie; Li, Zhilin; Zuo, Yanlei; Zhou, Song; Zhou, Kainan; Zeng, Xiaoming; Su, Jingqin; Zhu, Qihua

    2017-02-01

    The grating tiling technology is one of the most effective means to increase the aperture of the gratings. The line-density error (LDE) between sub-gratings will degrade the performance of the tiling gratings, high accuracy measurement and compensation of the LDE are of significance to improve the output pulses characteristics of the tiled-grating compressor. In this paper, the influence of LDE on the output pulses of the tiled-grating compressor is quantitatively analyzed by means of numerical simulation, the output beams drift and output pulses broadening resulting from the LDE are presented. Based on the numerical results we propose a compensation method to reduce the degradations of the tiled grating compressor by applying angular tilt error and longitudinal piston error at the same time. Moreover, a monitoring system is setup to measure the LDE between sub-gratings accurately and the dispersion variation due to the LDE is also demonstrated based on spatial-spectral interference. In this way, we can realize high-accuracy measurement and compensation of the LDE, and this would provide an efficient way to guide the adjustment of the tiling gratings.

  5. Characterization and optimization of Silicon Photomultipliers and small size scintillator tiles for future calorimeter applications

    CERN Document Server

    AUTHOR|(CDS)2095312; Horváth, Ákos

    For the active layers of highly granular sampling calorimeters, small scintillator tiles read out by Silicon Photomultipliers (SiPM) can be an interesting and cost effective alternative to silicon sensors. At CERN a test setup was realized for the development of new generations of calorimeters to characterize new types of Silicon Photomultipliers in terms of gain, noise, afterpulses and crosstalk and to study the impact of scintillator wrappings and the tile size on the measured light yield and uniformity. In this thesis work, the experimental setup is described and the steps for commissioning the equipment are discussed. Then, the temperature dependence of the Silicon Photomultiplier response will be investigated, including the dependence of bare Silicon Photomultipliers as well as Silicon Photomultipliers coupled to scintillator tiles. Finally, the tile-photomultiplier response for different tile sizes and coating options will be evaluated. The experimental setup will be extended to allow for the characteri...

  6. Swimming pools and shower rooms - sealing directly under the tiles avoids hygienically serious water accumulations. Schwimmbecken und Duschraeume - Abdichtung direkt unter den Fliesen vermeidet hygienisch bedenkliche Wasseransammlungen

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1990-12-14

    Swimming pool seals are to carry out according to the DIN 18195 part 7 in which sealing with strips and foils is required; at the bottom of the pool a sufficiently dimensioned protective coating under the tiles and in the wall area using the following construction from the outside to the inside: tiles, mortar, face brickwork of at least half brick thickness and behind it a 4 cm shell joint. Then as the next layer follows the seal with foils or sealing strips. The total construction facing the water is thus with a total layer thickness of about 10 cm permanently exposed to water with all the thus resulting consequences. (orig.).

  7. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    Science.gov (United States)

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  8. A bipedal DNA motor that travels back and forth between two DNA origami tiles.

    Science.gov (United States)

    Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Nir, Eyal

    2015-02-04

    In this work, the successful operation of a dynamic DNA device constructed from two DNA origami building blocks is reported. The device includes a bipedal walker that strides back and forth between the two origami tiles. Two different DNA origami tiles are first prepared separately; they are then joined together in a controlled manner by a set of DNA strands to form a stable track in high yield as confirmed by single-molecule fluorescence (SMF). Second, a bipedal DNA motor, initially attached to one of the two origami units and operated by sequential interaction with "fuel" and "antifuel" DNA strands, moves from one origami tile to another and then back again. The operational yield, measured by SMF, was similar to that of a motor operating on a similar track embedded in a single origami tile, confirming that the transfer across the junction from one tile to the other does not result in dissociation that is any more than that of steps on a single tile. These results demonstrate that moving parts can reliably travel from one origami unit to another, and it demonstrates the feasibility of dynamic DNA molecular machines that are made of more than a single origami building block. This study is a step toward the development of motors that can stride over micrometer distances. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    Science.gov (United States)

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  10. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  11. TILE at Iowa: Adoption and Adaptation

    Science.gov (United States)

    Florman, Jean C.

    2014-01-01

    This chapter introduces a University of Iowa effort to enhance and support active learning pedagogies in technology-enhanced (TILE) classrooms and three elements that proved essential to the campus-wide adoption of those pedagogies. It then describes the impact of those professional development efforts on the curricula and cultures of three…

  12. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00127668; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 1034cm2s1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow ...

  13. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5x10ˆ34 cm-2s-1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will a...

  14. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase~0 occurs during 2013-2014, Phase~1 during 2018-1019 and finally Phase~2, which is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 10$^{34}$ cm$^2$s$^{-1}$ (HL-LHC). The main TileCal upgrade is focused on the Phase~2 period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased radiation levels. An ambitious upgrade development program is pursued to study different electronics options. Three options are presently being investigated for the front-end electronic upgrade. The first option is an improved version of the present system built using comm...

  15. Test beam studies for the atlas tile calorimeter readout electronics

    CERN Document Server

    Rodriguez Perez, Andrea; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system for the Tile hadronic calorimeter (TileCal) of the ATLAS experiment is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muon data allow to study the response dependence on the incident point and angle in a cell and inter-calibration of the response between cells. The electron data are used to determine the linearity of the electron energy measurement. The hadron data allow to determined the calorimeter response to pions, kaons and protons and tune the calorimeter simulation to that data. The results of the ongoing data analyses are discussed in the presentation.

  16. Promoting Active Learning in Technology-Infused TILE Classrooms at the University of Iowa

    Directory of Open Access Journals (Sweden)

    Sam Van Horne

    2012-06-01

    Full Text Available In this case study, the authors describe the successful implementation of technology-infused TILE classrooms at the University of Iowa. A successful collaboration among campus units devoted to instructional technologies and teacher development, the TILE Initiative has provided instructors with a new set of tools to support active learning. The authors detail the implementation of the TILE classrooms, the process of training instructors to design effective instruction for these classrooms, and an assessment project that helps improve the process of ensuring faculty can successfully facilitate learning activities in a technology-infused learning environment.

  17. Natural radioactivity and radon exhalation rates in man-made tiles used as building materials in Japan.

    Science.gov (United States)

    Iwaoka, K; Hosoda, M; Suwankot, N; Omori, Y; Ishikawa, T; Yonehara, H; Tokonami, S

    2015-11-01

    Man-made tiles frequently used in Japan were collected, and activity concentrations and radon ((222)Rn) exhalation rates in these tiles were measured. Dose estimations for inhabitants living in houses built using these tiles were also carried out. The activity concentrations of (226)Ra, (228)Ra and (40)K in the man-made tiles were 31-170, 35-110 and 260-980 Bq kg(-1), respectively. The (222)Rn exhalation rates in the tiles were 8.8-21 μBq m(-2) s(-1). The ranges of experimental activity concentrations and (222)Rn exhalation rates were almost identical to those of natural rocks used as typical building materials in Japan. The maximum value of effective dose to inhabitants living in houses built with the man-made tiles was 0.14 mSv y(-1), which is lower than the reference level range (1-20 mSv y(-1)) for abnormally high levels of natural background radiation published in the ICRP Publication 103. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    Science.gov (United States)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  19. Calibration and performance of the ATLAS Tile Calorimeter during the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMTs). The TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalising the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadron...

  20. Calibration and Performance of the ATLAS Tile Calorimeter During the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMT). The TileCal is regularly monitored and calibrated by several di erent calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadroni...

  1. Tile-in-ONE

    CERN Document Server

    Cunha, R; The ATLAS collaboration; Sivolella, A; Ferreira, F; Maidantchik, C

    2013-01-01

    The Tile calorimeter is one of the sub-detectors of ATLAS. In order to ensure its proper operation and assess the quality of data, many tasks are to be performed by means of many tools which were developed independently to satisfy different needs. Thus, these systems are commonly implemented without a global perspective of the detector and lack basic software features. Besides, in some cases they overlap in the objectives and resources with another one. It is therefore evident the necessity of an infrastructure to allow the implementation of any functionality without having to duplicate the effort while being possible to integrate with an overall view of the detector status.\

  2. Contact pressure distribution during the polishing process of ceramic tiles: A laboratory investigation

    International Nuclear Information System (INIS)

    Sani, A S A; Hamedon, Z; Azhari, A; Sousa, F J P

    2016-01-01

    During the polishing process of porcelain tiles the difference in scratching speed between innermost and peripheral abrasives leads to pressure gradients linearly distributed along the radial direction of the abrasive tool. The aim of this paper is to investigate such pressure gradient in laboratory scale. For this purpose polishing tests were performed on ceramic tiles according to the industrial practices using a custom-made CNC tribometer. Gradual wear on both abrasives and machined surface of the floor tile were measured. The experimental results suggested that the pressure gradient tends to cause an inclination of the abraded surfaces, which becomes stable after a given polishing period. In addition to the wear depth of the machined surface, the highest value of gloss and finest surface finish were observed at the lowest point of the worn out surface of the ceramic floor tile corresponding to the point of highest pressure and lowest scratching speed. (paper)

  3. Comparative study of ceramic tiles produced in the Town of Goytacazes / RJ (Brazil)

    International Nuclear Information System (INIS)

    Almeida, L.L.P. de; Pacheco, A.T.; Carreiro, R.S; Petrucci, L.J.T.

    2011-01-01

    The city of the Campos dos Goytacazes, situated in the region north of the state of Rio de Janeiro, presents characteristics place that it enter the producing greater of blocks and ceramic roofing tiles for the domestic market. This work makes a study enters four manufacturers of ceramic roofing tiles of the city of the Campos dos Goytacazes/RJ, to analysis comparatively its results according to in agreement the characterization submitted to dilatometry, Thermogravimetry, Differential Thermal Analysis and X-ray diffraction for the physical tests the tiles were collected after burning and the tests under Bylaw NBR 15310. The results had indicated a significant variation in the values of water absorption of each manufacturer. The same ones demonstrate that the ceramic roofing tiles of Campos of the Goytacazes present a uniformity in the results, being that it needs technological accompaniment during the manufacture process, to improve its properties and its quality for adequacy to the normative parameters of the ABNT. (author)

  4. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00306349; The ATLAS collaboration

    2017-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  5. Hydrocarbon deposition in gaps of tungsten and graphite tiles in Experimental Advanced Superconducting Tokamak edge plasma parameters

    International Nuclear Information System (INIS)

    Xu Qian; Yang Zhongshi; Luo Guangnan

    2015-01-01

    The three-dimensional (3D) Monte Carlo code PIC-EDDY has been utilized to investigate the mechanism of hydrocarbon deposition in gaps of tungsten tiles in the Experimental Advanced Superconducting Tokamak (EAST), where the sheath potential is calculated by the 2D in space and 3D in velocity particle-in-cell method. The calculated results for graphite tiles using the same method are also presented for comparison. Calculation results show that the amount of carbon deposited in the gaps of carbon tiles is three times larger than that in the gaps of tungsten tiles when the carbon particles from re-erosion on the top surface of monoblocks are taken into account. However, the deposition amount is found to be larger in the gaps of tungsten tiles at the same CH 4 flux. When chemical sputtering becomes significant as carbon coverage on tungsten increases with exposure time, the deposition inside the gaps of tungsten tiles would be considerable. (author)

  6. Radiation tolerance and mitigation strategies for FPGA:s in the ATLAS TileCal Demonstrator

    CERN Document Server

    Akerstedt, H; The ATLAS collaboration

    2013-01-01

    During 2014, demonstrator electronics will be installed in a Tile calorimeter "drawer" to get long term experience with the inherently redundant electronics proposed for a full upgrade scheduled for 2022. The new system, being FPGA-based, uses dense programmable logic which must be proven to be sufficently radiation tolerant. It must be protected against radiation induced single event upsets that corrupt memory and logic functions. Radiation induced errors need to be found and compensated for in time, to minimize data loss but also to avoid permanent damage. Strategies for detecting and correcting radiation induced errors in the Kintex-7 FPGA:s of the demonstrator are evaluated and discussed.

  7. Radiation tolerance and mitigation strategies for FPGA:s in the ATLAS TileCal Demonstrator

    CERN Document Server

    Akerstedt, H; The ATLAS collaboration; Drake, G; Muschter, S; Oreglia, M; Tang, F; Anderson, K; Paramonov, A

    2013-01-01

    During 2014, upgrade-demonstrator electronics will be installed in a Tile calorimeter drawer to obtain long term experience with the inherently redundant electronics proposed for a full upgrade scheduled for 2022. The new, FPGA-based system uses dense programmable logic, which must be proven to be sufficiently radiation tolerant. It must also be protected against radiation induced single event upsets that can corrupt memory and logic Radiation induced errors need to be found and compensated for in time to minimize data loss, and also to avoid permanent damage. Strategies for detecting and correcting radiation induced errors in the Kintex-7 FPGAs on the demonstrator electronics are evaluated and discussed.

  8. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.

    Science.gov (United States)

    Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N

    2015-03-01

    The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  10. Promoting Active Learning in Technology-Infused TILE Classrooms at the University of Iowa

    Science.gov (United States)

    Van Horne, Sam; Murniati, Cecilia; Gaffney, Jon D. H.; Jesse, Maggie

    2012-01-01

    In this case study, the authors describe the successful implementation of technology-infused TILE classrooms at the University of Iowa. A successful collaboration among campus units devoted to instructional technologies and teacher development, the TILE Initiative has provided instructors with a new set of tools to support active learning. The…

  11. Technical Solution for Protection of Heat Pump Evaporators Against Freezing the Moisture Condensed

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available This article is dedicated to the study of the processes of formation and freezing of condensate in heat exchangers using ambientair heat and is prepared according to the results of experimental investigations. The aim of this work has been set to elaboratean energy-independent technical solution for protection of heat-exchange equipment against freezing the moisture condensed on the heat-exchange surfaces while using the low-potential heat of ambient air in heat pump systems. The investigations have shown that at the temperatures of ambient air close to 0°C when using the «traditional» way of defrostation, which means the reverse mode of operation of heat pump, an intensive formation of ice is observed at the bottom part of evaporator (if not provided with tray heater. This effect is provoked by downward flow of thawed water and it’s freezing in the lower part of the heat-exchanger due to the fact that the tray and housing of heat pump have a temperature below zero. Thereafter, while the defrostation mode has been periodically used, the ice coat would be going to continue its growth, and by time significant area of evaporator could appear to be covered with ice. The results of the investigations presented in the article could be applied both to air-source heat pumps and to ventilation air heat recuperators.

  12. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase 0 occurs during 2013-2014 and prepares the LHC to reach peak luminosities of 1034 cm2s-1; Phase 1, foreseen for 2018-1019, prepares the LHC for peak luminosity up to 2-3 x 1034 cm2s-1, corresponding to 55 to 80 interactions per bunch-crossing with 25 ns bunch interval; and Phase 2 is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 1034 cm2s-1 (HL-LHC). With luminosity leveling, the average luminosity will increase with a factor 10. The main TileCal upgrade is focused on the HL-LHC period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased rad...

  13. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Occupations involved in the manufacture of brick, tile, and... Detrimental to Their Health or Well-Being § 570.64 Occupations involved in the manufacture of brick, tile, and... term clay construction products shall mean the following clay products: Brick, hollow structural tile...

  14. Synthesis, deposition and crystal growth of CZTS nanoparticles onto ceramic tiles

    Directory of Open Access Journals (Sweden)

    Ivan Calvet

    2015-09-01

    Full Text Available The work presents a simple solvothermal method for CZTS nanoparticles preparation using hexadecylamine (HDA as a capping agent. The as-prepared CZTS powder was deposited as ink using Doctor Blade technique onto ceramic tile, as a substrate substituting the typical soda-lime glass. The as-prepared film was thermal treated at different temperatures in order to enhance the thin film crystallinity. CZTS crystal growth onto ceramic tile was obtained successfully for the first time.

  15. Muon Identification with the ATLAS Tile Calorimeter Read-Out Driver for Level-2 Trigger Purposes

    CERN Document Server

    Ruiz-Martinez, A

    2008-01-01

    The Hadronic Tile Calorimeter (TileCal) at the ATLAS experiment is a detector made out of iron as passive medium and plastic scintillating tiles as active medium. The light produced by the particles is converted to electrical signals which are digitized in the front-end electronics and sent to the back-end system. The main element of the back-end electronics are the VME 9U Read-Out Driver (ROD) boards, responsible of data management, processing and transmission. A total of 32 ROD boards, placed in the data acquisition chain between Level-1 and Level-2 trigger, are needed to read out the whole calorimeter. They are equipped with fixed-point Digital Signal Processors (DSPs) that apply online algorithms on the incoming raw data. Although the main purpose of TileCal is to measure the energy and direction of the hadronic jets, taking advantage of its projective segmentation soft muons not triggered at Level-1 (with pT<5 GeV) can be recovered. A TileCal standalone muon identification algorithm is presented and i...

  16. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field.

    Science.gov (United States)

    Chrétien, François; Giroux, Isabelle; Thériault, Georges; Gagnon, Patrick; Corriveau, Julie

    2017-05-01

    With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after

  17. A Universal Semi-totalistic Cellular Automaton on Kite and Dart Penrose Tilings

    Directory of Open Access Journals (Sweden)

    Katsunobu Imai

    2012-08-01

    Full Text Available In this paper we investigate certain properties of semi-totalistic cellular automata (CA on the well known quasi-periodic kite and dart two dimensional tiling of the plane presented by Roger Penrose. We show that, despite the irregularity of the underlying grid, it is possible to devise a semi-totalistic CA capable of simulating any boolean circuit on this aperiodic tiling.

  18. Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof

    Energy Technology Data Exchange (ETDEWEB)

    Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

    2009-10-15

    Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

  19. QCALT: A tile calorimeter for KLOE-2 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Balla, A.; Ciambrone, P.; Corradi, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Martini, M., E-mail: matteo.martini@lnf.infn.it [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Università degli studi Guglielmo Marconi, Rome (Italy); Paglia, C.; Pileggi, G.; Ponzio, B.; Saputi, A. [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Tagnani, D. [INFN, Sezione di Roma 3, Rome (Italy)

    2013-08-01

    The upgrade of the DaΦne machine layout requires a modification of the size and position of the inner focusing quadrupoles of KLOE-2, thus asking for the realization of two new calorimeters, named QCALT, covering this area. To improve the reconstruction of K{sub L}→2π{sup 0} events with photons hitting the quadrupoles, a calorimeter with high efficiency to low energy photons (20–300 MeV), time resolution of less than 1 ns and space resolution of few cm, is needed. To match these requirements we are now constructing a scintillator tile calorimeter where each single tile is readout by mean of SiPM for a total granularity of 1760 channels. We show the design of the different calorimeter components and the present status of the construction.

  20. Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field

    Science.gov (United States)

    Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.

    2017-12-01

    Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.